PROGRAM TECHNICAL REPORT
TASK MSC/TRW A-7

APOLLO CirCUMLUNAR
 ABORT GUIDANCE CAPABILITY

PROGRAM TECHNICAL REPORT

TASK MSC/TRW A-7

APOLLO CIRCUMLUNAR

ABORT GUIDANCE CAPABILITY

Prepared for
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION MANNED SPACECRAFT CENTER

Contract No. NAS 9-4810
Apollo MTCP

Prepared by: Ina L. Cooper
M. L. Einhorn
D. B. Erwin

Approved by: \qquad
E.D.Stuckle, Manager

Manned Missions Programming Dept.
Approved by:

Mission Design and Analysis
Mission Trajectory Control Program

Page

INTRODUCTION 1

1. SUMMARY 3
2. CHARACTERISTICS OF THE ABORT LOGIC 5
3. COMPUTATIONAL METHODS 7
3.1 Outside the Sphere, Midcourse, Time and Fuel Critical. 7
3.1.1 Description. 7
3.1.2 Discussion. 8
3.2 Outside the Sphere, Midcourse, Landing Site 8
3.2.1 Description 8
3.2.2 Discussion 10
3.3 Outside the Sphere, Orbital. 10
3.3.1 Description. 11
3.3.2 Discussion. 12
3.4 Reentry Conic Subroutine 13
3.4.1 Description 13
3.4.2 Discussion. 13
3.5 Conic Subroutine 13
3.5.1 Description. 13
3.5.2 Discussion. 14
3.6 Inside the Sphere 15
3.6.1 Description 15
3.6.1.1 Patch Technique 15
3.6.1.2 Minimum De-orbit Logic. 17
3.6.1.3 Optimization Logic. 18
3.6.2 Discussion. 20
3.7 Precision Trajectory, Outside the Sphere. 21
3.7.1 Description 21
3.7.2 Discussion. 22

CONTENTS (Continued)

Page
3.8 Precision Trajectory, Inside the Sphere 23
3.8.1 Description 23
3.8.2 Discussion. 24
3.9 Circumlunar 24
3.9.1 Description 24
3.9.2 Discussion. 26
3.10 Precision Trajectory, Circumlunar 26
3.10.1 Description. 26
3.10.2 Discussion 27
3.11 Water Landing 27
3.11.1 Description 27
3.11.2 Discussion. 28
3.12 Abort Steering Law 29
3.12.1 Description 29
3.12.2 Discussion. 20
4. OVERLAY STRUCTURE 31
4.1 Linkage Directory 31
4.2 Overlay Linkage Map. 33
5. INPU'T 35
5.1 Standard Inputs 35
5.2 New Inputs 35
6. OUTPUT 40
6.1 Intermediate Solutions 41
6.1.1 Outside. the-Sphere Midcourse Landing-Site Mode Solutions 41
6.1.2 Inside-the-Sphere Landing-Site Mode Solution 42
6.1.3 Outside-the-Sphere Orbital Landing- Site Mode Solutions 42

CONTENTS (Concluded)

Page
6.2 Final Solution. 44
6.2.1 Time-Critical Mode 44
6.2.2 Fuel-Critical Mode 45
6.2.3 Outside-the-Sphere Orbital
6.2.3 Outside-the-Sphere Orbital Landing-Site Mode. 45
6.2.4 Outside-the-Sphere Midcourse Landing -Site Mode. 45
6.2.5 Inside-the--Sphere Solution. 46
6.2.6 Circumlunar Solutions 47
6.3 Landing-Site Limits - Outside the Sphere. 49
6.3.1 Fuel-Critical Mode 49
6.4 Iteration Summaries 50
6.4.1 Outside-the-Sphere Iteration Summary 50
6.4.2 Inside-the-Sphere/Circumlunar Iteration Summary 51
6.5 Target Parameter Definition. 53
6.5.1 Target Parameters 53
6.6 Thrust-Phase Print 54
6.6.1 Navigation Simulation Print. 54
6.6.2 Guidance Equation Print. 54
6.7 Error Messages 55
6.7.1 No Solution - Outside-the-Sphere Orbital Landing-Site Mode. 55
6.7.2 No Solution - Inside the Sphere 55
6.7.3 Insufficient Fuel 55
6.7.4 Optimum Trajectory Impacts on Land. 55
7. SUBROUTINE SPECIFICATION. 56
8. CONCLUSIONS AND RECOMMENDATIONS 156
REFERENCES 157
APPENDIX. A-1

INTRODUCTION

This report is generated in response to MSC/TRW Task Assignment A-7 "Apollo Circumunar Abort Guidance Capability Study." This task assignment and subsequent amendments specified the generation of a computer simulation to determine abort trajectories for the Apollo mission. This computer program was to generate these trajectories for the interval from insertion into parking orbit (geocentric) to reentry, exclusive of LEM lunar operations. The basis of this program was to be the MIT simulation described in Reference 1.

The integration scheme used in this simulation was the MSC/MAB Lunar Landing Missions Program. This is a large, flexible simulation using the Encke integration method. Since all the capabilities of this simulation were not needed, many were removed in order to reduce the size of the program.

The logic of Reference 1 has been used, with minor modification, for those abort conditions considered originally by the MIT logic. Where new logic was required to expand the capabilities of the program, an attempt was made to maintain sufficient similarity in computational method to make efficient use of subroutines.

In addition to the abort trajectory determination logic, this task was concerned with the guidance (steering) laws to be used during the abort maneuver. The "abort from midcourse" section of Reference 2 was used as a source for the guidance model. Reference 2 was also used as the source for a set of navigation equations. A rudimentary simulation of these navigation equations has been
included in the completed program in order to increase its value as an analytical tool.

The MIT logic was configured originally with emphasis on conserving computer storage requirements; the program described here has had the emphasis shifted to flexibility of computation and operation.

This report is intended to present the philosophy expressed by this logic, discuss its shortcomings, and review alternate approaches. The specifics of the simulation, including detailed logic flow charts, equations used in the formulation, and a users' manual for the simulation are also presented.

The computer program described in this report is an abort logic based on a model developed by the Instrumentation Laboratory, MIT. The MIT logic has been used, with modification, for each of the modes considered by the original simulation. Where the program has been expanded to increase its capability, an attempt was made to maintain enough similarity with the original logic to permit the maximum amount of subroutine sharing.

The simulation computes return trajectories for that interval on Apollo missions from insertion into earth-parking orbit to return; LEM lunar operations are not treated. The simulation is configured to generate the abort trajectory, or family of trajectories, which satisfy the specified constraints or optimization criteria. These trajectories are first generated analytically, and consist of simple conics or patched conics, depending on the region in earth-moon space which contains the abort. Following the analytic generation of the abort, an option is given to generate the precise (integrated) trajectory which satisfies the analytic return conditions. Where optimization occurs, it is performed around the analytic, rather than the precise trajectories. Further option is given in that the abort maneuver may be performed in the simulation either impulsively or with consideration of a finite thrusting mode. The thrusting interval occurs within the constraints of a guidance (steering) law applicable to these thrusting intervals. The target parameters for the guidance model may be determined, during the search for the precise trajectory, so that no errors are introduced by consideration of the finite burn, or so that the integrating portion of the search may be done with an impulsive thrust simulation, and only the final (converged)
trajectory simulates the guidance. This mode produces errors in the terminal conditions attributable to the effects of the finite burn compared to the impulsive simulation.

To make the simulation more realistic and to increase its value as an analytical tool, a rudimentary simulation of the navigation equations, intended for on-board computation, is coupled to the guidance equations. As an option, the navigation equations may be entered initially with preset errors in position and velocity.

The simulation has been used to generate abort trajectories from a number of abort situations. These studies were made to determine areas of needed improvement in the logic. Where these problem areas were found, the original logic was modified. Other areas of inadequacy or inefficiency were seen and are pointed out in this report for further study.

These areas include:

1. The ordering of computation in the orbital mode, outside-the-sphere
2. The method of selecting iteration limits in the conic subroutines
3. The optimization logic in the inside-the-sphere and circumlunar sections
4. The control logic for the inside-the-sphere section
5. The generation of the precision trajectory inside-and outside-the-sphere.

2. CHARACTERISTICS OF THE ABORT LOGIC

The objective of this task was to generate a logic which would determine, for a variety of abort situations, the trajectory which returns to earth with acceptable reentry conditions, subject to a variety of constraints. These constraints have led to the division of the logic into distinct modes, with differing requirements. These modes are:

1. Landing-site mode, in which the spacecraft is returned to a specified landing area
2. Time-critical mode, in which the spacecraft returns in the minimum elapsed time, subject to a specified amount of velocity available for the abort
3. Fuel-critical mode, in which the return is accomplished with minimum expenditure of propellants.

Returns are computed analytically as simple conics or patched conics. Where the entire abort trajectory is near the earth, the conic is geocentric, and the computation is called "outside the sphere." Where the abort is determined near the moon, two conics - one selenocentric, the other geocentric - are determined and "patched." At some point on both conics, the position vectors are coincident, and the velocity vectors differ by the velocity of the moon. The solutions associated with these conics are called "inside the sphere." In a third category, the abort is "outside" the sphere, but the post-abort trajectory enters the sphere of lunar action prior to return. These returns are called circumlunar.

The final constraint, that of return to a water landing, may be generated either in the time- or fuel-critical modes, and may be either inside the sphere, outside the sphere, or circumlunar.

In both the inside- and outside-the-sphere modes, the abort maneuver may be performed at the earliest possible time, or the logic may advance the pre-abort trajectory past the earliest possible time before computing the abort maneuver. The first of these techniques is called "midcourse"; the second "orbital."
3. COMPUTATIONAL METHODS

In this section, each of the major categories of the logic will be discussed separately. The order in which they are grouped follows the organization of the computer program. Since some reorganization was done to the MIT logic, the order does not follow the organization of Reference 1. 3.1 Outside the Sphere, Midcourse, Time and Fuel Critical
3.1.1 Description

This computational mode is a separate subroutine (TC-FC) in the program. The subroutine is entered when time- or fuel-critical modes are selected and the initial state vector is greater than 35,000 statute miles from the moon. The return trajectory will abort with no lateral maneuver (in-plane), and solutions will be produced for reentry range angles of 30° and 85°. The return trajectory to the reentry altitude is the same in both cases, but the latitude and longitude of the landing site are computed for both values of the reentry maneuver angle. For these calculations, an average reentry range angle rate of $4 \mathrm{rad} / \mathrm{hr}$ is assumed.

The computation consists of the required velocity at abort in terms of the flight-path angle at abort, the orientation of the pre-abort trajectory, and the magnitudes of the position vectors at abort and at reentry.

The computation is an iterative solution of the required velocity at abort, using the cotangent of the flight-path angle at abort as the independent parameter. In both time- and fuel-critical modes, the initial computation is the determination of the minimum fuel trajectory. If the mode is fuelcritical, the fuel-critical solution is examined. If the required velocity exceeds the velocity available for abort, the minimum fuel solution is
returned with a warning concerning the circumstances. If there exists a greater velocity capability for abort than is required for the fuelcritical solution, the iterative loop is reentered to drive the required change in velocity to that value available. Implicit in this technique is the assumption that the minimum time return will always occur when the total velocity available for abort is used. No exception to this assumption is apparent. The bounds on the cotangent of the flight-path angle (COGA) were originally selected so that the minimum value produced a parabolic return conic and the maximum value produced a return conic which could not enter the moon's sphere of action prior to reentry. This set of values is still used, unless a limiting value for the maximum reentry velocity has been input. In this case, the limits are the positive and negative roots of the solution which results in the maximum reentry velocity.
3.1.2 Discussion

This subroutine is free from singularity and converges rapidly in all circumstances. The only alteration to the logic of the original MIT program is in setting the limits on the independent variable and detecting that circumstance where insufficient fuel is available for the fuelcritical solution, when in the time-critical mode. These changes were made to allow for a hyperbolic reentry and to enhance the efficiency of the subroutine.

3.2 Outside the Sphere, Midcourse, Landing Site

3.2.1 Description

This computational mode is a separate subroutine in the program. The subroutine is called when the abort position is outside the lunar sphere of action, the period of the pre-abort orbit is greater than 10 hours,
and the mode is landing-site. The return trajectories in this logic return to the four landing locations assembled in the program. All geometric possibilities for each location are computed. For each location, the solution characterized by a minimum change in velocity at abort is saved. From these minimum-fuel cases, the minimum-return-time solution is used to generate the precision trajectory.

For each landing location, return inclinations are considered between a minimum value equal to the magnitude of the latitude of the landing site and a maximum vale of 38°. The interval is divided into 5° increments.

For each inclination interval, the velocity required for plane change is computed for one of the possible return planes with the specified inclination. If the plane-change velocity requirement exceeds the allowable expenditure of fuel, the other solution is examined. If neither solution satisfies the plane-change capability, the inclination is incremented. If the fuel constraints are not violated by the plane-change requirements, one of the intersections of the return plane with the locus of the returnsite latitude is selected, and the computations proceed.

The location of the landing site is determined at a time corresponding to a parabolic return, and the difference in right ascension between this location and the previously determined intersection is found. This location when converted to equivalent time (earth's rotation) with the parabolic flight time, determines the transit time to the landing location. The reentry conic subroutine is used to determine the conic solution or to determine that a solution does not exist. If a solution is not found,
or if the solution found violates the constraints imposed on the reentryrange angle or the velocity available for abort, the transit time is incremented by a sidereal day, and the computations are repeated. The remainder of the solutions are examined, in turn, by combining the landing locations with the geometric parameters for the return.

3.2.2 Discussion

This logic restricts transit time so that the return is to be not less than the parabolic trip time. This implies that solutions may not be examined for hyperbolic return. To extend the capability to hyperbolic, the computation of transit time corresponding to the maximum value of reentry velocity is required. While this does not represent a major computation, it was not felt that the additional complexity was justified in this mode.

This section of the logic has been found to be reliable and reasonably fast in computation. No modifications were made to the original logic specified by Reference 1 .

3.3 Outside the Sphere, Orbital

3.3.1 Description

This computation mode is entered when the abort point is outside-thesphere, the period of the pre-abort trajectory is less than 10 hours, and the mode is landing-site. In this mode, the abort maneuver is performed at some time after the earliest possible time. The landing locations and the range of inclinations are treated as in 3.2.

The computation is initiated by selecting an inclination and one of each of the two geometrical parameters for the return. The location of the
landing site is computed for the abort time. The normal to the return plane (containing the landing site) is constructed. The intersection of this plane and the plane of the pre-abort trajectory determines the abort location. The angle between the initial position and the abort position is determined. If this angle exceeds 270°, the geometrical parameters for the return are changed individually until a solution is determined which does not exceed this constraint, or until the range of inclinations has been exhausted. When a parameter set is found which passes the previous test, the conditions on the pre-abort trajectory at the abort position are computed and used to determine the velocity requirement for plane change. If the velocity requirements exceed the available velocity, the geometrical parameters are again varied individually until a solution is found, or the range is exhausted. When the above test is passed, the transit angle from the abort position to reentry is computed with an assumed reentry-range angle of 30°. Should this angle be negative, the procedure discussed previously is reentered to find an acceptable parameter set. The next test is on the contangent of the path angle at the abort position for the post-abort trajectory.

If this parameter indicates that the return conic is hyperbolic, the search logic is again entered. When this test is passed, the logic computes the time at which the landing location will be reached. This time is compared with the previously computed value which was initially set as the time the logic was entered. When the difference between these times is large, the location of the landing site is recomputed for the time just determined as the return time. The computations are then restarted, and the process continued until the time difference at
the landing site is small. When the time loop is converged, the velocity required for abort is computed and compared with the available velocity. If the velocity required for abort is less than that available, the solution is stored. This procedure is repeated until each of the possible solutions for each landing location has been explored.

3.3.2 Discussion

Some difficulty exists in this subroutine because some of the parameters for the return are examined before the time loop is converged. For example, on the first pass through this logic, if the velocity required for plane change is too large, the logic will resort to a different solution, even though the solution which failed the test was computed for the incorrect location of the landing site. This procedure may fail, for this reason, to find all of the possible acceptable solutions. During the course of the task, the logic was altered to fail these tests on constraints only if the time loop had converged. As in the midcourse landing site problem, the return is precluded from examining hyperbolic returns. The shortcoming may be overcome by changing the test on the cotangent of the flight-path angle (COGA) from the parabolic limit to a value computed for the maximum reentry velocity. This will necessitate a change in the time computations to allow their solution for hyperbolic conics.

An infrequent source of difficulty in this subroutine has been an oscillation in the time loop. This has not been found to be a frequent or serious occurrence. A permanent "fix" could easily be made by damping in the time loop. This damping, however, has not been added. A fixed damping factor would slow the rate of convergence for all cases, including the majority which do not oscillate. An alternative would be to add logic
to detect oscillation and to damp only those solutions. This was not done, since it was felt that the few instances of occurrences did not justify the added complexity.

3.4 Reentry Conic Subroutine

3.4.1 Description

This subroutine is used to solve for the parameters of the return conic, given a reentry flight-path angle, the time on the return conic to the landing site, and the transit angle to the landing site. The logic consists of an iteration on the cotangent of the flight-path angle at the abort point to simultaneously satisfy the transit angle and the transit time. The reentry portion of the trajectory is assigned the average rate of $4 \mathrm{rad} / \mathrm{hr}$. The reentry-range angle is not bounded.
3.4.2 Discussion

This subroutine has been found to be trouble-free and computationally efficient.

3.5 Conic Subroutine

3.5.1 Description

The conic subroutine is designed to solve three distinct conic problems involving time. These are Lambert's problem, in which the initial and final position vectors and transit time are specified; Kepler's problem, in which the initial position and velocity and transit time are specified; and the time-theta problem, in which the initial position and velocity are specified with the transit angle. In each of these problems, a solution is made for the missing parameters among initial and final position and velocity and time.

These conic solutions are written around Battin's parameter, a universal conic variable, so that no distinction need be made according to the type of conic.

The solution to Lambert's problem consists of an iteration on the contangent of the flight-path angle and the universal parameter. The other solutions iterate only on the latter.
3.5.2 Discussion

In both of the iterative loops, the form of the logic driving the iteration was modified to provide a linear search (falsi) on the independent variable. The change was made to provide more rapid convergence. An attempt was made to "gain" the loop driving both iterations, but several instances of instability were observed. The present formulation is a linear search. One persistent difficulty has been found in assigning the maximum allowable value for the universal variable. The parameter has value to infinity and, in the practical sense, to very large numbers. These large values are observed primarily when a solution is made on the hyperbola when the radial distance (true anomaly) is large. The use of a very large value can result in overflow in computation of internally generated functions; the use of too small a value may result in failure to converge.

With the exception of this minor problem area, the subroutine has been found to be an excellent tool, furnishing rapid convergence and freedom from singularities coupled with a simple formulation.

Because of the way in which this routine is used in the abort logic, an exceptional degree of accuracy and consistency has been required. These requirements have made it necessary to formulate the subroutine with double precision. While this undesirable situation might be avoided by altering the logic in the remainder of the program, or by modification to this routine, neither was deemed justifiable.

3.6 Inside the Sphere

3.6.1 Description

This subroutine is the largest single computation block in the program. The solution of each of the modes is contained, in addition to a fairly large optimization logic. The solution produced is, in each case, a patched conic exhibiting the desired earth-phase characteristics. The earth-phase solution, for the time-and fuel-critical solutions, is made with a fixed return inclination. The independent variable for optimization is the energy related quantity VSS. This quantity (VSS) is the square of the speed in the earth phase at the sphere, divided by μ. Since the magnitude of the position vector (geocentric) at this point varies little, the quantity is related to the semi-major axis for the transfer. The logic in this subroutine consists mainly of three sections: a logic to achieve a patch, a logic to select the fuel-optimum abort time, and an optimization loop. These will be described individually.

3.6.1.1 Patch Technique

The patch is produced by maintaining a position match and an energy match and by forcing the angle between the velocity vectors from the two conics to a small value.

To initiate the patching procedure, a selenocentric position at the exit to the moon's sphere of action (MSA) is assumed. A value for VSS is selected, along with a time at the MSA. The inclination for the earth-phase conic is generated according to the declination of the moon, if the mode is time-or fuel-critical. These data are used to determine the earth-phase conic. The velocity on this conic at the exit point is transformed to the lunar phase, and a conic, whose exit speed is the same as this velocity, is
generated containing the abort position and the exit position. The angular difference between the velocity vectors from the two conics (that generated in the earth phase and that generated in the moon phase) at the exit point is the error in the patch. This error will be removed by altering the position of the exit point. The change in the position of the exit is computed as a rotation through the angle between the velocity vectors and parallel to the plane defined by the two vectors. At the exit point, the moon-phase conic has a large true anomaly; thus, the position and velocity vectors are separated by a relatively small angle. This implies that the motion of the position vector will well represent the motion of the velocity vector. The earth-phase conic velocity vector at the sphere (for constant VSS) is relatively invariant with the location of the exit point. Since a constant vector difference (the velocity of the moon) exists between this vector and that vector transformed to the moon phase, the moon-phase velocity from the earth-phase conic is insensitive to the motion of the exit point. The change in the exit point is made, then, to rotate the moon-phase conic velocity through the angle representing the error. This procedure is repeated until this angular error is small.

When the patch has been achieved, the transit time on the moon-phase conic is computed, used to calculate the time at the exit point, and compared with the previous calculation of this time. If the difference is large, the exit time is set equal to the time derived from the transit, the moon is "repositioned," and the entire computation is repeated. The patch is considered complete when the time difference is small.

3.6.1.2 Minimum De-orbit Logic

The logic inside the sphere, like that used outside the sphere, contains both midcourse and orbital modes. Again, the midcourse logic demands abort at the earliest possible time; the orbital logic delays abort until a later time determined by optimization. The parameter for optimization in this case is the amount of fuel required for abort. Also, in similar fashion to the outside-the-sphere logic, the choice between midcourse and orbital modes is made internal to the logic, based on the pre-abort trajectory. The mode is set orbital if the eccentricity of the pre-abort trajectory is less than 0.7 , or if the radial velocity (selenocentric) is positive, or if the distance from the selenocenter is less than 10,000 statute miles. If none of these conditions is met, the mode is midcourse. In addition, if the solution desired is fuel-critical, the mode is set orbital regardless of the previous tests.

Even though the earth-phase conic must be direct, the patch allows the moon-phase conic to be either direct or retrograde. This choice is made, based on the sub-regime (orbital or midcourse) and the angle between the abort position and the exit (MSA) position. The motion is retrograde if the angle between the abort position and the exit point is less than 180° (for retrograde motion). If the transfer angle is greater than 180° and the mode is midcourse, motion will be direct.

Once the post-abort type has been selected, the optimum departure time is selected by advancing along the pre-abort trajectory in fixed angular steps until an extremum in required velocity for abort is reached. This search procedure is facilitated by checking the angle between the abort and exit
position, prior to entry into the de-orbit logic. When this angle is larger than 180° and the mode is orbital, the pre-orbit trajectory is integrated forward to a time corresponding to a time on the conic trajectory where the position vector is nearly 180° removed from the exit point. For those cases where the exit position is contained in the plane of the pre-abort trajectory, the angle will be exactly 180°. This procedure is followed because the velocity required for plane change is maximized when the exit position projected on the plane of the pre-abort trajectory is 180° from the abort position. The orbital logic is configured to find the velocity minimum on the "exit" side of this maximum. When the fuel-optimum departure position has been determined, the patching logic is re-entered.
3.6.1.3 Optimization Logic

This logic is written around the inside-the-sphere solution, and, with the exception of the determination of the earth-phase conic, is the only logic in this phase which distinguishes between the various abort modes (time-and fuel-critical and landing-site). For the landing-site mode, no genuine optimization is possible. In this mode, the first entry into this section compares the velocity requirements from the patched abort conic with the available. If the limit is exceeded, 24 hours are added to the transit time in the earth phase. If this action will result in a total elapsed time to return of less than 120 hours, the inside-the-sphere solution is repeated. If this action does not reduce the required fuel to acceptable limits, the logic returns no solution.

In the fuel-critical mode, this logic returns the first solution, corresponding to the minimum value of VSS if the pre-abort trajectory was elliptical (selenocentric). For hyperbolic conditions, pre-abort, the logic
searches on VSS until an extremum is reached on the required velocity-VSS function, at which point the solution is returned. For the time-critical mode, two paths are furnished. The paths are selected by means of a flag set by the conditions of the pre-abort trajectory. The first path is selected if the pre-abort conic is hyperbolic and the mode is orbital. In this branch the initial patched conic is generated for the maximum value of VSS. If this conic solution satisfies the constraint of available velocity, the solution is accepted, and the subroutine exited. If the velocity constraint is violated, the parameter VSS is reduced by a fixed amount, and the inside-the-sphere problem is resolved until the velocity required is less than that available. When this condition is achieved, a linear search is made on VSS to derive the required velocity to the available velocity. When the difference between these is less than 5 statute miles per hour, the solution is accepted.

In the other branch, the initial solution for the earth-phase conic is made with the minimum value of VSS. A second solution is made immediately with the maximum value for VSS. The required velocity for the minimum VSS case is tested against 1.01 times the available velocity. If the required value exceeds this percentage of the available velocity and the solution exhibits direct motion, the mode is set to orbital, and the entire problem reinitiated. If the solution was retrograde, the solution with minimum VSS is accepted, even though it violates the velocity constraint.

If the velocity constraint is not exceeded by the minimum VSS case, the required velocity for the maximum VSS case is tested against 0.99 times the available velocity. If the required velocity is greater than this percentage
of the available velocity, a linear search is made on VSS to drive the required velocity to within 5 statute miles per hour of the available velocity. If the required velocity is smaller than this fraction of the available velocity, the maximum VSS solution is accepted.
3.6.2 Discussion

The inside-the-sphere logic has been found, of all the program logic, to be the section most prone to failure. This failure is exhibited in either outright failure to converge, or in finding non-optimum solutions. In addition, the logic has been found to be relatively inflexible, thus reducing its value as an analytic tool. The most frequent failure was a tendency for the patching mechanism to oscillate in such a manner that the solution was not reached. This fault was corrected, at MIT suggestion, by damping the "patch" loop whenever successive solutions reversed direction. The damping was accomplished by averaging angular rotations of the exit-position vector. The fix has been entirely successful, at the cost of relatively small increase in program complexity. A second failure mode was found in the oscillation of the time loop. This occurred infrequently; however, this loop was damped in a similar fashion to the exit-position loop.

The non-optimum solutions, found by comparisions with similar simulations, were found to be attributable to the manner in which the abort was selected (i.e., the choice of retrograde or direct) and to the operation of the de-orbit logic. As a study effort, the logic was altered so that the form of the abort was forced to compare with the comparison trajectories. While this brought about excellent agreement, the difficulty in mechanizing these changes brought attention to the lack of flexibility. Attention given the problem of program control in the inside-the-sphere logic would considerably improve the simulation.

The modified logic exhibited a tendency to generate abort trajectories which impacted the lunar surface. While this tendency was not observed in the original logic, a change was made to apply a minimum altitude constraint. This was effected by controlling the de-orbit logic (or VSS for the midcourse mode) to insure non-impact.

The final area deserving additional attention is the de-orbit logic. While the original logic is seen to be trouble-free and compact, it is not clear that the minimum produced is optimum. During the simulation, there were indications that an occasional trajectory benefited by aborting prior to the opposition of the exit point. These cases violated the original logic when abort modes were forced which would not have been selected by the original logic.

Changes made to the original logic were minor, and generally consisted of replacing formulae which exhibited indeterminacy, or in using alterations designed to make violations of the logic easier. These violations were performed to study specific abort situation.

3.7 Precision Trajectory, Outside the Sphere

3.7.1 Description

The technique used outside the sphere to generate the precision trajectory consists of calibrating an analytic statement of the trajectory against an integration of the initial conditions of this trajectory. The mechanism is fairly simple, and is constructed so that a conic trajectory is produced which connects the abort position with some reentry position at the conclusion of the analytic portion of the program. This reentry position is selected to satisfy the constraints and optimization criteria placed on the problem.

The state vector at the abort position (post-abort) is integrated forward over a time corresponding to transit time from the analytic trajectory. A Lambert's problem is solved with the abort position vector, the terminal position vector from the integration, and the transit time. The initial velocity from the conic solution to Lambert's problem is differenced with the previous value to produce a correction to the initial velocity. The procedure is repeated until the terminal position from the integration is sufficiently close to the desired terminus from the original analytic solution.
3.7.2 Discussion

The procedure used here is three dimensional, and only the terminal (reentry) position is controlled. This forces the effects of perturbations to be evidenced in the terminal velocity. In the simulation this result is apparent, since neither the reentry flight-path angle nor the reentry speed agrees with the desired value. These effects are small (on the order of 0.1°), and no effort has been made to develop a more sophisticated model. Such a model might consist of the calibration of the entire analytic model, driving iteration, rather than the Lambert's solution. Such a search could be made six dimensional.

An infrequent occurrence has been a failure to converge. This situation was recognized in the original (MIT) logic, and a fix was specified. This fix consisted of solving the problem in reverse so that the initial, rather than the final, position was satisfied. While this is a reasonable solution, it was felt desirable in this simulation to include a guidance "targeting" scheme as a part of the iterative solution. This precluded the use of the specified fix.

As described in the section concerned with the steering logic, the target parameters are functions of the elements of the post-abort trajectory. Since these are readily obtained from the trajectory decision logic, an option was provided to include a simulation of the guided (finite) thrusting interval. This option may be exercised in one of three ways: the iteration may be done entirely with impulsive simulation of the thrusting, the iteration performed impulsively and the converged solution repeated with the finite burn, or each iteration may be made with finite burns. The last method has the advantage that the final trajectory is adequate in the presence of the finite burn within the restriction of the formulation. Additionally, it has been found that the procedure does not appreciably slow the rate of convergence.

One problem encountered with this targeting technique occurs in abort from near-reentry altitudes. In this instance, the time required for the burn may exceed the transit time on the impulsive conic to reentry. When this situation is encountered, the simulation cannot compensate; thus, no convergence is achieved.

3.8 Precision Trajectory, Inside the Sphere

3.8.1 Description

In contrast to the solution used outside the sphere, the inside-sphere logic uses a linear partials search. This is accomplished by solving from the inside-the-sphere conic for the rates of velocity with position at the exit point. These solutions are determined by successive perturbations of the nominal exit position with Lambert's problem solved each time (abort position, perturbed exit position, and transit time). A similar set of sensitivities is derived from the equation set used to determine the earth-phase conic. When the sensitivities have been developed, the nominal abort conditions
(post-abort) are integrated forward to a time corresponding to exit from the sphere for the analytic solution. The reentry conditions are integrated in reverse to this same time, and the error in position and velocity between the two conics is computed. The sensitivity matrices are used to drive these errors to small values in an iterative loop.

3.8.2 Discussion

The technique used here has been found to be rapid in convergence for the first several iterations. The original logic allowed a total of four iterations, without regard to the errors remaining at the end of the fourth pass. Some instances were observed in which these errors were large, and the logic was modified to allow an additional four iterations. The increase in accuracy was small over the additional iterations.

Additional study is necessary in this area to adequately improve the method.

It should be pointed out that the method used inside the sphere, unlike the solution outside the sphere, is six dimensional.

3.9 Circumlunar

3.9.1 Description

This logic, like the inside-the-sphere logic, achieves a patch by use of linear sensitivities. The parameter used for optimization is the transit time to the first entry to the MSA. The mechanism is as follows: a transit time to the sphere is assumed, an entrance point is assumed, and Lambert's problem is solved between the two positions. The velocity resulting at the sphere is transformed to the moon phase and propagated to the exit from the sphere. The entrance position is perturbed, and the sensitivities of the exit position with the entrance position are computed. In an initialization
procedure, these partials are used to drive the exit point to a point 45° behind the earth-moon line in the plane of the moon's motion, and the earthphase conic is solved exactly as in the inside-the-sphere logic. The value for VSS on the earth-phase portion is taken from the moon-phase conic (transformed earth phase). This procedure results in conics which match in position at the exit from the sphere, have the same energy, but whose velocities at this point are separated by some angle. The entrance position is again perturbed, this time resulting in partials relating to motion of the velocity vectors from the two conics. These sensitivities are used to drive the angular separation to a small value.

The optimization logic is quite similar to that used inside the sphere, except that transit time to the sphere is used for optimization. The primary assumption made is that minimum time trajectories will result from maximum reentry velocity trajectories. Thus, if the mode is time-critical, the transit time to the sphere is adjusted until the reentry speed is equal to the maximum value. If this solution does not violate the constraints placed on the minimum lunar altitude or the maximum velocity available for abort, the solution is accepted. If either constraint is violated, an attempt is made to satisfy the constraints by moving the minimum amount away from the maximum reentry speed conditions. If the mode is fuel critical, successive solutions are made, using transit time to the sphere as a variable, until a minimum required velocity condition is reached. The constraints on reentry velocity and lunar altitude are treated as in the time critical case. For the landing site mode no aitempt at optimization is made. As in the inside-the-sphere logic, if no solution is found initially, the earth-phase transit time is incremented by 24 hours in an attempt to reach a solution. If a
constraint is violated on the first attempt, the same transit time increment is used.

3.9.2 Discussion

Many alternatives were investigated in selecting a patching technique for the circumlunar mode. The one selected was the only one found which converged consistently in each of the abort situations tested. In addition, it converges rapidly and is a fairly small logic package.

The optimization logic is one area obviously in need of improvement. This logic, particularly for the fuel-critical mode, requires what seems to be an excessive number of iterations. It is also possible that there may be simultaneous consideration of the various constraints and optimization parameters. Of the entire collection of logic in the simulation, this is the area most requiring further investigation.
3.10 Precision Trajectory, Circumlunar
3.10.1 Description

This routine was designed to share the logic used in solving the precise trajectory from inside the sphere. The single major modification is the manner in which the rates of change of exit velocity with exit position are determined. Since no closed solution exists for the statement of exit position, due to the required coordinate transformation at the entry, an analogous problem to Lambert's could not be solved. Instead, the components of initial velocity on the post-abort trajectory were perturbed individually, and these perturbed conics were propagated to the exit time for the nominal trajectory. These trajectories then furnished the rates of change of position and velocity at the exit with the initial post-abort velocity. These two sets of partials were combined to produce the deriv-
atives of velocity at the exit with position at the exit. Once these derivatives were established, the inside-the-sphere routine was used to compute the necessary change in the exit position in order to "patch" the integrated segments of the trajectory. The initial velocity corresponding to this new position was approximated by use of the sensitivity matrix relating post-abort velocity with exit position. The procedure was repeated until the errors in position and velocity at the sphere were small.

3.10.2 Discussion

This routine has been found to be trouble-free and relatively efficient. An investigation was made into the improvement in the rate of convergence afforded by multiple solutions of the sensitivity matrices. The rate was not appreciably increased, and the present formulation computes these quantities only once.
3.11 Water Landing
3.11.1 Description

This logic does not solve specific trajectory problems, but is a control logic written around the other modes. The purpose is to define the time or fuel optimum trajectory which impacts on water. The mechanism uses a set of tables giving the boundaries of the land masses. These tables consist of ordered pairs of latitude and longitude. The tables are ordered so that successive pairs in the table define adjacent points on the land boundary. At present, the land area is represented by two land masses defined by a very few boundary points.

In this mode, the desired return will be either time or fuel critical, and the trajectory may be outside the sphere, inside the sphere, or
circumlunar. In any event, the optimum conic (time or fuel critical) is generated, and the resulting landing site is checked to determine if the impact was on a land mass. Since several regions of longitude contain no land areas, the longitude of the return site is first tested to determine if it lies in one of these areas. If it does, the optimum solution is accepted. If not, the table of boundary points is entered and searched until a latitude pair is found which bounds the impact latitude. These latitudes and the corresponding longitudes are stored, and the search resumed to find the next pair of latitudes bounding the return latitude. When two such pairs are found, an interpolation is performed to produce the longitudes corresponding to the latitude of the return. If the longitude of the return is not contained in the interval between these two longitudes, the data is discarded, and the search is continued for an additional set which bound the return latitude. This is continued until it is determined that the impact was on land, or until the table is exhausted. If the table is exhausted, the procedure is repeated for the remainder of the land masses. If no land impact is found, the optimum trajectory solution is accepted.

If it is determined that the impact was on land, the logic returns to the trajectory determination logic, in the landing-site mode, and finds the analytic solution for each of the boundary points in the table corresponding to the land mass on which impact occurred. These solutions are then searched to find the appropriate minimum.
3.11.2 Discussion

The underlying assumption in this logic is that if land impact should occur, the most desirable water site will occur on the boundary of the land mass
which contained the optimum return. This implies that the problem does not have relative minima such that a desirable return is located further from the optimum return than the boundaries. While this has not been observed, the problem merits further study.

It is also felt that to be useful, the land boundaries need to be more precisely defined by using additional points in the tables. In that case, a more sophisticated search along the boundaries would be feasible.

3.12 Abort Steering Law

3.12.1 Description

The steering model used in this program was taken from Reference 2. It is the simplest of the modes given in Reference 2, since steering is not affected by the time derivative of the required velocity. In this model, a required velocity which satisfies a set of parameters is computed for each position during the integration. The thrust vector is aligned along this direction, and integration continues until the velocity is equal to the computed, required velocity.

The target parameters are p, the semi-latus rectum; e, the eccentricity; i, the inclination; and two flags defining the direction of the radial and tangential components of velocity. As explained in the precision trajectory sections, an option is provided to determine these parameters during the iteration so that no errors result in the simulation of the finite burn.

Also included in the simulation are a rudimentary set of navigation equations taken from Reference 2. These consist, in essence, of a trape-
zoidal integration of a spherical gravitational acceleration and the acceleration due to thrust. An attempt was made to simulate the action of the accelerometers by approximating the change in velocity due to thrust. In the simulation, these navigation equations are used to furnish the state vector to the guidance model, while the standard trajectory simulation integrates the total acceleration. An additional option is the capability to input initial errors into the navigation equations in order to perform error analyses.
3.12.2 Discussion

The sole problem encountered in the guidance simulation involved a case which resulted in a failure of the guidance to produce a steering function. This occurs when the position vector is larger than the apogee distance computed from the target parameters, pand e. It is felt that this occurrence will be infrequent, and no corrective measures were applied.
4. OVERLAY STRUCTURE

The function of this section is to define the linkage to the overlay structure of the program. Overlay became necessary as the program capabilities increased. The structure is defined to provide a minimum of tape interface. since the present 7094-II stand alone software utilizes tape overlay. The overlay structure is defined in two sub-sections: 4.1 Linkage Directory - Giving subroutine names within a prescribed link.

IINK $0 \quad$ ALPAG \varnothing BLDCK
CINT
CNVRT
DERIV
ENCKE
FCØMP
FSFB
JPLEPH
IAMBS
LATLめN
Incer
MAIN
M $\varnothing \mathrm{P}$
MTRXMP
NEWT
фSCUL
PDIAR
PRINTN
RASCGR
REENTY
REST \varnothing R
RKINT
STEP
SUBSAT
SUMR
TB $\varnothing D Y$
TERMIN
UNII
VCMSC
VECT
WLSCN

4.1 Linkage Directory - continued

LINK 1 ØRIGIN A ANALYT
LINK $2 \emptyset$ RIGIN B TCFC
LINK 3 ØRIGIN B øøUTS
LINK 4 ØRIGIN B CIRCUM
LINK 5 ØRIGIN A INM
IINK 6 ØRIGIN A INITAL INV 3×3 NAVIER PEICDM PMATC PRINTT PTCIN
TCUT
THRI TPRINT

LINK 7 7 PRIGIN A	PRINTI	
		PWL \varnothing AD
	SYMB	

4.2 Overlay Linkage Map - Showing the various levels of the links and the function of each.

Link
LINK 0

LINK 1
LINK 2 Outside the sphere midcourse time critical and fuel critical analytic computations.

LINK 3 Outside the sphere orbital landing site analytic computations.

LINK 4 Circumlunar analytic computations.
4.2 Overlay Linkage Map - continued

Link Functional Definition
LINK 5 Inside-the-sphere analytic computations.
LINK 6 Thrusting routines for Encke; inside-the-sphere control and final integrated trajectory computation routines.
LINK 7 Case initialization routines.

5. INPUT

This section of the document will be devoted to defining the necessary inputs to ATAP. The inputs will be considered in two categories:

1. Standard inputs to the MSC-Encke Lunar Trajectory program.
2. New inputs required to take advantage of the abort features of the program.

5.1 Standard Inputs

The standard inputs (category l) will be discussed only in terms of the changes to the existing MSC documentation concerning inputs
to the program. The major differences are as follows:
INJECT - The ATAP program will only accept values of 11 or 21 as inputs. (i.e., only $\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{x}, \mathrm{y}, \mathrm{z}$, either geocentric or selenocentric, are acceptable inputs for the initial state vector).

The variety of special stops, such as GAMETH, are not recognized by ATAP. The program controls stops only through use of TMAX and RMINE.

RMINE - Should always be set to 1.01910943 earth radii.

5.2 New Inputs

The new input parameters (category 2) are defined in Table I. Specific headings and sub-headings in the table are defined below.

5.2 New Inputs - continued

Card Format Information:
PARAMETER NAME - Up to six alpha-numeric characters representing the name of the parameter being input. Columns 1 - 6 on the data card.

PSEUDO OP. - Describes to the input loader the format of the parameter, columns 16-72 of the data card, being loaded (BCD - alpha-numeric; OCT - octal; DEC - decimal).

DEC. PT. - Defines if decimal point is required for the given parameter.
R - decimal point required NR - decimal point not required

PARAM UNITS - Defines the units expected by the program for this parameter.

MAX ENTRIES
THIS NAME

- Defines the maximum allowable entries which can be input to the program under the given name.

MODE
ASSOCIATION - Defines how each of the new input parameters are associated with the operational modes of the program. The user may scan the columns for required or optional inputs to the mode which he intends to execute.

ST - Standard trajectory or non-iterative type of run.

MODE ASSOCIATION - continued
TC - Time critical mode desired.
FC - Fuel critical mode desired.
LS - Landing site mode desired.
$R / \varnothing-R=$ required input for the mode;
$\phi=$ optional input for the mode.
PARAMETER
DESCRIPTION - Description of the parameter being input.
In the event the program expects one of several values for this parameter, these values along with their description will also be presented.

Appendix A will present sample input lists for execution of the various modes of operation of the program.

CARD FORMAT $\operatorname{dFORMATIO}$				fafam UIITE	Mix. THI: NA. E	: me : liciciatio:								PARAETER DESCRIPTTON
PARAMETER NAME COLS. 1-	PSEVDO OP. COLS. 8-10	DEC. PT.				-		TC		PC		Ic		
		R	NR			F	\varnothing	R	\varnothing	R	\varnothing	R	\emptyset	
AVFusis	IEC	X		ER/HR	1	x		x		\mathbf{x}		I		Madman ΔV available for abort maneuver. For fuel critical modes, this parameter must be set equal to 0 imitially.
$\mathrm{Cumax}_{\text {Cotar }}$	${ }_{\text {Lec }}^{\text {Lex }}$	x x		ER/HR	1	x		$\frac{x}{x}$		$\frac{x}{x}$		$\frac{x}{x}$		1. Marimal re-entry velocity 2. Conterngent of re-entry
RR	Dec	x		ER	1	x		\mathbf{x}		I		x		3. Magmitude or re-entry $\left.\begin{array}{l}\text { redius vector }\end{array}\right\}$ re-entry parmeters.
NLS	dec		x		1							x		Mumber of lanting sites to be considered in LS mode MLS ≤ 4.
alat	dec	x		IEG	4							x		Latitudes of the MLS posoible landing sites.
AL¢N	nec	x		deg	4							I		Longitudes of the NLS possible landing sites (masured positive east).
BURNFL	DEC	x			1			\mathbf{x}		x		1		Flag to contral type of burn to be axecuted during iterative phase of the program. It also controls the print during the burn cycles: $=-1$ This is a non-iterative run $=0$ Do impulsive burns without print $=1$ Do inpulsive burns with print $=3$ Do finite burn with print $=2$ Do finite burns without print
[ETII	Ime	\pm		HRS	1				x		x		I	Kindman elapsed time from epoch to ebort (built in as . 01666666 hrs .).
H2¢fG	dec		x		1				X		\mathbf{x}		I	Flag to indicate if water landing required: $=0$ Ho water landing constraint $=1$ Mater landing constraint irposed
CFLAG	$\underline{\mathrm{ImC}}$		x		1				x		x		I	Fiag to indicate use of circulunar option: $=0$ No circumlunar $=1$ Circinlunar
RPMIN	Dec	x		ER	1				x		x		X	Kinimar pericynthian racius (moon phase).

6. OUTPUT

The function of the output section will be to present all of the new print blocks which may appear during the running of ATAP. The subsections are organized in the order in which the print blocks may appear during a given run. The exception to this is the last section which gives all the error messages that may appear. Accompanying each block print will be a list describing each parameter of the blocks. The description will contain the symbol, as it appears in the block; verbal description of the parameter, and the units associated with the parameter. Parameter definitions for identical print blocks (only title may have changed) will make reference to the first occurrence of the print blocks in the sub-sections.

The output sub-sections are organized as follows:
6.1 Intermediate Solutions
6.2 Final Solution
6.3 Landing Site Limits - Outside The Sphere
6.4 Iteration Summaries
6.5 Target Parameter Definition
6.6 Thrust-Phase Print
6.7 Error Messages

6.1 Intermediate Solutions

The following block prints define the conic solutions of the landing site mode problem for each of the landing sites in question. Each solution for a given landing site will produce this print. If multiple solutions exist for a given landing site, the program will automatically pick the minimum fuel solution. When multiple landing sites are involved, the program will then pick the minimum time solution from the possible minimum fuel trajectories.

6.1.1 Outside-The-Sphere Midcourse Landing-Site Mode Solutions

Symbol	Description	Units
DVRQ	Computed velocity change required to reach the landing site.	$\mathrm{er} / \mathrm{hr}$
THR	Re-entry range angle.	radians
CøGA	Cotangent of the flight- path angle at the abort point.	
TFR	Time of flight from the abort time to re-entry.	hrs
LAT	Latitude of the landing site.	deg
IøNG	Longitude of the landing site.	deg
VRBX VRBY VRBZ	$\}$ Required velocity at burn termination.	$\mathrm{er} / \mathrm{hr}$
RFX RFY RFZ	\} Desired position vector at re-entry.	er
TFLS	Time of flight from the abort time to the landing site.	hrs

See parameter descriptions above.
6.1.3 Outside-The-Sphere Orbital Landing-Site Mode Solutions

LAT The latitude of the desired landing site. deg
LøNG The longitude of the desired landing site. deg
DAY Number of earth rotations. One rotation hrs equals 23.934471 hours.

INCR The desired return inclination. radians

6.1 .3	Outside-The-Sphere Orbital Landing-Site Mode Solutions - continued	
Symbol	Description	Units
SGM	Designator of the two return planes.	none
INTER	Designator of the two possible plane intersections.	none
TLS	Time of flight to the landing site measured from the initial time.	hrs
TFC	Time of flight from the intersection of the planes to re-entry.	hrs
CめGXR	Cotangent of the required flight-path angle at the intersection of the planes.	none
CAøRR	Difference between the atmospheric flight range angle and THLS.	radians
THLS	The angle between the intersection of the pre/post abort planes and the landing site.	radians
TFX	The time of flight to the intersection of the planes.	hrs
DVR	The computed velocity increment required to reach the landing site.	$\mathrm{er} / \mathrm{hr}$
VXRX VXRY VXRZ	The required velocity at burn termination.	$\mathrm{er} / \mathrm{hr}$
RFX RFY RFZ	The desired position vector at re-entry.	er

6.2 Final Solution

The following block prints define parameters of the final accepted conic solution. These prints are mode dependent and will appear just prior to the iteration summary prints. Included are prints for outside the sphere, inside the sphere, and circumlunar trajectories.
6.2.1 Time-Critical Mode

Symbol
Description
Units
$\left.\begin{array}{l}R X \\ R Y \\ R Z\end{array}\right\}$ Position of the vehicle at the abort time. er
$\left.\begin{array}{l}\text { BURNVX } \\ \text { BURNVY } \\ \text { BURNVZ }\end{array}\right\}$ Required velocity at burn termination.
TBURN Time to initiate thrust. hrs
TF Total time of flight from the initial time. hrs
SEMIMA Reciprocal of the semi-major axis of the \quad /er pre-abort trajectory.
\(\left.$$
\begin{array}{l}\left.\begin{array}{l}\text { VX } \\
\text { VY } \\
\text { VZ }\end{array}
$$\right\} Velocity of the vehicle at the abort time.

\left.\begin{array}{ll}RFX

RFY

RFZ\end{array}\right\} er/hr\end{array}\right\}\)

PERI $\varnothing D$ Period of the pre-abort trajectory. hrs
TA Abort time measured from the initial time. hrs
MU Gravitational parameter of the central $\mathrm{er}^{3} / \mathrm{hr}^{2}$

6.2.2 Fuel-Critical Mode

See above for parameter definitions.

6.2.3 Outside. The Sphere Orbital Landing-Site Mode

H -2.çasusict UL		$\begin{gathered} \text { NZ } \\ -4.5<69 G H 4 t-u d \end{gathered}$	1.6 Vx	$-2.120071 \text { vut vo }$	$\text { V\& }-1.3000230 \text { ue }$
BURNVA 2.32bcildoct UG	oumayy $2.1071 \text { tyout uU }$	$\begin{aligned} & \text { DUKNVI } \\ & \text { 1. Looses ICL-U1 } \\ & \hline \end{aligned}$	$\begin{gathered} k F x \\ 4.34313190 t-01 \end{gathered}$	$\begin{gathered} \text { RFY } \\ -00001410 L E-01 \end{gathered}$	$\begin{gathered} \text { KFt } \\ \underline{2} \cdot \operatorname{sos} \alpha U S 4 U E-U 1 \end{gathered}$
Ibunn 1.4712SUSCE L6	$\begin{aligned} & \text { If } \\ & 1.1314 \operatorname{coblt} \text { un } \end{aligned}$	$\begin{gathered} \operatorname{SEmLma} \\ 0.436525 S C-C 1 \end{gathered}$		$\text { 14. } 1 . t 0000000 t-02$	$1.540 \text { MU }$

See above for parameter definitions.

6.2.4 Outside-The-Sphere Midcourse Landing-Site Mode

SOLUTION USED FOR OUTSIDE TME SPAERE mIOCOUNE LAMOING SITE mCoE

See above for parameter definitions.

6.2.5 Inside-The-Sphere Solution

Sumany ut insive The sengen:'s sunulion		
Symbol	Description	Units
Rİ	The position vector, relative to the moon, at the time of burn initiation.	er
Vİ	The required velocity, relative to the moon, at the abort time.	$\mathrm{er} / \mathrm{hr}$
vS	The velocity vector, relative to the earth, at the lunar sphere of action.	$\mathrm{er} / \mathrm{hr}$
$\mathrm{VR} \overline{\mathrm{C}}$	The required velocity vector, relative to the earth, at re-entry.	$\mathrm{er} / \mathrm{hr}$
VøI	The velocity vector, relative to the moon, at the abort time before the abort.	$\mathrm{er} / \mathrm{hr}$
R \bar{S}	The position vector, relative to the earth. at the lunar sphere of action.	er
$R \bar{R}$	The desired re-entry vector relative to the earth.	er
DVR	The required velocity increment from pre-abort to post-abort at the abort time.	$\mathrm{er} / \mathrm{hr}$
TL	Time of burn initiation measured from the initial time.	hrs
TF	The total time of flight from the initial time to re-entry.	hrs
TFE	The time of flight from the lunar sphere of action to re-entry.	hrs

6.2.6 Circumlunar Solutions

			61	MLUNAK SOLUTI	On - summary Pr			
$\begin{gathered} \text { RL111 } \\ 3.6147020 \mathrm{O} \end{gathered}$	$\begin{gathered} R L(21 \\ -2.2583878 E \quad 01 \end{gathered}$	$\begin{gathered} R L(3) \\ -1.3347224 E \quad 0 \end{gathered}$	01	$\begin{gathered} \text { RL } \\ 4.4663038 E ~ O 1 \end{gathered}$	$\begin{aligned} & \text { RSM } 111 \\ & -8.7702706 E \quad 00 \end{aligned}$	$\begin{gathered} \text { RSM }(2) \\ -4.4685745 E-01 \end{gathered}$	$\begin{gathered} \text { KSH(3) } \\ -9.3155479 t-01 \end{gathered}$	$\begin{gathered} \text { RSM } \\ 8.8309186 E \quad 00 \end{gathered}$
$\begin{gathered} \text { V1111 } \\ 4.4017399 E-01 \end{gathered}$	$\begin{gathered} \text { VL121 } \\ -3.9380329 t-01 \end{gathered}$	$\begin{gathered} \text { VL(3) } \\ -2.2546800 E-0 \end{gathered}$	01	$\begin{gathered} V L \\ 0.3219458 E-01 \end{gathered}$	$\begin{gathered} \text { LAT } \\ -0.0000000 \mathrm{E}-20 \end{gathered}$	$\begin{gathered} \text { LUN } \\ -0.0000000 E-20 \end{gathered}$	$\begin{aligned} & \text { INCK } \\ & 5.7204892 E-01 \end{aligned}$	INTER $1.0000000 \mathrm{E} 00$
$\begin{gathered} k 2111 \\ -5.6171017 F-01 \end{gathered}$	$\begin{gathered} \text { RR(2) } \\ 0.3785615 \mathrm{E}-01 \end{gathered}$	$\begin{gathered} R R(3) \\ 1.4703241 E-0 \end{gathered}$	01	$\begin{gathered} \text { RR } \\ 1.0193821 E 00 \end{gathered}$	VR121 -3.7452753 l	VR(2) $-3.8519516 t 00$	$\begin{aligned} & V R(3) \\ & 3.1338191 E 00 \end{aligned}$	$\begin{array}{cc} \text { VR } \\ 0.2197620 E \quad 00 \end{array}$
$\begin{array}{cc} \text { KS111 } & \\ 4.1191 \text { HYOF O1 } \end{array}$	$\begin{array}{cc} k S 12) \\ -2.9234004 t & 01 \end{array}$	$\begin{gathered} R S(3) \\ -1.8130955 E \quad 0 \end{gathered}$	01	$\begin{gathered} \text { RS } \\ 5.3668846 E \\ 01 \end{gathered}$	$\begin{gathered} \text { VS[11 } \\ -4.0914649 E-01 \end{gathered}$	$\begin{aligned} & V S(2) \\ & 4.1907938 E-01 \end{aligned}$	$\begin{aligned} & \text { VS131 } \\ & 1.5072373 E-01 \end{aligned}$	$\begin{gathered} \text { VS } \\ 6.0476939 E=01 \end{gathered}$
$\begin{gathered} \text { RMIII } \\ 4 .+ \text { Pa?lolt } 01 \end{gathered}$	$\begin{gathered} \text { AM121 } \\ -2.87 A 7146 E 01 \end{gathered}$	$\begin{gathered} \text { RM(3) } \\ -1.7199400 \mathrm{t} \end{gathered}$	01	$\xrightarrow{\mathrm{GM}} \underset{6.0172557 \mathrm{t}}{ }$	$\begin{gathered} \text { VM(1) } \\ 3.4716325 E-01 \end{gathered}$	$\begin{aligned} & \text { VM(2) } \\ & 4.1570255 E-01 \end{aligned}$	$\begin{aligned} & \text { VM(3) } \\ & 2.0970784 E-01 \end{aligned}$	$\begin{gathered} \text { VM } \\ 5.8078250 \varepsilon-01 \end{gathered}$
$\begin{gathered} 4 M 1111 \\ 4.1483403+01 \end{gathered}$	$\begin{gathered} \text { QM1121 } \\ -3.7052852801 \end{gathered}$	$\begin{array}{cc} \text { QM1131 } \\ -2.1310106 E & 0 \end{array}$	01	$\begin{gathered} \text { RM1 } \\ 5.9564353 \mathrm{E} \end{gathered} 01$	$\begin{gathered} \text { VM11111 } \\ 4.3905076 E-01 \end{gathered}$	$\begin{aligned} & \text { VMl(\&) } \\ & 3.4997380 E-01 \end{aligned}$	$\begin{aligned} & \text { VM1(3) } \\ & 1.7104851 E-01 \end{aligned}$	$\begin{gathered} \text { VMI } \\ 5.8694533 E-01 \end{gathered}$
$\begin{gathered} \text { Trn } \\ 4.10 y 3 \text { ghat } \end{gathered}$	i. TA	$\begin{gathered} \text { DELI } \\ 1.95 \text { gilest } 0 \end{gathered}$	01	$\begin{gathered} \text { T1ME } \\ 2.1502683 \mathrm{tal} \end{gathered}$	$\stackrel{\text { TL }}{-0.000000 \mathrm{e}-20}$	$\begin{gathered} \text { IFF } \\ 5.2106547 E 01 \end{gathered}$	$\begin{gathered} \text { T\$ } \\ -0.0000000 \mathrm{E}-20 \end{gathered}$	$\begin{gathered} \text { VSS } \\ 1.8370505 E-02 \end{gathered}$
$\stackrel{56 m}{1.0000000 r} 00$	$\begin{gathered} \text { lVR } \\ \hdashline .9,7,913 E-01 \end{gathered}$	$\begin{gathered} \text { UR } \\ 0.2197863 \mathrm{E} \end{gathered}$	00					

Symbol Description Units
RL The position vector relative to the moon at er time of burn initiation.
RSM Position relative to the moon at the lunar ersphere of influence.
VL Velocity relative to the moon at time of $\mathrm{er} / \mathrm{hr}$burn initiation.
LAT Latitude of the landing site. deg
LøN Longitude of the landing site. deg
INCR Desired inclination of return trajectory. radians
INTER Designator of the preselected intersection of the landing site with the return plane.
RR Desired position vector at re-entry. er
VR The required velocity at re-entry. er
RS Position at the lunar sphere of influence errelative to the earth.
VS Velocity at the lunar sphere of influencerelative to the earth.
6.2.6 Circumlunar Solutions - continued
Symbol Description Units
RM Moon's position at time TA + DELT + TIME. er
VM Moon's velocity at time TA + DELT + TIME. $\mathrm{er} / \mathrm{hr}$
RM1 Moon's position at time TA + DELT. er
VMI Moon's velocity at time TA + DELT. $e r / h r$
TFH Time from RL to RSM. hr
TA Time of abort measured from initial time. hr
DELT Time from abort to first pierce point at hrlunar sphere of influence.
TIME Time required to go from entry to exit hr in the lunar sphere of influence.
TL Time of burn initiation. hr
TFE Time of flight from RS to RR. hr
TS Time of arrival at the lunar sphere of hrinfluence.
VSS Square of the velocity divided by μ_{E} l/er relative to the earth at the lunar sphere of influence.
SGM Designator of the preselected return plane.
DVR The required change in velocity. $\mathrm{er} / \mathrm{hr}$
UR The magnitude of the required re-entry $\mathrm{er} / \mathrm{hr}$ velocity.

6.3 Landing Site Limits - Outside The Sphere

The following block prints define the landing sites corresponding to the minimum and maximum re-entry range angles for the time critical/fuel critical modes. These prints are applicable only to outside the sphere solutions.
6.3.1 Fuel Critical Mode

Symbol	Description	Units
MINLAT	Latitude of the landing site corresponding to the minimum re-entry range angle.	radians
MINLめN	Longitude of the landing site corresponding to the minimum re-entry range angle.	radians
MAXLAT	Latitude of the landing site corresponding to the maximum re-entry range angle.	radians
MAXLøN	Longitude of the landing site corresponding to the maximum re-entry range angle.	radians
6.3.2 Time-Critical Mode		

See parameter definitions above.

6.4 Iteration Summaries

The following block prints describe the intermediate results of each iteration cycle.
6.4.1 Outside-The-Sphere Iteration Summary

Symbol
Description
Units
VIBP The Lambert's velocity at the abort point $\mathrm{er} / \mathrm{hr}$ for the desired transit time between the abort position and re-entry.
BURNV \bar{R} The $n^{\text {th }}$ value of the required velocity $\mathrm{er} / \mathrm{hr}$ at burn termination.

RFA The computed position vector at re-entry. er
$\operatorname{RF} \bar{P} \quad$ The desired position vector at re-entry. er
RFB The computed position vector at burn er initiation.

DELRF The magnjitude of the vector difference of er the computed and the desired re-entry position vectors. Convergence occurs when this parameter is less than .25 miles.

SGMM The indicator of the transfer angle.

$$
\begin{aligned}
& \text { SGMM - } 1, \theta \geq 180^{\circ} \\
& \text { SGMM }=-1, \theta<180^{\circ}
\end{aligned}
$$

6.4.2 Inside.The-Sphere/Circumlunar Iteration Summary

Symbol
Description
Units
$R \bar{L}$ The position vector relative to the moon
er at the time of burn initiation.

RSM The position vector relative to the moon
er at the lunar sphere of action.
$\mathrm{R} \overline{\mathrm{R}} \quad$ The desired re-entry vector relative to er the earth.

R $\bar{S} \quad$ The position vector relative to the earth
er at the lunar sphere of action.

DELL \bar{R} The vector difference of the two computed er position vectors at the lunar sphere of action.

DEIV The vector difference of the two computed er/hr velocity vectors at the lunar sphere of action.

VL̄ Velocity vector relative to the moon at the er/hr time of burn initiation.

VSM The velocity vector relative to the moon at er/hr the lunar sphere of action.
$V R \bar{C}$ The required velocity at re-entry relative er/hr to the earth.
$V \bar{S} \quad$ The velocity vector relative to the earth at er/hr the lunar sphere of action.

6.4.2 Inside-The-Sphere/Circumlunar Iteration Summary - continued

Symbol Description Units
TL Time of burn initiation measured from the hrs initial time.
TFH Time-from-burn initiation to the Iunar hrs sphere of action.
TS Time at the lunar sphere of action.
TR Time of flight from the initial time to hrsre-entry.
TFE Time of flight from the lunar sphere of hrsaction to re-entry.

6.5 Target Parameter Definition

This block print will appear whenever finite burns are to be executed by the program during an iterative type run. These parameters define the target for the burn model guidance equations.

6.5.1 Target Parameters

Symbol	Description	Units
P	The semi-latus rectum of the post-abort trajectory.	er
E	The eccentricity of the post-abort trajectory.	
I	The inclination of the post-abort trajectory relative to the earth's equator.	deg
SGM	Indicator defining the (sign) of the component_of velocity at abort in the direction of $\mathrm{h} \times \mathrm{R}$.	
SQS	Indicator defining the (sign) of the radial velocity at the abort.	

6.6 Thrust-Phase Print

The following block prints define the output of the navigation equations simulation and of the thrust acceleration computation routines. They appear at each print cycle of the thrusting phase.

6.6.1 Navigation Simulation Print

mourention zacon geanmertas

RSN The position vector determined by the inte- er gration of the navigation equations.
VSN The velocity vector determined by the inte- er/hr gration of the navigation equations.
CGSN Two-body accelerations used in the integra- $\mathrm{er} / \mathrm{hr}^{2}$
tion of the navigation equations.
DVSAN Analytic velocity increment. er/hr
SS $\bar{G} \quad$ Summation of the perturbation accelerations. $\mathrm{er} / \mathrm{hr}{ }^{2}$
DVSIN Integrated velocity increment. $\mathrm{er} / \mathrm{hr}$

6.6.2 Guidance Equations Print

mate mameters

\ldots Wants -

VRDES The desired velocity at burn termination. er/hr
VD The velocity to be gained. $\mathrm{er} / \mathrm{hr}$
ATM The magnitude of the thrust acceleration. $\mathrm{er} / \mathrm{hr}^{2}$

6.7 Error Messages

The following represents error messages which may appear in the course of a given run.

6.7.1 No Solution - Outside The Sphere Orbital Landing Site Mode
 OUTSIDE THE SPWERE OREITAL LAMDINE SITE mODE SOLUTBONS

mo samimg site foumo cutsioe the sphene onbital.
fmo of case mo. 1
When running the landing site mode (IAM $D \mathrm{DE}=1$), outside the sphere, if no solution for a particular landing site can be found, the program prints the latitude and longitude of that landing site in radians and tries to find a solution for the next specified landing site. If no solution can be found for any specified landing site, the program prints the message, "No Landing Site Found Outside The Sphere...," and goes on to the next case.
6.7.2 No Solution - Inside The Sphere
wo solutiom inside the spmene.
cue of Case mo. ?

If a solution cannot be found when inside the lunar sphere of action, the program prints, "No Solution Inside The Sphere," and goes on to the next case.

6.7.3 Insufficient Fuel

the availatag fuet is tess than the mimimum aequiago. the followimg socution uses the minimum fuel possiele.

When running the time critical mode (IAM $\varnothing \mathrm{DE}=2$), outside the sphere. if the available fuel (AVFUEL) is less than the minimum required to find a solution, the above comment is printed and the program computes the minimum fuel solution.
6.7.4 Optimum Trajectory Impacts On Land
optimum frajectory impacts on lano

| LAT | LOM | |
| :---: | :---: | :---: | :---: |
| $-2.96145695 E$ | 01 | LANO MASS |

When a water landing is requested and the nominal trajectory fails to impact on water, the above message appears. It defines the latitude and longitude of the nominal impact point and the land mass containing the impact point. The program will proceed to find the relative optimum trajectory using the boundary points of the specified land mass as target points.
7. SUBROUTINE SPECIFICATION

The following section will define the subroutines which have been generated under this task. These subroutines extend the capabilities of the MSC Lunar Trajectory program to determine abort trajectories from any point, after translunar injection, on an Apollo type trajectory. It is the intent of this section to give as much information about these subroutines so that the user may fully understand their capability. Each subroutine is defined by three sections:

1. Basic Description - giving subroutine name, purpose, name common blocks used, subroutines called for, and approximate storage.
2. Input/Output Interface
3. Flowcharts - giving basic flow and equations.

The subroutine descriptions are presented on the following pages being listed in alphabetical order.

SUBROUTINE:
PURPOSE:

CALIING SEQUENCE:
NAME COMMON USED:
SUBROUTINES REQUIRED:
FUNCTIONS REQUIRED: None
APPROXIMATE STORAGE: 121

INPUT AND OUTPUT:

I/O	NAMED COMMON	SYMBOLIC NAME OR LOCATION	PROGRAM DIMENSION	$\begin{array}{\|c\|} \hline \text { MATH } \\ \text { SYMBOL } \end{array}$	DATA DIMENSIONS OR UNITS	DEFINITIONS
I		JD	1	JD		Julian Date
\emptyset		RAGM	1	$a_{\text {go }}$	rad	Right ascension of Greenwich at 0^{h} day of epoch.
					\square	

SUBROUTINE:
PURPOSE:

CALLING SEQUENCE:
NAME COMMON USED: FUNCTIONS REQUIRED: ABS, SQRT

APPROXIMATE STORAGE: 655

INTGR
CめNST
INDS
AINPUT
BURNPR
RVM $\varnothing \not \subset \mathrm{N}$
INMDC
BLANK
фTPT
SUBROUTINES REQUIRED: VCMSC, TCFC, LSCR, $\varnothing \varnothing$ UTS, JPLEPH, RASCGR, CIRCUM
To control the overall flow of the abort trajectory determination logic.

CALL ANALYT

INPUT AND OUTPUT：

I／O	NAMED COMMON	SYMBOLIC NAME OR LOCATION	PROGRAM DIMENSION	$\begin{aligned} & \text { MATH } \\ & \text { SYMBOL } \end{aligned}$	DATA DIMEINSIONS OR UNITS	DEFINITIONS
I	INTGR	TA	1		hrs	Time of abort measured from initial time．
I	INTGR	R	6	$\overline{\mathrm{R}}$	er	Position of the spacecraft at time TA．
I	INTGR	V	6	$\overline{\mathrm{V}}$	$\mathrm{er} / \mathrm{hr}$	Velocity of the spacecraft at time TA．
I	CめNST	USSTER	1		$\frac{\text { statute } \mathrm{mi}}{\mathrm{er}}$	Conversion factor： 3963.20799
I	INDS	XMU	1	μ	$\mathrm{er}^{3} / \mathrm{hr}{ }^{2}$	Gravitational parameter of the central body．
I	¢めnst	TWøPI	1	2π		6.283185307
I	CめNST	RAD	1		$\mathrm{deg} / \mathrm{rad}$	57.29577951
I	AIINPUT	M $\quad \mathrm{DE}$	1			$M \phi D E=1$ ，landing site． $M \phi D E=2$ ，time critical． $M \not \subset D E=3$ ，fuel critical．
\emptyset	INTGR	TF	1	T_{F}	hrs	Time of flight measured from initial time to re－entry．
\emptyset	INTGR	RFA	6	$\overline{\mathrm{R}}_{R}$	er	Desired position vector at re－entry．
\emptyset	INTGR	TBURN	1	T_{B}	hrs	Time of burn initiation measured from initial time．
\emptyset	BURNPR	BURNVR	3	$\overline{\mathrm{V}}_{B}$	$\mathrm{er} / \mathrm{hr}$	Velocity required at end of burn．

INPUT AND OUTPUT:

SUBROUTINE:
PURPOSE:

CAILING SEQUENCE:

NAME COMMON USED:
INPUT
AINPUT
CめNST
INDS
BURNPR
RVM $\varnothing \varnothing$ N
INTGR
INMDC
INTGRK

SUBROUTINES REQUIRED: JPIEPH, LAMBS, LSCR, VCMSC
FUNCTIONS REQUIRED: ARC \varnothing S, ARSIN, ATAN2, C $\varnothing S . S I N, S Q R T, ~ A B S$
APPROXIMATE STORAGE: 2964

INPUT AND OUTPUT：

I／O	$\begin{aligned} & \text { NAMED } \\ & \text { COMMON } \end{aligned}$	SYMBOLIC NAME OR LOCATION	PROGRAM DIMENSION	$\begin{array}{\|c\|c\|} \hline \text { MATH } \\ \text { SYMBOL } \end{array}$	DATA DIMENSIONS OR UNITS	DEFINITIONS
I	AINPUT	M $\varnothing \mathrm{DE}$	1			M $\varnothing \mathrm{DE}=1$ ，landing site． $\mathrm{M} \varnothing \mathrm{DE}=2$, time critical． $M \not \subset D E=3$ ．fuel critical．
I	AINPUT	DV	1	$\Delta \mathrm{v}$	$\mathrm{er} / \mathrm{hr}$	The maximum allowable change in velocity．
I	AINPUT	RR	1	$\overline{\mathrm{R}}_{\mathrm{R}}$	er	Magnitude of the re－entry position vector．
I	AINPUT	RPMIN	1	$\mathrm{R}_{\mathrm{PMIN}}$	er	Minimum allowable lunar pericynthian altitude．
I	AINPUT	URMAX	1	$\mathrm{U}_{\text {RMAX }}$	$\mathrm{er} / \mathrm{hr}$	Maximum allowable re－entry velocity magnitude．
I	INTGR	TA	1	$\mathrm{T}_{\text {A }}$	hr	Time of abort measured from initial time．
I	INTGR	$R \emptyset$	6	$\overline{\mathrm{R}}$	er	Position of the vehicle at time TA（ECI）．
I	INTGR	Vø	6	$\overline{\mathrm{V}}$	$\mathrm{er} / \mathrm{hr}$	Velocity of the vehicle at time TA（ECI）．
I	CめNST	EMU	1	μ_{E}	$e r^{3} / \mathrm{hr}{ }^{2}$	Gravitational parameter of the earth：19．9094165
I	CめNST	PMU	1	μ_{M}	$\mathrm{er}^{3} / \mathrm{hr}{ }^{2}$	Gravitational parameter of the moon：．244883757
I	CめNST	USSTER	1		$\frac{\text { statute mi }}{\text { er }}$	Conversion factor： 3963.20799
I	CめNST	RADIAN	1		$\mathrm{deg} / \mathrm{rad}$	```Conversion factor: 57.2957795```

INPUT AND OUTPUT：

I／O	NAMED COMMON	SYMBOLIC NAME OR LOCATION	PROGRAM DIMENSION	$\begin{array}{\|c\|} \hline \text { MATH } \\ \text { SYMBOL } \end{array}$	$\begin{gathered} \text { DATA } \\ \text { DIMENSIONS } \\ \text { OR UNITS } \end{gathered}$	DEFINITIONS
I	CめNST	SGMM	1		± 1	$\begin{aligned} & \text { SGMM }=+1 \text { for } \theta>180^{\circ} \\ & \text { SGMM }=-1 \text { for } \theta<180^{\circ} \end{aligned}$
I	INMめC	INCR	1	i_{R}	rad	Desired inclination of the return trajectory．
I	INMめC	INTER	1		± 1	Designator of the preselected intersection of the landing site with the return plane．
I	INMめC	SGM	1		± 1	Designator of the preselected return plane．
\emptyset	INM \varnothing C	RL	4	$\overline{\mathrm{R}}_{\mathrm{L}}$	er	The position vector relative to the earth at time of burn initiation．
\emptyset	INMDC	RSM	4	$\overline{\mathrm{R}}_{\text {SM }}$	er	Position relative to the moon at lunar sphere of action （outgoing）．
\emptyset	INM \varnothing C	VL	4	$\overline{\mathrm{V}}_{\mathrm{L}}$	$\mathrm{er} / \mathrm{hr}$	Velocity relative to the moon at time of burn initiation．
\emptyset	INM \varnothing C	RRV	4	$\overline{\mathrm{R}}_{\mathrm{R}}$	er	Desired re－entry position vector．
\emptyset	INM $¢ \mathrm{C}$	VR	4	$\overline{\mathrm{V}}_{\mathrm{R}}$	$\mathrm{er} / \mathrm{hr}$	The required velocity at re－entry．
\emptyset	INMめC	RS	4	$\overline{\mathrm{R}}_{S}$	er	Position at the shift relative to the earth（outgoing）．
\emptyset	INM \varnothing C	VS	4	$\overline{\mathrm{V}}_{S}$	$\mathrm{er} / \mathrm{hr}$	Velocity at the shift relative to the earth（outgoing）．
\emptyset	INM I＇C $^{\text {c }}$	TFH	1	T_{FH}	hr	Time from R_{L} to R_{SM} ．

INPUT AND OUTPUT:

I/O	NAMED COMMON	SYMBOLIC NAME OR LOCATION	PROGRAM DIMENSION	$\begin{gathered} \text { MATH } \\ \text { SYMBOL } \end{gathered}$	DATA DIMENSIONS OR UNITS	DEFINITIONS
\emptyset	INM \varnothing C	DELT	1	$\Delta \mathrm{T}$	hr	Time from abort to first pierce point at lunar sphere of influence.
\emptyset	INTGRK	TIME	1	TIME	hr	Time required to go from entry to exit in the lunar sphere of influence.
\varnothing	INM \varnothing C	TL	1	${ }^{T}$ L	hr	Time of burn initiation.
\varnothing	INM \varnothing C	$\mathrm{T}^{\prime} \mathrm{FE}$	1	T_{FE}	hr	Time of flight from $\overline{\mathrm{R}}_{\mathrm{S}}$ to $\overline{\mathrm{R}}_{\mathrm{R}}$.
\varnothing	INM $\varnothing \mathrm{C}$	TS	1	T_{S}	hr	Time of arrival at the lunar sphere of influence (outgoing).
\varnothing	INM $¢ \mathrm{C}$	VSS	1	$\mathrm{V}_{S S}$	1/er	Square of the velocity divided by μ_{E} relative to the earth at the lunar sphere of influence.
\varnothing		DVR	1	ΔV_{R}	$\mathrm{er} / \mathrm{hr}$	The required change in velocity to achieve the abort trajectory.
\varnothing		UR	1	U_{R}	$\mathrm{er} / \mathrm{hr}$	The required re-entry velocity.
\varnothing	RVM $\varnothing \varnothing$ N	RM	6	$\overline{\mathrm{R}}_{\mathrm{M}}$	er	Moon's position at time $\mathrm{TA}+\Delta \mathrm{T}+\mathrm{T} T \mathrm{ME}$
\emptyset	$R V M \not)^{\prime}$	VM	6	$\overline{\mathrm{V}}_{\mathrm{M}}$	$\mathrm{er} / \mathrm{hr}$	Moon's velocity at time $T A+\Delta T+T I M E$.
\varnothing	INM \varnothing C	RM1	6	$\overline{\mathrm{R}}_{\mathrm{MI}}$	er	Moon's position at time $\mathrm{TA}+\Delta \mathrm{T}$
\emptyset	INMめC	VMI	6	$\overline{\mathrm{V}}_{\mathrm{MI}}$	$\mathrm{er} / \mathrm{hr}$	Moon's velocity at time $\mathrm{TA}+\Delta \mathrm{T}$.

SUBROUTINE: ENCKE*
PURPOSE: To supply the control logic for the executionof the trajectory program.
CALIING SEQUENCE: CALL ENCKE (INDIC)
NAME COMMON USED \because BURNPRNAVERRAINPUTBLANK
SUBROUTINES REQUIRED*: PRINTI
FUNCTIONS REQUIRED: SQRT, ABS
APPROXIMATE STORAGE: 903

INPUT AND OUTPUT:

SUBROUTINE: INSTAL
PURPOSE: To initialize navigation equation parameters.Execution of the subroutine occurs beforeintegration begins.
CALLING SEQUENCE: CALL INSTAL (DELTAT, VEIN)
NAME COMMON USED: VET
AINPUT
VEHICL
IND S
WAVER
SUBROUTINES REQUIRED: VCMSC
FUNCTIONS REQUIRED: None
APPROXIMATE STORAGE: 160

INPUT AND OUTPUT:

I/O	NAMED COMMON	SYMBOLIC NAME OR LOCATION	PROGRAM DIMENSION	$\begin{array}{\|c\|} \hline \text { MATH } \\ \text { SYMBOL } \end{array}$	DATA DIMENSIONS OR UNITS	DEFINITIONS
I	AINPUT	NAVFL	1			Input flag to use navigation equations.
I	AINPUT	DUR	1	ΔU_{R}	er	Input position error navigation equations.
I	AINPUT	DVR	1	ΔV_{R}	er	Input position error navigation equations.
I	AINPUT	DWR	1	ΔW_{R}	er	Input position error navigation equations.
I	AINPUT	DDUR	1	$\Delta \dot{U}_{R}$	$\mathrm{er} / \mathrm{hr}$	Input velocity error navigation equations.
I	AINPUT	DDVR	1	$\Delta \dot{V}_{R}$	$\mathrm{er} / \mathrm{hr}$	Input velocity error navigation equations.
I	AINPUT	DDWR	1	$\Delta \dot{W}_{R}$	er/hr	Input velocity error navigation equations.
\varnothing	AINPUT	RSN	4	$\overline{\mathrm{R}}_{\mathrm{N}}$	er	Position vector for navigation equations.
\emptyset	AINPUT	VSN	3	\bar{V}_{N}	$\mathrm{er} / \mathrm{hr}$	Velocity vector for navigation equations.
I	INDS	XMU	1	μ	$\mathrm{er}^{3} / \mathrm{hr}^{2}$	Gravitational parameter of the central body.
\varnothing	NAVERR	CGSN	3	G_{N}	$\mathrm{er} / \mathrm{hr}{ }^{2}$	Gravitational acceleration for the navigation equations.
\emptyset	NAVERR	ISTFG	1			$=1$ use navigation equations.

INPUT AND OUTPUT:
\(\left.$$
\begin{array}{|l|l|l|l|l|l|l|}\hline \text { I/O } & \begin{array}{l}\text { NAMED } \\
\text { COMMON }\end{array} & \begin{array}{l}\text { SYMBOLIC } \\
\text { NAME OR } \\
\text { LOCATION }\end{array} & \begin{array}{l}\text { PROGRAM } \\
\text { DIMENSION }\end{array} & \begin{array}{c}\text { MATH } \\
\text { SYMBOL }\end{array} & \begin{array}{c}\text { DATA } \\
\text { DIMENSIONS } \\
\text { OR UNITS }\end{array}
$$ \&

\hline I \& VEH \& R \& 12 \& \bar{R} \& er \& DEFINITIONS\end{array}\right]\)| Double precision position vector. |
| :--- |
| I |
| VEH |

SUBROUTINE： INM \varnothing
PURPOSE：
CALIING SEQUENCE： NAME COMMON USED： INTGR AINPUT CめNST

VEH

INPUT

BURNPR

INDS

INTGRK

RVMøøN

INMDC

DINTGR

IDUT
SUBROUTINES REQUIRED： ENCKE，JPLEPH，LAMBS，LSCR，RASCGR，VCMSC，LATLめN
FUNCTIONS REQUIRED： CめS，SIN，SQRT，ABS
APPROXIMATE STORAGE： 3169

I／O	NAMED COMMON	SYMBOLIC NAME OR LOCATION	PROGRAM DIMENSION	$\begin{array}{\|c\|c\|} \text { MATH } \\ \text { SYMBOL } \end{array}$	$\begin{array}{\|c} \text { DATA } \\ \text { DIMENSIONS } \\ \text { OR UNITS } \end{array}$	DEFINITIONS
I	INTGR	$R \emptyset$	6	\bar{R}_{0}	er	Position of spacecraft at time TA with respect to the earth．
I	INTGR	Vø	6	$\overline{\mathrm{V}}_{0}$	$\mathrm{er} / \mathrm{hr}$	Velocity at time TA．
I	INTGR	TA	1	T_{A}	hr	Time of abort initiation measured from initial time．
I	A InPUU	DV	1	$\Delta \mathrm{v}$	$\mathrm{er} / \mathrm{hr}$	The maximum allowable change in velocity．
I		Lat	1	LAT	deg	Latitude of the preselected landing site．
I		IØNG	1	IめNG	deg	Longitude of the preselected landing site．
I	AINPUT	M \quad DE	1			$\mathrm{M} \varnothing \mathrm{DE}=1$ ，landing site． M $D \mathrm{DE}=2$ ，time critical． $M \not \subset D E=3$ ，fuel critical．
I	INM \varnothing C	INCR	1	i_{r}	rad	Return inclination．
I	INM OC $^{\text {c }}$	SGM	1		± 1	Designator of the return plane．
I	INM D C	INTER	1		± 1	Designator of the return plane intersection with the landing site．
I	CめNST	EMU	1	μ_{E}	$e r^{3} / \mathrm{hr}{ }^{2}$	Gravitational parameter of the earth： 19.9094165
I	CめNST	PMU	1	${ }^{\text {M }}$	$e r^{3} / \mathrm{hr}{ }^{2}$	Gravitational parameter of the moon： .244883757

I/O	NAMED COMMON	SYMBOLIC NAME OR LOCATION	PROGRAM DIMENSION	$\begin{gathered} \text { MATH } \\ \text { SYMBOI } \end{gathered}$	$\begin{gathered} \text { DATA } \\ \text { DIMENSIONS } \\ \text { OR UNITS } \end{gathered}$	DEFINITIONS
I		TAG2	1			$\text { TAG2 }=1 \text {, go around moon. }$ TAG2 = 2, reverse
I	AINPUT	RR	1	$\left\|\bar{R}_{R}\right\|$	er	Magnitude of the re-entry position vector.
I	AINPUT	$C \phi G R$	1	$\operatorname{ctn} \gamma_{R}$		Cotangent of the re-entry flight path angle. cot (96)
I	AINPUT	RPMIN	1	$\mathrm{R}_{\text {PMIN }}$	er	Minimum allowable altitude at lunar pericynthian.
I	AINPPUT	IWATFG	1			Land mass number $=0$ if nominal trajectory impacts on water.
\emptyset	INM \varnothing C	RL	4	$\overline{\mathrm{R}}_{\mathrm{L}}$	er	Position relative to the moon at time of burn initiation.
\emptyset	INM $¢ \mathrm{C}$	RSM	4	$\overline{\mathrm{R}}_{\text {SM }}$	er	Position relative to the moon at lunar sphere of influence.
\emptyset	INMøC	TFH	1	${ }^{\mathrm{T}} \mathrm{FH}$	hr	Time from $\overline{\mathrm{R}}_{\mathrm{L}}$ to $\overline{\mathrm{R}}_{\mathrm{SM}}$.
\varnothing	IIM ${ }^{\text {C }}$	TL	1	T_{L}	hr	Time of burn initiation.
\varnothing	INM ${ }^{\text {d }}$ C	RRB	4	$\overline{\mathrm{R}}_{R}$	er	Desired position vector at re-entry.
\varnothing	INM ϕ C	VSS	1	$\mathrm{V}_{S S}$	I/er	Square of the velocity divided by μ_{E} relative to the earth at the lunar sphere of influence.
\varnothing	INM \varnothing C	TFE	1	T_{FE}	hr	Time of flight from $\overline{\mathrm{R}}_{\mathrm{S}}$ to $\overline{\mathrm{R}}_{\mathrm{R}}$.

SUBROUTINE:

INPUT AND OUTPUT:

I/O	NAMED COMMON	SYMBOLIC NAME OR LOCATION	PROGRAM DIMENSION	$\begin{array}{\|c\|} \hline \text { MATH } \\ \text { SYMBOL } \end{array}$	$\begin{gathered} \text { DATA } \\ \text { DIMENSIONS } \\ \text { OR UNITS } \end{gathered}$	DEFINITIONS
\emptyset	INM \varnothing C	TS	1	T_{S}	hr	Time of arrival at the lunar sphere of influence.
\emptyset	BURNPR	BURNVR	3	\bar{V}_{B}	$\mathrm{er} / \mathrm{hr}$	Velocity at the end of burn.
\emptyset	INTGRK	TIME	1	TIME	hr	Time required to go from entry to exit in the lunar sphere of influence.
\emptyset		DVR	1	Δv_{R}	$\mathrm{er} / \mathrm{hr}$	The required change in velocity to achieve the abort trajectory.
\emptyset	INTGR	TF	1	${ }^{\text {T }}$ F	hr	Total time of flight.

SUBROUTINE:

PURPOSE:
CALIING SEQUENCE:
NAME COMMON USED:
FUNCTIONS REQUIRED:
None
APPROXIMATE STORAGE: 210

INPUT AND OUTPUT:

I/O	NAMED COMMON	SYMBOLIC NAME OR LOCATION	PROGRAM DIMENSION	$\begin{gathered} \text { MATH } \\ \text { SYMBOL } \end{gathered}$	$\begin{gathered} \text { DATA } \\ \text { DIMENSIONS } \\ \text { OR UNITS } \end{gathered}$	DEFINITIONS
I		A	$\begin{gathered} 9 \\ (3,3) \end{gathered}$	A		Input matrix.
\varnothing		B	$\begin{gathered} 9 \\ (3,3) \end{gathered}$	A^{-1}		Output matrix.
\emptyset		DT	1	A		Determination of A. $=0$, A is singular.
		.				
					,	

SUBROUTINE:

LAMBSPURPOSE:CALLING SEQUENCE:NAME COMMON USED:

To solve the two-body problem for initial velocity given two position vectors and the transit time; final position given the initial position and velocity and the transit time; or transit time given the initial position and velocity and the transfer angle.

CALL LAMBS (V1B, V2B, LKT)
INTGR INTGRK CめNST INDS

SUBROUTINES REQUIRED: VCMSC
FUNCTIONS REQUIRED: DABS, DC \varnothing S, DSIN, DSQRT
APPROXIMATE STORAGE: 1013

INPUT AND OUTPUT: LAMBERT'S EQUATIONS

I/O	NAMED COMMON	SYMBOLIC NAME OR LOCATION	PROGRAM DIMENSION	$\begin{gathered} \text { MATH } \\ \text { SYMBOL } \end{gathered}$	$\begin{gathered} \text { DATA } \\ \text { DIMENSIONS } \\ \text { OR UNITS } \end{gathered}$	DEFINITIONS
I		LKT	1		1	Entry flag for Lambert solution: $=1$
I	INTGR	RIB	6	$\overline{\mathrm{R}}_{1}$	er	Initial position vector.
I	INTGR	R2B	6	$\overline{\mathrm{R}}_{2}$	er	Final position vector.
I	INTGR	T	1	T_{F}	hrs	Transit time.
I	INDS	XMU	1	μ	$e r^{3} / \mathrm{hr}{ }^{2}$	Gravitational parameter of the central body.
I	CめNST	PI	1	π		3.141592654
I	CめNST	SGMM	1		± 1	$\begin{aligned} & \text { SGMM }=+1 \text { for } \theta>180^{\circ} \\ & \text { SGMM }=-1 \text { for } \theta<180^{\circ} \\ & \text { where } \theta \text { is the transfer angle } \end{aligned}$
\emptyset		VIB	6	$\overline{\mathrm{V}}_{1}$	$\mathrm{er} / \mathrm{hr}$	Initial velocity.

INPUT AND OUTPUT: KEPLER'S EQUATIONS

I/O	$\begin{aligned} & \text { NAMED } \\ & \text { COMMON } \end{aligned}$	SYMBOLIC NAME OR LOCATION	PROGRAM DIMENSION	$\begin{gathered} \text { MATH } \\ \text { SYMBOL } \end{gathered}$	DATA DIMENSIONS OR UNITS	DEFINITIONS
I		LKT	1		2	Entry flag for Kepler solution: $=2$
I	INTGR	R1B	6	$\overline{\mathrm{R}}_{1}$	er	Initial position vector.
I		VIB	6	$\overline{\mathrm{V}}_{1}$	$\mathrm{er} / \mathrm{hr}$	Initial velocity vector.
I	INTGR	T	1	T_{F}	hrs	Transit time.
I	INDS	XMU	1	μ	$e r^{3} / h r^{2}$	Gravitational parameter of the central body.
I	CめNST	PI	1	π		3.141592654
\emptyset	INTGR	R2B	6	$\overline{\mathrm{R}}_{2}$	er	Final position vector.
\emptyset		V2B	6	$\overline{\mathrm{V}}_{2}$	$\mathrm{er} / \mathrm{hr}$	Final velocity vector.

INPUT AND OUTPUT: TIME-THETA

I/O	NAMED COMMON	SYMBOLIC NAME OR LOCATION	PROGRAM DIMENSION	MATH SYMBOL	DATMENSIONS OR UNITS	DEFINITIONS

SUBROUTINE: LATLøN
PURPOSE:
To transform coordinates to latitude andlongitude.CALL LATL $\varnothing \mathrm{N}$ (VEC, LAT, LøN, T)
NAME COMMON USED: CめNSTAINPUT
SUBROUTINES REQUIRED: ALPAGØ, VCMSC
FUNCTIONS REQUIRED: None
APPROXIMATE STORAGE: 75

INPUT AND OUTPUT:

I/O	NAMED COMMON	SYMBOLIC NAME OR LOCATION	PROGRAM DIMENSION	MATH SYMBOL	DATA DIMENSIONS OR UNITS	DEFINITIONS

SUBROUTINE:
PURPOSE:

CALLING SEQUENCE:
NAME COMMON USED:

INTGR AINPUT CめNST $\emptyset T P T$ BURNPR
INTGRK INM $\varnothing \mathrm{C}$ WLSC N_{N} INPUT
SUBROUTINES REQUIRED: VCMSC, ALPAG \varnothing, REENTY, LAMBS
FUNCTIONS REQUIRED: CめS, SIN, SQRT
APPROXIMATE STORAGE: 1201

INPUT AND OUTPUT：

I／O	$\begin{aligned} & \text { NAMED } \\ & \text { COMMON } \end{aligned}$	SYMBOLIC NAME OR LOCATION	PROGRAM DIMENSION	$\begin{gathered} \text { MATH } \\ \text { SYMBOL } \end{gathered}$	DATA DIMENSIONS OR UNITS	DEFINITIONS
I	INTGR	RAB	6	$\overline{\mathrm{R}}$	er	Position of the vehicle at time TA．
I	INTGR	VAB	6	$\overline{\mathrm{V}}$	$\mathrm{er} / \mathrm{hr}$	Velocity of the vehicle at time TA．
I	INTGR	TA	1	TA	hr	Time of abort measured from initial time．
I	AINPU＇	DVMX	1	$\Delta \mathrm{V}$	$\mathrm{er} / \mathrm{hr}$	The maximum allowable change in velocity．
I	CDNST	EMU	1	μ	$\mathrm{er} 3 / \mathrm{hr}{ }^{2}$	Gravitational parameter of the earth．
I	CめNST	USSTER	1		$\frac{\text { statute mi. }}{\mathrm{er}}$	Conversion factor： 3963.20799
I	CめNST	PI	1	π		3．141592654
I	CめNST	DMEGA	1	ω	R / hr	Rotational rate of the earth．
I	AINPUT	M \quad DE	1			MфDE $=1$ ，landing site． $M \varnothing D E=2$ ，time critical． M $\varnothing \mathrm{DE}=3$ ，fuel critical．
I	AINPUT	RR	1	$\left\|\bar{R}_{R}\right\|$	er	Magnitude of the re－entry position vector．
I	AINPUT	NLS	1			Number of landing sites for which solutions are desired． （NLS ≤ 4 ）
I	AINPUT	TAGG	1			For normal operation in outside the sphere modes．TAGG $=0$

INPUT AND OUTPUT:

I/O	NAMED COMMON	SYMBOLIC NAME OR LOCATION	PROGRAM DIMENSION	$\begin{array}{\|c\|} \hline \text { MATH } \\ \text { SYMBOL } \end{array}$	$\begin{gathered} \text { DATA } \\ \text { DIMENSIONS } \\ \text { OR UNITS } \end{gathered}$	DEFINITIONS
I	AINPUT	JD	1	JD		Julian Date
I	AINPUT	LAT	4	Lat	deg	Latitudes of the desired landing sites.
I	AINPUT	LøNG	4	İ \downarrow NG	deg	Longitudes of the desired landing sites.
I	CめNST	RADIAN	1		$\mathrm{deg} / \mathrm{rad}$	57.2957795
\emptyset	\emptyset ¢TPT	DVRQ	1	$\Delta \mathrm{v}_{\mathrm{RQ}}$	$\mathrm{er} / \mathrm{hr}$	Computed ΔV required for each solution.
\varnothing	$\not \mathrm{T}^{\text {PPT }}$	THR	1	θ_{R}	rad	Re-entry range angle.
\varnothing	ϕ TPT	$C \not \subset G A$	1	$\operatorname{ctn} \gamma$		Cotangent of the return conic flight path angle at position $\overline{\mathrm{R}}$.
\emptyset	øTPT	INTER	1		± 1	Designator of the two possible intersections of the landing site with the return plane.
\varnothing	INTGR	TF	1	T_{F}	hrs	Total time of flight from initial time of re-entry.
\varnothing	INTGR	TB	1	T_{B}	hrs	Time of burn initiation measured from initial time.
\emptyset	BURNPR	BURNVR	3	$\overline{\mathrm{V}}_{\mathrm{B}}$	$\mathrm{er} / \mathrm{hr}$	Velocity required at end of burn.
\varnothing	INTGR	RFA	6	$\overline{\mathrm{R}}_{\mathrm{R}}$	er	Desired position vector at re-entry.

INPUT AND OUTPUT:

I/O	NAMED COMMON	SYMBOLIC NAME OR LOCATION	PROGRAM DIMENSION	MATH SYMBOL	DATA DIMENSIONS OR UNITS	DEFINITIONS
I	AINPUT	Z	3			Unit vector ($0,0,1$).
\emptyset	AINPUT	IN \varnothing S \varnothing F	1			```=0, if no solution has been computed. = l, if a solution has been computed.```
I	AINPUT	IWATFG	1			Land mass number $=0$ if nominal trajectory impacts on water.
I	WLSC \varnothing N	LMAX	6			Maximum number of landing sites per land mass.
I	WLSC \varnothing N	WLAT	$(6,20)$	Lat	deg	Latitudes of the landing sites surrounding the land mass.
I	WLSCDN	WL. $\downarrow \mathrm{N}$	$(6,20)$	I \varnothing NG	deg	Longitudes of the landing sites surrounding the land mass.
I	INPUT	HRS	1		hrs	Epoch Time - Hours
I	INPUT	XMINS	1		mins	Epoch Time - Minutes
I	INPUT	SECS	1		secs	Epoch Time - Seconds

INPUT AND OUTPUT: For computing the earth conic portion of inside the sphere, the following additional input is required.

I/O	NAMED COMMON	SYMBOLIC NAME OR IOCATION	PROGRAM DIMENSION	$\begin{array}{\|l\|} \hline \text { MATH } \\ \text { SYMBOL } \end{array}$	DATA DIMENSIONS OR UNITS	DEFINITIONS
I	AINPUT	Lat	4	IAT	deg	Desired latitude of one preselected landing site.
I	AINPUT	I¢NG	4	I¢NG	deg	Desired longitude of one preselected landing site.
I	$\not \mathrm{D}^{\prime} \mathrm{TPT}$	INCR	1	i_{R}	rad	Desired inclination of post abort trajectory.
I	¢TPT	INTER	1		± 1	Designator of the pre-selected intersection of the landing site with the return plane.
I	AINPUT	DAYE	1		hrs	```Pre-selected value for day: DAYE = 0, or DAYE = 23.93447201```
I	ФTPT	SGM	1		± 1	Designator of the pre-selected return plane.
I	AINPUT	TFPT	1	TF_{P}	hrs	Parabolic flight time calculated in the conic patching iteration.
					.	


```
SUBROUTINE:
MAIN
\begin{tabular}{|c|c|}
\hline PURPOSE: & To control the flow of the combined analytic and integration routines. The routine also acts as the interation control logic for outside the lunar sphere of influence computations. \\
\hline NAME COMMON USED: & VEH \\
\hline & INPUT \\
\hline & CめNST \\
\hline & BURNPR \\
\hline & TINPUT \\
\hline & AINPUT \\
\hline & TNDS \\
\hline & INTGR \\
\hline & RVM \(\varnothing \not \subset \mathrm{N}\) \\
\hline & INMDC \\
\hline & BURNID \\
\hline SUBROUTINES REQUIRED: & VCMSC, ANALYT, ENCKE, LAMBS, PTCIN, INM \(\varnothing\), WLSCN \\
\hline FUNCTIONS REQUIRED: & ABS \\
\hline APPROXIMATE STORAGE: & 664 \\
\hline
\end{tabular}
```

I/0	NAMED COMMON	SYMBOLIC NAME OR LOCATION	PROGRAM DIMENSION	$\begin{array}{\|c\|} \text { MATH } \\ \text { SYMBOL } \end{array}$	$\begin{array}{\|c} \text { DATA } \\ \text { DIMENSIONS } \\ \text { OR UNITS } \end{array}$	DEFINITIONS
I	BURNPR	BURNFL	1			-l, production with no analytic solution. 0 , burn and print only on last pass.
						l, set internally to indicate last pass. 2, burn last pass, print every pass.
						3, burn every pass, print last pass. 4, burn every pass, print every pass.
I	BURNPR	DELTI	1	Δt_{1}	hrs	Minimum time allowable from initial time to beginning of abort procedures. . 01666667 if not input.
I	AInPUT	ALAT	4	IAT	deg	Latitudes of the selected landing sites in the analytic package (landing site mode).
I	AINPUT	AL \varnothing NG	4	LめNG	deg	Longitudes of the selected landing sites in the analytic package (landing site mode).
I	AINPUT	C \varnothing GR	1	$\operatorname{cts} \gamma_{R}$		Cotangent of the re-entry flight path angle.
I	AINPUT	RR	1	$\left\|\bar{R}_{R}\right\|$	er	Magnitude of the re-entry position vector.
I	AINPUT	NLS	1			Number of landing sites (NLS ≤ 4).
I	AINPUT	CFIAG	1			$=0$, no circumlunar logic. $=1$, do circumlunar logic.
I	AINPUT	H2 2 FG	1			$\begin{aligned} & =0, \text { do not use the water landing } \\ & =1, \text { logic. } \end{aligned}$
I	InPUT	IYEAR	1		years	Epoch Time - Year

INPUT AND OUTPUT:

I/O	NAMED COMMON	SYMBOLIC NAME OR LOCATION	PROGRAM DIMENSION	MATH SYMBOL	DATA DIMENSIONS OR UNITS	DEFINITIONS
I	INPUT	DAYS	1		days	Epoch Time - Days from beginning of the year.
I	INPUT	HRS	1		hrs	Epoch Time - Hours
I	INPUT	MINS	1		minutes	Epoch Time - Minutes
I	INPUT	SECS	1		secs	Epoch Time - Seconds
\emptyset		VIBP	6	V_{r}	$\mathrm{er} / \mathrm{hr}$	The Lamberts velocity at the abort point for the desired transit time between the abort position and re-entry.
\emptyset	BURNPR	BURNVR	3	V_{r}	$\mathrm{er} / \mathrm{hr}$	The $n^{\text {th }}$ value of the required velocity at burn termination.
\emptyset	INTGR	RFA	6	R_{f}	er	The computed position vector at re-entry.
ϕ		RFP	6	R_{r}	er	The desired position vector at re-entry.
ϕ	CDNST	SGMM	1			The indicator of the transfer angle. $\begin{aligned} & \text { SGMM }=1 \theta>180^{\circ} \\ & \text { SGMM }=-1 \theta<180^{\circ} \end{aligned}$
\varnothing		RFB	6	R_{b}	er	The computed position vector at burn initiation.
\emptyset		DELRF	1	ΔR_{r}	er	The magnitude of the vector difference of the computed and the desired re-entry position vectors. Convergence_occurs
						when this parameter is less than .25 miles.

SUBROUTINE:	NAVIER
PURPOSE	To simulate the navigation equations used in the on-board computer to advance the state vector.
CALLING SEQUENCE:	CALL NAVIER (DELTAT, VSIN)
NAME COMMON USED:	PERTS VEHICL
	AUT \varnothing INDS
	AINPUT NAVERR
SUBROUTINES REQUIRED:	VCMSC
FUNCTIONS REQUIRED:	None
APPROXIMATE STORAGE:	I54

INPUT AND OUTPUT:

I/O	NAMED COMMON	SYMBOLIC NAME OR LOCATION	PROGRAM DIMENSION	$\begin{array}{\|l\|l} \text { MATH } \\ \text { SYMBOL } \end{array}$	DATA DIMENSIONS OR UNITS	DEFINITIONS
I / \varnothing	AINPUT	RSN	4	\bar{R}_{N}	er	Position vector for navigation equations.
I / \varnothing	AINPUT	VSN	3	$\overline{\mathrm{V}}_{\mathrm{N}}$	$\mathrm{er} / \mathrm{hr}$	Velocity vector for navigation equations.
I / \varnothing		DELTAT	1	$\Delta \mathrm{T}$	hrs	Time increment.
I / \varnothing		VSIN	3	$\overline{\mathrm{V}}_{\text {IN }}$	$\mathrm{er} / \mathrm{hr}$	Integrated velocity used by the navigation equations.
I	PERTS	ACCEL	30		$\mathrm{er} / \mathrm{hr}{ }^{2}$	The integrated perturbative accelerations (double precision).
\varnothing	NAVERR	DVSIN	3	$\Delta \overline{\mathrm{V}}_{\mathrm{IN}}$	$\mathrm{er} / \mathrm{hr}$	Integrated velocity increment.
\varnothing	NAVERR	DVSAN	3	$\Delta \overline{\mathrm{V}}_{\mathrm{AN}}$	$\mathrm{er} / \mathrm{hr}$	Analytic velocity increment.
I	VEHICL	$R D \varnothing$	12	V	$\mathrm{er} / \mathrm{hr}$	Single precision velocity vector.
I / \varnothing	NAVERR	SSG	3	Σ_{G}	$\mathrm{er} / \mathrm{hr}{ }^{2}$	Summation of perturbation accelerations.
I / \varnothing	NAVERR	CGSN	3	G_{N}	$\mathrm{er} / \mathrm{hr}^{2}$	Approximation to the gravitational acceleration for the navigation equations.
I	INDS	XMU	1	μ	$e r^{3} / \mathrm{hr}{ }^{2}$	Gravitational parameter of the central body.
I	AUTD	HRK	1	$\Delta \mathrm{T}$	hrs	Integration step size.

INPUT AND OUTPUT:

I/O	NAMED COMMON	SMABOLIC NAME OR LOCATION	PROCRAM DIMENSION	MATH SMMBOL	DIMENSIONS OR UNITS	DEFINITIONS
\varnothing	NAVERR	NAVFIG	I			Navigation parameters have been computed.

SUBROUTINE:
PURPOSE:

CALIING SEQUENCE: CALL ØØUTS
NAME COMMON USED: INTGRK
INTGR
$\not \mathrm{TPT}^{2}$
BURNPR
AINPUT
CめNST
WLSC \varnothing N
INPUT
BLANK
SUBROUTINES REQUIRED: ALPAGØ, VCMSC
FUNC'TIONS REQUIRED: SIN, CøS, SQRT, ABS, ATAN
APPROXIMATE STORAGE: 1419

INPUT AND OUTPUT:

I/O	NAMED COMMON	SYMBOLIC NAME OR LOCATION	PROGRAM DIMENSION	MATH SYMBOL	DATA DIMENSIONS OR UNITS	DEFINITIONS
I	INTGR	RA	6	$\overline{\mathrm{R}}$	er	The position of the spacecraft at time TA.
I	IVTGR	VA	6	$\overline{\mathrm{V}}$	$\mathrm{er} / \mathrm{hr}$	The velocity of the spacecraft at time TA.
I	AINPUT	DV	1	Δv	$\mathrm{er} / \mathrm{hr}$	The maximum change in velocity.
I	AINPUT	RR	1	$\left\|\bar{R}_{R}\right\|$	er	Magnitude of the re-entry position vector.
I	AINPUT	CøGR	1	$\operatorname{ctn} \gamma_{R}$		Cotangent of the re-entry flight path angle.
I	INTGR	TA	1	TA	hr	Time of abort measured in hours from initial time.
I	CめNST	EMU	1	μ	$e r^{3} / \mathrm{hr}{ }^{2}$	Gravitational parameter of the earth. 19.9094165
I	CめNST	RADIAN	1		$\mathrm{deg} / \mathrm{rad}$	57.29577951
I	AINPUT	M \varnothing DE	1			$M \not \subset \mathrm{DE}=1$, landing site. $M \not \subset D E=2$, time critical. M $\varnothing \mathrm{DE}=3$, fuel critical.
I	AINPUT	TJD	1			Julian Date
I	C \varnothing NST	PI	1	π		3.141592654
I	AINPUT	Lat	4	LAT	deg	Iatitudes of desired landing sites.

INPUT AND OUTPUT:

I/O	NAMED COMMON	SYMBOLIC NAME OR LOCATION	PROGRAM DIMENSION	$\begin{gathered} \text { MATH } \\ \text { SYMBOL } \end{gathered}$	DATA DIMENSIONS OR UNITS	DEFINITIONS
I	AINPUT	LめNG	4	LøNG	deg	Longitudes of desired landing sites.
I	AINPUT	NLS	1			Number of desired landing sites. (≤ 4).
\varnothing	INTGR	TF	1	TF	hrs	Total time of flight from initial time to re-entry.
\varnothing	INTGR	RFA	6	$\overline{\mathrm{R}}_{\mathrm{R}}$	er	Desired position vector at re-entry.
\varnothing	INTGR	TTR	1	T_{B}	hr	Time of burn initiation measured from initial time.
\emptyset	BURNPR	BURNVR	3	V_{R}	$\mathrm{er} / \mathrm{hr}$	Velocity required at end of burn.
\emptyset	ϕ TPT	WLAT	1		rad	Working storage for the latitude of each landing site.
\emptyset	$\not \chi^{\prime \prime}$	WL. $\varnothing \mathrm{NG}$	1		rad	Working storage for the longitude of each landing site.
\varnothing	фTPT	DAY	1		hr	$\begin{aligned} & \text { DAY }=0 \text { or } \\ & \text { DAY }=23.93447201 \end{aligned}$
\varnothing	¢TPT	INCR	1	i_{R}	rad	Desired return inclination.
\emptyset	$\emptyset T P T$	SGM	1		± 1	Designator of the two return planes.
\emptyset	фTPT	INTER	1		± 1	Designator of the two possible intersections of the orbital plane with the UNH plane.

INPUT AND OUTPUT:

I/O	NAMED COMMON	SYMBOLIC NAME OR LOCATTON	PROGRAM DIMENSION	$\begin{array}{\|c\|} \text { MATH } \\ \text { SYMBOL } \end{array}$	DATA DIMENSIONS OR UNITS	DEFINITIONS
\emptyset	$\emptyset T P T$	TLS	1	TLS	hrs	Time of arrival at the landing site measured from initial time.
\emptyset	фTPT	TFC	1	TFC	hrs	Time of flight from the intersection of the pre-post abort orbit planes to re-entry.
\emptyset	¢TPT	C \varnothing GXR	1	$\operatorname{ctn} \gamma_{\mathrm{XR}}$		Cotangent of the required flight path angle at the intersection of the planes.
\emptyset	\emptyset TPT	CA \varnothing RR	1	θ	rad	THLS minus re-entry range angle.
\emptyset	фTPT	THLS	1	${ }^{\text {LS }}$	rad	Angle between the intersection of the planes and the landing site.
\varnothing	ØTPT	TFX	1	TFX	hrs	Time of flight to the intersection of the planes.
\emptyset	ϕ TPT	DVR	1	Δv_{R}	$\mathrm{er} / \mathrm{hr}$	Computed Δv required for each solution.
I	AINPUT	UNZB	3	\bar{z}		Unit vector ($0,0,1$).
\emptyset	AINPUT		1			$=0$, no solution has been computed. $=1$, a solution has been
I	AINPUT	IWATFG	1			Land mass number $=0$ if nominal trajectory impacts on water.
I	AIINPUT	фC \varnothing GR2	1			$\left[1 .+\operatorname{COGR}{ }^{2}\right]$
I	WLSCøN	LMAX	6			Maximum number of landing sites per land mass.

I/O	NAMED COMMON	SYMBOLIC NAME OR LOCATION	PROGRAM DIMENSION	$\begin{array}{\|c\|} \hline \text { MATH } \\ \text { SYMBOL } \end{array}$	DATA DIMENSIONS OR UNITS	DEFINITIONS
I	WLSCøN	WLT	$(6,20)$	LAT	deg	Latitudes of the landing sites surrounding the land masses.
I	WLSC N_{N}	WLN	$(6,20)$	LøNG	deg	Longitudes of the landing sites surrounding the land masses.
I	INPUT	HRS	1		hrs	Epoch Time - Hours
I	INPUT	XIMINS	1		mins	Epoch Time - Minutes
I	INPUT	SECS	1		secs	Epoch Time - Seconds

SUBROUTINE: PEICøM
PURPOSE: To compute the target parameters (p, e, i, SQS, SGM) for the burn model guidance equations.
CALLING SEQUENCE: CALL PEIC $\not \mathrm{M}$
NAME COMMON USED: VEHICLBURNPR
INDS
AINPUT
SUBROUTINES REQUIRED: VCMSC
FUNCTIONS REQUIRED: SQRT
APPROXIMATE STORAGE: 193

INPUT AND OUTPUT:

$$
\begin{aligned}
A & =2 /|\bar{R} I-| \bar{V} I^{2} / X M U \\
\overline{R V} & =\bar{R} \times \bar{V} \\
\overline{Z R} & =\bar{Z} \times \bar{R} \\
R V M & =I R \bar{R} I \\
\text { PDES } & =R V M^{2} / X M U \\
\text { EDES } & =\sqrt{I \cdot-P D E S * A} \\
Z R D \bar{M} & =\overline{Z R} /|\overline{Z R}| \\
R D V \bar{M} & =\overline{R V} / R V M \\
C I N C & =C^{-1}(R V D \bar{M} \cdot \bar{Z}) * 57.29577951 \\
R D V & =\bar{R} \cdot \bar{V} \\
S Q S & =R \overline{D V} / \operatorname{RDD} \bar{V} I \\
S G M & =R V D \bar{M} \cdot Z R D \bar{M} / \operatorname{RVD} \bar{M} \cdot Z R D \bar{M} \mid
\end{aligned}
$$

PRINT TARGET PARAMETERS PDES,EDES, CINC,SGM,SQS

RETURN
SUBROUTINE:
PURPOSE:
CALLING SEQUENCE:
NAME COMMON USED:
-
 \square
INMDC AINPUT CめNST
INDS
INTGR
BURNPR
INTGRK
SUBROUTINES REQUIRED: VCMSC, LAMBS, LSCR, INV3X3
FUNCTIONS REQUIRED: C \varnothing S, SIN, SQRT
APPROXIMATE STORAGE: 535

INPUT AND OUTPUT:

I/O	NAMED COMMON	SYMBOLIC NAME OR LOCATION	PROGRAM DIMENSION	$\begin{array}{\|c} \text { MATH } \\ \text { SYMBOL } \end{array}$	$\begin{gathered} \text { DATA } \\ \text { DIMENSIONS } \\ \text { OR UNITS } \end{gathered}$	DEFINITIONS
I	INMゅC	RL	4	$\overline{\mathrm{R}}_{\mathrm{L}}$	er	The position vector relative to moon at time of burn initiation.
I	INM \varnothing C	RSM	4	$\overline{\mathrm{R}}_{\text {SM }}$	er	Position relative to the moon at the lunar sphere of action.
I	INM $¢ \mathrm{C}$	TFH	1	T_{FH}	hr	Time from $\overline{\mathrm{R}} \mathrm{L}$ to $\overline{\mathrm{R}} \mathrm{SM}$.
I	INM $¢ \mathrm{C}$	VSS	1	$\mathrm{V}_{S S}$	1/er	Square of the velocity divided by μ_{E} relative to the earth at lunar sphere of influence.
I		RS	4	$\overline{\mathrm{R}}_{S}$	er	Position at the shift relative to the earth.
I		VS	4	$\overline{\mathrm{V}}_{S}$	$\mathrm{er} / \mathrm{hr}$	Velocity at the shift relative to the earth.
I	INM \varnothing C	TS	1	T_{S}	hr	Time of arrival at the moon's sphere of influence measured from initial time.
I	INMDC	INCR	1	i_{R}	rad	Return inclination.
I	INM D C	SGM	1		± 1	Designator of the return plane.
I	AINPUT	MøDE	1			$\begin{aligned} & M \phi D E=1, \text { landing site } \\ & M \phi D E=2, \text { time critical. } \\ & M \phi D E=3, \text { fuel critical. } \end{aligned}$
I	AINPUT	C \varnothing GR	1	$\operatorname{ctn} \gamma_{R}$		Cotangent of the re-entry flight path angle.
I	AINPUT	RR	1	$\left\|\bar{R}_{R}\right\|$	er	Magnitude of the re-entry position vector.

INPU＇AND OUTPUT：

I／O	NAMED COMMON	SYMBOLIC NAME OR LOCATION	PROGRAM DIMENSION	$\begin{aligned} & \text { MATH } \\ & \text { SYMBOL } \end{aligned}$	DATA DIMENSIONS OR UNITS	DEFINITIONS
I	AINPUT	TAGG	1			```= l, abort trajectory is circum- lunar from inside the sphere. = 2, abort trajectory is non-```
						circumlunar from inside the sphere．
I	CめNST	EMU	1	${ }^{\mu} \mathrm{E}$	$e r^{3} / \mathrm{hr}{ }^{2}$	Gravitational parameter of the earth： 19.9094165
I	CめNST	PMU	1	${ }^{M}$	$\mathrm{er}^{3} / \mathrm{hr}{ }^{2}$	Gravitational parameter of the moon：． 244883757
I	CめNST	SGMM	1	SGMM		$\begin{aligned} & \text { SGMM }=+1, \quad \theta>180^{\circ} \\ & \text { SGMM }=-1, \quad \theta<180^{\circ} \end{aligned}$
I	INDS	XMU	1	μ	$e r^{3} / \mathrm{hr}{ }^{2}$	Gravitational parameter of the central body．
I	INTGR	TA	1	$\mathrm{T}_{\text {A }}$	hrs	Time of abort measured from initial time．
I	INTGR	R	3	$\overline{\mathrm{R}}$	er	Position of the spacecraft at time TA．
I	INTGR	VI	6	$\overline{\mathrm{V}}$	$\mathrm{er} / \mathrm{hr}$	Velocity of the spacecraft at time TA．
I	INTGR	T	1	T_{F}	hrs	Time of flight from initial time to re－entry．
I	INTGR	R2	3	$\overline{\mathrm{R}}_{\mathrm{F}}$	er	Position of the spacecraft at re－entry．
\emptyset		CM	3，6			Perturbation matricies：$\left[\frac{\partial \overline{\mathrm{V}}_{s \mathrm{~m}}}{\partial \overline{\mathrm{R}}_{\mathrm{L}}}\right]$

INPUT AND OUTPUT：

I／O	NAMED COMMON	SYMBOLIC NAME OR LOCATION	PROGRAM DIMENSION	$\begin{array}{\|c\|} \hline \text { MATH } \\ \text { SYMBOL } \end{array}$	DATA DIMENSIONS OR UNITS	DEFINITIONS
I	INM \varnothing C	VI	4	$\overline{\mathrm{V}}_{\mathrm{L}}$	$\mathrm{er} / \mathrm{hr}$	Velocity relative to the moon at time of burn initiation．
I	INM \varnothing C	RMI	6	$\overline{\mathrm{R}}_{\mathrm{Ml}}$	er	Moon＇s position at time $T A+\triangle T .$
I	INMDC	VMI	6	$\overline{\mathrm{V}}_{\mathrm{MI}}$	$\mathrm{er} / \mathrm{hr}$	Moon＇s velocity at time $\mathrm{TA}+\Delta \mathrm{T}$ ．
I	INM $¢ \mathrm{C}$	DELT	1	T	hr	Time from abort to first pierce point at lunar sphere of influence．
I	AINPUT	CFLAG	1			$=0$ ，no circumlunar logic． $\neq 0$ ，do circumlunar logic．
\emptyset		CMM1I	3，3	CMMI^{-1}		Inverse of sensitivity matrix CMMI．
I	AINPUT	IWATFG	1			Land mass number $=0$ if nominal trajectory impacts on water．
I	AINPUT	ØCめCR2	1			$\left[1+C \not \subset G R^{2}\right]$
I	AINPUT	DV	1	$\Delta \mathrm{V}_{\mathrm{MAX}}$	$\mathrm{er} / \mathrm{hr}$	Maximum allowable change in velocity．
I	AINPUT	XLAT	4	LAT	deg	Latitude of the desired landing site．
I	AINPUT	XLめNG	4	LめNG	deg	Longitude of the desired landing site．
I	CめNST	USSTER	1		miles／er	Conversion factor： 3963.20799

INPUT AND OUTPUT:

I/O	NAMED COMMON	SYMBOLIC NAME OR LOCATION	PROGRAM DIMENSION	$\begin{gathered} \text { MATH } \\ \text { SYMBOL } \end{gathered}$	DATA DIMENSIONS OR UNITS	DEFINITIONS
I	CめNST	RADIAN	1		deg/rad	Conversion factor: 57.29577951
I	AINPUT	Z	3		Z	Unit vector ($0,0,1$) .
					.	

SUBROUTINE: PRINTN
PURPOSE: To print specified trajectory parameters at specified print intervals.
CALLING SEQUENCE: CALL PRINTN (IPRINT)
NAME COMMON USED: DINTGR
VEHICL
PERTSVSATPTCめNST
MISC
BURNID
AINPUT
VEH
PLANET
ELEMMNT
INPUT
INDS
TINPUT
NAVERR
BURNPR
SUBROUTINES REQUIRED: VCMSC, SUBSAT, TPRINT
FUNCTIONS REQUIRED: ATAN2, SQRT
APPROXIMATE STORAGE: 2390

INPUT AND OUTPUT:

SUBROUTINE:	PTCIN
PURPOSE:	To control the logical flow of the abort program when the spacecraft is within the lunar sphere of influence or on circumlunar trajectories.
CALIING SEQUENCE:	CALL PTCIN
NAME COMMON USED:	INPUT TINPUT AINPUT VEH CめNST INDS MISC BURNPR RVM $\varnothing \not \subset N$ INTGR INMDC INTGRK BLANK
SUBROUTINES REQUIRED:	VCMSC, ENCKE, INV3X3, LAMBS, LSCR, MATRX, MTRXMP, PMATC
UNCTIONS REQUIRED:	SIN, CøS, SQRT, ABS
,PPROXIMATE STORAGE:	1517

INPUT AND OUTPUT:

I/0	$\begin{aligned} & \text { NAMED } \\ & \text { COMMON } \end{aligned}$	SYMBOLIC NAME OR LOCATION	PROGRAM DIMENSION	$\begin{gathered} \text { MATH } \\ \text { SYMBOL } \end{gathered}$	DATA DIMENSIONS OR UNITS	DEFINITIONS
I	INM \varnothing C	RL	4	$\overline{\mathrm{R}}_{\mathrm{L}}$	er	The position vector relative to the moon at time of burn initiation.
I	INM \dagger C	RSM	4	$\overline{\mathrm{R}}_{\text {SM }}$	er	Position relative to the moon at the lunar sphere of action.
I	INM IC $^{\text {c }}$	TFH	1	$\overline{\mathrm{T}}_{\mathrm{FH}}$	hrs	Time from $\overline{\mathrm{R}} \mathrm{L}$ to $\overline{\mathrm{R} S M}$.
I	CめNST	PMU	1	${ }^{M}$	$e r^{3} / \mathrm{hr}{ }^{2}$	Gravitational parameter of the moon: . 244883757
I	INM CC $^{\text {c }}$	VL	6	$\overline{\mathrm{V}}_{\mathrm{L}}$	$\mathrm{er} / \mathrm{hr}$	Velocity relative to the moon at time of burn initiation.
I	INM D C	TL	1	T_{L}	hr	Time of burn initiation.
I	INM \varnothing C	RR	4	\bar{R}_{R}	er	Desired re-entry position vector.
I		VR	4	$\overline{\mathrm{V}}_{\mathrm{R}}$	$\mathrm{er} / \mathrm{hr}$	The required velocity at re-entry.
I	IMM \varnothing C	TFE	1	${ }^{T} \mathrm{FE}$	hr	Time of flight from $\overline{\mathrm{R}}$ S to $\overline{\mathrm{R} R}$.
I	INM ϕ C	TS	1	T_{S}	hr	Time of arrival at the moon's sphere of influence measured from initial time.
I	INM \varnothing C	VSS	1	$\mathrm{V}_{S S}$	1/er	Square of the velocity divided by μ_{E} relative to the earth at the Iunar sphere of influence.
I	INMめC	RS	4	\bar{R}_{S}	er	Position at the shift relative to the earth.

INPUT AND OUTPUT:

I/O	NAMED COMMON	SYMBOLIC NAME OR LOCATION	PROGRAM DIMENSION	$\begin{array}{\|c\|} \text { MATH } \\ \text { SYMBOL } \end{array}$	DATA DIMENSIONS OR UNITS	DEFINITIONS
I	INM $\varnothing \mathrm{C}$	VS	4	$\overline{\mathrm{V}}_{\mathrm{S}}$	$\mathrm{er} / \mathrm{hr}$	Velocity at the shift relative to the earth.
I	C \varnothing NST	EMU	1	μ_{E}	$\mathrm{er}^{3} / \mathrm{hr}{ }^{2}$	Gravitational parameter of the earth: 19.9094165
I		LAT		LAT	deg	Latitude of the desired landing site.
I		LøNG		LøNG	deg	Longitude of the desired landing site.
I	INMDC	INCR	1	i_{R}	rad	Return inclination.
I	INM $¢ \mathrm{C}$	SGM	1		± 1	Designator of the return plane.
I	AINPUT	M \varnothing DE	1			MめDE $=1$. landing site. $M \not D E=2$, time critical. $M \not \subset D E=3$. fuel critical.
I	AINPUT	DV	1	$\Delta \mathrm{v}_{\mathrm{MAX}}$	$\mathrm{er} / \mathrm{hr}$	Maximum allowable change in velocity.
I	AINPUT	C \varnothing GR	1	$\operatorname{ctn} \gamma_{R}$		Cotangent of the re-entry flight path angle.
I	AINPUT	TAGG	1			```= l, abort trajectory is circumlunar. = 2, abort trajectory is non- circumlunar.```
\varnothing		VSM	4	V_{S}	$\mathrm{er} / \mathrm{hr}$	Velocity at the lunar sphere of action relative to the moon.
\varnothing		VLC	4	V_{B}	$\mathrm{er} / \mathrm{hr}$	Velocity at burn termination relative to the moon.

INPUT AND OUTPUT:

I/O	$\begin{aligned} & \text { NAMED } \\ & \text { COMMON } \end{aligned}$	SYMBOLIC NAME OR LOCATION	PROGRAM DIMENSION	$\begin{gathered} \text { MATH } \\ \text { SMMBOL } \end{gathered}$		DEFINITIONS
I	AINPUT	Z	3	\bar{Z}		Unit vector ($0,0,1$).
I	INTGR	TA	1	T_{A}	hr	Time measured from epoch to abort.
I	BURNPR	NTPRSV	1			Input value of the number of thrust periods.
I	INPUT	X	3	$\mathrm{R}_{\text {I }}$	er	Position at the abort time relative to the moon.
I	INPUT	XD	3	V_{I}	$\mathrm{er} / \mathrm{hr}$	Velocity at the abort time relative to the moon.
\emptyset		DELR	4	$\Delta \mathrm{R}$	er	Position mismatch at the lunar sphere of action.
\emptyset		DELV	4	$\Delta \mathrm{V}$	$\mathrm{er} / \mathrm{hr}$	Velocity mismatch at the lunar sphere of action.
I	RVM $\varnothing \varnothing$ N	RM	6	$\overline{\mathrm{P}}_{\mathrm{M}}$	er	Position of the moon with respect to the earth at time T_{S}.
I	RVM $\varnothing \not \subset \mathrm{N}$	VM	6	$\overline{\mathrm{V}}_{\mathrm{M}}$	$\mathrm{er} / \mathrm{hr}$	Velocity of the moon with respect to the earth at time T_{S}.
I	AINPUT	CFLAG	1			$=0$, no circumlunar logic. $\neq 0$, do circumlunar logic.
I		CMM1I	3,3	CMM^{-1}		Inverse of the sensitivity matrix CMMI.
I	INM $¢ \mathrm{C}$	VL	4	$\overline{\mathrm{V}}_{\mathrm{L}}$	$\mathrm{er} / \mathrm{hr}$	Velocity relative to the moon at time of burn initiation.

INPUT AND OUTPUT:

I/O	NAMED COMMON	SYMBOLIC NAME OR LOCATION	PROGRAM DIMENSION	$\begin{aligned} & \text { MATH } \\ & \text { SYMBOL } \end{aligned}$	DATA DIMENSIONS OR UNITS	DEFINITIONS
I	AINPUT	IWATFG	1			Land mass number $=0$ nominal trajectory impacts on water.
I	AINPUT	ØCDGR2	1			$\left[1+\operatorname{COGR}^{2}\right]$
I	InM ϕ C	THC	1	θ_{r}	rad	Re-entry angle.
\emptyset		VRC	4	V_{B}	$\mathrm{er} / \mathrm{hr}$	Re-entry velocity.

SUBROUTINE:
PURPOSE:

CALITNG SEQUENCE:
NAME COMMON USED:
INMDC INTGR INTGRK CめNST AINPUT

SUBROUTINES REQUIRED: VCMSC
FUNCTIONS REQUIRED:
APPROXIMATE STORAGE: 348

INPUT AND OUTPUT：

I／O	NAMED COMMON	SYMBOLIC NAME OR LOCATION	PROGRAM DIMENSION	$\begin{array}{\|c\|} \hline \text { MATH } \\ \text { SYMBOL } \end{array}$	DATA DIMENSIONS OR UNITS	DEFINITIONS
I	INTGR	RAB	6	\bar{R}_{b}	er	Position of the spacecraft at time of abort measured from initial time．
I	AINPUT	C $¢$ GR	1	$\operatorname{ctn} \gamma_{R}$		Cotangent of the re－entry flight path angle． $\cot \left(90^{\circ}\right)$
I	AINPUT	RR	1	$\left\|\bar{R}_{R}\right\|$	er	Magnitude of the re－entry position vector．
I		THLS	1	$\theta_{\text {LS }}$	rad	Central angle from $\overline{\mathrm{R}}$ to UNRIS．
I		TFIS	1	$\mathrm{TF}_{\text {LS }}$	hr	Time of flight to the landing site．
I		AMX	1	${ }^{\text {A MXX }}$	er	Limiting value of the semi－major axis．
I	CめNST	EMU	1	μ	$e r^{3} / \mathrm{hr}{ }^{2}$	Gravitational constant of the earth： 19.9094165
I	CめNST	PI	1	π		3.141592654
I	CめNST	RADIAN	1		$\mathrm{deg} / \mathrm{rad}$	57.29577951
\emptyset		$N \varnothing S \varnothing$	1			$N \varnothing S \varnothing=0$ ，return no solution． $N \varnothing S \varnothing=1$ ，return solution．
\varnothing		TFM	1	${ }^{T} \mathrm{FM}$	hr	Time of flight from re－entry to landing site．
\emptyset	INTGRK	TFR	1	T_{FR}	hr	Time of flight to re－entry from TA．

SUBROUTINE: REENTY (continued)

INPUT AND OUTPUT:

I/O	NAMED COMMON	SYMBOLIC NAME OR LOCATION	PROGRAM DIMENSION	MATH SYMBOL	DIMENSIONS OR UNITS	DEFINIMIONS

SUBROUTINE:

PURPOSE:

CALLING SEQUENCE:
NAME COMMON USED:
INPUT AUTめ
CめNST
INDS
MISC
TINPUT
AINPUT
BURNPR
SUBROUTINES REQUIRED: None
FUNCTIONS REQUIRED: None
APPROXIMATE STORAGE: 487

INPUT AND OUTPUT: ADDITIONAL INPUT

I/O	NAMED COMMON	SYMBOLIC NAME OR IOCATION	PROGRAM DIMENSION	MATH SYMBOL	DATA DIMENSIONS OR UNITS	DEFINITIONS
I	AINPUT	NAVFL	1			Input flag to use navigation equations.
I	AINPUT	DUR	1	$\Delta \mathrm{U}$	er	Input position error, navigation equations.
I	AINPUT	DVR	1	$\Delta \mathrm{V}$	er	Input position error, navigation equations.
I	AINPUT	DWR	1	ΔW	er	Input position error, navigation equations.
I	AINPUT	DDUR	1	$\Delta \dot{U}$	$\mathrm{er} / \mathrm{hr}$	Input velocity error, navigation equations.
I	AINPUT	DDVR	1	$\Delta \dot{V}$	er/hr	Input velocity error, navigation equations.
I	AINPUT	DDWR	1	$\Delta \dot{W}$	er/hr	Input velocity error, navigation equations.
I	AINPUT	SQS	1			Indicator defining the sign of velocity at the abort radial.
I	AINPUT	PDES	1	P	er	Semi-latus rectum post abort trajectory.
I	AINPUT	EDES	1	e		Eccentricity post abort trajectory.
I	AINPUT	CINC	1	i	deg	```Inclination post abort trajectory relative to the earth's equator.```
I	AINPUT	SGM	1			Indicator defining the sign of the component of the post abort yelocity in the direction of $\mathrm{h} \times \mathrm{R}$.

INPUT AND OUTPUT: ADDITIONAL INPUT

I/O	NAMED COMMON	SYMBOLIC NAME OR LOCATION	PROGRAM DIMENSION	$\begin{gathered} \text { MATH } \\ \text { SYMBOL } \end{gathered}$	$\begin{gathered} \text { DATA } \\ \text { DIMENSIONS } \\ \text { OR UNITS } \end{gathered}$	DEFINITIONS
I	AINPUT	UKV	3	$\overline{\mathrm{Z}}$		Unit vector ($0,0,1$) .
I	AINPUT	IAM D $^{\text {E }}$	1			Analytic mode type: 1 - landing site. 2 - time critical. 3 - fuel critical.
I	AINPUT	AVFUEL	1	$\Delta \mathrm{V}$	$\mathrm{er} / \mathrm{hr}$	Available fuel.
I	AINPUT	C \quad GR	1	$\operatorname{ctn} \gamma_{R}$		Cotangent of the re-entry flight path angle.
I	AINPUT	RR	1	$\left\|\bar{R}_{R}\right\|$	er	Magnitude of the re-entry position vector.
I	AINPUT	NLS	1			Number of landing sites (NLS ≤ 4).
I	AINPUT	ALAT	4	LAT	deg	Latitudes of the possible landing sites.
I	AINPUT	AL \varnothing N	4	LøNG	deg	Longitudes of the possible landing sites.
I	BURNPR	VR	3	$\overline{\mathrm{V}}_{\mathrm{R}}$	$\mathrm{er} / \mathrm{hr}$	Velocity required at end of burn.
I	BURNPR	BURNFL	1			$\begin{aligned} & =-1, \text { non-iterative run. } \\ & =0, \text { impulsive burn no burn } \\ & =2, \text { impulsive burn, burn print. } \end{aligned}$
						$\begin{aligned} & =3 \text {, integrated burn no burn } \\ & =\quad 4, \text { integrated burn, burn } \\ & \text { print. } \end{aligned}$
I	BURNPR	DELTI	1	$\Delta \mathrm{T}_{1}$	hrs	Minimum time from initial time to beginning of abort (.016666666) if not input.

INPUT AND OUTPUT: ADDITIONAL INPUT

I/O	NAMED COMMON	SYMBOLIC NAME OR LOCATION	PROGRAM DIMENSION	$\begin{gathered} \text { MATH } \\ \text { SYMBOL } \end{gathered}$	$\begin{gathered} \text { DATA } \\ \text { DIMENSIONS } \\ \text { OR UNITS } \end{gathered}$	DEFINITIONS
I	AINPUT	H2øFG	1			```= 1, compute a water landing site. = 0, do not use water landing logic.```
I	AINPUT	CFLAG	1			$=0$, no circumlunar logic. $=1$, do circumlunar logic.
I	AINPUT	RPMIN	1	$\mathrm{R}_{\text {PMIN }}$	er	Minimum allowable lunar pericynthian altitude.
I	INPUT	URMAX	1	$\mathrm{U}_{\mathrm{RMAX}}$	$\mathrm{er} / \mathrm{hr}$	Magnitude of the maximum allowable re-entry velocity.
I	BURNPR	BURNFL	1			$=-1$, non-iterative run. $=0$, impulsive burn, no burn print. $=2$ _ impuslive burn burn print.
						\qquad

SUBROUTINE: TCFC

To establish the conic trajectory satisfying the re-entry constraints and which will return the spacecraft in the shortest time with the available fuel, or will return the spacecraft with the minimum fuel.

CALITNG SEQUENCE:
NAME COMMON USED:

SUBROUTINES REQUIRED:
FUNCTIONS REQUIRED: SIN, CøS, ABS, SQRT
APPROXIMATE STORAGE: 652

I／O	$\begin{aligned} & \text { NAMED } \\ & \text { COMMON } \end{aligned}$	SYMBOLIC NAME OR LOCATION	PROGRAM DIMENSION	$\begin{gathered} \text { MATH } \\ \text { SYMBOL } \end{gathered}$	DATA DIMENSIONS OR UNITS	DEFINITIONS
I	INTGR	RAB	6	$\overline{\mathrm{R}}$	er	Position of the spacecraft at time TA．
I	INTGR	VAB	6	$\overline{\mathrm{V}}$	$\mathrm{er} / \mathrm{hr}$	Velocity of the spacecraft at time TA．
I	AINPUT	DV	1	$\Delta \mathrm{V}$	$\mathrm{er} / \mathrm{hr}$	The maximum allowable change in velocity if non－zero．If $=0$ ， compute minimum velocity transfer
I	INTGR	TA	1	TA	hrs	Time of abort measured from initial time．
I	AINPUT	CめGR	1	$\operatorname{ctn} \gamma_{R}$		Cotangent of the re－entry flight path angle．
I	AINPUT	RR	1	$\overline{\mathrm{R}}_{\mathrm{R}}$	er	Magnitude of the re－entry position vector．
I	AINPUT	M \quad DE	1			$M \not D E=1$ ，landing site． $M \not D E E=2$ ，time critical． MODE $=3$ ，fuel critical．
I	CめNST	EMU	1	μ	$e r^{3} / h r^{2}$	Gravitational parameter of the earth．19．9094165
I	CめNST	USSTER	1		$\frac{\text { statute mi. }}{e r}$	Conversion factor： 3963.20799
I	CめNST	PI	1	π		3．141592654
\emptyset	INTGR	TF	1	TF	hr	Total time of flight from initial time to re－entry．
\varnothing	INTGR	TBURN	1	T_{B}	hr	Time of burn initiation measured from initial time．

INPUT AND OUTPUT:

I/O	NAMED COMMON	SYMBOLIC NAME OR IOCATION	PROGRAM DIMENSION	$\begin{aligned} & \text { MATH } \\ & \text { SYMBOL } \end{aligned}$	$\begin{gathered} \text { DATA } \\ \text { DIMENSIONS } \\ \text { OR UNITS } \end{gathered}$	DEFINITIONS
\emptyset	BURNPR	BURNVR	3	V_{R}	$\mathrm{er} / \mathrm{hr}$	Velocity required at end of burn.
\emptyset		MINLAT	1	$\theta_{\text {min }}$	rad	Latitude of the landing site corresponding to the minimum re-entry range angle.
\emptyset		MTNL®N	1	$\lambda_{\text {min }}$	rad	Longitude of the landing site corresponding to the minimum re-entry range angle.
\varnothing		MAXIAT	1	$\theta_{\text {max }}$	rad	Latitude of the landing site corresponding to the maximum re-entry range angle.
\varnothing		MAXI¢N	1	$\lambda_{\text {max }}$	rad	Iongitude of the landing site corresponding to the maximum re-entry range angle.
I	CめNST	RADIAN	1		deg/rad	57.29577951
\emptyset	AINPUT	INDSSDF	1			$=0$, if no solution has been computed. $=1$, if a solution has been
I	AINPUT	H2øFG	1		.	Input flag for water landing logic.
I	AINPUT	фC \varnothing GR2	1			$\left[1+\operatorname{COGR}^{2}\right]$
\varnothing	ϕ TPT	DVR	1	Δv_{r}	$\mathrm{er} / \mathrm{hr}$	Required velocity change for the computed analytic solution.
\emptyset	INTGR	UNRF	6	$\overline{\mathrm{R}}$	er	Desired position vector at re-entry.
\varnothing		ALAT	1	IAT	deg	Nominal landing site's latitude. Computed only if $\mathrm{H} 2 \phi \mathrm{FG}=1$.

INPUT AND OUTPUT:

| I/O | NAMED
 COMMON | SYMBOLIC
 NAME OR
 LOCATION | PROGRAM
 DIMENSION | MATH
 SYMBOL | DIMENSIONS
 OR UNITS | DEFINITIONS |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

SUBROUTINE:
PURPOSE:

CALIING SEQUENCE:
NAME COMMON USED:
VEH
VEHICL
BURNID
PERTS
TINPUT
INPUT
INDS
AUTめ
MISC
NAVERR
BURNPR
INTGR
SUBROUTINES REQUIRES: INITAL, NAVIER, VECT, PEICめM, VCMSC, SUMR, DERIV, RKINT

FUNCTIONS REQUIRED: EXP
APPROXIMATE STORAGE: 423

INPUT AND OUTPUT:

I/O	NAMED COMMON	SYMBOLIC NAME OR LOCATION	PROGRAM DIMENSION	$\begin{array}{\|c\|} \hline \text { MATH } \\ \text { SYMBOL } \end{array}$	DATA DIMENSIONS OR UNITS	DEFINITIONS
I		INDIC	1			Initialization indicator.
I	DINTGR	T	1	T	hrs	Current time double precision.
I / \varnothing	TINPUT	NTPR	1			Number of thrust print cycles.
I	TINPUT	TTR	1	T_{T}	hrs	Time to start thrust.
I	INPUT	TSTART	1	To	hrs	Epoch time in hours from 0^{h} day of epoch.
I	VEH	R	12	$\overline{\mathrm{R}}$	er	Double precision position vector.
\emptyset	INTGR	SR	6	$\overline{\mathrm{R}}_{\mathrm{T}}$	er	Position at start of thrust.
I	VEHICL	$R \varnothing$	12	$\overline{\mathrm{R}}$	er	Single precision position vector.
I	VEHICL	$R \mathrm{RD} \varnothing$	12	$\overline{\mathrm{V}}$	$\mathrm{er} / \mathrm{hr}$	Single precision velocity vector.
\varnothing	BURNID	XR	4	$\overline{\mathrm{R}}_{\mathrm{F}}$	er	Position required.
\varnothing	BURNID	XDR	4	ΔV_{F}	$\mathrm{er} / \mathrm{hr}$	Velocity difference required.
\varnothing	INDS	ITHRST	1			$=1$, start thrust $=-1$, end thrust

INPUT AND OUTPUT:

I/O	NAMED COMMON	SYMBOLIC NAME OR LOCATION	PROGRAM DIMENSION	$\begin{aligned} & \text { MATH } \\ & \text { SYMBOL } \end{aligned}$	DATA DIMENSIONS OR UNITS	DEFINITIONS
I	BURNPR	BURNFL	1			$\begin{aligned} & =-1, \text { non-iterative run. } \\ & =0, \text { impulsive burn no burn } \\ & =2 \text { print. } \\ & =\text { impulsive burn, burn print. } \end{aligned}$
						$\begin{array}{\|l} =3, \\ =4, \begin{array}{l} \text { integrated burn no burn } \\ \text { integrated burn, burn } \\ \text { print. } \end{array} \\ \hline \end{array}$
\emptyset	BURNID	VR	3	V_{r}	$\mathrm{er} / \mathrm{hr}$	Required velocity at thrust termination.
I	BURNPR	BURNVR	3	V_{r}	$\mathrm{er} / \mathrm{hr}$	Required velocity at thrust termination.
\emptyset	NAVERR	ISTFG	1			$=1$, use navigation errors. $=0$, do not use navigation
I	INDS	IM $¢$ DE	1			Integration type: = 0, Encke = 1, Cowell
\emptyset	NAVERR	SSG	3	Σ_{g}	$\mathrm{er} / \mathrm{hr}{ }^{2}$	Summation of perturbation accelerations.
I	PERTS	ACCEL	30		$\mathrm{er} / \mathrm{hr}{ }^{2}$	Perturbation accelerations double precision.
I	BURNID	TG \varnothing	1	t_{go}	hr	Thrust time to go.
I / \varnothing	BURNID	MASS	1	W	Ibs	Current mass of the vehicle.
I	TINPUT	IMASS	1	W_{0}	Ibs	Input mass of the vehicle.
\emptyset	TINPUT	TCINT	1	T_{c}	hrs	Cowell integration step size.

SUBROUTINE: TCUT (continued)

INPUT AND OUTPUT:

I/O	NAMED COMMON	SYMBOLIC NAME OR LOCATION	FROGRAM DIMENSION	MATH SYMBOL	DIMENSIONS OR UNITS	DEFINITIONS

SUBROUTINE: THRUS1
PURPOSE:
CALIING SEQUENCE: CALL THRUSITo compute the components of acceleration due tothe thrusting of the spacecraft and using theMIT guidance equations.
NAME COMMON USED: DINTGRVEHICL
BURNIDPERTSNAVERRTINPUTAINPUTCDNST
INDS
SUBROUTINES REQUIRED: VCMSC
FUNCTIONS REQUIRED: SQRT, CøS
APPROXIMATE STORAGE: 301

INPUT AND OUTPUT:

I/O	NAMED COMMON	SYMBOLIC NAME OR LOCATION	PROGRAM DIMENSION	$\begin{array}{\|c\|} \hline \text { MATH } \\ \text { SIMBOL } \end{array}$	DATA DIMENSIONS OR UNITS	DEFINITIONS
I	NAVERR	ISTFG	1			$=1$, navigation equations are to be used.
I	AINPUT	RSN	4	$\overline{\mathrm{R}}_{\mathrm{N}}$	er	Position vector for navigation equations.
I	AINPUT	VSN	3	$\overline{\mathrm{V}}_{\mathrm{N}}$	$\mathrm{er} / \mathrm{hr}$	Velocity vector for navigation equations.
I	VEHICL	$R \varnothing$	12	$\overline{\mathrm{R}}$	er	Single precision position vector of the vehicl at time T.
I	VEHICL	$R D \varnothing$	12	$\overline{\mathrm{V}}$	$\mathrm{er} / \mathrm{hr}$	Single precision velocity vector of the vehicle at time T.
I	CめNST	RADIAN	1	r	rad/deg	Conversion factor: 57.29577951
I	TINPUT	TTR	1	${ }^{T}$	hrs	Time to initiate thrust.
I	TINPUT	IMASS	1	W	Ibs	Input mass of the vehicle.
I	TINPUT	THRM	1		lbs	Thrust magnitude.
I	TINPUT	MSFL	1	W	$\mathrm{lbs} / \mathrm{hr}$	Mass flow rate.
\varnothing	BURNID	VRDES	3	$\overline{\mathrm{V}}_{\mathrm{R}}$	$\mathrm{er} / \mathrm{hr}$	Required velocity.
\varnothing	BURNID	VD	4	$\overline{\Delta V}$	$\mathrm{er} / \mathrm{hr}$	Velocity to be gained.

INPUT AND OUTPUT:

I/O	NAMED COMMON	SYMBOLIC NAME OR LOCATION	PROGRAM DIMENSION	$\begin{array}{\|l\|} \hline \text { MATH } \\ \text { SYMBOL } \end{array}$	DATA DIMENSIONS OR UNITS	DEFINITIONS
\emptyset	BURNID	MASS	1	W	1 bs	Current mass of the vehicle.
\varnothing	BURNID	ATM	1	$\|\mathrm{A}\|$	$\mathrm{er} / \mathrm{hr}{ }^{2}$	Acceleration magnitude.
\emptyset	BURNID	AVRDES	1	$\left\|\mathrm{V}_{R}\right\|$	$\mathrm{er} / \mathrm{hr}$	Magnitude of VRDES.
\emptyset	PERTS	AT	6		$\mathrm{er} / \mathrm{hr}{ }^{2}$	Acceleration components due to thrusting.
I	C \varnothing NST	EMU	1	μ	$\mathrm{er}^{3} / \mathrm{hr}^{2}$	Gravitational parameter of the earth. 19.9094165
I	DINTGR	T	1	T	hrs	Current time double precision.
I	INDS	XMU	1	μ	$\mathrm{er}^{3} / \mathrm{hr}{ }^{2}$	Gravitational parameter of the central body.
I	AINPUT	PDES	1	P	er	Semi-latus rectum post abort trajectory.
I	AINPUT	EDES	1	e		Eccentricity post abort trajectory.
I	AINPUT	SQS	1			Indicator for the sign of the radial velocity component at the abort.
I	AINPUT	CINC	1	i	deg	Inclination of the post abort trajectory.

SUBROUTINE:	WLSCN
PURPOSE:	To control the logic which will insure that the abort trajectory impact point will be in a water area. This is an option which will be exercised only if the nominal impact is on land and the proper inputs have been made to request a water landing. The computed trajectory is the minimum time solution for the time critical mode and is the minimum fuel solution for the fuel critical mode.
CALIING SEQUENCE:	CALL WLSCN (LAT, L \varnothing NG)
NAME COMMON USED:	WLSC $\neq \mathrm{N}$ AINPUT CDNST IDUT RVM $\varnothing \not \subset N$ INTGRK INTGR INMOC INPUT
SUBROUTINES REQUIRED:	ANALYT, ENCKE, INM
FUNCTIONS REQUIRED:	None
APPROXIMATE STORAGE:	412

INPUT AND OUTPUT:

I/O.	NAMED COMMON	SYMBOLIC NAME OR LOCATION	PROGRAM DIMENSION	$\begin{gathered} \text { MATH } \\ \text { SYMBOL } \end{gathered}$	DATA DIMENSIONS OR UNITS	DEFINITIONS
I	WLSC $\mathrm{N}^{\text {N }}$	LMAX	6			Maximum number of landing sites per land mass.
I	WLSCめN	KMAX	1			Maximum number of land masses.
I	WLSL $\varnothing \mathrm{N}$	WLT	$(6,20)$	IAT	deg	Latitudes of the landing sites surrounding the land masses.
I	WLSCめN	WLN	$(6,20)$	IøNG	deg	Longitudes of the landing sites surrounding the land masses.
\emptyset	AINPUT	INSFG	1			$=1$, the abort point is inside the lunar sphere of action.
\emptyset	AINPUT	IWATFG	1			Land mass number $=0$ if nominal trajectory impacts on water.
I	CDNST	RADIAN	1		$\mathrm{deg} / \mathrm{rad}$	Conversion factor: 57.29577951
I / \varnothing		LAT	1	IAT	deg	Latitude of the nominal trajectory.
I / \varnothing		İNG	1	LøNG	deg	Iongitude of the nominal trajectory.
\emptyset	IØUT		85			Trajectory data necessary for the integrated phase when inside the sphere.

8. CONCLUSIONS AND RECOMMENDATIONS

The MIT based abort logic is seen to be efficient, compact and free from indeterminacy. It is a powerful tool for analysis; however, if it is to be considered as a candidate for real-time computation, it is recommended that the program be given a more thorough evaluation. This evaluation should be performed by persons more familiar with the requirements of a real-time logic than were the developers of this simulation. Additionally, it is felt that the simulation would benefit by being used and subsequently critized by those working in areas which might use the program as an analytical tool.

The major uncorrected flaw in the logic is a lack of flexibility in specifying the parameters for the post-abort trajectory. This is evidenced, parti ularly, in those abort trajectories generated inside the moon's sphert of action.

While RW has enjoyed the direction and cooperation of MSC/MAB during the perform ance of this task, it is recommended that further development of this pr gram be suspended until MAB has had an opportunity to use the simulat on in order to better define those areas in which the logic should be exte ded and improved.

REFERENCES

1. "Apollo Return to Earth Trajectories," William Marscher, MIT Instrumentation Laboratory, September 30, 1964.
2. "Powered Flight Phases of CSM," E. M. Copps, Jr., MIT, Instrumentation Laboratory, May 29, 1964.

APPENDIX

The following pages contain sample input for the various modes of operation in the program.

1.03344817

n
n
n
n
0
0
0
0
0
.614073455
$+.261752167$
1.019110183
2000.
796.
$13888889 E-03$
51884.983
1900.
0.
1，4 100
20
0.
1.0
5
5
1.0
 0 00.

 －
моロе

O INSIDE THE SPHERE TIME CRITICAL MODE
1968 (.72732213
128.
 هِّ

INSIDE THE SPHERE TIME CRITICAL MODE
∞

-4.8885217
-2.7250792
-.53728276
.38007233
.21391531
3.360

20
198
19

.01911003
0
$\stackrel{\circ}{\circ}$

\qquad

0.0

- .983

號

 ه

いいー のおのマ」ス

MODE
0
01
$+1.03344817$
n
n
m
m
m
∞
o
n
\vdots
\cdots
1

$-.614073455$
67433101
61752167
.261752167
.0
22000.
7796.
$13888889 E-03$
251884.983
251084.98
21900.
100.
20
1.0
1.019110183
 の 0 о 0 м
B
OMNN
21.307360
4
0
11
251.3853
$3251 \cdot 3853$
$1311 \cdot 0588$
670.85189
$11396 \cdot 533$
2543.529
6750.553 400000.
20.
0.0
1.
1.
0.
100 .
0.
58200.
21534.
21500.
247284.35
1
.00013888888
20
2
0.
40
1.72036941
1.4
100 .
0.
58200.
21534.
21500.
247284.35
1
.00013888888
20
2
0.
40
1.72036941
1.4
100 .
0.
58200.
21534.
21500.
247284.35
1
.00013888888
20
2
0.
40
1.72036941
1.4
100 .
0.
58200.
21534.
21500.
247284.35
1
.00013888888
20
2
0.
40
1.72036941
1.4
㑕

22000 00 0

$$
128797049
$$

53 56

\qquad

2000.

7796.

$1388889 E-03$

251884．983
1900.
0.

52199079
20．
20 $\begin{array}{ll}\text { DEC } & 1.01910943 \\ \text { DEC } & 20 \\ \text { DEC } & \\ \text { DEC } & 3 \\ \text { TRA } & 1,4\end{array}$

OUTSIDE THE SPHERE MIDCOURSE LANDING SITE MODE

0
19
12
8.
8.557367

00
－：
19.9579664
-1.18906009
－． 207651395
－． 0735126412

.019110183
1.4

0_{0}°
0
0
0

13888889E－03
251884．983
．
3.

002
9

22000.

占

I
\vdots
$\frac{\omega}{2}$

山ル
w
Nǒへ

1968
ouuuuuuuuuuuuuuuuuuuvuuuuuuvuuuuuuuu о

шш 251
CIRCUMLUNAR TIME CRITICAL DELTI＝ 0 HRS
1968

$\ln 0$

21900.
.01910943
00.
${ }_{5}^{200}$
2
io
1,4

