Final Report

NASA CR-92123

PART I

RTCC REQUIREMENTS FOR MISSION G: TRAJECTORY COMPUTERS FOR TLI AND MCC PROCESSORS

William E. Moore Analytical Mechanics Associates, Inc.

Brody O. McCaffety Bernard F. Morrey NASA Manned Spacecraft Center

> Report No. 68-4 Contract NAS 9-4036 April 1968

GPO PRICE \$ _____

CFSTI PRICE(S) \$

Hard copy (HC)

Microfiche (MF)

ff 653 July 65

ANALYTICAL MECHANICS ASSOCIATES, INC. 57 OLD COUNTRY ROAD WESTBURY, N. Y. 11590

NASA CR 9,21:

V

TABLE OF CONTENTS

7.ee

••

•

۱,

(THRU)

ACCESSION NUMBER)

٩

,

* •

	Sect	ion	Page	
	SUM	IMARY AND INTRODUCTION	1	
		The Trajectory Computers	2 2 3	
	ABE	REVIATIONS	3	
	·B	ROUTINES	4	
	IP AD NUMBER) (CATEGORY)	Subroutine BURNSubroutine CTBODYSubroutine DGAMMASubroutine EBETASubroutine EPHMSubroutine ELEMTSubroutine FCOMPSubroutine LOPCSubroutine PATCHSubroutine RBETASubroutine RNTSIMSubroutine RVIOSubroutine SCALESubroutine TLIBRNSubroutine TLMCSubroutine TLMC	5 8 14 16 17 17 19 21 23 25 28 31 33 35 36 38 38 38 39	5 1 1
4	FLC	 W CHARTS	42 42 44 45 51	
	TAB	LE I - Independent Variables for the Trajectory Computers	57	
	TAB	LE II - Dependent Variables for the Trajectory Computers	58	
	TAB	L' III - Basic Modules used in Trajectory Computers	60	
	{EF	ERENCES	61	

RTCC REQUIREMENTS FOR MISSION G: TRAJECTORY COMPUTERS

FOR TLI AND MCC PROCESSORS

By Brody O. McCaffety, Bernard F. Morrey, and William E. Moore

SUMMARY AND INTRODUCTION

This note is the last of a series documenting the Generalized Iterator as used in the RTCC translunar injection and midcourse correction processors for Mission G. The mathematical formulation of the iterator itself is completely general and is documented in reference 1; the program setups giving the various mission options provided by the processors have been documented in references 2 and 3. This note gives the trajectory computers of the translunar injection and midcourse correction processors.

The term "Generalized Iterator" as used here refers to the whole program - supervisor, trajectory computer, and iterator. The iterator is a general formulation that applies to any problem involving the solution of a minimum or maximum value of a given function. The technique has other RTCC applications in addition to its use in the TLI and MCC processors. The supervisor sets the dependent and independent variables in such a way as to solve a desired problem. The trajectory computer indicates the sequence of events or computations needed to generate the desired trajectory. This note gives the functional and detailed information about the trajectory computer, the subroutines used in constructing a trajectory, their function, and their algorithms.

There are basically five types of trajectories generated by the TLI and MCC processors:

1. Elliptical trajectories generated out of earth orbit (i.e., E-type ellipses and hybrid ellipses).

2. x, y, z, and t return-to-nominal trajectories generated during translunar coast.

3. Free-return trajectories generated from EPO or translunar coast.

4. Free-return, BAP reoptimized trajectories generated during translunar coast.

5. Nonfree-return, BAP reoptimized trajectories generated during translunar coast.

Flow chart 1 shows these possibilities.

The calculation of each type involves the use of analytical and integrated computations. Conic, or analytical, trajectories are used in first guess routines to generate initial conditions and in optimizations to shorten computation time. Integrated calculations are necessary to provide precision target conditions. An explanation of how these computation modes are used together is contained in references 2 and 3.

The Trajectory Computers

Separate trajectory computers are used in providing first guesses for the midcourse correction, for the conic, and for the precision trajectory computations.

The MCC first guess trajectory computer essentially solves Lambert's problem. Subroutine TLMC computes the first guess trajectory for the MCC. The flow diagram is shown in flow chart 2.

A functional flow diagram of the analytic trajectory computer for ecnic mission calculations is set forth in flow chart 3. This merely shows the general flow indicating the sequence of state vector calculations, the entry of the appropriate independent variables, the calculation of the dependent variables, and the sequence of the mass history calculations.

The precision propagation of an arc is done using the Herrick-Beta technique documented in the appendix of reference 4. Flow chart 4 shows the functional flow of the precision trajectory computer.

Variables, Stopping Conditions

Independent and dependent variables for the different trajectory computers are shown in tables I and II.

Although the stopping conditions for the computers are indicated implicitly in the flow diagrams, it is worth mentioning them at this time. Integrated trajectories returning to the nominal x, y, and z of the LOI node stop at the time of the node; the nonfree-return BAP options also integrate the same arc and stop on the time of the node obtained from the conic optimization. However, the precision transearth trajectory used in the lunar flyby stops on a flight-path angle of reentry as a function of return velocity instead of a time as is sometimes the case with other processors. Finally, during the iteration process, befcre the height of LOI is completely correct, the position and velocity vectors at the start of LPO are scaled as shown in subroutine SCALE. These vectors are used to compute the rest of the trajectory, thus retaining the integrity of those independent variables based on the desired height of the orbit; e.g., ΔT_{10} , ΔT_{11s} .

Lunar orbits.- The initial lunar orbit may be either an ellipse or a circle. Since, after a certain number of revolutions, the spacecraft will be maneuvered into a circular orbit anyway, the program will simulate the ellipse by a circular arc. There are slight differences in the methods of calculation which pertain to the simulation of lunar orbit insertion and of the elliptic orbit itself. These differences do not relate to whether the orbit is integrated or not.

The trajectory computer furnishes the input velocity magnitude at the pericynthion of the ellipse to subroutine BURN; for the circular orbit BURN computes a circular velocity at the current distance. Since in either case BURN reduces the flight-path angle to zero, the ellipse always has its pericynthion at lunar orbit insertion.

Since the state is always related to a circular orbit after lunar orbit insertion, the only other difference is an adjustment of the time to account for the discrepancy in orbital period between the ellipse and the circle used to represent it. This time is the accumulated time difference during the required revolutions before the spacecrait is maneuvered into a circular orbit at the time the IM separates; it will be provided as an input to the program.

ABBREVIATIONS

- LAEG lunar analytical ephemeris generator
- BAP best adaptive path
- EOI earth orbit insertion
- EMP earth-moon plane
- EPO earth parking orbit
- LLM lunar landing mission
- LOI lunar orbit insertion
- LOPC lunar orbit plane change prior to lunar module ascent
- LPO lunar parking orbit
- MCC midcourse correction
- RTCC Real-Time Computer Complex
- TEI transearth injection
- TLI translunar injection

SUBROUTINES

The subroutines and computation modules used in the trajectory computers are listed in table III. The subroutines involved include

1. BURN - simulates impulsive thrusting for application of a delta velocity magnitude, delta azimuth, and delta flight-path angle in the topocentric reference frame.

2. CTBODY - used for propagation of a conic state for a specified time interval.

3. DGAMMA - determines the universal conic variable from periapsis to the nearest specified flight-path angle.

4. EBETA - determines the interval in the universal conic variable from a given state to periapsis.

5. ELEMT - calculates a set of orbital elements from a given state vector, time, and central body constant.

6. EPHM - obtains earth and moon states relative to each other, solar position, and a precession-nutation-libration direction cosine matrix from the magnetic tape ephemeris.

7. FCOMP - evaluates the universal conic functions for a specified value of the universal conic variable.

8. LIBRAT - performs librations upon an input state vector and does a reference transformation.

9. LOPC - computes the size and effect of the lunar orbit plane change (CSM2).

10. PATCH - accomplishes patching of the geocentric and selenocentric vehicle states at the sphere of action of the moon.

11. RBETA - determines the value of the universal conic variable to propagate from a given state to a specified radial magnitude.

12. RNTS^M - determines the reentry and landing conditions, delta time of reentry, and obtains the longitude of landing.

13. RTASC - determines right ascension of the Greenwich meridian.

14. RVIO - transforms a given set of coordinates in Cartesian or spherical form to the other form.

15. SCALE - transforms the actual state vector after LOI to a circular state at a given height.

16. TLIBRN - simulates the translunar injection thrusting maneuver by evaluating precomputed polynomials.

17. TIMC - in control when first guesses for delta azimuth, delta velocity, and delta flight-path angle are determined for translunar abort or midcourse maneuvers.

18. XBETA - propagates a given state through a specified universal conic β to a desired state. The β is the stopping condition for XBETA.

The remaining text of this internal note will be devoted to a detailed description of the input, output, and the mathematics needed for each of the subroutines listed above. All lunar orbit computations will be computed using the lunar radius at the landing site and not the mean radius of the moon.

Subroutine BURN

Function. - Subroutine BURN simulates impulsive thrusting of the vehicle. The ideal velocity equation is used to determine propellant consumption. This subroutine is used for the midcourse, LOI and TEI burns.

Nomenclature				
Symbols	Input (I), output (O)	Definition		
vc	0	circular velocity		
Δv _R	0	characteristic delta velocity		
Δv		change in scalar velocity during burn		
v _{pc}	I	velocity at pericynthion of the desired ellipse (if ellipse is required)		
Δγ	I	change in flight-path angle during burn		

Symbols	Input (I), output (0)	Definition
$\Delta \psi$	I	change in azimuth during burn
I sp	I	specific impulse
m _f /m _o	0	ratio of mass after buin to mass before
μe	I	constant used to convert pounds force to pounds mass
μ	I	gravitational constant of current reference body
R	I	initial position vector
Ř	I	initial velocity vector
Υ _o	I	initial flight-path angle
Ř ₁ , Ř ₂	I	intermediate velocity vectors
R f	0	final position vector
Ř,	0	final velocity vector

<u>Method</u>.- The vector R_f is the same as R; that is, the routine assures that the position does not change during the maneuver. Compute

$$\mathbf{r} = \sqrt{\mathbf{R} \cdot \mathbf{R}}$$
$$\mathbf{v} = \sqrt{\mathbf{R} \cdot \mathbf{R}}$$

If a circular state after the burn is specified, put

ŝ,

$$\mathbf{v}_{c} = \sqrt{\frac{\mu}{r}}$$
$$\Delta \mathbf{v} = \mathbf{v}_{c} - \mathbf{v}$$
$$\Delta \gamma = -\gamma_{o},$$

2012

lides latefit alara, maasia integrigant isteration ar Menor men e sticktore

If an elliptical state is specified, put

$$\Delta \mathbf{v} = \mathbf{v}_{pc} - \mathbf{v}$$
$$\Delta \gamma = -\gamma_{o} \quad .$$

In the other more general option $\,v\,,\,\Delta\gamma\,,$ and $\Delta\psi$ are all inputs. Compute

$$\mathbf{a} = \mathbf{R} \cdot \mathbf{R}$$
$$\mathbf{h} = \left| \mathbf{R} \times \mathbf{R} \right|$$

$$\dot{R}_{1} = \dot{R} \cos \Delta \gamma + \frac{v^{2}R - d\dot{R}}{h} \sin \Delta \gamma$$

$$\dot{\mathbf{R}}_{2} = \frac{2\mathbf{R} \left(\mathbf{R} \cdot \dot{\mathbf{R}}_{1}\right)}{\mathbf{r}^{2}} \sin^{2} \frac{\Delta \psi}{2} + \dot{\mathbf{R}} \cos \Delta \psi - \frac{\mathbf{R} \times \dot{\mathbf{R}}_{1}}{\mathbf{r}} \sin \Delta \psi$$

$$\dot{R}_{f} = \dot{R}_{2} \left(1 + \frac{\Delta v}{v} \right),$$

which is the velocity vector part of the state $\mathbf{S}_{\mathbf{f}}$ after the burn.

$$(\Delta v_{\rm R})^2 = \Delta v^2 + 4v (v + \Delta v) \left(\sin^2 \frac{\Delta \gamma}{2} + \frac{h^2 \cos \Delta \gamma - hd \sin \Delta \gamma}{r^2 v^2} \sin^2 \frac{\Delta \psi}{2} \right)$$

which furnishes the characteristic velocity.

Finally, the mass ratio is

١.

ļ

$$\frac{m_{\hat{\mathbf{f}}}}{m_{o}} = \exp\left(\frac{-\sqrt{(\Delta v_{R})^{2}}}{I_{sp}^{\mu}e}\right) \,.$$

Subroutine CTBODY

<u>Function</u>.- Subroutine CTBODY determines the propagated state at a specified time, Δt , from a given epoch state. This is the classical problem of Kepler and must be solved iteratively due to the transcendental relationship between time and the anomalies.

a and an and an are assured as a sample

Nomencla : .-

;

ì,

Symbols	Input (I), output (0)	Definition
К	I	central body indicator
ro	I	position vector magnitude
vo	I	velocity vector magnitude
μ	I	gravity constant
α	0	square of universal va~iable divided by semimajor axis
F ₁ , F ₂ , F ₃ , F ₄	0	f tions of the universal variable
a		semimajor axis
R o	I	initial position vector
Ř	I	initial velocity vector
t	I	initial time
R f	0	final position vector
Ř	0	final velocity vector
rm		radius of moon
J		2/3 J ₂ , second harmonic of moon's gravity
t f	I	final time

8

THERE WAS AND AND AND A CONTRACT OF STREAM AND A ST

<u>Method.</u>- Determine the interval of propagation

$$\Delta t = t_{f} - t_{o}$$

If $|\Delta t| < 10^{-1.3}$, the final state is just the initial state, and the operation is complete; if not

$$\frac{1}{a} = \frac{2}{r_0} - \frac{v_0}{\mu}$$
$$D_0 = R_0 \cdot \dot{R}_0$$

A first guess of the universal variable for the Newton-Raphson iteration is made as

$$\beta = \frac{1}{5} \left(\Delta t \frac{\sqrt{\mu}}{r_o} \right)$$

$$\alpha = -\frac{\beta^2}{a} . \qquad (1)$$

Subroutine FCOMP is entered to obtain F_1 , F_2 , F_3 , and F_4 , and the time equation is evaluated r

$$\mathbf{t} = \begin{bmatrix} \beta^2 F_1 + \frac{D_0}{\sqrt{\mu}} & \beta F_2 + r_0 F_3 \end{bmatrix} \frac{\beta}{\sqrt{\mu}}$$
$$\mathbf{r} = \frac{D_0}{\sqrt{\mu}} & \beta F_3 + \beta^2 F_2 + r_0 F_4.$$

Increment β :

$$\beta = \beta + (\Delta t - t) \frac{\sqrt{\mu}}{r}$$
 (2)

The time equation is again evaluated with the new value of β , and the Newton-Raphson iteration, equation (2), continues until the covergence

tolerance of 1×10^{-12} is met:

۰.

$$\left|\frac{t - \Delta t}{\Delta t}\right| < 10^{-12} . \tag{3}$$

- 14

Exit with an error message if no convergence is obtained after, say, 10 iterations. (See flow chart on next page.)

As the iterations proceed, β will move in the same direction until it is very close to the answer. To protect against the tolerance of 10^{-12} in equation (3) being too tight, the signs of successive values of $\Delta t - t$ are compared. If two successive iterations should have different signs before equation (3) is satisfied, β is replaced by the average of the two values associated with these iterations, and the process is repeated until the relative difference between two values being averaged is less than 10^{-14} .

With the universal vari "le determined, the state at the final time is built.

$$f = 1 - \frac{\beta^2 F_2}{r_0}$$
$$g = t - \frac{\beta^3 F_1}{\sqrt{\mu}}$$
$$\dot{f} = -\frac{\sqrt{\mu}\beta F_3}{r_0 r}$$
$$\dot{g} = 1 - \frac{\beta^2 F_2}{r}$$

المالي المراقبة المراقب المراقبة المحادث المراقبة المحادثية والمحادثية والمحادثية والمحادث المحادث والمحادث المحادث المحادث والمحادث والمحاد المحادث والمحادث والمحاد

AND AND AND AND AND

100

$$R_f = fR_0 + g\dot{R}_0$$

 $\dot{R}_{f} = fR_{o} + g\dot{R}_{o}$

Check to see if the ascending node is to be precessed or not. If not, R, \ddot{R} are output. Otherwise (using time t_f) rotate R, \ddot{R} to selenographic coordinates G_0 , \ddot{G}_0 . Let the components of G_c and \ddot{G}_0 be x, y, z and \dot{x} , \dot{y} , \dot{z} , respectively.

`

ź

Compute

$$n_{1} = \dot{z}x - z\dot{x}$$

$$n_{2} = \dot{z}y - z\dot{y}$$

$$n = \sqrt{n_{1}^{2} + n_{2}^{2}}$$

If $n \leq 10^{-12}$, return without precessing the node. Otherwise compute

$$\cos \Omega = \frac{n_1}{n}$$
$$\sin \Omega = \frac{n_2}{n}$$
$$H = \frac{G_0 \times \dot{G}_0}{|G_0 \times \dot{G}_0|}$$

Let the components of H be h1, h2, h3. Then

 $\cos i = h_3$

and

.

3

$$\sin i = \sqrt{h_1^2 + h_2^2}$$
.

Compute

10.000

$$\Delta \Omega = -Jr_{\rm m}^2 \sqrt{\mu} \cos i \left(\frac{1}{n}\right)^3 \left(\frac{1}{n}\right)^{\frac{1}{2}} \Delta t$$
$$= -1.14161 \times 10^{-5} \cos i \left(\frac{1}{a}\right)^3 \left(\frac{1}{n}\right)^{\frac{1}{2}} \Delta t$$
$$d = G_0 \cdot \dot{G}_0$$
$$r^2 = R^2 = G_0^2$$

$$v^{2} = \dot{R}^{2} = \dot{G}_{0}^{2}$$

$$N = \begin{bmatrix} \cos \Omega \cos \Delta \Omega - \sin \Omega \sin \Delta \Omega \\ \sin \Omega \cos \Delta \Omega + \cos \Omega \sin \Delta \Omega \\ 0 \end{bmatrix}$$

$$M = \begin{bmatrix} -\cos i (\sin \Omega \cos \Delta \Omega + \cos \Omega \sin \Delta \Omega) \\ \cos i (\cos \Omega \cos \Delta \Omega - \sin \Omega \sin \Delta \Omega) \\ \sin i \end{bmatrix}$$

$$G = \frac{\dot{z}r^{2} - zd}{n}N + \frac{z |G_{0} \times \dot{G}_{0}|^{2}}{n}M$$

$$G = \frac{\dot{z}d - zv^{2}}{n}N + \frac{\dot{z} |G_{0} \times \dot{G}_{0}|^{2}}{n}M$$

Using the same time t_{f} , rotate G, G back into selenocentric coordinates R_{p} , \dot{R}_{p} .

13

}

;

Subroutine DGAMMA

<u>Function</u>.- Subroutine function DGAMMA determines the value of the universal variable necessary to obtain a state at a desired flight-path angle, given the initial position magnitude and the reciprocal of the semimajor axis.

Nomenclature.-

ŧŗ

ł

3

- 2

Symbol	Input (I), output (O)	Definition
ro	1	mugnitude of position vector a periapsis
1/a	I	reciprocal of semimajor axis
γ	I	flight-path angle
н	0	hyperbolic eccentric anomaly
Е	0	elliptic eccentric anomaly
β	0	universal variable
e	0	eccentricity

Method.- Since the given state is at periapsis,

$$e = 1 - \frac{r_{o}}{a}$$

$$c = \sqrt{\frac{2r_{o}}{a} - \frac{r_{o}^{2}}{a^{2}}}.$$

If $\frac{1}{a} < 0$, the orbit is hyperbolic:

$$H = \ln \left[\frac{c}{e} \tan \gamma + \sqrt{1 + \left(\frac{c - \tan \gamma}{e} \right)^2} \right]$$
$$\beta = H \sqrt{|a|}.$$

If $\frac{1}{a} > 0$, the orbit is elliptic:

$$\sin E = \frac{c \tan \gamma}{e}$$

E
$$\tan^{-1}\left(\frac{\sin E}{\sqrt{1-\sin^2 E}}\right)$$
 when $-\frac{\pi}{2} < E < \frac{\pi}{2}$

$$\beta = E \sqrt{a}$$

If $\frac{1}{a} = 0$, the orbit is parabolic:

$$\beta = (\sin \gamma / \cos \gamma) \sqrt{2r_0}.$$

<u>Remarks.-</u> On an ellipse, the eccentric anomaly is double-valued with respect to the flight-path angle. As is apparent from the equation for E, the algorithm always gives the solution nearer periapsis.

This formulation does not provide for optimizing the same trajectory arc from a hyperbolic energy through parabolic to an elliptical energy.

For the elliptic case, γ may be such that $|\sin E| > 1$. In this instance, γ cannot be achieved, and there is an error.

•:

A statement of a starter

陟

Subroutine EBETA

<u>Function.-</u> Determines the universal variable necessary to obtain the state at periapsis.

Nomen	clature	•

Symbol	Input (I), output(O)	Definition
1/a	0	reciprocal of the semimajor axis
Ro	I	initial position vector
Ř	I	initial velocity vector
r _o		magnitude of initial position vector
vo		magnitude of initial velocity vector
β	0	universal variables
μ	I	gravitational constant
Е		elliptical eccentric anomaly
н		hyperbolic eccentric anomaly
e		ec^entricity

<u>Method.-</u> The universal variable and the state at periapsis are determined by

$$D_{o} = R_{o} \cdot \dot{R}_{o}$$

$$1/a = 2/r_0 - v_0^2/\mu$$
.

If a > 0, orbit is elliptic:

١,

e cos E =
$$1 - \frac{r_0}{a}$$

e sin E = $D_0 / \sqrt{\mu a}$

4

again with the

$$E = \tan^{-1}(e \sin E/e \cos E)$$

$$\beta = - E\sqrt{a}$$
.

If 1/a = 0, the orbit is parabolic:

Ĭ.

l,

ŝ

$$\beta = - \frac{D_{o}}{\sqrt{\mu}} .$$

If a < 0, the orbit is hyperbolic:

e cosh II = 1 -
$$r_0/a$$

e sinh H = $D_0/\sqrt{\mu |a|}$
H = $\ln \left[\frac{e \cosh H + e \sinh H}{|(e \cosh H)^2 - (e \sinh H)^2|} \right]$
 $\beta = - H\sqrt{|a|}$.

This formulation does not provide for optimizing the same trajectory arc from a hyperbolic energy through parabolic to an elliptic energy.

Subroutine EPHM

<u>Function</u>.- Ephermis subroutines locate, transmit into core, and interpolate data from an ephemeris tape. From this data, earth and moon states relative to each other, solar position, and a precession-nutationlibration direction cosine matrix are obtained.

<u>Remarks.-</u> The ephemeris subroutines used in the RTCC will be system subroutines.

Subroutine ELEMT

<u>Function.</u> = Calculates a set of orbital elements from a given state vector, time, and central body constant.

Nomenclature.-

Symbol	Input (I), output (0)		Definition
R	I	position	vecotr
Ř	I ·	velocity	vector

Symbol	Input (I), output (0)	Definition
r	I	magnitude of position vector
v	I	magnitude of velocity vector
t	I	initial time
Н	ο	angular momentum vector per unit mass
μ	I	gravity constant
a	0	semimajor axis
е	0	eccentricity
∆t	0	time to periapsis
i	0	inclination of conic
ω p	0	argument of periapsis
Ω	0	right ascension of the ascending node
n	0	mean motion
Р	I	p erio d
η	0	true anomaly

<u>Method.</u>- Given R, V, t, μ the following items are calculated:

$$\frac{1}{a} = \left(\frac{2}{|R|} - \frac{|\mathring{R}|^2}{\mu}\right)$$

$$e = \sqrt{\left(1 - \frac{|R|}{a}\right)^2 + \frac{(R \cdot V)^2}{\mu a}}$$

$$H = R \times \mathring{R}$$

$$i = \cos^{-1}\left(\frac{h_z}{|H|}\right)$$

1.8

.

1

-

$$n = \frac{\mu^{1/2}}{|a|^{3/2}}$$
$$\eta = \tan^{-1} \left(\frac{|H|(R \cdot \dot{R})}{|H|^2 - \mu|R|} \right)$$
$$P = \frac{2\pi a \sqrt{a}}{n}.$$

All equations but the ones for η and P apply for all conies; the equation for η does not apply to circular orbits and the equation for \tilde{r} does not apply to parabolas and hyperbolas.

Subroutine FCOMP

<u>Function.</u>- Subroutine FCOMP determines the functions of the universal variable necessary to express two-body state quantities given an epoch state. The functions are well defined by circular and hyperbolic functions except as the universal variable approaches zero. To avoid numerical difficulty, a series expansion must be used. To avoid discontinuities, the same expansion is always used. FCOMP is used by XBETA and CTBODY to evaluate the functions of the universal constant.

SymbolInput (I),
output (0)Definition F_{i} 0functions of the universal variable α Iparameter needed to obtain F

Method.-

$$F_{j} = \sum_{i=0}^{\infty} \frac{\alpha^{i}}{(2i + 4 - j)!} \quad j = 1, 2.$$

This formulation for the series is used to compute F_1 and F_2 . F_3 and F_4

are computed by the formulas:

1

.

Canal Provide Provide

Along devils

ine Gountivitant and a first Algebra Charles and the second states of the second second second second second se

*

$$F_3 = \alpha F_1 + 1$$

 $F_4 = \alpha F_2 + 1$.

The number n of the term to be used in the series is determined as. follows:

If $ \alpha <$	n equals
2-7	5
2 ⁻⁵	6
2 ⁻³	7
2 ⁻²	8
2 ⁻¹	9
1	10
2	11
4	13
8	15
16	18
32	21
64	25
128	30
256	38
510	l _t c,

20

.

The series are summed backward;

$$m = 2n + 1$$

$$F_1^{(0)} = F_2^{(0)} = 0$$

$$F_1^{(k)} = \left(\alpha F_1^{(k-1)} + 1\right) \frac{1}{(m - 2k + 2)(m - 2k + 1)} \text{ for } k=1, \dots, n$$

$$F_2^{(k)} = \left(\alpha F_2^{(k-1)} + 1\right) \frac{1}{(m - 2k + 1)(m - 2k)} \text{ for } k=1, \dots, n.$$

Finally,

$$F_1 = F_1^{(n)}$$
 and $F_2 = F_2^{(n)}$.

Coefficients of the form $\frac{1}{m(m-1)}$ can be precomputed once for all and m(m - 1) can be stored with the program.

If $\alpha < -4\pi^2$, the computation may be shortened as follows:

$$\Theta = DMOD (\sqrt{-\alpha}, 2\pi)$$
$$\overline{\alpha} = -\Theta^2.$$

Use $\overline{\alpha}$ in the series instead of α , obtaining $F_i(\overline{\alpha})$. Finally

$$F_{\mu}(\alpha) = F_{\mu}(\overline{\alpha})$$

$$F_{3}(\alpha) = F_{3}(\overline{\alpha}) \quad \Theta/\sqrt{-\alpha}$$

$$F_{2}(\alpha) = F_{2}(\overline{\alpha}) \quad \Theta^{2}/(-\alpha)$$

$$F_{1}(\alpha) = \frac{F_{1}(\overline{\alpha}) \quad \Theta^{3} + \Theta - \sqrt{-\alpha}}{-\alpha(\sqrt{-\alpha})}$$

Subroutine LOPC

<u>Function.-</u> Determines the size and effect of the lunar orbit plane change maneuver (CSM2).

Nomenclature.-

-

Be top of the real

۰**۰**

. }

۰.

· · · · · ·

.-

). F

> • • •

> > --

· · ·

Symbol	Input (I), output (0)	Definition
m	I	number of revolutions from first pass over lunar landing site (LLS) to (CSM2 + 1/4)
n	I	<pre>number of revolutions from (CSM2 + 1/4) to second pass over LLS.</pre>
Р	I	period of orbit
So	I	state vector at lunar landing
to	I	time at lunar landing
Δt_L	I	time from start of lunar orbit to first pass over LLS
Δtl		time from first pass over LLS to CSM2
°1		state before CSM2
Δt ₂		time from first pass over LLS to second pass over LLS
^S 2		predicted state at second pass over LLS
t L		time of second pass over LLS if no CSM2
^S 3	0	state after CSM2
t ₃	0	time of CSM2
^m f ^m ,,	0	mass ratio of CSM2 maneuver
R ₂		position vector at second pass over LLS in selenographic coordinates

22

.

Input (I), Symbol output (O)

T

Definition

velcoity vector at second pass over LLS in selenographic coord selenographic components of unit vector pointing to the LLS

Method. - Compute

L

$$\Delta t_1 = \left(m - \frac{1}{4}\right)P.$$

Use CTBODY regressed to propagate S_o from t_o to (t_o + Δ t_l) obtaining S_l. Then compute

 $t_{L} = t_{o} + \Delta t_{2} = t_{o} + (m + n)P.$

Use CTBODY regressed to propagate S_0 from t_0 to t_L obtaining S_2 . Call LIBRAT at time t_2 toltransform S_2 to selenographic coordinates R_0 , \dot{R}_2 .

$$\Delta \psi = -\sin^{-1} \left(\frac{R_2 \times \dot{R}_2}{|R_2 \times \dot{R}_2|} \cdot L \right)$$

Call BURN to get S₃ and $\frac{m_f}{m_o}$, using S₁, $\Delta \psi$ and I_{sp} (where the last two

are the only nonzero parameters).

Subroutine LIBRAT

<u>Function.</u>- Subroutine LIBRAT obtains an appropriate transformation matrix and transforms an input state vector in moon reference.

Nomenclature.-

Symbol	Input (I), output (O)	Definition
R	I and O	position vector
Ř	I and 0	velocity vector

Symbols	Input (I), output (0)	Definition
t	I	time of state vector
К	I	indicator
ME		moon with respect to earth

<u>Method.-</u> Six options exist for converting state vectors to different coordinate systems:

- K = 1-Earth-moon plane to selenographic
- K = 2-Selenographic to earth-moon plane
- K = 3-Earth-moon plane to selenocentric
- K = 4-Selenocentric to earth-moon plane
- K = 5-Selenocentric to selenographic
- K = 6-Selenographic to selenocentric

When the earth-moon plane is involved, a matrix is used to convert either to or from this coordinate system. The formation of this matrix is as follows:

Given the position R_{ME} and velocity V_{ME} of the moon with respect to the earth at each given time,

$$\vec{1} = -\frac{R_{\rm ME}}{\left|R_{\rm ME}\right|}.$$

$$\vec{k} = \frac{R_{ME} \times \dot{R}_{ME}}{\left| R_{ME} \times \dot{R}_{ME} \right|}.$$

$$j = \vec{k} \times \vec{i}.$$

24

1 -1440 Ser

÷.

Set A = $(\vec{i}, \vec{j}, \vec{k})$ noting that $\vec{i}, \vec{j}, \vec{k}$ are taken as column vectors. Let A^T denote the transpose of A. Then if the selenocentric coordinates in the equatorial system are R, R, we can say

$$R^{1} = A^{T}R$$
 and $R^{1} = A^{T}R^{\bullet}$

and

.

i÷

ĵ,

٠.

ţ

1

$$R = AR^{1}$$
 and $\mathring{R} = A\mathring{R}^{1}$.

When converting from the selenocentric coordinate system to the selenographic (moon-fixed) coordinate system, the libration matrix is used.

Given the precession-nutation-libration matrix, B, at each given time, and the selenocentric coordinates, R, R, transform to the seleno-graphic coordinates R'', \hat{R}'' by the following:

$$R'' = BR$$
 and $R'' = BR$

and

$$R = B^{T}R''$$
 and $\ddot{R} = B^{T}R''$.

A combination of the two preceding techniques can be used to transform vectors from moon orbit plane to selenographic and the reverse.

Subroutine PATCH

Function.- This subroutine finds a point at which the spacecraft is at a given ratio between the earth and the moon and changes reference bodies at that point.

Nomenclature		
Symbols	Input (I), output (0)	Definition
к	1 and 0	position vector
Ř	I and O	velocity vector

Symbols	output (0)	Definition
t	I and O	time of vector
r		magnitude of position vector
i		reference body subscript:
		i = 1, primary body
		i = 2, secondary body
ଦୃ	I	direction of patch in time
ERROR	0	error return
μ	I	gravitational constant
a	I	acceleration with respect to body i
β	I	universal variable
KREF	I	primary reference indicator
R ²¹		position of the secondary body with respect to the primary body
r ₂₁		magnitude of R ₂₁

Input (I),

<u>Method.-</u> In the following, if KREF = 1 (earth reference input), we refer to the earth as the "primary body" and to the moon as the "secondary body". If KREF = 2 (moon reference input), the moon is "primary" and the earth is "secondary".

Subscripts 1 and 2 indicate primary and secondary bodies respectively. Define

Ratio =
$$\frac{r_2}{r_1} = \frac{\text{distance of spacecraft from secondary body}}{\text{distance of spacecraft from primary body}}$$

Then for a given two-body orbit, Ratio is a function of the orbital parameters, the universal variable B, and moon carth sphemeric data. The procedure is to calculate a second order Taylor's expansion giving

.

Ratio in terms of the first and second partial derivatives,

$$\frac{d \text{ Ratio}}{d\beta}$$
 and $\frac{d^2 \text{ Ratio}}{d\beta^2}$,

an initial value of β , a corresponding initial value of Ratio, and an increment $\Delta\beta$ to β . Setting Ratio ($\beta + \Delta\beta$) equal to the desired value of Ratio we solve the quadratic for $\Delta\beta$. If the discriminant is less

than zero we set $d^2 \operatorname{Ratio}/d\beta^2 = 0$ and solve the linear equation instead. Starting with a guessed value of β , we propagate the initial state (by XBETA) to a final state at the patch with respect to the primary reference body. The position of the secondary body with respect to the primary is obtained from EPHM. A reference change is made, and $r_{\rm o}$ and d₂ are calculated.

$$\Delta Ratio = R - Ratio \tag{4}$$

where R = $\begin{cases} \frac{1}{0.275} & \text{if the moon is the primary body} \\ 0.275 & \text{if the earth is the primary body} \\ \frac{d \text{ Ratio}}{d\beta} = \frac{1}{r_2 \sqrt{\mu_1}} \left(d_2 - \frac{r_2^{2} d_2}{r_1^{2}} \right) \end{cases}$ (5)

where $d_i = R_i \cdot \dot{R}_i$ i = 1, 2.

۷

ł

$$\frac{d^{2} \text{ Ratio}}{d \beta^{2}} = \frac{r_{1}^{2}}{\mu_{1}} \frac{v_{2}^{2} + R_{2} \cdot A_{2}}{x_{1}r_{2}} - \frac{d_{1} d_{2}}{\mu_{1} r_{1} r_{2}} - \frac{\frac{d_{2}^{2} r_{1}}{\mu_{1} r_{1} r_{2}} - \frac{\frac{d_{2}^{2} r_{1}}{\mu_{1} r_{1} r_{2}}}{\frac{d_{2}^{2} r_{1}}{\mu_{1} r_{2}^{3}} - \frac{r_{2} v_{1}^{2}}{\rho_{1}^{2} r_{1}} + \frac{r_{2}^{2} r_{2}}{r_{1}^{2}} + \frac{2 d_{1}^{2} r_{2}}{\mu_{1} r_{1}^{3}}$$
(6)

where
$$v_1^2 = \dot{R}_1 \cdot \dot{R}_1$$
, $i = 1, 2, and A_2 = -\frac{\mu_1 R_1}{r_1^3} + \frac{(\mu_1 + \mu_2)}{r_{21}^3} R_{21}$.

$$\Delta \beta = \frac{2\Delta \text{Ratio}}{\frac{d \text{ Ratio}}{d \beta} + \text{ sign } \frac{(d \text{ Ratio})}{d \beta} \sqrt{\frac{(d \text{ Ratio})^2}{d \beta} + 2 \Delta \text{Ratio} \frac{(d^2 \text{ Ratio})}{d \beta^2}}$$

Replace β by β + $\Delta\beta$ and repeat the process until $\Delta \text{Ratio} < 1 \times 10^{-12}$. The last state and time with respect to the secondary body is the output state and time.

The initial first guesses for the earth and moon as primary bedies are the value of β needed to propagate to 50 and 15 e.r., respectively.

Upon further reference to the routine using a given primary body, the last value of distance in that particular primary body is used to derive a first guess for β . This implies that two distances are saved, one for each primary body.

<u>Remarks.</u> Error returns or indicators - the last variable in the calling sequence is an error indicator which is a logical variable and will return a value of .TRUE. when an error has occurred in the routine. There are three ways that the error indicator can be set up to .TRUE.:

1. If the patch iterative procedure fails to converge within 10 iterations.

2. If the ephemeris data table has not been initialized or the time calculated withing the routine is outside the range of the ephemeris data.

3. If the magnitude of the input position vector is greater than 40 e.r. when the earth is the primary body or 10 e.r. when the moon is the primary body and the conic defined by the input state vector is such that the radius of periapsis is greater than 40 e.r. when the earth is the primary body or 10 e.r. when the moon is the primary body.

Subroutine RBETA

Function. - HEFFA determines the universal variable necessary to obtain a state vector at a desired radial magnitude, given an initial state.

Nomenclature.-

官臣をしてい

1.1

Symbol	Input (I), output (O)	Definition
Ro	I	initial position state vector
Ř	I	initial velocity state vector
ro	I	magnitude of initial position vector
vo	I	magnitude of initial velocity vector
Q	I	direction indicator
β	0	universal variable
Е		elliptic eccentric anomaly
H		hyperbolic eccentric anomaly
ERROR	0	indicator of error return
μ		gravity constant of reference body
r	I	desired radius magnitude
8.		semimajor axis
е		eccentricity

<u>Method.</u>- Subroutine RBETA is restricted to cases where the desired radius magnitude is greater than the initial magnitude. If an orbit is circular, the subroutine gives a return with the error indicator set .TRUE. since any β would suffice if the desired distance is the radius of the circle, and no β exists if the desired radius is not the circular radius. In general, the solution for a desired radius is double-valued; therefore an indicator Q is provided to select the desired solution. If Q = +1, the solution will be ahead of the initial position with respect to the direction of motion; if Q = -1, the solution will be behind the initial position.

Determine the dot product of $R_{\rm c}$ and $\dot{R}_{\rm c}$, semimator asis, and eccentricity.

$$D_{o} = R_{o} \cdot \dot{R}_{o}.$$

$$\frac{1}{a} = \frac{2}{r_0} - \frac{v_0^2}{\mu a} \cdot \frac{1}{\mu a} \cdot \frac{1}{\mu a} + \frac{1}{\mu a} \cdot \frac{$$

If 1/a < 0, the orbit is hyperbolic.

and the second states and the second states

$$\cosh H_{o} = \frac{1}{e} \left(1 - \frac{r_{o}}{a} \right) \cdot$$

$$\cosh H = \frac{1}{e} \left(1 - \frac{r}{a} \right) \cdot$$

$$H_{o} = \pm \ln \left(\cosh H_{o} + \sqrt{\cosh^{2} H_{o}} - 1 \right)$$

where the sign is chosen to be the sign of D_0 . $H = \ln \left(\cosh H + \sqrt{\cosh^2 H - 1} \right)$. $\theta = H_0 - QH$.

 $\beta = Q |\theta| \sqrt{|\alpha|}$.

If 1/a > 0, the orbit is elliptic.

$$\cos E_{o} - \frac{1}{e} \left(1 - \frac{r_{o}}{a} \right).$$

$$\cos E = \frac{1}{e} \left(1 - \frac{r}{a} \right).$$

$$E_{o} = 1.600^{-1} \sqrt{\frac{1 - \cos^{2} E_{o}}{\cos E_{o}}}$$

where the sign is chosen to be the sign of D_{o} .

$$E = \tan^{-1} \frac{\sqrt{1 - \cos^2 E}}{\cos E} \cdot \theta = E_0 - QE \cdot \theta = Q |0| \sqrt{\alpha} \cdot \theta$$

If 1/a = 0, orbit is purabolic.

$$\beta = \frac{D_{o}}{\sqrt{\mu}} + Q \sqrt{\frac{D_{o}^{2}}{\mu} + 2 (r - r_{o})} .$$

<u>Remarks.-</u> If any of the radicands involving r is less than zero, the distance r is impossible, and the calculation is suspended with error indicator set .TRUE.

Subroutine RNTSIM

<u>Function</u>. - This subroutine determines the reentry and landing conditions of delta time from reentry to landing and longitude of landing.

Nomenclature .-

Symbol	Input (I), output (O)	Definition
λ	0	computed longitude of landing
λ_{L}	I	longitude of landing
Δλ	0	error in longitude of landing
R	I	position vector at reentry
Ř	I	velocity vector at reentry
r	I	magnitude of position vector at reentry
v	Ţ	magnitude of velocity vector at reentry
t	I	time of reentry
RR	I	reentry range, n. mi.

мÌ

Symbol	Input (I), output (O)	Definition
Δt	I	time from reentry to landing
φ ^Γ	0	latitude at landing
$^{\alpha}$ L	0	right ascension at landing
α _G	0	greenwich right ascension at time of landing
γ	I	flight-path angle at reentry
θ	0	central angle between reentry and landing

Method.- Given R, R, and RR

1

$$P = \frac{\dot{R}}{v} \frac{1}{\cos \gamma} - \frac{\pi}{r} \tan \gamma .$$

$$\theta = RR/3443.933585.$$

$$S = \frac{R}{r} \cos \theta + P \sin \theta .$$

where S is the position at landing.

$$\phi_{\rm L} = \tan^{-1} \frac{s_{\rm Z}}{\sqrt{s_{\rm x}^2 + s_{\rm y}^2}}$$
$$\alpha_{\rm L} = \tan^{-1} \frac{s_{\rm Y}}{s_{\rm y}^2} -$$

Call RTACS at time t + Δt to get $\boldsymbol{\alpha}_{G}^{}.$ Then

$$\Delta \lambda = \alpha_{\rm L} - \alpha_{\rm G} - \lambda_{\rm L},$$
$$\lambda = \alpha_{\rm L} - \alpha_{\rm G}$$

Reduce $\Delta\lambda$ by any excess multiples of 2π . If the result is > -, subtract 2π ; if the result is $\leq -\pi$, add 2π . Thus, finally $-\pi < \Delta\lambda \leq \pi$.

To allow partial derivatives to be obtained correctly despite the discontinuities inherent in this scheme, the following procedure is applied when computing the trajectories involved in partial derivities calculations. After each nominal trajectory computation, the value of $\Delta\lambda$ is retained. During the perturbed trajectory computations, this value, called $\Delta\lambda_0$, is compared with the current value of $\Delta\lambda$. If $(\Delta\lambda - \Delta\lambda_0) < -\pi$, then $\Delta\lambda$ is replaced by $\Delta\lambda + 2\pi$; if $(\Delta\lambda - \Delta\lambda_0) > \pi$, $\Delta\lambda$ is replaced by $\Delta\lambda - 2\pi$.

Subroutine RTASC

<u>Function.-</u> Subroutine RTASC determines right ascension of the Greenwich meridian.

Nomenclature		
Symbols	Input (I), output (0)	De inition
Х	I	epoch year
Y	I	year of base time in universal time
đ.	I	day of base time in universal time
h	I	hours of base time in universal time
ψ	0	right ascension of Greenwich at base time

<u>Method.-</u> The following steps will be used in the initialization to determine the right ascension.

1. Compute number of leap years between 1950 and x, not counting x. n = integral part of $\frac{x - 1949}{4}$

2. Compute the beginning of the Resselian year

. The state of the

 $d_{BY} = 0.923329 + 0.2421947 (x - 1950) - 3.08 x 10^{-8} (x - 1950)^2 - n$

3. Compute the daily precessional rate at the epoch year.

 $m = 6.11907 \times 10^{-7} + 3.70 \times 10^{-12} (x - 1950)$

4. Compute the precession from Jan 0.0 to the beginning of the Besselian year.

$$\Delta = \mathrm{md}_{\mathrm{BY}}$$

5. Compute the number of days from Jan 1.0, 1950, Jan 0.0 of the epoch year.

$$d^* = 365 (x - 1950) + n - 1$$

6. Compute the right ascension of Greenwich with respect to the mean equinox at Jan 0.0 of the epoch.

 $\psi_{\rm E}$ = 1.7294449276386 - 0.0041554274551 (x - 1950) + 0.0172027914513 n + 5.0640897 × 10⁻¹⁵ d*²

7. Compute the number of days, d', from Jan 0.0 of the epoch year to base time.

$$d' = d$$
 if $x = y$

 $d' = d - 365 \text{ if y is not a leap year} \qquad \text{and } x \neq y$ $d - 366 \text{ if y is a leap year} \end{cases}$

8. Compute the Greenwich hour angle at base time with respect to the mean equinox fixed at Jan 0.0 of the epoch year.

 $\Psi_{BO} = (\Psi_E + 0.017202179543 d' + 0.2625161452801) \mod 2\pi$

9. Correct to mean equinox fixed at the beginning of the Besselian year.

$$\Psi_{\rm B} = \Psi_{\rm BO} + \Delta$$

The general computation after initialization is as follows:

1. Input h - hours from base time (universal time)

2. Compute the integral number of days and the hours remaining in the fractional part of a day.

d = integral part of
$$\left(\frac{h}{24}\right)$$

h' = h - 24d

5

3. Compute the right ascension of Greenwich at base time $\psi = (\psi_B = 0.017202179543 \text{ d} + 0.2625161452801 \text{ h}') \mod 2\pi$

<u>Remarks.</u> The constant term is the right ascension of Greenwich at Jan 0.0, 1950. The coefficient of (x - 1950) is the difference between a full revolution and 365 times the daily rate.

Subroutine RVIO

<u>Function</u>.- Transform a given set of coordinates in Cartesian or spherical form to the other form.

Nomenclature.-

٦

Symbol	Input (I), output (0)	Definition
R	T and O	position vector
Ř	I and O	velocity vector
r	I and O	position magnitude
v	I and O	velocity magnitude
x	I and O	x component of position vector
У	I and O	y component of position vector
Z	I and O	z component of position vector
x	I and O	* component of position vector
ŷ	I and O	y component of position vector
• Z	I and O	Ż component of position vector
θ	I and O	latitude
ф	I and O	right ascension angle
Ŷ	9 Бив 1	rlight-path angle
ψ	I and O	azimuth angle

36

Method.-

Spherical to Cartesian Transformation

 $x = r \cos \phi \cos \theta$ $y = r \cos \phi \sin \theta$ $z = r \sin \phi$

[x]		cos	¢	cos	θ	- sin	Ð	-	sin	¢	cos	0	[v	sin	γ]
ÿ	=	cos	φ	sin	θ	cos	θ	⊷	sin	¢	sin	θ	v	cos	γ	sin	ψ
ż.	j	sin	¢			0			cos	ф			v	cos	Ŷ	cos	Ψ

Cartesian to Spherical Transformation

$$r = \sqrt{x^{2} + y^{2} + z^{2}}$$

$$\phi = \sin^{-1} \frac{z}{r}$$

$$\theta = \tan^{-1} \frac{y}{x}$$

$$v = \sqrt{x^{2} + y^{2} + z^{2}}$$

$$\gamma = \sin^{-1} \frac{R \cdot \ddot{R}}{rv}$$

$$\psi = \tan^{-1} \left(\frac{h_{z}}{\dot{z}r - zv}\right) = \tan^{-1} \left(\frac{x\dot{y} - y\dot{x}}{\dot{z}r - z \frac{R \cdot \ddot{R}}{r}}\right)$$

Subroutine SCALE

Function.- Subroutine SCALE transforms the actual state vector after but to the state of a official orbit at a given height.

,

Nomenclature.	-	
Symbols	Input (I), output (0)	Definition
Ro	I	position vector after LOI
ro	I	magnitude of position vector after LOI
Ř	I	velocity vector after LOI
v _o	I	magnitude of velocity vector after LOI
R f	0	scaled position vector at the beginning of the lunar circular orbit
^Ř f	0	scaled velocity vector at the beginning of the lunar circular orbit
h	I	height of scaled lunar circular orbit
μ	I	gravitational constant of the moon
rm	I	radius of the moon at the landing site

Method.-

- 5

-

11

ณะระ ระพบระนับชื่อหระมหาศักราชร 250 โปมเป็นชื่อมีสามาณระ แสวน.

e subsel . "Levelus

ì

* ·

ţ

, ,

Ŕ

٦,

ł

$$R_{f} = R_{o} \left(\frac{h + r}{r_{o}} \right).$$

`,

$$R_{f} = \sqrt{\frac{\mu}{h + r_{m}}} .$$

Subroutine TLIBRN

<u>Function</u>.- Subroutine TLIBRN simulates the translunar injection thrusting maneuver by use of a precomputed polynomial.

Remarks .- The method of this subroutine is contained in reference 4.

Subroutine TLMC

「「「「「「「「」」」

10.00

ふちきいいた

alis the reconstruction

摩

In other states

I as the contraction and

A MARSHARE AND A MARSHARE

ç,

こうちょう こうしょうちょうちょうちょうちょう ちょうちょう ちょうちょう

: 6

<u>Function</u>.- Subroutine TIMC determines the first guesses for delta azimuth, delta velocity, and delta flight-path angle for a translunar state at abort or midcourse.

Nomenclature		
Symbol	Input(I), output (0)	Definition
S	I and O	state vector
t	I	time of state vector S
t p	I	nominal time of node
x	I and O	x component of position vector
У	I and O	y component of position vector
Z	I and O	z component of position vector
r	I	desired radius at the node
λ	I and O	longitude of node in earth- moon plane system
v	I and O	velocity magnitude at node
γ	I	flight-path angle at node
ψ	I and O	azimuth of node in earth-moon system
Δt	I	amount of change in t (for nonfree-return)
t. n	0	adjusted time of node
ERROR	0	flag indicating an error in TIMC

ŧ

<u>Method</u>.- Compute the adjusted time of node: $t_n = t_p + \Delta t$. The earth-moon plane (EMP) matrix is obtained once for all, by subroutine LIBRAT at the time t_m for use in transforming the EMP coordinates at the node to the sclenocentric system.

The next step sets the dependent variable limits, weights, and weight cuts. Three dependent variables, x, y, z, are defined as the components of the position vector at abort or midcourse. They are designated Class 1 variables. The minimum and maximum required values of the position components are found by adding and subtracting a small tolerance (10^{-5} e.r.) to the abort position components.

Having described the dependent variables, the independent variables are set up and given a first guess. The first independent variable is the EMP longitude of node. The first guess for the longitude is (3.1 - 0.025 At) radians. This guess places the node behind the moon in the vicinity of the earth-moon line. The second independent variable is the velocity at the node, and the first guess is $\sqrt{0.164} + 0.553/r$ - 0.0022 At e.r./hr. The third independent variable is the azimuth at the node, and the first guess is $-\frac{\pi}{2}$ to obtain a retrograde lunar approach hyperbola.

By forcing the node to lie at the required EMP latitude and to have the required height and flight-path angle, the above independent variables determine the state at the node in the EMP. Subroutine CTBODY is called, and the trajectory is propagated backward to the initial time, t. The generalized iterator then finds the set of independent variables necessary to obtain the dependent variables at abort; that is, the abort position components. Once converged, the differences between the azimuth, flight-path angle, and velocity before abort, and the values after abort necessary to obtain the above node conditions are determined. These values become first guesses for the MCC maneuver.

Subroutine XBETA

<u>Function.-</u> Determines the state vector relative to the initial state for a desired value of the universal variable.

and the large The barry

A the second the first

ŝ

,

Nomenclature	Transf (T)					
Symbols	output (1),	Definition				
β	I	universal variable				
K	I	central body indicator				
Fi		functions of the universal variable				
μ		gravity constant				
Ro	I	initial position vector				
R _o	I	initial velocity vector				
ro	I	magnitude of initial position vector				
vo	I	magnitude of initial velocity vector				
to	I	initial time				
R	0	fixed position vector				
Ř	0	fixed velocity vector				
t	0	final time				

<u>Method.</u>- From the initial state vector, the final state is determined as a function of β .

 $D_{o} = R_{o} \cdot \dot{R}_{o}$ $1/a = 2/r_{o} - v_{o}^{2}/\mu$ $\alpha = -\beta^{2}/a$

Call subroutines IFCOMPand determine the functions of the universal variable.

$$t = \left(\beta^2 F_1 + \frac{D_0 \beta F_2}{\sqrt{\mu}} + r_0 F_3\right) \beta \sqrt{\mu} .$$

· · ·

ł

¥

,

£

.

$$t_{f} = t_{o} + t.$$

$$r = \left(\frac{D_{o}F_{3}}{\sqrt{\mu}} + \beta F_{2}\right)\beta + r_{o}F_{4}.$$

$$f = 1 - \frac{\beta^{2} F_{2}}{r_{o}}.$$

$$g = t - \beta^{3} F_{1}\sqrt{\mu}.$$

$$\dot{f} = -\sqrt{\mu} \beta F_{3}/r_{o} r.$$

$$\dot{g} = 1 - \beta^{2} F_{2}/r.$$

$$R = f R_{o} + g \dot{R}_{o}.$$

$$\dot{R} = \dot{f} R_{o} + \dot{g} \dot{R}_{o}.$$

Flowchart 1.- Real time applications of the generalized iterator.

an de la de la de la de la contra de la contra de la contra de la de la de la de la contra de la contra de la c

-1.

,

1

~~?

;

./ . · • • . : .

,×.

F Low

5

i.

÷

.

.

<u>`</u>3

٠.

Maria and a station of the second

Flow chart 3.- Functional flow of analytical trajectory computer for conic mission - Continued.

ۍ بول د د

Flowchart 3.- Functional flow of analytical trajectory computer for conic mission - Continued.

. .

ĵ

,

. 肁

All the state of the

🛃 🦛 เป็นการคราม 🦛

Page 1 of 6

Flowchart 4.- Integrating trajectory computer.

Ç.

-

. 1

Flow chart 4.- Integrating trajectory computer - Continued.

÷

۰

7

いた、2014に、2015年により合い合い合いでありた。1915年に、2015年

and the second second

Flow chart 4. - Integrating trajectory computer - Continued.

and the second and

× · ·

()

۰.

÷

address and the second second

ě.

÷

and a second a second with a second second

1

----- L.B

. .; .

at the manda second

i. ۲ ۲

i i i

٤ آ

÷,

Flow chart 4.- Integrating trajectory computer - Concluded.

بسب رب ، ببيت

Ļ

. . . .

ź

٠,

, . .

ţ

1. 1. -----

TABLE I .- INDEPENDENT VARIABLES FOR

THE TRAJECTORY COMPUTERS

		Use		
Variable	Reference frame	Analytic MCC lst guess	Analytic trajectory computer	Integrating trajectory computer
V pc		√		
λ pc	EMP	1		
Ψpc	EMP	✓		
с ₃			V	1
ΔT_{EPO}			V	1
δ			√	1
σ			\checkmark	1
ΔV _{MCC}			\checkmark	×
Δ _Y MCC			\checkmark	√
$\Delta \psi_{MCC}$			√	✓
$\Delta \psi_{ ext{LOI}}$			V	√
YLOI			V	
$^{\Delta t}$ lst pass LLS			√	√
T in lunar orbit			V	
$\Delta \psi_{ ext{TEI}}$			V	
ΔV _{TFI}			\checkmark	

.

;

ŀ

TABLE II.- DEPENDENT VARIABLES FOR

and an and the state of the second second

THE TRAJECTORY COMPOTERS				
		Use		
Venichlo	Reference	Analytic	Analytic	Integra~ing
variable	frame	MCC	trajectory	traječ ory
		lst guess	computer	computer
x	GC or SC	\checkmark		
mept				
	GC or SC	1		
^y mcpt	40 01 10			
	CC on SC	,		
^z mcpt	GC OF DC	Ŷ		
				,
MASS _{TLI}			V	V
Δt _{TT.} Coast			✓	1
II COASU				
н	GC		1	✓
ap				
н	SC		1	1
"pc				
т	FMP		1	
_bc	10.11			
	Г МД			
^φ pc	Trivit		,	
			,	,
H fr-rtny	GG		V	v
·			,	,
Ifr	EEP		↓ ↓	V
11				
H	SG		√	√
na				
φ	EMP		↓ ↓	
'nd				
2	EMP		√	↓ ✓
înd				
U	SG			
"LPO				
	1	1	1	1

THE TRAJECTORY COMPUTERS

....

- -

TABLE II.- DEPENDENT VARIABLES FOL \sim

Use Reference Analytic MCC Analytic Integrating frame Variable trajectory computer trajectory lst guess computer Ý $\phi_{\rm LLS}$ SG 1 $^{\lambda}$ LLS √ SG 1 SG 1 ψ_{LLS} MASS_{TEI} 1 $^{\Delta t}$ TE Coast √

THE TRAJECTORY COMPUTERS - Concluded

5

,

1 * * .

٠

¢

. . . .

····~.

ŗ.

TABLE III	BASIC	MODULES	USED	IN	TRAJECTORY	COMPUTERS

MCC first guess trajectory computer	TLI/MCC analytic trajectory computer	TLI/MCC integrated trajectory
EPHM (ephemeris)	DGAMMA	Integrator
RVIO (Cartesian to spherical, etc.)	XBETA (BETA series sum- mation)	Forcing function
PATCH (both ways)	BURN-impulsive	Runge Kutta
EBETA	PATCH (both ways)	Predictor-corrector
RBETA	EBETA	Editor
XBETA (BETA series sum- mation)	XBETA (BETA series sum- mation)	EPHM
EPHM	RBETA	BETA series summation
CTBODY (BETA series summation)	EPHM (ephemeris)	Right ascension of Greenwich
	CTBODY	TLI BURN calibrated
	LIBRAT	LOI BURN calibrated
	EPHM	BURN impulsive
	TLI BURN (cal- ibrated)	LIBRAT
	ELEMT (orbital)	ELEMT (orbital)
	CTBODY (BETA series sum- mation)	RUIO (Cartesian to spher- ical, etc.)
	EBETA	
	RTASC	
	RVIO (Cartesian to spherical, etc.)	
	SCALE	

·

s,

,

REFERENCES

- 1. Moore, William E.: AS-503/504 Requirements for the RTCC: The Generalized Iterator. NASA IN 66-FM-131, November 4, 1966.
- Morrey, Bernard F.; and McCaffety, Brody O.: Mission G Requirements for the RTCC: The Translunar Midcourse Correction Processor. MSC IN 68-FM-60, February 1, 1968.
- McCaffety, Brody O.; and Scheffman, David S.: E/G Requirements for the RTCC: Translunar Injection Processor. MSC IN 67-FM-90, February 1, 1968.
- 4. Moore, William E.: The Generalized Forward Iterator. MSC IN 66-FM-55, June 15, 1966.
- Martin, D. T.; and Redwine, W. J.: Empirical Simulation of the Nominal and Alternate Mission Translunar Injection Burn Fit for an Extended Range of Independent Variables. TRW Note No. 67-FMT-506 (A-77), April 14, 1967.
- 6. Yencharis, J. D.: AS-503A/AS-504A Requirements for the RTCC: Empirical Equations for Simulating the Translunar Injection and Lunar Orbit Insertion Maneuvers. MSC IN 67-FM-96, July 14, 1967.