

FINAL REPORT
GEMINI CELESTIAL DISPLAY DEVICE STUDY
TABLE OF CONTENTS
Paragraph Page
SECTION - I - GENERAL
1-01. Scope of Report 1
1-02. Description of Device 1
b. (1) thru (4) Simulated Spacecrait Attitudes 1
c. (1) Star Maps 3
(a) Orbital Perturbation Scales 3
(2) Display Board 7
(a) Frame 7

1. Orbital Period Scales 7
(b) Findow Frame 8
(c) Window View Support 8
(d) Window View Locator 8
(e) Mobile Slide 8
1-03. Operation of the Display Device 9
1-04. Research 10
a. User Requirements 10
b. The Stars 10
c. The Orbit 13
d. Orbital Period 13
e. Spacecraft Attitudes 13
SECTION - II - DEVELOPMENT
2-01. Orbital Curve and Tracks 15
d. 90° Arc Distance Scheme 17
(3) Orbit Gurve Track Scale Factors 19
2. Method of Obtaining Factors 19
2-02. Orbital Period Scale 21
a. Construction 21
b. Placement of Zero Minute Position 23
2-03. Pitch Scale 26
3. Window Frame 26
2-05. Star Maps 26
b. Ecliptic 29
c. Right Ascension Scale 30
2-06. OP (Orbital Perturbation) Scale 30
d. Method of Construction 31

FINAL REPORT

GEMINI CELESTIAL DISPLAY DEVICE STUDY

TABLE OF CONTENRS - Contimued

Page
FIGJRE 1 GEMINI SPACECRAFT ATITTUDES 2
FIGURE 2 OP (Orbital Perturbation) SCALE for O• YAW 3
FIGURE 3 OP SCALE for 180. IAW 3
FIGURE 4 STAR MAP FGR 0- YAW (SEFF) 4
FIGURE 5 STAR MAP FOR 180^ YAN (SEP) 5
FIGURE 6 DISPLAY BOARD 6
FIGURE 7 GRBITAL PERIOD SCALE FOR O• TAW 7
FIGURE 8 ORBITAL PERIOD SCALE FOR 180• YAW 7
FIGURE 9 ORBIT DERINITION 14
FIGURE 10 GEONEIRY OF THE ORBIT TRACKS 16
FIGURE 11 PLOITIING FORMAT OF THE ORBIT CURVE TRAGES 18
FIGURE $1230 \cdot 00$ ORBIT GURVE PLOT VALJES ($12=40^{\circ}$) 35
FIGURE $13 \quad 30^{\circ} 001$ ORBIT CURVE TRACK SCALE FACTORS FOR 36 90° of ORBIT ($1^{n}=40^{\circ}$)
FIGURE it NORTH AND SOUTH CURVE TRACK PLOT VALUES FOR 37$90^{\circ}$ of a $30^{\circ} 00^{\prime}$ ORBIT ($1^{\prime \prime}=40^{\circ}$)
FIGURE 15 CONSTRUCTION OF THE ORBITAL PERIOD SCALE 22
FOR 0° YAW
FIGURE 1688 MINUTE ORBITAL PERIOD PLOT VAIUES FCR 42$360^{\circ}$ of a $30^{\circ} 00^{\prime}$ ORBIT ($0 \cdot$ YAW)
FIGURE 17 GEMINI SPACEGRAFT WINDOWS 25
FIGURE 18 STAR MAGNITUDE SYMBOLIZATION 29
FIGURE 19 PLOT VALUES FOR 90° of the ECLIPTIC (1" $=35^{\circ}$) 44
FIGURE 20 ORBITAL PERTURBATION SCALE (Construction) 31

TABLE OF CONTENTS - Contimed

SPECIFIC DATA Page
Orbital Curve Plot Values ($1^{\prime \prime}=40^{\circ}$)28030' Orbital Inclination32
$30^{\circ} 00^{\prime}$ Orbital Inclination 35
32•30' Orbital Inclination 38
35000^{\prime} Orbital Inclination ($1^{\prime \prime}=35^{\circ}$) 76
Orbital Curve Track Scale Factors for 90° of Orbit ($1^{\prime \prime}=40^{\circ}$)
28030' Orbital Inclination 33
30000' Orbital Inclination 36
32•30' Orbital Inclination 39
$35^{\circ} 00^{\prime}$ Oroital Inclination ($11=35^{\circ}$) 77
For Filling with a 1/4" End Drill 79
North and South Gurve Track Plot Values for 90° of Orbit (1" = 40°)
28.30' Orbital Inclination 34
30.00' Orbital Inclination 37
32•30' Orbital Inclination 40
$35 \cdot 001$ Orbital Inclination (1 " $=35^{\circ}$) 78
For Milling with a $1 / 4^{n}$ End Drill 80
88 and 92 minute Crbital Period Scale Plot Values for 90° of
Oroit with Inclinations of $28^{\circ} 30^{\prime} \& 32^{\circ} 30^{\prime}\left(1^{\prime \prime}=40^{\circ}\right)$ - 41
$8 R$ minute Crbital Period Plot Values for 360° of a $30^{\circ} 00$ Orbit for 0° YAh ($I^{\prime \prime}=40^{\circ}$) L2
02 minute Crbital Period Plot Values for 360° of a $30^{\circ} 00^{\prime}$ Orbit for 00 IAN ($I^{\prime \prime}=40^{\circ}$) 43
Plot Values for 0° of the Ecliptic ($1^{\prime \prime}=35^{\circ}$) 44
Star "ap Flot Values at a Scale oí $1^{\prime \prime}=35^{\circ}$ 45-75
Conversinn of Yirutes and Seconds to Decimals of a Decree - 81-82
Coordinate Flot Values to Construct a $35^{\circ} 00^{\prime}$ Orbit Frame Patternfor Milling with a 1/4" End Trill at a Scale of$1^{\prime \prime}=35^{\circ}$83-87
Iist of Army Map Service Persomel Who Contributed Services to this Study 88

GEMINI CELESTIAL DISPLAY DEVICE STUDY
SECTION I
GENERAL

1-01. SCOPE The contents of this report pertains to the finalized Army Map Service (AMS) design of a celestial navigation device, as required in NASA Purchase Request No. T-27508-G, dated 26 May 1964, and Amendments thereto, dated 8 October 1964. It contains concise summaries of all engineering computations that were used in the design. The results are tabulated in SPECIFIC DATA. SECTION I, GENERAL, describes the device, and defines its basic design principles. SETFINN II, DEVGLOPMENT, specifies how the principles are applied to support the planning and fabrication of the device.

1-02. DESCRIPTION The ANS Gemini Celestial Display Device is a visual comparator which provides an out-of-the-window star field, observable during a manned orbital mission, to the flight crew of a Gemini spacecraft. By a visual comparison of the actual out-of-the-window view to its similar representation on the device, an astronaut user will determine the location of the orbiting Gemini spacecraft relative to the stars.
a. The device is used on a real time basis during flight to enable the Gemini crew to identify the immediate major stars and constellations as seen through either the right or left spacecraft windows. The device may also be utilized on an clasped time basis to allow the astronauts to select the star field view at a specific future orbital period time increment, ie. 10 minutes, 15 minutes, etc., from now.
b. Simulated spacecraft attitudes (refer to Fig. 1) are incorporated into the design of the device which permit the astronaut to compensate for orbital changes during flight. The orbital changes are:
(1) $0 \cdot$ YAWN, the spacecraft orientation in which the astronauts are looking ahead (foresight) along the orbital path, with the Small End of the spacecraft Forward (SEF).
(2) 180° YAN, the orientation in which the spacecraft is turned (swung) to the right or left, around its Z -axis. In this position the astronauts are looking behind (backsight), opposite to the orbital direction, with the Blunt End of the spacecraft Forward (BEF).
(3) Pitch, tipping the spacecraft up or down, relative to its lateral Y-axis, to any position in an angular range between $+10^{\circ}$ and -30°.
(i.) A variation in the orbital period between 88 and 91 minutes, tin fine it takes the spacecraft to complete one orbit.
c. The device is hand held, and mamally operated by an astronaut. Prior to orbiting, the device is stored in a small !!ASA case. The final Ais recommended Gemini Celestial Display Device consists of two parts: the Star Maps and the Display Board.
(1) Star Maps (refer to Fig. 4 and 5) - There are two maps, one for 0° YAW, and the other for 180° YAN. Each map covers the same portion of the celestial sphere but the sequence of star placement is different. The area of the sphere shown on the maps is the sidereal time period of Right Ascensi on (RA) from zero hours (Oh) to 24 hours (24 h), between 75° North and 75° South Declination. All stars from +4.0 magnitude (medium brightness) are plotted at a scale of one inch represents forty degrees ($\mathbf{I N}^{\prime \prime}=40^{\circ}$), and symbolized in categories relative to four brightness groups: $\quad+1$, $\cdot+2$, +3 , and $:+1$ magnitudes. In addition, some stars of +5 magnitude are shown (.) if they form an integral pattern with the brighter ones. The stars of +2 magnitude or greater are named. The Ecliptic, the path of the sun, is shown pertinent to a reference line (plare) representing the Celestial Equator. A Right Ascension scale, calibrated in ten minute increments, appears on each map. The scales are oriented to each map in such a manner that they may be indexed to a specific edge of the device. Each map is extended an additional 24 hours RA of itself which provides duplicate coverage of the celestial sphere applicable to a particular YAW, 0° or 180°. The maps are assembled back-toback as a single unit. The ends are arranged so that they fold into the interior of the map unit, similar to the bellows of an accordian.

FIGURE 2
(3) Orbital Perturbation Scales (OP Scale) The value for orbital perturbations, the gravitational and non-gravitational forces of the Earth, Moon and Sun disturbing the orbital motions of the Gemini Spacecraft in flight, is incorporated in an auxiliary scale supporting the RA scale of each specific YAW star map. The scale has a zero position which is keyed into the RA index map value after the spacecraft is in orbit. The $O P$ scale is graduated in a series of five flights for 300 orbits.

FIGURE 3

LEGEND
constellation
BOÖTES
Star
MAGNitude
SCALE
In RIGEL
2nd ATRIA
3rd
4the
5h .
Gemini Celestial Display Device
Prepared by the U. S. Army Map Service, Corps of Engineers, under NASA Purchase
Request No. T-27508-G Request No. 1-27508-G

FIGURE 4

FIGURE 5
180° YAW

(2) Display Board (refer to Fig. 6) The display board contains the necessary mechanisms to simulate specific orbital parameters, i.e. inclination of the orbital plane, the longitude of the ascending node, the orbital period, and spacecraft attitudes (e.g. pitch and yaw) of the Gemimi training flight. The mechanisms are:
(a) Frame - The frame is the primary feature of the device, and the largest part of the display board. It contains all of the specified orbital parameters. The longest centerline of the frame is a longitudinal axis which represents the reference plane, or the celestial equator. The path of the orbit, from 0° to 360° follows a theoretical sine wave, the path of the spacecraft moving around a circle at a uniform speed projected on a plane. The tracks of the orbital plane mechanism are equally positioned north and south from the orbital curve. They serve to align the center of the spacecraft window outlines (at 0° pitch) to the simulated orbit.

1. Orbital Period Scales (exemplified on this page, Fig. 7 and 8) Two graphic scale representations, one for 0° YAW and the other for 180° YAW, of four orbital time periods for 88, 89, 90, and 91 minutes are affixed to the frame. Each is pre-positioned to a 90° offset of the longitude of the ascending node, the position on the celestial equator where the spacecraft crosses from the Southern Hemisphere to the Northern Hemisphere. The time graduations are calibrated in one minute increments, increasing in value along respective orbital directions inherent in the design of the device.
2. The star maps are inserted as a single unit beneath the frame. The unit is retained to the display board by four springs on the bottom of the piece.
(b) Window Frame - The window frame is a piece of transparent plexiglass, deglossed to prevent stray light reflections, containing a cut-out format of the Gemini spacecraft left and right windows. The windows have been outlined relative to a spacecraft 0° pitch, 0° yaw, and 0° roll. The left and right windows are symmetrically positioned in such a manner that their centers coincide on the window frame. When the window frame is properly keyed to $2 l l$ of the orbital parameters and spacecraft attitudes on the device, the respective delineated window scene represents the actual view, within the symbolized limits of the star maps, which the astronaut user shall see at a 90° visual offset from his Zenith.
(c) Window View Support - The window view support holds the window frame. The support is used to simulate the spacecraft pitch between $+10^{\circ}$ and -30°. The part is fitted to the window view locator (see below), and slides back and forth for indexing to a pitch scale adjacent to one of its support flanges. A pusher lug mounted on the piece is used to move the support to a desired position.
(d) Window View Locator - The window view locator is a circular mechanism in which the window view support fits and slides. The center of this piece is coincident with the origin (zero position) of the Gemini spacecraft coordinate (X, Y and Z) system. The window view locator rests on top of the frame tracks. On the opposite sides of the locator Y-centerine are little wheels, or followers, which ride along the edge of the north and south tracks. They aid in mechanically positioning the Y-centerline (at its origin) of the mechanism perpendicular to any point of the theorstical orbital curve on the frame. The window view locator alsc contains a horizon bar which depicts an anparent horizon, as viewed fron the Gemini spacecraft window.
(e) Kobile Slide - The mobile slide is a rectangular piece retaining the circular window view locator on the frame. It is primarily utilized to mamally move the locator support and window frame alone the simulated orbit on the frame. The slicie has two zero markers. They are positicned on the centerline of the slide, which passes through the origin of the spacecraft coordinate system (center of the window view locator) at every point of the orbital curve. The mobile slide, plus the north and south orbital tracks, keep the Y-centerline of the window view locator perpendicular to every point on the orbit at its (locator) center. The zerc markers are used for referencing the spacecraft windows to their respective orbital star field for a specified time increment, e.E. 10 minutes, on the 0° YAW or 180° YAW orbital period scale.

1-03. OPERATION The operation of the display device is dependent upon the known orbital period, a longitude of the ascending node, the rA value at the position of the specific ascending node, and the attitude of the spacecraft, with regards to pitch and yaw, during the time of orbital flight.
a. The orbital period and the right ascension of a longitude of the ascending node of a specific orbit, computed by the data furnished by NASA tracking stations, are conveyed to the orbiting astronauts by the ground crew. The device is removed from its spacecraft case. The star map unit is extended to its full size. The device user removes the paper backing from each OP Scale (stored with the device), and positions the RA INDEX line by the given right ascension value on its respective IAW Star Map RA Scale. The OP Scales are placed in such a position within the 48 h map range as to afford a convenient utilization of star plots for 33 h RA (24^{h} plus 9 h) during the entire training flight. The star map for the respective YAW orientation, 0° or 180°, is inserted face up beneath the frame, towards the window view locator. The star map is indexec to 1 (representing the first orbit) on the OP Scale at the top outer edge of the frame (refer to Fig. 6). The 0° YAW and 180. YAW labeling the orbital period scale indicate the top of the frame. The orbit is now "tied-in ${ }^{n}$ to the celestial sphere, in reference to the first orbit. Periodically the star map (s) must be re-indexed due to the effects of orbital perturbations. This may be done by orbit, or re-indexed by any grouping of orbits, up to a maximum of 5 orbits. Any greater re-indexing period will induce a discrepancy in the out-of-the-window view. Re-indexing is performed by moving the map so that the corresponding orbit intersection graduation on the OP Scale is aligned to the edge of the frame.
b. The window view support is placed in the spacecraft pitch attitude position by activating the pusher-lug and aligning the support flange edge with the angular value on the pitch scale.
c. The astronaut user pushes the mobile slide in the orbital direction indicated on the orbital period scale for the YAW orientation the spacecraft is presently in. The movement of the simulated orbital directions in the design of the frame and orbital period scales are opposite to the actual direction in flight. Caution should be exercised by the user in applying the correct YAW star map and orbital period scale with the actual YAW orientation. O- YAW values are on the left side of the device, and 180° YAW values are on the right. The index marks on either side of the mobile slide are used to position the window frames over the proper star field at specified times on the orbital period scales. If the orbital period is 88 minutes the index mark is moved to coincide with those praduations which terminate on the left of the scale. If the orbital period is 89 minutes, the index mark is moved to coincide with those minute graduations crossing the thin long line. For 90 minutes use the graduations crossing the heavy long line. For 91 minutes use the graduations terminatinf to the right of the scale. This system works with both scales.
d. For a change in YAW attitude, the respective map is inserted beneath the frame and indexed to the same RA value as the previous one. The corresponding YAil orbital period scale is now used, with its respective orbit value.
e. The star maps, ZA scales, $O P$ scales, orbital period scales and pitch scale have been designed to provide for systematic operation at various YAh and Pitch. A repositioning of the window frame is not required.

1-OL. RRSEARCH - The features formalating the fundamental design of the celeatinl display device are: the user requirements, the stars, the orbit, and the orbital parameters and attitades of the Gemini spacecraft during filight.
a. User Requirements - The celestial display device shall display to the cemint fingit crew the out-of-the-window star field observable during flight. The device is intended for use on a real time basis during flight to enable the flight crew to identify the major stars and constellations observable out-of-the-window, or it may be used on an elapsed time basis to allow the astronauts to select the star field that will be in view at a particular time during the flight. The device shall be capable of meeting its design requirements during any of the specified Gevini manned orbital missions, including orbital element changes during flight. The device shall consist of a display board and the necessary star map(s) depicting the star field along the flight path. As a design objective, the dimensional envelope for the device shall have a rectangular configuration of $7^{\prime \prime} \times 7^{n} \times 1^{\prime \prime} 2^{n}$, with a maximum weight not exceeding one pound. It shall fit in a spacecraft storage case $91 / 2^{n} \times 1^{\prime \prime} \times 3 / 4^{\prime \prime}$.
(1) A visual comparator meets the user requirements. The comparator, in support of visualizing spatial distributions over various areas of the celestial sphere, should contain a conventionalized pictore (star map) at a much reduced scale of the celestial sphere. A format (spacecraft window frame) superimposed over the celestial representation to illustrate the varying views in the progression of orbital fight, and various methods should be incorporated into a retaining frame (display board) to aid in accurately presenting the variation of the field of view.
(2) The visual comparator must act as a navigational medium using celestial bodies primarily for the determination of position.
b. The Stars - The display device is an instrument for determining horizontal direction. The stars are celestial beacons used as a basis for its directional finding system. In looking at the stars, they all appear to fall on a spherical surface. The conventional globe of this theoretical surface is the celestial sphere. It shows the sky as a spherical shell surrounding a spherical earth. The earth is relatively so small, in reference to the infinite celestial sphere, that it may be considered only a point at the center. In similar thought, a spacecraft orbiting the earth may also be considered at the same point at the center, or its orbit can theoretically be projected to the full circumference of the celestial sphere. Astronomical objects lie within and outside the celestial sphere. The apparent position of a star is its place on the celestial sphere. It denotes a star's direction, and nothing else about its location in space. In describing apparent positions of stars on the celestial sphere, there is no concern with their distances, only the definition of their projections on the sphere. The apparent distance between two stars is accordingly their difference in direction expressed in an angular measure. The celestial sphere survives only as a convenient means of representing the star positions. By this convention the stars can be shown on the surface of a globe, or in a projection on a plane map.
(1) The configuration of the device is rectangular for ease in operation, and to meet storage reguirements in the Gemini Spacecraft.
(2) Stars are positioned on the celestial sphere through a spherical method of angular coordinates termed the geocentric equatorial coordinate system. This order is an extension of the equatorial system commonly used on the earth. The intersection of the plane of the terrestrial equator, extended, with the celestial sphere is a great circle called the celestial equator. The earth's axis, extended, intersects the celestial sphere at the north and south celestial poles. Small circles parallel to the celestial equator, similar to parallels of latitude on the earti, are called parallels of declination. There are Nortr. (+) Declinations relative to the Northern Celestial Hemisphere, and South (-) Declinations relative to the Southern Celestial Kemisphere. Great circles through the celestial poles, similar to meridians on earth, are called celestial meridians if they are considered to remain fixed to terrestrial meridians, and hour circles if they are considered to remain on the rotating celectial sphere. The relationship of the oritit in the design of the device is to the celestial schere. Thus, the hour circles, measured in the sidereal time of Pight Ascension, are used for slotting the longitude of the stars. Richt Ascension (RA) is measured eastward from the hour circle of the vernal equinox in hours, mimites, and seconds from zero hours (O h) through 2l. hours ($24 h$).
(3) There are methods of transforming the angular coordinates of the spherical representation of the celestial sphere to a nonspherical surface (plane) without deforming geometric relationships among the points on the sphere. The creation, or retention, of geometric qualities (properties) of the celestial sphere determine the transformation process. The transformation process is such that there is an arrangement of the magni.tude and scale variation of desired properties on a "tailored" projection. Droperties to be retained, or employed are: confomity, equivalence, azimith, and the transformation of significant lines on the celestial sphere to simple lines on the map.
(a) Orthomorphism, the conformal property desired, is the retertion of angular relationships at each star in regards to apparent position and apparent direction. It is ovtained by arranging the scale of a projection so that at each star the scale is uniform in all directions. The conformal property is a simple cylindrical projection having an equal spacing of right ascension and declination. The cylindrical projection, which shall be used to compile the star map(s), is a cartesian grid with its X and Y coordinates measurable in equal units.

1. SCALE - The user requirements dictate the overall size and weight of the device. Preliminary calculations, based upon a scale of $1^{\prime \prime}$ represents 30°, produced sufficient data indicating that a very satisfactory star map could be produced, but to hold the map, a larger and heavier display board would be required. Further calculations and designs, based on a scale of $1^{\prime \prime}$ represents 35° provided sufficient information to conclude that for a prototype model the scale of the star map(s) and any relative mechanism should be $1^{\prime \prime}=35^{\circ}$. Modifications to the prototype, in form of a final model, set the final scale at $7^{11}=40^{\circ}$ 。 This means that the celestial sphere for 24 hours RA (or 360°), and 75° North and South Declination (or 150.) shall be compiled into a star map at the representative scale of $7^{\prime \prime}=40^{\circ}$. The map format is then:

$$
\begin{aligned}
& \text { for Declination }=\frac{2 x 75^{\circ}}{40^{\circ}}\left(1^{n}\right)=\frac{150^{\circ}}{40^{\circ}} \times 1^{\prime \prime}=3.75^{n} \\
& \text { for } \mathrm{PA}=\frac{360^{\circ}}{40^{\circ}} \times 1^{\prime \prime}=9.00^{\prime \prime} \\
& \text { or } 3.75^{\prime \prime} \times 9.00^{\prime \prime}
\end{aligned}
$$

(b) The equivalence property desired is the retention of the relative sizes of areas (referred to as equal area) on a projection. The relative sizes of stars can on ${ }^{7} y$ be delineated for visual interpretation by arranging their symbolization in a series of brightness groups. In this instance the star magnitade scale is utilized to symbolize the stars. Working with the limited map format, consideration must be given to star symbols, type (star, constellation, and other feature names) the ecliptic, the celestial equator, and the scale of the spacecraft window formats. There will be a potential congestion of information appearing on the map. This information must be limited in scope to present a star map which is easily understood and can be fully utilized by the user.
(c) The property of azmuthality is the retention of azimuths from one point to another. This property is normally contained in a map. In design terms of the device, azmuthality and the ability to transform significant lines on the celestial sphere to simple lines on the map are contained in the display board. The device is a dual-stage unit in which one element is dependent upon the other, to provide the ultimate data. The maos depend upon the display board mechanisms, and the mechanisms depend upon the maps. A divorce of the two is impossible for the proper operation of the device.
c. ORBIT - The map projection has been established as being a conformal cylindrical one in which the map plane is equal in RA and Declination. The orbit can be assumed to be a great circle around the earth. The spacecraft is considered as a point moving around the circle at a uniform speed. The great circle forms the circumference of the orbit plane. The definition of the orbit plane, where it cuts the spherical shape of the earth, is the orbit trace. In reference to the surface of the earth's sphere (refer to Fig. 9), the orbit trace forms the hypotemuse of a right spherical triangle at the longitude of ascending node. The remaining parts of the triangle are longitude (λ) and latitude (ϕ). The orbit inclination, an orbital parameter, is the angle between the orbit plane and equator (reference plane), and is the angle " i " in the spherical triangle. The equation for the orbit is: $\operatorname{Tan} \phi=\operatorname{Tan} i$ (Sin λ). Since there is a similarity in the equatorial coordinate systems of the terrestrial and celestial spheres, the above orbit definition can be projected onto the celestial sphere and applied in its present form. When plotted to the celestial equator and the entire 360° (24 h qA), the orbit trace takes the shape of a sine wave. The orbit trace should be designed into the display board frame as a theoretical orbital curve.
(1) Similarly, the Ecliptic also takes the shape of a sine wave. It shall be shown on the star maps, and is plotted using the equation: $\operatorname{Tan} \phi=\operatorname{Tan} \epsilon(\operatorname{Sin} \lambda)$ where ϵ equals the mean obliquity, the angle between the planes of the celestial equator (reference plane) and the sun's path (ecliptic).
d. ORBITAL PERIOD - One of the orbital parameter elements is the time required far one complete circuit of the orbit. This is termed the orbital period. The latitude of permissible orbital periods is 87.2 minutes to 91.2 minutes. During flight, the astronaut is looking forvard 90° on the celestial sphere from the position of the spacecraft. This 90° offset must be reflected in the graduations on the orbital period scale(s) provided. There being two YAW attitudes, two scales mast be compiled, one for each YAW. In addition, consideration must be given to the limited space allowed for the scales on the frame. For this reason there must be a practical approach in presenting some form of a scale which contains a logical sequence of orbital periods for easy interpretation. In addition a problem arises in transforming the equally spaced minute increments along the orbital curve, a curved line, onto a straight line paralleling the celestial equator.

e. SPACECRAFT ATTITUDES

The apparent angular direction of stars are expressed in a linear measure in the design of the device. Angular movements of the spacecraft must also be expressed in linear measure. For this reason the pitch attitudes may be scaled in the same calibration as the star map $1^{\prime \prime}=40^{\circ}$. Although the window frame will be moving in a horizontal direction to the stars in the device, there will be no discrepancy because of the infinite distance of the stars from the spacecraft windows. The YAW attitudes must be considered in the planning of the star maps, RA scales, OP scales, and orbital period scales. The positions of the longitude of the ascending node on the orbital curve and the incex point for the zero minutes of each orbital period scales must be located. The YAW attitudes are not an angular problem, they are situations which must be resolved by the positioning of various features.

ORBIT DEFINITION: Tan $\phi=\operatorname{Tan} i(\operatorname{Sin} \lambda)$
FIGURE 9

DEVELOPMENT

2-01. ORBITAL CURVE and TRACKS

a. Simultaneous lines of intended position (orbital parameters) are standardized in the display board mechanisms. True lines of position cannot be determined until the Gemini spacecraft is in actual flight. The mimiature size of the device, as compared to the infinite sky, is of such a nature that the incorporated lines of intended position are sufficiently accurate to provide a reliable fix of position in orbit during flight.
b. The fundamental definition of the orbit in the design of the device is a great circle. The earth and sky are considered as being truly spherical for the purposes of eliminating complexities in the projection of lines of position, and to transform curvilinear distances into rectangular representations, equal in all directions. The above shapes can be considered because they do not induce any sigmificant errors in the practical solution of the problem of spacecraft position.
(1) The projection of the great circle on a plane is conceived through the mediums of a sphere and a cylinder tangent to the sphere, refer to Fig. 10 - Geometry of the Orbit Tracks.
(2) The sphere is representative of the celestial sphere (and the terrestrial globe), with the polar axis parallel to the longitudinal axis of the cylinder. The cylinder is tangent to every point on the reference plane, or celestial equator.
(3) The orbit, a great circle on the sphere, is tangent to the cylinder at two points only, the ascending and decending nodes. The orbit is developed on the surface of the cylinder by projecting lines, originating at the center of the sphere, passing through the points on the great circle, onto the cylinder. The lines are perpendicular to the orbit axis. The orbit axis deviates from the polar axis at an angle equal to the orbital inclination (i), at the center of the sphere. It is of importance to note that the orbit projection lines cut a characteristic elliptical shape on the cylinder. The shape conforms to the intended elliptical orbit of the Gemini flight.

c. The designs of the north and south tracks are based upon a spherical segment formed by the intersection of two parallel planes on the sphere. The perimeters of the tangent planes are small circles, equal to each other, with their centers on the orbit adis (refer to Fig. 10 Geometry of the Orbit Tracks, page 16). The zone, or spherical surface between them, is composed of their edges (the north and south tracks) equally spaced from the zone center, the orbit. The angular distance between the edges is 152.56°, a value derived from a large scale ($1^{\prime \prime}=99^{\circ}$) graphic analysis of the combination of track widths (1/4"), the window view locator, and the window frame. At a scale of $1^{\prime \prime}=40^{\circ}$, the fixed distance between the tracks is $3.811^{\prime \prime \prime}$, i.e. 152.560° times $0.025{ }^{\prime \prime} / 0=3.814^{\prime \prime}$.
(1) The trace of each track on the cylinder is incividually obtained by projecting a line perpencicular to the orbit axis, from the center of its respective small circle, passing through the edge of the circle onto the cylinder.
d. 90° Arc Distance Scheme - The projection of the orbit trace on a plane is understood to be a sine wave. The characteristic form of this wave is a symmetrical curve pattern repetitious for each 90° arc distance of the orbit. The entire 360° circular range of the orbital curve is plotted through a systematical placement of four 90° arc distance schemes (refer to Fig. 11 - Plotting Format of the Orbital, page 18). The frame of reference for a 90° arc of the orbital curve is composed of the reference plane, a longitude index (0°), a plot distance of 90° of longitude (2.25'), the angle of orbital inclination ($28 \cdot 30^{\prime}, 30^{\circ} 00^{\prime}$, or $32 \cdot 30^{\prime}$), and a scale $\left(1^{\prime \prime}=40^{\circ}\right)$. For convenience, the numerical quantities designating the coordinates of points on the orbital curve are: longitude (λ) and latitude (ϕ), transformed into linear measures of equal scale.
(1) The primary objective in the construction of the orbital curve is to procure the latitude coordinates, to the nearest hundredthousandth of a degree (0.00001°), for a set of points having longitude values of 5° increments within a 90° orbital arc distance, for a specific orbital inclination (i). The equation $\operatorname{Tan} \phi=\operatorname{Tan~} i(\operatorname{Sin} \lambda$) is applied in obtaining the ϕ values, (refer to Fig. 12, Specific Lata, $30 \circ 00$ orbital Gurve Plot Values, page 33).

EXAMPIE:

$$
\text { Given - } \quad \begin{aligned}
& \quad \text { Tan } i=30^{\circ} \\
& \lambda=10^{\circ} \\
& \text { sin } \lambda=0.17365
\end{aligned}
$$

$\operatorname{Tan} \phi=0.577350(0.17365)=0.100257$ $\phi=504.3130^{n}$ or 5.72500°

(2) The angular distances (λ and corresponding ϕ) of the set of orbital curve points are converted to linear plot values using the scale factor $1^{\circ}=0.025^{n}$ (refer to Fig. 12, page 35):

$$
\begin{aligned}
& \lambda=10^{\circ}=10(0.025)=0.250^{n} \\
& \phi=5.72500^{\circ}=5.72500(0.025)=0.143^{n}
\end{aligned}
$$

(3) Orbit Curve Track Scale Factors (refer to Fig. 13 Specific Data, $30^{\circ} 00^{\prime}$ Orbit Curve Track Scale Factors for 90° of Orbit, page 35, and Fig. 14 - Specific Data, North and South Track Plot Values for 90° of a $30^{\circ} 00^{\prime}$ Orbit, page 36) -

1. The geometric formation of the orbital curve on a plane contains a base line (baseo) and a line perpendicular to the base upon which the curve reaches its apex (apex $)_{0}$. Both are relative to the reference plane. A scale factor for the λ and ϕ coordinates is given as a constant ($1^{\circ}=0.025^{n}$).
2. The projection of the orbit zone on a plane, as determinec by a cylinder, does not necessarily conform to any standard set of curves. It is a unique situation in which the centerline, the orbital curve, is defined by a sine wave, but the traces of the tangent planes, or north and soutt. tracks, are irregular curves, not readily defined. The spherical unity of the orbital curve and tracks is kept intact by assigning the same λ and ϕ angular coordinates, as determined for the specific orbital curve, to the tracks.
3. The linear definition of the track coor cinates are unemal scale-wise in λ and ϕ vector plot values. To effect a transformation of the track angular coordinate distances into linear directions, scale factors proportional to the orbital inclination, base ${ }_{o}$, apex, and the distance from the orbital curve to the tracks, are calculated based on 90° arc distance of the small circles.
4. Method of Obtaining Orbital Track Scale Factors:
a. Extend a line perpendicular to the orbital curve at the function of the orbit, the reference plane (base ${ }_{0}$) and 0°.
b. Plot points equal to $\frac{152.560}{2}(0.025)$, or $1.907^{\prime \prime}$ on the line, each side of the orbital curve.
c. Through each point construct lines paralle] to base $_{0}$, bisecting the 90°. line. Each line represents the base, base n and base $_{5}$, of their respective track.
d. The line perpendicular to the orbital curve forms the hypotenuse of two similar right triangles, whose legs are side a and side b, with interior angles of 90°, i, and $90^{\circ}-i$. The sides a and b are obtained respectively by: (when $i=30^{\circ}$)

$$
\begin{aligned}
& \text { side } a=1.907 \operatorname{Cos} 90^{\circ}-i=1.907 \operatorname{Cos} 60^{\circ}=\underline{0.95^{\prime \prime}} \\
& \text { side } b=1.907 \operatorname{Sin} 90^{\circ}-i=1.907 \operatorname{Sin} 60^{\circ}=1.652^{n}
\end{aligned}
$$

It follows:

$$
\begin{aligned}
\text { base }_{n} & =\text { base }_{0}+\text { side } a=2.250+0.954=\underline{3.204^{n}} \\
\text { base }_{s} & =\text { base }_{0}-\text { side } a=2.250-0.954=\underline{1.296^{n}} \\
\text { apex }_{n} & =1.907-(\text { side } b-\text { apex } \\
& =1.005^{n} \\
\text { apex }_{3} & =1.907-(1.652-0.750) \\
& =\underline{0.495^{n}}
\end{aligned}
$$

computed using the equations: factors for the linear transformation are computed using the equations:

$$
\begin{aligned}
& 1^{\circ}=\frac{\text { basen }}{90^{\circ}}=\frac{3.204}{90}=0.03560^{\prime \prime} \\
& 1^{\circ}=\frac{\text { apexn }}{i}=\frac{1.005}{30^{\circ}}=0.03350^{\prime \prime} \\
& 10=\frac{b a s e_{s}}{90^{\circ}}=\frac{1.296}{90}=0.01440^{\prime \prime} \\
& 10=\frac{\text { apex }}{i}=\frac{0.495}{30}=0.01650^{\prime \prime}
\end{aligned}
$$

f. After the scale factors are computed, the λ and ϕ angular coordinates are multiplied by their respective track factors to obtain the final plot values.

EXAMPLE:

$$
\text { North Track } \quad \begin{aligned}
\lambda & =10^{\circ} \quad \phi=5.72500 \\
\lambda & =10(0.3560)=0.356 \prime \prime \\
& \phi=5.72500(0.03350)=0.192^{\prime \prime}
\end{aligned}
$$

g. All plot values for the orbital curve and tracks are computed. The respective base lines are drafted according to the dimensions in Fig. 13, page 34, for a 90° arc distance, and systematically positioned in relation to the Plotting Format of the Orbital Curve Tracks, Fig. 11, page 18. The λ and ϕ coordinates are plotted in inches in reference to the zero curve positions indicated on the format.

2-02. Orbital Period Scale - Position is interpreted from the time, distance, and rate of spacecraft motion in the orbital period. The intended orbital period of the Gemini flight lies within a range of 87.2 and 91.2 minates. The above three elements, being of a uniform nature, are equally measured along the orbital curve. The plotted position of equally proportioned points along the orbital curve are projected onto a straight line, parallel to the reference plane. The increments on a straight line are not uniform, but take on the appearance of an arithmetic progression, and recession.
a. Construction - The intended orbital period of the Gemini flight lies within a range of 87.2 and 91.2 minutes. For practical reasons whole mirnte orbital period, 88, 89, 90, and 91 mimute,representations are combined in one time scale concept. The 90° arc distance symmetry of the orbital curve is utilized in obtaining the plot distances, in one minute units, for the combination scale. By the application of graphical proportioned units two orbital period scales are constructed in such a manner as to automatically provide three additional scales. Refer to Fig. 15, page 22.
(1) The orbital periods of 88 minutes and 92 minutes, which provide whole minute divisions (22 and 23 minutes respectively) for 90° arc distance, are used as the base for the scale construction.

$$
\frac{90^{\circ}}{360^{\circ}} \times 88=22 \text { minutes } \quad \frac{90^{\circ}}{360^{\circ}} \times 92=23 \text { minates }
$$

(2) Each specific orbital curve is plotted at a ten time enlargement of the actual scale, at a representation of $7^{\prime \prime}=4_{4}^{\circ}\left(0.250^{\prime \prime}=1^{\circ}\right)$ for 90° arc distance, to the plot points previously computed. The plot points are connected with a solid line.
(3) The length of each specific orbital curve is measured, drawn as a straight line, and divided into 22 and 23 equal parts. The line is transposed to its respective orbital curve. Working the line along the configuration of the curve, the 22 and 23 units are marked on the curve, e.g. the length of a 30° orbital curve for 90° is 2.407".
(4) Two lines, parallel to the base line (reference plane) are drawn. Lines perpendicular to the base line are drafted through the plotted minute increments intersecting their respective parallel lines.
∞
 MINUTES - 90 MINUTE ORBITAL PERIOD
READ 4 MINUTES - 9I MINUTE ORBITAL PERIOD

FOR 0° YAW
(5) The distances are measured to the nearest mundredth of an inch. The values are adjusted so that the summation of the plot distances equal 9° at $1^{\prime \prime}=4^{\circ}$, or $22.50^{\prime \prime}$. The distances divided by ten are the actual plot values of the minute units of the 22 part and 23 part divisions of 90° of orbital curve.
(6) A review of the minute distances for the three orbital inclinations of $28^{\circ} 30^{\prime}, 30^{\circ} 00^{\prime}$, and $32^{\circ} 30^{\prime}$ indicates the plot values for a $30 \cdot 00^{\prime}$ orbital inclination will satiafactorily serve as a mean orbital period scale for all three inclinations.
b. Placement of the Orbital Period Scale Zero Minute Position (refer to Fig. 11, page 18) - The determining factors of the zero minute placement are the location of the longitude of the ascending node, the direction of the orbit, and the North, South, East, and West orientations of the celestial sphere on the map plane in regards to the configuration of the orbital curve inherent in the display board design.
(1) The windows in the spacecraft are in a set position restricting the astronauts to a direct forward view of the heavens. It is inpossible to determine the zenith, the position directly overhead, from the cabin. Any view, from either the left or right window, shall be one 90° from zenith along the orbit, i.e. along the configuration of the orbital curve in the device. There is a 90° difference between the view, which determines position, and the physical location of the spacecraft. The design features built-into the device adjust for this discrepency automatically.
(2) The longitude of the ascending node for both YAW attitudes is in the same position on the display board. Their orbital direction increase are opposite to each other at this point. The 90° view offset for 180 YAW is opposite to its designed orbital direction, and equal to the 90° offset placement for 0° IAW. This location is at the center of the longest length of the display board. All units are designed relative to the view, and all movements in the device must be evaluated and calibrated to the view position on the orbital curve. Therefore, the progression of actual minute plot values, relative to the configuration of the curve, for the orbital period scale is inversed, e.g. the plot distance between 22 and 21 minutes (for an 88 mimute period) is spplied for plotting 0 to 1 mirute, and vise versa.

EXAMPIE (for a 30•00' orbit):

Orbital period $=88$ minntes

MLNUTE	ACTUAL VALUE	INVERSE VALUE F
0	-0.095	0.109"
2	0.095	0.109
3	0.095	0.109
4	0.095	0.108
5	0.097	0.108
6	0.097	0.108
7	0.097	0.107
8	0.100	0.107
9	0.100	0.104
10	0.101	0.104
11	0.101	0.104
12	0.104	0.101
13	0.104	0.101
14	0.104	0.100
15	0.107	0.100
16	0.107	0.097
17	0.108	0.097
18	0.108	0.097
19	0.108	0.095
20	0.109	0.095
21	0.109	0.095
22	0.109	0.095

(3) Otilizing the above values the minute plot distances for 0 . YAW are arranged in a traverse order by an arithmetic progression. Zero minute being in the center of the scale, the zero inch plot location is at $2 \times 22=44$ minutes for an 88 minute orbital period, and $2 \times 23=46$ mimutes for a 92 minute period, refer to Fig. 16, page 42.
c. Construction of the Orbital Period Scale (refer to Fig. 15, page 22) Five parallel lines, each representing 88, 89, 90,91 , and 92 minute orbital periods respectively, spaced 0.10" apart, are dramn parallel to each other. A perpendicular line is constructed at the left end. This line is the zero inch plot mark. The minute increments for 88 and 92 minute periods are plotted on their respective lines, the outside ones. Mirmite increments of equal values, i.e. 0 minutes, 15 minutes, etc., on both period lines are connected with a straight-edge. Equal value lines are inked between the 88 and 91 mimite periods. Upon drafting all equal minnte lines, ink the length of the 89 , and 90 minute period lines, bisecting all of the equal mimute ones. The 92 minute orbital period line was utilized for convemience in the construction of the combination scale, and shall not appear on the final copy.

2-03. PITCH SCALE (refer to Fig. 6, page 6) - The pitch scale is a graduated reference line used in compensating the movement of the window frame to an intended spacecraft pitch attitude, i.e., somewhere within the range of $+10^{\circ}$ and -30°. All angular directions in the device are transformed, or translated into linear measures and movements. A graduated horizontal offset of the window frame simulates the angular movement of the spacecraft. The pitch scale is plotted to $1^{\prime \prime}=40^{\circ}$ by use of an Engineer's Scale graduated with 40 units to the inch.

2-C4. WINDOW FRAME - The left and right Cemini spacecraft window formats on the window frame outline the star field on the device as viewed by the Astronauts from their respective window. The formats are required to be of the same scale as the orbital tracks and star maps. The window outlines are obtained from Figure 2, Gemini Windows, Out-of-the-Window View, of the Statement of Work-Purchase Request No. T-27508-G, dated 26 May 1964. The window shapes are delineated to a particular scale by the use of angular coordinates assigned to the configuration of the right window. The coordinates are given in Fig. 17, Gemini Spacecraft Windows, page 25. The angular coordinates are converted to $I^{\prime \prime}=40^{\circ}$, and plotted on a cartesian grid.
a. Fimure 2 from the Statement of Work is placed in a reflecting projector, an opticomechanical instrument. The right window image is optically superimposed over the plotted coordinates placed on the instrument projection table. The scaled confliguration of each window is traced. The tracing is the master templet used to machine the window frame.
b. The windows are symmetrical. The center of their symmetry represents the center of the Spacecraft at 0° pitch, the origin of the vehicle coordinate system. If a cross-hair was substituted at this point, the orbital period scale for 0° YAN rearranged without a 90° offset, and the window frame zeroed at 0° pitch, the ground crew could track the spacecraft in relation to the celestial sphere.

2-05. STAR MAPS - The function of the display board is to indicate direction with respect to the intended elements of the spacecraft. The star maps for 0° and 180° YAW work in conjunction with the display board. They serve to present the sequence of celestial landmarks as they appear through the spacecraft windows at directed intervals, and enable the determination of the vehicle's position. The format of the spacecraft windows, the sequence of the stars approaching the bottom or top of the windows, the position of the orbital to the reference plane, and the simulated yaw attitudes in the display board govern the schematic layout of the celestial sphere in each graphic representation.
a. The entire sky is laid out on the celestial sphere in a manner analogous to the surface of the earth, but instead of longitude and latitude which are terrestrial measurements, there are right ascension (RA) and declination corresponding to them respectively.
(1) Right ascension, measured in hours and minutes, is an angular distance increasing in value from east to west, beginning from the zero, or twenty-fourth hour line (First Point of Aries), and going east completely around the heavens, back to zero again. The orbit and right ascension increase in the same direction, eastward. The circular nature of the orbit and the celestial sphere requires that the sequence of star placement, increasing in RA, enter at the bottom of the spacecraft windows, pass in view, and exit at the top for a 0^{0} Yaw attitude. For a 180. Yaw orientation, the progression of stars begins at the top and passes out at the bottom of the windows. Thus east is oriented to the bottom of the windows at 0° Yaw, and to the top at 180° Yaw.
(2) Declination is measured in degrees, mimutes, and seconds begiming at the celestial equator and going 90° north (+) to the north celestial pole, and 90° south (-) to the south celestial pole. In a O. Yaw attitude north is oriented to the left spacecraft window. For a 180° Yaw attitade north is oriented to the right spacecraft window.
(3) The spacecraft window outlines are in a fixed relationship in the device. The conforming map orientation plot plans are:

> O. Yaw - Orbital direction and the right ascension increase towards the bottom of the frame (refer to Fig. 17), and the north declination is relative to the north track

> 180. Yaw - Orbital direction and the right ascension increase towards the top of the frame, and north declination is relative to the south track b. The compilation of the star positions is based on a scale of
$1^{n}=35^{\circ}$. The final copy is a reduction of the compilation to a
representation of $1^{n}=40^{\circ}$. The star coordinates in right ascension and
declination are obtained from: Mean Places of Stars, 1964.0, pages 288-298,
The American Ephemeris and Nautical Almanac, 1964, printed by the
U.S. Printing Office. Refer to SPECIFIC DATA, Star Map Plot Values, page 45.
(1) Right ascension and declination coordinates are translated to the nearest hundredth of an hour and degree respectively. The translations are converted to inch plot values using the following factors:

$$
\begin{aligned}
& \text { RA = } 1^{h} \text { sidereal times equals } 15^{\circ} \text {; for a scale of } 1^{\prime \prime}=35^{\circ} \\
& \text { the RA conversion factor is: } \\
& \\
& \text { 年年 } \times 1^{\prime \prime}=0.12857^{\prime \prime} / \mathrm{hRA} \\
& \text { Declination }-1^{\prime \prime}=35^{\circ} \text { or } 0.02857^{\prime \prime} / \circ
\end{aligned}
$$

(2) The star plot values and progression of star placement on the celestial sphere are programmed for a photographic compilation of symbolized stars using the Army Map Service - Type Placement System. The system has X and Y coordinate input units calibrated to 0.001". It has a photo-coordinatograph with capabilities of moving to a commanded X and Y coordinate position, and exposing a symbol, delineated on a negative in its photo-head, onto a sheet of $24^{\prime \prime}$ by $3^{\prime \prime}$ positive film. The center of the plotted symbols are accurate to within $0.003^{\prime \prime}$, a value applicable only to the specific overall size of the star maps. The accuracy of the system will vary on different size formats. The exposed film positive, developed at a later independent period, is a symbolized transparency of the celestial sphere which can be oriented in any planular position required for the specific yaw attitudes. A film positive is produced for each yaw. The placement of type (names, numbers, etc.), the ecliptic, and the celestial equator complete the film positive as a final map. To facilitate coordinate imput, and photo-coordinatograph plotting and symbol exposure, the X and Y coordinate axes are assigned the base plotting values of $10.000^{\prime \prime}$.
(3) Right ascension coordinates are multiplied by the conversion factor $0.42857^{\prime \prime} / \mathrm{M}_{\mathrm{PA} .}$. 10.000 inches are added to the products.
(4) Declination coordinates are multiplied by the conversion factor $0.02857^{\prime \prime} / \circ$. Minus (-) declination conversions are added to 10.000^{n}. Plus (+) declination conversions are subtracted from 10.000^{n}.
(5) The conventional manner in which the stars have been symbolizec on the maps is by varying the symbol configurations and sizes in accordance with apparent magnitudes. The amount of stars appearing on the maps have been determined by the scale of the maps, the congestion of detail, and the groups of stars forming patterns. The symbolization criterium is based upon two astronomical facts. One, a star is a point of light, and all points of light are the same size, regardless of what the actual size of the star may be. It is the variance in the degrees of brilliance which enable a visual differentiation between the bright ones and the fainter ones. Two, the stars are of an infinite variety, arranged in the heavens in a series of patterns called constellations.
(a) The stars appearing on the maps have been placed into five magnitude groups for map symbolization. The groups placement criterium is as follows: all stars of +1.3 and larger magnitudes are symbolized as a first magnitude (mag) star. The whole magnitude unit of the remaining stars is the dividing value for group assignment; i.e. $+1 . \mathrm{l}_{\mathrm{l}}$ to $+2.0=$ second mag, +2.1 to $3.0=$ third mag, +3.1 to $+4.0=$ fourth mag, and
+4.1 to $4.75=$ fifth mag. All stars decreasing to the fourth magnitude appear on the maps. A selection of fifth magnitude stars is made on the basis of an association with a constellation pattern, or as part of an intricate grouping of stars forming an identifiable celestial feature.

1. The names of stars to +2.0 mag were obtained from The American Ephemeris and Nautical Almanacs for 1959 (U.S. Army technical mamual - TM-5-236-59) and 1964 (U.S. Naval Observatory publication).
2. The star symbol configurations, as delineated in Fig. 18 below, are extracted from The Air Almanac 1965, Issued by the U.S. Naval Observatory, Washington, D.C. Dimensions are assigned relative to a compilation scale of $7^{\prime \prime}=35^{\circ}$. The final star map scale is $1^{\prime \prime}=40^{\circ}$.

NOTE: DIMENSIONS ARE FOR A SCALE OF $1^{\circ}=35^{\circ}$

STAR MAGNITUDE SYMBOLIZATION
FIGURE 18
(a) Constellation is a name used in astronomy originally to designate groups of stars that were imagined to form configurations, familiar objects, animals, and personages in the sky. Constellations at the present time is the term refering to definite areas of the sky. The actual boundaries of the constellations are not shown on the star maps because it would tend to congest detail and confuse the astronaut user. The constellations have been delineated in reference to the artificial groupings of personaces and objects drawn on THE HEAVENS, a sky map, produced December 1957 by the National Geographic Magazine, Vol. CXII, No. 6.
b. Ecliptic (refer to Fig. 19, page 44) - The apparent path of the sun in the celestial sphere is the ecliptic. Its mean obliquity \in, or angle of inclination with the celestial equator is $23^{\circ} 26^{\prime} 28^{\prime \prime} .28$ or 23.44397. (page 50, The American Ephemeris and Nautical Almanac for 1964). The ϕ coordinates for a 90° arc distance on the ecliptic are computed in similar methods used on the orbital curve using the equation:
$\operatorname{Tan} \phi=\operatorname{Tan} \in \operatorname{Sin} \lambda$. The conversion of the coordinates is to a scale of $1^{\prime \prime}=35^{\circ}$. The ecliptic is plotted in a similar scheme to that of the orbital curve on the respective star maps. The point at which the Sun crosses the equator on its way north is the First Point of Aries. It is also the position for 0rid. At this point it is keyed into the plotted maps.
c. The Right Ascension Scale (refer to Fig. 4 and 5, pages 4 \& 5) is graduated in 10 mimute units equal to $10 \times 0.42857=0.071428^{\mathrm{n}} / 10^{\mathrm{mma}} \mathrm{A}$ 60
or $24\left(0.42857^{\prime \prime} / h_{\mathrm{RA}}\right)=10.286{ }^{\prime \prime}$.
(1) is The indexing of the right ascension to the longitude of the ascending nodenat the top edge of the frame. This is an offset of 90° arc distance, 30° extension for pitch orientations, and $1 / 4^{\prime \prime}$ or 10° frame support at end of tracks, or 130. from the longitude of the ascending node. The equivalent RA value for 130° is $8^{\mathrm{h}} 40^{\mathrm{m}}$, the distance from the longitude of the ascending node to the Star Map Index location on the outside of the frame. The right ascension scale for 0 . YAW has a value of $8^{\mathrm{h}} 40^{\mathrm{m}}$ at the First Point of Aries. The right ascension scale for 180. YAW has a value of $24^{h} 00^{h}-8 \mathrm{~h} 40 \mathrm{~m}=15^{\mathrm{h}} 20 \mathrm{~m}$ at the First Point of Aries.
The scales increase in RA value as directed by the plots of their respective YAW Star Maps. Offsetting the RA Scale automatically positionsthe stars in their correct location to the longitude of the ascending node.

2-06. OP (Orbital Perturbation) Scale - An orbital perturbation is the departure of the Gemini spacecraft from its intended orbital parameters, i.e., orbital period, attitudes, etc. The OP Scale is an auxiliary unit which supplements the RA Scale for a periodic displacement of the star map unit in the display board.
a. The motions of the spacecraft reflect both gravitational and nongravitational perturbations. The centrifugal force arising from the rotation of the earth causes a deformation, or oblateness, of orbit. The principal orbital perturbation arises from the attraction of this equatorial bulge. The effect of the attraction is a gradual recession of the equatorial crossing of the ascending node. Inversely the attraction causes a succession of the right ascension of the ascending node.
b. Each celestial display device feature is designed to fit a reserved position in which all angular relationships are retained, regardless of the linear distance between them, e.g. the spacecraft's fluctuating flight altitude. The length (360°), configuration (sine wave), and scale ($1^{\prime \prime}=40^{\circ}$) of the orbital curve cannot be altered to accomodate a variance in the linear amplifications and reductions of the spacecraft orbital parameters. Neither can there be a compromise of a scale ($1^{\prime \prime}=40^{\circ}$) adjustment of the star maps, orbital period scales, the pitch scale, and the format of the spacecraft windows for the orbital perturbations. All built-in device features are required to be maintained compatible with each other. Offsets of linear motions effecting the compatibility of the standard features are considered by a linear displacement, or a re-indexing of a whole device unit. The effects of orbital perturbations are translated into a linear displacement of the star map through a re-indexing of the RA value of longitude of the ascending node.
c. Re-indexing is performed by use of the OP Scale, graduated relative to the Gemini spacecraft perturbed positions in terms of orbits. A specific YAW OP Scale is attached to its respective YAW Star Map RA Scale by the Astronaut user during flight to the RA index value obtained from the ground crew. Once this is attached the user re-irciexes the map at the beginning of each new orbit.

d. Method of CP Ecale Constmuction:

(1) Gemini flight information furnished by NASA:

Orbital perturbations relative to a 28.34° orbit $=+I^{m} 48^{s e c_{R A}}$ /orbit
(2) Assumed flight duration $=300$ orbits
(3) Given: Scale $-1^{\prime \prime}=400\left(0.025^{\prime \prime}=1^{\circ}\right)$

$$
\begin{aligned}
& I^{h_{R A}=150} \\
& +I^{h} / 4 \mathrm{Rsec}=+1.8^{\mathrm{m}} \mathrm{AA}
\end{aligned}
$$

Length of CP Scale $=\frac{\text { number of orbits (OF/orbit) degrees/ } \mathrm{R}_{\text {RA }} \text { (times scale factor) }}{60 \text { minutes/hour }}$

$$
=\frac{300(1.8) 15(.025)}{60}=3.375^{\prime \prime}
$$

Farameter of scale $=300$ orbits $=60 \times 5$ orbits or 60 units and 5 parts

$$
\text { unit value }=\frac{\text { Length of CP Scale }}{\text { No. of units }}=\frac{3.375}{60}=0.056251
$$

(1) draw 5 parallel lines 0.10" apart
(6) ink every 5 th unit between top a bottom with a heavy line parallel to base
(7) ink intermediate units

(3) divide the distance into 60 equal units
(4) Extend unit divisions to top line
(9) ink ra index line 0.20" beyond bottom line
(10) align type (numbers, etc.) to right reading per yaw map

SPECIFIC DATA
28030 ' ORBITAL CURVE PLOT VALJES

SCALE: $\begin{aligned} 1^{n} & =40^{\circ} \\ 1^{\circ} & =0.02500^{n}\end{aligned}$
LONGITUDE

λ	PLOT	SIN λ
00	0.000 II	0.00000
5	0.125	0.08715
10	0.250	0.17365
15	0.375	0.25882
20	0.500	0.34202
25	0.625	0.42262
30	0.750	0.50000
35	0.875	0.57358
40	1.000	0.64279
45	1.125	0.70711
50	1.250	0.76604
55	1.375	0.81915
60	1.500	0.86603
65	1.625	0.90631
70	1.750	0.93969
75	1.875	0.96592
80	2.000	0.98481
85	2.125	0.99619
90	2.250	1.00000

$\operatorname{Tan} \phi=\operatorname{Tan} 28 \cdot 30^{\prime}(\operatorname{Sin} \lambda)$
$=0.542956(\sin \lambda)$

LATITUDE

TAN ϕ	ϕ			DECREES	PLOT
0.000000	$0 \cdot$	001	00"	0.00000	0.000"
0.047319	2	42	30	2.70833	0.068
0.094284	5	23	10	5.38611	0.135
0.140528	8	00	00	8.00000	0.200
0.185702	10	31	10	10.51944	0.263
0.229464	12	55	30	12.92500	0.323
0.27478	15	11	20	15.18889	0.380
0.371429	17	17	50	17.29722	0.432
0.349007	19	14	20	19.23889	0.481
0.383930	21	00	10	21.00278	0.525
0.415926	22	35	00	22.58333	0.565
0.444762	23	58	40	23.97778	0.599
0.470216	25	11	∞	25.18333	0.630
0.192086	26	12	00	26.20000	0.655
0.510210	27	01	50	27.03056	0.676
0.524452	27	40	30	27.67500	0.692
0.534708	28	08	00	28.13333	0.703
0.540887	28	24	30	28.40833	0.710
0.542956	28	30		28.50000	0.713

SPECIFIC DATA
280 30' CRBIT CURVE TRACK SCALE FACTORS FOR 90• OF ORBIT

SPECIFIC DATA

SOUTH CURVE TRACK PLOT VALUES FCR 90° OF A 28030° OREIT

Degrees	Inches	Degrees	Inches
00°	$0.000{ }^{\text {n }}$	$0.0000{ }^{\circ}$	$0.000^{\prime \prime}$
10	0.149	5.38611	0.091
20	0.298	10.51944	0.178
30	0.447	15.18889	0.257
40	0.596	19.23889	0.325
50	0.745	22.58333	0.382
60	0.893	25.18333	0.1126
70	1.042	27.03056	0.457
80	1.191	28.13333	0.476
90	1.340	28.50000	0.182

SPECIFIC DATA
30•00' ORBITAL CURVE PLOT VALDES
FIGURE 12

$$
\begin{aligned}
\text { SCALE: } \quad 1^{n} & =40^{\circ} \\
1^{\circ} & =0.02500^{n}
\end{aligned}
$$

$\operatorname{Tan} \phi=\operatorname{Tan} 30 \cdot 00^{\prime}(\operatorname{Sin} \lambda)$
$=0.577350$ (Sin λ)

λ	PLOT	SIN
00	0.000^{n}	0.00000
5	0.125	0.08715
10	0.250	0.17365
15	0.375	0.25882
20	0.500	0.34202
25	0.625	0.42262
30	0.750	0.50000
35	0.875	0.57358
40	1.000	0.64279
45	1.125	0.70711
50	1.250	0.76604
55	1.375	0.81915
60	1.500	0.86603
65	1.625	0.90631
70	1.750	0.93969
75	1.975	0.96592
80	2.000	0.98481
90	2.125	0.99619
0.250	1.00000	
10		

$\begin{array}{lllllllll}\mathbf{L} & \mathbf{O} & \mathrm{N} & \mathbf{G} & \mathbf{I} & \mathbf{T} & \mathbf{U} & \mathbf{D} & \mathbf{E}\end{array}$

LA T I T U D E

ϕ			DEGREES	PLOT
$0 \cdot$	$0{ }^{1}$	$0{ }^{\prime \prime}$	0.00000	$0.000^{\prime \prime}$
2	52	50	2.38056	0.072
5	43	30	5.72500	0.143
8	29	40	8.49444	0.212
11	10	15	11.17083	0.279
13	42	45	13.71250	0.343

0.337156

20	21	40	20.36111	0.509

0.408250	22	12	30	22.20833	0.555

0.142273	23	51	30	23.85833	0.596

0.472936	25	18	40	25.31111	0.633
0.500002	26	34	00	26.56667	0.664
0.523258	27	37	15	27.62083	0.691
0.542530	28	28	50	28.48056	0.712
0.557674	29	08	50	29.14722	0.729
0.568580	29	37	20	29.62222	0.741
0.575150	29	54	20	29.90556	0.718
0.577350	30	00		30.00000	0.750

SPECIFIC DATA
30. 00^{\prime} ORBIT GURVE TRACK SCALE FACTORS FOR 90• OF ORBIT FIGURE 13

$\begin{gathered} \text { I. } 0 \\ \text { Scale: } \end{gathered}$	UT:0"	$\text { I. A T T U D }{ }^{T}{ }^{T}$	
Derrees	Inches	Derrees	Inches
0	0.0001	0.00000°	0.0001
10	0.144	5.72500	0.091
20	0.288	17.27083	0.184
30	0.132	16. 10278	0.266
40	0.576	20.36111	0.336
50	0.720	23.135833	0.394
60	0.864	26.56667	0.143
70	1.508	28. 48056	0.170
80	1.152	29.52222	0.189
90	1.296	30.90000	0.1195

FIGURE 14

SPECIFIC DATA
32•30' CRBITAL CURVE PLOT VALUES
$\begin{aligned} \text { SCALE: } & 1_{1 "}^{1 "}=40^{\circ} \\ 1^{\circ} & =0.02500^{n}\end{aligned}$

L O N G I T U D E

λ	PLOT	SIN λ
0	0.000 M	0.00000
5	0.125	0.08715
10	0.250	0.17365
15	0.375	0.25882
20	0.500	0.34202
25	0.625	0.42262
30	0.750	0.50000
35	0.875	0.57358
40	1.000	0.64279
45	1.125	0.70711
50	1.250	0.76604
55	1.375	0.81915
60	1.500	0.86603
65	1.625	0.90631
70	1.750	0.93969
75	1.875	0.96592
80	2.000	0.98481
95	2.125	0.09619
0	2.250	1.00000
10		

TAN ϕ	ϕ			DECREPS	PIOT
0.000000	$0 \cdot$	00'	000	0.00000	0.000 ${ }^{10}$
0.055521	3	10	40	3.17778	0.079
0.310627	6	18	45	6.31250	0.158
0.164886	9	21	45	9.36250	0.234
0.217891	12	17	30	12.29167	0.307
0.269239	15	04	10	15.06944	0.377
0.318535	17	40	10	17.66944	0.14 .2
0.365411	20	04	20	20.07222	0.502
0.409502	22	16	10	22.26944	0.557
0. 2.50479	24	15	∞	24.25000	0.606
0.488021	26	00	50	26.01389	0.650
0.521856	27	33	30	27.55833	0.689
0.551722	28	53	10	28.88611	0.722
0.577383	30	00	10	30.00278	0.750
0.598648	30	54	20	30.90556	0.773
0.615359	31	36	20	31.60556	0.790
0.627393	32	06	15	32.10417	0.803
0.634643	32	24	00	32.40000	0.810
0.637070	32	30	00	32.50000	0.813

32• 30^{\prime} ORBIT CURVE TRACK SCALE FACTORS FOR 90° OF ORBIT

$$
a=1.907 \cos 57^{\circ} 30^{\prime}=1.907(0.537300)
$$

$$
a=1.025^{\prime \prime}
$$

$b=1.907 \operatorname{Sin} 57^{\circ} 30^{\prime}=1.907(0.843391)$ $b=1.608^{\prime \prime}$

SOTTH CURVE TRACK PLOT VALUSS FOR 900 OF A 32•30: ORBIT
$\begin{array}{cccccc}\text { L. } \begin{array}{c}\text { N G } \\ \text { Scale: } \\ \text { I. }\end{array} & =0.01361^{n}\end{array}$

Degrees	Inches	Degrees	Inches
00	$0.000^{\prime \prime}$		
10	0.136	0.00000	$0.000^{\prime \prime}$
20	0.272	6.31250	0.100
30	0.408	12.29167	0.194
40	0.544	17.66944	0.230
50	0.681	22.26944	0.352
60	0.817	26.01389	0.412
70	0.953	28.88611	0.157
80	1.089	30.90556	0.489
90	1.225	32.10417	0.508
0		32.50000	0.514

SPECIFIC DATA
SCALE: $1^{\prime \prime}=40^{\circ}$ ORBITAL PERIOD SCALE PLOT VALUES FOR 900 OF ORBIT

time	ORBITAL PERIOD	
	88 minutes	92 minutes
MINUTES 0	$\begin{aligned} & \text { INCHES } \\ & 0.000^{\prime \prime} \end{aligned}$	$\begin{aligned} & \text { INCHES } \\ & 0.000^{\prime \prime} \end{aligned}$
1	0.094	0.091
2	0.096	0.091
3	0.096	0.091
4	0.096	0.093
5	0.098	0.093
6	0.098	0.094
7	0.099	0.094
8	0.099	0.096
9	0.100	0.096
10	0.101	0.097
11.	0.102	0.097
12	0.104	0.097
13	0.104	0.099
14	0.106	0.099
15	0.106	0.101
16	0.106	0.101
17	0.107	0.102
18	0.107	0.102
19	0.107	0.102
20	0.108	0.103
21	0.108	0.103
22	0.108	0.104
23		0.104

TIME	ORBITAL	PERIOD
	88 minutes	92 minutes
minutes	inches	inches
0	0.000"	0.000"
1	0.094	0.089
2	0.094	0.089
3	0.094	0.089
4	0.094	0.089
5	0.096	0.092
6	0.096	0.092
7	0.098	0.992
8	0.098	0.094
9	0.100	0.094
10	0.100	0.097
11	0.102	0.097
12	0.102	0.098
13	0.106	0.099
14	0.106	0.100
15	0.106	0.102
16	0.108	0.102
17	0.108	0.104
18	0.109	0.104
19	0.109	0.105
20	0.110	0.105
21	0.110	0.105
22	0.110	0.106
23		0.106

SPECIFIC DATA
88 MINUTE ORBITAL PERIOD PLOT VALUES FOR 360° OF A $30^{\circ} 00^{\prime}$ ORBIT
$1^{\prime \prime}=40^{\circ}$ FOR 00 YAW (SEF) OPERATION

FIGURE 16

MIN	value	Plot									
4	0.000	0.000"				1	0.109"	$4.609 n$	24	0.095	6.940"
45	0.109	0.109	67	0.095"	$2.345^{\prime \prime}$	2	0.109	4.718	25	0.095	7.035
46	0.109	0.218	68	0.095	2.440	3	0.109	4.827	26	0.095	7.130
47	0.109	0.327	69	0.095	2.535	4	0.108	4.935	27	0.097	7.227
48	0.108	0.435	70	0.095	2.630	5	0.108	5.043	28	0.097	7.324
49	0.108	0.543	7	0.097	2.727	6	0.108	5.151	29	0.097	7.422
50	0.108	0.651	72	0.097	2.824	7	0.107	5.258	30	0.100	7.521
51	0.107	0.758	73	0.097	2.921	8	0.107	5.365	31	0.100	7.621
52	0.107	0.865	74	0.100	3.021	9	0.104	5.169	32	0.101	7.722
53	0.104	0.969	75	0.100	3.121	10	0.104	5.573	33	0.101	7.823
54	0.104	1.073	76	0.101	3.222	11	0.104	5.677	34	0.104	7.927
55	0.104	1.177	77	0.101	3.323	12	0.101	5.778	35	0.104	8.031
56	0.101	1.278	78	0.104	3.427	13	0.101	5.879	36	0.104	8.135
57	0.101	1.379	79	0.104	3.531	14	0.100	5.979	37	0.107	8.242
58	0.100	1.479	80	0.104:	3.635	15	0.100	6.079	38	0.107	8.349
59	0.100	1.579	81	0.107	3.742	16	0.097	6.176	39	0.108	8.457
60	0.097	1.676	82	0.107	3.849	17	0.097	6.273	40	0.108	8.565
61	0.097	1.773	83	0.108	3.957	18	0.097	6.370	41	0.108	8.673
62	0.097	1.870	84	0.108	4.065	19	0.095	6.465	42	0.109	9.782
63	0.095	1.965	85	0.108	4.173	20	0.095	6.560	1.3	0.109	8.891
64	0.095	2.060	86	0.109	4.282	21	0.005	6.655	44	0.109	9.000
65	0.095	2.155	87	0.109	4.391	22	0.095	6.750	45	0.109	9.109
66	0.095	2.250	0	0.109	4.500	23	0.095	6.845	46	0.109	9.218

SPECIFIC DATA 92 MINUTE CRBITAL PERIOD PLOT VALUES FOR 360° OF A $30^{\circ} 00^{\prime}$ ORBIT $7^{n}=40^{\circ}$

FOR O. YAW (SEF) OPERATION

MIN	value	PLOT									
44	-0.104 ${ }^{\text {n }}$	-0.208 ${ }^{\text {n }}$	68	$0.091{ }^{17}$	2.160^{n}	91	$0.104^{\prime \prime}$	4.396^{n}	23	0.090"	$6.750^{\text {n }}$
45	-0.104	-0.104	69	0.090	2.250	0	0.104	4.500	24	0.090	6.840
46	0.000	0.000				1	0.104	4.604	25	0.091	6.931
47	0.104	0.104	70	0.090	2.340	2	0.104	4.708	26	0.091	7.022
48	0.104	0.208	71	0.091	2.431	3	0.104	4.812	27	0.092	7.114
49	0.104	0.312	72	0.091	2.522	4	0.104	4.916	28	0.092	7.206
50	0.104	0.416	73	0.092	2.614	5	0.104	5.020	29	0.093	7.299
51	0.104	0.520	74	0.092	2.706	6	0.103	5.123	30	0.093	7.392
52	0.103	0.623	75	0.093	2.799	7	0.103	5.226	31	0.095	7.487
53	0.103	0.726	76	0.093	2.892	8	0.102	5.328	32	0.095	7.582
54	0.102	0.828	77	0.095	2.987	9	0.100	5.428	33	0.096	7.678
55	0.100	0.928	78	0.095	3.082	10	0.100	5.528	34	0.097	7.775
56	0.100	1.028	79	0.096	3.178	11	0.099	5.627	35	0.098	7.873
57	0.099	1.127	80	0.097	3.275	12	0.098	5.725	36	0.099	7.972
58	0.098	1.225	81	0.098	3.373	13	0.097	5.822	37	0.100	8.072
59	0.097	1.322	82	0.099	3.472	14	0.096	5.918	38	0.100	8.172
60	0.096	1.418	83	0.100	3.572	15	0.095	6.013	39	0.102	8.274
61	0.095	1.513	84	0.100	3.672	16	0.095	6.108	40	0.103	8.377
62	0.095	1.608	85	0.102	3.774	17	0.093	6.201	41	0.103	8.4:80
63	0.093	1.701	86	0.103	3.877	18	0.093	6.294	42	0.104	8.584
64	0.093	1.794	87	0.103	3.980	19	0.092	6.386	4.3	0.104	8.688
65	0.092	1.886	88	0.104	4.084	20	0.092	6.478	44	0.104	8.792
66	0.092	1.978	89	0.104	4.188	21	0.091	6.569	45	0.104	8.896
67	0.091	2.069	90	0.104	4.292	22	0.091	6.660	46	0.104	9.000

SPECIFIC DATA
PLOT VALUES FOR 90- OF THE ECLIPTIC
FIGURE 19

SCALE: $\begin{aligned} 7^{n} & =35^{\circ} \\ 1^{\circ} & =0.02857\end{aligned}$

L O N G I T U D E

λ	PLOT	SIN
$0 \cdot$	0.000"	0.00000
5	0.143	0.08715
10	0.286	0.17365
15	0.1429	0.25882
20	0.571	0.34202
25	0.714	0.42262
30	0.857	0.50000
35	1.000	0.57358
40	1.143	0.64279
45	1.286	0.70711
50	1.1129	0.76604
55	1.571	0.81915
60	1.714	0.86603
65	1.957	0.90631
70	2.000	0.93969
75	2.143	0.96592
80	2.286	0.98481
85	2.428	0.99619
90	2.571	1.00000

$\operatorname{Tan} \phi=\operatorname{Tan} \in(\operatorname{Sin} \lambda)$
$=\operatorname{Tan} 23^{\circ} 26^{\prime} 38^{\prime 2} 28(\sin \lambda)$
$=0.43365(\operatorname{Sin} \lambda)$
$\begin{array}{llllllll}\mathbf{L} & \mathbf{A} & \mathbf{T} & \mathbf{I} & \mathbf{T} & \boldsymbol{U} & \mathbf{D} & \mathbf{E}\end{array}$

TAN ϕ	ϕ		DEGREES	PLOT
0.00000	$0 \cdot$	00^{1}	0.000	$0.00{ }^{\text {n }}$
0.03780	2	10	2.167	0.062
0.07530	4	18	4.300	0.123
0.11224	6	24	6.400	0.183
0.24832	8	26	8.433	0.241
0.18327	10	23	10.383	0.297
0.21683	12	14	12.233	0.349
0.24873	13	58	13.967	0.399
0.27875	15	35	15.583	0.445
0.30664	17	03	17.050	0.1487
0.33219	18	23	18.383	0.525
0.35522	19	33	19.550	0.559
0.37555	20	35	20.583	0.588
0.39302	21	27	21.450	0.613
0.40750	22	10	22.167	0.633
0.41888	22	44	22.733	0.649
0.42706	23	08	23.133	0.661
0.43200	23	22	23.367	0.668
0.43365	23	27	23.450	0.670

STAR

STARS FOR FIPST MAGNITUDE SYMBOLIZATION

1.606^{h}

ACHEINNAR
ALDERBARAN

CAPELLA CANOPUS
ARCIURUS ANTARES
FOMALHAUT

"-

 Šmmunumovor r

SPECIFIC DATA
STAR MAP PLOT VALUES AT A SCALE OF $1^{\prime \prime}=35^{\circ}$

SPECIFIC DATA
STAR MAP PLOT VALDES AT A SCALE OF 1 " $=35^{\circ}$

SPECIFIC DATA
STAR MAP PLOT VALUES AT A SCALE OF $1^{\prime \prime}=35^{\circ}$
FOR STAR MAGNITUDES OF 3.8 AND GREATER (cont)

80
06
Fio
rio
$2 n$
8
8
8
n
윽
rin
i

minguィ

STAR

SPECIFIC DATA
STAR MAP PLOT VALUES AT A SCALE OF $7^{\prime \prime}=35^{\circ}$

SPECIFIC DATA
STAR MAP PLOT VALUES AT A SCALE OF $1^{\prime \prime}=35^{\circ}$ FOR STAR MAGNITUDES OF 3.8 AND GREATER (cont)


```
SPECIFIC DATA
STAR MAP PLOT VALUES AT A SCALE OF \(1^{\prime \prime}=35^{\circ}\) FOR STAR MAGMITUDES OF 3.8 AND GREATER（cont）
```


$\begin{aligned} & \text { 訁 } \\ & \underset{\sim}{0} \\ & \text { ri } \end{aligned}$		$\begin{aligned} & 0 \\ & \text { ò } \\ & 0 \\ & 0 \\ & \text { in } \end{aligned}$	

音

STAR

 λ CENTAURI
σ CORVI
δ CRUCIS
δ URSAE MAJORIS
δ CORVI
β MUSCAE X
γ HYDRAE
$\boldsymbol{\sigma}$ VIRGINIS
ν CENTAIURI
μ CENTAIRI
ζ CENTAIRI
π HIDRAE
 동 σ SCORPII

둔
 H

 봉兒 ＇SCORPII H
枈
10
10権空

```
SPECIFIC DATA
STAR MAP PLOT VALUES AT A SCALE OF \(1^{\prime \prime}=35^{\circ}\) FOR STAR MAGNITUDES OF 3.8 AND GREATER (cont)
```

PLOT

DEGREES

$17.823^{\prime \prime}$

18.126

춛
N
18.232

N~N

N
N
N
-
-

N

19.723
19.605

 η SAGITTARII
η SERPENTIS
ϕ SAGITTARII
γ LYRAE
λ AQUILAE
τ SAGITTARII
δ DFACONIS
δ AQUILAE
B^{\prime} CYGNI
θ AQUILAE
β CAPRICORNI
a INDI
ζ CYGNI
β CEPHEI
β AQUARI
γ GRUIS
λ AQUARI n PEOASI δ AgUARII

엌N

$\begin{aligned} & \text { No } \\ & \text { N } \\ & \text { Oi } \end{aligned}$	$\begin{aligned} & 8 \\ & \underset{y}{8} \\ & \infty \end{aligned}$	구N $\infty{ }^{\circ} 0^{\circ}$
		0 0 i i
$\begin{aligned} & \text { N} \\ & \text { N } \\ & \text { à } \end{aligned}$	$\begin{aligned} & \text { o } \\ & \text { o } \\ & \text { in } \end{aligned}$	Non ¢ - in
N	n	¢-15
-	\cdots	¢NN
a	$\underset{\sim}{n}$	$\underset{+1}{\sim}$

ज H - 9 N
00 OHन

SPECIFIC DATA
STAR MAP PLOT VALUES AT A SCALE OF I" $^{\prime \prime}=35^{\circ}$
FOR STAR MAGNITUDES OF 3.8 AND GREATER (cont)

商 .

 $\stackrel{1}{c}$

SPECIFIC DATA
 STAR MAP PLOT VALUES AT A SCALE OF $\mathbf{I n}^{\prime \prime}=35^{\circ}$
 FOR STAR MAGNITUDES OF 3.8 AND GREATER (cont)

SRAR	PTGY 2 SCE ETOH			E093	FLOL		The		DEGH2SS	INGES	PTUT
STARS FOR FOURTII MAGNITUDE SYMBOIIZATTON - Contimued											
a PUPPIS	$7^{\text {h }}$	501	58.7"	$7.849^{\text {h }}$	13.364"	-400	281	5611	40.483°		57
x CARINAE	7	55	51.8	7.931	13.399	-52	53	06	52.385		17.511
β CANCRI	8	14	33.8	8.242	13.532	+9	17	52	9.297	-0.266"	9.734
B VOLANTIS	8	25	21.1	8.123	13.610	-66	0	59	66.016		11.886
- VELCRUM	8	39	15.7	8.654	13.709	-52	47	37	52.793		11.508
a PYXIDIS	8	42	08.7	8.702	13.729	-33	03	20	33.056		10.344
\times URSAE MAJORIS	9	01	10.5	9.020	13.866	$+47$	18	01	47.300	-1.351	8.649
c. VELORUM	9	02	54.7	9.048	13.378	-46	57	14	46.954	-1.351	11.341
a CARINAE	9	10	01.1	9.167	13.929	-58	49	09	58.819		11.680
θ HYDRAE	9	12	29.5	9.208	13.946	+2	28	01	2.467	-0.070	9.730
36 LHNCIS	9	16	36.6	9.277	13.976	+36	57	22	36.356	-1.056	8.944
23 URSAE MAJORIS	9	28	42.7	9.479	14.062	+63	13	14	63.221	-1.806	8.194
4 VELCRUM	9	29	16.8	9.488	714.066	-40	18	30	40.308	-1.806	11.152
- LEONIS	9	39	13.8	9.654	14.137	+10	03	25	10.057	-0.287	9.713
- VELORUM	9	55	35.8	9.927	11.254	-54	23	45	54.396	-0.281	11.545
η LEONIS	10	05	22.3	10.089	11.324	+16	56	20	16.939	-0.484	9.516
1 HYDRAE	10	08	49.9	10.147	14.349	-12	10	32	12.176		10.348
\sim CARINAE	10	12	53.1	10.215	14.378	-69	51	32	69.859		11.996
5 LEONIS	10	14	41.5	10.244	14.390	+23	35	50	23.597	-0.674	9.326
P Carinae	10	30	44.4	10.512	14.505	-61	29	59	61.499	0.674	11.757
- LEONIS	10	30	55.0	10.515	14.506	+9	29	33	9.492	-0.271	9.729
\checkmark URSAE MAJORIS	11	16	32.3	11.276	14.833	+33	17	27	33.291	-0.951	9.049
δ crateris	11	17	32.3	11.292	14.839	-14	35	01	14.583	0.951	10.417
$\boldsymbol{\xi}$ HYDRAE	11	31	13.6	11.521	14.938	-31	39	30	31.658		10.904
1 MUSCAF	11	43	53.8	11.732	15.028	-65	37	45	66.530		11.901
x URSAE MAJORIS	11	44	09.3	11.735	15.029	$+47$	58	44	47.979	-1.371	8.629
β VIROINIS	11	48	49.2	11.814	15.063	$+1$	58	03	1.968	-0.056	9.944
- CRUCIS	12	19	24.2	12.324	15.282	-60	12	09	60.202		11.720
δ VIRAINIS	12	53	47.3	12.896	15.527	$+3$	35	34	3.592	-0.103	9.397
δ MUSCAE	12	59	46.0	12.996	15.570	-71	21	19	71.355		12.039
R HYDRAE	13	27	44.1	13.462	15.769	-23	05	45	23.096		10.660
a DR.ACONIS	14	03	24.8	14.057	16.024	+54	32	51	64.547	-1.844	8.156
ρ BOOTIS	14	30	16.7	14.504	16.216	+30	31	43	30.529	-0.872	9.128
109 VIRGINIS	14	44	25.6	14.740	16.317	+2	02	36	2.043	-0.058	9.942
β BOOTIS	15	00	35.3	15.010	16. 4133	+40	31	54	40.532	-1.158	8.842
¢ LUPI	15	19	30.9	15.325	16.568	-36	07	56	36.133		11.032
- LUPI	15	20	13.6	15.337	16.573	-4.4	33	41	144.561		11.273

```
SPECIFIC DATA
STAR MAP PLOT VALUES AT A SCALE OF \(7^{\prime \prime}=35^{\circ}\) FCR STAR MAGNITUDES OF 3.8 AND GREATER (cont)
```


SPEGIFIC DATA
STAR MAP PIOT VALUES AT A SCALE OF $7^{n}=35^{\circ}$

STAR	RIGHT ASCENSION			HOURS	PLOT
STARS FOR FOURTH MAGNITUDE SYMBOLIZATION - Continued					
θ PEOASI	$22^{\text {h }}$	08:	23.01	22.139 h	$19.488^{\prime \prime}$
ζ CEPHEI	22	09	36.1	22.160	19.497
δ CEPHEI	22	27	49.8	22.1464	19.627
a ILACETCTAE	22	29	48.2	22.496	19.641
ζ PEGASI	22	39	39.9	22.661	19.712
e GRUIS	22	46	23.3	22.773	19.760
μ Pegasi	22	48	15.7	22.804	19.773
< CEPHEI	22	48	23.5	22.807	19.774
\wedge AQUARI	22	50	44.2	22.845	19.791
- ANDROMEDAE	23	00	15.6	23.004	19.859
8s AQUARI	23	07	31.7	23.126	19.911
γ PISCIIM	23	15	17.9	23.255	19.966

$\stackrel{y}{\square}$	nm
O	8 \%
7	$9{ }^{91}$

SPECIFIC DATA
STAR MAP PLOT VALUES AT A SCALE OF $\mathbf{1}^{\prime \prime}=35^{\circ}$

DECLINATION			DEGREES	INCHES	PLOT
-60.	301	231	60.506.		11.729"
+59	12	33	59.209	- $2.692^{\prime \prime}$	8,308
$+34$	24	34	34.409	-0.983	9.017
-58	39	43	58.662		11.676
-58	46	48	58.780		11.679
+31	43	55	31.732	-0.907	9.093
410	43	40	10.728	-0.306	9.694
- 0	28	01	0.467		10.013
-71	56	04	71.934		12.055
+69	59	11	69.986	-2.000	8.000
-48	20	36	48.343		11.381
+55	10	30	55.175	-1.576	8.124
-39	13	20	39.223		11.121
-41	55	33	41.926		11.198
+13	'52	54	13.882	-0.397	9.603
- 5	30	10	5.503		10.157
-46	54	42	16.912		11.340
-14	40	15	14.671		10.419
+26	24	31	26.409	0.755	9.245
-29	06	38	29.111		10.832
+15	46	40	15.778	-0.451	9.5449
-63	35.	46	63.596		11.817
+46	23	53	46.398	-1. 326	8.674
-78	49	12	78.820		12.252
+30	58	42	30.979	-0.885	9.115
+56	52	40	56.878	-1.625	8.375
$+37$	15	15	37.254	-1.064	8.936
+ 2	55	54	2.932	-0.084	9.916
-50	05	46	50.096		11.1 .31
-21	04	12	21.070		10.602
$+21$	45	07	21.752	-0.621	9.379
-21	47	46	21.796		10.623
+53	18	05	53.301	-1.523	8.477
-17	55	00	17.917		10.512
+51	39	08	51.652	-1.476	8.524
$+70^{\circ}$	10	35	70.177	-2.005	7.995
+ 6	18	56	6.315	-0.180	9.820

FIFTH MAONTTUDE STARS

SPECIFIC DATA
STAR MAP PLOT VALUES AT A SCALE OF $I^{\prime \prime}=35^{\circ}$ FIFTH MAGNITUDE STARS

 : $\stackrel{\circ}{7}$

SPECIFIC DATA
STAR MAP PLOT VALUES AT A SCALE OF $1^{\prime \prime}=35^{\circ}$ FTFTH MAGNTTUDE STARS

 $\stackrel{\circ}{\infty}$
$\underset{\sim}{\infty} 0^{\circ}$
$+\infty$

SPECIFIC DATA
 STAR MAP PLOT VALUES AT A SCALE OF 1' $^{\prime \prime}=35^{\circ}$ FIFTH MAGNITUDE STARS

SPECIFIC DATA
STAR MAP PLOT VALUES AT A SCALE OF 1 ＂$=35^{\circ}$
FIFTH MAGNITUDE STARS


```
SPECIFIC DATA
STAR MAP PLOT VALUES AT A SCALE OF \(1^{\prime \prime}=35^{\circ}\) FIFTH MAGNITUDE STARS
```


$\stackrel{\infty}{\stackrel{\infty}{+}}$

8
8
8
8

DECLINATION DEGREES


```
SPECIFIC DATA
Star map plot values at a scaie of \(7^{\prime \prime}=35^{\circ}\) FIFTH MAGNITUDE STARS
```

\section*{| F |
| :--- |
| 1 |}

\section*{| ※ |
| :--- |
| ※ |
| © |
| 8 |}

0
8
0
0

\sim	
$\underset{\sim}{N}$	$\underset{0}{1}$
$\underset{i}{i}$	0

a
0
0
1

N
ヘi
O
$1 n$
∞
0
0
i

 닫


```
SPECIFIC DATA
STAR MAP PLOT VALUES AT A SCALE OF \(7^{\prime \prime}=35^{\circ}\) FIFTH MAGNITUDE STARS
```

$\begin{aligned} & \text { F } \\ & \hline 0 \end{aligned}$	
匢	
㹂	认出解

SPECIFIC DATA
STAR MAP PLOT VALUES at a SCALE OF $17=35^{\circ}$ FIFTH MAGNITUDE STARS

RJGHT ASCENSION


```
SPECIFIC DATA
STAR MAP PLOT VALUES AT A SCALE OF 1 ＂\(=35^{\circ}\) FIFTH MAGNITUDE STARS
```

PLOT
11.8401
10.701
11.490
11.936
12.260
11.823
9.187
11.429
10.457
8.813
11.389
11.737
11.353
11.3 L2
11.628
11．1：20
10.153
9
9.198
8.835
11.737
11.238
8.694
8.433
10.939
11．164
9.496
10.979
9．544
10.938
11.815
11.275
11.298
9.951
11.172
10.289
8.516

융
in
C
i
$\begin{array}{ll}0 & \overrightarrow{3} \\ 0 & \text { a } \\ 0 & 7 \\ i & i\end{array}$

気
容
㽞

 Э

SPECIFIC DATA

STAR MAP PLOT VALIES AT A SCALE OF $I^{n}=35^{\circ}$ FIFTH MAGNITUDE STARS

 RTGHT ASCENSION

 0°

```
SPECIFIC DATA
STAR MAP PLot values at a SCALE OF \(1^{\prime \prime}=35^{\circ}\)
FIFTH MAGNITUDE STARS
```


号

號

NCISNGDSV THDIZ

SPECIFIC DATA

STAR MAP PLOT VALUES AT A SCALE OF $1^{\prime \prime}=35^{\circ}$ FIFTH MAGNITUDE STARS

SPECIFIC DATA

STAR MAP PLOT VALUES AT A SCALE OF $I^{\prime \prime}=35^{\circ}$
 FIFTH MAGNITUDE STARS

PLOT

媴	 が丸
	$1+++1+111+++++11111++++11_{+}+1+$

PLOT

RIOHT ASCENSION


```
SPECIFIC DATA
STAR MAP PLOT VALUES AT A SCALE OF \(1^{\prime \prime}=35^{\circ}\)
FIFTH MAGNITUDE STARS
```



```
SPECIFIC DATA
STAR MAP PI,OT VATUES AT A SCALE OF \(1^{\prime \prime}=35^{\circ}\)
FIFTH MAGNITUDE STARS
```


SPECIFIC DATA
 STAR MAP PLOT VALUES AT A SCALE OF $\mathbf{1 " ~}^{\prime \prime}=35^{\circ}$ FIFTH MAGNITUDE STARS

$\underset{z}{z}$	
	on winncy

GENINI GELESTIAL DISPLAY DEVICE STUDY
SPECIFIC DATA
35000' ORBITAL CURVE PLOT VALUES

$\begin{aligned} \text { SCAIE: } & 1^{\prime \prime}=35^{\circ} \\ 1^{\circ} & =0.02857^{\prime \prime} \end{aligned}$				$\begin{aligned} \operatorname{Tan} \phi & =\operatorname{Tan} 35^{\circ} 00^{1}(\operatorname{Sin} \lambda) \\ & =0.70021(\operatorname{Sin} \lambda) \end{aligned}$			
± 0	N G I	U D E			1 A	T U	
λ	PIOT	SIN λ	TAN ϕ		ϕ	DGGREPS	PLOT
0°	$0.000{ }^{\prime \prime}$	0.00000	0.90000	$0{ }^{\circ}$	00^{2}	0.000*	$0.000^{\prime \prime}$
5	O.lli 3	0.08715	0.06102	3	30	3.500	0.100
10	0.286	0.17365	0.12159	6	56	6.733	0.198
75	0.129	0.2588?	0.18123	10	15	10.267	0.293
20	0.571	0.311902	0.23949	13	23	13.467	0.385
25	0.714	0.42262	0.29592	16	29	16.483	0.177
9	0.857	0.50000	0.35010	19	18	19.300	0.557
3	1.000	0.57358	0.10163	21	53	21.883	0.625
40	1.143	0.64279	0.45009	24	111	24. 233	0.692
45	1.206	0.70711	0.49513	26	21	25.350	0.753
50	1.129	0.76004	0.53639	28	13	28.217	0.506
55	1.571	0.81915	0.57358	29	50	29.833	$0.95 ?$
60	1.73	0.86503	0.60640	31	14	31.233	0.802
6	1.857	0.00631	0.631461	32	24	32.100	0.526
70	2.000	0.93960	0.65798	33	21	33.350	0.953
75	2.143	0.56592	0.676 .35	34	04	3L.c67	0.973
8	2.286	0.98481	$0.689 \% 7$	34	35	34.583	0.588
85	2.128	0.00619	0.69754	34	54	34.900	0.997
90	2.571	1.00000	0.70021	35	00	35.000	1.000

350 O ' ORBIT CURVE TRACK SCALE FACTORS FOR 900 OF ORBIT

$a=1.907 \operatorname{Cos} 55^{\circ}=1.907(0.57358)$

$$
a=1.094^{\prime \prime}
$$

$$
b=1.907 \sin 55^{\circ}=1.907(0.81915)
$$

$$
\mathrm{b}=1.562^{\prime \prime}
$$

SPECIPIC DATA

$7^{\prime \prime}=35^{\circ} \quad$ NORTH CURVE TRACK PLOT VALUES FOR 90° OF A $35^{\circ} 00^{\prime}$ ORBIT

Degrees	Inches	Degrees	Inches
$0{ }^{\circ}$	$0.000{ }^{1}$	$0.000{ }^{\circ}$	$0.000{ }^{\text {n }}$
5	0.204	3.500	0.135
10	0.407	6.933	0.266
15	0.611	10.267	0.395
20	0.814	13.467	0.518
25	1.018	16.483	0.633
30	1.222	19.300	0.742
35	1.425	27.883	0.841
40	1.629	24.233	0.931
45	1.832	26.350	1.013
50	2.036	28.217	1.084
55	2.240	29.833	1.146
60	2.443	31.233	1.200
65	2.647	32.400	1.245
70	2.850	33.350	1.282
75	3.054	34.067	1.309
80	3.258	34.583	1.329
85	3.461	34.900	1.341
90	3.665	35.000	1.345

SOUTH CURVE TRACK PLOT VALUES FOR 90° OF A $35^{\circ} 00^{\prime}$ ORBIT
$\begin{array}{lllllllll}L & O & N & G & I & T & U & D & E\end{array}$ Scale: $1^{\circ}=0.01641^{11}$

Degrees	Inches
00	0.00011
10	0.164
20	0.328
30	0.1 .92
40	0.656
60	0.621
60	0.985
70	1.14 .9
80	1.313
90	1.477

L A T I T U D E Scale: $1^{\circ}=0.0187{ }^{\circ}$

Degrees	Inches
0.000	
6.033	$0.000^{\text {m }}$
13.1 .67	0.130
19.300	0.252
24.233	0.361
28.217	0.1 .53
31.233	0.528
33.350	0.584
34.583	0.624
35.000	0.647
	0.655

SPECIFIC DATA

350 O0' ORBIT CURVE TRACK SCALE FACTORS FOR 90º ORBIT

SPECIFIC DATA

NORTH CURVE TRACK PLOT VALUES FCR 90° OF A $35 \cdot 00^{\circ}$ CRBIT (FCR MILLING WITH A 1/4n END DRILL)

```
1" = 35
```


Degrees	Inches	Degrees	Inches
$0 \cdot$	$0.000{ }^{\text {m }}$	0.000	0.000 ${ }^{\text {n }}$
5	0.208	3.500	0.137
10	0.1115	6.933	0.271
15	0.622	10.267	0.401
20	0.830	13.467	0.526
25	1.038	16.1483	0.644
30	1.246	19.300	0.754
35	1.453	27.883	0.855
40	1.661	24.233	0.947
45	1.868	26.350	1.029
50	2.976	28.217	1.102
55	2.283	29.833	1.165
60	2.491	32.233	1.220
65	2.699	32.400	1.266
70	2.906	33.350	1.303
75	3.114	34.067	1.331
80	3.322	34.583	1.351
85	3.529	34.900	1.363
90	3.737	35.000	1.367

SOUTH CURVE TRACK PLOT VALUES FCR 90° OF A 35000 ORBIT (FOR NILLING WITH A 1/4" END IRIIL)

Degrees	Inches	Degrees	Inches
00			
10	0.000^{n}	0.000	0.000
20	0.156	6.933	0.125
30	0.312	13.467	0.244
40	0.468	19.300	0.349
50	0.624	24.233	0.438
60	0.781	28.217	0.510
70	0.937	31.233	0.565
80	1.093	33.350	0.603
90	1.249	34.583	0.626
	1.405	35.000	0.633

GEAINI CELESTIAL DISPLAY DEVICE STUDY
SPECIFIC DATA
CONVERSION OF MINUTES AND SECONDS INTO DECIMALS OF A DEGREE

GEMINI GELESTIAL DISPLAY DEVICE STUDY

SPFCIFIC DATA
CONVERSICN OF MINITES AND SECONDS INTO DECIMALS OF A DEGREE (cont)

SPECIFIC DATA
CORRDINATE PLOT VALUES TO CCNSTRUCT A $35^{\circ} 00^{\prime}$ ORBIT FRAME PATTERN AT A SCALE OF $1^{\prime \prime}=35^{\circ}$

COORDINATE PLOT VALUES TO CONSTRUCT A 35*00: CRBIT FRAME PATTERN AT A SCALE OF $1^{\prime \prime}=35^{\circ}$ (cont)

COCRDINATE PLOT VALUES TO CONSTRUCT A 35000' ORBIT FRAME PATTERN AT A SCALE OF $1^{\prime \prime}=35^{\circ}$ (cont)

COORDINATE PLOT VALUES TO CONSTRUCT A $35{ }^{\circ} 00$ (CRBIT FRAME PATTERN AT A SCALE OF $\mathbf{1 "}^{11}=35^{\circ}$ (cont)

LIST OF ARMY MAP SERVICE PERSONJEL WHO CONTRIBUTED SERVICES TO THIS STUDY

INVENTCR, CELESTIAL DISPLAY DEVICE
Mr. Albert L. Nowicki Chief, Department of Cartography

PROGRAM DIRECTOR
Mr. Charles D. McAfoos
PROJECT DIRECTR -
Miss Katherine E. Perry
PROJECT ENGINEER (\& Author of Final Report) Mr. Albert Paul Lang

TECHNICAL CONSULTANTS Messrs: Marvin Q. Marchant Raymond J. Mercil
Fane H. Pickering
Charles W. Becker
Clifton Jackson
David Holland
Engene E. Meyers
Ralph F. Mulloy
Herry K. Williams
Anton Zenns

SPECIAL SERVICES
Mrs. Edith W. Dow
Messrs: Robert T. Fifer John E. McCormack Charles R. Strange

PHOTOGRAPHIC ASSISTANCE -
Mr. Larry L. Vance
ENGINEERING DRAFMING
Mr. Harry C. Solomos
FINAL PLOTTING \& ENGRAVING
Messrs: William J. Jackson, Jr. Gene S. Isham
Harry L. Parrott
Peter F. Ross David J. Rudolph Wallace K. Thomas Hemry A. Thompson William M. Voltz

COMPUTATIONS \& INTERNEDIATE PLOTTING
Messrs: Hershel L. Dew
Randy J. Chartier Jack Cox Robert W. Flim Harry Rivas Irwin D. Ullery

MACHINING SERVICES (Prototype Model) Messrs: Elbert M. Collins Francis J. Coluszi Everett Lee Hallar, Jr. M. Wayne Jones

CARTOGRAPHIC EDITORIAL SERVICES Mrs. Margaret R. Backes Messrs: William S. Haugh William R. MacDonald Joseph W. Wheeler, Jr.

SECRETARIAL \& TYPING SERVICES Ners. Dorothy H. Hoffman

