N64-33216 IACCESSION NUMBER INC. IACCESSIL. (PAGES) NASA CH59057 INASA CR OR TMX CR AD NUMBER) (THRU) / (CODE) OTS PRICE \$ <u>1,00</u> \$ <u>50</u> XEROX MICROFILM

WT 20-583

### CAPTIVE DYNAMIC-STABILITY TESTS OF THE <u>GEMINI</u> ABORT-SEAT CONFIGURATION IN THE JPL 20-INCH SUPERSONIC WIND TUNNEL

John J. Minich

Daymon S

Bain Dayman, Jr., Chief Aerodynamic Facilities Section

JET PROPULSION LABORATORY CALIFORNIA INSTITUTE OF TECHNOLOGY PASADENA, CALIFORNIA May 15, 1964

JPL WT 20-583

# CONTENTS

| Ι.   | Introduction                        | 1 |
|------|-------------------------------------|---|
| п.   | Model Description                   | 1 |
| III. | Wind Tunnel                         | 1 |
| IV.  | Test Procedure                      | 1 |
| v.   | Data Reduction                      | 2 |
| VI.  | Results                             | 2 |
| Nom  | enclature                           | 3 |
| Refe | rences                              | 4 |
| Tab  | e 1. Average aerodynamic parameters | 5 |

# FIGURES

| 1. | Installation of model in 20-in. | supersonic wind tunnel | • | • | • | • | • | • | • | • | • | 6 |
|----|---------------------------------|------------------------|---|---|---|---|---|---|---|---|---|---|
| 2. | Models tested                   |                        | • | • | • | • | • | • | • | • | • | 7 |

- -- -

#### I. INTRODUCTION

Wind-tunnel Test 20-583 was a test of the <u>Gemini</u> abort-seat configuration model. The purpose of the test was to obtain dynamic-stability data for the configuration.

The approximate aerodynamic parameters for the test were Mach No. 1.33, 1.65, 2.21, and 2.81, with corresponding Reynolds No./in. and dynamic pressures shown in Table 1. The test variables and ranges were initial angles of attack  $(a_0)$  from 0 to 340 deg. The model configuration comprised the Gemini seat and passengers, shown in Fig. 1 and 2.

The test<sup>\*</sup> was conducted at the Jet Propulsion Laboratory (JPL) from November 19 through 21, 1963, for the NASA Manned Spacecraft Center (Houston, Tex.) represented by Mr. J. Hondros.

### II. MODEL DESCRIPTION

The models are shown in Fig. 1 and 2. These were scale models of the <u>Gemini</u> abort-seat and passengers. The models were mounted on a ball-bearing support.

#### III. WIND TUNNEL

Reference 1 describes the construction and operating conditions of the 20-in. supersonic wind tunnel. The wind tunnel has a nominal test-section size of 20 in. square, a Mach range from 1.3 to 5.0, a flexible-plate nozzle, and operates with continuous flow. Table 1 presents representative values of the test-section flow parameters for the Mach numbers at which this test was conducted.

#### IV. TEST PROCEDURE

Prior to actual test operations, measurements were made to determine the moments of inertia of the models and the calibration sphere. The centerof-gravity of the calibration sphere was offset from the bearing axis. During

- 1 -

<sup>&</sup>quot;Symbols are defined in the Nomenclature.

a calibration run, the sphere was released 180 deg from its stable rest position. Analysis of high-speed motion pictures of the sphere's motion produced bearingdamping coefficients.

After moments of inertia and bearing-damping coefficients were obtained, the models were tested by releasing them at various initial angles-of-attack and tunnel flow conditions and by simultaneously taking high-speed motion pictures of the models' motions.

## V. DATA REDUCTION

The data-reduction procedure is described in Ref. 2 (JPL WT Report No. 20-499, published November 2, 1962).

#### VI. RESULTS

The actual data reduction was conducted by the NASA Manned Spacecraft Center, and all motion pictures have been forwarded to them.

### NOMENCLATURE

- M Mach number
- q dynamic pressure of the free-stream
- a angle between the horizontal axis of the model and the centerline of the tunnel; a is 0 deg when the seat-back is vertical, i.e., the seat-back is perpendicular to the wind and the passenger is facing the wind; a is +90 deg when the seat-back is parallel to the wind and the passenger's feet are facing the wind.
- $a_0$  initial, or release, angle of the model

#### REFERENCES

- 1. Jet Propulsion Laboratory, California Institute of Technology, <u>Wind-Tunnel</u> <u>Facilities at the Jet Propulsion Laboratory</u>, Pasadena, California, JPL, January 1, 1962. (Technical Release No. 34-257) UNCLASSIFIED
- Jet Propulsion Laboratory, California Institute of Technology, <u>Results of</u> the JPL Aerodynamic-Damping-in-Pitch Wind-Tunnel Program, by Duane A. Nelson, Pasadena, California, JPL, November 2, 1962. (JPL WT 20-499) UNCLASSIFIED

| D                                                                                                                   | Mach Number  |                                         |              |      |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------|--------------|-----------------------------------------|--------------|------|--|--|--|--|
| Farameter                                                                                                           | 1.33         | 1.65                                    | 2.21         | 2.81 |  |  |  |  |
| Static pressure<br>(psia)                                                                                           | 0.86<br>6.65 | 0.56<br>2.44                            | 0.56<br>1.76 | 0.45 |  |  |  |  |
| Stagnation pressure<br>(psia)                                                                                       | 2.49<br>19.2 | 2.56<br>11.6                            | 6.15<br>19.2 | 12.5 |  |  |  |  |
| Dynamic pressure<br>(psia)                                                                                          | 1.06<br>8.21 | $\begin{array}{c}1.06\\4.84\end{array}$ | 1.94<br>6.04 | 2.50 |  |  |  |  |
| Reynolds number<br>(per in. x 10 <sup>-6</sup> )                                                                    | 0.06<br>0.48 | 0.06<br>0.27                            | 0.11<br>0.35 | 0.17 |  |  |  |  |
| NOTE: When two sets of numbers are given, the first number represents a minimum value; the second, a maximum value. |              |                                         |              |      |  |  |  |  |

# Table 1. Average aerodynamic parameters

- 5 -

JPL WT 20-583



Fig. 1. Installation of model in the 20-in. supersonic wind tunnel

JPL WT 20-583



Fig. 2. Models tested