NOLC

EITS _INSTIIUTE OF TEC

o

GUIDANCE AND NAVIGATIOM

Approved by Mu £ W

Director

Apollo Guidance and Navigation Program

Approved by }? Q wﬁ"&( e
Associate Director V

Instrumentation Laboratory

R-341

A STATISTICAL OPTIMIZING NAVIGATION
PROCEDURE FOR SPACE FLIGHT

by

Richard H. Battin
September 1961

Revised May 1962

INSTRUMENTATION
LABORATORY

Prepared for publication by ] ackson & Moreland, Inc.
cory# -/

CAMBRIDGE 39, MASSACHUSETTS

Teonitiva, Liiary, beicomm, Inc.



ACKNOWLEDGMENT

This report was prepared under the auspices of DSR Project 55-191,
sponsored by the National Aeronautical Space Administration, under contract
NAS-9-153,

The publication of this report does not constitute approval by NASA of
the findings or the conclusions contained herein, It is published only for the

exchange and stimulation of ideas,

ii



ABSTRACT

In a typical self-contained space navigation system celestial observa-
tion data are gathered and processed to produce estimated velocity corrections.
The results of this paper provide a basis for determining the best celestial

measurements and the proper times to implement velocity corrections.

Fundamental to the navigation system is a procedure for processing
celestial measurement data which permits incorporation of each individual
measurement as it is made to provide an improved estimate of position and
velocity. In order to "optimize' the navigation, a statistical evaluation of a
number of alternative courses of action is made. The various alternatives,

which form the basis of a decision process, concern the following:

1.  Which star and planet combination provide the "best' available
obsérvation ?

2, Does the best observation give a sufficient reduction in the pre-
dicted target error to warrant making the measurement?

3. Is the uncertainty in the indicated velocity correction a small en-
ough percentage of the correction itself to justify an engine re-
start and propellant expenditure?

Numerical results are presented which illustrate the effectiveness of

thig approach to the space navigation problem.
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1. INTRODUCTION

During the past two years, the problems of guiding a space vehicle
during the midcourse phase of its mission have been extensively explored at
the MIT Instrumentation Laboratory. Following the specific demonstration
of the technical feasibility of an unmanned photographic reconnaissance flight
to the planet Mars reported by Laning, Frey, and Trageser (1), the detailed
navigational aspects of such a venture were developed(z) by Dr. J. H. Laning,
Jr., and the present author, Later, a variable time of arrival navigation theory
was devised (B)and contrasted with the earlier fixed time of arrival scheme,
More recently, the question of optimum utilization of navigation data has been
given considerable study. It is the solution of this problem which forms the

subject of the present paper,

The general method of navigation is based on perturbation theory so
that only deviations in position and velocity from a reference path are utilized.
Data is gathered by an optical angle measuring device and processed by a
spacecraft digital computer, Periodically, small changes in the spacecraft

velocity are implemented by a propulsion system as directed by the computer.

Basically, three problems are considered in this paper: (1) to identify
the best sources of data available to the space vehicle navigator; (2) to define
the optimum linear operations for processing the data in a manner consistent
with the mission objectives; and (3) to minimize both the amount of navigational
data and the number of corrective maneuvers required without unduly comprom-

ising mission accuracy.

The formulation of an optimum linear estimator as a recursion oper-

ation in which the current best estimate is combined with newly acquired

(4).

information to produce a still better estimate was presented by Kalman
The author is indebted to Dr. Stanley F. Schmidt for directing his attention io

Kalman's excellent work. In fact, the original application of Kalman's theory

(5)

to space navigation was made by Schmidt and his associates.



The research described in the following sections of this paper was per-
formed without any detailed knowledge of Schmidt's activities. As a result of
this independent approach, several new and interesting ideas have developed:

(1) anextremely simple derivation of the optimum linear operator has been
achieved using only the basic technique of least squares estimation; (2) the
mathematical problem of determining the optimum plane in which to make a
star-planet angular measurement has been solved; (3) a procedure for incorpora-
ting cross-correlation effects of random measurement errors in determining

the optimum linear operation has been developed. The author is indebted to

Mr. Gerald L. Smith for correcting a basic mistake in the original treatment of

cross-correlation errors.

Throughout the paper, we shall deal exclusively with discrete infor-
mation; observations or velocity corrections are made at specific points in

" The interval between decision

time which are termed "decision points.
points is not necessarily uniform and may be selected somewhat arbitrarily;
e.g., the interval length required for accurate numerical integration of the

trajectory equations was used in preparing the computational data presented

in Section 6,

Finally, a few remarks relevant to notational conventions are appro-
priate. We shall deal generally with both three- and six-dimensional vectors.
A column vector of any dimension is represented by a lower case underscored
letter. Matrices are denoted by capital letters and can be either square or
rectangular arrays. The transpose of a vector or a matrix will be denoted by
a superscript T, Thus, the scalar product of two vectors a and b will be
written as z_iTQ. In like manner a quadratic form associated with a square
matrix A will be written as _}gTAL The expected value of a random vector X

will be indicated by an overscore; thus, x denotes the average value of X.

The author wishes to acknowledge the extensive services of Peter

Phillion who prepared the numerical data reported in Section 6,



2. OUTLINE OF THE NAVIGATION AND GUIDANCE PROCEDURE

2.1 A Deterministic Method

The basic process involved in determining spacecraft position by means
of a celestial fix consists fundamentally of a sequence of measurements of the
angles between selected pairs of celestial objects. Three independent and
precise angular measurements made at a known instant of time suffice to
determine uniquely the position of the vehicle. Practical constraints, however,
preclude simultaneous measurements without severely complicating the instru-
mentation. On the other hand, if the vehicle dynamics are governed by known
laws and if deviations from a pre-determined reference trajectory are kept
sufficiently small to permit a linearization of the navigation problem, then the

question of simultaneous measurements loses it significance.

Under the assumptions of a linearized theory, a single observation
serves to fix the position of the spacecraft in one coordinate. For example,
if Arl is the angle measured at time tn and is defined by the lines-of-sight-
from the vehicle to a star and to a nearby celestial body, the position of the
vehicle is established along a line normal to the direction toward the near body
and in the plane of the measurement, It is shown in Appendix A that the devi-
ation in position 6yn 6f the spacecraft from the reference position is related

to the deviation in angular measurement <5An by
Ty (2.1)
A, =hy 81,

if the observation is made at a known instant of time t . The vector h dep-
ends upon the geometrical configuration of the relevant celestial objects at

time tn as well as the type of measurement made,

Because of the inherent dyriamic coupling of position and velocity, the
result at a later time tn+1 of a measurement made at time tn does not lend
itself to simple geometric interpretation. In order to provide a geometrical
description, it is convenient to introduce the concept of a six dimensional
space in which the coordinates represent the components of both position and

velocity deviations of the vehicle from the reference path as functions of time,
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Points in this space are defined by the six dimensional deviation vector
br (2.2)
Sx = n

-n

S¥,
where 6yn is the deviation in the vector velocity of the vehicle from the refer-

ence value. The vector &x defines the "'state" of the vehicle dynamics at

time tn. Transition from one state to another is provided by the matrix oper-

ation
e, t1,n = d)('n +]"n)
which is frequently referred to as the "transition matrix". Indeed, the relation-
ship between 6-)-(n+1 and ézn is simply
= 2.3
8Xn41 = Pyay,n 32, (2.3)
as shown in Section 3.4,
By means of the rectangular matrix K defined by
|
K - (2. 4)
0
Eq. (2.1) may be written in terms of Gl(n as
T T 2.5)
SAn =hn K 8 xy (

The submatrices I and O are, respectively, the three dimensional identity

and zero matrices. Now, by combining Eqs. (2. 3) and (2. 5)
SAn:b: KT (D;\]H,n $%n+1 (2.6)
it is clear that the effect at time tn+1 of an observation at time tn is to determine

the component of the six dimensional deviation vector in the direction defined by
T-1

n+l, n
provide a set of six equations of the form of Eq, (2.6). If no two of the com-

the vector ¢ Kbn. Six observations made at different times would

ponent directions were parallel, then the deviation vector could be obtained by

inverting the six dimensional coefficient matrix.

2.2 Statistical Parameters of the Navigation Problem

Because of the presence of instrument inaccuracies additional observations
may be used to reduce the errors associated with the simple deterministic pro-
cess just described. By applying least square techniques to the observed data,

a more accurate estimate of pogition and velocity is frequently possible than

could be obtained from the minimum number of measurements. For this



purpose, it is necessary to know certain statistical information with respect
to the instrument inaccuracies. In a linear least squares estimation procedure
all statistical calculations are based on first and second order averages and no

additional statistical data is needed.

At this point of the discussion it is necessary to distinguish measured
\}alues, estimated values and true values of various quantities; e. g., 5Kn will
be the measured value of the deviation in the angle AnAfrom its reference value
at time tn’ 6An the true value of the deviation, and 6An the estimated value, If

we write ~
S§A, = 8A ta, (2.7)

then a, will be the error in the measurement. In the subsequent analysis a

will be regarded as a random variable with an average value an and a variance

2 _2 _2 2 8)
Tn T ~ 8y (2.8)

The possibility of cross-correlation of measurement errors will not be excluded;

i,e., in general, the average d:?xr—n may be different from an am.
In Section 4 an estimation procedure is developed for determining an

optimal linear estimate of égn, denoted by. 62n. As each measurement is made,

the estimate 6/_)}n is updated by a simple recursive formula and, thereby, the prob-

lem associated with inverting sixth order matrices is avoided. An integral

part of the estimation technique is the correlation matrix of the errors in the

estimate., If we write
8% =8x_ te (2.9)

then

8

(2.10)

&,

n
n
is the six dimensional error vector and may be partitioned as shown using

€, and _@n to denote, respectively, the position and velocity errors, The corr-

elation matrix is thus defined by

1 2
€ EI €n EI E,(,) Ef,) (2.11)
T _
E, Se, e, = =
T T (3) (4)
2, &n 25 %4 En En



For later use in a statistical analysis of the guidance problem, the
correlation matrix of the actual deviation vector will be needed. This matrix

is defined by

X, =8x, 85: (2.12)
and may be calculated recursively using
Xo =00 n-1 Xao1 OF noy (2.13)
Initially, i.e., at injection
8%, =8x, + e, =0 (2.14)
so that
X, = E, (2. 15)

provides an initial value for the Xn matrix.

It is important to distinguish between a new estimate 62\(“, obtained by
incorporating an observation at time tn’ and an estimate simply extrapolated

from a previous estimate, For the latter case, the notation 62'11 is used where

Ay N ‘
an _(bn,n-l Sl(n-] (2.16)

In like manner, we define an exirapolated error vector g'n. The extrapolated

correlation matrix is readily shown to be
P T
B =0 n-1 Encd 00 (2.17)

Note that an estimate of the deviation in the angle to be measured at time tn

may be obtained from the extrapolated estimate of 62:1—1' We have

sA: =hl KT 53 (2. 18)

and it is this quantity, compared with the measured deviation GZ\n, which is

used in arriving at a revised estimate of 6xn.

When cross-correlation of measurement errors is considered, it is
convenient to use an augmented deviation vector having seven dimensions and

defined as



§x. = || Sv (2.19

Since, in this case, the error in a measurement at time tn may be predicted on

the basis of previous observations, we may define
A -
a, Ta, t+ B, (2.20)

as the best estimate of the error to be expected in the measurement of An‘ The
term ﬁn is then the error in the estimation of the measurement error., The

error vector_t_an will, of course, be seven dimensional and expressible as

I

@
"
107

n (2.21)

o
E)

Correspondingly, the correlation matrix becomes

En §:~{ =n §‘r]|- -n 'Bn

_ (2.22)
En - Zn érT -§n §r.! §n 'Bn
Bo el B, 8T B2

It will be convenient in our later work to define the correlation vector ¢, as the

last column of the matrix En‘

For'purposes of illustration consider the following model for correlated

measurement errors. Let the error at time t be composed of two parts.

n+1?
— 1
ap+] Tan+) Tl 4

0-:,‘+| = o, exp [_K(tn*'] "fn)] (2.23)



where a, and <n+1 are independent randomnumbers, X is a positive constant,

and En+1 is zero. It follows that

a1y T @ exp [= Aty 1) (2. 24)
and
Bat1 =Bq exp [=X{th4y ~ )] (2. 25)
Hence, the extrapolated error vector 91'1+1 is calculated from
9:1_’_1 :Pn+.|,n en (2. 26)
where Pn+1 n is the augmented transition matrix
‘Dn +1,n 0
F,n*'l,n
0 exp [=A(t 41 ~t,)] (2.27)
The augmented extrapolated correlation matrix is then computed from
. _ T
En+] _Pn+|,n En F,n+1,n (2.28)

2.3 Summary of the Navigation and Guidance Equations

In the navigation and guidance theory presented here, the problem of
launch guidance from Earth is ignored., It is assumed that the main propulsion

stages are completed at time t; and that the correlation matrix EO = E(tL) is

L
specified initially from a statistical knowledge of injection guidance errors,
The initial estimate of position and velocity deviation 6)_’20 = 6 2 (tL) is zero,
since, in the absence of any observation, the best unbiased estimate is that the

spacecraft is on course,

The time interval from launch to arrival time tA at the target point is
considered to be subdivided into a number of smaller intervals by the sequence

of times t . called ''decision points''. At each decision point one of

t
1”2
three possible courses of action is followed: (1) a single observation is made;
(2) a velocity correction is implemented; or (3) no action is taken. A revised
estimate of the deviation vector &6x(t) is made at each such point -- the form of

the revision depending, of course, on the nature of the decision. Specifically,



as shown in Section 4, for uncorrelated measurement errors the revised esti-

mate at the decision time t is one of the following:

- " A (2.29)
sk 4 qn] Ef Kh, (8A, -~ 8A%) (measurement)
A Ay .
§x, = q( + JB,) &x, (correction)
8% (no action)
=n
The scalar coefficient a is computed from
o, =ht K E! Kh, * a2 (2. 30)
The rectangular matrix J has six rows and three columns
<[l

and is just the reverse of the K matrix. The matrix Bn is also rectangular

having three rows and six columns and is partitioned as shown

B, =lCh -1 (2. 32)

where C; is one of the fundamental navigation matrices described in Section 3.

At each decision point it is also necessary to update the correlation

matrix En' Thus

E!-a (El Kby) (EL Khy)' (measurement)
En.= E, +Jo, 'QI JT (correction)
E, {no action) (2.33)



The vector L/ is the difference between the commanded velocity correction and

the actual velocity change implemented at time tn.

The above collection of formulae provides the means of maintaining an up
to date estimate of the deviation vector 6i<\n but, in themselves, do not provide
any clue as to what decision should be made at each point. Suggestions for

reasonable decision rules are discussed in Section 6,2 and in Appendix B.

When measurement errors are correlated, the only significant change
arises in the method of processing a measurement to obtain a revised estimate

in the augmented deviation vector and the associated correlation matrix. Thus

~ A
5%, =8%; +ai! (L Kby +20) [8A, - (5 A, + Q0] (2. 34)
E, =Ej - o] (Ep Khy +20) (E, Kby +¢7)7 (2. 35)
where
9 =_h: KT E! Kh, + Zb: KT P+ (;3'"2 +g£) (2. 36)

The remaining equations are unaltered; however, certain obvious changes are
required in the definition of the matrices J, K, and Bn in order that they be

dimensionally compatible with the seven dimensional deviation vector,

10



3, FUNDAMENTAL NAVIGATION MATRICES

Basic to the solution of the navigation problem is a certain collection of
matrices. The objective here is to introduce these matrices, indicate their role
in the navigation theory, and show how they may be obtained as solutions of

differential equations,

3.1 General Solution of the Linearized Trajectory Equations

Let r (t) and zs(t) denote the position and velocity vectors of the space-
craft in an inertial coordinate system, and let g (I_'S, t) denote the gravitational,
acceleration at position r and time t. Then

drg

y
d' :—vi , —d'—‘:g(ls,t) (3.1)

are the basic equations of motion of the spaceship except for those brief periods

during which propulsion is applied,

Let the vectors zo(t) and _\_ro(t) represent the position and velocity at time

t associated with the prescribed reference trajectory, and define

(1) =ry(D) —xo(t) . By(r) Tyt - (1) (3. 2)
Then, the deviations 6r and 6v may be approximately related by means of the

linearized differential equations:
d(sr) _ ¢ d(8y)
T dt

= Gle) & (3.3

where G(EO, t) is a matrix whose elements are the partial derivatives of the

components of g(go, t) with respect to the components of 50.

A particularly useful fundamental set of solutions of Eqs. (3.3) may be
developed in the following way. Let tL and th be, respectively, the time of
launch and the time of arrival at the target. Then, define the matrices R(t),

R" (D), v(t), v "(t) as the solutions of the matrix differential equations

dR _ dR*_ *
a Y a Y
dv dv* . (8.4)
T:GR a CR

11



which satisfy the initial conditions

R(t) =0 , R¥*(1,) =0
(3.5)
VL) =t V() =
Here O and I denote, respectively, the zero and identity matrix. If we now write
sr(t) =R(c +R*(1) ¢’ (3.6)
By(t) V(e + V' ()¢ (3.7)

where ¢ and c* are arbitrary constant vectors, it follows that these expressions
satisfy the perturbation differential equations (3.3), and contain precisely the
required number of unspecified constants to meet any valid set of initial or bound-

ary conditions.

The elements of the R and V matrices represent deviations in position and
velocity from the corresponding reference quantities as the result of certain
specific deviations in the launch velocity from its reference value. For example,
the first columns of these matrices are the vector deviations at time t due to a

unit change in the first component of the velocity at time t Corresponding

L
interpretations may be ascribed to the other columns as well, A similar dis-
cussion will provide a physical meaning for the elements of R" and V". For
this purpose, however, it is convenient to imagine the roles of launch and target

points as reversed.

3.2 The Vector Velocity Correction

Associated with the position I and the time t is the vector velocity re-
quired by the spacecraft to travel in free fall from _x_'s(t) to the target point
r, (tA) in the time tA - t. An expression for this velocity vector is readily
obtained from Eqgs. (3.6) and (3.7), The condition that the vehicle pass
through the target point is met by the requirement

51(ta) =0 =R(ta) e + R* (tp) ¢’
Since R* (ty )= 0, it follows that ¢ = 0. Eliminating ¢* between Eqs. ( 3. 6)

and (3. 7) gives for the required velocity deviation® at time t

syt =V R se(n) (3.8)

*The superscripts- and + are used to distinguish the velocity just prior to
correction from the velocity immediately following the correction.

12



Hence, the required velocity correction A y*is given by
av*(1) =C*() se(n) - 8v(1) (3.9)
where the C* matrix is defined by
C ) =V RY (M (3.10)
The elements of the C* matrix are deviations in vehicle velocity from the
reference values, asrequiredto place the vehicle on a trajectory to the target
point, which arise from certain specific deviations in the vehicle position. The
interpretation applied to the columns is made in the manner described earlier

in connection with the R and V matrices.

If the spacecraft has been in a free-fall status since launch, then, by
employing arguments similar to those used in establishing Eq. (3.8), it can be
shown that

sy™(1) =C(t) ar(1) (3.11)
where
C(n) = V() R (3.12)

In this case Eq. (3.9) takes the form
ay*(r) = [CH(1) - C(] sr(n) (3.13)
Since 6r(t) is different from zero solely as a result of an injection velocity

error 6g(tL ), it follows, from the definition of the R matrix, that

AvH() == A(D) Sy(n) (3.14)
Thus, the A matrix, defined by
Al =V() - CI(DR() (3.15)

relates a deviation in launch velocity to the velocity impulse required at time t.

A gtarred form of the A matrix

AY) =VER) - C(1) R*(1) (3.16)
will occur in the subsequent discussions.

3.3 Differential Equation Solutions

The matrices C, C*, A, A" may also be generated directly as solutions
of differential equations, However, for C and c*, a difficulty arises in pre-
scribing appropriate initial conditions. From the initial values of the R and R
matrices, it follows that C(t; Yand C* (ty )are both infinite. The singularities
may be avoided by working directly with the differential equation for the inverse

matrices ¢ Yana c* _1.

13



By differentiating the identity

cw ' v =R (3.17)
and using Eq. (3.4), the following equation for c1 results

-1
d(i +C']GC"=I (3.18)
Similarly, we obtain
-1
d * +C*"Gc*’]:| (3.19)
dt

Equations (3. 18) and (3. 19) may be used to demonstrate an interesting
property possessed by C and c*. Itis easy to show that the G matrix is sym-
metrical. It follows at once that the matrices C and C" will be symmetrical for
all values of t in the interval (tL, tA) if they are symmetrical for any particular
time, But from Eq. (3.17) and a similar one involving starred matrices, we
have

cey =0 , cqp'=0 (3.20)
so that C and C*are, indeed, symmetrical for t equal to tL and ta respectively.
Hence C(t) and C*(t) are symmetrical for all t in the interval from launch to
the target point,

In an entirely analogous manner, differential equations may be developed
for A and A’ By differentiating Eqs. (3.15) and (3.16) and using Eq. (3.4) ),

one readily obtains thg equations

3.21)
i/l +C*A =0 (
dt
and
d/d\*+C/\*:0 (3.22)
t
with the initial conditions
Al =1, AT =L (3.23)
3.4 The State Transition Matrix
Let 6r = 6§(tn) ‘and 8y = 6\_/(tn) be the deviations in position and
velocity at time tn' and let Rn, Vn’ . . . be the corresponding values of the
fundamental matrices. The ¢ and g* must be obtained as solutions of
- * ¥
61, “R,c + R, ¢ (3.24)
sy, =V, c+V,c' (3.25)

14



Multiplying Eq. (3.24) by R;ll, we obtain for ¢

¢ =R, (85, - Ry " (3. 26)

Then, by substituting this expression into Eq. (3.25) and using Egs. (3.12) and
(3.16), there results

. w1
ct=-A, (C, 81, - 8v,) (3.27)

Finally, from Eq. (3.26) we have

R (3.28)
c==N_ (C, 8r, = 3v,)

after some simplification., Thus, with ¢ and c* determined, the position and
velocity deviations at any other time t are given by Eqgs. (3. 6) and (3.7) .

In terms of the six dimensional deviation vector defined by Eq. (2.2), the

R() R

result may be written in the form

§x(t) =

c

Vi Vinlilie” (3.29)
Consider now a specific value of t = tn+1' Then substituting from Eqs. (3. 27)

and (3.28) into Eq. (3.29), a relationship between 6x ., and 6x is displayed

8xn+1 = ®ptin X, (3.30)
where ‘Dn+1 ot the six-dimensional state transition matrix, is computed from
3 -1 +-1
. Ra+1 Rasrllf| (Ca? ) 0 -l G
ntln =
’ -I -] '1
Vat1 Vo 0 (C, AN -t ¢l | 8.3

It is not difficult to show than an alternate calculation of the transition
matrix may be made directly as the solution of the sixth order matrix differ-
ential equation

aq do(t,1,)

dt

subject to the initial condition @ (tn, tn) equal to the six dimensional identity

=F(M) o (1, t,) (3.32)

matrix. The matrix F(t) is

0 I
F(t) = 4 (3. 33)
G(t) 0
Finally, it has been shown(s) that the inverse of the matrix ® +1n is
directly obtained as '
-1 T T
a0 I ® %2 %4 "2 (3. 34)
(bn+1,n__¢n,n+l - - T T

15



4, DERIVATION OF THE OPTIMUM LINEAR ESTIMATE

4.1 Uncorrelated Measurement Errors

As noted in the Introduction, the optimum linear estimate of the deviation
vector may be expressed as a recursion formula, Therefore, assume 5§n_1
and En—l are known and that a single measurement of the type described in
Appendi)va is made at time tn' The observed deviation in the measured quantity
An is & An’ and the best estimate for & An' as obtained from the extrapolated
estimate of Sgn_ 1> 18 given by Eq. (2.18). Then a linear estimate for the
deviatjon vector 6§n at time tn is expressible as a linear combination of the
extrapolated estimate of él(n-l and the difference between the observed and
estimated deviations in the measured quantity An‘ Thus, for uncorrelated

measurement errors,

5%, = 5% +w, (6A - 8R! (4.1)

1>

n
where the vector wo is a weighting factor which will be chosen so as to minimize

the mean-squared error in the estimate.

For this purpose use Eqs. (2.9), (2.7) and (2.5) to write

(4.2)

A
tw, (A +a, - 8A)) - 8x,

=(1 - w by K (88! - 8x.) +w, a,
= = wohy K') e +w, ap

where I is the six-dimensional identity matrix. Then the correlation matrix

En defined by Eq. (2.11) may be expressed as a function of the weighting vector
w_ as

=n

Enlw) =01 = wo bt KTV EL (1=K hywh) +w w! o2 (4.3)

n

The mean-squared errors in the estimate of position and velocity devia-

. 2 2 .
tions En and én are simply the respective traces of the submatrices

16



(1 (4)

E n and E n If the six-dimensional weighting vector w is partitioned into two
three-dimensional vectors
WV (4.4)
LA
£

(1) (1)

then from Eq, (4.3) it is easy to show that E is a function only of w N and

(2)

E ( n) is a function only of w Therefore, for the purposes of the following
discussion, it is legitimate formally to treat the mean-squared error in the
estimate er21 (w ) as the trace of the six-dimensional correlation matrix En(lvn) .
The subvectors of the optimum weighting vector wo will then each be optimum

for the respective estimates of position and velocity deviations,

In order to determine the optimum weighting vector, one may apply the
usual technique of the variational calculus., Let w takeona variation'éyn and
obtain from Eq. (4. 3)

T

502 (w) =210 |~ swgh! KTEZ (1 - Kby w) + owy vy o | (4.5)

n
If 6e2(2vn) is to vanish for all variations 6v_vn, then it must follow that
n “En Khy, (4.6)
where the positive scalar quantity a is defined by Eq. (2. 30),

It can be readlly shown that the wo determined from Eq. (4.6) actually
does minimize e (w ) . Suppose that the optimum w_ is replaced by another
weighting factor yn - Y, Then from Eqs. (4.3) and (2,17)

2 T T (4.7)
en(¥n ~y,) Tt [E,: =2 (w, = ya by KT EQ ¥ 0, (= y,) vy - vn)]

and using Eq. (4. 6)

2
e, (w, -Zn) :tr[Er; =a, (w, = yy,) (\g: +ZI)] (4.8)
so that
2
e (Wy = yo) Zea (w,) + 0, W (y, v,) (4.9)

Thus, the mean-squared error is not decreased by perturbing w if Eq. (4.86)
holds,

Having obtained the optimum weighting vector, the expression for the
correlation matrix of the estimate errors En given by Eq. (4.3) may be written

in a more convenient form. Thus, from the definition of a in Eq. (2. 30),,
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there results

E, =E/ (1 =Kh,wh) ~w, bl KTE! +a w w (4.10)

n

Substituting from Eq. (4. 6), the final expression may be written as

E, <E! -, (E Kh)(El Kh)' (4.11)

n

Equations (4. 1) and (4. 11) then serve as recursive relations tobe used in obtaining
improved estimates of positionand velocity deviations at each of the measurement
times tl, tz,

4, 2 Correlated Measurement Errors

If the measurement errors are correlated, the derivation is only slightly
altered. The linear estimate for the seven dimensional deviation vector 63(—n
at time tn is again expressible as a linear combination of the extrapolated esti-
mate of 6£n- land the difference between the observed and estimated deviations
in the measured quantity An' However, the estimated deviation in An must also

include the estimate of the error in the observation. Thus
i Al
n - (BAL tap)] (4.12)

where now the weighting vector W is seven dimensional,

The error in the estimate may be written as

— A; ) [

8% tw, (8A, - By + L, - AL - sx,

=0 - wy by KD)(RE = 8x.) = wy (8 - L) (4.13)
- T [ 1

=(1 = wy by KDel = w, (8, - 2,)

18



The correlation matrix, expressed as a function of the weighting vector W is

then
Eq () =0 = wo by KDVEG (1 - Kby wo)
S0 - wo b KT) 2 wa
—gg'nT (I =K h, v_z:) tw, »1: (ﬁ—’ni +_C—3) (4. 14)

Again if we require § e2(v_vn) to vanish for all variations & W, it is readily

shown that

o, w, =E! Kh, + o5 (4. 15)

where a  is defined by Fq. (2. 36).

4.3 Correlation Between the Estimate and the Error

An important property of the optimum estimate, which is needed for the
development of the statistical analysis procedures described in Section 5, will

be derived here. The result may be stated simply as

8x. =0 (4.16)

if & gn is the optimum estimate; i.e., the optimum estimate and the associated
error in the estimate are uncorrelated.. In the proof we consider, for simplicity,
only the case of uncorrelated measurement errors, but the property is readily ‘

established in general.

From Eq. (4.5) we have

¥n ag‘(’"wn b: KT)E;,Khn=0 (4.17)
or alternately,
wo a2 = [ = w, by KTelest Kby =0 (4.18)
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Substituting, for the bracketed quantity from Eq. (4. 2) gives

W o2 +(wy a, —e) e_;‘TKh =0 (4.19)

n n -n n n

. T_
But since a_ e'” = 0, we have
n =n

Kh, =0 (4.20)

(Wp ap) a, — e, e

Again substituting for LA from Eq. (4.2) gives

T

n

len = (1 ~wo by KN ep] ap ~ e TKkh =0 (4.21)

or, simply,

&, (a, -QQT Kh,) =0 (4. 22)

Thus, €, and the scalar quantity an-g'r’lr K b—n are uncorrelated. Hence,

en [wy (@, ~e'T Kh)) =0 (4.23)

or, from Eq. (4.2)

T T (4. 24)
“n (gn ~ €h ) =0
Therefore,
e, [853- + g: - (8)_(:- +§:‘T)] =0 (425)
or
e, S81 =g, 5227 (4. 26)

From this final relationship it is easy to show that €n and 6 -Q—n are un-

correlated. For if we substitute from Eqgs. (4. 2) and (2. 16), it follows that

T _ T,T v T T
€n Sgn -[“P-wn hn K )q)n,n-'lgn-'l tow, anJ 8/E\n-lq)n,n-'l
i T T .
=(l - hn K" (Dn,n-lgn-l 8%n .1 q)n,n-l (4.27)

Then by continuing the reduction of €1 6 gr’f—l we have, finally, e § QT

- =n =n
related to e, 6 gowhich is zero. Thus, Eq. (4. 16) is established and the proof
is complete.

20



5, STATISTICAL ANALYSIS OF THE GUIDANCE PROCEDURE

From exact knowledge of the six-dimensional deviation vector 6x, at time
tn’ a velocity correction may be calculated which, if implemented, will insure
the vehicle's arrival at a fixed point in space at the required time. However,
only the estimate 6§n is available. From this,an estimate of the velocity corr-

ection vector A\_/>n may be determined from
A — A
Ay, =B, 8x, (5.1)
where Bn is defined by Eq. (2.32). (Refer to the discussion leading to Eq.(3.9).)

The need for a velocity correction arises solely from improper injection
into orbit, If the first such correction is executed perfectly, then, of course,
no further corrections are required. However, because of imperfect knowledge
of position and velocity obtained from navigational measurements, the command-
ed velocity change will be in error. Furthermore, the actual velocity change
experienced will differ from that commanded because of imperfect instrument-
ation., Therefore, subsequent corrections will be required to remove the

effects produced by earlier inaccuracies.

5.1 Correlation Matrix of the Velocity Correction Vector

'An estimate of the required velocity correction vector AQH, as computed
from Eq. (5.1), may be determined at each decision time whether or not the
correction is actually implemented. The correlation matrix of the velocity
correction vector may be expressed directly in terms of the extrapolated matrices
EI"1 ar}d Xr'1

From Eq. (5.1) we have

AR =B, (5x! +el) (5. 2)
so that
8%, B9 =B, (5xp sx'y +ef dxiy 4 bxp el +Ep)B) (5. 3)
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On the other hand

/\IT— ] N
8’ T 8x' te’ (5. 4)
from which
! 'T - ] +
en 8% =el 8x)] +E! =0 (5. 5)

according to the theorem proved in Section 4. 3.
Hence

T _ , ' T
A%, A%, =B, (X!, - E.) B] (5. 6)

-n —n

The correlation matrix Xn may be calculated using Eq. (2. 13) when no
velocity correction is made. If the velocity is corrected at time tn’ the follow-

ing procedure is valid.

Using Eq. (2.29) we may write

(5.17)

Hence,

+IBLEL (JBY) +1q 1) )

+(1+JB,) sx’ eT (JB,)T

+ B, el sx'T (1 +1B)T (5. 8)

which may be further reduced using kq. (5.5). In summary, then

X (no correction)

n .
[ ] T I T
(L +JB) (XL —ED( +JB) +Ef +J my 00 37 (comection)

(5.9
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Just as the extrapolated error vector and the associated correlation
matrix are altered at an observation point, so also will they change at a cor-

rection point. Thus,

0
e, “el t (5.10)
On
and
0 0
E, =En + S (5. 11)
0 N
The mean-squared estimate of the velocity correction is determined as
the trace of the matrix Agn A_Qg‘ As a basis for a decision theory, it is

important to know something of the precision of the estimate. Clearly, a
velocity correction having a large uncertainty should not be commanded if it is
possible to improve substantially the estimate by future observations. The un-

certainty g_n in the estimate Af\\{n is simply

d =A%, - B, 5x, =B, e! (5.12)

n =-n
Hence, the mean-squared uncertainty is determined as the trace of the matrix

T.n g0 gt
d,d, =B, E, B, (5.13)

5.2 Uncertainty in the Applied Velocity Correction

In order to complete the statistical analysis of the velocity correction, it
is necessary to examine more carefully the vector uncertainty 7 in the velocity
correction, The inaccuracy in establishing a commanded veloc.ity correction Ag/
is due to errors in both magnitude and orientation. In the following analysis the

two sources of error will be assumed independently random with zero means.

Consider a coordinate system in which the estimated velocity correction
vector is along one of the coordinate axes. Then if M is the transformation
matrix. which relates the selected axis system and the original reference system,

we may write

0
AT =AYM|[ O (5.14)
1
Now, define a random variable « such that
Av =(1 + «)Aav (5. 15)
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and let v be the random angle betweenAQand Av It will be assumed that both
x and y are small quantities so that powers and products are negligible compared

with unity. The actual vector velocity correction is then

¥ cos 8 (5. 16)
y sin 8 l
1

Av =(1 + «) AVM

the uncertainty vector nis expressible as

EZA@_\—A!:-ACM {(] + x)y

where B is a polar angle defining the rotation of Av with respect to Ai/\ . Hence,
cos f3
sin 8

0
0 } (5.17)
0 1

Assume that «, vy, B are statistically independent random variables with

+ «

zero means, Further assume that 8 is uniformly distiributed over the interval

-m to 7. Then one obtains for the correlation matrix of the velocity correction

uncertainty
—_— - 22— 1T 0 0
pn = A AT a0 1 of W (5. 18)
0 0 0
2 T T T
= k" AV AY +»77<A9 Ay | - AV A% )

2
where I is the three-dimensional identity matrix and « and ¥ 2 are the mean-
squared valued of « and v,

5.3 Miss Distance at the Target

Turning now to the problem of guidance accuracy, the determination of
the position deviation vector at the nominal time of arrival at the target is made
by extrapolating the deviation vector from the point of the final velocity corr-

ection. Thus, if tN is the time of the last correction and 6_>5A is the deviation

vector at the time of arrival tA’ then

Sxp SOAN 5_)(; (5.19)
But from. Eq. (3.31) and the terminal conditions for the navigation matrices,
we have 1 .
“Ra AN 0 oo - (5. 20)
AN =

* -

-1
I=Ya™ — A S
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Hence, the position deviation vector at the target 6_1_-A may be written as
-1 +
with a similar expression obtainable for the velocity deviation at time t,.

The target position error may be written ultimately in terms of the

error vector eN according to the following self-evident steps
s1p = - Ry AN By (8XK + J Avy)
- -1 -
== Rp AN (By 3xy -~ Awy)

R ,
=Rp AN (By &N — 7N)

_ . 5.
=RpA N By &N (5. 22)

The mean square position error at the target is then computed as the trace of

the matrix 6rA 6r T.
- - A
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6. APPLICATION TO TRANS-LUNAR NAVIGATION

6.1 Decision Rules

As a necessary step in the application of the navigation and guidance
scheme formulated in this paper, certain rules must be adopted concerning the
course of action to be taken at each of the "decision points'' described in
Section 2.3. The number and frequency of observations must be controlled in
some manner -~ ideally by a decision rule which is realistically compatible with
both the mission objectives and the capabilities of the measuring device. If an
observation is to be made, a decision is required regarding the type of measure-
ment and the celestial objects to be used. Periodic velocity corrections must

be applied and the number of impulses and times of occurrence must be decided.

Once the decision rules have been specified, it is necessary to test their
effectiveness according to some measure of performance. A typical objective
is to minimize the miss distance at the target., However, a reduction in miss
distance usually implies an increase in either the required number of measure-
ments or a greater expenditure of corrective propulsion or both. In the face of
these conflicting objectives, compromises are clearly necessary and statistical

simulation provides a means of arriving at an acceptable balance.

In the interest of minimizing the number of simulator runs, Monte Carlo
techniques should be avoided if possible‘. Fortunately, it is unnecessary to
generate the true spacecraft trajectory, as would be required for Monte Carlo
simulation, in order to analyze the effects of a particular set of decision rules,
The reader may readily verify that (Eq. (2.29), which defines the estimate
6—/%n and depends on actual measurement data, is never involved in any of the

statistical calculations.

A specific example of a set of decision rules to be applied at each decision
point is as follows:

1. The estimated mean-squared velocity correction AOi and the mean-
squared uncertainty dzn associated with the estimate are computed from
Eqgs. (5.6) and (5.13). If the ratio
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R, =V d2/a¢’? (6.1)

i ifi i ion i t time t_,
is less than a specified amount Rv(min)’ a velocity correction is made at time t

2. If the criteria is not met which would call for initiation of a velocity
correction, the desirability of making an observation is examined. For this
purpose, an abbreviated star catalog is postulated together with selected planets,
Each star and planet measurement combination is analyzed to determine its effect
on the reduction in position unceftainty at the target. The particular star-planet
combination producing the greatest mean-square reduction is then defined as the

best potential measurement,

Now let 6ri+ and & rzA- be the respective mean-square position uncer-~
tainties at the target which would result with and without the best possible obser-

vation. Then, if the ratio

(6.2)

‘is greater than a specified value Rp( the best potential measurement is

max)’
made at time tn' In other words, for a measurement to be made, a significant

reduction in the potential miss distance must result, If, on the other hand,

the above criterion is not met, no action is taken at the decision point tn'

6.2 Numerical Example

In this section, the decision rules presented previously are applied to the
circumlunar navigation problem. It was found that the velocity correction
criterion worked quite well to establish the times of mid-course maneuvers with
the exception of the final correction. The required velocity change increases
quite rapidly as the target is approached and the timing of this last correction is
critical. After preliminary experimentation with different values of Rv’ it was
decided to fix apriori the correction times for the remainder of the study of the
navigation problem. Cross correlation between measurement errors was ignored
and only the Earth and Moon together with the 20 brightest stars were considered

for potential measurements,
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The date and time of orbital injection was Julian Day 2440043, 6088 with
the closest point of approach some 60 miles from the lunar surface. The

nominal total time of flight from injection was 126. 4 hours.

The correlation matrix of injection errors Eo was obtained from the fol-

lowing assumed root-mean-square injection errors,

Altitude Track Range
10, 000 ft 15, 000 ft 5000 ft
15 ft/sec 6 ft/sec 4 ft/sec

The correlation matrix below was obtained by a transformation from the
altitude, track, range coordinate system to a coordinate system with the x axis
along the vernal equinox, z axis along the Earth polar axis and the y axis chosen
to make a right handed coordinate system. The basic units in the E, matrix are

miles and miles per hour.

0.918 0.063  0.203 0 0 0

0.063 4.58 -1.86 0 0 0

E, = 0.203 -1.86 7.04 0 0 0
0 0 0 7.73 4.65 2.72

0 0 0 4.65 83.8 36.0

0 0 0 2.72 36.0 36.1

At each decision point, forty potential measurements were examined and
evaluated according to the decision criterion. The minimum time between
observations was required to be 15 minutes. For simplicity, only star elevations
above an illuminated horizon of either the Earth or Moon were considered. Cer-
tain practical constraints were imposed so that physically unrealizable measure-
ments were screened out, For example, in order to keep the field of view re-
quirements reasonable, the lines of sight to the star and to the horizon were
required not to exceed seventy degrees. Also no measurement could be made if

the line of sight to either star or planet edge were closer than fifteen degrees
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from the direction to the Sun. Furthermore, if the illuminated face of the Moon
formed the background of the edge of the Earth from which a star elevation was

to be reckoned, that particular measurement would not be made,

The optical measuring device used for the observations was assumed to

be unbiased with a random error whose variance was

2
o2 =(0.00005)2 + (]—) radians
'SE

for the Earth, and

2
o2 =(0.00005)? + (ﬁ) radians
fSM

for the Moon where r'sg and rqy are the distances in miles from the space-
craft to the Earth and Moon respectively. In this manner it was possible to
account for the larger uncertainty in defining the horizon which would exist’
when the spacecraft is close to a planet. At large distances the rms error is

approximately 0. 05 milliradians.

The magnitude error in applying a velocity correction was assumed to be
isotropic and proportional to the commanded correction. Specifically, the

relation

n2 =0.0001 Av2

was adopted so that the rms error would be one percent of the rms correction.

The orientation error assumed was 0. 01 radians.

Preliminary results of an analysis of this sample trajectory are summar-
ized in the accompanying tables. A number of simulated guidance flights were
made for which the strategy parameters Rv and R_ had various assigned values.
Then, in order to evaluate the effect on the navigation data of a variation in the

time of year, a set of pseudo-trajectories was generated by the simple device
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of rotating the direction of the Sun as viewed from the Earth. The trajectory
was considered to be unchanged by this process--the assumption being quite
adequate for the purpose of this preliminary analysis. In this manner different
illuminated portions of the Earth and Moon were visible to the spacecraft re-

sulting, thereby, in different measurements.

In general, as Rp is increased, one requires each measurement to have
a proportionately greater significance in the reduction of the potential target
error, with the result that the required total number of measurements decreases.
There may be a corresponding penalty, of course, in that the resulting uncer-
tainties in position and velocity at the target can increase. The objective in

preparing a measurement schedule is to arrive at an acceptable compromise,

The number of velocity corrections as well as the times of their occur-
rence is, of course, controlled by Rv' On the other hand, the number of meas-
urements is not sensibly affected by variations in this parameter. As an
example, in Table 1 navigation data for the Earth to Moon trajectory is given
for two values of the velocity correction uncertainty ratio Rv' Although the
final position uncertainties are of the order of two miles, the deviations from
the reference path are approximately twelve miles. This large difference
results from the fact that measurement data was gathered after the final veloc-
ity correction so that knowledge of the orbit improved although no attempt was
made to reduce the target error. It should be noted that if one elects to elimi-
nate the final position deviation by a velocity correction one tenth hour before
the nominal arrival time, velocity corrections of 104 mph and 68 mph, re-
spectively, are required. There will, of course, be an accompanying increase

in the final velocity deviations of 51 mph and 52 mph, respectively.

In Table 2 the navigation data for the Earth to Moon trajectory is given
as a function of the miss distance reduction ratio Rp for velocity corrections
made at 5, 20, 52, and 61,5 hours. For the case Rp = 0.6, there is a notice-
able decrease in the final position uncertainty compared to that for R_ = 0. 5,
This apparent anomaly arises from the fact that for the Rp = 0.6 case, three
observations are made after the last velocity correction, while, correspond-
ingly, only two observations are made for the Rp = 0.5 case. Table 3 presents

similar data for the Moon to Earth trajectory.
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In order to study the effect of variations in the illuminated portions of
the planet's surfaces, one set of values for R_ and times for velocity correc-
tions was selected and the Sun direction altered in sixty degree steps except
for the 70° and 250° cases. These two directions were singled out because
they form a line approximately perpendicular to the Earth-Moon line at launch.
Table 4 gives the results for the Earth to Moon trajectory and further shows
that the 70° and 180° cases produce significantly larger uncertainties. For the
120° case the total velocity correction of 114 mph is somewhat higher. How-
ever this can be improved since the times selected for velocity corrections
were not optimum for all cases. Table 5 presents similar data for the Moon to

Earth trajectory.

In all cases the final velocity correction just prior to arrival at perilune
is significantly larger than the previous two mid-course corrections. The
result is a rather large velocity deviation from the nominal value at the target
point. On the return flight this deviation causes the first velocity correction
to be substantial which accounts for the increase in fuel requirements required
for the Moon to Earth trip. If the objective of the flight does not include passage
-through a preassigned perilune position, then, obviously, the total of velocity

corrections can be reduced.

Table 6 summarizes Earth to Moon flight navigation data for various
Moon horizon uncertdinties. The number of measurements remained constant
(76 and 77) for the cases investigated. Total velocity corrections, final veloc-
ity deviations and final position deviations did not increase until the uncertainty
reached 5 miles. However final positidn and velocity uncertainties are sensi-

tive to Moon horizon determination as would be expected.

Table 7 presents the same data for the Moon to Earth flight for various
Earth horizon uncertainties. The number of measurements and total velocity
correction did not vary appreciably. However all uncertainties and deviations

are sensitive to Earth horizon determination,

Finally, in Tables 8 and 9, a complete history of a circumlunar mission

is given corresponding to the starred cases summarized in Tables 4 and 5.
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Table 1. Earth to Moon flight navigation data as a function of velocity
correction uncertainty ratio.
0.1 start to 8 hrs
Miss Distance Reduction Ratio = {
0.5 8 hrs to 62.5 hrs

Sun Line = 250°

Velocity Times Total Final Final Final ~ Final
Correction Number for Velocity Position Velocity Position Velocity
Uncertainty of Velocity Correction Uncertainty Uncertainty Deviation Deviation

Ratio Measurement Corrections (mph) (miles) (mph) (miles) (mph)
0.2 39 7.0 hrs 107 2.5 11.1 12.5 95
18.0 hrs
61.8 hrs
0.3 40 . 5.5 hrs 77 1.8 4.6. 12.0 39
11.5 hrs
26.0 hrs
61.4 hrs
Table 2. Earth to Moon flight navigation data as a function of miss
‘distance reduction ratio.
(miss distance reduction ratio constant at 0.1 from 0 to 8 hrs)
Velocity Corrections at 5, 20, 52, 61.5 hrs
Sun Line = 250°
Total Final Final Final Final
Miss Distance Number Velocity Position Velocity Pasition Velocity
Reduction Ratio of Correction Uncertainty Uncertainty Deviation Deviation
(from 8 hrs to 62.5 hrs) Measurements (mph) (miles) {mph) (miles) (mph)
0.2 115 52 0.70 1.7 3.9 16
0.3 77 56 1.10 3.7 7.1 23
0.4 55 59 1.10 3.7 8.7 26
0,5 40 78 1.20 4.0 11.0 60
0.6 32 68 0.84 3.1 17.4 66
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Table 3. Moon to Earth flight navigation data as a function of miss
distance reduction ratio.

Velocity Corrections at 64, 88, 120, 125 hrs
Sun Line = 250°

Total Final Final Final Final
Number Velocity Position Velocity Position Velocity
Miss Distance of Correction Uncertainty Uncertainty Deviation Deviation
Reduction Ratio Measurements (mph) (miles) (mph) (miles) (mph)
0.2 97 82 1.5 2.8 10.0 22
0.3 44 89 1.6 3.1 12.6 28
0.4 28 99 1.8 3.4 13.9 33
0.5 12 197 2.5 4.8 15.2 94
0.6 10 211 4.3 8.0 28.0 123
Table 4. Earth to Moon flight navigation data for pseudo trajectories
as a function of sun direction rotation.
0.1 start to 8 hrs
Miss Distance Reduction Ratio = {
0.5 8 hrs to 62.5 hrs
Velocity Corrections at 5, 20, 52, 61.5 hrs
Sun Total Final Final Final Final
Direction Number Velocity Position Velocity Position Velocity
Rotation of Correction Uncertainty Uncertainty Deviation Deviation
(degrees) Measurements + (mph) (miles) (mph) (miles) (mph)
0 41 68 L3 3 3 31
70 39 64 6.5 18 8 39
120 39 114 L6 3 12 92
180 40 66 5.2 21 12 48
250 40 78 1.2 4 11 60
300 39 88 1.2 4 4 46
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Table 5. Moon to Earth flight navigation date for pseudo trajectories

as a function of sun direction rotation.

Miss Distance Reduction Ratio = 0.4
Velocity Corrections at 64, 88, 120, 125 hrs (* first corr. at 70 hrs)

Sun Total Final Final Final Final
Direction Number Velocity Position Velocity Position Velocity
Rotation of Correction Uncertainty Uncertainty Deviation Deviation
(degrees) Measurements (mph) (miles) {(mph) (mites) (mph)

70 16 80 3.5 6.5 24 53

120 16 227 2.9 5.5 21 66

180* 20 94 2.1 4.3 10 41
250 28 99 1.8 3.4 14 33
300 14 163 2.3 3.9 31 99
Table 6. Earth to Moon flight navigation data as a function of Moon
horizon uncertainty.
0.1 start to 8 hrs
Miss Distance Reduction Ratio = {
0.3 8 hrs to 62.5 hrs
Sun Line = 250°
Velocity Corrections at 5, 20, 52, 61.5 hrs
Total Final Final Final Final
Moon Horizon Number Velocity Position Velocity Position Velocity
Uncertainty of Correction Uncertainty Uncertainty Deviation Deviation
(miles) Measurements {mph) (miles) (mph) (mites) (mph)
0.5 77 56 1.1 3.7 7.1 23
1.0 76 54 2.0 8.7 7.8 23
2.0 76. 54 2.9 10.6 7.9 23
3.0 76 55 3.6 10.3 8.1 23
5.0 76 68 5.4 16.9 8.7 27
Table 7. Moon to Earth flight navigation data as a function of Earth
horizon uncertainty.
Miss Distance Reduction Ratio =0.3
Sun Line = 250°
Vélocity Corrections at 64, 88, 120, 125 hrs
Total Final Final Final Final
Earth Horizon Number Velocity Position Velocity Pasition Velocity
Uncertainty of Correction Uncertainty Uncertainty Deviation Deviation
(miles) Measurements {mph) (miles) (mph) (miles) (mph)
1 44 . 89 1.6 3.1 12,6 28
2 44 88 2.6 4.8 15.3 32
3 42 89 38 7.1 19.1 38
5 42 91 5.8 10.7 21.6 43
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Table 8. Typical navigation data for Earth to Moon flight.

0.1 start to 8 hrs.
Miss Distance Reduction Ratio = {
0.5 B hrsto 625 hrs

Sun Line = 250°

Reduction
in Position | Position Indicated | yncentainty
Velocity | Uncertainty | Uncertainty | Velocity in Velocily |  Position Velocity Position | Velocity
Time Coriection | at Taiget at Target Correction | Comection | Uncertainty | Uncertainty { Deviation | Deviation
(hours) Observation (mph) (miles) (mites) (mph) {mph) {miles) {mph} (miles) (mph)
0.6 Moon Antates 262 2528 0 11.9 4.8 10.9 4.9 1.0
0.9 Earth Fomalhaut 2031 1504 1.3 12,9 4.5 7.9 7.4 11.3
1.2 Earth - Deneb 540 1404 11.0 9.2 5.3 7.9 10.4 12.0
LS Earth Aldebaran 412 1342 12.6 9.2 6.5 7.6 13,9 12,7
1.8 Earth Aldebaran 370 1290 14.0 9.2 8.2 7.6 17.6 13.5
2.2 Earth Aldebaran 408 1224 15.5 9.4 10.6 7.6 23.1 14.6
2.6 Earth Pollux 456 1136 16.9 9.5 12.0 7.2 28.9 15.5
3.0 Earth Procyon 515 1013 18.3 9.2 13.2 6.8 35.2 1.6.4
3.4 Earth Procyon 405 928 19.7 8.7 14.6 6.5 41.8 17.2
3.8 Earth Poliux 426 B25 20.9 8.3 15.2 6.0 48.7 17.9
4.5 Earth Procyon 403 719 22.8 8.0 17.0 5.6 61.5 19.1
5.0 24.1
5.5 Earth Pollux 435 573 0 2.6 18.4 4.9 70.0 - 7.8
6.0 Earth Procyon 273 504 4.6 6.4 18.3 4.4 69.3 7.6
6.5 Earth Pollux 244 441 5.7 5.8 18.1 4.1 9.0 7.5
7.0 Moon Antares 196 395 6.5 5.3 18.2 3.7 69.1 7.5
7.5 Earth Pollux 186 348 7.2 4.9 17.9 3.4 69.5 7.5
8.5 Moon Antares 187 294 7.9 4.7 18.3 1.0 71.4 7.6
9.5 Moon Antares . 158 248 8.7 4.1 18.3 2.7 74.3 7.7
10.0 Earth Pollux 135 208 9.3 3.6 17.1 2.4 76.2 7.8
10.5 Moon Antares 107 179 9.7 31 16.0 2.1 78.3" 7.9
12.0 Moon Antares 95 151 10.5 2.9 16.7 I.8 835.8 8.3
12.5 Earth Pollux 78 130 10.8 2.5 15.9 1.7 88.7 8.4
13.5 Moon Antares 68 111 11.3 2.3 15.6 L5 94.9 8.6
15.0 Moon Antares 56 96 12.0 2.0 16.0 1.3 105.2 8.9
16.0 Earth Pollux ' 48 83 12.6 1.8 16.0 1.2 112.7 9.1
17.0 Maon Antages 41 72 13.0 1.7 15.7 1.1 120.6 9.3
19.5 Maon Antares 36 62 14.3 1.6 16.9 1.0 141.9 9.8
20.0 14.5
22.0 Earth Pollux 32 54 0 1.5 18.2 0.9 137.4 4.6
23.5 Moon Antares 28 47 0.6 1.4 18.0 0.8 131.2 4.4
28.95 Moon Antares 23 40 1.1 1.4 20.2 0.7 112.4 4.0
29.5 Earth Pollux 20 35 1.4 1.3 0.2 0.7 109.0 3.9
37.0 Moon Antares 17 30 1.9 1.6 23.3 0.6 86.2 3.6
40.5 Earth Pollux 15 26 2.4 1.6 24.6 0.5 77.4 3.5
52 5.4
53.5 Moon Antares 13 22 0 3.4 28.7 0.4 54.4 5.1
57.% Earth Regulus 11 19 2.8 5.1 28.5 0.3 40.9 4.9
60.0 Moon Regulus 10 17 6.8 8.7 18.2 0.7 35.5 4.8
60.5 Earcth Procyon o 14 111 7.7 13.2 0.8 34.7 5.0
61.4 Moon Regulus 8.5 1.2 21.1 10.9 1.9 1.7 33.3 6.7
61.8 335
62.1 Moon Aldebaran 10.5 3.9 ] 24.6 8.4 4.4 23.6 36.2
62.4 Moon a Crucis 3.8 1.2 59.9 22.7 1.3 2.4 14.9 51.2
62,56 1.2 3.9 11.2 60. 1
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Table 9. Typical navigation data for Moon to Earth flight.

Miss Distance Reduction Ratio = 0.4

Sun Line = 250°

\ Reduction
in Position | Position Indicated | tncestainty
Velocily | Uncertainty | Uncertainty | Velocity | in Velocity |  Position Velocity Position | Velocity
Time Correction | at Target o Target | Comection | Correction | Uncertainty | Uncertainty | Deviation | Deviation
(hours) Observation i (mph) (miles) (miles) (mph) (mph) (miles) (mph) {miles) (mph)
t

62.6 Moon Achemar 86 154 59.8 4.9 1.1 3.8 1.1 60.2
64.0 Mooa Fomalhaut 926 120 62.7 2.5 1.9 L1 86.1 63.2
64.4 63.4

65.0 Moon Aleair 105 172 0 1.4 L7 L1 1114 3.4
79.0 Eacch Pollux 70 157 1.0 1.3 12.7 0.8 100.6 2,0
79.5 Moon Fomalhaut 65 143 13 1.1 1.6 0.7 100.1 2.0
80.0 Earch Aldebaran 61 130 1.4 1.0 11.2 0.7 99.6 2,0
80.5 Moon Antares 53 118 1.4 0.9 8.3 0.5 99.1 2.0
81.0 Earth Pollux 56 104 1.6 a.7 7.7 0.5 98.6 2.0
81.5 Earth Pollux 44 93 16 0.6 7.4 0.4 98.1 2,0
83.5 Earth Pollux 38 87 1.7 0.6 7.8 0.4 96.2 2.0
86.5 Earth Pollux 35 79 1.8 0.6 8.5 0.4 93.5 2.0
88.5 1.9

920.5 Earth Pollux 32 72 0 0.6 9.4 0.4 88.7 1.7
95.5 Earth Aldebaran 29 66 0.3 0.7 10.6 0.3 80.9 1.8
96.0 Moon Antares 27 60 | 04 0.7 9.8 0.3 80.1 1.8
97.0 Eacth Regulus 24 55 ! 0.5 0.6 9.5 0.3 78.5 1.8
105.0 Earth Regulus 22 st | o8 0.9 1.3 0.3 65.1 2.0
105.5 Moon Antares 20 46 0.9 0.8 10.8 0.3 64.2 2.0
113.0 Eatth Regulus 19 43 1.8 13 12.2 0.3 50.3 2.4
114.0 Moaon Antates 17 39 2.0 1.4 11.8 0.3 48.4 2.5
120.5 5.7

121.0 Mooan Antares 16 36 [ 3.7 13.2 0.8 33.9 3.5
1225 Moon Fomalhaut 14 33 2.4 5.2 13.2 1.2 27.7 5.6
123.8 Earth Procyon 14 29 5.4 8.3 i1 L? 23.5 6.0
124.2 Earth Pollux 19 22 8.4 9.0 9.3 1.7 22.6 6.4
124.6 Earth Canopus 14 17 13.1 9.1 7.9 1.7 22.1 7.0
125.0 Earth ,Canopus 11 t4 19.9 9.8 7.0 1.9 22.3 8.2
125.3 28,2

125.6 Earth Canopus 11 9 0 16.0 5.5 2.5 17.4 21.4
125.9 Earth a Centauri 8 3 22.2 8.3 2.1 LS 13.3 21.0
126.2 Eacth Antares 2 2 66.7 14.4 ) 1.6 1.7 12,2 24.0
126.4 1.8 3.4 13.9 331
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APPENDIX A
NAVIGATIONAL MEASUREMENTS

The mathematical processes are considered here in some detail for
determining spacecraft position by means of both celestial observation and
ground based radar measurements. It is assumed throughout the analysis that
approximations to spacecraft position and velocity are already known so that

perturbation techniques may be employed.

Secondary effects arising from the finite speed of light, the finite distance
or stars, etc. are ignored in this analysis. Such effects may be lumped to-
gether for a particular reference point on the trajectory as a modification to
the stored data which represent reference values for the quantities to be meas-

ured at that point.

For simplicity in the present analysis, it will be assumed that the
spacecraft clock is perfect so that all measurements are made at known instants
of time. Methods of including clock errors in the computation are discussed

thoroughly in reference 2.

As indicated in Section 2.1 each measurement establishes a component of
spacecraft position along some direction in space. If Q@ is the quantity to be
measured and 6 Q is the difference between the true and the reference values,
then it will be shown that the relation between 6 Q and the deviation in space-
craft position ér is

5Q =h' 51 (A1)
regardless of the type of measurement. Thus, the h vector alone will charact-

erize the kind of measurement,

Sun-Planet Measurement

The first type of measurement to be considered is that of the angle from
the Sun to a planet. By passing to the limit of infinite distance from one or the
other of these bodies, corresponding relations for the Sun-star or planet-star

type of measurement may be obtained.
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Let SO and PO be, respectively, the reference positions of the space-
craft and a planet at the time of the measurement. Let r be the vector from
‘the Sun to S and z the vector from S to P o With A denoting the angle from
the Sun line to the planet line, we have

cosA =-(r: z)/rz (A.2)
where r and z denote magnitudes of the respective vectors r and z, Treating
all changes as first-order differentials, it can be shown that

3A=(m—(9'm)ﬂ+ﬂ-(ﬂ'm)m).5£ (A.3)

rsin A z sin A

For details the reader is referred to reference 2. Here n and m are, respect-
ively, the unit vectors from S toward the Sun and toward P o The two indivi-
dual vector coefficients of 6r in Eq. (A. 3) are vectors in the plane of the meas-
urement and normal, respectively, to the lines-of-sight to the Sun and to the
planet,

Planet Diameter Measurement

If D is the actual diameter of a planet, the apparent angular diameter A

is found from

sin (A/2) =D/2z (A.4)
Again taking differentials as before, one can shaw that
Dm - &r
SA =—/—— (A.5)
2 cos (A/2)

Star Occultations

The next type of measurement to be considered is that of noting the time
at which a star is occulted’ by a planet. Let 2 be the vector from S to P , r the
vector from the Sun to S and n a unit vector in the direction of the star t% be
occulted. With 4 denotlng the angle from the star line to the planet line as
shown in Fig, A-1, we have, at the nominal instant of occultation,

n°*z=zcosy (A.6)
Treating changes as first order differentials we obtain

h 8z =cosy sz -zsinysy (A.7)
“cosym* 8z - zsiny §y

where Im is a unit vector from S0 toward PO.
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Fig. A-1. Measurement of time of a star occultation.

The angle deviation 6+ is computed from a first order differential of
2z siny =D, There results
§y == Dm * 85/222 cos 7y (A.8)

Furthermore, if v_ and v are the respective velocity vectors of the planet and
the spacecraft and if 67 is the difference between the observed and the reference

occultation times, we have

8z =v,_ 87~ (8r + v, 87) (A.9)

p

=-8r-v, b7

where y. is the velocity of the spacecraft relative to the planet., Then by com-

bining Eqs. (A.7), (A.8) and (A.9) we have finally

o. &1 (A.10)

e Y

n and lying in the plane determined by

1=~

where p is a unit vector perpendicular to

the lin—es—of—sight to the planet and the star.

Star Elevation Measurement

Consider next the measurement of the angle between the lines-of-sight to
a star and the edge of a planet disc, From Fig. A-2 we have
=zcos (A + v) (A.11)

=
IN



where A is the angle to be measured. A jain taking total differentials and

noting that 6r = - 6z, we obtain
: (A.12)
=8A +Dm - 8_r/212 cos y
=8A +tanym * 8r/z
or finally
sa =20 (A.13)
z cos 7y
*

Fig. A-2. Measurement of star elevation angle.

Landmark Measurement

For the measurement of the angle between a landmark on a planet surface
and a star, let p be a unit vector perpendicular to the line-of-sight to the land-
mark and in the—plane of the measurement. Then if p is the vector position of
the landmark relative to the center of the planet, we—have

" dr
A =

3 (A.14)
|z + p]
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Radar Range, Azimuth, and Elevation Measurements

Assume the radar site to be the origin of the coordinate system although
other origins could equally well be used. Let a cartesian coordinate system be
chosen such that the z axis is radially out from the center of the Earth through
the radar site; the x axis is positive in the direction from which radar azimuths

are to be measured; the y axis completes the coordinate system. Then, we may

write cos B cos &
(A.15)

r | cos B8sin &

sin 8

r

where r, 9, B are, respectively, the range, azimuth, and elevation of the
vehicle from the radar site. Taking differentials separately for each of the

three variables gives

cos S cos O
dr (A.16)
35 3r = |l cos B sin O} or
sin
- sin S cos O
qr in Bsin 6 88 (A.17)
—_ = -s si :
55 8B = in n
cos 3
;5 e ) ,Bsin é (A. 18)
—3—;786=r cos Bcos @ || 66
0

Then, by expressing each of these relations in the form of Eq. (A.1), we obtain

8¢ = " cos Bcos & cos Bsin 6 sin ﬂ" 8r (A.19)
_ 1 : . .

¥ ‘T““Sln,@cosﬁ - sin B sin 6 cos ,8“ r (A.20)
— i 043
= T cos B -sin & cos # 14 (A.21)

The vector coefficients in Eqgs. (A.19) — (A.21) are each unit vectors in the

direction of increasing r, B, 6, respectively.
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APPENDIX B
OPTIMUM SELECTION OF NAVIGATION MEASUREMENTS

In the main body of this paper a method of processing measurement data
in an optimum linear manner has been developed, The purpose of this appendix
is to treat the associated problem of selecting those measurements which are,
in some sense, most effective, For example, the requirement might be to
select the measurement to be made at time tn iﬁ order to get the maximum
reduction in mean-squared positional or velocity uncertainty at time tn. Of
perhaps greater significance would be the requirement of selecting the measure-
ment which minimizes the uncertainty in any linear combination of position and
velocity deviations, Specifically, one might select the measurement which
minimizes the uncertainty in the required velocity correction. As a further
example, one m.ight wish to select that measurement which, if followed imme-
diately by a velocity correction, would result in the smallest position error

at the target,

Consider first the simplest case, i.e., minimizing the mean-squared
positional uncertainty at time tn' From Eq. (2.29) the mean-squared positional

uncertainty is expressible as

T () (D) (B.1)
€ "f(ESII)')_ bn En En bn
T (1) 2
bn En hn + a

assuming the measurement errors to be uncorrelated. In the absence of any
measurement error ( ar21 = 0) , the problem of minimizing either mean-squared
error is equivalent to finding a direction for the _}_1n vector which maximizes the
ratio of two quadratic forms, For the case of the mean-squared positional
error, the geometrical interpretation is clear. Since the principail directions
of E(nl) 'and E(nl) ‘ E(nl) , are the same, the optimal direction for gn coincides

with the major principal direction of E(;)
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The problem of minimizing the mean-squared velocity uncertainty at time
t'n by proper choice of the bn vector is not as easily solved or interpreted.

Again, from Eq. (2.29) the mean-squared velocity uncertainty may be written

as ' [
_ W EQ gDy

52 =y gWy - om0 (B. 2)
by En byt
Denote by p and q the two quadratic forms
p by ECED L achy B b (B.3)

From the theory of quadratic forms there exists an orthogonal transformation
which will reduce q to a diagonal form. Thus

h, =Qd (B.4)
gives

T AT n’ 2 2 2

(1)

where ul, ,u2, u3 are the characteristic roots of the matrix E a and the
columns of the Q matrix are the associated characteristic unit vectors. Since
E(111) l is a positive definite matrix, the characteristic roots are positive and a
further transformation

f=Dd (B.6)
gives

Ti=2+ 412 (B.7)

where D is a diagonal matrix whose diagonal elements are \/pl, \Y \/;7;

The same transformation from hn to f applied to the quadratic form p
produces

- o' QT Ef‘z) ES,:” ap ' § (B.8)
One final transformation applied to f will reduce Eq. (B.8) to a diagonal form
thus

f=5m (B.9)
results in

- 2 2 2
p—>\]m]+}\2m2+)\3m3 (B.10)
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where the columns of the S matrix are the characteristic unit vectors of the

- 1 ' -
matrix D™} QT E (nz) E (rf’) QD ! and X, X, X, the corresponding
characteristic roots. The same transformation (B, 9) applied to (B.7) gives
2
a=m' 5T Sm :m%+mg+m3 (B.11)

since S is an orthogonal matrix,

In summary, then, the transformation

h, =QD"' Sm (B.12)
produces for the ratio of the two quadratic forms
o Aymitaymd Ay m) (B.13)
a m? + mg + mg
Furthermore, if the matrix E(r?) ' is nonsingular, the product E(121) ' E(i) '
E(i) ' E(rzl) '"T is positive definite and it would then follow that Ny Ay Ag

are all real and positive.

The problem of maximizing the ratio p/q is now readily solved. Since
no measurement error is assumed, one cannot hope to determine more than
the direction for the optimum bn or, equivalently, the optimum m. Therefore,

it may be assumed that m is a unit vector. Let

A Tmax (Ay, Ag, Ag) (B. 14)
Then the optimum value of m is 1 A
' (B. 15)
m =
J
0 7k

The same technique can be used to select that direction for X-ln which
minimizes the uncertainty in any linear combination of position and velocity
deviations, Specifically, consider the selection of that measurement which
minimizes the uncertainty in the velocity correction which would be required

immediately following the measurement,

The correlation matrix of the velocity correction uncertainty is

dp 4 =B, E, B, (B.16)
and the mean-squared uncertainty may be expressed as
T
_ h Wh, (B.17)

d =1 (8, E: BT) - —
W,

n -n

44



Here W is a symmetric matrix defined by

' (B.18)

(m

En

n' (2 T
e e,

@'T

El’l

. (1) (2) T | . . .
so that if En En B L 18 nonsingular, the matrix W will be positive

definite. Under any circumstances, if the identification

T

n

S UM

n

B

is made, then the exact same procedure may be used to select the optimum dir-
ection for the _l’_ln vector as was used pireviously to minimize the mean-squared

velocity uncertainty,

In all cases of practical interest the determination of the optimum direction
for the bn vector must be made subject to certain constraints. For example,
one might wish to select the '"best" star to be used in measuring the angle
between the line of sight to the center of a planet disc and the line of sight to
the star, For such a measurement the bn vector is required to be perpendicular
to the line of sight to the planet, If z, is the position vector of the planet from

the space vehicle, then we must have

T -
hy 2, =0 (B.19)
Applying the transformation defined in Eq. (B.12) gives
m sTolalz =0 (B.20)

n
Let p be a unit vector in the direction of ST D—1 QT z.- Then the problem

of selecting the optimum direction for _I_ln or, equivalently, for m is to maximize

2 2 2
Aymy tAgmy * Az mg

subject to the conditions of constraint
m p=0and m m =1 (B.21)
In terms of the Lagrange multipliers p and ¢, this is equivalent to the problem

of obtaining a free maximum for

3 2 3 3 2
ZAJmJ-ZpZ pjm]-a{z:mj—]}

J=1 j=1
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Setting the partial derivatives with respect to each of the mj's equal to zero,

" we have

PP
m| Kj—-i—a j=1,2,3 (B. 22)

where p and o are to be determined from the requirements of Eq, (B-21).

The condition that m be orthogonal to p leads to a quadratic equation

for o,

2 [ 2 2 2
o - [P1 (Ag * A3) +p3 (A + X3} tp3 (A + Az)]o (B.23)

L2 2 2 -
tPY Ag A3 tpa Ay A3 teg Ay Ay 70

If the A's are ordered )\1 < )\2 < )\3, then the two roots oy and o, will

be such that )‘1 < o, < )\2 < 05 < k3. The other Lagrange multiplier p is

determined sothat m willbe a unit vector. Withthe optimum vector m selected,
the corresponding value for -}ln is found from Eq. (B.12).

It is easy to show that 0y provides the desired maximum while oy gives
the minimum. From Egq. (B. 22) one obtains

3 3

3 ‘
Z *jmf-omewJ; Py m (B. 24)

j=1 J=1

Using this and Eqs. (B. 21) it follows that

2
o= Z }\i my (B. 25)
i=

Hence, oy and 0y are the respective minimum and maximum of the original ex-

pression to be maximized.
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