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A SIMPLIFIED TECHNIQUE FOR DE'IIERMINDJG DEVIATION 

I N  TEE LUNAR TRANSFER ORBIT EPEEMl3FUS 

By Richard Reid 
Langley Research Center 

SUMMARY 

A l i nea r  algebraic equation was derived t o  determine the  a l t i t u d e  deviation 
of a t r ans fe r  o rb i t  a t  selected anomaly angles a s  a function of e r r o r s  i n  the 
magnitude and d i rec t ion  of the  t r ans fe r  maneuver. The technique i s  applied t o  
both synchronous o r b i t  and Hohmann t r ans fe r  maneuvers of the  lunar excursion 
module from the  Apollo vehicle i n  a c i r cu la r  lunar o rb i t .  The technique requires  
the  p i l o t  t o  make two a l t i t u d e  measurements with known included angles a f t e r  the 
o r b i t  t r ans fe r  maneuver. With precomputed constants, t he  a l t i t u d e  deviation a t  
any fu ture  anomaly angle may then be computed. The r e s u l t s  indicate  that the 
technique would be useful  f o r  ear ly  determination of o rb i t  deviations i f  accu- 
r a t e  a l t i t u d e  measurements can be made. 

INTRODUCTION 

I n  the A p o l l o  mission involving manned so f t  landings on the  moon, there  a re  
savings i n  weight and complexity t o  separate the  lunar excursion module (LZN) 
from the  orb i t ing  Apollo vehicle during the  o r b i t a l  phase. The L;EM then makes 
an o r b i t  t r ans fe r  t o  an e l l i p t i c a l  o r b i t  with a low pericynthion from which it 
begins a braking descent t o  the lunar  surface.  It i s  desirable  t h a t  a technique 
be developed i n  which the p i l o t  monitors t he  t r ans fe r  and determines the  ephem- 
e r i s  independently of the automatic navigation system. The need f o r  such a 
technique i s  predicated on the  f a c t  t h a t  the  t r ans fe r  maneuver of the L;EM m y  
not be performed with su f f i c i en t  accuracy. Although automatic control  of the  
t r a n s f e r  maneuver may be suf f ic ien t ly  accurate t o  assure a safe  t r ans fe r ,  the  
p o s s i b i l i t y  of a f a i l u r e  which would require manual takeover should be 
considered. 

When deviations i n  the t r ans fe r  o r b i t  a r e  determined, there  a r e  several  
procedures fo r  making corrections.  The success of any one of them w i l l  depend 
on the accuracy with which the  o r b i t  deviation can be determined. A fu r the r  
requirement i s  t h a t  the associated computations be performable i n  the  time 
avai lable .  Rather than t o  develop methods f o r  a11 the  possible correction pro- 
cedures, the  purpose of t h i s  report  w i l l  be t o  present and analyze a method of 
determining the deviation i n  pericynthion a l t i t u d e  with minimum computation. 
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The technique requires  the  measurement of t he  a l t i t u d e  deviation from nom- 
i n a l  a t  two prescribed angles of t r a v e l  from the o r b i t  t r ans fe r  point.  
p a i r  of measurements produces a determination of a l t i t u d e  deviation a t  any fu ture  
anomaly angle. 
o r b i t  and Hohmann t r ans fe r  maneuver of t h e  LE24 from the  Apollo vehicle i n  an 
established lunar o r b i t .  

Each 

The technique i s  presented and analyzed f o r  both a synchronous 

SYMBOL8 

Pro, 

K2 
~ ( c p )  = -(1 - cos cp)  + cos cp - s i n  cp t an  yo- 

e eccent r ic i ty  

g 

G 

H 

h a l t i t u d e  above lunar  surface 

accelerat ion due t o  grav i ty  a t  lunar surface 

constant defined i n  equation ( 1 9 )  f o r  pa r t i cu la r  angle combination 

constant defined i n  equation (19) f o r  pa r t i cu la r  angle combination 

K = r V cos To- o- o- 

P semi-latus rectum 

R remainder term i n  Taylor s e r i e s  

r 

rm 

radial dis tance t o  vehicle posi t ion 

radius of moon 

i. derivat ive of r with respect t o  time 

v t o t a l  ve loc i ty  of vehicle 

AV 

a angle of AV 

Y 

2 

magnitude of o r b i t  t r a n s f e r  veloci ty  vector 

f l ight-path angle, defined with respect t o  loca l  horizontal  



6 deviation from nominal 

CL 
gravi ta t ion  constant, rm 2 g 

Cp angular t r a v e l  a f t e r  o rb i t  t r ans fe r  

e 

e 
anomaly angle 

der$vative of 8 with respect t o  t i m e  

Sub s c r i p t s  : 

O+ condition immediately preceding o r b i t  t r ans fe r  maneuver 

0- condition immediately following o rb i t  t r ans fe r  maneuver 

For synchronous o r b i t  : 

1 15' from in jec t ion  point 

2 30° from in j ec t ion  

3 45' from in jec t ion  

4 600 from in jec t ion  

5 75' from in jec t ion  

6 94.04' from in jec t ion  

For Hohmann o rb i t :  

1 30° from in jec t ion  

2 60° from in jec t ion  

3 80° from in jec t ion  

4 lmo from in jec t ion  

5 lwo from in j ec t ion  

6 180° from in jec t ion  

Subscripts a r e  used t o  indicate  combinations of angles; f o r  example, sub- 
s c r i p t  126 indicates  a combination of 15O, 30°, and 94-04' f o r  the synchronous 
o r b i t .  
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METHOD AND ANALYSIS 

The e f f e c t s  of e r r o r s  i n  magnitude and d i rec t ion  of t he  t ransfer  AV, 
t r ea t ed  separately,  a r e  shown i n  f igures  1 and 2 f o r  the synchronous t r ans fe r  
o r b i t  and i n  f igu res  3 and 4 f o r  the  Hohmann t r ans fe r .  
t r ans fe r  originated from an 80-nautical-mile c i r cu la r  o r b i t  and had a pericyn- 
th ion  of 50,000 feet. 

I n  each case the nominal 

The probable deviation i n  pericynthion a l t i t u d e  w a s  determined by the  use 
of the Monte Carlo method, simultaneous magnitude and d i rec t ion  e r ro r s  being 
taken i n t o  account. The r e s u l t s  are shown as cumulative probabi l i ty  d is t r ibu-  
t i o n s  i n  f igures  5 and 6.  Standard deviations i n  t h e  thrus t ing  maneuver were 
0.5' and 5 f e e t  per second. (The f a c t  t h a t  the  mean deviation i n  pericynthion 
i s  not zero i s  ind ica t ive  of the nonl inear i ty  i n  t h e  re la t ionship  between i n i t i a l  
e r r o r s  and deviation i n  pericynthion a l t i t u d e .  
r e f .  1.) 

The equations used were those of 

I f  t he  aforementioned e r ro r s  i n  the thrus t ing  maneuver a r e  accepted as rea- 
sonable, it i s  apparent t h a t  determination of the  o r b i t  deviation w i l l  be nec- 
essary.  A method i s  derived i n  the following sect ion whereby the deviations may 
be computed manually i f  the  a l t i t u d e s  a t  two d i f f e ren t  points  along the  o r b i t  
can be measured. 

Derivation of Equations 

The equation of an e l l i p s e  i n  terms of i t s  semi-latus rectum p, eccen- 
t r i c i t y  e, and t r u e  anomaly e i s  (from re f .  2): 

P 
1 + e cos 0 

r =  

K2 
CL' 

or ,  since p = - 

r =  K2/P 
1 + e cos 0 

L . 

I n  terms of the  anomaly a t  in jec t ion  eo,, t he  radius  a t  any l a t e r  time i s  

r =  K2IK . -  _. 

1 + e COS ( eo- + ' P I  

where 'p 
Expansion of the cosine term gives 

i s  the  angular t r a v e l  from in jec t ion  t o  the point  of observation. 

r =  K?iL ~. - 
1 + e cos €lo- cos cp - e s i n  eo- s i n  cp 

(3)  

4 
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An expression f o r  
t o  give 

e s in  80- may be derived by d i f f e ren t i a t ing  equation (2) 

The f l ight-path angle a t  in jec t ion  i s  

= tap-1 YO- 

Therefore equation ( 5 )  may be wr i t ten  

e s i n  €Io- = 

-- 
rO- I- 

K2tan yo- 

Pro-  

The subst i tut ion of equations (2) and (7) in to  equation (4)  gives t h e  
following: 

r =  K2/P - 

1 +(" - cp - - K~ s i n  cp t an  yo- 
Pro-  Pro- 

Multiplication of numerator and denominator of equation (8) by pr0-/K2 
gives 

( 9)  rO- 
Pro- 
--&l - cos cp )  + cos cp - s i n  cp t an  yo- 

r =  

The deviation from nominal of r at  selected angles i s  obtained with a 
Taylor's series expansion of equation ( 9 ) ,  second and higher order terms being 
neglected. 

The p a r t i a l  der ivat ives  i n  equation (10) are,determined by taking the  par- 
t i a l  der ivat ive of equation (9) first with respect t o  ro-, Vo,, and then yo- 
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where B(q) is the denominator of equation ( 9 ) .  

In the application of the technique it is assumed that the orbiting Apollo 
vehicle has a well-established circular orbit (h0- = 0). 
maneuver errors considered are in AV and a; therefore, the resultant compo- 
nents of velocity after the transfer maneuver are: 

The only  transfer 

(r6)o- = (rQ),+ - AV sin a (12) 

The resultant flight-path angle is 

= tan-1 YO- 
-AV COS U 

(relo+ - AV sin a 

and the resultant total velocity magnitude is 

An error in either magnitude AV or direction 0: of the orbit transfer 
thrusting maneuver will give an error in resultant flight-path angle 
velocity magnitude Vo-. Therefore, 6Vo- and 6yo- of equation (10) are 
determined with a Taylor's series expansion of equations (13) and (14) about 
nominal AV and u as 

ro- and 

6V0- - - ( z - ) a V  - + (2)h + R(WV,&z) 

6 



Equations (1.5) and (16) a re  subst i tuted in to  equation (10) t o  obtain 

ar ["-) €AV + (%)Ea + R( €AV,Sa) 6r(cp) = - - 1 avo- aav 

ar iaYo-)€AV + (%)Sa + R ( M V , E a )  1 + -  - are- 
which gives the a l t i t u d e  deviation a t  any angle as a function of the magnitude 
and d i rec t ion  of the  orb i t - t ransfer  th rus t ing  maneuver. 

Equation (17) i s  used t o  develop a technique f o r  determining a l t i t u d e  devi- 
a t ion  a t  any angle a f t e r  in jec t ion  by measuring the  a l t i t u d e  deviation a t  two 
p r io r  angles and using precomputed constants. Equation (17) i s  wri t ten f o r  
th ree  angles of t r a v e l  cp. By solving the  system of equations t o  eliminate the 
terms i n  brackets,  an equation i s  derived f o r  t he  a l t i t u d e  deviation a t  the  
t h i r d  angle as a function of t he  deviations a t  the first two angles: 

- - - -  
where A( ) and C( ) are  the  partial  der ivat ives  - ar and - ar f o r  the  

avo- are- 
par t i cu la r  angles. 

The use of the  technique would require  knowing the  nominal o rb i t  i n  advance 
and deciding the angles a f t e r  in jec t ion  a t  which measurements of a l t i t u d e  would 
be taken. The terms i n  brackets i n  equation (18) then could be precomputed and 
equation (18) would reduce t o  

with a d i f f e ren t  G and H f o r  each angle combination used. 

Evaluation of Method 

To i l l u s t r a t e  t h e  technique, an example using a synchronous o r b i t  t r ans fe r  
from the  parent vehicle i n  an 80-nautical-mile c i r cu la r  lunar  o r b i t  i s  presented. 
Table I l ists  t h e  constants necessary t o  establish the  ephemeris of the  o rb i t  
a f t e r  making two a l t i t u d e  measurements. I n  t h i s  case t h e  p i l o t  would measure 
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h i s  a l t i t u d e  a f t e r  15' of t r a v e l  from the o r b i t  t r ans fe r  point t o  obtain 
A similar measurement a t  30' gives Gr(q2). By using G1& and His, the  
a l t i t u d e  deviation a t  pericynthion i s  determined from: 

8r(cp1). 

By using appropriate constants, the  a l t i t u d e  deviation a t  other points  i n  the 
o rb i t  can be determined with these two measurements. 
repeated with %36, Hl36, and so for th .  The agreement of t h e  measured and 
predicted value of a l t i t u d e  deviation a t  o rb i t  points  provides a check on the 
p r io r  measurements. When the 
p i l o t  has a cor re la t ion  between measured and ana ly t i ca l ly  determined deviations 
he can decide whether corrections o r  abort  procedures a re  necessary. The nec- 
essary constants f o r  applying the technique t o  a Hohmann t r ans fe r  are a l s o  
l i s t e d  i n  table I. 
can e a s i l y  be computed. 

A t  45' the  process i s  

The process i s  again repeated a t  60° and 7 5 O .  

The constants a r e  computed i n  30° increments and an example 

It should be pointed out t h a t  angular t r a v e l  can be closely approximated 
by time ra ther  than by a d i r e c t  measurement. 
of t r a v e l  as the  point of making the  a l t i t u d e  measurement, e r ro r s  i n  the t r a n s -  
f e r  maneuver of 5 f e e t  per second i n  AV and 0.3' i n  a r e s u l t  i n  8 0.3' e r r o r  
i n  t h e  point of measurement. Since the angular r a t e  of the LEM never exceeds 
0.1' per second and the r a t e  of descent i s  small, use of time a s  the reference 
would have l i t t l e  e f f ec t  on the accuracy of the technique. 

By using a nominal time f o r  150' 

To determine the  e f f e c t  of systematic e r r o r s  which r e s u l t  from dropping 
second and higher order terms i n  equation (lo), the  equations of motion i n  r e f -  
erence 1 were solved t o  give a l t i t u d e  deviations along t r a j e c t o r i e s  t ha t  had 
d iscre te  in jec t ion  e r ro r s .  The method of t h i s  report  w a s  then applied t o  e r ro r s  
a t  various angle combinations t o  determine t h e  deviation i n  a l t i t u d e  a t  the 
pericynthion. The ac tua l  a l t i t u d e  deviation and the  various predicted devia- 
t i o n s  f o r  both synchronous and Hohmann t r ans fe r s  a re  given i n  t ab le s  I1 and 111. 

An estimate of the  random e r ro r  i n  the  predicted pericynthion may be 
obtained by applying the  theory of the propagation of e r ro r  i n  l i n e a r  systems. 
Thus, 

8r('p1) 
where and u 

of a l t i t u d e .  

For p rac t i ca l  purposes, 

a r e  the  standard deviations i n  the  measured values 

equals it may be assumed tha t  

and equation (20) may be wr i t ten  as 

8 



f o r  angle combination where the  constants were 
112 

The values of (G2 + H2) , t he  standard 
“6r( ‘Pl) 

computed i s  given i n  t ab le  I. For any given value of 

deviation of a l t i t u d e  determination can be computed. 

RESULTS AND DISCUSSION 

The results shown i n  t ab le s  I1 and I11 indicated t h a t  the  l inear ized  equa- 
t i o n  provides a very good determination of t he  gericynthion altitude deviation. 
It i s  shown t h a t  the accuracy of the  determination i s  increased by using t h e  
first and most recent measurements. 
determine a la rge  deviation ea r ly  i n  t h e  t r ans fe r  o r b i t  and small deviations can 
be predicted accurately p r i o r  t o  reaching the  pericynthion. 

The equation i s  su f f i c i en t ly  accurate t o  

Table I indicates  t h e  e f f ec t  of measurement e r rors .  Some improvement 
over t he  values i n  t a b l e  I can be effected by making the  f i rs t  measurement 
e a r l i e r .  The second measurement should be made as l a t e  as possible but while 
suff ic ient  t i m e  remains t o  calculate  and perform the  corrective procedures. 
The t i m e  required f o r  t h e  calculat ions and corrections depends on the  f i n a l  m i s -  
sion strategy; therefore  no optimization has been attempted. 

In  applying the  technique t o  t h e  lunar  mission, there  a re  several  suggested 
When t h e  LEM and Apollo spacecrafts methods of obtaining a l t i t u d e  measurements. 

a r e  i n  close proximity, v i sua l  s ight ings and rendezvous radar may be used t o  
obtain a l t i t u d e  information. A t  other points  i n  t h e  o r b i t  t he  landing radar, 
c e l e s t i a l  navigation, or v i sua l  sightings on the  lunar surface may be used t o  
obtain a l t i t u d e  measurements. 

CONCLUDING REMARKS 

A l i n e a r  algebraic equation w a s  derived and studied t o  determine t h e  a l t i -  
tude devfation of a t r ans fe r  o r b i t  a t  selected anomaly angles as a function of 
e r ro r s  i n  the  magnitude and d i rec t ion  of t he  t r ans fe r  maneuver. The technique 
requires  two a l t i t u d e  measurements a t  known angles of t r a v e l  and simple calcula- 
t i o n s  that could be performed onboard t h e  lunar excursion module are required. 
Systematic e r ro r s  i n  the technique are small and t h e  random e r ro r s  depend pr i -  
marily on t h e  accuracy of t h e  a l t i t u d e  measurements. 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Stat ion,  Hampton, Va. ,  July 21, 1964. 
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TABLE I.- CONSTANTS FOR ORBIT ZECEXMINATION 

__ 

Angle 
comb i n a t  ion 

- .. .. . 

126 
136 
146 
156 

. -. .. . . 

(G2 + H2) 112 I 
Synchronous orb it t ransfer  

12.798 20.438 

1.664 
3.848 

4.495 
2.381 
1 - 519 

Hohmann t ransfer  o r b i t  
.- 

2.740 
1.158 ?E - -  - I 7.482 

2 737 
1 * 579 
1 * 155 

24.114 
9.236 
4 - 525 

"531 I 
14.972 
6.126 
3.162 
1.636 
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TABLF: 

I 

~ ~~ 

Enjection errors 
for - 

~~ 

126 
136 
146 
156 

13,160 

5.0 I - O s 5  

13,918 
13,823 
13 , 209 
13,319 

I 
-5-0 1 -O-? 

11. - SYSTEMATIC ERRORS IN APPLYING THE TECHNIQUE 

TO SYNCHRONOUS TRANSFER ORBIT 

Pericynthion altitude 
deviation, ft 

2,425 

-12,180 

Predicted pericynthion altitude 
deviation for measured deviations 

126 
136 
146 
156 

126 
7-36 
a46 

-1,274 
358 

1,277 
2 , 087 

- 12 836 
-12,821 

-12,119 
-12,694 
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TABLE 111.- SYSTEMATIC ERRORS I N  APPLYING THE TECHNIQUE 

TO HOHMANN TRANSFER ORBIT 

Cnjection e r rors  
f o r  - 

AV, fpe 

5.0 

5.0 

-5.0 

-5.0 

'ericynthion a l t i t u d e  
deviation, f t  

-21 , s o  

-21 , 366 

. .  

21,486 

21,496 

Predicted pericynthion a l t i t u d e  
deviation fo r  measured deviations 

lngle combinations I Predicted e r ror ,  f t  

126 
136 
146 
156 

-22,146 
-21,469 
-21,294 
-21,154 

126 
1s 
146 
156 

126 
136 
146 
156 

126 
136 
146 
1% 

-24,417 

-21,584 
-21, 400 

-22 , 613 

23 , 574 
22,686 

21 516 
21 , 963 

24J 780 
23 , 202 
22 , 223 
21,630 
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Figure 1.- Variation of a l t i t u d e  deviation with range angle f o r  e r ro r s  i n  magnitude of t h e  synch;.onous o r b i t  t r ans fe r  AV. 
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Figure 2.- Variation of a l t i t ude  deviation with range angle f o r  errors i n  direction of the  synchronous o rb i t  t ransfer  AV. 
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Figure 3.- Variation of a l t i t u d e  deviation with range angle for er rors  i n  magnitude of the Hohmann orbi t  t ransfer  AV. 
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Figure 4.- Variation of a l t i t ude  deviation with range angle f o r  e r rors  i n  direction of the  Hohmann o rb i t  t ransfer  AV. 
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Figure 5.- Probabili ty d i s t r ibu t ion  of a l t i t u d e  deviation a t  normal pericynthion of synchronous o r b i t  
f o r  in jec t ion  e r r o r s  with zero mean and 0 of 0 . 5 O  i n  angle and 5.0 f e e t  per second i n  AV. 
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