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1. PURPOSE AND SCOPE

The purpose of this report is to present the results of the postflight

analysis of the Ascent Propulsion System (APS) performance during the Apollo

16 Mission. It is a supplement to the Apollo 16 Mission Report. Determina-

tion of the APS steady-state performance under actual flight environmental

conditions was the primary objective of the analysis. Included in the report

is such information as required to provide a comprehensive description of

APS performance during the Apollo 16 Mission.

Major additions and changes to the preliminary results presented in the

mission report (Reference 1) are listed below.

1) Calculated performance values for the APS lunar liftoff burn

2) Discussion of analysis techniques, problems and assumptions

3) Comparison of postflight analysis and preflight prediction

4) Reaction Control System (RCS) duty cycle included in the APS

performance analysis

5) Transient performance analysis

6) The APS propellant consumption values have been revised as shown

in Table 2



2. SUMMARY

The duty cycle for the LM-11 APS consisted of two firings, an ascent

stage liftoff from the lunar surface and the Terminal Phase Initiation (TPI)

burn. APS performance for the first firing was evaluated and found to be

satisfactory. No propulsion data were received from the second APS burn;

however, all indications were that the burn was nominal.

Engine ignition for the APS lunar liftoff burn occurred at the Apollo

elapsed time (AET) of 175:31:47.9 (hours:minutes:seconds). Burn duration

was 427.7 seconds.

Average steady-state engine performance parameters for the burn are

as follows:

Thrust -3544 lbf

Isp - 311.8 sec

Mixture Ratio - 1.594

All performance parameters were well within their 3-sigma limits. Calcu-

lated throat erosion at engine cutoff for the ascent burn was approximately

2 percent greater than predicted.
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3. INTRODUCTION

The APS duty cycle for the Apollo 16 Mission consisted of a lunar lift-

off burn and a Terminal Phase Initiation (TPI) burn. Total burn duration

for the two firings was 430.2 seconds. The Apollo 16/LM-11/APS was equipped

with Rocketdyne Engine S/N 0013C. APS engine performance characterization

equations used in preflight analyses and as a basis for the postflight

evaluation are found in Reference 2. Engine acceptance test data used in the

determination of performance are from Reference 3. Physical characteristics

of the engine and feed system are presented in Table 1.

The APS lunar liftoff burn was preceded by five Service Propulsion System

(SPS) burns and a Descent Propulsion System (DPS) firing. Ignition time for

the initial APS firing was 175:31:47.9 AET. Engine cutoff was commanded at

175:38:55.6 AET for an APS burn duration of 427.7 seconds. Loss of signal

(LOS) occurred following engine shutdown for the lunar liftoff burn at ap-

proximately 176:11 AET as the vehicle went behind the moon. The second APS

burn was the 2.5 second Terminal Phase Initiation (TPI) maneuver. APS engine

ignition time for the TPI maneuver was 176:26:05 AET, approximately 15 min-

utes after LOS. A summary of data concerning ascent stage main engine igni-

tion and cutoff times and the associated velocity changes are shown below:

Ignition AET Engine Cutoff AET Burn Duration Velocity (1)
Burn (hr:min:sec) (hr:min:sec) (seconds) Change (ft/sec)

Lunar Liftoff 175:31:47.9 175:38:55.6 427.7 6054.2

TPI 176:26:05 172:26:07.5 2.5 78.0

(1) Reference 1
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4. STEADY-STATE PERFORMANCE ANALYSIS

Analysis Technique

Determination of APS steady-state performance during the lunar orbit

insertion burn was the primary objective of the LM-11 postflight analysis.

The insertion burn duration was 427.7 seconds, engine on to engine off

command.

The APS postflight analysis was conducted using the Apollo Propulsion

Analysis Program (PAP) as the primary computational tool. Additionally,

the Ascent Propulsion Subsystem Mixture Ratio Program (MRAPS) was used

in an iterative technique with PAP to assist in the determination of the

vehicle propellant mixture ratio. Reference 4 presents a detailed ex-

planation of the operation of the MRAPS program and the underlying theory

which it implements.

An initial estimate of the ascent stage weight at lunar liftoff of

10949 lbm was obtained from Reference 5. Ascent stage damp weight (total

spacecraft weight less APS propellants) was considered to be constant

throughout the burn, except for a 0.03 lbm/sec overboard flow rate which

accounts for ablative nozzle erosion.

LM/RCS propellant usage and thrust histories were obtained from an

analysis of the RCS bi-level measurements. Approximately 97 percent of the

RCS consumption during the ascent burn was from the APS tanks. The remain-

ing RCS usage, u2 Ibm, was from the RCS tanks following the closing of the

APS/RCS interconnect valves. Table 2 presents a summary of propellant usage,
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including RCS consumption, from the APS tanks during the ascent burn. Pro-

pellant densities used in the program were based on equations from Reference 6,

adjusted by measured density data for the LM-11 flight given in the Spacecraft

Operational Data Book (SODB), Reference 7. Oxidizer and fuel temperatures were

taken from flight measurement data and were 68.75 0 F and 70.750 F, respectively.

These temperatures were considered to be constant throughout the segment of

burn analyzed. The following flight measurement data were used in the analy-

sis of the LM-11 APS burn: engine chamber pressure, engine interface pres-

sures, vehicle thrust acceleration, propellant tank bulk temperatures, heli-

um regulator outlet pressures, engine on-off commands, helium tank pressure

measurements, and RCS thruster solenoid bi-level measurements. Measurement

numbers and data pertinent to the above measurements, with the exception of

RCS bi-levels, are given in Table 3. Plots of measurement data versus time

are presented in the appendix to this report.

Flight Data Analysis and Results

A 385 second segment of the APS lunar liftoff burn was selected to be

analyzed for the purpose of determining steady-state performance. The

segment of the burn analyzed began at 175:31:58.0 AET, 10.1 seconds after

ignition, and ended at 175:38:23.0 AET, 32.6 seconds prior to cutoff. The

periods immediately following ignition and immediately prior to engine cut-

off are not included in order to minimize any errors resulting from data

filtering spans which included the start and shutdown transients. APS

engine propellant consumption during the burn is presented in Table 2.

Propellant consumption from engine on command to the start of the steady-

state analysis segment and from the end of the steady-state analysis to
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the beginning of chamber pressure decay was extrapolated from steady-state

analysis results.

The primary engine performance determinations made during the LM-11

postflight analysis are as follows (all average values are over the 385

second period of steady-state analysis):

1) Average APS specific impulse was 311.8 seconds

2) Average APS mixture ratio was determined to be 1.594

3) Average APS thrust was 3544. lbf

4) Engine throat erosion was 2 percent greater than predicted at

395 seconds after ignition.

An extrapolation of the APS steady-state analysis to include th:2 entire

burn, t,,ith the exception of ignition and shutdown transients, resulted in

an average specific impulse, thrust, and mixture ratio of approximately

the same values as the 385 second burn segment. LM-11 APS performance was

greater than predicted with the average engine specific impulse exceeding

the predicted average value by 2.4 seconds.

The general solution approach used in the LM-11 flight evaluation was

to calculate the vehicle weight (including propellant loads) for the be-

ginning of the burn segment used to analyze steady-state performance and

then allow the PAP to vary this weight and other selected performance para-

meters (state variables) in order to achieve an acceptable data match. The

PAP simulations were made using the previously discussed APS engine char-

acterization model driven by engine interface pressures. Raw flight inter-

face pressure measurement data were first filtered with a sliding arc

filter and then, because of excessive distortion, these data were further

smoothed using a fifth degree curve fit.
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Simulation of RCS activity was accomplished with a model that was

developed from individual thruster "on" time. This technique has been used

on previous APS reconstructions and is fully discussed in Reference 8.

Initial PAP simulation results based on the input data outlined in the

beginning of this section indicated the predicted throat erosion was less

than that required to match flight data. A revised throat erosion curve

was calculated using the partial derivatives of throat area with respect

to acceleration. This technique has been used during previous APS post-

flight reconstructions and has yielded good results. The inclusion of

this calculated throat area curve in the analysis program resulted in an

excellent acceleration match with a near zero mean and no significant slope.

The derived throat erosion was 2 percent greater than predicted at approx-

imately 395 seconds after ignition. Figure 1 shows the calculated throat

area curve in comparison with the predicted curve for LM-11.

An APS chamber pressure error model (Reference 9) derived from previous

flight data was used in the analysis. In addition to this model an adjust-

ment to the flight chamber pressure data was necessitated by the chamber

pressure excursion discussed in Section 8. The chamber pressure match re-

sulting from the PAP analysis is not as good as might have been expected.

However, considering the additional uncertainty in the chamber pressure

measurement resulting from the chamber pressure excursion, the match is con-

sidered to be acceptable. A 1.2 psi chamber pressure measurement bias was

determined from the final PAP solution. The residual match shown in Figure 3

incorporates the error model, flight data adjustment and the bias.
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Interface pressure measurement biases of approximately 0.8 psia and

-0.51 psia for oxidizer and fuel, respectively, were determined from the

PAP results. These biases are well within the measurement accuracy for

both the oxidizer (GP 1503) and fuel (GP 1501) interface pressure

measurements.

A vehicle weight reduction of 20 Ibm was determined from the PAP re-

construction. The best estimate of total ascent stage weight at lunar

liftoff is 10929 Ibm.

The principal indicator of the accuracy of the postflight reconstruction

is the matching of calculated and measured acceleration data. A measure of

the quality of the match is given by the residual slope and intercept data

as shown in Figure 2. These data represent the ordinate intercept and the

slope of a linear fit to the residual data. The closer both of these numbers

are to zero, the more accurate the match. The acceleration match achieved

with the LH-11 postflight reconstruction was very good. The LM-11 flight

reconstruction was, by all indications, an accurate simulation of actual

flight performance.

Figures 2 through 9 show the principal performance parameters associated

with the LM-11 postflight analysis. Four flight measurements were used as

time varying input to the Propulsion Analysis Program. Two of these measure-

ments, fuel and oxidizer interface pressures, were used as program drivers.

The other two, acceleration and chamber pressure, were compared to calculated

values by the program's minimum variance technique. The acceleration and

As a convention in this report, a negative bias indicates that measured
data was reading less than its true value.
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chamber pressure measurements along with their residuals (measured data

minus calculated) are presented in Figures 2 and 3, respectively. Figures 4

and 5 contain oxidizer and fuel interface pressure measurement data (after

smoothing of the raw data), the curve fits of these data input to the Apollo

Propulsion Analysis Program, and the residuals between the flight data and

the curve fit interface pressures. Calculated steady-state values for

thrust, specific impulse, and oxidizer and fuel flow rates are shown in

Figures 6 through 9.

Comparison with Preflight Performance Prediction

Predicted performance of the LM-11 APS is presented in Reference 10.

The intention of the preflight performance prediction was to simulate APS

performance under flight environmental conditions for the Mission J-2 duty

cycle. No attempt was made in the preflight prediction to simulate RCS

operation.

Table 4 presents a summary of actual and predicted APS performance

during the ascent burn. Engine specific impulse determined by the post-

flight reconstruction is greater than had been predicted but is still

within the 3-sigma limits of + 3.5 seconds presented in Reference 10. Com-

parisons of predicted and reconstructed values for specific impulse, thrust,

and mixture ratio are presented in Figure 10 along with related 3-sigma

dispersions. The variations in flight specific impulse, thrust and mixture

ratio were within their respective 3-sigma dispersions.

Engine Performance at Standard Interface Conditions

Expected APS engine flight performance was based on an engine characteri-

zation which utilized data obtained during engine and injector acceptance
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tests. In order to allow actual engine performance variations to be separat-

ed from variations induced by feed system, pressurization system, and pro-

pellant temperature variations, the acceptance test data are adjusted to a

set of standard interface conditions; thereby providing a common basis for

comparison. Standard interface conditions are as follows:

Oxidizer interface pressure, psia 170.

Fuel interface pressure, psia 170.

Oxidizer interface temperature, OF 70.

Fuel interface temperature, oF 70.

Oxidizer density, lbm/ft 3  90.21

Fuel density, Ibm/ft 3  56.39

Thrust acceleration, lbf/Ibm 1.

Throat area, in2  16.44

Analysis results (at 13 seconds from ignition) for the ascent burn corrected

to standard interface conditions and compared to acceptance test values are

shown below:

Flight
Acceptance Test Analysis Percent 3-Sigma,

Data Result Difference Percent

Thrust, lbf 3510.7 3537.4 0.8 3.0

Specific Impulse, 309.6 312.0 0.8 1.1
1bf-sec

Ibm

Mixture Ratio 1.604 1.604 0.0 1.7

Reduction of engine performance to standard interface conditions and com-

parison with acceptance test values shows good agreement.
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5. PRESSURIZATION SYSTEM

Helium Utilization

The helium storage tanks were loaded with a nominal 13.2 Ibm. There was

no indication of leakage from the helium bottles during the mission and

calculated usage, 8.4 Ibm, was as expected.

Helium Regulator Performance

Helium regulator performance was approximately as predicted. The Class I

primary regulator controlled helium flow throughout the burn. No significant

oscillations in regulator outlet pressure were noted.
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6. PROPELLANT LOADING AND USAGE

APS propellant loads at earth lift-off for the LM-11 Mission were 3224.7

lbm of oxidizer and 2017.8 Ibm of fuel. During the translunar coast phase of

the mission a mechanical problem in one of the RCS helium regulators necessi-

tated the transfer of approximately 44 Ibm of oxidizer and 16 Ibm of fuel from

the RCS tanks to the APS tanks through the APS/RCS interconnect. The total

APS propellant loads at lunar landing were 3268.7 Ibm and 2033.8 Ibm for oxi-

dizer and fuel, respectively. Of these amounts 36.0 Ibm of oxidizer and 15.9

Ibm of fuel are considered to be unusable or consumed during transient engine

operation. Nominally deliverable propellants at APS lift-off were 3232.7 Ibm,

oxidizer, and 2017.9 Ibm, fuel. Propellant density samples taken at the time

of loading showed an oxidizer density of 1,4818 gm/cc @ 40 C and a fuel den-

sity of 0.8979 gm/cc @ 250 C. Both densities were at a pressure of one

atmosphere.

APS consumption during the lunar lift-off burn was 3042 Ibm, oxidizer

and 1901 Ibm, fuel. Total RCS consumption, from the APS tanks through the

APS/RCS interconnect, during the same period burn was 77 Ibm. Except for

approximately the last 10 seconds of the burn, all RCS consumption was

through the APS/RCS interconnect. The TPI maneuver usage was estimated as

19 Ibm of oxidizer and 11 Ibm of fuel. A total of 208 Ibm of oxidizer and

121 Ibm of fuel remained on board at the second APS burn cutoff.
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7. ENGINE TRANSIENT ANALYSIS

An analysis of the start and shutdown transients was performed with the

primary intention of determining transient total impulse. Figures 11 and 12

are traces of engine chamber pressure, measurement GP2010, during start and

shutdown of the lunar lift-off burn, respectively. No data were available

from the TPI burn.

The time from ignition signal to 90 percent steady-state thrust was

0.334 seconds, well within the specification limit for unprimed starts of

0.450 seconds. Total start transient impulse was 27 lbf-sec. The chamber

pressure overshoot exceeded the upper limit of the measurement range (150

psia); however, there were no indications of rough combustion or other

abnormal performance.

Total impulse from engine cutoff signal to 10 percent thrust was 298

lbf-sec. Time from cutoff signal to 10 percent thrust was 0.2 seconds which

is within the revised specification limit of 0.500 seconds (Reference 11).
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8. APS CHAMBER PRESSURE EXCURSION

Postflight examination of the APS chamber pressure data (measurement

GP2010P) revealed a rapid increase in pressure at 175:34:36.6 (hr:min:sec)

AET, approximately 159 seconds after APS ignition. The chamber pressure

increased from approximately 126 psia to 135 psia. During the next 10

seconds, the pressure measurement indicated a gradual decrease to approxi-

mately 127 psia. At 175:34:36.9 AET the measurement indicated another

increase of approximately 6 to 8 psi. Following the second increase, the

chamber pressure again decreased to the nominal level. Figure 13 shows the

chamber pressure measurement data during the pressure fluctuations. During

these times there was no indication of a pressure increase from either of

the engine interface pressure measurements (GP1501P and GP1503P) or from

the helium regulator outlet pressure measurements (GPOO8P and GP0025P).

To determine if the indicated pressure excursions were real, vehicle velocity

data were examined for evidence of a corresponding change in engine thrust.

In addition, several other key engine parameters (throat area, interface

pressure, and C*) were also studied to determine if there were any changes

in these parameters which corresponded to the chamber pressure increases.

The Primary Guidance and Navigation System (PGNS) velocity data were

used to determine vehicle velocity changes (AV) during the period of chamber

pressure fluctuations. The AV for nominal APS propellant flow rates and

thrust was determined for a 10 second interval. The RCS contribution to

vehicle velocity increase was estimated using RCS on-time bi-level data.

The total estimated AV agreed well with the PGNS data.
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Next, using a combination of the partial derivatives generated by the

PAP and the APS nonlinear on line (Time Share System) program, effects on AV

due to changes in interface pressures and throat area commensurate with the ob-

served shift in chamber pressure were investigated. It was determined that

an increase of 18 psi (10.6 percent) in both oxidizer and fuel interface

pressures would produce a 10 psi increase in chamber pressure and result

in 5 ft/sec greater AV than in the nominal case. In addition, both the

engine thrust and flow rate would be increased by over 8 percent. As

stated above, no increases in interface pressures were observed in the flight

data. A decrease in throat area sufficient to yield the observed chamber

pressure shift would result in a reduction of engine thrust and flow rates

as well as a 4 ft/sec decrease in AV for the 10-second interval. Figure 14

shows the PGNS AV data resolved and summed over 10-second intervals from

approximately 50 seconds before and 50 seconds after the chamber pressure

excursions. No unusual deviations in the vi1ocity gain are apparent.

A similar analysis was made to determine what the acceleration history

would look like if the chamber pressure did indeed increase as shown in

Figure 13. Figure 15 shows the calculated acceleration history assuming an

interface driven chamber pressure increase. Figure 16 shows the result of

assuming a throat erosion driven chamber pressure increase.

It should be noted that the determination of the effects of a throat

area change was approximate. The throat area required to produce the 10 psi

chamber pressure increase resulted in a ratio of initial throat area to re-

quired (to produce the 10 psi shift) throat area that is beyond the range

of the Rocketdyne APS engine characterization. Decreasing the throat area,
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in general, increases the APS specific impulse. However, since the decrease

in question is beyond the range of the engine characterization the magnitude

of such a specific impulse increase was uncertain. Because of this, a con-

servative estimate of the increase was made using a partial derivative

calculated in PAP. This approach yields a high side specific impulse esti-

mation which would result in a smaller AV decrease.

One additional mechanism that might have resulted in a chamber pressure

shift was a change in the C* efficiency of the engine. The theoretical C*

for the APS engine at 1.6 mixture ratio is 5969.3 ft/sec. The nominal C*

for the engine is 5748.4 ft/sec, an efficiency of 96.3 percent. If the

actual engine C* were equal to the theoretical value, a chamber pressure

increase of slightly less than 2 psi would result.

It is concluded that the chamber pressure shift seen in the flight data

does not represent a real chamber pressure increase that would result in

engine flow rate and thrust changes because there is no indication of such

changes in either engine interface pressure data or in vehicle velocity

change data. It is, therefore, suspected that the pressure excursions

were due to an anomaly in the chamber pressure instrumentation.
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9. CONCLUSIONS

The LM-11 APS flight reconstruction showed the APS performance to be

satisfactory. No APS malfunctions or anomalies were noted.
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TABLE I. LM-11/APS ENGINE AND FEED SYSTEM PHYSICAL CHARACTERISTICS

Engine(a)

Engine No. Rocketdyne S/N 0013C

Injector No. Rocketdyne S/N4097735

Initial Chamber Throat Area (in 2 )  16.44

Nozzle Exit Area (in 2 ) 749.59

Initial Expansion Ratio 45.58

Injector Resistance (Ibf-sec2/Ibm-ft 5 )@

time zero and 70°F

Oxidizer 12312.0

Fuel 19880.6

Feed System

Total Volume (Pressurized, Check Valves

to engine interface)(ft
3) (b)

Oxidizer 36.95

Fuel 37.00

Resistance, Tank Bottom to Engine Inter-

face (lbf-sec 2/lbm-ft 5 ) at 700F(c)

Oxidizer 2633.76

Fuel 4078.08

(a) Rocketdyne Log Book, "Acceptance Test Data Package for Rocket Engine
Assembly-Ascent LM-Part No. RS000580-001-04, Serial No. 0013,"
8 July 1969.

(b) NASA Memorandum EP23-46-69, "Propellant Load Parameters for the DPS
and APS of LM-5 through LM-9 and the Estimated Parameters for LM-10
and Subsequent," from EP/Chief, Propulsion and Power Division to
PD/Chief, Systems Engineering Division.

(c) GAC Memorandum LMO-271-194, "A/S Hydraulic Resistance LM-8 through
LM-12 as per NASA/MSC Data Request Under CCA #467," T. Laterra,
26 October 1970.
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TABLE 2. LM-11 APS PROPELLAIIT AIID IIELIUI COSUMPTION

Propellant from APS Tanks

Oxidizer Fuel

Propellant Loaded - Ibm 3224.7 2017.8

Transferred from RCS tank during coast - Ibm 44.0 16.0

Total @ Lunar Lift-off - Ibm 3268.7 2033.8

Consumption during Lunar Lift-off Burn - ibm

APS 2990.3 1875.3

RCS 51.3 25.7

Total 3041.6 1901.0

Propellant Remaining - Ibm 227.1 132.8

Consumed During TPI Burn - Ibm 18.8 11.2

Propellant Remaining - Ibm 208.3 121.6

APS Helium Tank Usage

Loaded - Ibm 13.2

Consumed - Ibm 8.4

Remaining - Ibm 4.8
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TABLE 3. FLIGHT DATA USED IN STEADY-STATE ANALYSIS

Measurement Sample Rate
Number Description Range Sample/sec

GP2010P Pressure, Thrust Chamber 0-150 psia 200

GP1503P Pressure, Engine Oxidizer 0-250 psia 1
Interface

GP1501P Pressure, Engine Fuel Interface 0-250 psia 1

GPOO25P Pressure, Regulator Outlet 0-300 psia 1
Manifold

GPOO18P Pressure Regulator Outlet 0-300 psia 1
Manifold

GP1218T Temperature, Oxidizer Tank Bulk 20-120°F 1

GPO718T Temperature, Fuel Tank Bulk 20-1200 F 1

GH1260X Ascent Engine On/Off Off-On 50

GPOO01P Pressure, Helium Supply Tank 0-4000 1
No. 1

GPOO02P Pressure, Helium Supply Tank 0-4000 1
No. 2

GPOO41P Pressure, Helium Supply Tank 0-4000 10
No. 1

GPOO42P Pressure, Helium Supply Tank 0-4000 10
No. 2

CGOO01X* PGNS Downlink Data Digital Code 50

*Acceleration determined from PIPA data.
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TABLE 4. LM-11 APS STEADY-STATE PERFORMANCE

20 sec After Ignition 200 sec After Ignition 390 sec After Ignition

(a) (b) (c) (a) (b) (c) (a) (b) (c)
PARAMETER Pred. Reconstructed Measured Pred. Reconstructed Measured Pred. Reconstructed Measured

Regulator
Outlet 184. 183.8 184. --- 183.8 184. --- 182.0
Pressure,
psia

Oxidizer
Bulk 70.0 68.8 69.7 68.8 69.0 --- 68.8

Temperature
oF

Fuel Bulk
Temperature 70.0 70.8 69.9 --- 70.8 69.8 --- 70.8

oF

Oxidizer
Interface 170.6 170.0 171.0 170.4 170.1 170.8 169.6 169.3 169.6
Pressure,
psia

Fuel Inter-
face 170.2 170.8 170.3 170.2 170.5 170.0 169.5 169.6 169.0
Pressure,
psia

Engine
Chamber 123.5 123.6 125.9 123.9 123.5 125.3 123.0 122.2 123.4
Pressure,
psia

Mixture 1.601 1.593 1.598 1.595 --- 1.594 1.593
Ratio

Thrust, 3518 3547. --- 3495. 3542. --- 3495. 3544.

lbf

Specific
Impulse, 309.7 312.0 --- 309.8 312.0 --- 309.1 311.1
sec

(a) Preflight prediction based on acceptance test data and assuming nominal system performance.
(b) Reconstruction minimum variance technique.
(c) Smoothed flight data without biases determined by postflight analysis.
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