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ABSTRACT

In a typical self-contained space navigation system celestial observa-
tion data are gathered and processed to produce estimated velocity corrections.
The results of this paper provide a basis for determining the best celestial
measurements andthe proper times to implement velocity corrections.

Fundamental to the navigation system is a procedure for processing
celestial measurement data which permits incorporation of each individual
measurement as it is made to provide an improved estimate of position and
velocity. In order to "optimize" the navigation, a statistical evaluation of a
number of alternative courses of action is made. The various alternatives,

which form the basis of a decision process, concern the following:

1. Which star and planet combination provide the "best" available
observation ?

2. Does the best observation give a sufficient reduction in the pre-
dicted target error to warrant making the measurement ?

3. Is the uncertainty in the indicated velocity correction a small en-
ough percentage of the correction itself to justify an engine re-
start and propellant expenditure?

Numerical results are presented which illustrate the effectiveness of
this approach to the space navigation problem.
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1. INTRODUCTION

During the past two years, the problems of guiding a space vehicle

during the midcourse phase of its mission have been extensively explored at

the MIT Instrumentation Laboratory. Following the specific demonstration

of the technical feasibility of an unmanned photographic reconnaissance flight

to the planet Mars reported by Laning, Frey, and Trageser(1), the detailed

navigational aspects of such a venture were developed (2) by Dr. J. H. Laning,

Jr., and the present author. Later, a variable time of arrival navigation theory

was devised (3)and contrasted with the earlier fixed time of arrival scheme.

More recently, the question of optimum utilization of navigation data has been

given considerable study. It is the solution of this problem which forms the

subject of the present paper.

The general method of navigation is based on perturbation theory so

that only deviations in position and velocity from a reference path are utilized.

Data is gathered by an optical angle measuring device and processed by a

spacecraft digital computer. Periodically, small changes in the spacecraft

velocity are implemented by a propulsion system as directed by the computer.

Basically, three problems are considered in this paper: (1) to identify

the best sources of data available to the space vehicle navigator; (2) to define

the optimum linear operations for processing the data in a manner consistent

with the mission objectives; and (3)to minimize both the amount of navigational

data and the number of corrective maneuvers required without unduly comprom-

ising mission accuracy.

The formulation of an optimum linear estimator as a recursion oper-

ation in which the current best estimate is combined with newly acquired

information to produce a still better estimate was presented by Kalman (4)

The author is indebted to Dr. Stanley F. Schmidt for directing his attention to

Kalman's excellent work. In fact, the original application of Kalman's theory

to space navigation was made by Schmidt (5) and his associates.



The research described in the following sections of this paper was per-

formed without any detailed knowledge of Schmidt's activities. As a result of

this independent approach, several new and interesting ideas have developed:

(i) an extremely simple derivation of the optimum linear operator has been

achieved using only the basic technique of least squares estimation; (2) the

mathematical problem of determining the optimum plane in which to make a

star-planet angular measurement has been solved; (3) a procedure for incorpora-

ting cross-correlation effects of random measurement errors in determining

the optimum linear operation has been developed. The author is indebted to

Mr. Gerald L. Smith for correcting a basic mistake in the original treatment of

cross-correlation errors.

Throughout the paper, we shall deal exclusively with discrete infor-

mation; observations or velocity corrections are made at specific points in

time which are termed "decision points." The interval between decision

points is not necessarily uniform and may be selected somewhat arbitrarily;

e.g., the interval length required for accurate numerical integration of the

trajectory equations was used in preparing the computational data presented

in Section 6.

Finally, a few remarks relevant to notational conventions are appro-

priate. We shall deal generally with both three- and six-dimensional vectors.

A column vector of any dimension is represented by a lower case underscored

letter. Matrices are denoted by capital letters and can be either square or

reetangular arrays. The transpose of a vector or a matrix will be denoted by

a superscript T. Thus, the scalar product of two vectors a and b will be

written as aTb. In like manner a quadratic form associated with a square

matrix A will be written as x_TAx_. The expected value of a random vector x

will be indicated by an overscore; thus, _ denotes the average value of x.

The author wishes to acknowledge the extensive services of Peter

Phillion wl{o prepared the numerical data reported in Section 6.



2. OUTLINE OF THE NAVIGATION AND GUIDANCE PROCEDURE

2. 1 A Deterministic Method

The basic process involved in determining spacecraft position by means

of a celestial fix consists fundamentally of a sequence of measurements of the

angles between selected pairs of celestial objects. Three independent and

precise angular measurements made at a known instant of time suffice to

determine uniquely the position of the vehicle. Practical constraints, however,

preclude simultaneous measurements without severely complicating the instru-

mentation. On the other hand, if the vehicle dynamics are governed by known

laws and if deviations from a pre-determined reference trajectory are kept

sufficiently small to permit a linearization of the navigation problem, then the

question of simultaneous measurements loses it significance.

Under the assumptions of a linearized theory, a single observation

serves to fix the position of the spacecraft in one coordinate. For example,

if A n is the angle measured at _me t n and is defined by the lines-of-sight

from the vehicle to a star and to a nearby celestial body, the position of the

vehicle is established along a line normal to the direction toward the near body

and in the plane of t_e measurement. It is shown in Appendix A that the devi-

ation in position 6r of the spacecraft from the reference position is related
-n

to the deviation in angular measurement 6A by
n (2.1)_ T

_h. -b. __r.

if the observation is made at a known instant of time t . The vector h dep-
n -n

ends upon the geometrical configuration of the relevant celestial objects at

time t n as well as the type of measurement made.

Because of the inherent dynamic coupling of position and velocity, the

result at a later time tn+ 1 of a measurement made at time t n does not lend

itself to simple geometric interpretation. In order to provide a geometrical

description, it is convenient to introduce the concept of a six dimensional

space in which the coordinates represent the components of both position and

velocity deviations of the vehicle from the reference path as functions of time.
S



Points in this space are defined by the six dimensional deviation vector

where 5_v n is the deviation in the vector velocity of the vehicle from the refer-

ence value. The vector 5x n defines the "state" of the vehicle dynamics at

time t n. Transition from one state to another is provided by the matrix oper-

ation

(Dn+l, n = _(tn+l,tn)

which is frequently referred to as the "transition matrix".

ship between 5Xn+ l and 5x is simply-n

SXn÷l -- Cn+l,n _Xn

as shown in Section 3.4.

Indeed, the relation-

(2.3)

By means of the rectangular matrix K defined by

K= 0

Eq. (2.1) may be written in terms of 5x as
--n

- TKT(SAn __hn (SXn (2. 5)

The submatrices I and O are, respectively, the three dimensional identity

and zero matrices. Now, by combining Eqs. (2.3) and (2.5)

An hT gT -1 (2 6)= (Dn + 1, n (S_Xn+ 1

it is clear that the effect at time tn+l of an observation at time t is to determinen

the component of the six dimensional deviation vector in the direction defined by

T-1 Kh . Six observations made at different times wouldthe vector ¢ n+l, n -n

provide a set of six equations of the form of Eq. (2.6). If no two of the com-

ponent directions were parallel, then the deviation vector could be obtained by

inverting the six dimensional coefficient matrix.

2.2 Statistical Parameters of the Navigation Problem

Because of the presence of instrument inaccuracies additional observations

may be used to reduce the errors associated with the simple deterministic pro-

cess just described. By applying least square techniques to the observed data,

a more accurate estimate of position and velocity is frequently possible than

could be obtained from the minimum number of measurements. For this



purpose, it is necessary to know certain statistical information with respect
to the instrument inaccuracies. In a linear least squares estimation procedure
all statistical calculations are based on first and second order averages and no
additional statistical data is needed.

At this point of the discussion it is necessary to distinguish measured
, willvalues, estimated values and true values of various quantities; e.g. 5_ n

be the measured value of the deviation in the angle A from its reference valuen.

at time tn, 5A n the true value of the deviation, and 5/_ n the estimated value. If

we write
_A n = _A n +an (2.7)

then a will be the error in the measurement. In the subsequent analysis a
n n

will be regarded as a random variable with an average value _n and a variance

u2 2 _2 (2:8 )
n :% - an

The possibility of cross-correlation of measurement errors will not be excluded;

i.e., in general, the average Qnam may be different from a n a m .

In Section 4 an estimation procedure is developed for determining an

optimal linear estimate of 5Xn, denoted by 5Ax . As each measurement is made,-n

the estimate 5Ax is updated by a simple recursive formula and, thereby, the prob-
--n

lem associated with inverting sixth order matrices is avoided. An integral

part of the estimation technique is the correlation matrix of the errors in the

estimate. If we write

B_n = __xn + ..en (2.9)

then

ll"ll ,.10,-en= -_n

is the six dimensional error vector and may be partitioned as shown using

e and 5 to denote, respectively, the position and velocity errors. The corr-
-n -n

elation matrix is thus defined by

(2. ii)



For later use in a statistical analysis of the guidanceproblem, the
correlation matrix of the actual deviation vector will be needed. This matrix
is defined by

Xn = S Xn _ T_Xn (2. 12)

and may be calculated recursively using

Xn =¢n0n-I Xn-i OnT0n-I

Initially,

so that

i.e., at injection

(2. 13)

_o =_-xo + e-o =0 (2. 14)

Xo = Eo (2.15)

provides an initial value for the X matrix.
n

It is important to distinguish between a new estimate 5._ obtained by-n'

incorporating an observation at time tn, and an estimate simply extrapolated

from a previous estimate. For the latter case, the notation 5_' is used where
--n

- =On, n- 1 _n- 1 (2. 16)

In like manner, we define an extrapolated error vector e'
--n

correlation matrix is readily shown to be

T
En =On, n. I En.1 On, n-|

The extrapolated

(2. 17)

Note that an estimate of the deviation in the angle to be measured at time t
n

may be obtained from the extrapolated estimate of 6_ We have
--n- l"

._,_--bT KT __XAn (2.18)

and it is this quantity, compared with the measured deviation 5An, which is

used in arriving at a revised estimate of 5xn.

When cross-correlation of measurement errors is considered, it is

convenient to use an augmented deviation vector having seven dimensions and

defined as

6



'_X n

S rn

__vn

C_ n

(2.19)

Since, in this case, the error in a measurement at time t
n

the basis of previous observations, we may define

may be predicted on

A

a n = a n + ,/3n (2.20)

as the best estimate of the error to be expected in the measurement of A n .

term _n is then the error in the estimation of the measurement error. The

error vector e will, of course, be seven dimensional and expressible as
--n

The

e n II= -_n (2.2 I)

Correspondingly, the correlation matrix becomes

En --

fn _-nT -_n -_nT fn fin

-_n -enT -_n _-nT -_n fin
(2.22)

It will be convenient in our later work to define the correlation vector -On

last column of the matrix E
n

For'purposes of illustration consider the following model for correlated

measurement errors. Let the error at time tn+j, be composed of two parts.

I

an+ 1 =an+ 1 +_n+1

an+ 1 =o, n exp [-,k(tn+ 1 -tn)] (2. 23)

as the



where a
n

and _n+l

and _n+l are independent random numbers, X is a positive constant,

is zero. It follows that

A, A - tn)] (2 24)an+l =an exp [-)_(t n+l

and

/_ln+l --_n exp [-N(tn+ 1 - tn)] (2. 25)

Hence, the extrapolated error vector e' is calculated from
--n+ 1

e m = Pn en-n+l +l,n
(2.26)

where Pn+l, n is the augmented transition matrix

_n+l,n 0

Pn+ 1,n =

0 exp [-X(t n+l - tn)]

The augmented extrapolated correlation matrix is then computed from

, T
En+l =Pn+l,n En Pn+I,n

(2. 27)

(2.28)

2.3 Summary of the Navigation and Guidance Equations

In the navigation and guidance theory presented here, the problem of

launch guidance from Earth is ignored. It is assumed that the main propulsion

stages are completed at time t L and that the correlation matrix Eo = E(t L) is

specified initially from a statistical knowledge of injection guidance errors.

The initial estimate of position and velocity deviation 5__o = 5 _xA(t L) is zero,

since, in the absence of any observation, the best unbiased estimate is that the

spacecraft is on course.

The time interval from launch to arrival time t A at the target point is

considered to be subdivided into a number of smaller intervals by the sequence

of times tl, t 2 .... called "decision points". At each decision point one of

three possible courses of action is followed: (1) a single observation is made;

(2) a velocity correction is implemented; or (3) no action is taken. A revised

estimate of the deviation vector 5x(t) is made at each such point -- the form of

the revision depending, of course, on the nature of the decision. Specifically,



as shownin Section 4, for uncorrelated measurement errors the revised esti-
mate at the decision time t is one of the following:

n

_ An + an I E 'n K hn ( $ An. - ,_ ,_ n) (measurement)

8-_n = _(I + JB n) 8_n (correction)

(noaction)

(2. 29)

The scalar coefficient a is computed from
n

an :_h.T KT F,_ K_hn + _7 (2. 30)

The rectanguls, r matrix J has six rows and three columns

(2. 31)

and is just the reverse of the K matrix. The matrix B n is also rectangular

having three rows and six columns and is partitioned as shown

Sn=IIc.* -ill (2.32>

where C* is one of the fundamental navigation matrices described in Section 3.2.
n

At each decision point it is also necessary to update the correlation

matrix E . Thus
n

En
I En .- an1 (E_ Kbn)(E 'nKbn )T (measurement)

T jT (correction)
= En + J _n _n

En (no action)
(2.33)

9



The vector _n is the difference betweenthe commandedvelocity correction and
the actual velocity change implemented at time t .

n

The above collection of formulae provides the means of maintaining an up

to date estimate of the deviation vector 5xA but, in themselves, do not provide
--n

any clue as to what decision should be made at each point. Suggestions for

reasonable decision rules are discussed in Section 6.2 and in Appendix B.

When measurement errors are correlated, the only significant change

arises in the method of processing a measurement to obtain a revised estimate

in the augmented deviation vector and the associated correlation matrix. Thus

=_AX'n+_ (En Kh.+_n)_ _ [_An -(_An + )] (2. 34)

where

En =E'n -a_ I (E'n K_hn +_C>'n)(E'n K_hn +__n)T (2.35)

_ T K T 2hT K T , _2) (2.36)On -An En Kbn + _ _¢. + (/Yn2 +

The remaining equations are unaltered; however, certain obvious changes are

required inthe definition of the matrices J, K, and B n in order that they be

dimensionally compatible with the seven dimensional deviation vector.

I0



3. FUNDAMENTAL NAVIGATION MATRICES

Basic to the solution of the navigation problem is a certain collection of
matrices. The objective here is to introduce these matrices, indicate their role
in the navigation theory, and show how they may be obtained as solutions of
differential equations.

3. ! General Solution of the Linearized Trajectory Equations

Let rs(t } -s

craft in an inertial coordinate system,

acceleration at position r and time t.
--S

d_rs
_ = _.v$dt

and v (t) denote the position and velocity vectors of the space-

and let g (r s, t) denote the gravitational L

Then

d-v, (3.1)
,:It _g(_,,t)

are the basic equations of motion of the spaceship except for those brief periods

during which propulsion is applied.

Let the .vectors_or (t) and Vo(t) represent the position and velocity at time

t associated with the prescribed reference trajectory, and define

_r(t) =._rs(t) - !o(0 , 6_v(t) TM_vs(t) - Vo(t) (3.2)

Then, the deviations 5_r and 6v may be approximately related by means of the

linearized differential equations:

d($r) _ ,Sv d(,_..v) (3.3)
at - dt = G(ro,t) _r

where G(_ro, t) is a matrix whose elements are the partial derivatives of the

components of g(ro, t) with respect to the components of r .--O

A particularly useful fundamental set of solutions of Eqs. (3.3) may be

developed in Che following way. Let t L and t A be, respectively, the time of

launch and the time of arrival at the target. Then, define the matrices R(t),
45

R (t) , V(t), V*(t)as the solutions of the matrix differential equations

d___R_RV dR* -V*
dt dt

dV -GR dV*_GR, (3.4)
dt dt

11



which satisfy the initial conditions

R(t L) =0 , R*(t A) =0

V(tL) :1 , V*(t A) :1

Here O and I denote, respectively, the zero and identity matrix.

,Sr(t) : R (t)c_+ R* (t) c_*

where c and c

(3.5)

If we now write

(3.6)

Sv(t) :V(t) c_ + V*(t)c* (3.7)

are arbitrary constant vectors, it follows that these expressions

satisfy the perturbation differential equations (3.3) , and contain precisely the

required number of unspecified constants to meet any valid set of initial or bound-

ary conditions.

The elements of the R and V matrices represent deviations in position and

velocity from the corresponding reference quantities as the result of certain

specific deviations in the launch velocity from its reference value. For example,

the first columns of these matrices are the vector deviations at time t due to a

unit change in the first component of the velocity at time t L. Corresponding

interpretations may be ascribed to the other columns as well. A similar dis-

cussion will provide a physical meaning for the elements of R* and V * For

this purpose, however, it is convenient to imagine the roles of launch and target

points as reversed.

3.2 The Vector Velocity Correction

Associated with the position r and the time t is the vector velocity re-
--S

quired by the spa'cecraft to travel in free fall from_rs(t) to the target point

r ° (t A) in the time t A - t. An expression for this velocity vector is readily

obtained from Eqs. (3.6) and (3.7). The condition that the vehicle pass

through the target point is met by the requirement

Sr(t A) :0 :R(tA) c + R* (tA) c_*

Since R* (t A ) : O, it'follows that c = 0. Eliminating c* between Eqs. (3.6)

and (3.7) gives for the required velocity deviation* at time t

8v + (t) : V*(t) R*(t)" 1 ,S_r(t) (3.8)

*The superscripts- and + are used to distinguish the velocity just prior to
correction from the velocity immediately following the correction.

12



Hence, the required velocity correction A _v is given by

Av*(t) = C*(t) _!(t) - _!'(t) (3.9)

where the C* matrix is defined by

C* (t) -- V*(t) R* (t)" 1 ( 3.10 )

The elements of the C* matrix are deviations in vehicle velocity from the

reference values, as requiredto place the vehicle on a trajectory to the target

point, which arise from certain specific deviations in the vehicle position. The

interpretation applied to the columns is made in the manner described earlier

in connection with the R and V matrices.

If the spacecraft has been in a free-fall status since launch, then, by

employing arguments similar to those used in establishing Eq. (3.8) , it can be

shown that

Sv" (t) -- C(t) ,Sr(t) (3.11)

where

C(t) =V(I) R(t)'l (3.12)

In this case Eq. (3.9)takes the form

Av*(t) = [C*(t) - C(t)] _ir(t) (3.13)

Since 5r(t) i_ different from zero solely as a result of an injection velocity

error 6x(t L ), it follows, from the definition of the R matrix, that

Az*(t) =-A(t) _v(t L) (3. 14)

Thus, the A matrix, defined by

A(t) = V(t) - C*(t) R(t) (3.15)

relates a deviation in launch velocity to the velocity impulse required at time t.

A starred form Of the A matrix

A*(t) = Y*(t) - C(t) R*(t) (3.16)

will occur in the subsequent discussions.

3.3 Differential Equation Solutions

The matrices C, C*, A , A* may also be generated directly as solutions

of differential equations. However, for C and C*, a difficulty arises in pre-

scribing appropriate initial conditions. From the initial values of the R and R

matrices, it follows that C(t L )and C* (t A )are both infinite. The singularities

may be avoided by working directly with the differential equation for the inverse

matrices c-land C * -1

13



By differentiating the identity
C(t)'l V(t) :R(t)

-1
and using Eq. (3.4), the following equation for C

dC "1
-- + C"I G C "I =1

dt

Similarly, we obtain

results

(3. 17)

(3.18)

(3. 19)
dC*'1+ C 'I G C *'I =I

dt

Equations (3. 18) and (3. 19) may be used to demonstrate an interesting

property possessed by C and C It is easy to show that the G matrix is sym-

metrical. It follows at once that the matrices C and C'will be symmetrical for

all values of t in the interval (tL, t A) if they are symmetrical for any particular

time. But from Eq. (3. 17) and a similar one involving starred matrices, we

have

C(tL )'1 =0 , C*(tA) "1 =0 (3.20)

so that C and C* are, indeed, symmetrical for t equal to t L and t A respectively.

Hence C(t) and C*(t) are symmetrical for all t in the interval from launch to

the target point.

In an entirely analogous manner, differential equations may be developed

for A and A *. By differentiating Eqs. (3. 15) and (3. 16) and using Eq. (3.4),:

one readily obtains th e equations

dA_ + C*A =0 (3.21)
dt

and

with the initial conditions

dA*
--+C A* =0 (3.22)

dt

A(t L) =1 , A*(tA) =1 (3.23)

3.4 The State Transition Matrix

Let 6r n = 5r(t n)'and 6v n = 6v(t ) be the deviations in position and

velocity at time tn, and let R n, V n, . . be the corresponding values of the
I¢

fundamental matrices. The c and c must be obtained as solutions of

_..rn =R n c + R n c (3.24)

_ _ * C*_v n =V n c + V n_ (3.25)

14



Multiplying Eq. (3.24) by Rn1- we obtain for c

c = Rn I (B/r, - R* _*) (3.28)

Then, by substituting this expression into Eq. (3.25) and using Eqs. (3. 12) and

(3. 16), there results
,-|

C_*=-A n (C n Srn_ - $_Vn) (3.27)

Finally, from Eq. (3.26) we have

-1 (C* Sr n _v n) (3.28)C =-A n _ - _

after some simplification. Thus, with c and _c* determined, the position and

velocity deviations at any other time t are given by Eqs. (3.6) and (3.7) .

In terms of the six dimensional deviation vector defined by Eq. (2.2) , the

result maybe written in the form ii R(t) R.(t)jjljc jj
Bx(t) = V(t) v*(t)llllc_*ll (3.29)

Consider now a specific value of t = tn+l. Then substituting from Eqs. (3.27)

and (3.28) into Eq. (3.29) , a relationship between 6Xn+ 1 and 5X_n is displayed

__Xn+l = Cn+l,n _-Xn (3.30)

the six-dimensional state transition matrix, is computed from
where _n+l,n'

Cn +],n V,n+| V:+] 0 (On! A:) "| -I C_] (3.31)

It is not difficult to show than an alternate calculation of the transition

matrix may be made directly as the solution of the sixth order matrix differ-

ential equation d ¢ (t, tn)

dt - F(t) ¢ (t, tn) (3. 32)

subject to the initial condition ¢ (tn, tn) equal to the six dimensional identity

matrix. The matrix F(t) is

0 o

FinaIly, it has been shown (5) that the

directly obtained as

¢_1+ 1,n. = Cn,n + 1 =

(3.33)

reverse of the matrix Cn+l,n is

(3.34)

15



4. DERIVATION OF THE OPTIMUM LINEAR ESTIMATE

4.1 Uncorrelated Measurement Errors

As noted in the Introduction, the optimum linear estimate of the deviation
^

vector may be expressed as a recursion formula. Therefore, assume 5 x
-n-1

and E are known and that a single measurement of the type described inn-1

Appendix A is made at time t n. The observed deviation in the measured quantity

An is 5 _n, and the best estimate for 5 A n , as obtained from the extrapolated
A

estimate of 5Xn_l, is given by Eq. (2. 18). Then a linear estimate for the

deviation vectbr 5 x at time t is expressible as a linear combination of the
--n n

extrapolated estimate of 5Xn_ 1 and the difference between the observed and

estimated deviations in the measured quantity A . Thus, for uncorrelated
n

measurement errors,

: + .. (57. - `sl'.l (4.1 

where the vector w is a weighting factor which will be chosen so as to minimize
--n

the mean-squared error in the estimate.

For this purpose use Eqs. (2.9), (2.7) and (2.5) to write

-en(W-n) -- _n - `S-Xn

: $-_n + -Wn (`SAn + an - (SA/n) - (SXn

(4.2)

: (I - -Wn -_nT KT) (`S-_n - ,S_Xn)+ _Wna n

:(i -w nb T KT)_% +_Wn a n

where I is the six-dimensional identity matrix. Then the correlation matrix

E n defined by Eq. (2. 11) may be expressed as a function of the weighting vector

W aN
--n

--2 (4.3)
En(w n) --(' - _Wnbn l" K T) E_ (I - K b. _wnT)+ _Wn _Wnl" O-n

tions

Th____emean-s___quared errors in the estimate of position and velocity devia-
2 2

and 5 are simply the respective traces of the submatrices
n n
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-%

E (1) and E (4). If the six-dimensional weighting vector w is partitioned into two
n n --n

three-dimensional vectors

then from Eq. (4.3) it is easy to show that E(1)is a function only of w(1)and
n -n

E (4) is a function only of w (2) Therefore, for the purposes of the following
n - n "

discussion, it is legitimate formally to treat the mean-squared error in the

e2n ---(Wn) as the trace of the six-dimensional correlation matrix En(W n) .estimate

The subvectors of the optimum weighting vector w will then each be optimum
-n

for the respective estimates of position and velocity deviations.

In order to determine the optimum weighting vector, one may apply the

usual technique of the variational calculus. Let w n take on a variation _6 w n and

obtain from Eq. (4.3)

If 6e2(w n) isto vanish for all variations 6Wn, then it must follow that

% w. : E_ K bn (4. 6)

where the positive scalar quantity a n is defined by Eq. (2.30).

It can be readily shown that the w n determined from Eq. (4.6) actually

does minimize e2(w ) . Suppose that the optimum w is replaced by another
n -n --n

weighting factor w n-_yn. Then from Eqs. (4.3) and (2.17)

and _ising Eq. (4. 6)
2

en (_wn
SO that

-_Yn ) ---'r [_n - an (Wn -_Yn)(-Wn-[ +_ynT)]

2
2 (w n yn) en (Wn) + an tr (_Yn_YnT)eft - _

Thus, the mean-squared error is not decreased by perturbingw n

holds.

(4.8)

(4.9)

if Eq. (4. 6)

Having obtained the optimum weighting vector, the expression for the

correlation matrix of the estimate errors E given by Eq. (4.3) may be written
n

in a more convenient form. Thus, from the definition of a n in Eq. (2.30),.
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there results

T KT E_ + wn _w:(I- Kh.._.T)- _.. h. o° (4. 10)

Substituting from Eq. (4.6), the final expression may be written as

-1 ' K hn) (En K hn)T (4.11)E =E,_ -a. (E. _

Equations (4.1) and (4. 1 1) then serve as recursive relations to be used in obtaining

improved estimates of position and velocity deviations at each of the measurement

times t 1, t2, . .

4.2 Correlated Measurement Errors

If the measurement errors are correlated, the derivation is only slightly

altered. The linear estimate for the seven dimensional deviation vector 6x
--n

at time tn is again expressible as a linear combination of the extrapolated esti-

mate of 5X_n- land the difference between the observed and estimated deviations

in the measured quantity A n . However, the estimated deviation in A mustalson
include the estimate of the error in the observation. Thus

A AI
_n -- _-_'n + W-n [_ An - (_A'n + an)] (4. 12)

where now the weighting vector w is seven dimensional.
--n

The error in the estimate may be written as

_en = S_xAn- _x n

, ,=$- +-Wn (SAn -_n + _n I _n)-_-Xn

=(I - wn _h: KT)($__'n - _..xn) - _wn (Z L -- _n )

=(I -- _Wn ,h: KT)e_',, - Wn (/3L - _n)

(4.13)
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The eorrelat ion matrix, expressed as a function of the weighting vector wn,
then

En(_n) =(I - wn b T K T) E_ (I - K _hn _:)

-(I - W n II T K T) -_n -wT

-._': ([ - K _hn w_T) + _wn w T (,B': + _2) (4. 14)

is

Again if we require 5 e2(Wn ) to vanish for all variations 6 wn,
shown that

t

a n _% =E_ Khn +--on

where a is defined byEq. (2.36).
n

4.3 Correlation Between the Estimate and the Error

it is readily

(4. 15)

An important property of the optimum estimate, which is needed for the

development of the statistical analysis procedures described in Section 5, will

be derived here. The result may be stated simply as

From Eq.

e n 5_ =0 (4.16)

if 5 _ is the optimum estimate; i.e., the optimum estimate and the associated
--n

error in the estimate are uncorrelated. In the proof we consider, for simplicity,

only the case of uncorrelated measurement errors, but the property is readily

established in general.

(4.5) we have

m

2 T
_wn a n - (] - _Wn bn KT) E 'n K _ = 0 (4. 17)

(4. 18)

or alternately,

m w

2 T
_wn a n - [(I -_w n bn KT)en]e-n T K h_.n =0
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Substituting, for the bracketed quantity from Eq. (4.2) gives

2 enTK_Wn a n + (W n a n -e_n ) _ h__n =0

But since a e 'T= 0, we have
n--n

(w n an) a n -.e n e_ T K h_.n = 0

Again substituting for Wna n from Eq. (4.2) gives

(4.19)

(4. 2 0)

or, simply,

men - (I - _wn hnT KT) _e_] an - __en e'nT K bn =0

e n (a n - en T K _h.) = 0

Thus, e and the scalar quantity an-e'n T K h are uncorrelated. Hence,-n - -n

e n [w[ (a n -e_n T K __n)] =0

or, from Eq. (4.2)

Therefore,

or

(4.21)

(4. 22)

(4. 23)

--en (enl" iT-e,)=0
(4.24)

_en [_Xn "r + _enT -(_Xn -r + eln'r)]--"0 (4. 25)

e n $_Tn =e n _n "r (4.26)

From this final relationship it is easy to show that e and 6 _ are un-
--n --n

correlated. For if we substitute from ]_qs. (4.2) and (2.16), it follows that

T
_% <__QnT= [(I- _n hnT KT) *n,n-1 -en-1 + --Wn an] _-XA_-' *n,nol

T
=(I-_n I'l_ K T) %,,n-1%-1 _-_:-I *n,n-1 (4.27)

AT
Then by continuing the reduction of en_ 1 5 X_n_l we have, finally, e 5 ATx

related to e 5 Q which is zero. T_hus, Eq. (4. 16) is established a_ -nthe proof
--0 --0

is complete.
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5. STATISTICAL ANALYSIS OF THE GUIDANCE PROCEDURE

From exact knowledge of the six-dimensional deviation vector 6 x at time
--n

t n, a velocity correction may be calculated which, if implemented, will insure

the vehicle's arrival at a fixed point in space at the required time. However,

_¢ is available. From this, an estimate of the velocity corr-only the estimate 6_ n
A

ection vector Av may be determined from
-n

A_n :Bn $__n (5.1)

where B n is defined by Eq. (2.32). (Refer to the discussion leading to Eq.(3.9).)

The need for a velocity correction arises solely from improper injection

into orbit. If the first such correction is executed perfectly, then, of course,

no further corrections are required. However, because of imperfect knowledge

of position and velocity obtained from navigational measurements, the command-

ed velocity change will be in error. Furthermore, the actual velocity change

experienced will differ from that commanded because of imperfect instrument-

ation. Therefore, subsequent corrections will be required to remove the

effects produced by earlier inaccuracies.

5.1 Correlation Matrix of the Velocity Correction Vector

A

An estimate of the required velocity correction vector A v n, as computed

frown Eq. (5. 1), may be determined at each decision time whether or not the

correction is actually implemented. The correlation matrix of the velocity

correction vector may be expressed directly in terms of the extrapolated matrices

E' and X' .
n n

From Eq. (5. 1} we have

A 8 iA n =Bn (_X_n + en) (5. 2)

so that

, T÷ S_xn e__ + E n) Bn (5. 3)
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On the other hand

--
from which

_e_ _ =_e n _x_ + E n

according to the theorem proved in Section 4.3.

(5.5)

Hence

, , T
AVAn Av_Z =B n (Xn -En)B. (5.6)

The correlation matrix :Kn may be calculated using Eq. (2. 13) when no

velocity correction is made. If the velocity is corrected at time in, the follow-

ing procedure is valid.

UsingEq. (2.29) we may write

#

SXn =S-Xn + JBn 5_ - J__n

=(I +JB.) _ ' ' -j%x n +JB n e n
(5.7)

Hence,

_x n _x T :(I + JB.) _x' n 3x'n"r(l + JBn) T

TjT+ JB n En (JBn) T + J_n _n

+ (I + JBn) _X'n e-'nT (JBn)T

+ J Bn e__ _x' 7 (I + J Bn) T

which may be further reduced using Eq. (5.5). In summary, then

(5.8)

X n =

I

Xn

' Bn) T '(I + J Bn) (X n - E'n) (I + J + E n + J __n

(no correction)

TjT_r, (cor, ection)
(5. 9)
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Just as the extrapolated error vector and the associated correlation

matrix are altered at an observation point, so also will they change at a cor-

rection point. Thus,

and

_e n =_e n +

.--_n

(5. lO)

0 0

En = E ;, + (5. 11)
T

0 __n __n

The mean-squared estimate of the velocity correction is determined as

trace of the matrix A An_ Vn. As a basis for a decision theory, it is
AT

the

important to know something of the precision of the estimate. Clearly, a

velocity correction having a large uncertainty should not be commanded if it is

possible to improve substantially the estimate by future observations. The un-
A

certainty d in the estimate A v is simply-n -n

_.dn :A_. - Bn _Sxn :B n e n (5. 12)

Hence, the mean-squared uncertainty is determined as the trace of the matrix

, T (5. 1 3)
Cln CI: = Bn E n B n

5.2 Uncertainty in the Applied Velocity Correction

In order to complete the statistical analysis of the velocity correction, it

is necessary to examine more carefully the vector uncertainty _ in the velocity
-- A

correction. The inaccuracy in establishing a commanded velocity correction Av

is due to errors in both magnitude and orientation. In the following analysis the

two sources of error will be assumed independently random with zero means.

Consider a coordinate system in which the estimated velocity correction

vector is along one of the coordinate axes. Then if M is the transformation

matrix which relates the selected axis system and the original reference system,

we may write

II°11A_=zx_M 0 (5.14)
1

Now, define a random variable K such that

Av =(1 + K)A_ (5. 15)
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and let _ be the random angle between A _and A v - It will be assumed that both

K and _ are small quantities so that powers and products are negligible compared

with unity. The actual vector velocity correction is then

A_v =(1 + K) A_,M 3' sin fl
1

where B is a polar angle defining the rotation of Av with respect to A vA . Hence,
o

the uncertainty vector 77 is expressible as

__=AvA A_v =- A_ M (1 + K)7 sin + K 0 (5. 17)

0 1

Assume that K, _, f_ are statistically independent random variables with

zero means. Further assume that /3 is uniformly distributed over the interval

-= to =. Then one obtains for the correlation matrix of the velocity correction

IIT 2 A__T .7__ 1 0 0_v_v -- K ,hQ_ + A_ 2 M 0 1 0 MT (5.18)
0 0 0

uncertainty

2 2
where I is the three:dimensional identity matrix and K and y

squared valued of K and y.

are the mean-

5.3 Miss Distance at the Target

Turning now to the problem of guidance accuracy, the determination of

the position deviation vector at the nominal time of arrival at the target is made

by extrapolating the deviation vector from the point of the final velocity corr-

ection. Thus, if t N is the time of the last correction and 5x A is the deviation

vector at the time of arrival tA, then
+

_SXA : _A,N _XN (5. 19)

and the terminal conditions for the navigation matrices,But from. Eq. (3.31)

we have

_A,N JJ "'
- R A A N 0

. -VA AN 1 - A*-I
N

C N -I

CN -I

(5. 20)
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Hence, the position deviation vector at the target

_!A =-RA /XN 1 BN 'SXN

with a similar expression obtainable for the velocity deviation at time t A.

The target position error may be written ultimately in terms of the

error vector e N according to the following self-evident steps

,S_rA =- R AAN 1 BN (,SX_l + JA_v N)

=:_ R A ANI(BN Sx"N - A_VN)

=R A /kN I(B N_e_ -_VN)

=RA/_ N1BN _ebl

8r A may be written as

(5.21)

(5.22)

The mean square position error at the target is then computed as the trace of

T
the matrix 8r A 5r A"
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6. APPLICATION TO TRANS-LUNAR NAVIGATION

6. 1 Decision Rules

As a necessary step in the application of the navigation and guidance

scheme formulated in this paper, certain rules must be adopted concerning the

course of action to be taken at each of the "decision points" described in

Section 2.3. The number and frequency of observations must be controlled in

some manner -- ideally by a decision rule which is realistically compatible with

both the mission objectives and the capabilities of the measuring device. If an

observation is to be made, a decision is required regarding the type of measure-

ment and the celestial objects to be used. Periodic velocity corrections must

be applied and the number of impulses and times of occurrence must be decided.

Once the decision rules have been specified, it is necessary to test their

effectiveness according to some measure of performance. A typical objective

is to minimize the miss distance at the target. However, a reduction in miss

distance usually implies an increase in either the required number of measure-

ments or a greater expenditure of corrective propulsion or both. In the face of

these conflicting objectives, compromises are clearly necessary and statistical

simulation provides a means of arriving at an acceptable balance.

In the interest of minimizing the number of simulator runs, Monte Carlo

techniques should be avoided if possible. Fortunately, it is unnecessary to

generate the true spacecraft trajectory, as would be required for Monte Carlo

simulation, in order to analyze the effects of a par'ticular set of decision rules.

The reader may readily verify that (Eq. (2. 29), which defines the estimate

6 _ and depends on actual measurement data, is never involved in any of the
--n

statist ical calculations.

A specific example of a set of decision rules to be applied at each decision

point is as follows:

1. The estimated mean-squared velocity correction AvA2 and the mean-
n

squared uncertainty d 2 associated with the estimate are computed from

Eqs (5.6) and (5.13i n• . If the ratio
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Rv -- an//,,v n (6. 1)

is less than a specified amount Rv(min), a velocity correction is made at time t n.

2. If the criteria is not met which would call for initiation of a velocity

correction, the desirability of making an observation is examined. For this

purpose, an abbreviated star catalog is postulated together with selected planets.

Each star and planet measurement combination is analyzed to determine its effect

on the reduction in position uncertainty at the target. The particular star-planet

combination producing the greatest mean-square reduction is then defined as the

best potential measurement.

2-
Now let 5r 2+ and 5 r A be the respective mean-square position uncer-

tainties at the target which would result with and without the best possible obser-

vation. Then, if the ratio

2- o 2+
_r A - orA

Rp : ---

_r 2-

(6.2)

is greater than a specified value Rp(max), the best potential measurement is

made at time t n. In other words, for a measurement to be made, a significant

reduction in the potential miss distance must result. If, on the other hand,

the above criterion is not met, no action is taken at the decision point t .
n

6.2 Numerical Example

In this section, the decision rules presented previously are applied to the

circumlunar navigation probIem. It was found that the velocity correction

criterion worked quite well to establish the times of mid-course maneuvers with

the exception of the final correction. The required velocity change increases

quite rapidly as the target is approached and the timing of this last correction is

critical. After preliminary experimentation with different values of Rv, it was

decided to fix apriori the correction times for the remainder of the study of the

navigation problem. Cross correlation between measurement errors was ignored

and only the Earth and Moon together with the 20 brightest stars were considered

for potential measurements.
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The date and time of orbital injection was Julian Day 2440043.6088with
the closest point of approach some 60 miles from the lunar surface. The
nominal total time of flight from injection was 126.4 hours.

The correlation matrix of injection errors E was obtained from the fol-o
lowing assumed root-mean-square injection errors,

Altitude Track Range

10,000 ft 15,000 ft 5000ft

15 ft/sec 6 ft/sec 4 ft/sec

The correlation matrix below was obtained by a transformation from the
altitude, track, range coordinate system to a coordinate system with the x axis
along the vernal equinox, z axis along the Earth polar axis and the y axis chosen

to make a right handedcoordinate system. The basic units in the Eo matrix are
miles and miles per hour.

E ° --

0.918 0.063 0.203 0 0 0

0.063 4.58 -1.86 0 0 0

0.203 -1.86 7.04 0 0 0

0 0 0 7.73 4.65 2.72

0 0 0 4.65 83.8 36.0

0 0 0 2.72 36.0 36.I

At each decision point, forty potential measurements were examined and

evaluated according to the decision criterion. The minimum time between

observations was required to be 15 minutes. For simplicity, only star elevations

above an illuminated horizon of either the Earth or Moon were considered. Cer-

tain practical constraints were imposed so that physically unrealizable measure-

ments were screened out. For example, in order to keep the field of view re-

quirements reasonable, the lines of sight to the star and to the horizon were

required not to exceed seventy degrees. Also no measurement could be made if

the line of sight to either star or planet edge were closer than fifteen degrees
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from the direction to the Sun. Furthermore, if the illuminated face of the Moon
formed the background of the edgeof the Earth from which a star elevation was
to be reckoned, that particular measurement would not be made.

The optical measuring device used for the observations was assumed to
be unbiased with a random error whose variance was

O_E= (0"00005) 2 + r_-_E radians

for the Earth, and

2 0.5 )2_M = ( 0"00005)2 + (. r'_M radians

for the Moon where rSE and rSM are the distances in miles from the space-

craft to the Earth and Moon respectively. In this manner it was possible to

account for the larger uncertainty in defining the horizon which would exist

when the spacecraft is close to a planet. At large distances the rms error is

approximately 0.05 milliradians.

The magnitude error in applying a velocity correction was assumed to be

isotropic and proportional to the commanded correction. Specifically, the

relation

2 2
v/n = 0.0001 A Vn

was adopted so that the rms error would be one percent of the rms correction.

The orientation error assumed was O. Ol radians.

Preliminary results of an analysis of this sample trajectory are summar-

ized in the accompanying tables. A number of simulated guidance flights were

made for which the strategy parameters R and R had various assigned values.
v p

Then, in order to evaluate the effect on the navigation data of a variation in the

time of year, a set of pseudo-trajectories was generated by the simple device
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of rotating the direction of the Sun as viewed from the Earth. The trajectory

was considered to be unchanged by this process--the assumption being quite

adequate for the purpose of this preliminary analysis. In this manner different

illuminated portions of the Earth and Moon were visible to the spacecraft re-

sulting, thereby, in different measurements.

In general, as R is increased, one requires eaeh measurement to have
P

a proportionately greater significance in the reduction of the potential target

error, with the result that the required total number of measurements decreases.

There may be a corresponding penalty, of course, in that the resulting uncer-

tainties in position and velocity at the target can increase. The objective in

preparing a measurement schedule is to arrive at an acceptable compromise.

The number of veloeity eorreetions as well as the times of their occur-

rence is, of course, controlled by R . On the other hand, the number of meas-v

urements is not sensibly affected by variations in this parameter. As an

example, in Table 1 navigation data for the Earth to Moon trajectory is given

for two values of the velocity correction uncertainty ratio R v. Although the

final position uncertainties are of the order of two miles, the deviations from

the reference path are approximately twelve miles. This large difference

results from the fact that measurement data was gathered after the final veloc-

ity correction so that knowledge of the orbit improved although no attempt was

made to reduce the target error. It should be noted that if one elects to elimi-

nate the final position deviation by a velocity correction one tenth hour before

the nominal arrival time_ velocity corrections of 104 mph and 68 mph, re-

spectively, are required. There will, Of course, be an accompanying increase

in the final velocity deviations of 51 mph and 52 mph, respectively.

In Table 2 the navigation data for the Earth to Moon trajectory is given

as a funetion of the miss distance reduction ratio R for velocity corrections
P

made at 5, 20, 52, and 61.5 hours. For the ease R = 0.6, there is a notice-
P

able decrease in the final position uncertainty compared to that for R = 0.5.
P

This apparent anomaly arises from the fact that for the R = 0.6 ease, three
P

observations are made after the last velocity correction, while, correspond-

ingly, only two observations are made for the R = 0.5 ease. Table 3 presents
P

similar data for the Moon to Earth trajectory.
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In order to study the effect of variations in the illuminated portions of

the planet's surfaces, one set of values for R and times for velocity correc-
P

tions was selected and the Sun direction altered in sixty degree steps except

for the 70 ° and 250 ° cases. These two directions were singled out because

they form a line approximately perpendicular to the Earth-Moon line at launch.

Table 4 gives the results for the Earth to Moon trajectory and further shows

that the 70 ° and 180 ° cases produce significantly larger uncertainties. For the

120 ° case the total velocity correction of i14 mph is somewhat higher. How-

ever this can be improved since the times selected for velocity corrections

were not optimum for all cases. Table 5 presents similar data for the Moon to

Earth trajectory.

In all cases the final velocity correction just prior to arrival at perilune

is significantly larger than the previous two mid-course corrections. The

result is a rather large velocity deviation from the nominal value at the target

point. On the return flight this deviation causes the first velocity correction

to be substantial which accounts for the increase in fuel requirements required

for the Moon to Earth trip. If the objective of the flight does not include passage

• through a preassigned perilune position, then, obviously, the total of velocity

corrections can be reduced.

Table 6 summarizes Earth to Moon flight navigation data for various

Moon horizon uncertainties. The number of measurements remained constant

(76 and 77) for the cases investigated. Total velocity corrections, final veloc-

ity deviations and final position deviations did not increase until the uncertainty

reached 5 miles. However final position and velocity uncertainties are sensi-

tive to Moon horizon determination as would be expected.

Table 7 presents the same data for the Moon to Earth flight for various

Earth horizon uncertainties. The number of measurements and total velocity

correction did not vary appreciably. However all uncertainties and deviations

are sensitive to Earth horizon determination.

Finally, in Tables 8 and 9, a complete history of a circumlunar mission

is given corresponding to the starred cases summarized in Tables 4 and 5.
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Velocity
Correction

Uncertainty
Ratio

0.2

0.3

Table 1. Earth to Moon flight navigation data as a function of velocity

correction uncertainty ratio.

Miss Distance Reduction Ratio =

Sun Line = 250 °

0.1 start to 8 hrs
0.5 8 hrs to 62.5 hrs

Number
of

Measurement

39

40 •

Times
for

Velocity
Corrections

Total

Velocity
Correction

(mph)

107

Final
Position

Uncertainty
(miles)

2.5

Final

Velocity
Uncertainty

(mph)

11.17.0 hrs

18.0 hrs

61.8 hrs

5.5 hrs

11.5 hrs

26.0 hrs

61.4 hrs

77 1.8, 4.6

Final
Position
Deviation

(miles)

12.5

12.0

Final
Velocity
Deviation

(mph)

95

39

Table 2. Earth to Moon flight navigation data asa function of miss

distance reduction ratio.

(miss distance reduction ratio constant at 0.1 from 0 to 8 hrs)

Velocity Corrections at 5, 20, 52, 61. 5 hrs

Sun Line =250 °

Miss Distance
ReductionRatio

(from 8 hrs to 62.5 hrs)

0.2

0.3

0.4

0,5

0.6

Number
of

Measurements

115

77

55

40

32

Total

Velocity
Correction

(mph)

52

56

59

78

68

Final
Position

Uncertainty
(miles)

0.70

1.10

1.10

1.20

0.84

Final
Velocity

Uncertainty
(mph)

1.7

3.7

3.7

4.0

3.1

Final
Position
Deviation

(miles)

3.9

7.1

8.7

11.0

17.4

Final

Velocity
Deviation

(mph)

16

23

26

60

66
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Table 3. Moon to Earth flight navigation data as a function of miss

distance reduction ratio.

Velocity Corrections at 64, 88, 120, 125 hrs

Sun Line = 250 °

Miss Distance
Reduction Ratio

0.2

0.3

0.4

0.5

0.6

Number
of

Measurements

97

44

28

12

10

Total
Velocity

Correction
(mph)

82

89

99

197

211

Final
Position

Uncertainty
(miles)

1.5

1.6

1.8

2.5

4.3

Final

Velocity
UnceKainty

(mph)

2.8

3.1

3.4

4.8

8.0

Final
Position
Deviation
(miles)

10.0

12.6

13.9

15.2

28.0

Final
Velocity

Deviation
(mph)

22

28

33

94

123

Table4. Earth to Moon flight navigation data for pseudo trajectories

asa function of sun direction rotation.

= _' 0.1 start to 8 hrsMiss Distance Reduction Ratio
t 0.5 8 hrs to 62.5 hrs

Velocity Corrections at 5_ 20, 52, 61.5 hrs

Sun
Direction
Rotation

(degrees)

0

70

120

180

25O

3OO

Number
of

Measurements

41

39

39

40

40

39

Total

Velocity
Correction

(mph)

68

64

114

66

78

88

Final
Position

Uncertainty
(miles)

1.3

6.5

1.6

5.2

1.2

1.2

Final

Velocity
Unce_ainty

(mph)

3

18

3

21

4

4

Final
Position
Deviation

(miles)

3

8

12

12

11

4

Final
Velocity
Deviation

(mph)

31

39

92

48

60

46
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Table 5.

Sun
Direction
Rotation

(degrees)

70

120

180'

250

300

Moon to Earth f light navigation data for pseudo trajectories

as a function of sun direction rotation.

Miss Distance Reduction Ratio -'-0.4

Velocity Corrections at 64, 88, 120, 125 hrs (* first corr. at 70 hrs)

Number
of

Measurements

16

16

20

28

14

Total
Velocity

Correction
(mph)

80

227

94

99

163

Final Final
Position Velocity

Uncertainty Uncertainty
(miles) (mph)

3.5

2.9

2.1

1.8

2.3

6.5

5.5

4.3

3.4

3.9

Final
Position
Deviation
(miles)

24

21

10

14

31

Final
Velocity
Deviation

(mph)

53

66

41

33

99

Table 6. Earth to Moon flight navigation data as a function of Moon

horizon uncertainty.

Miss Distance Reduction Ratio =

Sun Line --"250 °

t 0.1 start to 8 hrs
0.3 8 hrs to 62.5 hrs

Velocity Corrections at 5, 20, 52, 61.5 hrs

MoonHorizon
Uncertainty

(miles)

0.5

1.0

2.0

3.0

5.0

Number
of

Measurements

77

76

76,

76

76

Total

Velocity
Correction

(mph)

56

54

54

55

68

Final
Position

Uncertainty
(miles)

1.1

2.0

2.9

3.6

5.4

Final
Velocity

Uncertainty
(mph)

3.7

8.7

10.6

10.3

16.9

Final
Position
Deviation

(miles)

7.1

7.8

7.9

8.1

8.7

Table 7. Moon to Earth flight navigation data as a function of Earth

horizon uncertainty.

Miss Distance Reduction Ratio --0.3

Sun Line -- 250 °

Velocity CotrectiQns at 64, 88, 120, 125 hts

Final
Velocity
Deviation

(mph)

23

23

23

23

27

Earth Horizon
Uncertainty

(miles)

Number
of

Measurements

44.

44

42

42

Total

Velocity
Correction

(mph)

89

88

89

91

Final
Position

Uncertainty
(miles)

1.6

2.6

3.8

5.8

Final
Velocity

Uncertainty
(mpb)

3.1

4.8

7.1

10.7

Final
Position
Deviation

(miles)

12.6

15.3

19.1

21.6

Final
Velocity
Deviation

(mph)

28

32

38

• 43

34



Table 8. Typical navigation data for Earth to Moon Flight.

O. | start to 8 hrs.£
Miss Distance Reduction Ratio :

( 0.5 8 hrs to 62.5 hrs

Sun Line - 250 °

Time

[(hours) Observation

0.6 Moon Antares

0.9 Earth Fomalhaut

1.2 Earth ' Deneb

1.5 Earth Aldebaran

i.8 Earth Aldebaran

2.2 Earth Aldebaran

2.6 Earth Pollux

3.0 Earth Procyon

3.4 Earth Procyon

3.8 Earth PolluI

4..5 Earth Procyon

5.0

-5.5 Earth Pollux

6.0 Earth Procyon

6.5 Earth Pollux

7.0 Moon Antares

7.5 Earth Pollux

8.5 Moon Antares

9.5 Moon Antares ,

IO,O Earth Pollux

10.5 Moon Antares

12.0 Moon Antares

12.5 Earth Pollux

13.5 Moon Antares

l_i.0 Moon Antares

16.0 Earth Pollux '

17.0 Moon Antares

19.5 Moon Antares

20.0

22,0 Earth Pollux

23.5 Moon Antares

28.5 - Moon Antares

29.5 Earth Pollux

37.0 Moon Antares

40.5 Earth Pollux

-52

,53.5 Moon An t are s

-57.5 Earth Regulus

60.0 Moon Regulus

60.5 Earth Procyon

61.4 Moon Regulus

6L8

62. 1 Moon Aldebaran

62.4 Moon a Crucis

62.56

I I

Reduchon I

in Position Position Indicated Onceltamty

Velocity i Uncertainty Uncertainty Velocity in Velocity Postion Velocity Position Velocity
Corlection at Target at Target Correct*on Correction Uncertainly Uncertainty Deviation Deviation

(mph) (miles) (mites) (mph) (mph) (miles) (mph) (miles) (mph)

262 2-528 0 11.9 4.8 10.9 4.9 11.0

2031 1504 1.3 12.9 4.5 7.9 7.4 11.3

540 1404 11.0 9.2 5,3 7.9 10.4 12.0

412 1342 12.6 9.2 6.5 7.6 13.9 12.7

370 1290 14.0 9.2 8.2 7.6 17.6 t 3.5

408 1224 15.5 9.4 10.6 7.6 23.1 14.6

456 1136 16.9 9.5 12.0 7.2 28.9 15.5

515 1013 18.3 9.2 t3.2 6.8 35.2 16.4

405 928 19.7 8.7 14.6 6.5 41.8 17.2

426 825 20.9 8.3 15.2 6. 0 48.7 17.9

403 719 22.8 8.0 17.0 5.6 6 1.5 19.1

24.1

435 573 0 7.6 L8.4 4.9 70.0 " 7.8

273 504 4.6 6.4 18.3 4.4 69.3 7.6

244 441 5,7 5,8 18.1 4. I 69.0 7.5

196 395 6.5 5.3 18.2 3.7 69.1 7.5

186 348 7.2 4.9 17,9 3.4 69.5 7.5

187 294 7.9 4.7 18.3 3.0 71.4 7.6

158 248 8.7 4. ! 18.3 2.7 74.3 7.7

135 208 9.3 3.6 17.1 2.4 76.2 7,8

107 179 9.7 3. I 16.0 2. 1 78.3' 7.9

95 151 10,5 2.9 16.7 1.8 85,8 8.3

78 130 10.8 2.5 t5.9 1.7 88.7 8,4

68 111 11,3 2.3 15.6 1,5 94.9 8.6

56 96 12.0 2,0 16.0 1.3 105.2 8.9

48 83 12.6 1.8 16.0 1.2 112.7 9.1

41 72 13.0 1.7 15.7 1.1 120.6 9.3

36 62 14.3 1.6 16,9 1,0 141.9 9.8

14.5

32 54 0 1.5 18.2 0.9 137.4 4.6

28 47 0.6 1.4 18.0 0.8 131.2 4.4

23 40 1. I 1.4 20.2 0.7 1t2.4 4.0

20 35 1.4 1.3 20.2 0.7 109.0 3.9

17 30 1.9 1.6 23. 3 0.6 86.2 3.6

15 26 2.4 1.6 24.6 0.5 77.4 3.5

5.4

13 22 0 3,4 28.7 0.4 54.4 5, 1

11 19 2.8 5.1 28.5 0.3 40.9 4.9

10 17 6.8 8.7 18.2 0.7 35.5 4.8

9 14 11.1 7.7 L3.2 0.8 34.7 5.0

8.5 11.2 21.1 10.9 11.9 1.7 33.3 6,7

33.5

10.5 3.9 0 24.6 8.4 4.4 23.6 36.2

3.8 1.2 59.9 22.7 1.3 2.4 14.9 51.2

1.2 3.9 11.2 60. 1

I
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Time

(_un)

62,6

64.0

64.4

65.0

79.0

79.5

80.0

80.5

81.0

81.5

83._

86.5

88.5

90.5

95.5

96.0

97.0

105.0

105.

ll3.0

ll4.0

120.5

121.0

122.5

123.8

124.2

124.6

125.0

125,3

125.6

125.9

126.2

126.4

I
r

Obselvalion

t

Moon Achemar F

Moon Fomalhaut

Moon Altair

Earth Pollux

Moon Fore alhauz

Earth Aldebaran
i

Moon Antares

Earth Pollux

Earth Pollux

Earth Pollux

Earth Pollux

Earth Pollux

Earth Aldebaran ]

Moon Antares

Earth Regulus

Earth Regulus

Moon Antare s

Earth Regulus

Moon Antares

Moon Antares

Moor* Fomalhaut

Earth Procyon

Earth Pollux

Earth Canopus

Earth , Canopus

Earth Canopu s

Earth a Cen taori

E arth An t are s

Table 9. Typical navigation data for Moon to Earth flight.

Miss Distance Reduction Ratio : 0.4

Son Line = 250 °

Reduction

in Position Position Indicated Uncertainly

Velocily Uncertainty Uncertainty Velocity in Velocity
Correclion at Target at Target Coaectton Co.ection

(mph) (reties) (miles) (mph) (mph)

63.4

1.9

5.7

28.2

86 154 59.8 4.9

96 120 62.7 2.5

105

70

65

61

53

56

44

38

35

32

29

27

24

22

20

19

17

i

Position Velocity

Uncertainty Uncertainty

(m les) (mph)

1.1 3.8

1.9 l.l

!

Position t
Deviation

(miles)

ILl

86.1

Velocity
Deviation
(_)

60.2

63.2

172 0 1.4 1.7 1.1 111.4 3.4

157 1.0 1.3 12.7 0.8 100.6 2.0

143 1.3 1.1 11.6 0.7 100.1 2.0

130 1.4 1.0 11.2 0.7 99.6 2.0

1t8 1.4 0.9 8.3 0.5 99. I 2.0

104 1.6 0.7 7.7 O. 5 98.6 2.0

95 1.6 0.6 7.4 0.4 98.1 2,0

87 1.7 0.6 7.8 0.4 96.2 2,0

79 1,8 0.6 8.5 0.4 93.5 2.0

0

0.3

0.4

0.5

0.8

0.9

1.8

2.0

0

2.4

5.4

8.4

13.1

19.9

0.6

0.7

0.7

0.6

0.9

0.8

1.3 !

1.4

3.7

5.2

8.3

9.0

9, l

9.8

16.0

_8.3

_4.4

72

66

60

55

51

46

43

39

9.4

10.6

9.8

9.5

11.3

10.8

12.2

11,8

L3.2

L3.2

I1.1

9.3

7.9

7.0

5.5

2.1

1,6

1.8

0.4

0,3

0.3

0.3

0.3

0.3

0.3

0.3

0.8

1.2

1.7

1.7

1.7

1.9

2.5

1.5

1.7

3.4

36

33

29

22

17

14

88.7

80.9

80.1

78.5

65.1

64.2

50.3

48.4

33.9

27.7

i 23.5

! 22._
I 22. I

22.3

17,4

13.3

12,2

13.9
I

0

22.2

66.7

1.7

1.8

1.8

1,8

2.0

2.0

2.4

2.5

5.5

5.6

6.0

6.4

7.0

8.2

21.4

21.0

24.0

33.1

36



APPEN DIX A

NAVIGATIONAL MEASUREMENTS

The mathematical processes are considered here in some detail for

determining spacecraft position by means of both celestial observation and

ground based radar measurements. It is assumed throughout the analysis that

approximations to spacecraft position and velocity are already known so that

perturbation techniques may be employed.

Secondary effects arising from the finite speed of light, the finite distance

or stars, etc. are ignored in this analysis. Such effects may be lumped to-

gether for a particular reference point on the trajectory as a modification to

the stored data which represent reference values for the quantities to be meas-

ured at that point.

For" simplicity in the present analysis, it will be assumed that the

spacecraft clock is perfect so that all measurements are made at known instants

of time. Methods of including clock errors in the computation are discussed

thoroughly in refere%ce 2.

As indicated in Section 2.1 each measurement establishes a component of

spacecraft position along some direction in space. If Q is the quantity to be

measured and 5 Q is the difference between the true and the reference values,

then it will be shown that the relation between 5 Q and the deviation in space-

craft position 5r is

8Q =h T $_r (A.1)

regardless of the type of measurement. Thus, the h vector alone will charact-

erize the kind of measurement.

Sun-Planet Measurement

The first type of measurement to be considered is that of the angle from

the Sun to a planet. By passing to the limit of infinite distance from one or the

other of these bodie_, corresponding relations for the Sun-star or planet-star

type of measurement may be obtained.
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Let SO and Po be, respectively, the reference positions of the space-
craft and a planet at the time of the measurement. Let X be the vector from

the Sun to S and z the vector from S to P . With A denoting the angle from
O -- 0 O

the Sun line to the planet line, we have

cos A :- (r" z)/rz (A. 2)

where r and z denote magnitudes of the respective vectorsr andz. Treating

all changes as first-order differentials, it can be shown that

(m-(_n ' m) n n -(n_'m) m)_A = - - _ - - - -- • _r (A. 3)
r sin A z sin A -

For details the reader is referred to reference 2. Here n and m are, respect-

ively, the unit vectors from S toward the Sun and toward P . The two indivi-
o o

dual vector coefficients of 5_r in Eq. (A. 3) are vectors in the plane of the meas-

urement and normal, respectively, to the lines-of-sight to the Sun and to the

planet.

Planet Diameter Measurement

If D is the actual diameter of a planet, the apparent angular diameter A

is found from

sin (A/2) = D/2z (A. 4)

Again taking differentials as before, one can show that

Dm' _r
_A = (A. 5)

z_ cos (A/2)

Star Occultations

The next type of measurement to be considered is that of noting the time

at which a star is occulted by aplanet. Let z be the vector from S to P , r the
-- O O --

vector from the Sun to S and n a unit vector in the direction of the star to be
O

occulted. With y denoting the angle from the star line to the planet line as

shown in Fig. A-l, we have, at the nominal instant of occultation,

n • z =z cos)' (A.6)

Treating changes as first order differentials we obtain

n • _z = cos Y _ z - z sin Y $7 (A. 7)

=cosT._rn ' Sz - zsin _, ST

where m is a unit vector from S toward P
O O
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p_

So

Fig. A-1. Measurement of time of a star occultation.

The angle deviation 57 is computed from a first order differential of

2z sin_ = D. There results

_':- Dm • _z/2z 2 cos_' (A.8)

Furthermore, if.v and v are the respective velocity vectors of the planet and
p --s

the spacecraft and if 6T is the difference between the observed and the reference

occultation times, we have

_z =Vp _-r- (_r +_v, 8_-) (A.9)

=- _r-v r _

where v is the velocity of the spacecraft relative to the planet. Then by com-
-r

bining Eqs. (A. 7), (A. 8) and (A.9) we have finally

P_. _! (A. I0)
_-

£. -Vr

wherep is a unit vector perpendicular to n and lying in the plane determined by

the lines-of-sight to the planet and the star.

Star Elevation Measurement

Consider next the measurement of the angle between the lines-of-sight to

a star and the edge of a planet disc. From Fig. A-2 we have

n ' z =zcos(A + _') (A. 11)
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where A is the angle to be measured. A xain taking total differentials and

noting that 6_r =- 5z, we obtain
1

(A. 12 )

:_A + Dm • _r/2z 2 cost

or finally

= SA + tan 7m ' __r/z

SA - 8. _r (A. 13)
z cos "y

SUN

!

p_ n

S o

Fig. A-2. Measurement of star elevation angle.

Landmark Measurement

For the measurement of the angle between a landmark on a planet surface

and a star, let p be a unit vector perpendicular to the line-of-sight to the land:

mark and in the plane of the measurement. Then if p is the vector position of

the landmark relative to the center of the planet, we have

P-' _L
_A = (A. 14)

Iz+ l
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Radar Range, Azimuth, and Elevation Measurements

Assume the radar site to be the origin of the coordinate system although

other origins could equally well be used. Let a cartesian coordinate system be

chosen such that the z axis is radially out from the center of the Earth through

the radar site; the x axis is positive in the direction from which radar azimuths

are to be measured; the y axis completes the coordinate system. Then, we may

write cos ,a cos e

r --r cos,_sin

sin ,g

where r, 8, B are, respectively, the range, azimuth,

vehicle from the radar site.

three variables gives

"_._rSr = (_r
_r

(A. 15)

and elevation of the

Taking differentials separately for each of the

cos fi sin

sin

(A. 16)

1 -sin flcos
br _fl =r sin flsin

COS ,_

(A. 17 )

_r
--S_=r _cos s,nOllcos ficos0 _

0

(A. 18)

Then, by expressing each of these relations in the form of Eq. (A.1), we obtain

(A. 19 )

8fl :rl - sinflcos _ - sin flsin _ cosfl] _Sr_ (A.20)

e=I----L---JJ-sinercos fl cos_ 0 l} _Sr_ (A. 21)

The vector coefficients inEqs. (A. 19) - (A. 21) are each unit vectors in the

direction of increasing r, 13, O, respectively.
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APPENDIX B

OPTIMUM SELECTION OF NAVIGATION MEASUREMENTS

In the main body of this paper a method of processing measurement data
in an optimum linear manner has been developed. The purpose of this appendix
is to treat the associated problem of selecting those measurements which are,
in some sense, most effective. For example, the requirement might be to
select the measurement to be made at time t in order to get the maximumn
reduction in mean-squared positional or velocity uncertainty at time t . Ofn
perhaps greater significance would be the requirement of selecting the measure-
ment which minimizes the uncertainty in any linear combination of position and
velocity deviations. Specifically, one might select the measurement which
minimizes the uncertainty in the required velocity correction. As a further
example, one m-ightwish to select that measurement which, if followed imme-
diately by a velocity correction, would result in the smallest position error
at the target.

Consider first the simplest case, i.e., minimizing the mean-squared
positional uncertainty at time tn. From Eq. (2.29) the mean-squared positional
uncertainty is expressible as

_n '-- tr n -

_h.E 'I'E 'I'b° 1
_h_ (1)' 2En _n + an

assuming the measurement errors to be uncorrelated. In the absence of any

measurement error ( a 2 = 0 ) the problem of minimizing either mean-squaredn '

error is equivalent to finding a direction for the h vector which maximizes the
--n

ratio of two quadratic forms. For the case of the mean-squared positional

error, the geometrical interpretation is clear. Since the principal directions
ofE (1)'andE (1)'E (1)' are the same, the optimal direction for h coincidesn n n
with the major principal direction of E (1.) -n

n
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n -n

Again, from Eq. (2.29) the mean-squared velocity uncertainty

as T _2)' (3)'(4) _ En
'_n :tr(E. ') bn E b.

.__hT (I)' 2En bn + an

The problem of minimizing the mean-squared velocity uncertainty at time

by proper choice of the h vector is not as easily solved or interpreted.

may be written

(B.2)

Denote by p and q the two quadratic forms

p:_h ¢I' Ep'_h. , q --_ E_ 1)' _n (B.3)

From the theory of quadratic forms there exists an orthogonal transformation

which will reduce q to a diagonal form. Thus

h n =Q_d (B.4)

gives

:d T QT E_I)'Qd _I d_ + P'2 d_ +P'3 d_ (B 5)q __ _-- °

where 91, 92, 93 are the characteristic roots of the matrix E(ln)' and the

columns of the Q matrix are the associated characteristic unit vectors. Since

E (1) ' is a positive definite matrix, the characteristic roots are positive and a
n

further transformation

gives

f =D d (B.6)

= fTq f = f_ + f2 + f_ (B. 7)

where D is a diagonal matrix whose diagonal elements are _ _ V_-_3.

The same transformation from h to f applied to the quadratic form p

produces

= fT 1 QT (2)' (3)' Ip _ D" E n En QD" f_ (B.8)

One final transformation applied tofwill reduce Eq. (B. 8) to a diagonal form

thus

f =S_m (B.9)
results in

p =k I m_ + X2 m_ + _3m23 (B. 10)
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where the columns of the S matrix are the characteristic unit vectors of the

matrix D -I QT E (2) ' E (3) 'QD- 1
and XI, k2, k3, the correspondingn n

characteristic roots. The same transformation (B. 9) applied to (B. 7) gives

T ST 2 2 2 (B. Ii)q =m Sm = m I + m + m 3

since S is an orthogonal matrix.

In summary, then, the transformation

bn =QD'I Sm

produces for the ratio of the two quadratic forms

p_ _I rn_ + X.2 m2 + _3 m_

Furthermore, if the matrix E (2) 'is nonsingular, the product E (2) '

E(2)' E(2)'T n nis positive definite and it would then follow that
n n

are all real and positive.

(B. 12)

(B. Z3)

E(3) ' =
n

_1" _2' X3

The problem of maximizing the ratio p/q is now readily solved. Since

no measurement error is assumed, one cannot hope to determine more than

the direction for the optimum h or, equivalently, the optimum m Therefore,-n --'

it may be assumed that m is a unit vector. Let

k k =max (X. 1,X2, X.3) (B. 14)

Then the optimum value of m is

-- 11 j =k (B. 15)

mj :}
0 ]_k

The same technique can be used to select that direction for h which
--n

minimizes the uncertainty in any linear combination of position and velocity

deviations. Specifically, consider the selection of that measurement which

minimizes the uncertainty in the velocity correction which would be required

immediately following the measurement.

The correlation matrix of the velocity correction uncertainty is

T
#._d.T: B. E. B.

and the mean-squared uncertainty may be expressed as

_hnT W _hn

2 , BT)dn : tr (B n En

(B. 16)

(B. 17)
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Here W is a symmetric matrix defined by
(B. 18)

2TIIEi'W -- I= n E n Bn Bn

(2) 'T
En

so that if 11E (I)' E(2)' t TB is nonsingular, the matrix W will be positiven n n

definite. Under any circumstances, if the identification

' T
(2)' I BnE_2)' I 1) E n

is made, then the exact same procedure may be used to select the optimum dir-

ection for the h vector as was used previously to minimize the mean-squared
--n

velocity uncertainty.

In all cases of practical interest the determination of the optimum direction

for the h vector must be made subject to certain constraints. For example,
-n

one might wish to select the "best" star to be used in measuring the angle

between the line of sight to the center of a planet disc and the line of sight to

the star. For such a measurement the h vector is required to be perpendicular
-n

to the line of sight to the planet. If z is the position vector of the planet from
-n

the space vehicle, then we must have

hnT _zn =0 (B. 19)

Applying the ti_ansformation defined in Eq. (B. 12 ) gives

T ST 1 QT_m D" z n = 0 (B. 20 )

Let p be a unit vector in the direction of ST D-1 QT z . Then the problem
-n

of selecting the optimum direction for h or, equivalently, for m is to maximize-n

subject to the conditions of constraint

T T
_m ]? = 0 and m

In terms of the Lagrange multipliers p and

of obtaining a free maximum for

m =1 (B. 21)

¢7, this is equivalent to the problem

3 3

j =I j=l
pj rnj - a mj - I
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Setting the partial derivatives with respect to each of the m.'s equal to zero,
J

we have _ p p]

mj kj - a J =1'2'3 (B. 22)

where p and a are to be determined from the requirements of Eq, (B-21).

The condition that m be orthogonal to p leads to a quadratic equation

 oro ]a - p (k 2 + k 3) + p (k I + k 3) + P3 (kl + k2) a (B. 23)

2
+ P_ k2 k3 + p2 ,k1 ,k3 + P3 kl k2 = 0

If the _ 's are ordered _1 < A2 < _3' then the two roots a 1 and a 2 will

be such that A1 < a l < _2 < a2 < k3" The other Lagrange multiplier p is

determined so that m willbe a unit vector. With the optimum vector m selected,

the corresponding value for h is found from Eq. (B. 12).-n

It is easy to show that (T2 provides the desired maximum while a 1 gives

the minimum. From Eq. (B. 22) one obtains

3 3 3

kj m_-o" ___ m_ = p _ pj m]

j-1 j-1 j=_
(B. 24)

Using this and Eqs. (B. 21) it follows that

3
2

o= _ ,k.j mj
j=l

(B. 25)

Hence, (71 and (72 are the respective minimum and maximum of the original ex-

pression to be maximized.
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