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ABSTRACT 

Two deterministic methods of placing previqusly unobserved 
(backside of the moon) landparks  into reference coordinates f rom 
a lunar orbiting vehicle .are pyesented. The recursive navigqtion 
techniqve developed 'by Dr. R. H. Battin is expanded to include 
simultaneous reduction pf estimatian e r r o r s  in landmark pasition 
and spacecraft position and velocity. In addition, the use of a 
period measurement p.s a navigational aid is developed. Computer 
requltv, indicating the effectiveness of the techniques of e r r o r  
reduction developed, a r e  presented, Comparisons between results 
of e r r o r  reduction by present six dimepsional techniques and r e -  
sults using the techniques developed in this thesis from computer 
runs are included. These illustrative computer results a r e  pre- 
sented as q check on the validity of the theoretical expressions. 
Recommendations for the use of the techniques derived in this 
thesis are made. 

Thesis Supervisor: Richard H, Battin, Ph. D. 
Title: Assistant Director of the MIT Instru- 

mentation Laboratary 
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Chapter 1 

Introduction 

During the past several  years, the problems of guiding an bo110 

vehicle durisg the midcourse and circumlunar phases of its mission 
have been studied at the MIT Instrumentation ;Laboratory. Dr .  R. H. 

Battin ha8 developed a comprehensive theory of recursive pavigation, 
based upon perturbation theory. This theory provides a method of 
extrapolating the best estimates of position and velocity deviations 
from a reference orbit forward in time; and, by uFe of $n optimum 
linear estim;ttor as a recursion operator, cqmbining these extrapo- 
lated estimates with newly acquired informatiqn to produce an im- 
proved. eFtimate. 

orbit dpterwination by Gerald M. Levine. (2) In so qloipg, the 
reference orbit has been defined as that trajectory the spacecraft 
would fallow if  the estimates of position and velocity were correct. 
In general the paprameters of the reference orbit a r e  different from 
those defininq the actual orbit. 
the estimation e r ro r s .  
of timg and to Wipimize thqse errors, it is necessary to incorporate 
new navigational measurements and, from the pew information obtained, 
redefine the reference orbit. 

(1)  * L 

The theary of recursive pavigation has recently been applied to 

These differences a re  referred to a8 

The es t i ia t ion  e r ro r$  propagate a g  a function, 

Npvigationak measurements may be made in  a number of ways 
during circumlunar orbit. 
angular measurements from an inertial reference to either the lunar 
horizon o r  a known landmark. 
incorporated by R. V. Keenan and J. D. Regenhart by observation of 
star occult ations . 

The most common method is the use of 

The use of time as a measurement was 

(3 )  

Angular measurevents  from an inertial reference to known land- 
marks have prsviousjy been considered limited ts those lunar land- 
marks visible from the earth, As pointed out by G. M. Levine, the 
effectiveness of this method is reduced by the lack of knowledge of the 
e x w t  positiops of the landmarks - particularly if the landmark is 
observed several  times. 

* $  

Numbers in parenthesis refer  to references at the end of this paper. 



This thesis concerns itself with three problems: 
1) to develop a procedure for placiDg previously unobserved 

(backside of the moon) landmarks into reference coordinates f rom 
observations taken from 8 lunar orbit. 

2) to subsequently use these landmarks as an aid to navigation 
by expanding recursive navigation techniques to simultaneously minimize 
orbital position, orbital velocity and lunar landmark estimation e r rors .  

3) to investigate a new metho$ of time measurement as a means 
of updating the reference orbit. 

The investigation of 1) and 2) above requires that unknown land- 
marks be deterministically placed in reference coordinates during the 
first orbit of the circumlunar flight. The referepce orbit may 'be up- 
dated by additional navigatiopal measurements during this first orbit. 
After the landmark position is estimated, and on repetitive orbits, the 
landmark is observed and weighted against past observations to minimize 
the landmark uncertainty. 
used to lower the uncertainty of the reference orbit. 
que, repetitive observations of the same landmark becqmes an asset. 
The minimization of landmark and spacecraft estimation e r r o r s  is 
simultaneously accomplished through a nine dimensional analysis. 

dinates with minimum e r r o r  a r e  two-fold. First, the landmgrk, now 
known, may be used as an aid ta circumlunar flights. Secondly, the 

* 

The best estimate of the landmark is then 
Using this techni- 

The benefits of placing an unknown landmark into reference coor- 

landmark may be used as a control point from which positions of other 
landmarks may be mapped through photogrammetric techniques during 
a circumlunar flight. 

NASA) has investigated the problem of placing a landmark in geodetic 
coardinateq with minimum e r r o r  by use of orbiting satellites. A geo- 
metric method of solving this problem consists of performing a tri- 
angulation in space and thus determine the positions of a number of 
observing stations whose positions a r e  not precisely known. 
method requires precise knowledge of the satellite's orbit and a ser ies  
of ground stations. 
lunar landmarks only after observing stations had been placed on the 
moon. Although l e s s  accurate, the placement of lunar landmarks in 

Pro j e ct ANNA ($) (5) (the combined effort of the armed forces and 

This 

This procedure would be applicable to pgsitioning 

51: 

considered analogous. 
Throughout this thesis the terms circumlunar flight and lunar orbit a r e  

-2 -  



selenographic coordinates by use of navigational measurement from 
an orbiting spacecraft represents a more expedient method of placing 
lunar landmarks with minimum e r ro r .  
this thesis. 

There-in exists the value of 

Investigation of the third problem of the thesis requires the 
determining of a new geometry vector associated with the new time 
measurement. Time is incorporated by measuring the actual periad 
of a circumlunar orbit and comparing this to the estimated period 
associated with the reference orbit. By noting the difference or  de- 
viation in period, the astronaut is able to gat0 information about his 
position and velocity. 
computer results are Included in Chapter 4. 

The development is made in Chapter 3 and 

Throughout this papey, e r r o r  apalysis will  be of the mean squared 
technique ponsistent with the method followed by Dr .  R. R. Battin in 
his analysis of midcour6e guidance. 

Qqttin's work, 
vector@. A column vqctor is represented by a lower case undeyscored 
letter, e. g. r, v. Matrices a r e  denoted by capital letters, e. g. E. 
The transpose of a vector ar matrix is denoted by a superscript T, e. g. 
rT, ET. The scalar product of two vectqr6 s and t is written as s t, 
and the expected value af a randam vector e i s  indicated by an oveyscore, 
e .  

Wotational conventions ysed also agree with those used in Dr .  
Thiq pqcper deals with three, six and nine dimensional 

- -  
T 

T - c - -  
- 

rr 

- 

-3- 



Chapter 2 

Deterministic Methods of Placing 
Unknown Landmarks 

2-A. General 

Unknown lunar landmarks may be placed into inertial coordi- 
nates by measuring the vector f rom a known point in orbit to the land- 
mark. 
mine angular measurements from the inertial reference arid radar to  
determine range to the landmark. 
both determining separate direction consines renders the use of radar 
unnecessary in  plotting the landmark. 

.I. -,* 
This may he done with a' single sighting, using optics to deter- 

The inclusion of two optical sightings, 

The inertial reference discussed here is lunar centered with the 
x-axis along the ascending node of the mdon's equator on the ecliptic, 
the z-axis along the north polar axis of the moon and the y-axis in the 
lunar equatorial plane completing the right -banded system.. 

.I. .I, .,. .,. 

I 

Fig. (2 - 1) Inertial Reference 
* 

Due to physical limitations, observations a re  not taken by sextant 
from star  to landmark during circumlunar orbit. Instead, the inertial 
reference system is carried aboard the spacecraft in the form of a 
gyros copically stabilized platform. 
the inertial reference to the landmark is equivalent to the simultaneous 
measurement of the angles between the landmark and two stars.  

Any other inertial reference system is equally valid and involves only 

Therefore the observation from 

>'< 

using different rotational transformations to convert from inertial 
coordinates to selenographic coordinates. (6 )  

-4 - 



Considering the lunar centered inertial and selenographic coor - 
dinate axes coincident at epoch, rotatian between the two axes systems 
is about the z axis only. (Precession of the lunar line of nodes is con- 
sidered insignificant over the duration of the circumlunar flight). 

radians per sidereal rotation. 
The ra te  of rotation is considered constant with a value of 2n 

The apgle of rotation is 

a =  2n( t  - 7 ) 

sidereal rotation 

where 7 is the epoch. 
At any time t, the inertia) reference is related to the seleno- 

graphic reference by 

T S  - ~ I = N  - r 

where 

(2-2) 

Directional sightiqgs are rflade by incorporatipg angular rneasure- 
The result is a set of direction rnents f rom the reference inertial axis. 

cosines. be 
the angle from the y -axis to the line of sight, and $ the angle from the 
zI-axis to the line sf sight. 
8 and 4. The angle may be found from the relationship. 

I Let 8 be the angle from the x -axis to the line of sight, 
I 

Note that it is only necessary to measure 

I 
X 

Fig. (2-2) Direction Cosines 

-5 - 



2-B Radar Method 

By utlizing angular measurements and a slant range, high pre- 
cision radar,  the position of a landmark can be estimated with a single 
observation. 

From Fig. (2-3), it can be seen 

I 1  Q = r -I- (radar range) 

' = r' + (radar range) 

I 2, = r,' f (radar range) 

x x  

Q Y  Y 

if measurements are exact and position af spacecraft is precisely 
I known. In the above eqpations, 1 is defined as  the inertial compo- 

nent af landmark positioe and r the inertial component of space- 

,-. Radar Range craft position. I 

I 

Z 

I 
Y 

Fig. (2 - 3) Determining Landmark 
Po sition V i a  Radar Technique 

Of course, the measurement of angle and radar  range cannot 
be exact, nor wil l  the position of the spacecraft be known precisely. 
Taking the e r r o r  in landmark to be represented by E, in position by 

e, e r r o r  in radar  by E r r  (r) and the e r r o r  in angular measurement 
byq .  We  have 

(2 -4) 

- 6 -  



e I + E r r ( r )  I cos 0 - qe I s i n e  
x x  

I I 
E I = e + E r r  (r? cos 4 - q sin 4 

Y Y  4 (2-5) 

I = e I + E r r  (r) I cos sl/ - % I sin sl/ 
€ 2  z 

These three components make up the landmark estimation e r r o r  
I 

fQ ' 

2-C A- 

While the radar  method outlined in the previous section has 
the advantage of estimating the unknown landmark position with 
only a single slghting, it Iws several practical liqitations. 
are briefly : 

These 

1. 
2. 

The rgdar equippent is both bulky and heavy. 
The mror  in radar (doppler)) qlant range is qpproximately 

There eXists a difficulty in hqving the optics and radar 
270 of the range. 

pinpoint the same point pf landmark. 
3. 

b 

For these reasons, an alternate method utilizing two sightinge 
w i l l  eliminate the necessity of a riLdar. 

From Fig. (2-4) it is readily evident that 

Qx I = r +range  cos O 1  = r + range2 cos O 2  
x1 1 x2 

Q; = r + range cos 4 ,  = r + rangeZ CQS dr2  

+ range2  cosG2 

"I 1 y2 

1 z 2  
Qz I = rz t rangel cos $l = r 

Multiplying Eq. (2-6) by cos 41 and Eq. (2-7) by COS 

difference and solving for range 2 results in 
taking the 

r ~ 0 . ~ 4 ~  - r COS 8 - r cos + r  cos Q1 
range2 = x1 YI , x2 ,  y2 

(2-6) 

(2-7) 

( 2 - 9 )  

-7 -  



I 
1 Z 

I 
I X 

I 
X 

Fig. ( 2  -4) Determining Landmark 
*Position Via  Angle Only Technique 

Range q a y  also be found using simultaneously Eqs. (2-7) and (2-8) 
o r  (2-6)  and (2-8). Thus two redundant measurements of rangeZ 
may be averaged with Eq. (2-9) to give a mean value of range2. 
Further, range1 may be determined from the same simultaneous 
equation? and averaged to result in  a mean value of rangel. 

measure& directly, substitution of either rangel o r  range2 into 
Eqs. (2-6) through (2-8) results in determination of the landmark 
in inertial reference since 

2 <  

Since - r (position of the spacecraft) is estimated and the angles 

Q = r .t range - - (2-10) 

-8- 



Once again, the e r ro r s  in measurement and e r ro r s  in esti- 
mation of spacecraft position result in a landmark estimatian 
error. 
with Eq. (2-5) developed in the preceding section, except that the 
e r r o r  in range is a function of spacecrqft position and angular 
measurement. 

The expression for landmark e r ro r  in this case, is identical 

This i s  developed in detail, in Appendix A. 

- 9 -  



Chapter 3 

Simultaneous Minimization Technique 

3 -A Introduction 

This chapter expands G. M. Levine's work to include minimi- 
zation of position, velocity and landmark estimation errms. In addi- 
tion, it wil l  consider star-horizon, and measured period ais well as 
s ta r  -landmark as the possible types of measurements appropriate 
to a circumlunar orbit. 

.I. -r 

The basic problem of circumlunar navigation is six dimensional, 
where the state vector - x is dividedinto position and velocity vectors, 
- r and c v respectively, where both a r e  three dimensional. To expand 
the procedure to include the landmark vector - fl requires a nine 
dimensional analysis, 

F o r  a detailed treatment of the six dimensional circumlunar 
navigation problem, the reader is directed to reference (2).  

3 -B Expanded Midcourse Navigation Theory 

Using the deterministic method of placing landmarks, discussed 
in Chapter 2, an estimate of the unknown landmark's position can be 
determined, where 

and the e r r o r s  in the estimate are defined a s  

.I. *- 
The word "star" is used simply as shorthand for a inertial reference 

axis. 
.I< ,L 
1 6. For ease of notation the reference coordinates wil l  be inertial unless 
otherwise noted. 

-10- 



The state vector x is defined as - 

I A 
B = 6 x  - 6 x  = - 6 x =  
7 - - - 

x =  

e -r 
x 
-V 

E 

(3-3)  

a 9 X 1 matrix, where r is the spacecraft position, v the spacecraft 
velocity and Q the lapdmark position, 
viatiop of the state vector is described as 

- .-? 
In a like manner, the de- - 

Sipce this navigation prqcedure is baaed on linear pertur- 
bation theory, it i s  necessary that the deviation vector, 6x, c r e -  
m+in small. Therefors, the reference orbit is defined to be that 
trajectory the spacecraft would follow if the estimates 9f r and v 
were correct;  and the reference landmark position is defined 

by - Q. After each measurement the reference state vector is r e -  

c - 

defined aftea inclusiqn of the measurement data. 
The notption 6 - 9 is introduced. This represepts. the estimate 

pf the deviation vector and is zero except instantaneously after 
incorporation of the measurement data and before the reference 
state vector i,s redefined. 
values before a measurement and unprimed quantities indicate 
values after the meamarement. 

Letting. primed quantities indicate 

I 
x = x  +68 - -  - 

' A  6 x = 6 x  - 6 x  - - T. 

(3-5) 

-11- 



where: 
e is the estimation e r r o r  of position -r 
X is the estimation e r r o r  of velocity 

E is the estimation e r r o r  of the landmark -1 

-V 

The extrapolated estimation e r r o r  is 

I I 
e = - 6 x  - - 

In using the mean square technique of e r r o r  analysis, it is 
necessary to define a correlation matrix E of the e r r o r  vector e 

7- E = e e  - 
-I 

T e e  -r -r -r -v e h  T 

x A T  v v  h e  -v -r 

' T  z 
-Q -v ~e -1 -r 

E2 E3 

$7 E8 E9 

F4 E5 E6 

where E is a 9 X 9 matrix and each E is a 3 X 3 matrix. n 
In a like manner, the extrapolated correlation matrix is 

1 ' T  E = e  e - -  
I 

If Q is the measured quantity based on the reference state - x , 
there wi l l  be a deviation in the measurement 6 Q caused by the de- 
viations of the actual state vector from the reference state vector. 
Define - h as the geometry vector which satisfies 

(3-7) 

(3 - 8 )  

(3-9) 

I 
to first order in 6 r . 

I 

-12-  



The geometry vector must be nine dimensional when consider - 
I 

ing the pine dimensional state vector x . 
mensional geometry vector as b 

Considering this nine di- 
c 

- 

(3-11) 

yvhere - h i s  the geometry veotor associated with position, - d the geo- 
metry vector associated with velocity qnd - k the geometry vector 
associated with landmark position. I 

vector) and k = - - h. 
ments bpth d and k - are zero vectors. When cansidering Reriod (time) 
measurements only k = 0. See Section 3-E. 

When considering star landmark measurements - -  $ = o (zero 
For star-horizon o r  star occultation rneasure- 

7 

- 
- -  

For the purpose of this derivation, b will'be defined as - 

(3-12)  

and 

The components of b are the partial deriviLtives of Q with respect 

Since the reference state vector has been defined by our best 

I 
- 

to the components of the deviation vector 6 - x . 

estimiltes, the predicted value of 6 Q is, of course, zero. Definiqg 
6 Q as the measured deviation, it i s  noted that 
N 

66= 6 Q + q  (3-14) 

where q is the e r r o r  in the measurement. 
In the next few sections, a slightly expanded version of Dr.  R. 

H. Battin's Recursive Navigation Theory wil l  be developed. This tech- 

- 1 3 -  



niquewill enable, as each measurement is made, the state vector 
- x and the correlation matrix E to be updated by the simple recur- 
sive formula's 

1 E ' b  - 6 Q  
x = x  + 

and 

I (E'b) c (E' b)T 
E = ' E  - 

(3-15)  

Between measurement times, the state vector must be extrapo- 
It wil l  be shown lated and the correlation matrix must be propagated. 

(3-16)  

that this can be accomplished by 

1 
x = x  - -  

I 
where - x is simply the integration of 

where g (r, t) is the gravitational acce,eration vector and n(Q, t is 
the rotation velocity vector of the landmark caused by the yoon's  
rotation. 

- -  - -  

To propagate E 
I 

E = E  
1 

where E is obtained by integrating 

(3-17)  

(3-18) 

(3-19)  

(3-20)  

-14- 



and M(r, l! , t) is defined as  - -  

(3-21)  

l o  0 N(1, t 
I 

where I is the 3 X 3 identity matrix, 0 the zero matrix, G (r, - t) the 
gravitational acceleration matrix, and N ( 8 ,  - t) the rotation m&rix. 

3-C The Optimum Linear Estimate 

The purpose of this section is to develop Eqs. (3-15)  and (3-16) .  
The optiqum linear estimate of the deviation vector 6 - x, 

assuming all  e r r o r s  a r e  uncorrelated, is 

(3-22)  

where the weighting vectar w _. is to be determined. 

minimize the wean squared position error, mean squared velocity 
error and the meqn squared landmark error.  

of thq weighting vector, yse Eqs.(3-6) 8nd (3-22)  to get 

- w, the weighting factor, wil l  be chosen so as  to simultaneously 

To solve for positiop, velocity and landmark errors a s  functions 

N I 
e (w.) = w 6 Q  - 6x 

(3-23)  

Now, the correlatiop matrix E defined by Eq. (3-8) may be ex- 
pressed as  a function of the weighting vector w a s  

c 

m 

1 
= E - w bT E' - (w bT E')T + a - -  w w - -  - -  (3-24) 

-15- 



where 
7 a = - bT E '  I b + q  

If we define w as 3 three-dimensional vectors partitioned, - 

W -1 

w =  - 

-w3 

and partition E into 9 three -dimensional quantities 

E (w} becomes - 
I 

E2 

E5 
I 

I 

E8 

1 

E2 

E5 
1 

? 

E8 

E 4  E =  E5 

E8 

E2 k4.1 E 

E 

E 

\ 
-1 W 

E2 

W 1 -3 

jw1 T T 
-w2 

I 1  

E4 

E 7  

1 

? 

1 

E2 

1 

E 5  

I 

E8 

(3-25) 

such that 

T w -2 

(3-26) 

43-27} 

-16-  



E(w)  = - 

1 

I 

E7 

1 

E2 

E5 
1 

I 

E8 

T I  T I  T I  T I  T I  (_W~L E l  - w h ET) (W h E2 - w h E8) (W h E3 - 8 -1- w h 
-7 1- - 1- - 1- - 1- 

I I T  1 ' T  1 I T  (E12wF - E 3--1 h w  ) (E 1- h w f  - - EQhrjv2 ) (E 1-- hw: - E 3-- h w 3  ) 

I I T  I T  T I T  (E h w ?  - E h w  ) (E 4-- hw? - E 6--* bw,  ) CE 4-- h w g  - E s h w  --3 1 

(E+w; 7 E 'hw?) (Q72w_: - Eg I h w 2  T ) (E hw: - E ' T  h w 3  -- 9-- -- 7.-- 9- 

41- 6-- 1 

w w  w w  w w T j  / -1-1 - 1 - 2  -1-;3 

w w  

T + a I:::; -2-eT - 3 - 2  w w I."/ - 3 - 3  w w  

(3-28) 

It is obvious that 

I T  T E1(w) = E 1 - (Zlh El - - w 1- h E7)  -(E 1-- hw? -. E 3- h w l  ) + a (zl zl ) I T I  T I  I 

< 
I T '  T f  T T - (w h: E2 - w h E8) - (Ephh: - E h w 2  ) + a (TV~ y2 ) E 5 b )  = E5 - 2- - 2- 0,- 

Therefore since E 
and E9 a function of only - w3, it is formally legitimate to treat  the 
mean squared e r r o r  in the estimate e (w) as the trace of the nine- 
dimeqsional correlgtion matrix E (w). - The mean qquared position, 

is a function of only w 1 - 1' E5 a function of only - w2 

2 - -  
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velocity and landmark e r r o r s  a re  given by the traces of El, E5, 

and Eg  respectively. 
From Eq. (3-24) 

I m 1  m 
tr[E(_w)] = t r [ E - 2 w b L E  - -  + a w w L ]  - -  

To minimize tr [E (w)] - let w take on a variation 6 - w, and obtain 

T '  6 tr [E(_w)] = 2 tr [ 6 w  - -  (awT - b - E ) ]  

Setting this equal to zero, it is. clear that for 6 tr [ E(w)] - 
to vanish for all 6 w, w must take on the value - -  

(3-29) 

(3-30) 

Equations (3-15) and (3-16) follow immediately by substituting 
Eqs. (3-30) and (3-25) into Eqs. (3-22) and (3-24). 

To show that Eq. (3-30) yields a minimum and not a maximum 
point, replace w by w + A w into the above trace - - - 
use  Eq. (3-10) td obtain 

or inflection 
equation and 

+ a (w + A w )  (wT + AwT)] c 
c - -  

= tr [E 1 - 2 a  (w + A w )  w T - - -  
+ a  (w + A W )  (wT +AwT)] I - - -  

= tr [E - a w w L  + a  Aw Aw"] - - .  - -  
T = tr [E(w)] + a tr [ Aw A w  ] - - -  

3-D Extralsolatinrr x and E in Time 

To compl,ete the derivation, the time variations of - x( t )  and 

(3-31) 

E: (t) a r e  required. 
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The differential equations of motion of the spacecraft 
and landmark a r e  

where g (r + 6 - r, t )  i s  the gravitational acceleratipm vector and 
q ($ + 6 a, t) is the velocity rotatioo vector of the landmark due 
to the moon's rotation, such that 

7 -  

e 

Q 
3 

Fig. (3  -1) Lunar Landmark Rotation 

The differential equations of motion of the refebence 
state vector are 

(3-32)  

(3-33)  

( 3 - 3 4 )  
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Subtracting Eqs. (3-34)  from ( 3 - 3 2 )  gives 

( 3 - 3 5 )  

Using linear perturbation theory on the second and third equations 
above, results in 

d - [ 6v(t)] = G (r, - t) 6 - r (t) 
dt 

(3-36)  

where 

G(r,  - t) = 

N(Q, t) = 
c 

where x, y, 

(3737)  

z are the components of the position vector - r (t); gx, 

g , g the components of the gravity vector g ( r ,  t); Qx, Q 

the components of the landmark vector Q ( t ) ;  and qX, rl and qZ a r e  
the components of the rotation vector - -  r)  (Q ,  t). 

and Q, 
Y - -  Y Z  

Y - 

- 2 0 -  



Equations (3-36) and (3-37) can be combined into a 9 X 9 

perturbation matrix. Thus 

where 

M(r,  8 ,  t) = 
c -  

(3-38)  

The matrices I and 0 a r e  the three-dimensional identity and 

The estimation error  was  defined as 
zero matrices respectively. 

except at discrete instants of time. Therefore 

(3-39)  

r n '  rn' ' m 

= M(r,  8 ,  t) e (t) e'''(t) + - -  e (t) e'''(t) M"'(r, - -  Q, t) * -  - c 

(3-40)  

(3-41) 

Integration of Eqs. (3-34) and (3-41) determine the reference 
state vector - x (t) and the correlation matrix E (t) respectively. 
changes occur at measurement times and a r e  calculated from Eqs. 
(3-15) and (3-16). 

Step 

-21 -  



3-E Measurement Geometlrv Vectors 
~ 

Each particular method of measurement has a particular geo- 
metry vector associated with it. Thus the b vector alone charac- - 
terizes the type of measurement. 

1) Star -Horizon Measurements 

Fig. (3-2)  Star-Horizon Geometry 

Reference (7) describes the analysis for determining the geometry 
vector associated with this measurem'ent. 

Where __D q represents a unit vector in the direction from the 
spacecraft to the star, m represents the unit vector along the - 
vector - z and E represents the unit vector in the plane of the mea- 
surement and perpendicular to the line of sight to the lunar horizon, 
this reference .derives the geometry vector h to be - 

- P 
h =  - 

z cos y 
(3-42) 

In nine dimensions this geometry vector is 

b =  

-22 - 



2) Star-Laqdmark Measurements 

Fig. ( 3 - 8 )  Stw-Landmark Geometry 

Reference (2) describes this method in detail and derives 
the three-dimengional georqetry matrix from Fig. (3-3)  to be 

- P 
h =  - 

where p is in the plane of the measurement and perpendicular to 
the line of sight to the landmark. 
before and 
to the landmark. 

c 

The unit vector r)  is defined as 
-P 

is a unit vector in  the direction from the spacecraft 

The geometry vector in nine dimensions is 

b =  - 

(3744) 

(3-45)  

where k will  be shown to be approximately equal to - h. - - 
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Referring to Fig. (3-4)  where the tilta symbol ( A )  represents 
best estimate and subscript (A) represents actual 

k e 6 r  - - -  - 
tan y = = Y  

L r 
(3-46)  

by small angle approximation, and 

H -k - _ .  e 6 L  - 
tan a = = a  

by small  angle approximation. (3 -47) 

It is obvious that the deviation in angle is a function of both 9L 

position e r r o r  in orbit and position e r r o r  in landmark. 

dA = A1 - A. 

= P + Y  
(3-48) 

the distance between landmark and spacecraft is large enough in 
cgmparison to the deviations in spacecraft and landmark devia- 
tions to make triangle 

A 
SA M L  

approximately similiar to triangle 

A 
S MLA 

therefore within this limitation 

a q  (3  -49) 

where 
mation e r r o r  in landmark. 

is the deviation in angle measurement because of an esti- 

. y is the deviation in angle measurement due to an estimation 

e r r o r  in  orbital position. Thus 

(3  - 50) 
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Fig. (3-4) Geometry for  Nine Dimensional 
Analysis of Star -Landmark Measurement 
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and - k is approximately -h. - 

3) Period Geometry Vector 

The astronaut may use an additional measurement to obtain 
information about his true position and velocity in moon-centered 
inertial space by comparing his estimated period with the actual 
period of his orbit. This method requires the use of a precision 
time source and optics since references for initigtion and com- 
pletion of the period measurement must be determined. 

Consider the orbit to s tar t  at the position in inertial space 
where the spacecraft passes directly over the landmark. 
completion of one period occurs when the spacecraft retnrns to 
the same position in inertial space. 
wil l  have rotated in inertial space during the elapsed time of the 
measured period. 

The 

Meanwhile the landmark 

For  convenience, the inertial reference axes and seleno- 
graphic reference ages a re  considered coincident at the stwt 
of the period measurement. Rotation of the selenographic co- 
ordinates with respect to the inertial reference coordinates is 
given by Eqs. (2-2)  and (2-3). 

z s  .p z I 

I x 

S 
Y 

Fig. (3-5) Displacement of 
Coordinate Systems 
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the estimated angle s1 is described in radians as  

(3-51) 
A 

where A represents the siderial rotation period of the moon. 

The landmark rotates through the angle Q. The distance of 
rotation, however, varies as  tbe cosine of the selenographic lat- 
itude. 

cos L (3-52) an  Rotational distance = - 
A 

where r is the distance from the center of the moon to the land- Q 
mark. S Y 

il 
S X 

F, 

Fig. (3 - 6) Expected Angular Measurement 
for Coqpletion of a Period Measurement 

From Fig. (3-6) 

where 

cos B J 2  2 
- r rQ c =  r + r Q  

I X 

(3-53) 

(3 - 54) 

-. 
i. 

.I. 1. 

The tilta represents an estimated value. 
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and 

(3-55) 

A Angle A is the angle which the astronaut estimates wil l  describe 
the orbital completion reference. 

There a r e  three e r r o r s  that appear in the measurement 
period. 
clock er ror .  
of the measuring instrument and also because of uncertainty 

A 
of latitude of the landmark which causes an uncertainty in B 

A and hence an uncertainty in the angle A. 

EY. 
in period measurement. 

Two a r e  associated with the angle and the third is the 
Angular e r r o r s  occur through the imperfections 

This takes the form 
A31 of these e r r o r s  a r e  treated as components of the e r r o r  

E P =  c u + E y + € t  (3-56) 

The period of a conic is a function of the semi-major 
axis of the orbit, 
me chani cs 

According to Kepler's third law of celestial 

P =  27r /? (3-57)  

where a is semi-major axis and ,u is the universal gravitational 
constant times the combined mass of the system. 

The energy of an ellipse is negative. Specific energy 

2 5 : -  V - E  (3-58)  
2 r 

From the vis-viva integral 

r a 

Combining Eqs. (3-57), (3-58) and (3-59(  the equation. for 
the period can be put in te rms  of energy as 

(3-60)  
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Partial derivatives of the period results in 

and 

Carrying out the operations indicated by Eqs. (3-61) and 
(3-62) readily leads to 

- 3 p L  7r d-25 6 r  6P . i  

From the relationships 

2 
V O V ’ V  
c -  

by taking partial differentials 

and 

(3-61) 

(3-62) 

(3-63) 

(3-64) 

(3765) 

where 6 r and 6 v a r e  components of the position deviation and 
velocity deviation vectors along the reference position and velocity 
vectors r e  spe ctfully . 
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The geometry vector is thus shown to be 

b =  (i) 
where 

and is directed along the reference position vector.  And 

V 
- 3  p 7Tm 

- d =  
- 4 E3 

Note that the use of this method is applicable only after one orbit 
has been completed. 

3 -F Position, Velocity and Landmark Correlations 

Equation (3-8)  defined the matrix E as 

(3-66)  

E =  

I -  
T e e  -r-r 

T X e  -v-r 

~e 
L -Q- r 

' T  

T\ e X T  e €  -r-v - r-Q 

T A X T  X E  -v-v -v- Q 

T T  
-Q- E X  v C Q ~ Q  

E5 E6 E4 

E7 

where each subgcripted E is a 3 X 3 matrix. 

E2 E3 

E8 E9 

Landmark estimations e r r o r s  a r e  defined by Eq. (2-5)  
as 
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= e + e r r  (r) COS 0 - 90 sin 8 
E X  x 

= e + E r r  (r) cos 4 - q sin 4 ?Y Y 4 

The calculation af E 
for each landmark under Consideration. The matrices E2 and E4 
are  considered initially zero. 
initially finite the matrices E, and E4 take on finite values there- 

E7 and E8 are sorne- after, Cross correlation matrices E3, 
what mqre complex. 

method as discussed in section 2-J3 and where e r r o r s  in space- 
craft positian and velocity are considered uncorrelated to range 
e r r o r s  and angle measurement errors,  the cross correlation 
matrices a r e  statistically 

is made using the mean squared technique 9 

However, since El and Eg a r e  

E 6' 

When considering range to be determined via the radar 

= El T = e e  "T 
-r-r E =  e €  3 -r-Q 

= E4 T = h e  T 
-v-r = X €  E6 -v-1 (3-67) 

= El T = e e  T- = € e  E7 &-r -r-r 

The above relationship a r e  valid for placing the landmark and 
using the same landmark to update the matrix E. However, after 
leaving the landmark under consideration and after utilizing other 
navigational measurements before returning to the vicinity of the 
original landmark, the estimation e r r o r s  in position and velocity 
of the spacecraft a r e  continuously updated and become, in essence, 
uncorrelated to the landmark e r r o r s  after the initial orbit. 

Hence on the second and all subsequent orbits the cross 
correlation matrices can be considered as 

Eg  = E6 = E7 = E8 = 0 (3-68) 
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Chapter 4 

Statistical CQmputer Results 

4-A Key to Figures in Chapter 4 

Key to Figures (4-1) through (4-10) 

Typical results using six dimensional techniques 
for error reduction in circumlunar orbit deter- 
mination. 
frontside transit and ng measurements used 
during backside transit. 
The same as 1) above with the exception that 5 

star -horizon measurements are used during 
baa k$ ide transit. 
Results using nine dimepsional technique Tor 
which star -landmark measurements a r e  used 
during frontside transit and no backside measure - 
merits a r e  made. 
landmark). 
The same as 3) above with the exception that, 
dvring bapkside transit, landmarks are placed 
and later used for star -landmark measurements 
(Two sightings taken to each backside landmark). 
The same as 4) above except three sightings a r e  
taken for each landmark (frontside and backside). 
The same as 3) above with the exception that 3 

to  5 star-horizon measurements used during 
backside trans it, 
The came as 5) above except that 3 to 5 star- 
horizon measurements are also used during 
backside transit. 

Star -landmark sights used during 

(Three sightings taken to each 

Key for Figures (4-11) and (4-12) 

8) --@ Typical results using six dimensional technique 
for  e r r o r  reduction in  circumlunar orbit  deter - 
mination. Star -landmark sights are used during 
frontside trqnsit and 5 star-horizon measure- 
ments a re  used during backside transit. 
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9 )  Results using the nine dimensional technique 
for which s t a r  -landmark measurements a r e  
used during both frontside and backside transit. 
(Two o r  three sightings taken to each landmark). 
Results using nine dimensional technique for 

which star-landmark measurements are used 
during frontside measurements, and for land- 
marks which a r e  placed and later used for star- 
landmark measurements during backside transit. 
Period measurements a r e  also included for e r r o r  
reduction. (Two or three sightings per landmark). 
Results using nine dimensional technique for 
which star -landmark, s tar  -horizon and period 
measurements a r e  all made. 

IO) e - - a 

11) ~ e * e o a  0 
\ 

4-B General 

The combination of star -landmark measurements during lunar 
frontside transit and star -horizon measurements during backside tran- 
sit has been considered as one navigational procedure for optimum 
orbit determination during circumlunar flight. 

Both techniques a r e  limited in  their ability to reduce estimation 
errors  of the state vector because of instrumentation e r ro r s  in mea- 
suring equipment and also because e r r o r  reduction is not along the 
line of sight of the measurement but perpendicular to it. 

by uncertainties in  those landmark positions being used as a naviga- 
tional aid. 

Effectiveness of a star -landmark measurement is also reduced 
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Uncertainties of lunar landmarks visible from earth a r e  of the 
order of 1000 meters  in  altitude and 465 meters  in latitudinal, longi- 
tudinal placement of the landmark. 

All  computer results were obtained using a simplified model of 
the problem. Simplifying assumptions used were: 

1) the moon was  considered spherical 
2) no gravity anomaliee were considered 
3) gyro drift associatqd with the inertial 

reference system w a s  neglected 
4) the moon was considered non-rotating 
5) the radar method of placing landmarks 

was  used. 
.I. 1- 

A reference trajectory which was  circular at an altitude of 100 

miles above the lunar surface and inclined to the lunar equator by 
1 degree was chosen for the orbital model. 

the lunar equator. 
Landmarks (known and unknown) were placed eqIiidistant about 

The problem was initiated with the correlation matrix, 

where e 

and 
, 028  0 0 

2 
Es = . O y  , o ( 8 ]  minute 2 

:;< 

simple adaptability to computer programming. 
This particular deterministic method was used because of its 
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For  the known landmarks Eg was calculated using the uncertainties 
discussed in this section. For  the unknown landmark, the te rms  of 
the correlation matrices were computed in accordance with section 
3-F. During those time intervals during which no landmarks were 
sighted the matrices E3, E6, E and E were, of course, zero 
matrices. 

8 9 

4-C Error  Reduction 
All e r r o r  reductions were computed using the following RMS 

measurement e r ro r s :  
angle e r ro r  = 1 X low3 radians 
radar error = . 02 range 
period e r r o r  = . 1 sec 

Computer results were obtained for orbital e r ro r  reductions 
using both six dimensional techniques and nine dimensional techni- 
ques. The results of the six dimensional analysis using star-land- 
mark measurements during frontside transit and star -horizon 
measurements during backside transit a r e  compared to the results 
of the nine-dimensional analysis using star -landmark measurements 
during the entire orbit and s tar  -horizon measurements during back- 
side transit. This comparison is made in Fig. (4-1). Computer 
results of RMS position e r r o r  reduction by using backside of the moon 
landmarks a re  compared to results not utilizing these landmarks. 
This comparison is shown for the first and second orbits in Figs. 
(4-2) and (4-3) respectively. 

Results of RMS velocity e r r o r  reduction for the above methods 
a re  compared during first and second orbits in Figs. (4-4) and (4-5) 
respectively. 
which the moon is one quarter dark. 
(4-6) through (4-8). 
orbit since variations from the results on the second orbit a r e  in- 
significant. 

The same comparisons a r e  made for the lunar model in 
The results a r e  given in  Figs. 

RMS velocity error is shownonly for the first 

Error  reduction in landmark placement for a fully lighted moon 
and a three quarter lighted moon using the nine dimensional techni- 
que is given in Figs. (4-9) and (4-10) respectively. 
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Computer results were also obtained for RMS position e r r o r s  
using star-landmarks and period measurements during the second 
orbit, 
mark measurements in Fig. (4-11). 

star-horizon, and period measurements. A comparison is made 
between these results and results of star-landmark and star- 
horizon measurements in the six dimensional analyses. 
(4-12). 

These results a r e  compared to results using only star-land- 

Finally, results were obtained for combined star -landmark, 

See Fig. 
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Fig. (4-2) 
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Fig. (4-3) 
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Fig. (4-5) 
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Fig. (4-6) 
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Fig. (4-8) 
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Fig. (4-11) 
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Fig. (4-12) 
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Chapter 5 

Conclusions and Re commendations 

1) Conclusions 

The result9 showq in Fig. (4-1) clearly indicate that the pro- 
cedures developed in this thesis a re  more effective than the techni- 
ques presently under consideration for determining the circum- 
lunar orbit. This increased effectiveness, coupled with the ability 
to adequately place lunar landmarks, definitely indicates that this 
expanded guidanae procedure should be the subject for a more de- 
tailed study. 

of combinations of ywious  nsvigational measurements and provide 
enough comparative dqta to base several conclusions from them. 
First, in placing ynknown landmarks, a significant gain in accuracy 
is realized by taking three sightings to each landmark instead of 
two. Second, copbining star -horizon measurementq with backside 
landmark sightings on the first orbit result8 in effective spacecraft 
position and velqcity e r ro r  redvction. However, little is gained by 
usirg star-horizon sightings on suceeding orbits. 
measurement technique developed in this thesis reduces e r r w s  along 
$he position and velocity vectors. This method, although limited to 
uee only after one complete orbit, reduces e r ro r s  considerably when 
combined with other types of navigational measurements. 
the procedure fgr placing landmarks was proven to be quite effective. 
The uncertainties in the backside landmarks after the second orbit 
were less  thap the uncertainties in the frontside (known) landmarks 
at the beginning of the fjrst orbit. 

Figures (4-2) through (4-12) graphically illustrate the results 

Third, the period 

Fourth, 

2 )  Recommendations for  Further Study 
c 

A s  indicated in Chapter 4, several simplifications were made. 
These included 

1) A spherical non rotating Moon 
2) A, perfectly circular- orbit 
3)  No gravity anoqalies 
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4) No gyro drift in the stabilized optical - 
radar  platform 

5) Radar method used exclusively (See 
Chapter 2) 

6) Cross-correlation between landmark position 
e r r o r s  and spacecraft position and velocity 
e r r o r s  were considered according to the 
assumptions of Chapter 3.  

. .  

t ,  

These simplifications were ’made because of the pressure of 
time in some instances, and in others, because of the computer 
programming advantages. 

To completely explore the procedures developed herein would 
require that’ the ove si’mplifications be eliminated. The authors 
feel that the results so’far presented, clearly justify the additional . 

L 

I effort necessary to fully evaluate the expan guidance techniques 
‘ developed ih this thesis. 

It should be noted that a major assumption was’made in the 
treatment of the cross  coprelation te rms  developed in section 3-F. 
In that section it was stated that the cross  correlation between 
orbital e r r o r s  and landmark position e r r o r s  went to zero during the 
transit from a specific landmark back to the vicinity of the same 
landmark on the next orbit. 
in this thesis, this assumption must be proved a valid one . 
proof would necessitate a 6 + 3n dimensional analysis, where n is 

the number of landmarks considered. 

I * *  
In order to use the methods developed 

This 
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Appendix A 

Development of Range Error  

Taking the partial derivatives of Eq. (2-9) results in 

where f is the right hand side of Fq, (2-9). 

where f i s  considered the right hand side of Eq. (2-9) with subscripts 
1 and 2 interchanged 

lished in an aqalogous manner, only E r r  (r2) wijl be cpnsidered hence- 
fqrth. 

The error ip rapgel can be determined in  the same manner 

$ince the srrqr analyseq for err (rl) and e r r  (r ) w e  aocornp- 2 

BY corngletin$ the operqtions indicated in Eq. (A-1) the follow- 
ing relationship are realized 

- cos bl af 3 

TF-- 
x2 (cas $l cos 6 ,  - cos $2 cos 6$ 

(A-2) 

(A-3) 
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cos 4 ,  sin 

(A-6) 1 - r ) cos'dl + (r - r cos el 
- x2 y2 y1 

af 

r 7 

Substituting Eqs. (A-2) through (A-9) into Eq. (A-11, relating 
r to r throughthe transition matrix as derived in Chapter9 of -2 -1 
reference 7 and using Eq. (A-1) in Eq. (2-5) results in a landmark 
e r ro r  which is a function only of the angular measurement e r ro r s  
and orbital position errors .  
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