By Arthur J. Schwaniger

FOR INTERNAL USE ONLY

OT S: $\$ 4.60 \mathrm{ph}, \$ 1.55 \mathrm{mf}$

MICROFILMED

FROM BEST
 AVAILABLE
 $$
\text { COPY } \because
$$

GEORGE C. MARSHALL SPACE FLIGHT CENTER

MTP-AERO-62-79

LUNAR FLIGHT STUDY SERIES: VOLUME 2

EARTH - MOON TRANSIT STUDY BASED ON EPHEMERIS DATA
AND USING BEST AVAILABLE COMPUTER PROGRAM
PART 2: REIURN FLIGHT TO EARTH FROM LUNAR ORBIT
By
Arthur J. Schwaniger

ABSTRACT
The problem of return to earth from an orbit about the moon has been investigated. The orbit is assumed to be retrograde (opposite the moon's rotation) and inclined to the lunar equator by not more than 20 degrees.

The method of trajectory calculation used takes account of the ephemerides of earth, moon, and sun. The investigation is made for three times in March 1969.

Earth landing utes considered are at Woomera, Australia and San Antonio, Texas. The reentry conditions for landing at these places are chosen typical of the Apollo spacecraft.

Injection conditions for return from the orbit to the desired reentry conditions are determined and the use of this data in establishing nominal return conditions and "injection window" is illustrated.
$x \cup T H O R$

GEORGE C. MARSHALL SPACE FLIGHT CENTER

> MTP-AERO-62-79

November 8, 1962

LUNAP FLIGHT STUDY SERIES: VOLUME 2

EARTH - MOON TRANSIT STUDY BASED ON EPHEMERIS DATA
AND USING BEST AVAILABLE COMPUTER PROGRAM
PART 2: RETURN FLIGHT TO EARTH FROM LUNAR ORBIT
By
Arthur J. Schwaniger

TABLE OF CONTENTS

Title Page
SECTION I. INTRODUCTION 1
SECTION II. DISCUSSION 1
A. PROBLEM STATEMENT 1
B. REENTRY CRITERIA 1
C. COORDINATE SYSTEMS 3
D. METHODS USED AND ASSUMPTIONS 3
SECTION III. RESULTS 5
SECTION IV. CONCLUSIONS 8
REFERENCES 9
APPROVAL 40
DISTRIBUTION 41

LIST OF IILUSTRATIONS

Figure Page]2
3-11 Injection Conditions at Moon for Return to San Antonio from Moon at Minus 28.4° Declination. $12-20$
12-20
Irijection Conditions at Moon 28.4° Declination 21-29
24-26 Injection Conditions at Moon for Return to wromera from Moon at Ascending 1 de 33-352728
2530
Reentry Longitude and Azimuth for keturn to San Antonio, Texas as Function of Reentry Latitude 10
Reentry Longitude and Azimuth for Return to Woomera, Australia as Function of Reentry Latitude 11
21-23 Infection Conditions at Moon for Return to San Antonio from Moon at Ascending Node 30-32
Optimum Injection Path Angle as a Function of Injection Velocity Magritude for a Typical Lunar Return Vehicle 36
Velocity Penalty for Deviation from Optimum Velocity Direction 37
Characteristic Velocity Required for Return to Woomera, Australia from Circular Orbit about Lunar Equator 38
Velccity Penalty for Departure fromEquatorial Moon Cirbit at Non-OptimumTime39-

GEORGE C. MARSHALL SPACE FLIGHT CENIER

> MIPP-AERO-62-79

LUNAR FLIGHT STUDY SERIES: VOLUME 2

EARTH - MOON TRANSIT STUDY BASED ON EPHCMERIS DAT4
AND USING BEST AVAIIABLE CCMPUTER PROGRAM PART 2: RETURN FLIGHT TO EARTH FROM LUNAR OPBIT

By

Arthur J. Schwaniger

SECTION I. INTPODUCTION
As part of a larger effort to establish the feasibility of lunar orbit rendezvous as a method for manned lunar exploration, a study has been made of the return injection conditions which might be required for such a mission. This report presents the results of the study.

SECTION II. DISCUSSION
A. PROBLEM STATEMENT

The problem at hand is to determine the injection conditions which might be utilized for a return flight to earth from an orbit about the moon with a view toward the determination also of what "injection window" is available. The orbit is assumed to be retrograde (opposite the moon's rotation) and inclined to the linar equator by not more than 20 degrees.

B. REENTRY CRITERIA

At reentry into the earth's atmosphere the return trafectory must have the correct direction and velocity to assure that the vehicle arrives at the preselected recovery area and is not subjected to excessive thermodynamic or
deceleration loads. In a final analysis a reentry window could be estabilshed which would iepresent all sets of acceptable reentry conditions, and which would be determined by the exact aerodynamic characteristics of the vehicle and the flexibility of the guidance and contiol system. In this study, however, the reentry window is approximated by choosing most of the reentry parameters at a nominal value.

Work done by the author and others at this center, as well as information available in the literature, was consideled in the choice of tri: reentry conditions. Reentry is assumed to take place at a radius of 6498 km from the earth's center. Since the trajectories were calcuiated for an ellipsoidal earti, this means reentry altitude was allowed to vary slightly with latitude of reentry. The range from reentry to tuuchdown is taken as $4300 \mathrm{n} . \mathrm{m}$. or 72 degrees of central angle. This is about the average range of the Apollo type craft when returning from the moun. Path angle of 6 degrees below horizontal is appiroximately the direction of reentry which is satisfactory for most vehicles of the cype likely to be used for the mission and is chosen as nominal here.

Reentry velocity was sot restricted to a fixed value for the following reasons. For the velocities considered for the departure the reentry velocity measured in a nonrotating frame varies by only $50 \mathrm{~m} / \mathrm{s}$ even though return transit times range from 55 to 100 hours. Thus, when the reentry velocity is measured with respect to the rotating eduth, for all cases reentering with eastward direction (azimuth between 0 and 180 degrees), the velocity extremes encountered are 10,600 to $11,000 \mathrm{~m} / \mathrm{s}$. This variation of $400 \mathrm{~m} / \mathrm{s}$ with respect to the atmosphere is not critical for those velocity magnitudes encountered.

Under these assumptions concerning reentry velocity we have, in effect, neglectec the earth's rotation and assumed that all reentry situations will require the same range to touchdow. Thus, if we would also neglect the non-spherical shape of the earth, the reentry points would lie on a circle with the touchdown site at the center.

If the touchdown location is specified, spherical trigonometry can be used to determine what combinations of latitude and longitude lie at the correct angular distance from the touchdown point. Futher, if reentry flight is assumed to occur in a plane, the correct azimuth for each reentry position is determined.

Two landing points on earth considered are near San Antonio, Texas, and Woomera, Australia. The latitude of these places is 29.48 degrees north and south, respectively. The northern location (near San fntonio) $1 s$ taken as 251 degrees longitude (measured east from Greenwich) and the southern location (Woomera) is at 135 degrees east 1.ongitude. Figures 1 and 2 show the azimuth and longitude for the specified reentry conditions as functions of the reeniry latitude. For converifence the conditions represented b^{4}. these figures will be referred to as an "arrival cipcie."

C. COORDINATE SISTEMS

At this point it is desirable to explain the system used to specify position and velocity coordinates at the moon. All of these coordinates are $\boldsymbol{g}^{1} \mathrm{ven}$ ir a selenographic system which is similar to that used to specify geocentric coordinates at the earth. The moon's equator plane is perpendicular to its axis of rotation. The z sro longitude meridian crosses the equator on that principal axis of inertia which is assumed (by astronomers) to lie through the center of the bulge of the moon toward the earth. Since the moon's equator is inclined by 6.67 degrees to the plane of the moon's orbit about earth, and since also the orkit is slightly eccentric while the moon's rotation rate is essentially constant, the position of the zero latitude and longitude point seems to move in nearly a circle about the earth-moon line. In addition to this optical libration there is a smail (always less than 0.40 degrees! physical libration.

In thes moon-fixed system then, longitude is measured positive east from 0 to 360 degrees. East on the moon as on earth is the direction of sunrise. Azimuth is measured from 0 through 360 degrees starting eastward from north.

D. METHODS USED AND ASSUMPTTONS

Trajectories for return flights were compated by numerical integration of t'e equations of motion using a system programmed for high speed computers by the Jet Propulsion Laboratory. $\mathrm{T}^{\text {. }}$ equations of motion include the gravitational forces, i the earth, moon, and sun with their coordinates Given accurately according to the ephemeris. The oblateness effects of both earth and moon are also included.

Since the first manned -unar flights are expertet *o occur near the end of this decace, the time investigated was chosen to be March 1969. At that time the moon's orbit about the earth is inclined by 28.72 degrees, roughy the largest inclination ever occurring. Also the soon's perigee occurs at about the same time that it reaches its minimum (south) declination. (At perigee the moon is at 369,400 kr distant from earth. At apogee, which in that month occurs obviously at maximum declination, the distance is $404,400 \mathrm{~km}$.) Three times in the month were chosen for study. These are minimum deciliation, zero decilnation ac ascending node, and maximuri leciination.

The specification of a retrograde orbit of small inclination indicates injection from jatitudes near the lunar equator, with sestward azimuth, in order to avoid large performance penalties associated with large flight plane changes. Information avallatie in the literature (References 1 and 2) zoncerning lunar return indicates that for such conditions the injection longitude will be in the region of 90 to 180 degrees. (This can also be seen from studies of earth to moon fiight using the restricted thieebody approach which has as a feature that for ary trajectory from eartin to moon there is a trajectory of the same shape reflected about the earth-moon line and whe ch goes in the opposite direction, namely from moon to earth. A detailed explanation of this phenomenon is given in Reference 3.) Therefore, injection positions at 0,10 , and 20 degrees latitude for each of 90,135 , and 180 degrees longitude were chosen :or investigation of injection velocity maznit:de anc dinection requirements. The injection radius is held constant at 1938 km from the center of the moon or 200 km above the mean radius of the moon of 1738 km .

Southern latitudes were not considered since by proper rotation of coordinate systems to account for the previously mentioned tilt of the moon's axis, the resuit. could te reflected about the earth-moon plare to give an approximation of conditions for those southem latitudes that happen to be symmetric about the earth-moon plane with the northern latitude used originaily. The results would be approximate only because of the irregular gravity fields of the nonspherical moon and earth.

The procedume followed was to hold atepwise constant the position, velucity magnitude, and time of injection and to isolate for that combination of injection path angie and azimuth which results in reentry with a 6 degree path angle
below homizontei at radius of 6498 km Prom earth. This isolation is done autometieailj by moutines built into sine trajectory compitation program. For each position and velocity magnitude there are a pamily of trajectories innch meet these condttions. Not all of these have the specified "arrival circie" conditions. The reentry latitude and azimuth mich 12 produced is compared eraphicaily with the acceptable values shom in Figires 1 and 2. The Frafectomies which produce desirec latitude and azimuth combinatione are considered iHthout rezard to longltude. This is explained by the foilo:ing reasoning. A return filght arrived at by the above pro. sdure may resuit in a longitude error the absolute value of with can be as most 180 degrees. Thus, if injection time is ajfusted by at most 12 houns then except for the slight change in the trajectory shape due to the silghtiy shanged positioning of moon with respect to earth at the corrected time, the reentry does occu: at the correct iongitude.

SECTION III. RESULTS
At meximum and minimum decisnation or the moon, infection conditions were estaklished which produce flights to satisfy the specified reentry conditions for each of the nine intecicion losations. Solutions ave found, however, only for the northern return location, if the moon is at southermost declination at departure and conversely solutions are only at the southem location for departure from the moon at maximum deciination.
I.t present, data for the zero decilnation are available only for equatorial injection. In this case though, satisfactory return to either of the retumn latitudes is seen to be possible.

Injection path angle and azimuth which produce aceeptable return lilights and the associated flight times are show in Figur 3 s 3 thru 26 as functions of injection velocity magnitude for each of the positions. Flgures 3 thru 11 show cases for retum fromminimum decilnation to Sen Antonio, Texas. Figures le thru 20 present data for retum from maxirum decilnation to Woomera, Australia, and Fegures 21 thru 26 indicate retum conditions from zero lecination to both San Antonio and Woomera.

For a fixed decifnation and distance of the moon, the lozarion of the point of reentry on the "arrival circle" (which also defines the inclination of the reentry flight plane) is a function of tie injection position and velocity. For the enjection positions and the velocity vectors applicable in this study, however, the reentry sccurs always near the same place for a given position of the moon. No attempt was made here to study the exact behavior of the reentry point on the "arrival circle." Such a study may be made eventually using a system referenced to the mooneanth orbit glane which makes easier the analysis of effects nct related to the moon declination. The effects of changing declination can then be super-imposed on those due to injection position and velocity variation. The positions of reentry encountered in the study are given in the following.

For return to Wicomera from the maximum aeclination, the reentry 11 es between 19 and 24 degrees south latitude having flight plane inclination of 32 to 34 fegrees to the earth's equator while for return from zero jeclination, the reentry occurs between 11 and 15 degrees north latitude with inclination of 38 to 40 degrees. For return to San Antonio from minimum declination, the reentry latitudes are ietween 20 and 23 degrees north with inclination being 32 to 34 degrees. Foir return to San Antonio from zero declination, the latitudes are from 8 to 12 degrees south and inclinations from 36 to 38 degrees.

Since San Antonio and Woomera are positioned at symmetrical latitudes, the return latitudes could be expected to be the same for return from the extreme declination in either hemisphere to the recovery point in the opposite hemisphere if the moon were always at the same distance and orientation with respect to the earth. The above figures for reentry latitude reflect the changes in moon position and orientation which occur during the month studied.

In the course of the study it was noticed that for short t.ansit times (50 to 90 hours) the injection velocity magnitude required is geater at the moon's apogee than it is at the perigee while for long transit times (>90 hours) the situation reverses. (A sinilar phenomenon cccurs in flight from earth to moor. with a comparison of arrival velocity with respect to the moon as a function of flight time and distance to moon.) Due to this difference in velocity rejuirement, the curves are given for smaller velocities to about $2.5 \mathrm{~km} / \mathrm{sec}$ for the minimum declination curves (coinciding here with smallest earth-mocn distance) and to $2.4 \mathrm{~km} / \mathrm{sec}$ for raximum decilination.

From the information given in the atove ilgures and certain performance data a nominal injection situation can be established and launch window determinations can be made. One simple arbitrary case is offered. This sase is based on the assumption of an equatorial circular orbit of a 2 hr 7 minute period around the moon. In order to establish a nominal case we also assume that we want to return to a preselected point on earth in a speciried transit time and to use a minimum of propellant in the departure maneuver.

Performance studies have been made by Space Projects Section II of this branch to determine the characteristic velocity requirid for these orbital maneuvers. The remate oi the studies will be given in detail in reportse beine prepared by that zection; however, an exmple of the resulte is giver here as part of the illustration of detervination of nominal injection and launch andion.

For injection at 1938 km radias the study ghowed that optimum transfer would be made from circular orbit radu of about 1932 km which is the orbit of the period specifleul above. (This optimum altitide change durine the manetiver is of course also a function of the injection velocity magnitude and direction; however, the effect on performance is small.) The optimum path angle at injection is Eiven then as a function of injection velocity in Pigure 27 under the assumption of constant injection radius and no change in flight plane orientation. Figure 28 shows the characteristic velocity required for variation of velocity direction from optimum. This curve has been found to be representative of changes in either path angle or azimuth or of combined changes from the optimum. Thus, for each injection position on the moon the difference in required injection direction ance the optimum direction can be determined, and the velocity penalty can be read from the figure.

The total velicity required for transfer is given as a finction or flight time in Figure 29. Here the small change in latitude which takes nlace when azimuth change: are made during the injection maneuver has been neglected. The injection letitude is assumd to be almays coto and longitude is given as the parameter. The time of naximut decilnation was used in this case. Prom this curve the nominal enjection is determined and an approxisation of the "injection window" is rade as rollows.

If the moon is near the maximum decilnation and we desire a return of 77 hr duration the injection longitude from which the least velocity fincrement is required is seen in Figure 29 to be 180 degrees. The nominal injection time is estakished to satisfy these longitude and flight time requirements. If we now consider early and.late departures, we note that for the orbit period in consideration the longitude charges by acout 3 degrees per minute so that for each minute early that injection occuri the velocity increment is reac on the curve for 3 degrees greater longitude at the same flight time and likewise for each minute late the longitude decreases by 3 degrees. (More nearly exact would be to say, read the curve for flight time adinsted by the correct number of minutes, but onvivusly a few minutes are negligible here.) It is noticed that if the delay is to be greater than a few minutes, it may be advantageous to wait one more orbit of 2 hours and 7 minutes from nominal time and reduce filght time by that amount. (This assumed, the correct longitude is again achieved at reentry. This is not exactly true due to change of trajectory shape for smaller transit time as well as the change of the moon's position with respect to the earth, which takes place in the 2 hr 7 minute period. The assumption is, however, sufficiently accurate for this first approximation.) If this longer delay occurs, a second noninal injection may take place at longitude of 177 degrees and the velocity penaity for dispersions about the new nominal may be determined again as above.

The velocity penalty for departure at non-optimum time as determined in the above example is shown in Figure 30 plotted against the time deviation.

SECTION IV. CONCLUSIONS

The results presented may be used to determine injection conaitions for return to earth from retrograde orbits about the moon inclined by as much as 20 degrees (and with certain location of the lines of nodes of the orbit and equator). hpproximations of return injection windows can also be made.

The results indicate that return can be made to at least one of the two chosen sites regardless of the moon's position relative to earth and that reasonable injection windows are available.

REFERENCES

1. Penzo, P. A., "An Analysis of Moon to Earth Trajectories," Space Technology Laboratories, Inc., Repurt No. 8975-$0008-R \mathrm{R}-000,30$ October 1961.
2. Swider, t. G. and Taylor, R. D., "An Analysis of Lunar Injection Parameters and Their Effects Upon the Characteristics of Entry Into the Earth's Atmosphere," presented at the Eighth Annual National bieeting of the American Astronautical Society, January 1962.
3. Miele, A., "Theorem of Image Trajectories in the EartinMoon Space," Bceing Scientific Research Labcratomies, Flight Sciences Laboratory Renort No. 21, Jamary 1960.

FIG. I. REENTRY LONGITUDE AND AZIMUTH FOR RETURN TO SAN ANTONIO, TEXAS AS FIJNCTION OF REENTRY LATITUDE

FIG. 2. REENTRY LONGITUDE AND AZIMUTH FOR RETURN TO WOOMERA, AUSTRALIA AS FUNCTION OF REENTRY LATITUDE

12

FIG. 3. INJECTION CONDITIONS AT MOON
FOR RETUFIV TO SAN ANTONIO Moon at -28.6° Declination of Injection

Injection from Latitude, Lat w, 0° and Longitude, Long w, 90°

FIG. 4. SAME AS FIGURE 3

$$
\begin{aligned}
\text { Lat }_{W} & =10^{\circ} \\
\text { Lng }_{N} & =90^{\circ}
\end{aligned}
$$

FIG. 5. SAAGE AS FIGURE 3

$$
\begin{aligned}
\text { Lat }_{\text {m }} & =20^{\circ} \\
\text { Long }_{m} & =90^{\circ}
\end{aligned}
$$

FIG. 6. SAME AS FIGURE 3
$L_{0, B}=0^{\circ}$
Long $_{m}=135^{\circ}$

FIG. 7. SAME AS FIGURE 3

$$
\begin{aligned}
\operatorname{Lot}_{A p} & =10^{\circ} \\
\operatorname{Long}_{m p} & =135^{\circ}
\end{aligned}
$$

FIG. 8. SAME AS FIGURE 3

$$
\begin{aligned}
\operatorname{Lot}_{w} & =20^{\circ} \\
\operatorname{Long}_{a y} & =135^{\circ}
\end{aligned}
$$

FIG. 9. SAME AS FIGURE 3
$\operatorname{Laf}_{M}=0^{\circ}$
$\operatorname{Long}_{\text {m }}=180^{\circ}$

FIG. IO. SAME AS FIGURE 3

$$
\begin{aligned}
\operatorname{Lot}_{M} & =10^{\circ} \\
\operatorname{Long}_{M} & =180^{\circ}
\end{aligned}
$$

fig. 11. same as figure 3

$$
\begin{aligned}
\operatorname{Lot}_{M} & =20^{\circ} \\
\operatorname{Long}_{M} & =100^{\circ}
\end{aligned}
$$

Lunar Azimuth, \mathbf{A}_{2}. Clockwise from North (Cog) 1 Pots Angle from Luser Norizes, sw rood

FIG. 12. INJECTION CONOITIONS AT MOON FOR RETURN TO WOOMERA Moon of 28.4° Declination of Injection Injection from Lotihude, Leta, 0° and Longitude, Long, 90°

fig. 13. SAME AS FIGURE I2

$$
\begin{aligned}
\text { Lari } & =10^{\circ} \\
\text { Long }_{M} & =90^{\circ}
\end{aligned}
$$

FIG. 14. SAME AS FIGURE 12

$$
\begin{aligned}
\text { Lot }_{M} & =20^{\circ} \\
\text { org }_{M} & =90^{\circ}
\end{aligned}
$$

FIG. 15. SAME AS FIGURE 12

$$
\begin{aligned}
\operatorname{Lat}_{M^{\prime}} & =0^{\circ} \\
\operatorname{Long}_{M} & =135^{\circ}
\end{aligned}
$$

FIG. 16. SAME AS FIGURE I2

$$
\begin{aligned}
\operatorname{Lat}_{M} & =10^{\circ} \\
\operatorname{Long}_{M} & =135^{\circ}
\end{aligned}
$$

fig. 17. same as figure it

$$
\begin{aligned}
\operatorname{Lot}_{W} & =20^{\circ} \\
\operatorname{Long}_{W} & =135^{\circ}
\end{aligned}
$$

FIG. 18. SAME AS FIGURE 12

$$
\begin{aligned}
\operatorname{Lot}_{W} & =0^{\circ} \\
\operatorname{Long}_{W} & =180^{\circ}
\end{aligned}
$$

FIG. 19. SAme as figure it

$$
\begin{aligned}
L a f_{m} & =10^{\circ} \\
L_{\text {on }} & =180^{\circ}
\end{aligned}
$$

FIG. 20. SAME AS FIGURE 12

$$
\begin{aligned}
\text { Lat }_{m} & =20^{\circ} \\
\operatorname{Long}_{m} & =180^{\circ}
\end{aligned}
$$

FIG. 21. NJECTION CONDITIONS AT MOON FOR RETURN TO SAN ANTONIO Moon of Ascending Node of injestion

Imjection from Latitude, Latm, $0^{\text {- }}$ and Longifude, Longw, 90°

FIG. 22. SAME AS FIGURE 21

$$
\begin{aligned}
L o f_{m} & =0^{\circ} \\
L_{m} & =135^{\circ}
\end{aligned}
$$

FIG. 23. SAME AS FIGURE 21

$$
\begin{gathered}
\text { Lot }=0 \\
\text { Long }=180^{\circ}
\end{gathered}
$$

FIG. 24. INJECTION CONDITIONS AT MOON FOR RETURN TO WOOMERA

Moon af Ascending Node of Injection Injection from Lotitude Lat, 0° and Longitude Long, 90°

FIG. 25. SAME AS FIGURE 24

$$
\begin{aligned}
\operatorname{Lot}_{M} & =0^{\circ} \\
\operatorname{Long}_{M} & =135^{\circ}
\end{aligned}
$$

FIG. 26. SAME AS FIGURE 24

$$
\begin{gathered}
\operatorname{Lot}_{m}=0^{\circ} \\
\text { Long }_{m}=180^{\circ}
\end{gathered}
$$

FIG. 28. VELOCITY PENALTY
FOR DEVIATION FROM
OPTIMUM VELOCITY DIRECTION
$\Delta v_{\text {hi }}(\mathrm{m} / \mathrm{sec})$
Aras

injection Lotimude a 0 dag
FIG. 29. CHARACTERISTIC VELOCITY REQUIRED
FOR RETURN TO WOOMERA, AUSTRALIA, FROM
CIRCULAR ORBIT ABOUT LUNAR EQUATOR.

Time Variation from Relative Optimum Injection Time (min)

For Orbit Period of 2hr 8 min
Flight Time from Nominal hajection to Reenfry or 77 hr Nominal injection Velocity $\approx 24.7 \mathrm{~km} / \mathrm{sec}$

FIG. 30. VELOCITY PENALTY FOR DEPARTURE FROM EQUATORIAL MOON ORGJi' AT NON-OPTIMUM TIME.

APPROVAL

RETURN FLIGHT TS EARTH
FROM LUNAR ORBIT
Arthur J. Schwaniger
The information in this report has been reviewed for security classification. Review of any information concerning Department of Defense or Atomic Energy Commission programs has been made by the MSFC Security Classification Officer. This report, in its entirety, has been determined to be unclassified.

ORIGINATOR

Ch, Space Projects Section III

APPROVAL

R. F. HOELKEF

Ch, Future Projects Branch

[^0]
[^0]: E. D. GEISSIER

 Director, Aeroballistics Division

