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Pu 0sEscoPE

_. The purpose of this report is to present the results of the postfllght

_ analysis of the Service Propulsion Syste= (SPS) performance during the Apollo

_ 15 Mission. This report is a supplement to the Apollo 15 Mission Report.
The primary objective of the analysis was to determine the steady-state

performance of the SPS under the environmental conditions of actual space

|
_ flight.

This report covers the additional analyses performed following the

compilation of Reference 1. The following items are the major additions i

and changes to the results reported in Reference I:

i) The steady-state performance as determined from analysis

I of the third and eighth burns i8 presented.

_ ! _t_ 2) The analysts techniques, problems and assumptions are
_--_- .........................discussed.

B
3) The flight analysis results are compared to the preflight

predicted performance.

4) The propellant utilization and gaging system (PUGS) operation

is evaluated in greater detail.

• 5) The pressurization systenperforn_nce is discussed •

6) The t=ansient data and performance are included.

7) The estimated propellent consumption Is revised.

\

', #
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? 2.O SUMMARY

' Command and service module 112 SPS performance for the Apollo 15 Mis- "

sion was evaluated and found to be satisfactory. The SPS mission duty cy-

cle consisted of eight firings for a total duration of 590.0 seconds.

SIS steady-stage performance was determined primarily from the analyses

of the third lunar orbit insertion and eighth transearth injection burns.

_ It was determined from these analyses that the engine fuel resistance was

-_, approximately 7% less than its estimated value based on acceptance test

: data and post-test reorficing. This compares well within the mean fuel

resistance bias of -5.5% determined from pos_flight analysis of Apollo 9,

/

= i0, Ii, and 12 (Reference 9) and used in the Apollo 15 preflight analysis,

and the -6.7% bias derived from the Apollo 14 Mission postflight analysis.

Average standard inlet condition engine performance values for the two

, burns analyzed are as follows: thrust, 20846 pounds; specific impusle, i i

i 31_.7 seconds; and propellant mixture ratio, 1.571. These values are 0.6%

greater, 0.1% less, and 0.1% greater, respectively, than corresponding

values computed from the preflight engine model, and are within the ±30

uncertainties associated with the preflight values.

A systematic oxidizer and fuel propellant tank pressure measurement

bias, under engine firing conditions, of approximtely -2 psi may have been

identified, althou_ further analysis is required to verify that the errors

o_ are systematic.

_ Operation of the Propellant Utilization and Gaging 5yste_ (PUGS) was i

t

_tisfactor_ throu6hout the miulon. The PU_ mode selection swatch was

met in the normal position for all 5P5 burns; therefore, o_ly the primary

_ |ystea data were available. BV utilizing the propellant utilization valve

the crew achieved excellent propellant management with the gageable oxi-

___|_ 4iser _bala_ce a_ the end of the eighth burn bein8 onl_ 2_ Ibm, decrease.

II _ °
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I 1

°*_I 3.0 INTRODUCTION

The Apollo 15 Mission was the fifteenth in a series of flights using

Apollo flight hardware and included the fourth lunar landing of the

Apollo Program. The Apollo 15 Mission utilized CSM 112 which was equipped

with SPS Engine S/N 65 (Injector S/N 136). The engine conflguratlo, and

expected performance characteristics (Reference 2) are contained in

Table 2. Since previous flight results of the SPS have consistently shown

the existence of a neg_tlve mixture ratio shift, SPS Engine S/N 65 was re-

orlflced to increase the mixture ratio for this mission. Figure 22 shows

the propellant unbalance for the two major engine firings compared with

the predicted unbalance. The unbalance at the end of the traneearth

injection firing was very small and shows that the modifications to the engine

p were satisfacto.

The SPS performed eight burns during the mission, with a total burn

duration of 590.9 seconds. At approximately 28-2/3 hours after liftoff,

the first SPS burn was performed. This w_s a test burn to verify that the

$PS thrust light illumination,which occurred shortly after transposition

and docking with the LM, was due to an electrical short existing on the

• ground side of the SPS pilot valve solenoids. A detailed account of this

anomaly may be found in Reference 1. The iAnition time, burn duration

and velocity gain for each of the eight SPS burns are contained in Table 1.

The electrical short anomaly required a revision to the ignition

procedures for the Lunar Orbit Insertion (LOI) and Transearth Injection

(TKI) maneuvers. Automatic ignition was accomplished using bank g valves,

O than bank A valves were opened st tpitton plus $ seconds. Bank A valves

•

3
L

-- '"I'_"L_ "_ _._, ; ................... ' .........
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were then manually shut down prior to normal shutdown, thus allowing an

automatic shutdown on bank B. The remainder of the maneuvers were accom-

plished on bank B in the automatic mode.

The first three SPS burns were no-u!lage starts, while the remaining

burns were preceded by +X Service Module (SM) reaction control system

translation maneuvers to ensure SPS propellant settling.

-L
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-_ J_ 4. STEADY-STATEPERFORHANCEANALYSI S

i t_,
Analysis Technique

,_ The major analysis effort for this report was concentrated on deter-

mining the steady-state performance of the SPS during the third and eighth

: burns. The remaining slx burns were of insufficient duration to warrant

_, detailed performance analysis. The performance analysls was accomplished

vlth the aid of the Apollo Propulslon Analysis Program (PAP) which utilizes

a minimum of variance technique to "best" correlate the available flight and

ground test data. The program embodies error models for the various flight

and ground test data that are used as inputs, and by statistical and Itera-

tlve methods arrives at estimations of the system performance history, pro-

pellant weights and spacecraft weight vhlch "best" (mlnlmum-varlance sense)

• _) re,-oncile the available data.

Analysis Description

The steady-state performance durims the third burn was derived fro=
r

_ the PAP 8nelysls of a 290-second ee_nt of the burn. The sepent analyzed

be$an epproxlutely 40 seconds followim8 ignition. The first hO seconds

_ c ? the burn were not ime.luded_ in order to mtninctze any errors resulting

" l_on da_.- f/ltertng spans vh$ch include transient data, and because

PUGS data near the start of the burn are not stabilised. The time segnent
J

_,, analysed wu tarninoted approximately 68 seconds prior to SPS shutdown

to exclude the three PU valve novenent8 which occurred Ln the last 68

8aeoBds and to avoid shutdown transients. The burn segnent ineluded one

. PU valve uovenent, and propellant crossover (storqe tank depletion) which

_, _ occurred about 255 seconds after ignition. The eighth burn steady-state

_o perfornance vu derived fron the PAP analysis of a 92 second 8egnent of the i _

l



burn. The initial 29 seconds of the b-,rn were excluded from the segment i
i

_ to avoid inclusion of data from the start trans'ent. _he burn segment

included the PU valve lovement which occurred at abuhL _3 _.onds from

ignition. The segment was terminated approximately 20 seconas prt_r to

engine cutoff in order to exclude shutdown transient dat_, The steady-

state performance ana_'yses of both burns utilized data from the flight

measurements listed in Table 3.

= The initial estimated spact:craft damp weight (total spacecraft minus

SPS propellant) at ignition of the third burn was 62007 lbm. The initial

estimated damp weight at ignition of the eighth burn was 26895 lbm. Both
'/

values were based on the postflight weight analysis given in Reference 3. :

The initial estimates of the SPS propellants onboard at the beginning

of the time segment analyzed for the third burn were extrapolated from the

loaded propellant weights presented in Section 5. The initial propellant ]

"_ estimates for the time segment analyzed for the eighth burn were extrapolated

from the computed propellants remaining at the end of the time segment

analyzed for the third burn. All extrapolations of propellant masses used

to establish the initial estimates for a given simulation were performed in

an iterative manner using derived flowrates and propellant masses from preceding

aimulatious to ensure that the derived propellant mass history was consistent
c

beta_een the two burns enalysed. '_

_' The SPS engine thrust chenber throat area wg: input to the program as

a function of tim from ignition for each burn. The assumed throat area

-* t_ history used in the analysis is sbT_n in Figure 1 and yes based on the

characterisation presented in Reference. 2, _

._ The SPa propellant densities used in the analysis were calculated from.,

_ propellar._ sample specific 8rarity data obtained from gSC, flight propellant _

_, 6
-L

............... ,,, .J L I I m .-
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_" temperature data, and ftlght interface pressures. The temperaturesused

i were based on data from feed-system and engine feedline temperature measure-

_]_

merits and were input to the program as it-triune of time. During steady-

state operation, it was assumed that respective tank bulk temperatures and

engine interfacL temperatures were equal for both oxidizer and _uel.

The PAP sit ul•ttons were performed using the "Tank Pressure Driven"

spa model. Simply stated, this model utilizes input oxidizer and fuel

I tank pressure value:', as functl._ns of time, for the starting points in com-
,. puting the pressures and flowrates throughout the system. The estimated

tank pressures input to the progra_ were obtained from a simulation of the

complete SPS duty-cycle user the Propulsion Analysis Trajectory Simulation

(PATS) program. The PATS program is used to perform the preflight predictions

for the SPS. The slmul•tion used to obtain the estimated tank pressures was

_F} • "postflight prediction" which used the actual velocity g•ins for each spa

bu,_, the actual PU valv_ position history, the actual bipropellant valve

modes, and the postflight reported vehicle weights. The PAP pro;_rm was

. free to blas the input tank pressures, if so required, to achieve • minimum

variance solution, bu_ was essentially constralna4 to follow the shape

of the input pressures profiles. The shapes of the tank pressure profiles,

• in turn, stronsly influence the couputed thrust shape, and therefore, the •

calculated acceleration shape. The istttal slnulations of both burns, using

the input tank pressure yielded ninor computed acceleration shape errors.

Analysis of the acceleration shape errors Indicated that the input esttuated

?
osldtser 5rid fuel tank pressure shapes were sllsbtly in error. By canperin8

the lnterfscs pressure and acceleration shape errors, it wss possible to

darivt corrections to the input tank pressures vhtch 8tsnificantly lnproved

the overall data hatch. The corrections, which were ell less than I.O psi,

7
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were then input to the program for subsequent simulations.

Analysis Results

The resulting values of the more significant SPS performance parameters,

as determined in the analysis, a:? presented in Tables 4 and 5. Table 4

contains values for the third burn as computed in the PAP simulation. Values

are presented for two time slices, which were selected to show performance

before and after crossover. Table 5 contains the flight performance values

for the eighth burn from the PAP analysis. The v.lues shown are for a

representative time slice. In both tables, the corresponding preflight

predicted value3 for the same time slice •re _lso shown. All performance

values, both predicted and from the . .' analysis, are at the same PU valve

position and should be directly comparable.

Figures 2 and 3 show the calculated SPS specific impulse, propellant

mixture ratio, and thrust, •s functions of time, for the third burn and the D

eighth burn, respectlvely. For comparison the figures also contain the

predicted performance. As shown, the specific impulse was between 314.5

and 314.8 seconds throughout both burns. Based on the values computed for

the two burns analyzed, end the qualitative comparison of tlse d•t• from all

2

eight burns, it is concludod that the SPS steady-st•re perform•rice through-

out the entire mission was satisfactory. The propellant mixture ratio •greed . ,_

well -iCh the predicted at the edme PU valve position. It should be noted

that the predicted performance for this mission incorporated • m/xtore ratio

bias in order to more closely predict the decreased mixture ratio observed

on recent flishte. A more does J led e,ooperLson of the flisht performance to /

tho predicted performmc, t is c,_r_aLned za the follovin$ section.

8 }
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j The PAP analysis determined that the best mat:h to the availabl,: data •
required that the engine fuel hydraulic resistance be adjusted from the

value used in the preflight analysis (Reference 2 ). The derived fuel

resistance was 894.1 lbf-sec2/lbm-ft 5. The fuel resistance determined

"_ 5
from the engine acceptanco tests was 888.1 ibf-sec /Ibm-ft . Based on the

acceptance test derived value, the fuel res:'stance after the post acceptance

test reoriflcing (see Section 2) was estimated to be 962.1 ibf-sec2/ibm-ft 5.

The flight value derived from the analysis was 7.1% less than the estimated /

reorificed acceptance test value. The flight derived value was only 1.7%

less than the value (909.2 lbf-sec2/lbm-scc 5) used in the preflight pre-

diction. The value used for the prediction was obtained by biasing the

estimated reorificed acceptance test value based on postfllght e_'perience

(Reference 8 ). An adjustment to the engine oxidizer hydraulic resistance

_ was also required. The flight value derived from the PAP analysis was

473.3 ibf-se 2/Ibm-ftS, which is 2.2% less than the value derived from accep-

tance testing and used for the preflight prediction. Because preliminary PAP

simulations showed little difference between the resistance values derived

from the third burn analyses and those derived from the eighth burn analyses,

the final eighth burn simulation was made using the resistances derived

from the third analysis.

Signlficant biases were found to exist in both interface and both _

• propellent tank pressure measurements. The oxidizer interface pressure

measurement (SP0901P) data was found to be biased by approximately -4 psi.

The fuel interface pressure measurement (SPO930P) data was biased -3 psi. _

Negative interface pressure biases under flow conditions have been observed

on previous flights. Reference 9 contains a statistical analysis of the _:

;

%
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itterrace pressure biases from the Apollo 9 through Apollo i4 Missions.

Based on Reference 9, the expected biased Cere -3.34 psi and -1.54 psi

for oxidizer and fuel interface pressure, respectively.

The derived oxidizer(SPOOO3P) and fuel (SP0006P) propellant tank

pressure biases were approximately -2 psi each. The propellant tank pressure

measurements are located in the helium supply lines to the tanks and, as
%

such, do not sense tank pressure directly. Examination of the measured

tank pressure response at shutdown of the eighth (TEl) burn revealed that

immediately (1-5 seconds) following shutdown both pressures rose approx-

imately 2 psi above their respective values prior to shutdown. Considering

the relatively fast response of the helium solenoid valves, which are

commanded closed at engine cutoff signal, and the large ullage volumes at

the end of the eighth burn, the indicated 2 psi rise in tank pressure is

Itotally unreasonable. This gives strong evidence that there was a burn,
i"

or flow related, bias on both tank pressure measurements during the firing

periods. It is suspected that this bias may be a systematic error associated °

with transducer location, however, further analysis will be required to verify

this possibility and to define the impact, if any, on the preflight prediction ;.

model.

The analysis verified that the thrust chamber throat area c=aracterlza- .

tion (Figure I) was relatively accurate, in that no changes were required

to achieve a satisfactory data match for either the third or eighth burn.
i

Both the third and eighth burn PAP analyses indicated that the initial

estimates for the spacecraft d_p weight were essentially correct with no

changes being required. :-

*. Early analysis results indicated inconsistencies between the amounts

of propellants that were reportedly loaded, the amounts indicated by the

_ 10 °_

S

_ , _,,_'_ _. • •
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i= tank gages, and the simulation results. In general, simulations which

_ best matched the sump tank gages after crossover (near the end) of the

third burn required either unreasonably large (approximately 130 pounds

of oxidizer and 120 pounds of fuel) reductions in the estimated initial

propellant masses onboard at the start of the burn segment, or flowrates

(and thrust) whicb did not agree with the storage tank probes and acceler-

ation data. Since the first two burns were of relatively short duration,

the propellant loads onboard at the beginning of the third burn should be
-<

known to almost the loading tolerances. Furthermore, when the propellants

• remaining at the end of the third burn for these simulations were extrap-

olated to the eighth burn, the sump tank probes indicated that the extrap-

_, ola_ed quantities ( and therefore the computed quantltltes remaining at the

end of the third burn) were too low by 100-200 pounds for each propellant.

.'Ithough the extrapolation from the end of the third burn segment to the

. ...._ start of the eighth burn segment was larger (about 150 seconds of total

burn time) than in previous postfllght analyses, resulting in larger

" uncertainties in the extrapolations, these discrepancies seemed unreasonable.

The fuel dlscrepancles w,-'e reeolved satisfactorily by reducing the

. fuel onboard at the start of the third burn segment by 50 pounos from the

_ value extrapolated from KSC loading data, and by applying scale _actors
m

of 1.0068 and 0.990 to the fuel storage and sump tank gages, respectively.

. With these corrections, the final simulation gave a fuel mass at the end

,, of the third burn selpment which, when extrapolated to the eighth burn,
7

wu within 47 pounds of the value determined from the final eighth burn

simulation.

C')
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The oxidizer discrepancies were similarly resolved by reducing the
t

oxidizer onboard at the start of the third burn segment by 30 pounds from 1

t

the value extrapolated from the KSC reported load, and by aovlvin_ a scale

factor of 1.0116 and 0.990 to the oxidizer storage and sump tank gages,

respectively.

The simulation computed consumption (Table 6) for the whole mission

agrees well with consumption from the reported KSC loads and the gaging

system reaJlngs at shutdown of the eighth burn. Based on the simulation

V

results the total oxidizer and fuel consumed were 23903 and 14984 pounds,

respectively, lhe corresponding values computed from the reported loads

and the gage readings (accounting for eighth burn shutdown consumption)

were 23913 pounds and 14961 pounds. Based on the computed consumption the

overall mission mixture ratio was 1.595, which indicates excellent propel-

lant management. Following the end of the eighth burn, the computed usable (1) )
oxidizer and fuel quantities remaining were 807 pounds and 484 pounds,

o respectively. Based on the spacecraft mass at the end of the eighth burn,

the estimated SPS _V capability remaining was approximately 460 ft/sec (2).

Shown in Figures 4 through 21 are the PAP output plots which present

the residuals (differences between the filtered flight data and the program-

calculated values) and filtered flight data for the segments of the third, q

and eighth burns analyzed. The figures appear in the following order: !

vehicle thrust acceleration, oxidizer tank pressure, fuel tank pressure,

oxidizer interface pressure, fuel interface pressure, oxidizer sump tank

quantity, fuel zump tank quantity, oxidizer and fuel storage tank quantities

(1) Based on unusable quantities of 295.2 pounds an_ 146.2 pounds of oxi-
dizer end fuel, respectively.

©(2) Includes additional allowance of 100 pounds unusable for the ±100 pound
PU unbalance meter control ("green") band.

12 i !
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respectively. Tllevalues for slopes and intercepts seen in the upper right

hand corner of these _raphsrepresent the slopes and intercept on the

ordinate of a linear fit of the residual data. The closer these numbers are

to zero, the better the match.

A strong indication of the validity of the PAP simulation can be

obtained by comparing the thrust acceleration calculated in the simulation

?

to that derived from the Apollo Cormmand Module Computer (CMC) AV data

transmitted via measurement CGOOIV. This comparison is easily made in !

terms of the previously mentioned residual slope and intercept data.

Figures 4 and 14 show the thrust acceleration during the portions of the

burns analyzed, as derived from the CMC data, and the residual between the

data and program calculated values. The residual time histories have

_J_T! essentially zero means and little, if any, discernible trend. This
indicates that the simulations, especially in terms of the computed specific

impulse, are relatively valid, although other factors must also be con-

sidered _n critiquing the simulations.

As observed on previous flights, the measured chamber pressure drifted

with burn time during both burns, presumably because of thermal effects on

the transducer. A model of the chamber pressure drift was derived in
"

Reference 9 from a regression analysis of the _pollo 8 through 14 chamber

• pressure residual errors. The recommended model, which is a fifth degree

polynomial in burn time from ignition, was incorporated in PAP and utilized

for the first time during this flight analysis. The negligible slopes on the

chamber preslure residuals shown in Figures 13 and 21, for the third and _*'

eighth burn, respectively, indicate that the drift model successfully

C) :accounted for the chamber pressure drift, thereby allowing inclusion of *_

.a
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3

!

the chamber pressure measurement data in the analysis. The analysis pro- 1

gram results, however, indicated that a large negative (-3 psi) error existed

In the measured chamber pressure data for both the burns analyzed. Because

the -3 psi error was not observed during the coast periods between burns;

i.e. the measured chamber pressure was essentially zero as expected, the

error is assumed to be a scale type error as opposed to a fixed bias.

Several of the residual plots for both the third and eighth burns

show discontinuities at the times where PU valve movements and propellant

crossover occur. These discontinuities are the results of the transients

associated with the changes in interface pressure and are not considered

significant errors in the match.

_ Comparison With Preflight Performance Prediction !

Prior to the Apollo 15 l;isston, the expected performance of the SPS s-1 t,, _
was presented in Reference 2. This performance prediction was for the

integrated propellant feed/englne system and, wherever possible, utilized

data and characteristics for the specific spa hardware on this flight. :

The predicted steady-state thrust, propellant mixture ratio, and

• specific impulse are shown in Figures 2 and 3 for the third and eighth

i burns, respectively. Also shown, for comparison, are the corresponding :

values for the flight as determined from the steady-state analysis. In

general, the comparison of the flight performance to the preflight pre- • :

dieted performance is not stralghtforvard because of the difference in J

the predicted end actual PU valve position history. The slightly different "_

PU valve position history resulted from the ntxture ratio, at a given PU

valve position, being somewhat 8rearer than predicted. However, valid

comperleone can be made at those times where the predicted and actual PU
%

valve positions are the same,

_- 14 t :
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Previous f}ight results have consistently shown the inflight mixture :

ratio to be significantly less than expected based on the engine acceptance
c

test data. As a result, the majority of SPS burn time was performed with

the PU valve in the primary increase position. The purpose of the PU valve
i

is to have the capability of adjusting the propellant mixture ratio te

1.60 to 1 (which would ensure a minimum propellant outage). Such mixture

ratio shifts, as experienced on previous flights, greatly reduce this

capability, and if an even larger shift should occur on future flights this _-

capability would be non-existent. In order to rectify this situation,

North American Rockwell directed Aerojet General (Reference i0) to calculate

new fuel orifice sizes for Apollo SPS engines S/N 058 and 063 through 072

based on the following conditions:

1) Oxidizer xnterface orifice to remain unchanged.

_3 2) Engine mixture ratio to be 1.60 to 1.

3) Oxidizer inlet pressure of 162 psia (this is a steady-state flow

condition and is unchanged from that value at which the engines

were acceptance tested).

4) Fuel inlet pressure of 175 psia (this is also a steady-state •

flow condition and is increased by 6 psia from that value at which

• the engines were acceptance tested).

Using the above requirements and the engine acceptance data, the reslstan, i

was calculated through the following steps:

I) Using the existing oxidizer resistance, the specified inlet

pressures, and the acceptance test value of characteristic exhaust

velocity, the chamber pressure calculations were iterated to derive
a

values of oxidiser and fuel flow rates at a mixture ratio of 1.60

© to 1 for dual bore• _
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2) Using the fuel flowrate, the required value of the fuel circuit

resistance was calculated. The difference between the existing

resistance and the calculated resistance then determined the

required increase in the fuel interface orifice.

The reorlflced fuel feedline resistance for engine S/N 065 was obtained

from the above procedure.

In order to more closely predict the expected Infllght mixture ratio

based on past flight experience, the reorlflced engine fuel hydraullc .
f,

resistance determined from the acceptance test data was biased by -5.5Z.

'- This decreased the mixture ratio expected with the reorificed fuel hy-

draulic resistances by 2.8% at standard inlet conditions. This bias was

obtained by statistically analyzing the results of postflight analyses

! from Apollo Hissions 9, 10, 11, and 12 (Reference 9). The fuel resistance

bias derived for the Apollo 13 Htsston from the postfltght analysis

(Reference 11) was-6.7Z.

As can be seen in Figures 2 and 3, at common PU valve positions, the
i

flight reconstructed mixture ratio agrees quite well with the predicted

mixture ratio. The maximum difference of 0.01 is well within the preflight

uncertainty (Reference 2) of _.041 (3o). Similarly, the reconstructed

thr_t and specific impulse (Fisures 2 and 3) were within the prediction

uncertainties of _254 pounds (3o) and _1.$9 seconds (3o), respectively,
]

at co=mon PUvalve positions.

_Ine Performance at Standard Inlet Conditions

The expected flight performance of the SPS engine wag based on data

_, obtained durln8 the englne and injector acceptance tests, Includln8 data

- ©; based on the reortftctnB of the fuel engine feedline (Reference 2). In

\r

1974023216-021



I, / { ,,rder to bi,:;ls for the
provide a common comparing engine performance,

% i

ac'eptance test performance is adjusted to standard inlet conditions. This
i

I ,,llows actual engine performance variations to be separated from performance
f

variations which are induced by feed-system, pressurimation system, and

i propellant temperature variations.

: The standard inlet conditions thrust, specific impulse and propellant

:- mixture ratio from the engine model used in the preflight prediction are :-

20716 pounds, 315.1 seconds and 1.570, respectively. Based on the steady-

state analysis of the third burn, the standard inlet conditions thrust,

specific impulse and propellant mixture ratio were 20850 pounds, 314.8

seconds and 1,571, respectively. These values are 0.65% greater, 0.1%

less and 0.11" _reater, respectively, than the corresponding values

: J--_i computed from the engine model used in the preflight prediction.

The eighth burn analysis yielded standard inlet conditions thrust,

specific impulse and propellant mixture ratio of 20841 pounds, 314.6 seconds

and 1.571 units, respectively. These values are 0.60% greater, 0.14%

less and 0.11% greater, respectively, than the corresponding values

computed from the preflight engine model. ;:

l The standard inlet conditions performance values for the two burns

agree well with each other, with values for the thrust, specific impulse, :

and propellant mixture ratio being only 9 pounds, 0.2 seconds, and 0.0 _

different, respectively. The average standard inlet conditions thrust, :_

specific impulse and propellant mixture ratio for the two burns were

20846 pounds, 314.? seconds and I.$71 respectively. These values are _

0.63% greater, 0.12% less, and 0.11% greater, respectively, than the

0 corresponding values computed from the preflight engine model.

17 •
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As previously discussed, the engine fuel resistance used in the pre- ]

flight prediction was adjusted from its acceptance test value in an attempt

to improve the mixture ratio prediction. If the average standard inlet

conditions thrust, specific impu_.se and mixture ratio from the flight are

compared to their corresponding values computed from art engine model based

on the unadjusted acceptance test resistances the value3 :ire four.d to be

1.2Z' greater, O.1Z less and 2.6Z less, respectively, than the values from

the unadjusted model.

The standard inlet conditions performance values reported herein were

calculated for the following condition_.

STANDARD II_.ET CONDITIONS

Oxidizer Interface Pressure, psia 162

Fuel interface pressure, psia 175

Oxidizer interface temperature, °F 70 |

Fuel interface temperature, °F 70 I
Oxidizer density, lb./it _ 90.15
Fuel density, ibm/ftJ 56.31
Thrust acceleration. Ibf/Ibm 1.0

Throat area (initial value), in 2 121.64

Of primary concern in the flight analysls of all Block II engines is

the verification of the present methods of extrapolating the specific impulse

for the actual fllght environment from data obtained during ground acceptance

tests at sea level conditions. Since the SPS engine is not altitude tested

during the acceptance, tests, the expected specific Impulse is calculated

from the data obtained from the injector sea level acceptance tests using

, conversion factors datermlnad from Arnold Engineerln8 Developing Center

(AEDC) slmulated altltuda quallflcatlon testln8. As prevlously discussed,

_ the average standard Inlet conditions specific impulse determined from

analyses of the third and eighth burns vas 314.7 seconds. The predicted fr_\

18
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. [
t gi specific impulse at standard inlet conditions, as extrapolated from the

1
Ik f

t ground test data was 315.1 seconds. The expected tolerance associated with

the predicted standard inlet condition value of 315.1 seconds {Reference 2)

was _1.599 seconds (3-o). The flight w_lue was well within this tolerance.

Therefore, it i= concludc_ that the present methods of extrapolating

the expected flight specific impulse from the ground test data were satis-

factory for this flight, and there is no evidence to warrant changing the

methods for future flights. The validity of this conclusion should be con-

tinually verified on each subsequent flight.

f

i

e
¢

%

t

c

1974023216-024



T
5. PUGS EVALUATION AND PROPELLANTLOADING _ I

I

Propellant Loading

The oxidizer tanks were loaded to CM ,Ispl_y readout of I00.7_ at a

tank pressure of 112 psia and an oxidizer temperature of 72.5°F. The fuel

tanks were !oared at 110 psia and 68.6°F to a display readout of 100.8%.

The SPS propellant loads calculated from these data, and propellant sample

density data, are s_own in Table 6. As planned, the oxidizer storage tank

primary gage was zero adjusted with a nomlnal -0.4% bias. This zero adjust-

ment bias was incorporated for Apollo 10 and subsequent missions to prevent

erroneous storage tank readings after crossover as experienced during the

Apollo 9 Nission (Reference 3). The zero adjustment bias causes a small,

but known, tlme varying error (a -0.4_ bias and a +0.gZ scale factor) in

_ the readings from the storage tank primary gage prior to crossover.

} PUGS Operation in Flight

The propellant ut_,izatlon gaging systm (PUGS) operated satisfactorily
/

throughout the mission. The PUGS node selection twitch was set in the normal

position for all SPS burns, therefore, _,ly the primary gaging system data

were available. The propellant ucilizatlon (PU) valve yea in the normal

position at launch and for the first two burns.

The PU valve yea in the normal pos.ttton for the start of the third

burn. Approxhut_.ly 266 seconds after isnttion ef the third burn, the 1_

valve uoved to the decrease position. At about 339 seconds frou ignition

the PU valve was returned to the normal position and left there for about

five itcondm. At about 366 seconds fron t8nition the PU valve vas soved :

_ to the decrease position. The PU v_lve renaLned in deereue until about

*_ 383 seconds From i_nition, it vhich time the PU valve m returned _'%1

/ 20
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to the normal position. Tile PU valve was in the normal position for the _

remainder of the third burn, and all of the fourth, fifth, sixth and seventh {

burns, and for approximately the first 83 seconds of the eighth burn, at

which time it was moved to the decrease position. The PU valve was left in ?

the decrease position for the remainder (approximately 58 seconds) of the

I eighth burn.

?,

Figure 22 shows the indicated propellant unbalance history for the "_

third and eighth burns; as computed from the filtered TiM PUGS data. The

indicated unbalance history should reflect the CH display unbalance history,

within the T/M accuracy. The actual indicated unbalance at the end of the

eighth burn was 20 pounds, increase, which agrees reasonably well with the

crew reported unbalance reading of 25 pounds, decrease. The expected un-

_I- balance and associated PU valve position history, which are a_so shown inFigure 22, are seen to differ only slightly with the actual. As expected,

based on past flights, ,he indicated unbalance follewing the start of the

third burn showed decrease readings. The inltlal decrease readings are

cuued by three factors: i) the prevlously men[loned -0.4% calibration

bias on the oxidizer storage tank probe, 2) ungagesble ¢'_Idlzer (approxl--

_tely 100 pounds) above the top of the oxidiser sump tank probe prior to

crossover due to propellant transfer resultln8 from helium absorptlcm, and
i

• 3) the tendency of the fuel probes to read erroneously high for about 30-40 "

seconds follovlng Ignltion of low acceleration burns due to capillary action

in the probe stlllwells. The first two error sources _re accounted for in

the preflight model, resulting in the initial 115 pound decrease reading

shown (Ytsure 22) for the expected unb_tance. Because the third error
!

; source (the erroneously high fuel probe readings near the lSattion transient)

• 21
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caused errors of relatively short duratiun, end because the planned crew

logic calls for no PU valve movements in the initial portion (first 20-30

seconds) of the burn, no attempt was ma0e to account for thls phenomenon
s

in the preflight model. After propellant crossover, at about 240 seconds

Into the third burn, the unbalance is seen to take a step increase as the?

t effects of the two known oxidizer sump tank gaging errors (the -u.41 blas

and the oxidizer above the sump tank probe) are eliminated. Througho,Jt

the balance of the third burn (a_er 285 seconds) and during the eigi_th "

bua'n the unbalance was sat_.sfactorily controlled within the -+100 1bin un-

blLl.ance "green band" by the use of he PU valve. At _;he end of the eighth

burn the unbalance was reported, by the crew as only 25 pounds, decrease. ;

1
2,

22
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• | . 6.0 PRESSURIZATION SYSTEM EVALUATION

Operation of the helium pressurization system was satisfactory without

any indication of leakage. The helium supply pressures indicated nominal _

helium usage for the eight SFS burns.

The propellant tanks were pressurized several days prior to launch,

and at liftoff the measured tank pressures were approximately 179 psia for the _

oxidizer and 182 psia for the fuel.

During the launch phase and coast period to the first SPS burn, the

measured oxidizer and fuel tank pressures decayed, as expected, to approx-
=

J:

imately 168 psia and 174 psia, respectively, due primarily to helium _

absorption into the propellants.

This mission vas the second to utilize the SPS engine to perform the !

descent orbit insertion maneuver. The very precise AV requirements for this _ )

burn made any over or underburn highly undesirable, and, therefore, a crew i

timed backup cutoff was implemented. Because of the critical nature of this i

burn an analysis was performed (Reference 2) to determine the best estimate

for the propellant tank pressure rises from the end of the LOI burn time,

are dependent on the initial tank pressures. Such propellant tank pressure

increases have been experienced on past Apollo flights and are attributed

to propellant vapor resaturation and temperature recovery of the ullage

which occur following a long burn in which there is a significant percent-

age increase in ullage volume. The predicted pressure rises were 6.7 psia

(from 176.5 psia) for the oxidizer tank and 3.6 psia (from 176.8 psia) for

the fuel tank, and the pressure rises experienced on Apollo 15 were 7 psia

(from 177 psia) for the oxidizer tank and 4.5 psla (from 177._ psia) for

the fuel tank.

23
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The GN2 actuation system pressures indicated satisfactory usage. At
i

launch the storage pressures for GN 2 Systems A and B were both approximately

2495 psla. Following the eighth and final SPS burn the T/M data indicated
'!a

that the System A pressure was 2295 psia and that the System g pressure

was 2095 psta. System A was utilized on three SPS burns for an indicated

average pressure decrease of approximately 67 psia per burn. System B was

utilized on eight burns for an indicated average pressure decrease of 50

psia per burn.

/
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I• _ 7. ENCINE TRANSIENT ANALYSIS

A summary of the start and shutdown transient performance data for

all SPS firings, except for thu fifth firing, is presented in Table 7. '_'

The start impulse for both the fourth and sixth burns exceeded the upper

specification limit of 700 ibf-sec by 14 Ibf-sec. The difference between

the seventh burn end the fourth, sixth and eighth burns exceeded the start

" impulse run-to-run specification limits of !200 ibf-sec. Because of the

measurement uncertainty associated with the chamber pressure data used to

compute impulse, the out-of-speciflcatlon values are not considered signifi-

cant. The start times(fgnltlon to 90 percent of steady-state thrust) for !
7

each burn were all within the specification limits. The computed shutdc_m

• impulse for all burns was well within the specification limit of I0,000

'C) Ibf-sec, and the variability between burns was within the ±500 ibf-sec

specification limits, with the excpption of the fourth and eighth burns.

The shutdown time (cutoff to i0 percent of steady-state thrust) for each

burn were all within specification limits.

Because the first and second burns were of such short duration (less

than 1 second) the total vacuum impulse from ignition to shutdown (10%

• steady.state thrust) was computed for these burns. The specification values

° for these burns were obtained from the Spacecraft Operational Data Book

" (Reference 2), and correspond to the expected total vacuum impulse for

burns of such duration.

The electrical short anomaly (Section 3.0) required a revision to the

L
:. ignition procedures for the Lunar Orbit Insertion (LOI) and Transearth

_ Injection (TEl) maneuvers. Automatic ignition was accomplished using bank

B valves, then bank A valves were opened at Ignltlon plus 5 seconds. Bank

_ 25
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i

I

A valves were then manually closed prior to normal shutdown, thus I

allowing an automatic shutdown on bank B. The remainder of the maneuvers

were accomplished on bank B in the automatic mode. There weze no detrimental

effects from Lhe revised procedures.

The chamber pressure overshoot values are contained iv Table 7 and

were all within the specification limit of 120 percent.

L

(
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I i
: _ TABLE 2

CSM 112 SPS ENGINE AND FEED SYSTEM CHARACTERISTICS

; Engine No. 65

Injector No. 136

Chamber No. 348

Initial Chamber Throat Area (in2) 121.6403

Engine and System Fluid Resistances (Ibf-sec2/ibm-ft 5)

?

Based on Based on

Acceptance Test Reorlflcln_ Adjusted

Fuel Engine Feedllne 888.1 962.1 909.2

Oxidizer Engine Feedllne 482.7

_ Fuel System Feedline 36.08

i Oxidizer System Feedline

PU Valve in Prl-normal position 97.72

PU Valve in Prl-increase 48.43

; _ PU Valve In Pri-decreaseposition 165.26

Characterization Equation for C*:

i C* = C'S.C. + 870.5 (MR - 1.6) - 273.83 (MR2 - 2.56) - 0.31878 (Pc - 99)
+12.953 (TP - 70) - 0.07414 (TP2 - 4900) - 5.466 (MR . TP - 112)

+0.'03119(MR TF2 7840.);t m

_ where _*S.C. (EngineNo. 65) = 5998.9 ft/sec

;: Characterization Equation for Isp:

Isp = Isp - 96.954 (1.6 - MR) - 0.0487 (99 - PC) - 0.06276 (70 - TP)
vac

• . + 30.409 (2.56 - HR2) + 0.0004483 (4900 - Tp2);

_ where ISPva c (Engine No. 65) = 315.0 lbf-sec/lbm

%

L
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TABLE5

APOLLO15

SERVICEPRf}PULSIOflSYSTEr_STEADY-STATEPERFORMN,ICE I
EICHTP.SPS BURN I ?

(TEl)

IMSTRIIMFrlTFD •

PARAMETER ' FS-I + R_ Sec'.

PiedIcte.'d PAP "._a._ur_diiii • "_

PU Valve Position Decrease Decrease npcrease

OxidizerTank Pressure,Psia 178 170 177

Fuel Tank Pressure,Psia 177 177 17_

Oxidizer InterfacePressure,Psia 15q 16n 155

Fuel InterfacePressure, Psta 175 175 172

Enqine ChamberPressure,Psia I_I Inl lOl

J

DERIVED

OxidizerFlowrate,Ibm/sec 39.5 39.8 --

Fuel Flowrate,l_/sec 25.8 25.8 "" I

Propellant MixtureRatio I.5_5 1.542 ""
T

VacuumSpecific Impulse, sec tlS.n t14._ --

VacuumThrust, lhf ?.nS_l 2n_SA --
n nlnlill In inn i am m . _

_'otes: :

lil Predicted values from Reference,
Calculated values from Pronulston @hal,_t_ Program _,
Measured data are as recorded and are not corrected for biases
and errors discussed in text.

,2
: ;

J
4

2

a
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"_ TABLE 6
r APOLLO 15

SPS PROPELLANT DATA

Total Mass Loaded (lbm)

Computed From Based on
Propellant Loading Data Analysis

Oxidizer 25035.6 2500.52

Fuel 15664.0 15614.3

TOTAL 40699.6 40619.5

Propellant Consumption (ibm)

Computed From

Loading Dat_ Analysis
Propellant and PUGS- Results

Oxidizer 23912.6 23903.2

Fuel 14961.0 14984.3

TOTAL 38873.6 388e7.5

Propellant Reslduals (lbm)

Computed [rom Analysis '
Propellant PUGS Results

Usable Oxidizer 828 807

Usable Fuel 557 484
• },

TOTAL 1385 1291 '
?

(1) Crew reported comm_nd module computer panel readings

33
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