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TOP-DOWN, BOTTOM-UP, STRUCTURED

PROGRAMMING AND PROGRAM STRUCTURING

Abstract

The purpose of this report is to inform engineers, programmers and

managers of new design and programming techniques for Shuttle software.

Based on previous APOLLO experience, recommendations are made to apply

top-down structured programming techniques to Shuttle software. New

software verification techniques for large software systems are recom-

mended. HAL, the higher order language selected for the Shuttle flight

code, is discussed and found to be adequate for implementing these

techniques. Recommendations are made to apply the workable combination

of top-down, bottom-up methods in the management of Shuttle software.

Program structuring is discussed relevant to both programming and

management techniques.

by: M. Hamilton

S. Zeldin

December 1972
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1.0 Introduction

The concepts "top-down", "bottom-up", "structured programming",
and "program structuring" require some clarification. An attempt is made

to define these terms and then, using these concepts, to define an approach
to flight software development for the future.

Since 1968, these terms have appeared in the literature as an attempt
1,2,3to communicate the need for an organized approach to creating software

We will use the same terms, but will show how they apply in the
context of building flight software. We are considering the two main areas
in the development of Shuttle flight software: (1) the design of the contents
of the software itself, i.e., programming style and (2) the management
techniques which include the layout of the software system and the process
of building the software system.

Structured programming - the process of enforcing organization and
discipline in the programming proccss. Modularity is a main concern.
Modularity includes the organization of sets of instructions and, in addition,
the organization of data. Program blocks are arranged sequentially so
that the flow of a program is visible. (An ideal approach is to eliminate
the concept of GOTO s.)

Top-down - an organizational process whereby steps are taken in
the following order: (1) the total concept is formulated, (2) the functional
specification is designed, (3) the functional specification is refined at each
intermediate step where the intermediate steps include code or processes
required by the previous step and (4) the final refinements are made to

completely define the problem.

Bottom-up - the reverse of top-down whereby: (1) subroutines of

lower level modules are created first, (2) the intermediate steps integrate
the lower level steps, and (3) the final step links all the previous steps
together. The entire problem is not defined until the final step is completed.
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Program structuring - the process of defining and enforcing

organization and discipline in the total software system design and

implementation. Whereas structured programming applies to a program-

ming style, program structuring applies to the process of defining the

modules and their interfaces.

2.0 Software Development Techniques for APOLLO

On APOLLO the techniques mentioned above evolved out of necessity.

The difference was either that we didn't use these terms when applying

these techniques, since they were not known by the new terminology, or

that we didn't always formalize or enforce these techniques in as many

areas as we now propose. Examples of how we approached these techniques

are as follows:

1) Many rules were enforced on programmers by the assembler,

the systems software, the digital simulator and the assembly
4control supervisor Such rules included standard coding

techniques, standard interfaces, common subroutines, etc.

2) Programming responsibility was allocated so that systems

experts were responsible for system program modules and

applications experts were responsible for mission modules.

3) AGC programs were designed to be modular, e.g., P40 is the

program to provide the SPS engine guidance logic; V82 is the

extended verb routine to calculate and display orbital

parameters. There were mission modules and functional

modules. Some modules were control modules, some modules

were subroutine modules, some were data management modules

and some were data modules.

4) The asynchronous AGC executive allows for a flexible and

modular input of mission programs and routines. Rules for

program interfaces were defined by the executive. Some

software was synchronous and some was asynchronous. Some
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was in the form of TASKs (time oriented), and some in the

form of JOBs (priority oriented). All of these divisions blocked

software into sections.

5) The error recovery software was divided into specific areas.

These areas influenced the entire software structure both from

a memory layout and from a multiprogramming point of view.

6) "Higher level" core software such as the display interface

routines forced a standardization of techniques and prevented

the programmer from using complicated or error-prone code.

7) Erasable memorywas divided into sections. This division was

dictated partly by the hardware and partly by the software.

Obviously, we were approaching what we now think of as modularity

and enforcement of rules (structured programming). However, depending

on programmer/supervisor preference, some programmers programmed

top-down; some bottom-up; some a combination of the two. In addition,

we were very much concerned with program structuring. The management

approached top-down methods of developing an official assembly in later

stages of software development.

3.0 New Software Programming Techniques for Shuttle

We have been talking for several months about applying "structured

programming" and "top-down" techniques to software for the Shuttle. The

application of more reliable techniques to the software development process

will eventually result in a more efficient cost-effective process.

The way programmers/engineers attempt to solve a problem turns

out to be very much dependent on the programming tools available. The

tendency to use an inadequate higher order language (HOL) is reflected in

popularized treatments of programming problems 5 . This conventional

approach separates the engineering from the programming, that is, the

engineering designs from the software designs. Since these techniques do

3



not automatically enforce programming rules and do not have all the

appropriate language constructs to produce an efficient structured program,

they invariably introduce errors and produce an inefficient and expensive

verification process.

There are three basic principles to acquiring a top-down-structured

program. First, the program should be designed and implemented by

top-down methods. The second principle is to plan the software in a

structured manner. This requires rules and enforcement of these rules

on the part of everyone involved. The third principle is to program in a

HOL which (1) enforces structured programming rules, (2) contains static

and dynamic debug features, and (3) automates designs in the software

development process. The HAL programming language selected for the

shuttle flight software has features that are necessary to construct a

structured program.

The formal process of structured programming and the enforcement

of it is a relatively new thing for all of us. We are now attempting to use

HAL in a structured way to implement the algorithmic software for the

shuttle. (See Appendix 1.) Preliminary and tentative rules for Shuttle

software implementation are suggested in Section 6.0.

3.1 The Top-Down Concept

The concept of top-down can be thought of as planning each level of

the program and each level of the accompanying data modules from top to

bottom, completely.

When writing a paper or preparing a talk, one first jots down notes.

Then an outline is developed. After the outline is expanded by way of a

few iterations, the paper is rewritten. Many revisions are usually necessary

if the paper or speech is of any significance. A software program shouldn't

be much different in the way it is created. Better organized papers and

4



speeches are, of course, much easier to follow and understand than a paper
or speech that rambles back and forth. The same holds true for an individual
program; even more so for a whole software system. However, an iterative
process is necessary, just as when writing a paper. Each iteration in the
design of the software system will bring the definition of each level closer
to the best modular, top-to-bottom concept for the particular system in
mind. During the design process, it will become apparent that some modules
on one level will be applicable for use on another level; some data modules
must be accessible to more than one program module; and, in some instances,
it will be important that some data modules be inaccessible to particular
program modules.

Top-down design is analagous to a tree where each level of planning
is another branch. Each branch in turn can be a node with branches of its
own. But, if one chooses any point at an outermost branch, it is always
possible to retrace the growth of the tree and follow each mode back to
the original trunk. Likewise, one never loses sight of the original problem
by designing a software system top-down. Each level of planning should
be broken into parts which take no more than one page of description.
For example, if a program were Apollo, the top-level instructions would
be, (Fig. 1),

(1) "Fly to the moon."

(2) "Return to earth."

The next level would be 2 pages. One would break down the trip to
the moon and would include instructions, such as CALL BOOST, CALL
EARTH ORBIT, etc. The other page would describe the return to earth.
The next level would show a page for BOOST, a page for EARTH ORBIT,
etc. The page for EARTH ORBIT would include instructions such as CALL
NAVIGATION, CALL GUIDANCE, etc. A much lower level would break
down instructions for routines such as Lambert, matrix coordinate
transformations, etc.
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At each level of planning the data modules are planned just as carefully

as the program modules. Top-down data module design will indicate the

data on the outer levels that must be available to the inner, or lower, levels;

and at the same time will indicate those data modules that require no

interfaces. The "scope" of the data is therefore an important concept.

One of the niceties included in the Shuttle language, HAL, is the concept of

scope. All data declared on outer levels are known to each inner level

automatically in HAL, while each inner level variable is unknown to any

outer levels.

Top-down design will also indicate those data modules where conflicts

will arise when reading or writing into these modules. For example, a

targetting routine may wish to READ the present state vector. If the

integration routine has just updated the velocity of the spacecraft but has

not updated the position of the spacecraft, precautionary measures must

be taken in the design of this state vector data module so that the targetting

routine will. wait until the complete data module is updated. Again this

automated design feature is available in the shuttle language, HAL.

Top-down design must include complete test specifications for each

level of the functional and data modules of the program. Each engineer

responsible for a particular shuttle algorithm should complete the set of

test specifications before coding is begun. Once the engineer/programmer

has proved the correctness of the program module by structured program-

mingtechniques, the code is tested completely to verify that the specifications

have been coded correctly. A test specification will include:

1) various sets of initial conditions

2) figures of merit

3) timing and priority requirements

4) interface requirements, and

5) indicators as to which specification is being tested.
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The test specification should be designed top-down. This will avoid

repetitive testing of the same specification. Each test case must be

meaningful; the complete set of test specifications should adequately test

both the constraints imposed on each functional specification and each data

specification, while at the same time the test specifications should not

produce unnecessary test cases.

Top-down techniques can only work effectively if combined with

structured programming techniques. It is important to realize that HAL

must be used in a structured way if we are to make intelligent use of a

powerful software tool. HAL is characterized by its ability to link the

broadly based engineering solutions, which view the problem as a whole,

to an effective programming approach, which places a high premium on

correctness and creates real ease of modification. Proper use of the HAL

concepts of modularity, scope, effective subroutine constructs, and error

recovery techniques can only occur if the entire problem and all of its

ramifications are understood by the programmer. Thus, the engineers

who develop the guidance, navigation and control algorithms must take an

active role in the development of Shuttle software.

3.2 A Case for Structured Programming

In the past, a programmer's objective was to generate code as

'efficiently as possible; there was not enough concern for those people who

had to understand, modify, and many times debug a program long after the

original programmer had disappeared from the programming effort. At

present, it has not been possible to be 100% sure'that there are no errors

in actively used software. The task of proving any program correct by

conventional means is expensive and is not guaranteed to be reliable. This

is mainly due to the older techniques of generating and testing a program.

The older method invariably shows the presence of errors in the program,

but in fact, there is no way that testing can detect the absence of errors 1
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New concepts in programming style make it possible to attempt to
prove a program is correct. The technique involves two basic steps. The
first is to prove certain HOL constructs to be correct. The second is to
allow the programmer the luxury of using these constructs in the same
manner that one uses a mathematical theorem as a building block. By
concatenating these building blocks, a simple sequence for a structured
program develops. Not only can the entire sequence be proved correct,
but the modularity of each building block anticipates future program
modification.

The modular building process encompasses the two basic modular
types: data modules and program modules.

Data modules are structured by 1) the individual programmer when
defining local variables, 2) system design programmers when defining
non-local variables, or 3) by the HOL automatically.

FUN CTION

Then

ORGANIZATION

Then

LOCATION

Fig. 2 The data module

The function of a data module is determined by program constraints,
timing constraints, data interface constraints, error recovery constraints
or I/O constraints. The organization of a data module is derived from

x9



its function and specifies the data type (bit, integer, vector, matrix,

character, scalar)andthe array and structural qualities. The size, spec-

ified in the organization, and the function make it possible to define a

block for the data module. The location for each block can be a location

such as the COMPOOL, can be specified as outer level, or can be specified

as local to a particular program. In addition, this location can be an

absolute location such as a sensor known to the program via a particular

I/O device.

Those data modules that are a part of the HOL can be assumed correct.

In HAL, these built-in data-modules include matrices and vectors to provide

programming of matrix-vector arithmetic and the array to provide modular

arithmetic operations.

When constructing a structured program, the local data modules must

be clearly distinguished from the non-local data modules. To aid the

programmer in proving non-local data modules correct, the Shuttle language,

HAL, provides a special program block, the UPDATE block. Reading or

writing of shared data modules can be done inside an UPDATE block and

the user at any program level is assured that the total data module at any

point is correct and that the contents of that data module will not be the

cause of any dynamic error.

A program module can be an open block, which is in-line (the IF

construct) ora closed block (the PROCEDURE). A module is characterized

by the particular function it performs. It has a single entrance, i.e., the

single entry point of a procedure or the first statement of an in-line block.

It also has a single exit in the sense of returning to the same place from

which it was invoked, i.e., procedures return normally to the place from

which they were called and all in-line blocks exit only to the statement

immediately following the block 6
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The one entrance, one exit structure of module linkage assures the

programmer that the state of the program is always defined. That is, at

any point of execution a simple dump reveals the current state of the program

in terms of the set of active modules and their calling relationships. In

the event a dynamic error does occur, the simple sequenced structure makes

it possible to identify the error using the building blocks as coordinates of

the program.

It has been shown that HOL statements involving concatenation,

selection or repetition can be proven correct by the methods of enumeration,

mathematical induction, and abstraction 1. Dynamic errors could still occur

in a program proven "correct" because a structured programming theorem

incorrectly assumes that (1) the numerical analysis for each problem is

correct, (there are no scaling or accuracy problems to solve), (2) the

specifications are coded correctly, (3) the HOL is correct, (4) the verification

tools are correct, (5) the hardware is correct, (6) the systems software is

written in the HOL and (7) non-local data modules have no local effects.

The simplest construct to prove correct is a group of sequential

statements or blocks of code. These are nothing more than an ordered

list in which all possibilities are clearly visible by simply following the

code.

I1
Call Y

Fig. 3. Structured Program Consisting of Sequential Blocks of Code.
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A programming style which advocates the use of branching (GOTO)

for the main purpose of producing efficient code would produce a program

difficult to understand, modify, debug, or prove correct. One could not

simply follow the code. In this context, Fig.4 is presented as a representative

example of a FORTRAN program written before the concepts of structured

programming were made available. This program is so "tricky" that it

branches into the list of GOTO statements by fooling a particular FORTRAN

compiler which assigns the address of the succeeding statement to TRUE.

TRUE in this compiler is a variable, not a constant. Indexing into the list

of GOTOs is accomplished in a BAL program not shown here, by using
this bit of TRUE information. The code is extremely efficient, but obviously

difficult to debug or modify.

We already know that 5% of official anomaly errors in Apollo flight

software arose from simple branching errors7. Analysis of complicated

branching errors is not yet complete. The available data does not account

for the many wasted hours spent by the original programmers in detecting
branching errors during Apollo development. It has been shown by others

that statements with branching operations are 5 times more error-prone

than statements without branching 8

If a HOL contains the proper control statements, it is theoretically

possible to construct an efficient program without GOTO s 9. These control
statements are:

IFTHENELSE

DOFOR

DOWHIILE

DOCASE

This example was suggested by Saul Serben.

12
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It is also true that these control statements can be proved correct
1

from a logical point of view

The IFTHENELSE F-ov.-.vs a simple choice between two possibilities.

Since this statement is aiwa,- 'entered at the beginning and has a single

EXIT, the entire construct can be thought of as a single module whose

internal structure is not relevant to the context in which it is used.

Fig. 5. IF? THEN X1 ELSE X2

The DOCASE construct is just a selection

correct by enumerative reasoning and, again, has

single entry and exit.

or-
1 7

11

I

I 4/
I X1

I
l
I .

L - - - - - -

process easily proven

the characteristic of a

- --- ]

1 I
I

X3 Xn I

I
I

- - - - - - -I

Fig. 6. DO CASE L: case L of (X1; X2;... Xn)
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Repetition via DO WHILE or DOFOR statements (Fig. 7a) and REPEAT

(Fig. 7b) can be proved correct bymathematical induction. Again, we have

a control statement with a single entry and exit. As long as we enforce

the rule that the loop variables of a DOWHILE or DOFOR must be a local

variable (changed only within the realm of the DOWHILE or the DOFOR)

the loop will not depend on an outside variable and the proof for correctness

will not be difficult. Imagine how difficult it would be to prove programming

logic correct where a GOTO depends on a non-local variable. In this case,

branching via a GOTO could lead to an infinite repetition of a particular

set of statements.

1-

I

I
I
I
I

I
I
I
I
I
I

L_

F
I
I
I
I
I
I
I
I
I
I
I
I

________ _I

(a) DO WHILE or DO FOR:
while ? do X

(b) REPEAT: repeat X until ?

Fig. 7. Repetitive HOL Statements

At present it is not clear how much coding could be saved if HAL

included the REPEAT statement. When a specification requires the REPEAT

concept, methods of setting extra flags, creating extra procedures, creating
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duplicate copies of the same block of code, and resetting loop variables
*

are available.

It is not clear that programming languages should completely eliminate

the GOTO. Some languages lack the control statements mentioned above

as necessary to produce an efficient structured program. In those cases,

the GOTO must be accepted as a basic building block 1 . Although HAL

contains the necessary control statements, the GOTO cannot be eliminated

from the language. Specifically, this syntax is incorporated into the error

recovery statement "ON ERROR GOTO X". For this particular application

of GOTO, there is no alternative since this HAL statement will be extremely

useful in considering software restart protection and for flagging out

expected abnormal termination. It is also not clear that using the GOTO

for error recoverytechniques violates any rules of structured programming.

The ON statement may be thought of as user defined systems programming

or special instructions to the compiler for dynamic monitoring of particular

events. Another example of systems programming is the flight program

executive. It is apparent that the concept of the AGC asynchronous exec-

utive actually falls into the structured programming framework as seen in

Fig. 8.

In fact, one of the few examples of a reasonably sized program that

used the principles of structured programming is an experimental multi-

programming operating system which now supports 5 or 6 concurrent users

on a small computer2. It purports brief development time and structure

that was actually a tool that provided insight into the problem.

The "Unified Filter" shuttle navigation algorithm contains more than one
specification in the form of a REPEAT10. Further study into "work-around"
procedures due to the lack of a REPEAT is required.

Suggested by Phyllis Rye in an attempt to reconcile real-time flight
systems operation with the structured concept.
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AGC EXECUTIVE

r -------------------------------------------

(while)

EXECUTIVEJOBQUEUE
NON-EMPTY AND

IIIGHES TPRIO-IN-EXE CJOB_QUEUE > (false)
PRIO_OF_CURRENT_JOB

(true)

----- case) -------------

l |HIGHEST PRIO IN EXEC JOB QUEUE I

I I- I

CALLPROGRAMI CALL PROGRAM_2 CALLPROGRAM_N

TIs

I .... I1

i i

RETURN

Fig. 8. The structured nature of the AGC executive.
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Using structured programming techniques means that more time will

be spent on software design at the initial stages of development. Ultimately,

this should save time during the verification process. Many times, the

method used to define a problem is to make a few examples (perhaps even

doing a few hand calculations) until it is possible to form an abstraction of

the problem. This abstraction becomes the basis for defining the total

functional specification of the problem. After this mental process has been

completed, the programmer is ready to design software using top-down

structured programming techniques. This is an ideal situation. The real

world of Shuttle software will have software development schedules that

might tempt a programmer to use a GOTO as a quick and easy solution to

a problem. When modifying a program, it may be difficult to avoid a GOTO

without recodinga lot of logic. Potential interface problems exist for Shuttle

systems programming since systems programs cannot be coded in the HAL

language in its present form.

3.3 Using HAL Effectively

Software problems can be dealt with by either hardware tools or

software tools 3 . For example, computational problems could have been

r e d u c e d by a software floating point mechanism in HAL but a more

efficient and less costlyway of doing this is the provision for floating point

mechanism in the hardware. Twenty two percent of pre-flight anomalies

for Apollo occurred due to computational difficulties 7  The analysis is

yet incomplete in that (1) the proportion of these anomalies due to scaling

difficulties is unknown and (2) the proportion of programmer time spent in

debugging scaling programs is unknown. But this data indicates that the

floating point hardware that will be part of the chosen flight computer will

certainly save programmer debug time and save much code generation.

In a similar manner, the flight hardware design should not cause large
overhead on subroutine mechanisms. For subroutines are a very important
part of new programming styles. Likewise, computers for the future should
have desirable test-cooperative features for dynamic verification.
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Many software problems can be eliminated by appropriate HOL

features. For example, the most time consumingaspect of Apollo verification

was the verification of data modules. In fact, 24 per cent of pre-flight

anomalies for Apollo occurred due to shared data modules 7 . For Shuttle,

all data modules shared by many programs must be placed in a common

area (COMPOOL) where access rights of various programs to data modules

are specified and where special blocks are designated in HAL to prevent

reading or writing of shared data during data module updates. Data modules

shared within a program have scope in that all outer level variables are

known to inner levels. The fact that inner level variables are not known

to outer level variables makes it possible to define local variables with

ease and automatically assures the programmer that local variables will

not destroy other data modules.

Many features in HAL support structured programming concepts and

actually enforce certain standards 'of programming style. Some features

are} optional. It is these optional features that a programmer must be

aware of and use properly so that HAL can be used for the purpose for

which it was intended - generating reliable shuttle softwarel4

Listed below are a set of HAL language features that automatically

produce modularity and reliability in flight software.

Single entry point for programs, procedures and functions to

comply with structured programming techniques.

Each subroutine has a single exit to comply with structured

programming techniques.

Automatic checking for compatible dimensions and data types

of parameters is performed at each subroutine interface to aid

in program structuring verification.

HAL is a block structured language. PROCEDUREs,

FUNCTIONs, TASKs, PROGRAMs are blocks that can be

designed to be used in constructing a structured program with

structured data modules. Outer level variables are

automatically known to inner levels unless otherwise specified.

Local level variables are not known to outer levels. For
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example, there are no equivalence or "common" problems as

in FORTRAN.

Vectors and matrices are representative modular data types.

Arrays and structures represent modular data organization.

Implicit data type conversions avoid inconsistent data

assignments.

Automatic storage allocation helps attain data modularity.

Automatic error recovery features exist for software restart

techniques.

The following HAL features can produce modularity and reliability

if used properly.

Control statements for structured programming

IFTHENELSE

DOWHIL E

DOFOR

DOCASE

GOTOs restricted to local block to aid the programmer in

producing a structured program.

The REPLACE statement may be useful for expanding functional

specifications until the pseudo-module simulator is made

available.

Array arithmetic for modularity.

Matrix-vector arithmetic for modularity.

Multi-dimensional arrays for visibility.

Matrix-vector notation in source listing for visibility.

Extensive explicit data type conversions to aid in data module

manipulations.

Real-time syntax to schedule, sequ'ence and terminate events

and tasks for use in a realistic asynchronous multi-programmed

environment.
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Provisions for special blocks to avoid real-time data sharing

conflicts (UPDATE blocks).

Re-entrant subroutines with the option to lock out more than

one user to provide flexibility for a multi-programmed

environment (EXCLUSIVE).

3.4 Structured Flow Charts

Shuttle software is to be characterized by a combination of two basic

programming styles: structured programming and top-down techniques.

The structured programming concept is characterized by an ordered set

of program instructions. Accompanying structured data modules directly

convey the flow of data. The use of top-down techniques results in program

flow which can be compared to the organization of a book: the "table of

contents" specifies the entire program flow on page one; each "chapter"

is the expansion of a particular block. Conventional flow chart techniques

can not adequately convey these organizations. The block structure, the

scope, and the data flow inherent in any structured top-down program must

be represented by a structured flow chart.

Structured flow charting is based on the premise that the functional

flow of a program includes 1) decision statements based on program data

2) CALLs to sub-modules or other programs which manipulate data and

-.3) in-line equations, which can be thought of as language supplied CALLs

or "degenerate" CALLs which manipulate data.

The functional representation of a program is the first page of the

structured flow chart. The complete data module is represented on the

second page. The functional program is the third page. The succeeding

pages expand the modules found on page three. A complete data module

should accompany each PROCEDURE, TASK, or functional block.
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A complete data module, associated with a functional block, is defined
as the set of data referenced and assigned within a module. This set includes
data referenced or assigned within each sub-module and each CALL to an
outside program. The complete data module is an inherent structure to
any program :module and should, therefore, accompany the functional flow
of the module.

The intersection data module, associated with the CALL to a functional
block, is defined as the intersection of the complete data module of the
caller with the set described as the union of all complete data modules
associated with the called sub-modules and programs. The intersection
data module must accompany each CALL. For example, a PROGRAM -
PROGRAM intersection includes all COMPOOL variables and sensors
referenced in one program and assigned in the other program. Those data
elements superfluous to a PROGRAM- PROGRAM intersection include constants
and local variables. A PROGRAM - PROCEDURE intersection includes 1)
all COMPOOL variables, outer level program variables, and sensors
referenced in the PROGRAM and assigned in the PROCEDURE, 2) all
COMPOOL variables, outer level program variables, and sensors assigned
in the PROGRAM and referenced in the PROCEDURE.

In the case of in-line equations, the data module is explicitly expressed
and need not be represented as a sub-module.

The basic unit of a structured flow chart is the "block". A "block"
is a module which has a single entrance and a single exit. It will be
represented as

Fig. 9 The basic unit of a structured flowchart
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The functional flow of the program depends on the decision structure

where the object of that decision can be thought of as a sub-module to the

decision statement. The statements used to make decisions are the basic

structured statements shown in Fig. 10.

This structured flow chart representation of decision statements has

been used at CSDL6 . Inherent in this representation is the knowledge that

any decision statement performs the required sub-module resulting from

the decision and immediately returns to the next statement in the main

program flow.

There is a similarity between the recommended structured notation

for a decision statement and the conventional representation of a CALL

statement in that both assume the reader is familiar with the language

syntax and that the reader recognizes the implicit return.

In addition, the structured flow chart notation presents a more adequate

representation of a CALL in that it recognizes that the main purpose of

any CALL is to manipulate data flow. Associated with each CALL, therefore,

is the data module associated with the CALL (Fig. 11).

The definition of the data module assumes that the overall program

structuring has been completed and defined elsewhere. For structured

flow chart notation, only the location (e.g., COMPOOL, local, etc.) and

organization (e.g., matrix, array, etc.) must be specified for each data

element of the data module. Just as the derivation for a particular equation

is not specified in a flow chart, the function of the data module is not specified

in the flow chart.
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Fig. 10 Decision Statements
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J,
CALL PROGRAM:

X
DATA DATA MODULE:

x

CALL PROCEDURE: DATA

(A,...) ASSIGN (D, ... )

DATA MODULE:
X

,1
CALL COMSUB:X

(A,...) ASSIGN (D,...)
I DATA DATA MODULE:

I I . XI

LABEL. X DATA DATA MODULE:

Fig. 11 The CALL and its accompanying data module.

This is a "degenerate" CALL in that it represents a simple
DO group blocked for the purposes of modularity and top-down
one-page representation.

Further study is required before real-time "CALLS" such as
SCHEDULE are incorporated into this structured flowchart
notation.
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The basic symbols required to understanding a data module are

EXTERNAL

for input variables or
variables referenced

for output variables or
variables assigned

to indicate data modules
from sub-modules referenced
within the program called
by the main program

Fig. 12 Basic data module symbols

The notation shown in Fig. 13 is to be used to specify location and

organization for data module elements. The location of a data sub-module

is indicated within the basic symbol described in Fig. 12. The data elements,

with organization indicated, are listed within the block accompanying the

location notation.

In the event that a GOTO is required it can be represented as:

GO TO

Fig. 14 The structured GOTO symbol

The symbol was chosen as a "cautionary" measure.

To read and write sensors, use the notation READ and WRITE. For example,

IMU= READ (CDU) assigns the value of the sensor, CDU, to the local variable,

IMU.

26



CONSTANTS

COMPOOL

SHARED

SENSORS

OUTER

COMPOOL
EXCLUSIVE

LOCAL

COMPOOL

SHARED

SENSORS

OUTER

COMPOOL

EXCLUSIVE

LOCAL

Fig. 13 The data flow performed by the object of the CALL or by the object of the LABEL
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Constants referenced
(all constants will be in the COMPOOL)

COMPOOL variables referenced.
These variables are also used by
other programs

Sensors or I/O devices read

Program variables referenced where
the CALL is to a PROCEDURE or the
CALL is "degenerate" (a LABEL)

COMPOOL variables referenced
exclusively by this program*

Variables referenced on a local level
and only used on this local level

COMPOOL variables assigned. These
variables are also used in other programs.

Sensors or I/O devices written

Program variables assigned where
the CALL is to a PROCEDURE or
the CALL is "degenerate" (a LABEL)

COMPOOL variables assigned
exclusively by this program

Variables assigned on a local level
and only used on the local level

If program variables could be static
from one program call to another, this
set of variables would be static variables
at the program level



The RETURN statement shall be represented as

RETURN

Fig. 15 The structured RETURN symbol

to distinguish it from the decision statements.

The entire set of notation described above may be concatenated in

many ways to show complete structured flow. An example of a structured

flow chart is presented in Appendix 1.

4.0 Program Structuring

The task of program structuring is of major importance; decisions

made for this task determine and dictate the total structure of the software

both statically and dynamically. Program structuring defines the building

blocks, the control mechanisms and the interfaces of the software. It is

in this effort that the inter-relationship of systems software, applications

software and data is entirely mapped out.

In the same way that structured programs require rules and

enforcement of these rules, the software system itself must be structured

according to rules and provision must be made for techniques to enforce

these rules. Software tools, including the HOL and the digital simulator,

act as automatic aids for correct software structure. Likewise, the

executive, including the systems software, can be an effective tool in the

dynamic enforcement of these rules.

Program structuring encompasses the definition of 1) the software

executive structure (systems software), 2) modularity (including program

and data modules), 3) structure within each block, 4) the interface points
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between levels and within levels, 5) the structure of the total program
including such considerations as timing, memory, priority, error recovery,
etc., 6) the requirements and interfaces of data modules common to more
than one program (COMPOOL), and 7) automatic sequencing and the
constraints imposed on the system due to non-automatic sequences.

There are many difficult problems in laying out software. One of
themain problems is that of defining modularity. One definition of a module
is a unit which performs a specific function. It has an internal structure
and local (private) variables which are unknown to the outside world. We
all talk about modularity, but are we talking about the same thing? Both
program and data modules might be divided according to:

Mission phases

Mission functions

Blocks of memory

Divisions of software error recovery
Critical vs. non-critical mission phases
Subroutines

Control vs. calculations routines

Data divisions

Components of the assembly, e.g., systems vs. mission modules
Synchronous vs. asynchronous logic
Instruction sets, e.g., DOCASE

Real time vs. non-real time logic

Relocatable vs. fixed programs

The system designers must determine the scope of the modules as
well as determine which modules are assigned to programs, procedures,
tasks, functions, etc. In addition some provision will have to be made in
HAL so that common modules will be easily accessible and yet controlled.
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Adequate program structuring requires that each of the following

topics be considered in great detail:

1) General requirements for modules must be determined as well

as more specific requirements for different types of modules.

2) The extent to which the executive controls dynamic interfaces

vs. the extent to which the control modules themselves control

dynamic interfaces must be decided.

3) A mission module must be self-contained as much as possible.

But we must consider that the resultant redundant routines within

modules mean more memory and independent development and

verification.

4) Putting "sacred" variables and constants in a COMPOOL results

in moreinterfaces outside a module, yet guarantees uniformity

and correctness of constants and limits to variables. These

tradeoffs must be made wisely.

5) Additional static and dynamic verification features may be

required in the HAL language/compiler to guarantee the

reliability we are looking for.

6) Rules should be set up immediately for the programming of

the algorithmic modules with emphasis on the prevention of

unnecessary re-writing of the software later.

7) Compiler-simulator interfaces must be defined to provide

automatic dynamic verification not included in flight software.

8) Dynamic diagnostics and recovery must be defined for the flight

code as opposed to those features found only in preflight

simulations.

9) Requirements must be determined for pseudo modules (Section

5.2).

10) Software must be laid out in order that errors or changes in

one area will not affect any other area.

11) Software must be laid out in order that the high priority events

are always executed on time.
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12) Automatic software error recovery must be considered.

13) Software should be designed to prevent human errors from

propagating throughout the system.

14) Automatic sequences with manual override vs. manually com-

manded sequences must be considered. Less automated

sequencing would require more extensive error recovery logic.

The result of program structuring should be reliable software with

cost-effective development and verification. Attaining these goals requires

an intimate working knowledge of both the software and the software building

process.

5.0 Software Management Techniques

Apollo management techniques have evolved into a well organized

and successful method of building software 4 . We are now looking at the

problems of managing software for the Shuttle by combining our knowledge

from the past and the present with the more formalized approaches of

top-down and program structuring techniques.

When a small software program is being designed, coded and debugged

byone programmer, organization is not as vital as when several program-

mers or hundreds of programmers are involved in a single software system.

In addition, there are hundreds of people indirectly involved with systems

that must interface with the final program. It is understandable that if

every programmer is isolated, designing, coding and debugging one small

piece of a program, there will be infinite problems when integration of

those pieces into the assembly is attempted. Not only must there be a

grand plan dictating the interface requirements for each piece, but also

how, where, and when a piece fits into a system.

For Apollo, we have solved many of the problems of building software

in a formal way. One of the most important concepts was that of the assembly
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control supervisor who, with the aid of systems programmers and application
programmers, approved every change going into the official assembly.
Rules and regulations for interface and module requirements were set up
and enforced by the systems programming group, who were responsible
for the design, implementation and verification of the systems software.
Strict schedules were adhered to for assembly milestones. In addition,
every change was tracked to an official specification.

We now propose to continue to adhere to all of the above basic
management concepts. But for the Shuttle, we recommend an even further
refinement of assembly milestones with a special emphasis on the order
in which these milestones are completed. Specifically, we will discuss
the official assembly building process by applying top-down methods with
greater emphasis on the design of the program structure.

At first glance; the point of view taken here is conservative in that a
few "bottom-up" techniques are considered necessary to make the "top-
down" concept work.

If we were to look at the software building process from an absolute
top-down point of view, we would develop software in the following order:

1) Define problem

2) Build software

3) Build software tools

4) Build hardware tools

Traditionally, we have designed things in a more bottom-up manner:

1) Define problem

2) Build hardware tools

3) Build software tools

4) Build software
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If we were to follow a total top-down philosophy, we would approach
the Shuttle software problem by designing the software logic (flow) from
the top-down point of view. This design could conceivably result in an
actual program listing coded top-down in a meta language.

From Figure 16 we can see that the HOL executive and software
tools would be decided upon after the software was designed. Then the
computer would be designed by incorporating HOL instructions and features
required by the executive and other tools. By these methods, the total
design would not be restricted by presently available hardware and software
tools.

We, of course, are not proceeding in this way on the Shuttle. In
fact, the HOL has been selected and the executive and computer selection
are not far behind.

Certainly a subconscious (or unconscious) top-down philosophy has
beenapplied by examining past software efforts. From Apollo experience,
we have a fairly accurate picture of the software requirements. Thus, in
a very crude sense, we have proceeded in a top-down manner. Of course,
if the HOL and the computer do not really answer our software problems,
we'll know that indeed the picture we had in our minds was not sufficient
to initially jump over the actual design process and "GOTO" the HOL
executive and computer decisions.

5.1 Shuttle Software Parallel Efforts

The software development process can be divided into three separate
parallel efforts (Fig.17): (1) tool development, (2) bottom-up off-line
module building and (3) official top-down building process.
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Moon Program

Mission Modules I

I Systems Programs I

- | HOL/ Compiler

Computer

Verification Tools l

Fig. 16. Ideal Top-down Philosophy
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Bottom-up Off-line Module Building

Build and test algorithms for flight computer using
pseudo modules when necessary

--------------'----------1

I Build outer core using
pseudo modules when necessary

Incorporate mission modules with pseudo
modules and pseudo sub-modules

as needed

Replace pseudo modules and pseudoIsub-modules with mission modules

L----------------------__
Fig. 17. Shuttle Software Parallel Efforts

OfficialTop-down Building Process



5.1.1 Tool Development

The development of the software tools includes the building of 1) the

HOL/compiler for both the host computer and the flight computer 2) the

psuedo-module simulator for the top--down flight code (the necessity for

this new tool is described below) 3) the all-digital simulator, including a

functional simulator for algorithmic module verification and a simulator

for flight code verification, 4) the systems test laboratory facility 5) the

hybrid test facility and 6) the data management system.

5.1.2 Bottom-up Off-line Module Building

The term, "bottom-up", here is used to describe the module building

process with respect to the official assembly building process. In the module

building effort, engineers/programmers will first design system program-

ming modules, algorithms and algorithmic modules with top-down,

structured programming methods, then use HAL to program these modules

for the host computer and then verify these modules by the functional

simulator. The design and coding of the host computer programs should

conform as much as possible to design requirements for the flight assembly.

The modules themselves can be designed and built applying top-down

-methods. However, development of smaller sub-modules for which the

requirements are completely known can be worked on in parallel, just as

the modules are worked on in parallel with the official assembly building

process.

For example, if it is known that a Lambert targetting routine is needed,

and what its requirements are, it could be developed early in the development

effort.

After modules are verified with the functional simulator on the host

computer, work proceeds towards preparing the modules for the flight
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computer in the same HOL (HAL). These modules would be verified by

the flight code simulator, as well as directly in the flight computer. This

effort will hopefully require only minor changes in the design and

implementation of the algorithmic flight code, since algorithmic modules,

in general, will contain code that is relatively independent of the computer.

Ideally, HAL code should be able to be carried directly over from the host

computer to the flight computer. The only changes to algorithmic code

should be those that are forced upon the modules by word length dependency,

the system software requirements (e.g., error recovery techniques) or the

program structuring requirements (such as dividing a module further into

control and subroutine modules, data modules, etc.). The computer should

not influence the algorithmic software, since HAL and the system software

should serve as a buffer between the computer and the algorithmic code.

Ultimately, the HAL compiler would be the only buffer if the core software

were all written in HAL.

Flight code modules should be verified in a version of the official

assemblywhich is a snapshot of a recent official assembly revision. Once

a module is verified by automatic methods and "eyeball" methods, and has

successfully completed all the officially defined "Level 314 tests, it is ready

to be submitted to the assembly control supervisor of the official assembly

for approval. After it has been approved, the module is incorporated into

the official assembly.

Bottom-up off-line module building in parallel with the top-down

assembly process is the combination of top-down and bottom-up methods

necessary in building a large flight software system.

5.1.3 Official Top-down Building Process

The top-down building of the official assembly actually begins after

the systems software tools are completed. The total system from a larger

point of view is being constructed bottom-up, i.e., computer, systems
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software, mission software. But the official assembly building process of

the mission software itself is shown to be constructed top-down after the

systems software is completed. The software verification tools, the flight

computer, the HOL/compiler and the executive are all tools with which to

build the flight software. The tools directly affecting the building of the

mission software are the HOL/compiler and the systems software. The

HOL/compiler is assumed to be completed at the start of the assembly

building process.

The systems software is developed by creating separate building

blocks for the official assembly. The first block or level should be

completely designed, coded, verified and documented before components

of the next block are allowed to enter the assembly. Each block should be

"frozen" before components of the next block are incorporated into the

assembly. Once a block is "frozen" each change to that block must be

officially approved and treated as a major decision. An example of a

traditionally "frozen" piece of software is the HOL/compiler. Without a

completed language, the first block of software can not be entered into the

official assembly. Likewise, each remaining level of software is dependent

on the completion of the preceeding level. The first two building blocks of

the official assembly define the systems programming, while the third level

of software interfaces the systems software with the mission modules.

Inner Core

The first level of software begins with what has recently been coined

as "inner core" software. The inner core software consists of the basic

executive structure. This includes job scheduling, interrupts and possibly

a basic handling of error detection and recovery. The inner core software

(as does the HOL) dictates the requirements for the "middle core" software.
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Middle Core

The second level of software, known as "middle core" software,

completes the system software structure, i.e., detailed interface logic

covering error handling, I/O handling, downlink, uplink, hardware/software

interface, man-machine interface, etc. The design, coding, debugging, and

documentation of this software should be completed before the third level

of software is entered into the official assembly.

Outer Core

The next building block of the assembly performs the two basic

functions of (1) interfacing mission modules to the system software and

(2) defining the mission program structure for a top-down and structured

organization of mission modules. The outer core software contains what

some of us referred to on Apollo as "glue". Essentially, this third building

block consists of "CALLS" to mission modules. This building block is

crucial in that it determines the interfaces, layout, timing, priorities, etc.

of the entire mission program.

Mission Modules

The final building block of the official software assembly is the

incorporation of the mission modules themselves, with all the necessary

interfaces.

At any stage in the assembly building process, a checked out module

can be incorporated into the official assembly as long as the pseudo simulator

is available.

5.2 Pseudo Modules

CALL statements will not, of course, have any anything to CALL

until there is something there. A dummy tag with a simple RETURN is
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one way to complete the loop. A more sophisticated pseudo module, however,

is recommended in order to (1) test the behavior of a module in the larger

assembly environment before it is completed (2) test the behavior of a

completed mission module with other modules before they are completed

(3) save at least 50% of the computer time later on in the verification process.

It would be desirable to have an option to run a "real" module with all

other modules in a "pseudo" mode, since in the past, at least, most errors

during Level 4 through Level 6 were interface errors 5. These are the

most time consuming verification simulations.

The pseudo modules would be designed to act as simple functional

simulations of the real module by including such things as receiving inputs

and returning outputs at given times. They might have given priorities

and given timing, etc.

A real module, once it is ready to take its place in the assembly,

might have pseudo sub-modules. Fig. 1 shows examples of real modules

with pseudo sub-modules in a top-down environment.

The exact requirements for the pseudo-module simulator must be

still further defined. For example, how far down in the top-down tree

structure are the pseudo sub-modules included in the pseudo-module

simulation option?

15The PEARL system1 , still in a partial development phase, as well

as others, is an attempt to provide for these facilities. But these systems

are far too limited to be applied to shuttle software.

The pseudo module concept, if developed correctly, could become

the most significant new tool for the shuttle software effort. Not only can

it be used in the development of the official top-down assembly program,

but it also can be used as a powerful tool for building each of the off-line

modules. Ideally, it should be the first verification tool to be completed

in order that it can be used for building the other verification tools.
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6.0 Preliminary Structured Programming Rules for Designing

Algorithmic Shuttle Software

Define the functional specification first

Do not begin coding until all stepwise refinements are completed

or pseudo modules specified.

Use HAL properly to make each program as modular as

possible. For example, use PROCEDUREs, TASKs,

FUNCTIONs, DO groups, etc. for stepwise refinements.

Use HAL properly when considering data interfaces. For

example, make proper use of UPDATE blocks.

Maintain data modularity. For example: use matrix-vector

arithmetic whenever applicable; use array arithmetic for

visibility and to avoid DO loops.

Use structured flow charts (Section 3.4).

Denote data-types appropriately in flow charts. For example:

V, M, B, C, [A ], IS[. If not annotated, a scalar is to be

assumed.

Each engineer responsible for an algorithm should provide a

test specification as well as the program functional and program

data specifications.

Avoid use of GOTO-justify each GOTO used. If a GOTO is

justified, be sure to jump forward to a higher statement number.

Never jump back to a lower statement number. A GOTO may

be justified if the GOTO exits to a statement immediately

following an enclosing functional block.
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Specify all program constants in COMPOOL; include all
documented facts related to each constant.

Do not declare derived constants - be inefficient for the time
being and specify these in terms of the original, more meaningful

constant. For example:

If PI = 3.1416 is defined in the COMPOOL:

Then code y= 2 PI x

Do not code y=6.28 x

Do not code c=2 PI

y=c x

Minimize interface points outside of a module and within each
module. For example, declare temporary variables on a local
level.

Use caution when defining DOFOR and DOWHILE loops that
depend on non-local variables and non-local events.

Labels and variable names should be meaningful.

7.0 Conclusion

From recent studies of APOLLO systems problems, we have come
to realize even more the importance of sound basic principles for software
design, development, and verification. Over 90% of the system problems
would have been prevented by a better philosophy 6. Correct software
philosophy applies to programming techniques, program structuring and
the management of the software development and verification process.

With new tools and new techniques, we must continuously remind
ourselves not to waste time worrying about problems that no longer exist.
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For example, the HOL (HAL) will now replace many of the tasks previously

performed either automatically by the digital simulator or manually.

We do not want to take for granted the functions performed by APOLLO

tools. In fact, we have taken a step backwards already in some cases.

For example, the reliability of the computers presently being considered

for Shuttle is inferior to that of the AGC (APOLLO Guidance' Computer).

Thus error detection and recovery becomes more important for the Shuttle.

We should not discard a technique or a tool merely because there

were problems with it on APOLLO. In some cases, an alternative technique

would have created greater problems. For example, the concept of an

asynchronous executive has been met with some reservations. However,

the APOLLO asynchronous executive provided flexible, and thus cost

effective, developmental capabilities, as well as prevented more than one

actual flight disaster. 1 7 , 1 8 ,19

We must expect new problems to occur for the Shuttle and we must

prepare for them now; new tools and techniques always have problems to

work out. For example, if core swapping becomes a technique on the shuttle

flight computer, we should pay special attention to this area.

The approaches we have been proposing will lead to organization and

enforcement of rules in the development of a large software system. Reliable

cost-effective software is the ultimate aim.
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APPENDIX 1

Application of Top-Down Structured Programming

to Shuttle Algorithms-A First Attempt

at Structured Flow Charting

Structured flow charts are compared to conventional flow charts from

the Space Shuttle GN&C equation document No. 12 (Revision 2), "Entry,

Approach, and Landing Navigation". The flow charts in the Shuttle document

are reproduced here in Appendix 2 for ease of comparison. The Shuttle

document flow charts in Appendix 2 represent a FORTRAN program, while

the flow charts in Appendix 1 are structured and represent a HAL program.

The FORTRAN program was written with no concept of structured program-

ming in mind. Some variable names have been changed to be more meaningful

since the full name of a variable should be used in the actual HAL program.

Wherever this occurs, it is noted for ease of comparison. For consistency,

many original names are used here even though HAL names cannot have

subscripts as part of the name. Notes are also marked on the structured

flow charts where necessary to clarify changes from the original program

flow.

The functional flow in Fig.l-1 is slightly different from that in the

original document (c.f. Fig. 1 Appendix 2). The changes reflect the actual

specification.

It is to be noted that this navigation program has been incorporated

into the Unified Navigation Filter program for the Shuttle. But it is used

here as a simple example to show how to structure a program. The structured

flow should be easily understood even by people not familiar with the Shuttle

navigation concept. It is suggested that the entire structured flow be read

first before comparing the flow from Appendix 2
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In Figure 1-2 an attempt has been made to show the modular nature

of the data. The division of data modules presented here should not be

taken as the final specification for entry module data for Shuttle. To do

this, the specifications for the entire Shuttle data structure would have to

have been defined. This division is presented as an example to show data

modularity. All program constants appear in the COMPOOL even though

they may pertain only to the navigation program. This rule makes all

constants visible and easily checked by such systems as the data management

system that will be a part of the verification process. This diagram indicates

if a variable is accessible to other programs and therefore is an aid in

the program structuring process. It also adds some understanding as to

the type and amount of information required by the program.

The functional flow of the program and the first page of the actual

program should be similar in program structure. Therefore, Fig. 1-3,

the actual program flow can be compared to Fig. 1-1, the functional flow

and to Fig. 1-2, the data flow.

The overview presented in Fig. 1-3 is much easier to follow than

flipping back and forth through pages 5-5 through 5-9 of the Shuttle

document. This is especially true concerning the data-good switches loop,

which is hard to follow in the document; but here the overall picture of the

loop is presented on one page, and then expanded in other procedures.

The notation used in the original document (although partly repeated here

for comparison) is not clear. For example, Fig. 2c of Appendix 2 shows

P(t) to be a density calculation and p to be an average density while Fig.

2g shows PT = r - FT. The symbols are so closely related that the reader

finds it difficult to follow the program flow.

This particular Shuttle flow chart example was chosen because the

logic in the original flow diagrams was not too complicated. Even in this

simple example, many of the interface problems inherent in the unstructured

approach can be overcome. An attempt is made here to show the advantages

of a structured approach.

48



Start calculations of navigation

data when altitude reaches hINI

test: if h < hINDR

Update state estimat

(x) and estimation

error statistics (W)

Compute initialization variables

for entry guidance

Fig. 1-1. ENTRY NAVIGATION FUNCTIONAL FLOW DIAGRAM

49

N -



Fig. 1-1 NOTES:

O The test on the data good switches in the original functional flow

is misleading. The specifications call for more than one criterion

for data acceptability: data good switches and possible state con-

straints. (c. f. Appendix 2, Fig. 1)
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CONSTANTS

SENSORS

.- .

iXA' MR SM' FIRSTPASS DRAG 0

INDR' W.SVR LAST' 'LAST' tLAST

FIRSTPASS MLS (INITIAL (1))
®

FIRSTPASS DME (INITIAL (1))

COMPOOL/

SHARED r

v' PT' RT' VR' ME SM' 
g

Rapid Real TimeState Advancement DuringSpecificForce Sensing _Routine

Earth Orientation Routine, RUNGE KUTTA

Fig. 1-2. ENTRY NAVIGATION DATA MODULEches

Fig. 1-2. ENTRYNAVIGATION DATA MODULE
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VRLO' VRHI, rT (earth), r, C, QD' WIN, m

( rS (earth) 1), ([FILTERMEASERROR VARIANCE ])(

hs, Ko' K1' P0' WE' A

NLL, NULL *MATRIXI, NULL, NULL MATRIX

clock, accelerometers, data-good switches, baro altimeter, MLS flare elev.,

MLS glide elev., MLS range, DME range, MLS azimuth, VOR azimuth.

COMPOOL

SIHARED L

GE

COMPOOL

EXCLUSIVE

* * *

t, a [9] [SDG] rTT iRW' ipole' E' ME R' G, F, q' b, T z,

PIP' iRS' iCT' iP'p [r
s ]

, r' h, At, RTEMP, VTEMP, KAZ, 1
D'

ic, i i VR' Oaverage' Paverage' VR , average USE_DRAG_MEAS), Q

[cr](ENTRYNAVIGA'TION) PH' i P, p W {Ax}, PH
H
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I
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Fig. 1-2 NOTES

(13 r ET is missing from the program constants in the orginal flow-

chart (c. f. Appendix 2, Fig. 2A). It does appear in the original

specifications - a case for using original specifications as guide-

lines.

For consistency and visibility, all vectors are represented in

Appendix 1 with bars above the variable name.

Since each filter measurement error variance corresponds direct-

ly to the list of measurements indicated by SDG, it is advantageous

to make an array. This array indicates the actual relationship in-

stead of a list of constants that appear to be used in many different

ways. (c.f. Appendix 2, Fig. 2A, the 7;2 list, the rs(earth) list)

Note that the new array name is not ambiguous in the case of the

error variances and clearly defines the contents of the array. In

the case of -HI (original notation), this is kept as a separate

constant, since it indicates an altitude dependence for the baro-

altimeter error variance case. The name was changed to HIHI
(structured notation) to prevent a mistaken vector notation.

~)I (an identity matrix) is included as a constant here, but does not

appear in the original. Although this symbol for an identity matrix

is commonly used, the definition should be explicit to avoid con-

fusion.

9 A null vector (NULL) seems more clear than 0 (c. f. Appendix 2,

Fig. 2.)

P h INDR is incorrectly placed in the constant list (c. f. Appendix 2,
Fig. 2A) since it is actually re-assigned in the program (c. f.

Appendix 2, Fig. 2b)

® These variables were omitted from the original flowchart list of

input variables.

52



Fig. 1-2 NOTES (cont.)

O There is one FIRSTPASS variable in the original document.

By referring to the specifications, it can be seen that there
really should be 3 FIRSTPASS flags as shown here - one
for every time the W matrix is to be re-initialized. FIRST-
PASS is not initialized in the original document, but the init-
ialization must be defined here, since the value of this variable
is tested each time the program is entered. Since programs
have no static variables from CALL to CALL, FIRSTPASS must
be in the COMPOOL. The intention is to set FIRSTPASS=l when
entry guidance is initiated and then to reset FIRSTPASS to zero
for each succeeding pass. There are two ways to accomplish
this. One way is to have an external program on a higher level
set and reset this variable; (obviously this was the intent from
the flow of the original program and is the method shown in the
data flow here for FIRSTPASS-DRAG). The second method is to
initialize FIRSTPASS in the appropriate DECLARE statement
in the COMPOOL and to let the Entry Navigation program reset
it. This second option is used to initialize FIRSTPASS-MLS in
the "COMPOOL EXCLUSIVE" data sub-module.

f( Indicating the state {xj as a structure makes the intent of the code
for updating the state clear (c. f. Appendix 2, Fig. 2h) and recog-
nizes the organization of the state {xj.

6 g is the notation throughout Appendix 1 for the variable sometimes
specified as g and other times as g (t) (c. f. Appendix 2, Fig. 2g).
Also note that the output variables for this program appear in Fig.
2g, Appendix 2. and are, therefore not visible. The output

variables should appear in the data module associated with the
program.
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Fig. 1-2 NOTES (cont.)

Error in original document. VRHI shown as a vector, but used

as a scalar (c. f. Fig. 2a. Fig. 2d, Appendix 2).

i The dot above the variable FIRSTPASS-DME indicates that.

it is a bit string data-type.

(3) When the same name is used for two different variables, indicate

the procedure or program that the variable belongs to, in parentheses.

i) See note ( Figure 1-7.
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DATA /COM' POOL /ESm
SHARED

rT' iRW' ip

UTER t, [q] A [

COMPOOL

SHARED g r, v, x.t

<EXTERNALS RapidReal

Advancemer

cific Force

tine

LABEL:W ESTIMATE_ AT- LOA

ENINITIEN I l \COMPOOL '
,'SHARED

/COMPOOL .
\EXCLUSIVE'

EXTERNALS

CALL PROCEDURE:

USE NAVAIDS_ DATA OT

TO UPDATE - \ COIPOC
- -U - /SHARED

X AND W
- - <SESORS

COMPOC
EXCLUSI

OUTER

EXTERN

Fig. 1-3. ENTRY-NAVIGATION PROGRAM
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Fig. 1-3 NOTES

(1) This indicates that these variables must be declared on the program

level.

O W ESTIMATE INIT refers to a program label which blocks off a

block of statements with a particular thought in mind, but will be

found in-line in the code. Since this particular page in the flow-

chart is too small for the entire level, the W ESTIMATE INIT
block is found on another flowchart page. The modularity ex-

pressed here is accomplished in HAL by a

W ESTIMATE INIT: DO; statement ; ... END-

This label is to be accompanied by a data module to justify all

data flow.

x. t qualifies the time of the permanent state vector and dis-

tinguishes it from t, the local variable.
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SENSORS -

[FILTER._MEAS_ERRORVARIANCE], ipole(earth),

RW (earth), WE, [r s (earth)], rT(earth)

-(

COMPOOL

SHARED RSM

0

Fig. 1-4. INITIALIZE PROCEDURE DATA MODULE
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clock

accelerometers

baro- altimeter

MLS elev angle (flare)

MLS elev angle (glide-slope)

MLS range

DME range

MLS azimuth

VOR azimuth

Data-good switches

r



Fig. 1-4 NOTES

O UjE and MiE represent two separate data elements here. This

notation is kept for ease in comparing the flow of Appendix 2.

But the actual HAL program can not have the same name for

two different variables declared within the same scope.
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t = READ (clock)

AV = READ (accelerometers)

[SDG] = READ ([Data-good switches])
r

®

I I~, A--__ I_|[3 = [FILTER-MEAS ERROR VARIANCE]0

4t

0®

®
Fig. 1-5. INITILIZE PROCEDURE

baro- altimeter
q2 to 8 = READ

MLS elev. angle (flare)

MLS elev. angle (glide-slope)

MLS range

DME range

MLS azimuth

VOR azimuth

CALL COMSUB: (

EARTH ORIENTATION-ROUTINE

(t, 2) ASSIGN (ME R )bR

0DATA
INTERSECTION:

EARTH_
ORIEN TATION.

ROUTINE

ME SM = MR SM ME R

T ME SM T(earth)

iRW = ME SM i RW (earth)

Lpole M E_SM ipole (earth)

WE = E Lpole

[-s] = ME SM [-s (earth)]

-: w
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Fig. 1-5 NOTES

O Since there is little emphasis on data in the original document,

some of the local variables described and initialized here (e. g.

t, LA, [q],[sDG]) were not described as completely in the original
document. (c. f. Appendix 2 Fig. 2a). For example, the spec-
ifications (p. 4-2 of original document) require that the measure-
ment to be incorporated (q) and its a a-priori estimate be at the

same "effective" time. But the original flowcharts do not specify
where this data read will occur.

O The decision to read all data good switches and assign them to a
local array is made on a higher level. They could just as easily

have been read during the USE-NAV-AIDS-TO-UPDATE X-AND-W
procedure if it were felt that the later information would be more

valid. Specifications in the original document (p. 4-2) indicate that

the present decision is more valid.

Q The initialization for the set of oris scattered throughout Appendix 2 .
It can be simplified by initializing c< as an array.

At present, there is no COMSUB implemented in HAL (i. e., a pro-

cedure that can be compiled separately and is used in common with
many programs). The Shuttle HAL will include COMSUB. In the

meantime, a module that is to become a COMSUB will be a PROCEDURE.
Each user can "INCLUDE" the PROCEDURE as part of the compiled

program and thus save recoding later.

( The CALL to this routine is placed in the initialization routine because
its only purpose is to compute ME R. This matrix is only a function
of the present time and can be considered as "input" calculations for
the Entry Navigation program.

The complete data module for this routine is defined as a part of the
COMSUB specification. The fact that no COMSUB-PROGRAM inter-

section data is shown here indicates that the EARTH-ORIENTATION

ROUTINE has not yet been specified at that level. 'To actually com-
pile and execute this page (the INITIALIZE procedure) at present,

the EARTH_ORIENTATION-ROUTINE and its data module would be

60



Fig. 1-5 Notes (cont.)

simulated as pseudo modules.

O This group of assignments is a subset of the group of assignments

that appear in Appendix 2,fig. 2b. Sincethese assignments depend

only on time, t, they belong in the initialization section. The re-

maining subset of assignments found in the original list are depend-

ent on the current value of the state vector and, therefore, these

assignments are made after the initial state estimate is made.

G This equation is defined twice in the original (c. f. Appendix 2,

fig. 2g).

( The transformation of rs (earth) to SM coordinates is performed

for each data-good unnecessarily in the original.
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CONSTANTS--- NULL

LOCAL C RTEMP, VTEMP, T

POL 70 I
' / M g, r, v, x. t

SHA RED

'- / R AL-_EXTERNALS Rapid Real_Tlme-State-Advancement-

During-Specific-Force_-Sens ing-Routine

NOTES:

0 The entire structure [x} is referenced in

this routine, but only a portion of the

structure is assigned (r and v and t are assigned)

FIG 1-6 .STATE._ESTIMATE-INIT DATA MODULE
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At = t - LAST

Av = Av - y(t - At)At
0

UPDATE BLOCK: Q

r = RTEMP

v = VTEMP

x.t= t

tLAST t

RETURN

Fig. 1-7. STATE-ESTIMATE INIT PROCEDURE
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ILAST t

Call COMSUB:

RapidRealTime_ State-Advancement_

During_Specific_ Force_Sensing_Routine

) (r, v; 0, NULL, NULL, 1) ASSIGN(T,T,g)

1

Call COMSUB:

RapidR eal-Tim eStat e

AdvancementDuring_

Specific_Force_Sensing_Routine

(r, v, At, Žv, g, 1) ASSIGN (RTEMP,

VTEMP, g)

IF aTHEN
FIRST PAS! DA



Fig. 1-7 NOTES:

O The name of this COMSUB must be reduced to a maximum of 31
characters for HAL. For comparison with the original document
it has been kept in its present form.

Q Since there is only one copy of l xi , the data element r of the

structure gxS can clearly be referenced as just F instead of
qualifying T as x. r.

Q At present this is actually a null data intersection. This data
module may not be complete. If this COMSUB becomes a program
in the program structuring process, the formal parameters des-
cribed in the program flow block will have to be incorporated into
the data module.

A At is not defined in the original document. (c. f. Appendix 2,
fig 2a)

) This ASSIGN is to be part of the HAL language for the COMSUB
syntax (just as it is now for the PROCEDURE). The variables
assigned are to be found in the ENTRY NAVIGATION data module,
not necessarily in the COMSUB data module. The permanent

state x] may not be updated here because it is a locked variable.
The HAL/s implementation for passing and assigning locked

variables is now under consideration. Thus, the passing of r, v
shown here would have to be modified for the current HAL implementa-

tion.

O Here, the permanent state is updated in a special UPDATE block to
avoid reading and writing conflicts with other programs that may also

use the permanent state.

() T is a local dummy variable for the purpose of matching the formal
parameter list.
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CONSTANTS C WIN NLLMATRIX

LOCAL

RUNGE-KUTTA

LOCAL | WD G F

FIG. 1-8 W-ESTIMIATE-INIT DATA MODULE
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* = W

W =WIN

hINDR = 2 hINDR

a =v-iT I-
I,,

ULL MATRIX

F L G

NULL MATRIX

I 
NULL

N I NULLMATRIXIX

NULLlMATRIX C
NULL MATRIX NULL MATRIX

0.

2,2
'WN.,M

where W is an NxM matrix
* -

dW + 1Q W-
c 'D D

0
CALL COMSUB:

RUNGE KUTTA DATA

(dW/dt) ASSIGN (W)

Fig. 1-9. W-ESTIMATE-INIT (LABEL)
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Fig. 1-9 NOTES

( ® D is not defined in the original flowchart.

Q There is no mention of the integration step in the original

document. (c. f. Appendix 2, fig. 2b). Also note that

dW is not an acceptable name for HAL.
dt
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\NULL, a

CONSTANTS hFINDR' hINBAR' hFBAR' VRHI' RLO' K1 WIN' K0

LOCAL i, ',b

SENSORS Data- good

EXTERNALS USE DRAC

switches

OUTER / SD
OUTER ata2,[SDG 1

•j

Fig. 1-10. USE NAV AIDS TO UPDATE X AND W DATA MODULE
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G MEAS

A CQrI LL V IVlr1-I

RANGE-MEAS

AZIMUTH-MEAS

UPDATE X AND W



0
Fig. 1-11. USE NAV AIDS TO0 UPDATE X AND W PROCEDURE

69 -



Fig. 1-11 NOTES:

QD SDG for drag is never tested in original (c. f. Fig. 2c.
Appendix 2). The specifications in the text indicate this

test should be performed.

© The original indicates V R without mentioning that it is the

magnitude of the vector VR.

i) FIRSTPASS MLS and FIRSTPASS DME are vaguely defined

and never set to OFF in original document. (See discussion

attached to Fig. 1-2)

( KAZ. iA c D' are made into formal parameters for clarity.
(c. f. Fig. 2g,Appendix 2 for original implementation)

G The intent in the original document appears to be to turn off

the data-good switches at the end of the cycle. Instead of

scattering this information throughout the 8 cases, they are

all turned off at once.

The context of SDG. is changed slightly from that presented in
1

the original document. SDG does not exist since a zero
DG0

subscript reflects the MAC language and zero subscript does

not exist in HAL. Therefore, SDG is defined where i = 1 TO 8.
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CONSTANTS p0, hs' NULLm' c0 cl

OUTER h, ir, Av, At)---r

LOCAL X P VR' , average' Paverage' V erageaverageRaverage

Fig. 1-12. USE DRAG MEAS DATA MODULE
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®

Paverage = ( PLAST)

13 = a { c + - (sin3 + sinaverage m 0 2 LAST

1 V 2

q 2 2 'ave R a vRaverageaverage

tq
h r

_________q'_.
LAST V VR

ave rage
RETULL

F ql iVR ' Avl/At

PLAST = Paverage

e LAST = e

V V
F- 13. Uaverage

Fig. 1-13. USE DRAG MEAS PROCEDURE
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1-13 NOTES:

Changed notation from
) to F average,

VRt° VRaverage

VR to VR average

This will avoid mistaking the notation in the original document
for a vector.

qI is not clearly assigned in the original flowchart.

ifications (p. 4-2) supplied the equation used here.

The spec-

The assignment of these variables was omitted from the original

document. (c. f. appendix 2, fig. 2c).

The data module for this PROCEDURE indicates that the i

shown here is a local variable.
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CONSTANTS-- N

COMPOOL
SHARE D

OUTER [r] IRW'[;] Rw'i

LOCAL
'RS' CT' Ps PIP' IP- . IP

FIG. 1- 14 ELEV MEAS DATA MODULE
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Fig. 1-15. ELEVMEAS PROCEDURE
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LOCAL

Fig. 1-16. RANGE_MEAS DATA MODULE

p = r-r

q'= I I

b= unit (7 )

NULL

NULL /

Fig. 1-17. RANGEMEAS PROCEDURE
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Fig. i-18. AZIMUTH-MEAS DATA MODULE

Fig. 1-19. AZIMUTH MEAS PROCEDURE (KAZ, iD' )

NOTE: () P H and p equations are reversed in original (c. f. Appendix 2, Fig. 2g).

O KAZ' iD and iC are formal parameters indicated as local variables.

77.

CONSTANTS NULL,

COMPOOL
SHARED

OUTER |i [s]|

LOCAL KAZ' iD' i

~LOCAL f -PH'H< LOCL < 1RS' P H' P'

OUTER (

l

I

Il

PH" 1P
H



OUTER b, [q],q', [a], ti

COMPOOL ( £X

EXCLUSIVE

<LOCAL z, w, AX

COMPOOL {

SHARED

COMPOOL
w

EXCLUSIVE

FIG. 1-20 UPDATE-_X.NDW-DATA MODULE
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= W b

0
*Ww w

(x} = {x} + (Ax }

w z- ,,

a i
1+

z z+ a.
1.

NOTE:

O The method of updating the
state in the original is not
necessary here. Also note that
the time of the state was not
updated in the original.

( This "acceptable" module is a
pseudo-module at this level.

FIG. 1-21 UPDATEX ANDW PROCEDURE

- 79

'=z z+ W

zi z + a.
I

(AX) 4ZI t (qi- q' )
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APPENDIX 2

The following figures are included in this report for compari-
son with the figures in APPENDIX 1. They are reproduced from
CSDL report, "Space Shuttle GN&C Equation Document No. 12
(Revision 2), Entry, Approach, and Landing Navigation".

Preceding page blank
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Enter at start of each
guidance cycle

Extrapolate state (x) and
filter estimation-error
statistics (W) to current-
cycle time

No -/
S DG.

Yes1
Compute a-priori estimate,
error variance, and Sensi-
tivity vector for measure-
ment -

(qi',2 , b i )

omil i

Compute filter weighting
vector w

Update state estimate (x)
and estimation error -

statistics (W)

in-1

Yes

Exit to Guidance Routine
for computation of auto-
pilot commands.

Figure 1. Entry Navigation Functional Flow Diagram
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PROGRAM CONSTA

a/m, QD' Co1 Cl'
2 2 2 2

e DRAG' H1 ' H2 ' El'
2 2 2

QE2' Ce R ' aDME ' a VOR '

&AZ, C, WiN, hINDR,
Q AZ ' C, WIN' hINDR'

hFINDR' hINBAR' hFBAR' i

VRHI' VRLO ' k0 , kl

UNIVERSA L
CONSTANTS

W E' 1 p 0 hS ' i pole(earth),

r (earth), r (earth),
sEl -E2

r (earth), r (earth),
R RDME

r S (earth), r (earth),
VOR AZ

r T(earth), i w(earth)

_1* -

Y

INPUT VARIABLES

t, r(t-bt). v(t-At),

y (t- At), W(t- At), Av,

S0 7

No Firs
Pass

Yes

1Av = Av - y (t- At) At I

Call Earth Orientation Routine (TBD)

Input: t, 2 [ Sframe ]

Output: ME-R
.. .. .

Figure 2a. Entry, Approach and Landing Navigation,
Detailed Flow Diagram
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Call Rapid Real-Time State Advancement
During Specific Force Sensing Routine (Ref. 2)

Input: r(t- At), v(t- At), 0[At ],

[ lAVsense d ], O [g(t)], l[spert ]

Output: g(t)

Call Rapid Real-Time State Advancement
During Specific Force Sensing Routine (Ref. 2)

Input: r(t- bt), v(t- At ), At, Av[Avsensed] '

g(t), 1 [ pert ]

Output: r(t), v(t), g(t)

=



I

(Figure 2g)

Figure 2b. Entry, Approach and Landing Navigation,
Detailed Flow Diagram
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No I
FIN DR >

Yes

P(t) = 0  C-h(t)/hs

ivR(t) = unit [ vR(t) ]

(t) = cos - I [ i A(t) · ivR(t)]
q .. ..

iI

Figur

85

1 --2

( -Yes

2

No

c(t- ,t) =c(t)

p (t -t) = p ( t )

vR  2[ vR(t)l +[vR(t -t)l ]

P 2[ P.+(t)+ p(t-At)]

#,a IC 1 3 a
e=m ICo + E2[ s in a(t) +sin3 (t-at)lo

tal' i (t)

vR(t)

a2 2!
a = aDRAG

4 (Figure 2h)

re 2c. Entry, Approach, and Landing Navigation,
Detailed Flow Diagram
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b = 0-i )
0

2 2 2 -2
C = H1 (q') +aH2

Hi -

V
(Figure 2h)

Figure 2d. Entry, Approach and Landing Navigation,
Detailed Flow Diagram

86

Yes



Yes

rs(earth) = ss (earth)

E1 E

SDG 3 = 0

T

M -

r s(earth)

2 2
a = aE2

S_ = C
DG2

r (earth)
E2

(Figure 2h)

Entry, Approach and Landing Navigation,
Detailed Flow Diagram
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T
DG

No

r S =ME-SM r (earth)

iCT = unit (rS x iRW)

iRs = unit (r s )

P =r-r S

-Ip = pe - (e · iCT) iCT

ipIP = unit (P IP)

PIP = IP I

q, = sin - 1 (iP· i-IP -RS

(1 pIP

b =

x (iRS x lp)IPPIP

0

4
Figure 2e.

---- ---- ~,Yes
./

f

-I



No

(Figure 2h)

Entry, Approach and Landing Navigation,
Detailed Flow Diagram
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Figure 2f.



9

Yes

T = r - rT

-RT vIEx r

-V R = v -. EX

OUTPUT
, VARIABLES

r, vR,gy w,

ME-SM' SPT' VRT'

-R

M S (earth) r S E-SM rSAZ(earth)
S MESM SvOR - - AZ

22 2c22
=VOR =AZ

= unit x r) M i (earth)
C poie S RW E-SM -RW

i D = unit (r S x i C )  D 
= iRW1 i 2  DxRW

SDG 7 = 0, k =  i C = unit ( D x r

SDG AZ AZ
DG= SDG7 kAZ

1

iRS = unit (r s )

r rS
- - -S

PH= lHI

PH = -P- (P RS) RS

ioH = unit (pH)

q = [ sinl(iDH · ) ] sign (i i

q'= q - kAZ ( )

( RS x ip H)/PH

Figure 2g. Entry, Approach and Landing Navigation,
Detailed Flow Diagram
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(Figure 2d)

Entry, Approach and Landing Navigation,
Detailed Flow Diagram
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Figure 2h.


