
\~

Report No. 72-0005
Contract NAS8-26990

\
(NASA-CR-123571) FLIGHT PROGRAM LANGUAGE
REQUIREMENTS. VOLUWE 1: EXECUTIVE SUNMARY
Final Report (M&S Computinq, Inc.) 7 Mar.
1972 29 P CSCL 09B

N72-22179 ]

Unclas
G3/08 27279

FLIGHT PROGRAM LANGUAGE REQUIREMENTS

VOLUME I

EXECUTIVE SUMMARY

C~ _/:}.3SIJI

(CODE) \

(CATEGORY)

)

-~(THRU):-- \

(;yS (ACCESSION NUMBER)

i ~7
o CR (PAGES)§ /:;'16-71
o (NASA CR OR TMX OR AD NUMBER)
~

March 7, 1972

Prepared for:

NA TIONAL AERONAUTICS AND SPACE ADMINISTRATION
George C. Marshall Space Flight Center
Marshall Space Flight Center, Alabama 35812

~&50MPUTING.INC. ------------

'NAT,oNAL TECHNICAL \
INFORMATION SERVICE

U S Department of Commerce
Springfield VA 22151

https://ntrs.nasa.gov/search.jsp?R=19720014529 2018-02-05T23:38:56+00:00Z



PREFACE

This report sUJ:nm.arizes the efforts and results of a study to
establish requirem.ents for a flight program.m.ing language fo r future
onboard com.puter applications. This study was perform.ed by M&S
Com.puting under Contract NAS8-26990 from. the Marshall Space Flight
Center of NASA. The technical m.onitor was Mr. Richard Jenke,
S&E-CSE-LI.

Several governm.ent- sponsored study and developm.ent efforts
have been directed toward design and im.plem.entation of high level
program.m.ing languages suitable for future aerospace applications.
As a result, several different languages were available as potential
candidates for future NASA flight program.m.ing efforts. The study
centered around an evaluation of the four m.ost pertinent existing
aerospace languages. Evaluation criteria were established and
selected kernels from. the current Saturn V and Skylab Flight Pro
gram.s were used as benchm.ark problem.s for sam.ple coding. An
independent review of the language specifications incorporated antici
pated future program.m.ing requirem.ents into the evaluation. A set
of detailed language requirem.ents was synthesized from. these activi
ties.

This report is the final report of the study and is provided in
three volum.es. This first volum.e is the Executive Sum.m.ary and pro
vides an overview of the effort and results. Subsequent volum.es pro
vide more detailed inform.ation.

Distribution of this report is provided in the interest of informa
tion exchange and should not be construed as endorsement by NASA
of the material presented. Responsibility for the contents resides with
the organization that prepared it.

Participating personnel were:

T. T. Schansman
R. E. Thurber
L. C. Keller
W. M. Rogers

~~~
J. W. Meadlock



TABLE OF CONTENTS

VOLUME I

Section

1. INTRODUCTION 1

1.1

1.2

1.3

Study Plan

Conclusions

Evaluation C ri te ria Summary

1

5

6

2. LANGUAGE EVALUATION SUMMARY

Space Programming Language (SPL)

11

11

2.2

2. 3

2.4

HAL

Computer Language for Aeronautics and Space
Programming (CLASP)

Compiler Monitor System-2 (CMS-2)

15

17

19

3. GENERAL LANGUAGE RFQUIREMENTS 21

3. 1

3. 2

3.3

3.4

Scope of Language

Applicability to Future Programs

Incremental Definition of Features

Process Reliability Requirements

21

22

24

24

VOLUME II

4•. DETAILED LANGUAGE REQUIREMENTS 1

4.1

4.2

4.3

General Characteristics

Data Descriptions

Data Manipulation

i

3

6

13



Section

4.4

4.5

4.6

4.7

TABLE OF CONTENTS
(continued)

Internal Program Sequencing and Control

Program Structure

External Data Access

Special Compiler Directives

Page

20

24

31

35

5. SPECIAL TOPICS 39

5. 1

5.2

Language Processor

Operating System

39

40

6. LANGUAGE EVALUATION BY CATEGORY 43

6. 1

6.2

6.3

6.4

6.5

Quality of Expression

Expres sion of Environment Interaction

Proces s Reliability

Object Program Efficiency

Source Program Readability

43

61

71

82

88

7. LANGUAGE CHARACTERISTICS SUMMARIES 97

7. 1

7.2

7.3

Characteristics Categories

Terminology

Characteristics Descriptions

97

105

105

8. FLIGHT PROGRAM KERNEL CODING 185

8. 1

8.2

Space Programming Language (SPL)

Computer Language for Aerospace
Programming (CLASP)

ii

186

191



Section

8.3

8.4

GLOSSARY

REFERENCES

VOLUME III

Appendix A

Appendix B

TABLE OF CONTENTS
(continued)

HAL

Compiler Monitor System-2 (CMS-2)

iii

Page

195

200

205

207

1

83



(BLANK)

iv



1. INTRODUCTION

This report describes the activities and results of a study for
the II Definition of MSFC Flight Program Language Requirements II per
formed by M&S Computing under Contract NAS8-26990. The final
product of the study is a set of detailed requirements for a language
capable of sllPporting ,onboard application programming for the
Marshall Space Flight Center's anticipated future activities in the
decade of 1975-85. These requirements are based in part, on the
evaluation of existing flight programming language designs to deter
mine the applicability of these designs to flight programming activities
anticipated by MSFC.

An integral part of the study was the coding of benchmark
problems in the selected programming languages. These benchmarks
are in the form of program kernels selected from existing MSFC flight
programs. This approach was taken to insure that the results of the
study would reflect state of the art language capabilities, as well as
to determine whether an existing language design should be selected
for adaptation to MSFC's applications.

1. 1 Study Plan

The study was performed in three distinct, sequential phases:

o Evaluation Method Definition Phase, during which the
languages to be evaluated were selected, and the tech
niques and criteria by which they were to be evaluated
were established in detail.

o Language Evaluation Phase, during which four selected
flight programming languages were evaluated through
review of language specifications and coding of bench
mark problems.

o Requirements Definition Phase, during which detailed
programming language requirements were synthesized.

The major steps performed in each of these tasks are described
in the following paragraphs•.

10 1.1 Phas e I - Evalu~tion Method Definition

The following major tasks were performed during the first
phase 9f the study:

-1-



o Selection of Languages

o Selection of Evaluation Criteria

o Selection of Flight Program Kernels

Four current flight programming language ~esigns were se
lected for evaluation. These languages represent the latest pertinent
language developments sponsored by several government agencies.
The languages and their sponsoring agencies are listed below:

o Space Programming Language (SPL)
U. S. Air Force

o HAL
NASA Manned Space~raft Center

o Computer Language for Aeronautics and Space Pro,.
gramming (CLASP)

NASA Electronics Research Center

o Compiler Monitor System -2 (CMS-2)
U. S. Navy

The development background of these languages is highlighted
in Section 2 of this report.

The evaluation criteria are based primarily on those items
of direct interest to the users of the language. That is, the people
who are designing, coding, reading, verifying, and rnaintaining flight
programs are given highest consideration. This approach tends to
emphasize the flight program and the flight program development
cycle rather' than the language processor and other support software.
While the impacts on support software are not ignored by the evalua
tion criteria, M&S Computing feels that the projected extensive use
of the flight language dictates an approach which heavily favors the
user. The resulting evaluation criteria are described in Paragraph
1. 3 of this report.

To support the benchmark coding task to be accomplished dur,.
ing Phase II, it was necessary to select existing program designs
containing functions critical to flight programming. It was not intend,..
ed that each selected program kernel be coded in every petail or be
translated literally. The main purpose was to select program ~e;rneh

which included as many functions as possible. Eleven kernels were

-2-



selected, ten from the Saturn V Flight Program and one from the
Skylab Apollo Telescope Mount Flight Program. These kernels and
the flight program characteristics they represent are described in
Appendix A of this report.

The benchmark kernels were selected to reflect three types
of flight program functions:

o The more complex program functions.

o Those functions which were common to many modules.

o Functions which were unique but performed a par
ticularly significant operation within the flight program.

1. 1. 2 Phase II - Language Evaluation

The following three major tasks were performed during the
second phase of the study:

o Coding of Program Kernels.

o Review of Language Specifications.

o Review of Evaluation Criteria and Program Kernel
Sele c tion s •

Selected program kernels were coded in each of the languages
evaluated. It was initially intended that the sequence of applying the
languages be different for different kernels, so that no single language
would bear the brunt of solving the unique "first-time" problems for
all the kernels. However, this approach was unmanageable because
it forced the programmer to switch from one language to another on
an almost daily basis. This consumed time and created errors through
trying to recall and look up such things as which language uses:

o A period instead of a colon

o TO instead of UNTIL

o GO TO separated by a blank instead of GOTO as one
word.

This burden was judged worse than the "first-time" coding problems,
so the languages were used one at a time in the following sequence:

-3-



o SPL

o CLASP

o HAL

o CMS-2

After accounting for an initial analysis burden on the SPL effort, the
language learning times and kernel coding times did not vary signifi
cantly from language to language. The CLASP learning and coding
times were somewhat lower than for the other languages, but this is
undoubtedly because CLASP coding followed immediately after SPL
coding. Consequently, these statistics reflect the fact that CLASP
is almost a proper subset of SPL, rather than supporting a hypothesis
that CLASP is easier to learn and use. By com:parison of the source
card listings in Appendix B, it is apparent that none of the languages
requires significantly more actual writing than another. Since the
evaluation was concerned with the language design, rather than a
particular im:plementation of the design, no attempt was made to pro
cess the source cards through a compiler. The details of the kernel
coding exercise are described in Section 8 of this report.

The kernel coding was an effective application of the language,
but only to current flight program characteristics. To insure that
potential differences between current and future applications were
considered, the specifications for the four languages were reviewed
and analyzed in detail. This analysis was largely independent of the
coding of the program kernels. The language specifications were incon
sistent in organization and depth of description from one language to
another. Therefore, part of the specification review effort required
generation of language summary descriptions organized around a single
language characteristics outline. These summary descriptions pro
vided a common base of information for analysis and comparative
evaluation of the languages. These language characteristics sum
maries are found in Section 7 of this report.

During the Phase II effort, the evaluation criteria aI').d program
kernels were reviewed to determine if modification of the criteria or
additional kernels could increase the effectiveness of the evaluation.
No revisions were found necessary.

1. 1.3 Phase III - Language Requirements Definition

The single objective of this phase was to define in detail the
specific requirements for a programming language for future ·onboard

-4-



applications. This was accom.plished through extensive presentation
and review of the Phase II results and through a final review of the
m.ost recent developm.ents in future space program.s.

An additional effort was perform.ed during this phase to help
clar:ify the significant characteristics which m.ake a "flight program.
m.ing" language unique from. a m.ore general purpose program.m.ing
language. It was decided to select a current general purpose high
level language and identify those capabilities of the four flight pro
gram.m.ing languages which were significantly different from. the
general purpose language. IBM's PL/I was selected for this com.
parison, because it is the m.ost powerful general purpose language
available, it is in widespread use, and it contributed to the designs
of three of the flight program.m.ing languages reviewed.

1. 2 Conclusions

The prim.ary results of this study are, of course, the flight
program.m.ing language requirem.ents, which are introduced in Sec
tion 3 and detailed in Section 4 of this report. Som.e additional con
clusions which are not im.m.ediately apparent from. the language re
quirem.ents or from. the evaluation discus sions deserve special em.
phasis.

The first conclusion is that anyone of the reviewed languages
can, if properly im.plem.ented, provide the user a significant im.prove
m.ent over assem.bly language for aerospace program.m.ing. In that
respect, there are m.any m.ore sim.ilarities than differences am.ong
these languages. While the com.parative evaluation naturally concen
trates on exposing and analyzing differences, the reader should bear
in m.ind that these differences are on top of a broad base of sim.ilarity
and value. While this conclusion is no surprise, the point cannot be
over em.phasized. A high level language is an integral part of'a cost
effective approach to future flight program.m.ing, and recent develop
m.ent efforts reflect a com.m.on opinion about m.any of the capabilities
which should be provided in such a language.

The second conclusion sum.m.arizes the language evaluation
effort. A quantitative rating of the four flight program.m.ing languages
revealed that SPL and HAL represent a significantly increased capa
bility" and applicability over CLASP and CMS- 2. However, there is
no clear indication that either SPL or HAL is m.ore appropriate than
the other. This situation arises prim.arily because of a fundam.ental
difference in the approaches taken by the two language designs. The
SPL designers attem.:pted to m.axim.ize the power of the language by

-5-



retaining many of the popular programming techniques which have
traditionally been used by assembly language programmers. The
HAL designers attempted to maximize the reliability of the source
language programming, partly by avoiding some of the popular as
sembly language prograInming techniques which historically have
contributed to the generation of, or retarded the detection of, pro
gram errors. This dichotomy between power of expression and re
liability of the higher level language program has become a key issue
in the establishment of flight programming language requireInents.

The third conclusion is that, considering all the useful feature!,!
of all four flight programming languages, there is surprisingly little
capability provided which is not provided in some form through a
commercially available language such as PL/r. As indicated in Sec
tion 2, all of the evaluated languages except CMS-2 grew out of com
parative language studies which included PL/I as a candidate. These
studies each found PL II to have many applicable features but to be
too powerful and too difficult to use. Each study had its own reasons
to then depart from PL/I to a greater or lesser degree. Their differ
ences in capability froIn PL/I do not seem to justify their drastic
departures from the appearance and formats of a language which has
existed for many years and has the advantage of a broad base of users.

1. 3 Evaluation C rite ria Summary

This introductory discus sion summarizes the evaluation
criteria which were established during the first phase of the study.
These criteria are explained in greater detail in Section 6 of this
report, where their application to the languages is discussed. The
criteria were developed in five categories, ordered as follows:

o Quality of Expression

o Expression of Environment Interaction

o Proces s Reliability

o Object Program Ffficiency

o Source Program Readability

The order of importance of the categories is as significant as
the categories themselves, and the following discus sion explains the
reasons for that ordering as it summarizes each category. The first

-6-



two categories are concerned with what can be expressed in a language
and how well it can be expressed by the programmer. Theyencom
pass the most important evaluation criteria, because they reflect how
easily and reliably the programmer can describe a desired process.
They determine what programming techniques can be invoked by the
programmer in describing his problem. This description activity is
the first step in the program development proces s to be directly in
fluenced by the programming language. Furthermore, the product
of this activity is the source language program which is the object of
the other evaluation criteria. If effective programming techniques
cannot be invoked or if the description of their use is not well ex-
pres sed, then every evaluation category is adversely affected. For
example, if the programmer must resort to "creative tricks" to over
come a lack of straightforward expression capability in the language,
then:

o Reliability tends to be decreased by the departure
from "time-tested ' ! techniques and constructions.

o Reliability is decreased for program maintenance
activities, because the creativity of the technique
tends to obscure its intent and, therefore, the impli
cations of modifying it. The obscurity increases with
time and experiences discrete step increases as new
personnel are assigned to maintenance of the program.

o Efficiency of the object program may be degraded
because the compiler optimization techniques were
geared to more conventional use of the language features
em:ployed.

o Readability of source program is degraded by the same
obscurity which reduces the reliability of program
maintenance.

This overall influence of language expression is what causes the ex
pres sion categories to be so highly ranked.

The Quality of Expression category covers all the activities
internal to a program module. These activities include most data
declarations and manipulations, decision making, iterations, and
other execution controls. Environment Interaction has been evaluated
in a separate category from the rest of the expression criteria be
cause it interfaces with hardware and system software which impose
external constraints on the language and the programmer. Each pro
gram module has a distinct environment with which its execution

-7-



inter;~cts. The major functions that a language needs to provide to
express this interaction are in four areas:

o Communication with Vehicle Systems /Subsystems

o Synchronization with the Vehicle Mission

o Intertask Communication with Other Program Modules

o Mass Storage Access

Process Reliability is the next most important category after
the expression categories. It is concerned with the production of
error-free source language statements when they are written, as
well as the ability to efficiently detect and correct errors which do
occur. The reliability of the program development process is re~

flected in the reliability of its final product, the object program. A
higher level language 1 s greatest contribution toward a reliable object
program is in the generation of more reliable code in the beginning.
That is, most of the language features which contribute to effective
expression also naturally contribute to reliable code. However, pro
gram reliability is at least confirmed, and usually established, dur
ing the verification step of the process. There are specific features
within a language which can as sist the verification step directly.
Verification, in this context, includes all activities directed toward
finding and correcting error s in a program after it has been coded.
The Process Reliability category does not attempt to reflect the re
liability of a specific compiler or other language processor. It is
assumed that the programmer IS source language is accurately trans
lated into object language. The area of concern is in preventing and/
or detecting errors made by programmers.

Object Program Ffficiency reflects the quantities of storage
space and execution time required by the object program which re
sults from compilation of a source language program. Computer
storage space and processing power have been, traditionally, limited
to minimize weight and power requirements. Consequently, the
efficiency of the utilization of these computer resources has been a
major concern. Existing and near future computer system designs
provide a many-fold increase in processing power over previous aero
space computers. Although this relieves the heavy emphasis on
efficiency somewhat, it by no means negates it completely. It should
be realized that onboard computer applications continue to increase
in scope as well as complexity, so it is naive to assume that the avail
able proces sing power will easily outrun the required proces sing power.

-8-



Efficiency of resource utilization therefore remains a factor to be
considered.

Object Program Efficiency, as a language design consideration,
is low in the ordering of evaluation categories. This is not done to
encourage inefficiency in object programs; it is done because so few
language features are influenced directly by efficiency requirements.
Since efficiency is a measure of a resulting object program, it is
mainly a result of the compiler implementation rather than the lan
guage definition. That is, the same language implemented by differ-
ent groups or techniques can result in different efficiencies. However,
there are a few features which can be incorporated into a language which
can help or hinder the compiler in the generation of efficient object
code. The evaluation was limited to the domain of these language
features, not the techniques by which the compiler was implemented.

Source Program Readability, as considered here, is the relative
ease by which a programmer, as well as cognizant personnel not
directly involved in program implementation, can relate the completed
computer program to the problem to be solved. Clearly, this category
is closely related to Quality of Expression, because most of the features
which make a language more readable also make it m.ore expressive.
It is because of this commonality with expres sion that readability is
ranked last among the evaluation categories.

It was decided at the outset, and verified through the evaluation,
that readability needed to be considered in a restricted environment.
Specifically, it was assumed that the reader was somewhat familiar
with the problem being solved, or the process being described in the
program, and that he had received some prior introduction to the lan
guage.

-9-



(BLANK)

-10-



2. LANGUAGE EVALUATION SUMMARY

Before delving into the detailed characteristics of each lan
guage and relating them. to the evaluation criteria (Section 6), this
sum.m.ary attem.pts to provide a concise presentation of the evalua
tion results. Although the application of the evaluation criteria is
a qualitative process, the overall results have been quantified for
purposes of presentation. Figure 2-1 is a table of ratings of each
language in each of the five evaluation categories. A value of five
is assigned to the "best" 1anguage(s) in each category and the others
are assigned lower values as their capabilities dictate. Weights
representing the relative im.portance of the criteria are included.
A weighted sum. of the ratings for each language then quantifies its
overall evaluation.

Note that for weighting purposes, a single category of expres
sion com.bines Quality of Expression and Expression of Environm.ent
Interaction (in the ratio of 70% to 30%), to form. half of the total
evaluation weight.

The following paragraphs present very briefly the backgrounds
of the four language sand com.pare the highlights of the language s which
result in the ratings of Figure 2-1.

2. 1 Space Program.m.ing Language (SPL)

2. 1. 1 Background

SPL was de signed and im.p1em.ented by the System. Deve1opm.ent
Corporation (SDC) under the sponsorship of the Air Force Space and
Missile System.s Organization. The effort grew out of an SDC study
of ALGOL, FOR TRAN, JOVIAL, NELIAC, and PL/I to determ.ine
their suitabilities to space applications. These five languages were
quantitatively rated by SDC within ten different sem.antic language
attribute criteria. PL!I ranked highest in eight of the ten categories
and was tied with ALGOL in the ninth. JOVIAL ranked highest in the
tenth criterion. From. this prelim.inary screening, JOVIAL and PL/I
were selected as the two prim.e candidates and were analyzed in de
tail. Neither was found suitable, as indicated by the following quota
tion from. "Conception of SPL" (Reference A9':'):

"The prim.ary deficiencies were arithm.etic and algebraic

*References are provided in the bibliography included in Vo1um.e II.

-11-



LANGUAGE RATINGS

Languages

Categories
Wt. SPL HAL CLASP CMS-2

0 Expression
- Quality of 5 4 3 2

Expression (70%) 0.50

- Environm.ent 5 5 2 4
Interaction (30%)

0 Process Reliability 0.25 3 5 4 4

0 Object Program. 0.15 4 3 5 3
Efficiency

0 Source Program. 0.10 5 5 4 3
Readability

WEIGHTED RATINGS 4.35 4.35 3 0 50 3.05

Figure 2-1

-12-



form.ula manipulation, direct code, flexible data overlay,
input/output, and interrupt processing. PL/I capabilities
were found to be the most extensive but were not optimally
designed to spaceborne software. As well as being de
ficient, PL/I had superfluous features and was very com
plex. JOVIAL I S capabilities were nearly all applicable to
the space application; nevertheless, it too lacked capabilities
as well as pos ses sing data restrictions. It was concluded
that a procedure -oriented, application- specific language
should be developed for aerospace programming and that it
should be identified as SPL (Space Programming Language). 11

The SPL de sign effort was begun in 1967. In consideration of an
attempt by the Department of Defense to curtail the proliferation of
programming languages, and since the Air Force had adopted JOVIAL
for command and control applications, SPL was made a dialect of
JOVIAL (SPL/ J6).

SPL was designed to satisfy the requirements of three separable
programming areas associated with the development of spaceborne
software:

o Mis sion planning and formulation

o Support programming

o Flight programming

When the original SPL specification was criticized for being too
extensive for a specific application, it was decided to redefine SPL
as a single language with application oriented subsets. Currently,
there are five subsets which are supposedly upward compatible.
(However, CLASP is clearly not compatible with SPLo) The five
subsets and their intended ranges of application are:

o

o

o

o

o

MARK I

MARK II

MARK III

MARK IV

MARK V

CLASP

Fixed-point aerospace computer

Floating -point ae ro space compute r

Ground-based support computer

Ground-based multi-processor

-13-



MARK IV is the subset which was evaluated in this study as SPL.
(CLASP is discussed separately in Paragraph 2.3.)

2. L 2 Evaluation

SPL is clearly the richest and ITlost powerful of the languages
reviewed. Its capabilities are provided through high level, user
oriented features such as decision tables and ITlatrix operations, as
well as cOITlputer oriented features which allow the prograITlITler to
"get at the bits ll of the ITlachine when he wishes to. The cOITlputer
oriented features include, for exaITlp1e, a full capability for indirect
addressing, the ability to naITle and directly ITlanipu1ate any of the
prograITl controllable registers in the cOITlputer, and the ability to
custOITlize the packing of data in a table by specifying word nUITlber
and starting bit nUITlber for each field. SPL has clearly atteITlpted
to forestall, at least in ITlany areas, the COITlITlon prograITlITler COITl-
plaint II • but asseITlb1y language lets ITle do it ll

•

To a large degree SPL has succeeded in that goal, but at a
significant cost to Process Reliability. Several of the techniques
available are generally error prone and are capable of introducing
very subtle errors into the coding whose detection and diagnosis can
be very expensive. One of the biggest shortcoITlings of SPL in this
respect is that the flexibility and freedoITl given the prograITlITler allow
hiITl to generate coding errors which elude detection through static
checking by the cOITlpiler o Opportunities for this static checking are
denied in two ways. First, prograrnrn.ing techniques like indirect
addressing are provided in such a general forITl that the cOITlpiler
cannot deterITline,for exaITlp1e, that an intended indirect data access
is actually (and erroneously) ITlodifying executable instructions, or
that an indirect branch is transferring control into a data array.
The other languages iITlpose greater restrictions on such capabilities,
thereby ITlaking a broader clas s of errors detectable.

The second way static checking is denied by SPL is through
prograITlITler convenience features. Through iITlplicit data conver
sions and iITlplicit data declarations, for exaITlp1e, the cOITlpiler
aSSUITles an intent on the prograITlITler I s part, and generates object
code accordingly. Other languages require ITlore explicit stateITlents
froITl the prograITlITler and can, therefore, detect inconsistencie s
which result in errors.

EnvironITlent Interaction is provided in SPL through a powerful
input/output capability for conventional peripheral equipITlent, and

-14-



through an ability to control interrupts and react to interrupts and
other external devices. Real time synchronization and communica
tion among program modules are also provided. HAL I S approach
is more user-oriented by providing features which interface through
an executive, so they can and should be used directly by the applica
tion programmer. SPL provides a more direct interface with the
computer hardware, and is more oriented toward coding an executive
than interfacing with it. While the approaches are different, the capa
bilities are considered nearly equivalent.

Program Efficiency in SPL is more under the direct control
of the programmer than in any of the other languages. A variety
of individual techniques are available to conserve memory for spec
ific data organizations and to reduce execution time for particular
functions. SPL is ranked below CLASP in this category primarily
because CLASP provides generalized optimization directives in ad
dition to limited specialized techniques.

Readability in SPL is high, primarily because of the higher
level of description of operations through decision tables and matrix
and vector operations. Status variables and constants also provide
a mnemonic capability which gives condition flags and simple state
counters much more meaning to the readers.

2.2 HAL

2.2.1 Background

HAL is a programming language developed by Intermetrics,
Inc., for manned spaceflight computer applications. It was designed
under contract to the NASA Manned Spacecraft Center for application
to both on-board and support software. The design reflects an effort
to accomplish three major objectives:

o Increased readability

o Increased reliability

o Real time control

Specific features within the language contribute to the fulfillment of
each of these goa1so Note that these three goals correspond closely
to the three evaluation categories in which HAL received its highest
ratings.

-15-



HAL's design followed a study by Inter;m.etrics of eight
existing languages: CLASP, SPL, JOVIAL, ALGOL, FOR TRAN,
PL/I, MAC, and APL. The greatest influence on the design was
PL/I, as evidenced by the following quotation from the final report
(Reference A 7): of the development effort:

" ••• The basic syntactical structure of HAL is straight
from PL/I, which in turn owes much of its form to ALGOL.
The conditionals, DO groups, DECLARE statements, and
STR UC TURES are almost pure PLI I with word changes
here and there. On the other hand, PLI I is a very rich
and full language and has many, many features that are
not needed nor applicable. Moreover, there have been
efficient implementation of PL/I subsets, which is what
HAL superficially resembles. II

While the resemblance indicated by program listings is rather
vague due to HAL's statement format and notation, the resemblance in
terms of functions performed and techniques for describing them are
judged more than superficial. MAC contributed HAL I S two dimen
sional format and the matrix and vector notations; JOVIAL contributed
the compool concept; and the generality of the language was inspired
by APL.

2.2. 2 Evaluation

In Quality of Expression, HAL was judged slightly less capable
than SPL. While it provided the very important matrix and vector
operations in the most natural and general form, it lacks such features
as decision tables, location pointers, status variables, and multiple
entry points to program modules, all of which are judged extremely
useful.

Two other issues tend to cloud HAL's quality of expression.
The two-dimensional statement format is judged more difficult to
write, partly due to its novelty and partly due to required line identi
fiers in column one and statement delimiters. The very rich charac
ter set of HAL provides very expressive operation symbology, but
the kernel coding experience revealed that in moving from one line
printer to another, limited and different subsets of the character set
could be printed. This could be construed as just a readability pro
blem, but if the compiler output -is to reflect the input source state
ment, the restrictions feed all the way back to the coding sheet.

-16-



The objective most successfully met by HAL is increased re
liability. Some of the more error prone programming capabilities
have been excluded, and requirements for explicit statement writing
allow the compiler to perform a great deal of status checking on the
source code. Program module interfaces are carefully controlled,
and effective data protection features are included.

Environment Interaction in HAL has the most user-oriented
approach of the four languages. It provides ~xtensive input/output
and real time task control features for interfacing with an operating
system.

HAL pays the least attention to Object Program Efficiency of
the four languages. Features are limited primarily to controls over
data packing and temporary allocation of data to a task.

HAL I S approach to meeting the increased readability objective
was to provide a two-dimensional statement format and a very rich
character set and notation o These are judged to be a marginal con
tribution to readability, being most effective in complicated mathe
matical expres sions. HAL I S greater contribution to readability came
through such things as the interfaces between program modules, which
makes them easier to follow, and the avoidance of confusing construc
tions, like SPL's nested assignment.

2.3 Computer Language for Aeronautics and Space Programming
(CLASP)

2.3.1 Background

CLASP was designed and implemented by Logicon under con
tract to the NASA Electronics Research Center. It resulted from a
Logicon study to define a language for real time aerospace program
development. The primary design goal for CLASP development was
to produce a language applicable to the aerospace programming prob
lems of the present (1968) and near future. Therefore, the effort was
concerned with the program.m.ing environment of a relatively small
aerospace computer without floating point arithmetic. The result was
a very heavy emphasis on generating optimum. object code in terms
of reducing memory and execution time required, coupled with an
ability to easily specify and control the scaling of fixed-point arith
metic operations.

The study-investigated SPL and PL/I and found that while both

-17-



provided significant advantages, neither was capable of solving
certain problems in a direct, straight-forward manner. SPL· was
selected as a base for developing CLASP partly because SPL was
considered to be more nearly applicable to the design goals of CLASP
and partly because:

" ••• the Air Force and System Development Corporation
were proceeding with the development of SPL, and it was
expected that continuing cooperation among the two gove rn
ment agencies and their contractors might result in further
modification of SPL to make it more suitable and at the
same time compatible with the corresponding NASA lan
guage. II (Reference AI)

In an attempt to make CLASP easier to learn and use,less
costly to implement, and more efficient, a number of SPL features
were specifically excluded. These omissions have significantly re
duced CLASP's evaluation ratings relative to SPL.

2.3. 2 Evaluation

CLASP's strongest rating among the evaluation c;:ttegories
was in Object Program Efficiency. All of the significant time optimi
zation features of the other languages are provided, and CLASP also
has a generalized time optimization directive. Furthermore, the
language functions are simple enough to not hinder the generation of
efficient object code. The generalized storage optimization directive
is also deemed valuable, and if implemented properly should have
as effective control over data packing as the explicit data packing
attributes of the other languages.

CLASP is also strong in Process Reliability, primarily be
cause individual features are restricted enough that they must be used
in a fairly straightforward manner. The elimination of implicit data
declarations is considered especially good for reliability. The biggest
shortcoming of CLASP in this category is the automatic fixed-point
scaling by the compiler which can cause unsolicited and undesired
changes in the scaling of variables between compilations.

CLASP is weakest in the areas of expression. This is consis
tent with the design goals, but unfortunately restricted tl1e language
considerably even for the sample coding of the Saturn flight program
kernels. The Environment Interaction capability was rated lowest
among the languages because there is no input/output capability and

-18-



because an entire program organization must be compiled at the same
time. Even in the very smallest of aerospace programming tasks,
these are very expensive omissions in terms of program development
costs. The Quality of Expression rating is also low, based primarily
on a shortage of capability to express high level ope rations and on re
strictions on capabilities which are provided.

The Readability rating is low primarily because operations
must be described at a detailed level.

2.4 Compiler Monitor System-2 (CMS-2)

2.4. 1 Background

CMS-2 was designed by Computer Sciences Corporation for
use in a variety of U. S. Navy computer applications. While these
applications are not limited specifically to aerospace projects, the
language represents the Navy's current efforts for a multi-applica
tion, real time programming language. It is included in this evalua
tion to insure completeness of the effort. The CMS-2 design was
based primarily on JOVIAL, FORTRAN, and CS-l, an earlier lan
guage used by the Navy.

The CMS-2 language is part of a total system which includes
a compiler, a system librarian, loaders and link editors, a flowcharter,
and a batch processing monitor. The predecessor to CMS-2 includes
the CS-l compiler and the MS-l monitor which have been in use by the
Navy since the early 1960's. The CMS-2 development effort began in
1966 with a study of future Navy programming requirements. Based
on this study and the need to continue support of many then existing
tactical data systems, the following CMS-2 design objectives were
established:

o To combine the best features of the existing CS-li MS-l
and other new languages for new and future requirements

o To allow salvage of the maximum value from previously
developed CS-l programs, or facilitate their ready
translation

o To provide generation of object code for existing and
future computers without changing system tapes

o To include program debugging and testing features needed
for quality and efficient performance

-19-



2. 4. 2 Evaluation

CMS-2 is rated higher than CLASP only in the category of
Environment Interaction. This higher rating resulted from the fact
that, although CMS-2 pro'vides no real time task control features,
it has an extensive input/output capability and can include separately
compiled program modules in a single program organization. In the
area of general Quality of Expres sion, c:;MS-2 rates lowest. It pro
vides the least capability for higher level features such as matrix
and vector operations and decision tables, and it imposes severe re
strictions on the application of concepts it does provide. For example,
logical operations apply only to bit- strings of length one.

In the category of Process Reliability, CMS-2 is rated higher
than SPL because it does not provide flome of the more error prone
features of SPL. As in CLASP, the primary source of reliability is
through reduced capability rather than any specific positive features.

CMS-2 I s Program Efficiency is ranked lower than SPL's be
caus e it includes only some of SPL I S specific feature s. Storage
efficiency is nearly equivalent but the execution tiple features are
lacking. As in CLASP, the simplicity of the features and restriction
on their usage may make it easier to generate more efficient object
code.

Readability of the language suffers from some of the same
shortcomings as its Quality of Expression in that no higher-level
operations such as matrix/vector arithmetic are provided. In
addition, CMS-2 eliminates the equal sign as a character of the lan
guage, which seems exc~tionaliyunnatural for an algorithmic lan
guage.

-20-



3. GENERAL LANGUAGE REQUIREMENTS

The detailed language requirements, which are presented in
Section 4, were driven by the more. general requirements reflected
in the evaluation criteria. From the wealth of features and capabili
ties provided by the four languages evaluated, those which proved
beneficial to the benchmark problem programming, and were most
consistent with the evaluation criteria, were selected as language re
quirements. A few additional capabilitie s were incorporated into the
language requirements as dictated by either the benchmark program
ming problems or anticipated future requirements.

During the process of selecting capabilities from existing lan
guages and adding new capabilities, four general requirements were
imposed to supplement and emphasize the requirements inherent in
the evaluation criteria. These requirements are introduced below
and discussed in subsequent paragraphs:

o The scope of the programming activity to which the
language addres ses itself should be primarily onboard
application programming. The need for highly reliable
and very efficient onboard programs is better fulfilled
by a language which restricts its scope to that area.

o The language should be easily applied to future pro
grams whose requirements are not currently established
in detail.

o The language features should be defined incrementally
so that, for applications which do not need (or cannot
support) the full power of the language, unwanted features
can be easily omitted.

o The language design should encourage and enforce the
generation of reliable source code, which is subject
to thorough automatic testing.

3. 1 Scope of Language

One of the major conclusions drawn from this study is that
many of the features which make a language powerful, expressive,
and easy to use, are the same features which tend to allow errors to
be introduced into programs. Another conclusion is that considerable
code optimization can and should be performed by the compiler in pro
cessing a higher 1eve11anguage for onboard programs. Because the

-21-



onboard programs generally must be very reliable and highly efficient,
it is undesirable to burden the flight programming language with capa
bilities directed toward ground applications where reliability and
efficiency 'are less critical. Similarly, it is overly restrictive to
perform the ground applications programming with the reduced capa
bility and stringent usage rules of the flight programming language.

For ground applications a more general, more powerful, lan
guage with les s stringent usage rules should be employed, but there
should be maximum compatibility between the flight language and the
general purpose language. Largely for that reason, the requirements
of Section 4 specify very little language syntax. They concentrate
on capabilities the language must proovide rather than details of how
the statements must appear.

PLII, as the most powerful general purpose language avail-
able and having a broad base of current users, is the prime candidate
for a general purpose support language. However, the level of com
patibility with PL II is a separate requiremen~, independent of establish
ing the level of capability of the language.

Automatic checkout procedures represent a large source of
future ground and spaceborne programming. However, much of this
activity is omitted from the scope of the flight programming language.
There will be some checkout related functions performed as an integral
part of the operational flight program, and the flight programming
language is expected to serve these. However, the specialized test
sequences written solely for automatic checkout should be programmed
in a language designed specifically for checkout.

3.2 Applicability to Future Programs

The following programs are representative of the programs to
which a higher level language might be applied in the near future:

o Space Shuttle

o Space Station

o High Energy Astronomical Observatory

Review of computer processing requirements for these systems indi
cates that larger and more sophisticated onboard programmed func
tions are being proposed for future mis sions. Vehicle autonomy is
dictating less dependence on ground support and, therefore, increased

- 22-



activity and sophistication particularly in:

o Guidance and Navigation

o Attitude Reference and Control

o Experiment Data Processing

o Subsystem Redundancy Management

o Checkout

o Man-machine Interface

However, there is no significant indication of specific standard imple
mentation techniques which point to new language operation require
ments. Experiment data processing will require noise filtering and
data compres sian methods; guidance and navigation functions will
require more coordinate transformations and numerical integration;
checkout and redundancy management will involve extensive decision
making functions. These .activities reinforce the need (already clearly
established by the benchmark problem coding) for matrix and vector
arithmetic and decision tables. However, beyond these functions and
limit tests for checkout, no specific data manipulation techniques
were sufficiently in demand to justify incorporation into the language.

Instead, the need is for a mechanism whereby the language
user, when he does identify a generally applicable and specific tech
nique, may define it into the language by himself. This capability is
provided, to some degree, through a requirement for macro state
ment definitions in the language. Macro statement definitions will
allow the programmer to create a new language statement with whic;:h
he can describe the operation he wishes to perform and identify the
data items he wishes to manipulate.

This need is also served to some degree by the compile time
identifier which allows the language p.ser to identify a frequently used
phrase or portion of a statement with a single name. That name can
then be used in program statements to represent, descriptively, a
useful construction or combination of constructions in the language.
This technique provides the language user with the flexibility to define
some conceptual features in the form that is most useful to his activities,
rather than relying on a rigid form imposed by the language design.
Integers, which are simply fixed point numbers with no fractional
part, and Boolean variables, which are nothing more than single-bit

-23-



bit-strings, are examples of such features. Because of the power
and flexibility of this technique, the detailed language requirements
of Section 4 have omitted any language features which are easily
defined by the user as combinations of required features through
compile time identifiers.

3.3 Incremental Definition of Features

The language requirements are directed toward the maximum
capability expected to be useful and cost-effective. Thel,"e are, how
ever, future missions which will not require, nor even be able to
use, some of the capabilities provided. Real time task scheduling
and input/output operations are examples where the language might
describe more capability than a particular onboard system will
support. The requirements have been selected, and the language
should be designed so that if language features cannot be supported
they can be easily dropped from the language syntax without degrad
ing the syntax of other statements or modifying their meanings.

3.4 Process Reliability Requirements

Process. reliability is one of the evaluation criteria categories,
and this paragraph is not intended to modify or add to any of those re
quirements. It simply emphasizes the importance that reliability had
in selecting language requirements. Many of the language require
ments are in the form of restrictions on the application of a capability,
or redundant information which must be supplied in a statement, or a
specific ordering of statements. These requirements enforce standard
ization of techniques, which reduces generation of'errors, makes them
more easily detected by the compiler or the human reader, makes
program modules easier to modify reliably, and simplifies the trans
fer of responsibility for a program among different programming per
sonnel.

-24-


