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PRELIMINARY LM ABORT AND CSM RESCUE PLAN
FOR APOLLO MISSION G
VOLUME 1II
RENDEZVOUS FOLLOWING ANYTIME LM LIFT-OFF

By: E. Lloyd
J. H. Mashburn

Orbital Analysis Section

TRW Systems Group

1. SUMMARY

The preliminary mission G rendezvous abort and rescue plan for
LM anytime lift off is presented in this document. As currently planned,
LM lift-off will occur at one discrete time during each CSM revolution.
However, if required, rendezvous following anytime lift-off can be accom-
plished within the systems constraints by using the techniques presented
in this report. These rendezvous and rescue techniques can be computed
using existing programs. No new systems, or modification of existing
systems, are required, and no problem areas have been identified. Since
the current policy is to consider only discrete launch times (because no
failure which would require anytime lift-off has been identified), the study
of anytime lift-off will be concluded upon publication of this document.

A parametric analysis of several candidate rendezvous techniques
determined the range of insertion phase angles over which each technique
could be used. The results of this analysis are documented in
Reference 1. Because of constraints on performance and time, none of
the techniques could be used over the full 360-degree range of possible
insertion phase angles. This range has been divided into the following
three regions:

° Nominal (17.5 to 78. 5 degrees)
e Post-Nominal (78. 5 to 325 degrees)
° Pre-Nominal (-35 to 17.5 degrees)

In the nominal region, the four impulse coelliptic sequence is performed
by the LM. Rescues in this region are accomplished using the four
impulse coelliptic sequence by either the CSM alone or with a LM-CSM
combination. In the post-nominal region, the four impulse coelliptic
sequence is again used; however, it is preceded by a two impulse, high
apocynthion dwell maneuver by the CSM. Rescues in the post-nominal



region are accomplished using the CSM high apocynthion dwell maneuver
followed by the four impulse coelliptic sequence executed by either the
CSM alone or the LM-CSM combination. In the pre-nominal region, the
LM performs a maneuver to raise apocynthion immediately following
insertion. The CSM then transfers to a 20-nautical mile circular orbit.
Rendezvous is then completed by the CSM using the four impulse coelliptic
sequence. In the pre-nominal region, rescues are performed using the
five or six impulse extended coelliptic sequences. The choice of tech-
niques for each phase angle region is illustrated in Figure 1.

As a verification of this plan, detailed rendezvous simulations were
generated for five specific LM lift-off times. These lift-off times were
chosen so that each of the rendezvous techniques could be illustrated. The
data presented for each technique include relative motion, range, range
rate, state vectors after each maneuver, and timelines showing sunlight/
shadow and communications blackout regions for each profile.




2, INTRODUCTION

The preliminary mission G rendezvous, abort, and rescue plan for
LM anytime lift-off is presented in this document. This report is the |
second of four volumes covering LM abort and CSM rescue for the lunar |
landing mission. Volume I contains recommendations for LM abort, CSM
rescue, and CSM assist during descent and ascent. Volume III will cover
time -critical rendezvous, and Volume IV will cover procedures for aborts
during powered descent. Publication of this report, Volume II, concluded
the activity related to anytime lift-off, since current policy specifies LM
lift-off at one discrete time each CSM revolution. Rendezvous following
anytime lift-off can be performed within existing system constraints by
using the plan presented in this report.

The LM ascent and rendezvous profiles are being continually updated,
and the basic profiles used in this document (described in Reference 2)
have been updated during publication of this report. The effect of the
changes between the basic profiles and the latest profiles is minor and does
not invalidate the analysis of this plan. It should be emphasized that this
document should be used as a guide to methodology of rendezvous rather
than for precision targeting values, Specific cases are presented in the
document to verify the techniques which comprise this plan.




Vehicle Systems

3. SYMBOLS

LM

CSM

SPS

RCS

IMU
LUMINARY
COLOSSUS
PGNCS

AGS

Ground Systems

MSFN

RTCC

ARRS

lunar module
command service module
service propulsion system

reaction control system

inertial measurement unit

lunar module computer program
command module computer program
primary guidance and navigation control subsystem

abort guidance subsystem

Manned Space Flight Network
Real- Time Computer Center

Apollo Real-Time Rendezvous Support Program

Maneuver Designations

CsI
CDH
TPI
TPF
CPM

Parameters

$

Ah

AV

coelliptic sequence initiation
coelliptic differential height
terminal phase initiation
terminal phase finalization

coelliptic phasing maneuver

phase angle between CSM and LM radius vectors
(positive for CSM ahead of LM)

coelliptic differential altitude (positive for CSM
above LM)

characteristic velocity increment



4. CONSTRAINTS, GROUNDRULES, AND ASSUMPTIONS

The following constraints, ground rules and assumptions were used
in developing the decision flow logic and generating the parametric data
presented in Section 6. They also can be applied to the detailed trajectory
data of Section 7. Some of the ground rules are used in all Apollo rendez-
vous studies, while others are related to abort and CSM rescue. The
validity of the assumptions should be determined, and any additional con-
straints or ground rules should be identified.

1. All burns are simulated impulsively.

2. Dispersions, errors, underburns, and overburns are not
considered.

3. If all systems perform as specified, most maneuvers are com-

puted onboard the LM or the CSM.
4. Additional crew training is minimized.
5. Out-of-plane situations are not considered.

6. The LM will be tracked for 10 minutes by MSFN following
insertion.

7. The LM will check IMU alignment and realign if necessary,
beginning at 5 minutes after insertion. This will take precedence over

state vector update.

8. The maximum impulsive AV budgets for in-plane rendezvous
sequences are:

CSM SPS - 790 fps
CSM RCS - 125 fps
LM RCS - 131 fps

9. The maximum ranges for tracking are:

Rendezvous radar - 400 n mi

Sextant - 400 n mi
VHF - 200 n mi
10. The maximum ranges for communication are:
Voice - 550 n mi

Telemetry - 320 n mi

11. The CSM-active CSI and CDH maneuvers are computed onboard
the CSM. In addition these maneuvers can be computed in the RTCC or
onboard the LM and transmitted to the CSM




12. Maneuver computation in the RTCC requires 7 minutes.
Maneuver transmission to, and verification by, the CSM requires
2 minutes.

13. Preparation for a maneuver by either vehicle requires
10 minutes.

14. No maneuver will be performed which inserts either vehicle
into an orbit with pericynthion altitude less than 60, 000 feet.

15. For any maneuver in a LM-active rendezvous sequence, there
must be a provision for CSM rescue in case the LM is unable to perform
as required. CSM failures are not considered.

16. The LM onboard state vector must be updated 25 minutes before
the CSI maneuver. This constraint may be relaxed for a rendezvous
sequence which provides for a second (corrected) CSI maneuver after
rendezvous radar tracking is initiated.

17. The LM and the CSM must be in communication at CSI.

18. Coelliptic differential altitudes should be within the range of
10 to 20 nautical miles. The LM will always be below the CSM in its
coelliptic orbit.

19. The LM will be the active vehicle during terminal phase, when-
ever possible. The CSM will be used as a backup in case the LLM cannot
perform the terminal phase.

20. It is desirable, but not absolutely necessary, for the target
vehicle to be in attitude hold during terminal phase.

21. TPI occurs when the passive vehicle is approximately at the
midpoint of darkness. For LM lift-off during the first CSM revolution
following touchdown, TPI occurs 90 degrees west of the insertion point.

22. The target vehicle travels 130 degrees during terminal phase.

23. Rendezvous, docking, and crew transfer are completed
approximately 90 minutes after TPIL

24. Rendezvous, docking, and crew transfer must be completed
within 11.5 hours after LM insertion.




5. RENDEZVOUS ABORT AND RESCUE PLAN AND DECISION FLOW
LOGIC

The rendezvous abort and rescue plan and the decision flow logic
for this plan are presented in this section. The decision flow logic illus-
trates the implementation of each of the rendezvous techniques in the plan.
The results of the parametric analysis of each of these techniques are
presented in Section 6.

5.1 Rendezvous Abort and Rescue Plan

Rendezvous following anytime LM lift-off requires rendezvous
capability over the entire 360-degree range of possible insertion phase
angles. In the parametric study recently completed (Reference 1), no
single technique was found which covered the entire range while staying
within the constraints on AV and LM ascent stage lifetime. The approach
used in this study is to divide the phase angle range into three regions:
nominal, post-nominal, and pre-nominal. The choice of techniques for
each of the regions is illustrated in the flow diagram of Figure 2 and is
discussed briefly below. The individual techniques are covered in more
detail in another section of this report.

In the nominal region (17. 5 degrees to 78. 5 degrees) rendezvous is
accomplished using the standard four impulse coelliptic sequence. The
sequence can be performed by the LM alone, the CSM alone, or a com-
bination of maneuvers by both vehicles (Figures 3a through 3¢). In all
cases the LM will approach the CSM from below during terminal phase.

In the post-nominal region (78. 5 degrees to 325 degrees) the CSM
performs a two impulse, high apocynthion dwell sequence. This sequence
increases the differential angular rate between the two vehicles so that
when the CSM returns to the 60-nautical mile circular parking orbit it
will be about 20 degrees ahead of the LM. Rendezvous is then completed
with the four impulse coelliptic sequence used in the nominal region.

This sequence can be performed by either vehicle alone or by combined
maneuver with both vehicles.

The techniques used in the pre-nominal region (-35 degrees to +17. 5
degrees) are more complex. Immediately after insertion the LM per-
forms a 100-foot per second horizontal maneuver which raises the
apocynthion altitude to about 100 nautical miles. Ten minutes later the
CSM initiates a preplanned Hohmann transfer down to a 20-nautical mile
circular orbit. From this orbit the CSM completes the rendezvous using
the four impulse coelliptic sequence as shown in Figure 3d. If the LM is
unable to thrust following insertion, CSM rescue is accomplished using
the five or six impulse extended coelliptic sequences shown in Figures 3e
and 3f. The five impulse sequence is used for negative insertion phase
angles and the six impulse sequence for positive phase angles. In all
cases the LM is below the CSM during terminal phase.




5.2 Decision Flow Logic

The decision flow logic for rendezvous abort and rescue following
anytime LM lift-off is shown in Figure 4. Telemetry from the LM is
received by MSFN during ascent to the 30-nautical mile by 60, 000-foot
standard insertion orbit, and an estimated insertion phase angle is .
determined. If the phase angle is in the nominal or post-nominal regions
(17.5 degrees to 325 degrees) MSFN will begin 10-minute postinsertion
tracking and LM orbit determination. If the CSM has been powered down,
it will be instructed to power up at first contact with MSEFN. (Since any-
time LM lift-off is considered only during the first CSM revolution
following LM landing, it is unlikely that the CSM will be powered down.)

If the insertion phase angle is in the nominal region, the LM will
check IMU alignment immediately after insertion and realign if necessary.
After IMU realignment is verified, the LM and CSM begin tracking each
other as soon as contact is established in order to update the LLM state
vector. The input parameters for the LM-active and CSM-active four
impulse coelliptic sequences are determined on the ground and trans-
mitted to the two vehicles. The LM-active coelliptic sequence is computed
onboard the LM and in the RTCC. The equivalent operations are also
being performed for the computation of the CSM-active coelliptic sequence
to be initiated | minute after the time for initiation of the LM-active
sequence. This is based on the assumption that the coelliptic sequence
pre-thrusting programs for CSI and CDH (COLOSSUS P-32 and P-33) are
in the CSM computer. If they are not, as is presently the case, then the
CSM-active sequence can be computed by the CSI and CDH pre-thrusting
programs on board the LM (LUMINARY P-72 and P-73) or in the RTCC
and transmitted to the CSM.

The LM will perform the coelliptic sequence initiation (CSI) maneu-
ver at the appropriate time. If CSI is performed satisfactorily, an updated
coelliptic differential height (CDH) maneuver will be computed on board
the LM. At the same time, the CSM will be computing a backup CDH
maneuver. As before, if the CSM does not have this capability
(COLOSSUS P-33) then the backup CDH will be computed onboard the LM
(LUMINARY P-73) or in the RTCC and transmitted to the CSM. The LM
will then perform CDH. When the two vehicles are in coelliptic orbits,
the LM and the CSM will each compute their own terminal phase initiation
(TPI maneuvers. The LM will perform TPI if possible; if not, the TPI
will be performed by the CSM. The midcourse correction and braking
maneuvers will be computed and performed in the same way.

If the LM was unable to perform CSI then the CSM would perform
the CSI maneuvers which it computed. The CSM will then compute an
updated CDH maneuver and perform it at the proper time. If the LM
performed CSI but was unable to performm CDH, then the CSM would per-
form its precomputed CDH maneuver. In either case, all terminal phase

maneuvers are computed on board both vehicles and are performed by the
LM if possible.
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When the insertion phase angle is in the post-nominal region, the
CSM will perform the high apocynthion dwell sequence before the coelliptic
sequence is performed. The CSM will remain in the dwell orbit one, two,
or three revolutions depending upon the insertion phase angle. When the
phase angle is less than 135 degrees, the CSM will stay one revolution;
less than 230 degrees, two revolutions; and less than 325 degrees, three
revolutions. If the CSM is to stay two or three revolutions, then the LM
will be powered down. The first dwell maneuver is computed in the RTCC
and transmitted to the CSM. LM postinsertion tracking, maneuver com-
putation and transmission, and maneuver preparation require a total of
29 minutes. This is equivalent to about 87 degrees of travel angle in the
CSM 60-nautical mile circular parking orbit. Therefore, if the insertion
phase angle is less than 273 degrees, the first dwell maneuver will be
performed over LM pericynthion, and if it is greater than 273 degrees,
the dwell maneuver will be performed 29 minutes after LM insertion.

The CSM will be tracked after the first dwell maneuver, and the
dwell orbit will be determined. If a correction maneuver is necessary for
the two- and three-revolution cases, it will be computed in the RTCC and
transmitted to the CSM. The correction will be performed at the next
pericynthion passage. The second dwell maneuver (recircularization) is
computed in the RTCC and transmitted to the CSM. After recirculariza-
tion, the CSM orbit is determined by MSFN and transmitted to the LM.
Rendezvous is then completed using the coelliptic sequence described
above.

If, during ascent from the surface, the predicted phase angle is in
the pre-nominal range then the LM will prepare for a 100-foot per second
thrust immediately after insertion. The LM is powered down after per-
forming the maneuver and is tracked for 10 minutes by MSFN. If the
100-foot per second maneuver was performed satisfactorily, the CSM will
initiate a preplanned Hohmann transfer to a 20-nautical mile circular
orbit 10 minutes after insertion. The input parameters for the coelliptic
sequence are selected by MSFN and transmitted to the CSM. The CSM
computes a coelliptic sequence with CSI occurring at the second passage
over the LM pericynthion and CDH occurring one revolution later. This
fixes the coelliptic differential altitude (Ah) at about 10 nautical miles.
After performing CSI, the CSM computes an updated CDH maneuver and
performs it at the proper time. The decision flow logic for computation
and performance of terminal phase maneuvers is the same as for the
coelliptic sequence in the nominal phase angle region.

If the LM does not perform the maneuver at insertion, then one of
the extended coelliptic sequences will be used for CSM rescue. For
negative phase angles (-35 degrees to 0 degree) the five impulse sequence
is used. The coelliptic phasing maneuver (CPM) is computed in the RTCC
and transmitted to the CSM. This maneuver is performed on the first
passage over LM apocynthion and inserts the CSM into a high dwell orbit.
The CSM remains in this orbit three revolutions. The CSI maneuver is
computed on board the CSM and is performed over LM apocynthion. The
CSM then computes a CDH maneuver to occur one half revolution later
over LM pericynthion. The LM is powered up, if possible, and rendezvous
is completed using the standard LM-active terminal phase.

i1




For positive phase angles (0 degree to 17. 5 degrees) the six impulse
sequence is used. At first passage over LM apocynthion the CSM per-
forms a preplanned Hohmann maneuver which inserts it into a 60-nautical
mile by 10-nautical mile elliptical orbit. CPM is computed in the RTCC
and transmitted to the CSM CPM is performed over LM pericynthion
one-half revolution after the Hohmann maneuver. This orbit is generally
lower than the LM orbit (but not less than 10 nautical miles circular) so
that the CSM can gain on the LM. The CSM remains in this orbit for
three and one-half revolutions. CSI is performed over LM apocynthion,

and the remainder of the sequence is the same as the five impulse extended
coelliptic sequence.




6. DETAILED RENDEZVOUS ABORT AND RESCUE SEQUENCES

The results of the parametric analysis of the rendezvous techniques
are presented in this section. The CSM and LM performance require-
ments and the total rendezvous time are shown for each rendezvous and
rescue technique. In addition, the input parameters called for in the
decision flow logic of Section 5.2 are presented. The methods for com-
puting these input parameters are defined so that they can be recalculated
in the event of minor changes in the rendezvous profiles.

6.1 Nominal Phase Angle Region

The four impulse coelliptic sequence (CSI, CDH, TPI, and TPF) is
the standard technique for Apollo rendezvous. For the anytime LM Ilift-
off problem it can be used throughout the nominal phase angle region.
There are four independent variables that may be used to shape the
standard coelliptic sequence: time for CSI, transfer orbit apsis at which
CDH is performed, time of TPI, and elevation angle of the vehicle-to-
vehicle line-of-sight at TPI. For the lunar rendezvous case the elevation
angle is fixed to allow thrusting nearly along the line of sight. The times
of CSI and TPI are constrained by the location of the maneuvers to a given
time or the given time plus a certain number of complete revolutions.
This results in the actual variables used in this study being the revolution
in which CSI is performed, the transfer orbit apsis at which CDH is
performed, and the revolution in which TPI is performed. CSI is a hori-
zontal impulse performed at the specified time and inserts the active
vehicle into the transfer orbit. CDH is performed at the desired apsis
of the transfer orbit and inserts the active vehicle into a coelliptic orbit.
The coelliptic orbit is one in which the apocynthion and pericynthion alti-
tudes differ from the corresponding altitudes of the target orbit by the
same amount, the coelliptic differential altitude (Ah). The variables used
are chosen so that the elevation angle of the line of sight between the two
vehicles will be a desired value at the specified time of TPI. The third
maneuver, TPI, is performed nearly along the line of sight and inserts
the active vehicle into an orbit which intercepts the target vehicle after it
has traveled 130 degrees. The final maneuver, TPF, cancels the relative
velocity at intercept. This sequence can be performed by the LM or the
CSM alone or with combined maneuvers by both vehicles.

6.1.1 LM-Active rendezvous. - CSI is performed 50 minutes after
LM pericynthion on the first, second, or third revolution. CDU is per-
formed at the first or second apocynthion crossing (first or third apsis)
after CSI. TPI is performed when the CSM is 90 degrees west of LM
insertion orbit pericynthion during the first or second revolution in the
coelliptic orbit.

The selection of the above mentioned parameters for any particular
phase angle is a function of the bounds on coelliptic differential altitude
(Ah). This can be seen in Figure 5 which presents the choice of input
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parameters and the resultant Ah for the entire nominal phase angle region.
At 17.5 degrees, CSI is performed 50 minutes after insertion, CDH
occurs at the first apocynthion, and TPI is performed during the first
revolution in the coelliptic orbit (when the CSM is 90 degrees west of LM
insertion on its second revolution). This results in a value of Ah of

10 nautical miles, which is the lower bound on this parameter. As phase
angle increases, Ah also increases and reaches its upper bound of

20 nautical miles at about 21. 6 degrees. For larger phase angles, the
TPI time is increased one CSM period while maintaining CSI time at

50 minutes and CDH at the first apocynthion. At 21.6 degrees the resul-
tant Ah is 8. 5 nautical miles, and Ah remains below 10 nautical miles
for phase angles less than about 23. 1 degrees. If these values are truly
unacceptable, then it would be necessary to delay LLM lift-off by about
one-half minute to allow the CSM to move 1.5 degrees farther ahead of
the LLM at insertion. This sequence is used for phase angles up to

28. 8 degrees at which point CDH can be moved to the third apsis crossing
(second apocynthion) while maintaining the previous values for CSI time
and TPI revolution. The range for this sequence is from 28. 8 to

35. 6 degrees which corresponds to Ah variation between the permissible
limit of 10 to 20 nautical miles. From 35. 6 degrees to 39.2 degrees

CSI time is maintained at 50 minutes after insertion, CDH still occurs at
the third apsis, and TPI time is increased by one CSM revolution.

The four impulse sequence discussed above comprise the basic
scheme for using the LM-active coelliptic sequence rendezvous. It can
be seen in Figure 5 that the Ah profile for phase angles between 39.2 and
60.9 degrees is a duplicate of the previous profile between 17. 5 and
39.2 degrees. The only difference is that CSI occurs one LM period
later, and TPI occurs one CSM period later. For instance, if the inser-
tion phase angle is 41. 3 degrees then CSI occurs at 168. 9 minutes (one
LM period plus 50 minutes) after insertion, CDH is performed at the
first apsis, and TPI occurs when the CSM is 90 degrees west of the LM
insertion pericynthion on the third CSM revolution. The resultant Ah,

15 nautical miles, is the same as for the equivalent sequence performed
one revolution earlier at an insertion phase angle of 19. 6 degrees. For
phase angles between 60.9 and 78. 5 degrees, the basic sequence repeats
once more, in part, by increasing CSI and TPI times by one or more
revolutions.

The performance and total rendezvous time for the LM-active
coelliptic sequence are presented in Figure 6. The AV requirements for
CSI, CDH, TPI, and total of all four impulses are presented in the figure.
A comparison of Figures 5 and 6 shows the correlation between AV
requirements and Ah. CSI and CDH AV decreases as Ah increases, while
TPI and total AV increase with Ah. The maximum total impulsive AV is
131 feet per second. The values for total rendezvous time were calcu-
lated by adding 90 minutes to the TPI times of Figure 5. This is about
the time required to complete terminal phase braking, docking, and crew
transfer. The maximum time requirement is 587 minutes, which is
within the LM ascent stage lifetime of 11.5 hours.
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6.1.2 CSM-Active rendezvous., -~ This sequence is used as a backup:
in case the LM cannot perform CSI at the desired time., If this happens,
the CSM then initiates the sequence by performing CSI { minute after the
LM would have done so, CDH is performed at the first or third apsis
crossing (in this case first or second pericynthion) after CSI, The CSM is
then in an orbit which is coelliptic with, and above, the LM insertion
orbit. The time of TPI is determined by requiring the LM to be 90 degrees
west of the insertion pericynthion in whichever revolution TPI is to occur,
For any particular revolution this time is a constant regardless of phase
angle since the LM always starts at pericynthion,

In selecting input parameters for this sequence, the profile established
for the LM-active sequence is followed as closely as possible. Thus CSI
always occurs 1 minute after the LM -active CSI time, CDH occurs at the
same apsis crossing, and TPIis performed during the same coelliptic
revolution, The input parameters and the resultant Ah are presented in
Figure 7. It can be seen that Ah for the CSM-active sequence is lower than
for the LM-active sequence. The performance and total rendezvous time
requirements are presented in Figure 8. The AV requirements for CSI,
CDH, TPI, and total of all four impulses are presented in the figure, The
relationships between AV and Ah discussed in Section 6.1.1 are also
apparent for the CSM-active case, The maximum total impulsive AV is
140 feet per second. The total rendezvous time (TPI time plus 90 minutes)
is also shown in the figure. The maximum time requirement is about
565 minutes, which is less than the LM ascent stage lifetime of
11.5 hours.

6,1.3 LM-active CSI, CSM-active CDH, - This sequence is used as
a backup in case the LM performs CSI but is unable to perform CDH at the
desired time., The CSM then performs CDH immediately after the LM
would have done so, The resultant CSM orbit will be coelliptic with, and
above, the transfer orbit into which the LM was inserted at CSI. The
coelliptic differential altitude generally will be greater than for the LM-
active case, since the CSM is past apocynthion of the LM transfer orbit
when CDH is performed. This will cause TPI to be performed earlier
than in the LM-active case as a result of the larger differential angular
rate in the coelliptic orbits. The performance and time requirements,
and the resultant differential height are presented in Figure 9. A com-
parison of Figures 9 and 5 shows the difference in Ah mentioned above.
The AV for CDH, TPI, and total of the three CSM-active impulses are pre-
sented in Figure 9 (AV for LM-active CSI was presented in Figure 6), It
can be seen that the maximum total CSM-active impulsive AV requirement
is 137 feet per second. (From Figure 6, the maximum LM-active CSI AV
is 56 feet per second.) It can also be seen in the figure that the maximum
total rendezvous time is about 530 minutes,

6.2 Post-Nominal Phase Angle Region

The CSM high apocynthion dwell sequence is used in the post-nominal
phase angle region (78.5 degrees to 325 degrees). The CSM is inserted
into an elliptical dwell orbit with 60-nautical mile pericynthion altitude and
an apocynthion altitude which may be as great as 321 nautical miles. The
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CSM remains in this dwell orbit one, two, or three revolutions, then
recircularizes at pericynthion. During this time the LM has gained on the
CSM as a result of the increased differential angular rate between the two
orbits. Rendezvous is then completed using the LM-active four impulse
coelliptic sequence.

The high apocynthion dwell maneuvers are computed in the RTCC
This means that, based on assumptions 6, 12, and 13, the following oper-
ations must be performed before the sequence can be initiated. The LM
is tracked by MSFN for 10 minutes following insertion, and its orbit is
determined. Maneuver computation in the RTCC requires 7 minutes.
Transmission of the maneuver to, and verification by the CSM requires
2 minutes. Preparation for the maneuver requires 10 minutes. Thus, a
total of 29 minutes will elapse before the first dwell maneuver can be
performed. This corresponds to about 87 degrees of CSM travel in the
60-nautical mile lunar parking orbit. Thus, for insertion phase angles not
greater than 273 degrees, the dwell sequence can be initiated on the first
CSM passage over LM pericynthion., For phase angles between 273 and
325 degrees, the sequence will be initiated 29 minutes after LM insertion,

The apocynthion altitude of the dwell orbit is chosen so that, after
recircularization, the LM can perform a coelliptic sequence similar to the
one used after a lift-off at the nominal time. In the desired cequence,

CSI occurs 50 minutes after LM pericynthion, CDH is performed at the
first apsis, Ah is 10 nautical miles, and TPI occurs 90 degrees west of
LM pericynthion during the first revolution in the coelliptic orbit, The
input parameters used for computing the dwell sequence and the subsequent
LM-active coelliptic sequence are presented in Figure 10, For phase
angles between 78.5 degrees and 135 degrees the CSM remains in the dwell
orbit one revolution. At 135 degrees the apocynthion altitude of 321 nauti-
cal miles requires 300 feet per second for each impulse, or 600 feet per
second total for the dwell sequence, At this point, however, the CSM can
remain in the dwell orbit two revolutions and the required apocynthion
altitude drops to 153 nautical miles. The two revolution sequence can be
used for phase angles up to 230 degrees, at which point the apocynthion
altitude is again up to 321 nautical miles and the total AV requirement is
600 feet per second. From 230 degrees to 325 degrees the three revo-
lution sequence is used. A slight change in slope of the altitude curve can
be seen at 273 degrees as a result of the change in location of the dwell
maneuvers., This effect is more apparent in the upper graph showing the
times of the dwell maneuvers, The time of CSI and TPI for the LM-active
coelliptic sequence are also shown in Figure 10.

The total performance requirements and total rendezvous time are
shown in Figure 11, The AV curve shows a maximum CSM SPS require-
ment of 600 feet per second. The LM-active coelliptic sequence requires
127 feet per second of the LM RCS AV allowance. If CSM rescue is neces-
sary, this could require an additional 131 feet per second. Thus, the
maximum CSM AV requirement for the post-nominal phase angle region is
731 feet per second, which is within the allowance for in-plane CSM
rescue. The total rendezvous time was calculated by adding 90 minutes
to the TPI times of Figure 10, The maximum total time requirement is
680 minutes, which is just under the 11, 5-hour (690-minute) LM ascent
stage lifetime,
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6.3 Pre-Nominal Phase Angle Region

The pre-nominal phase angle region (-35 degrees to +17,5 degrees) is
the most difficult region. The region sequence requires a 100-foot per
second thrust by the LM immediately after insertion, raising the apocyn-
thion altitude to about 100 nautical miles, The CSM then performs a
preplanned Hohmann transfer to a 20-nautical mile circular orbit, From
this orbit the CSM performs the four impulse coelliptic sequence, If the
LM cannot thrust after insertion, then the CSM will rescue the LM using
the five or six impulse extended coelliptic sequences. The five impulse
sequence will be used for negative phase angles and the six impulse
sequence for positive phase angles,.

6.3.1 CSM-active rendezvous following LM thrust at insertion. -
Immediately after insertion into the 30-nautical mile by 60, 000-foot
standard orbit, the LM performs a preplanned 100-foot per second positive
horizontal thrust. This raises the LM apocynthion altitude to 104 nautical
miles. Ten minutes later the CSM initiates a Hohmann transfer to 20 nau-
tical miles, circularizing one-half revolution later at pericynthion, The
CSM gains on the LM while in this low orbit, On the second passage over
LM pericynthion the CSM performs CSI, transferring to an elliptical orbit
with apocynthion altitude greater than 20 nautical miles, It remains in this
orbit one revolution and then performs CDH at the second apsis (first peri-
cynthion). Since this maneuver is always performed at 20 nautical miles
and over LM pericynthion, the resultant &Ah is always about 10 nautical
miles, The CSM coelliptic orbit is always 114 nautical miles by 20 nau-
tical miles. TPI occurs during the first coelliptic revolution when the LM
is 90 degrees west of pericynthion,

The input parameters and performance requirements for this sequence
are presented in Figure 12, Since the LM thrust and the CSM Hohmann
transfer are preplanned, the only input required are the CSI and TPI
times. CSI time is a function of insertion phase angle; whereas, TPIis a
constant 383, 1 minutes after LM insertion. The apocynthion altitude after
CSI is shown in Figure 12, Notice that for a phase angle of about
-26.5 degrees (LM ahead) the altitude is equal to 114 nautical miles, the
apocynthion altitude of the coelliptic orbit. For phase angles less than this
value, both CSI and CDH are positive maneuvers, Since they both occur at
the same altitude and the resultant orbit is always the same, then the total
AV is a constant. For phase angles greater than -26.5 degrees, the CSM
gains too much phase angle prior to CSI and must go higher than the coel-
liptic orbit to allow the LM to regain some. This results in a negative
CDH maneuver. The maximum total CSM AV for all six impulses is about
625 feet per second, which is within the allocation for in-plane CSM
rescue. The total time from insertion to completion of docking and crew
transfer is about 473 minutes, well within the LM ascent stage lifetime.

6.3.2 CSM rescue using the five impulse extended coelliptic
sequence. - This rescue technique is used for negative insertion phase
angles (-35 degrees to 0 degree). The coelliptic phasing maneuver (CPM)
is computed in the RTCC and transmitted to the CSM. It is performed on
the first passage over LM insertion orbit apocynthion and transfers the
CSM to a high phasing orbit, LM postinsertion tracking, maneuver com-
putation, and maneuver transmission and verification require a total of
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19 minutes. There is sufficient time to perform these operations before
the CSM loses communications with MSFN for all candidate landing sites.
The CSM remains in the phasing orbit for three full revolutions allowing
the LM to catch up. CSI is performed over LM apocynthion and inserts
the CSM into a 60-nautical mile by 25-nautical mile transfer orbit. CDH
is performed one-half revolution later and inserts the CSM into a coelliptic
orbit with a Ah of 15 nautical miles above the LM orbit. TPI is performed
during the first coelliptic revolution when the LM is 90 degrees west of
insertion orbit pericynthion.

The input parameters and performance requirements for this sequence
are presented in Figure 13. The time of the CPM maneuver is dependent
on phase angle, while the CSI and TPI times are constant at 500 and 587
minutes, respectively. The apocynthion altitude of the phasing orbit
reaches a maximum value of 362 nautical miles. The maximum total AV
requirement for CPM, CSI, and CDH is 748 feet per second. However,
the CDH AV is a constant 20 feet per second and could be performed by the
RCS. This leaves a maximum CSM SPS AV requirement of 728 feet per
second. The total time from insertion to docking and crew transfer is
677 minutes, just within the LM ascent stage lifetime.

6.3.3 CSM rescue using the six impulse extended coelliptic
sequence. - This rescue technique is used for positive insertion phase
angles (0 to 17.5 degrees). At the first passage over LM insertion orbit
apocynthion the CSM performs a Hohmann transfer to a 60-nautical mile
by 10-nautical mile orbit, The CPM maneuver is computed in the RTCC
and transmitted to CSM when it resumes contact with MSEFN. CPM is
performed at first pericynthion of the Hohmann transfer orbit which is set
to occur over LM insertion pericynthion. The CSM is inserted into a low
phasing orbit at CPM and remains in this orbit for three and one-half revo-
lutions. CSI occurs at apocynthion of the phasing orbit and CDH is per-
formed one-half revolution later over LM orbit pericynthion. The CSM
will then be a coelliptic orbit with a Ah of 10 nautical miles above the LM,
TPI occurs during the first coelliptic revolution when the LM is 90 degrees
west of insertion,

The input parameters and performance requirements for the six
impulse sequence are presented in Figure 14. The times of the Hohmann
transfer and CPM maneuvers are functions of insertion phase angle., CSI
time is nearly constant at 502 minutes, and TPI occurs at 587 minutes, the
same as in the five impulse sequence. The apocynthion altitude of the
phasing orbit is as low as 12.5 nautical miles which is safely above the
minimum permissible altitude of 60, 000 feet. The maximum total AV
requirement for this sequence is 188 feet per second which is well below
the CSM in-plane rescue AV budget, The total time from insertion to
docking and crew transfer is 677 minutes, just within the LM ascent stage
lifetime,
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7. EXAMPLES OF RENDEZVOUS FOLLOWING ANYTIME LIFT-OFF

A set of detailed examples has been generated to illustrate the appli-
cation of the anytime lift-off rendezvous plan. Five LM lift-off times were
chosen during the first CSM revolution after LM landing. The insertion
phase angles corresponding to the five lift-off times fall into all three
regions of the 360-degree range: two in the nominal region, one in the
post-nominal, and two in the pre-nominal. For each lift-off time, the
applicable rendezvous and rescue sequences were generated using a
Keplerian Program, Each case was initialized with state vectors at LM
insertion resulting from an integrated simulated lift-off from Lunar
Landing Site II-P-2 (longitude 34.0 E, latitude 2. 75 N) on 18 August 1969,
The CSM is in a 58, 27-nautical mile by 58, 04-nautical mile lunar parking
orbit (referenced to the mean lunar radius). The LM is inserted into a
28, 48-nautical mile by 9, 06-nautical mile elliptical orbit, These actual
orbits are lower than the corresponding target orbits used in the para-
metric analysis of the rendezvous techniques. Therefore, some variation
in the geometric, performance, and time parameters is expected. This
is handled, as it would be if the sequences were computed in real time,
by varying the input parameters until an acceptable sequence is computed,
The variation in insertion phase angle with lift-off time during the first
CSM revolution is shown in Figure 15, The five cases are noted in the
figure. The primary rendezvous technique is documented for each of the
five lift-off times. In addition, the CSM-rescue profiles are documented
for the two cases in the pre-nominal region, since they are significantly
different from the primary profiles, Data are presented in the form of
relative motion, range and range rate versus time, state vectors after
each maneuver, and profile timeline showing sunlight/shadow and commu-
nications blackouts for each vehicle,

7.1 Lift-off at Touchdown

LM lift-off at touchdown results in an insertion phase angle of
23,0 degrees, near the lower limit of the nominal region. The input para-
meters for the LM-active coelliptic sequence can be found in Figure 5.
CSI occurs 50 minutes after insertion, CDH is at the first apsis (first
apocynthion) of the transfer orbit, and TPI occurs 260 minutes after inser-
tion during the second revolution of the coelliptic orbit. The maneuvers
and state vectors after each maneuver are presented in Table I, The AV's
for each maneuver compare favorably with those in Figure 6. The rendez-
vous timeline is presented in Figure 16, Data on sunlight/shadow and
communications blackouts are shown in the figure. The relative motion of
the LM with respect to the CSM is shown in Figure 17. The section of the
curve representing about one and one-third revolutions in the coelliptic
orbit is straight because both vehicles are in circular orbits, thus the
altitude difference is constant, The vehicle-to-vehicle range and range
rate are shown in Figure 18 as functions of time from LM insertion. The
discontinuities in the range rate curve at the maneuver times represent
the component of AV along the line of sight between vehicles. Thus, at
TPI, the discontinuity is equal to the magnitude of the impulse presented
in Table 1.
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The input parameters for the CSM-active coelliptic sequence are found
in Figure 7. CSI occurs 51 minutes after LM insertion, one minute after
the LM CSI time. CDH is at the first apsis (first pericynthion) of the
transfer orbit. TPI occurs at about 250 minutes after insertion. The
resultant Ah is 10 nautical miles. The maneuvers and state vectors after
each maneuver are presented in Table II. The mission timelines, relative
motion, and range and range rate are nearly identical to those for the LM-
active case, thus are not presented. The only discernible difference is in
the coelliptic portion of the relative motion plot. Since the two orbits are
elliptical, there is a slight variation (less than +0,5 nautical mile) in the
differential altitude around the orbits. There is negligible difference in
the timelines and range and range rate plots. The same holds true for the
case of CSM rescue after a LM-active CSI maneuver. The maneuvers and
state vectors after each maneuver are presented in Table III. The time-
line, relative motion, and range and range rate are not shown since they
are nearly identical to the data presented in Figures 16, 17, and 18,

7.2 Lift-off 17 Minutes after Touchdown

LM-1lift-off 17 minutes after touchdown results in an insertion phase
angle of 74, 6 degrees, near the upper limit of the nominal region. The
input parameters from Figure 5 are: CSI time of 287.9 minutes from
insertion (50 minutes after pericynthion on the third revolution), CDH at
the third apsis (second apocynthion), and TPI at about 480 minutes after
insertion. The maneuvers and state vectors after each maneuver are
presented in Table IV. The rendezvous timeline is presented in
Figure 19. The relative motion of the LM with respect to the CSM is
shown in Figure 20, The two peaks prior to CSI represent apocynthion
crossings in the LM insertion orbit, The third apsis CDH is also apparent
in the figure. The coelliptic differential height is 16 nautical miles., The
vehicle-to-vehicle range and range rate are shown in Figure 21 as
functions of time from insertion. The range rate plot exhibits the same
oscillatory motion seen in the relative motion plot, Even so, the range
rate is always negative, that is, the range is reduced monotonically,

The input parameters for the CSM-active coelliptic sequence are found
in Figure 7., These parameters are similar to those used in the LM-active
sequence. When the sequence was computed for these state vectors, the
resultant Ah was above 15 nautical miles. The maneuvers and state vec-
tors after each maneuver are presented in Table V. As in the previous
case discussed in Section 7.1, the rendezvous timeline, relative motion,
and range and range rate plots are so similar to those for the LM-active
sequence that it is unnecessary to present them in this report., This also
holds true for CSM rescue following LM-active CSI., The maneuvers and
state vectors after each maneuver are presented in Table VI for this
sequence,
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7.3 Lift-off 60 Minutes after Touchdown

LM lift-off 60 minutes after touchdown results in an insertion phase
angle of 205 degrees, near the middle of the post-nominal region, The
input parameters for the CSM-active high apocynthion dwell and the fol-
lowing LM-active coelliptic sequence are found in Figure 10. The first
dwell maneuver is performed over LM pericynthion 50 minutes after inser-
tion and inserts the CSM into a dwell orbit with an apocynthion altitude of
279 nautical miles. The CSM recircularizes after two complete dwell
revolutions, then the LM performs a coelliptic sequence with CSI occurring
386 minutes after insertion, CDH at the first apsis, and TPI occurring at
478 minutes during the first coelliptic revolution. The predicted &h would
have been 15 nautical miles below the CSM; however, for these state
vectors it is 16 nautical miles. The maneuvers and state vectors after
each maneuver are presented in Table VII, The rendezvous timeline with
sunlight/shadow and MSFN communication blackout times is shown in
Figure 22. The relative motion of the LM with respect to the CSM is
shown in Figure 23. Since the LM travels one revolution more than the
CSM, the curvilinear relative motion of the entire profile is meaningless.
Therefore, the data shown in Figure 23 start at 285 minutes after inser -
tion, about 45 minutes before CSM recircularization. The vehicle-to-
vehicle range and range rate are shown in Figure 24 as functions of time,

In the event of a LM failure during the coelliptic sequence, the CSM
can perform the entire sequence or can rescue the LM after the LM-active
CSI. Since the primary purpose of this case is to illustrate the operation
of the high apocynthion dwell sequence, the coelliptic sequence rescue data
are not presented in this report. These data have been generated and are
available.

7.4 Lift-off 100 Minutes after Touchdown

LM lift-off 100 minutes after insertion results in an insertion phase
angle of 326.5 degrees (or -33,5 degrees), near the lower limit of the
pre-nominal region. The input parameters for the primary rendezvous 1
sequence are found in Figure 12, The LM performs a 100-foot per second
positive horizontal thrust immediately after insertion. This raises the LM
apocynthion altitude to about 103 nautical miles for the given state vectors.
The CSM initiates a Hohmann transfer to 20 nautical miles 10 minutes
later, and circularizes at the first pericynthion, The CSM performs a CSI
maneuver 236 minutes after insertion, at the second passage over LM
pericynthion. The transfer orbit between CSI and CDH is really a phasing
orbit since CDH is performed one revolution after CSI, again over LM
pericynthion. The resultant &h is always the difference between
20 nautical miles and the LM pericynthion altitude and will be on the order
of 10 nautical miles. TPI occurs 383.,1 minutes after insertion, during the |
first coelliptic revolution, The maneuvers and state vectors after each
maneuver are presented in Table VIII. The rendezvous timeline is shown
in Figure 25. The CSM is in contact with MSFN during all maneuvers
except Hohmann transfer circularization. The relative motion of the CSM
with respect to the LM is shown in Figure 26. The relative motion
exhibits some oscillation above and below the LM. This is a result of the
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relatively high eccentricity of the LM orbit. The range and range rate are
shown in Figure 27 and also exhibit this oscillation,

In case the LM cannot perform the required thrust after insertion,
CSM rescue is performed using the five impulse extended coelliptic
sequence. The input parameters for this sequence are found in Figure 13.
The coelliptic phasing maneuver, CPM, is performed over LM apocynthion
71 minutes after insertion. The CSM is inserted into a phasing orbit with
an apocynthion altitude of 323 nautical miles. It stays in this orbit three
complete revolutions, then performs CSI at about 500 minutes after inser-
tion, again over LM apocynthion. CDH occurs at the first apsis (first
pericynthion) and TPI occurs during the first coelliptic revolution, about
587 minutes after insertion. The maneuvers and state vectors after each
maneuver are presented in Table IX. The rendezvous timeline is shown
in Figure 28, There is sufficient time for LM postinsertion tracking
CPM computation-in the RTCC, and CPM transmission and verification
before the CSM loses MSFN contact. The relative motion of the CSM with
respect to the LM is shown in Figure 29. The major portion of the phasing
orbit is not shown since presentation in the curvilinear system is not
representative of the relative motion, The range and range rate are shown
in Figure 30 as functions of time. ' '

7.5 Lift-off 116 Minutes after Touchdown

LM lift-off 116 minutes after touchdown results in an insertion phase
angle of 15 degrees, near the upper limit of the pre-nominal region. The
input parameters for the primary rendezvous sequence are found in
Figure 12, As in Section 7.4, the LM performs a 100-foot per second
thrust immediately after insertion, raising its apocynthion altitude to about
103 nautical miles, Ten minutes later the CSM initiates a Hohmann
transfer to 20 nautical miles, then circularizes at first pericynthion pas-
sage. The CSM performs CSI 221 minutes after insertion on its second
passage over LM pericynthion. CDH occurs at the second apsis (first
pericynthion) and, as in Section 7.4, the resultant &h is on the order of
10 nautical miles. TPI occurs 383.1 minutes after insertion, during the
first coelliptic revolution. The maneuvers and state vectors after each
maneuver are presented in Table X, The rendezvous timeline is shown in
Figure 31. The relative motion of the CSM with respect to the LM is
shown in Figure 32, The oscillatory motion characteristic of this rendez-
vous technique is apparent from the figure., It also shows up in the range
and range rate data of Figure 33,

If the LM cannot perform the required thrust at insertion, CSM rescue
is accomplished using the six impulse extended coelliptic sequence, The
input parameters for this sequence are found in Figure 14, The Hohmann
transfer to a 10-nautical mile pericynthion altitude occurs 54 minutes after
LM insertion, over LM apocynthion. CPM is performed 57 minutes later
at pericynthion of the Hohmann transfer orbit. The apocynthion altitude
of the phasing orbit is 26, 5 nautical miles. The CSM remains in the
phasing orbit three and one-half revolutions then, at apocynthion, per-
forms CSI approximately 502 minutes after LM insertion. CDH occurs
at the first apsis (in this case first pericynthion) and TPI occurs during
the first coelliptic revolution. The maneuvers and state vectors after
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each maneuver are presented in Table XI. The rendezvous timeline is |
shown in Figure 34, The relative motion of the CSM with respect to the
LM is presented in Figure 35, and the vehicle-to-vehicle range and range
rate is presented in Figure 36, The relative motion appears to indicate
that this is not the best possible rendezvous technique. For instance, the
CSM passes within about 9 nautical miles of the LM 100 minutes after
insertion, then moves away before completing the rendezvous. It would
be possible at this point to insert the CSM into a stable orbit with the LM,
then perform terminal phase, However, it should be noted that while this
could be done for this particular phase angle, it could not be performed
throughout the pre-nominal phase angle region.
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8. CONCLUSIONS

Rendezvous following LM anytime lift-off can be performed within
the current performance and time constraints. There is CSM rescue
capability after a LM failure throughout the 360-degree degree phase
angle. The rendezvous techniques used in this plan can be computed on
existing programs. No new systems or modification of existing systems
are required. No problem areas, other than apparently unavoidable
mission complexity, were discovered during the evaluation of this plan.

The performance and total time requirements for rendezvous (LM-
active with CSM assist if specified in the sequence) are presented in
Figure 37. The independent variable in this case is time between touch-
down and LM lift-off, which is directly related to insertion phase angle.
This figure is a summary of data presented in Figures 6, 11, and 12. The
maximum CSM SPS impulsive AV requirement of about 625 feet per second
occurs at the end of the pre-nominal phase angle region (phase angle of
17.5 degrees). The maximum LM RCS impulsive AV requirement of
131 feet per second occurs at several points in the nominal region. The
maximum total time to rendezvous of 680 minutes occurs for the three
revolution high apocynthion dwell (phase angles from 230 to 325 degrees).

The performance and total time requirements for CSM rescue of an
inactive LM are presented in Figure 38, again as a function of lift-off
time during the first CSM revolution following L.M landing. This figure is
a summary of data presented in Figures 8, 11, 13, and 14. The maximum
CSM impulsive AV requirement of 731 feet per second occurs at three
points in the post-nominal phase angle region (phase angles of 135, 230,
and 325 degrees). The maximum total time requirement of 680 minutes,
as in the LLM-active case, occurs throughout the three revolution high
apocynthion dwell.

The multi-impulse rendezvous and rescue techniques used in the
pre-nominal region, while satisfying performance and time requirements,
begin to look less attractive when studied in detail and compared to waiting
until lift-off can occur in the nominal region. The relative motion plots
show the CSM moving ahead of and behind, and in some cases, above and
below the LM. The total time requirement for CSM rescue in this region
approaches the 11. 5-hour LM ascent stage lifetime. The AV requirements
are considerably higher than for CSM rescue from the nominal sequence,
and the CSM pericynthion altitude goes as low as 10 nautical miles. To
alleviate these problems it is desirable to delay the LM lift-off for a
maximum of 18 minutes, allowing it to occur in the nominal region if
possible.
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M LIFI-OFF
LM INSERTION BURN 15 TARGETED FOR
PERICYNTHION OF THE 30-N M1 BY
80,000 FT STANDARD ORBIT.

l

MSFN TRACKING DURING M INSERTION
BURN. THE EXPECTED PHASE ANGLE (#)
IS DETERMINED.

O,
” |

10-MIN POSTINSERTION TRACKING BY LM CHECKS MU ALIGNMENT (LUMINARY P51)
MSFN. LM ORBIT DETERMINATION. AND, {F NECESSARY, REALIGNS (LUNINARY P52),

| l

IF THE CSM (5 POWERED DOWN, n‘l LM AND CSM BOTH BEGIN rucxms]

WILL BE ORDERED TO POWER UP AT AS SOON AS CONTACT IS ESTABLISHED.
FIRST CONTACT WITH MSFN, l

MSEN DETERMINES TIME OF CSI, TIME OF TP) -
AND CDH APSIS, AND TRANSMITS THEM TO
THE LM .

I

COMPUTE THE LM-ACTIVE C$I AND COH
MANEUVERS ON BOARD THE LM (LUMINARY P32)
AND IN THE RTCC (ARRS PROGRAM).

!

COMPUTE THE CSM-ACTIVE CS1 AND CDH
MANEUVERS ONBOARD THE CSM (COLOSSUS P2
AND IN THE RTCC (ARRS PROGRAM

%785

1F 4> 135° THEN THE LM
WILL BE POWERED DOWN

THE NUMBER OF REVOLUTIONS IN THE
DWELL ORBIT 15 DETERMINED BY MSFN

Nz WHEN 80° < 4 < 135°
N =2 WHEN 135° < #+ 220°

N =3 WHEN Z73° < § < 325°

RECOMPUTE THE LM-ACTIVE COM MANEUVER
ON BOARD THE LM (LUMINARY P33),

CSm- AC"V[ CS1 1 MIN AFTER THE ]

v CSY Tim
N =3 WHEN 230° < # < D3° COMPUTE THE FIRST DWELL MANEUVER IN
THE RTCC (ARRS PROGRAM) AND TRANSMIT
l 1170 THE CSM COMPUTE A CSM-ACTIVE CDH MANEUVER
OCCURRING | MIN AFTER THE LM COH RECOMPUTE THE CSM-ACTIVL COH
TIME (COLOSSUS P33). MANEUVER ON BOARD THE CSa
COMPUTE THE FIRST DWELL MANEUVER - ICOLOSSUS #32).
IN THE RTCC (ARRS PROGRAM' AND
TRANSMIT IT TO THE CSm . THE CSM PERFORMS THE FIRST DWELL
MANEUVER 29 MIN AFTER Lk
INSERTION . DOES o
< 'Ct::‘om CSM-ACTIVE CDH MANEUVER

THE CSm PERFORMS THE FIRST DWELL
MANEUVER OVER LM PERICYNTHION

~

COMPUTE Lm-ACTIVE TPI MANEUVER ON
_ﬂcw ORBIT IS DETERM INED BY MSFN -I-_ BOARD THE LM (LUMINARY P34).

COMPUTE CSM-ACTIVE TP) MANEUVER 1O

(FN: 20RN =1, A CORRECTION MANEUVER
1S COMPUTED IN THE RTCC (ARRS PROGRAM} %%ﬁlgsm?:;\:ﬁ (M MANEUVER TIME
IF NECESSARY . 1115 TRANSMITTED TO ThE .

Csam AND PERFORMED AT THE NEXT PERICYN- l

THION OF THE DWELL ORBIT

l ABLE TO. [F NOT, THE CSM WILL

THE SECOND DWELL MANEUVER (RECIRCULARE- PERFORM TFI.
ZATIONY IS COMPUTED IN THE RICC (ARRS 1

THE LM WILL PERFORM TPI IF 1T 1S ]

PROGRAM) AND TRANSMITTED TO THE CSM

THE MIDCOURSE CORRECTION AND

BRAKING MANEUVERS WiLL BE PER-

FORMED BY THE LM WHENEVER -
THE CSM RECIRCULARIZES AFTER N POSSIBLE. THE CSM WILL ACT AS A
REVOLUTIONS IN THE DWELL ORBIT BACKUP ONLY

l

THE CSm ORBIT (S DETERMINED BY MSFN
AND TRANSMITTED TO THE LM .

THE LM IS POWERED UP
IF POSSIBLE

Figure 4. Decision Flow Logic for Rendezvous Following
Anytime Lift-off

42




THE LM PERFORMS A iOO—FPS "CANNED"
MANEUVER IMMEDIATELY AFTER INSERTION.

10-MIN POSTMANEUVER TRACKING
BY MSFN. LM ORBIT DETERMINATION.

l

THE LM 1S POWERED DOWN.

T

DID
THE LM
PERFORM THE

/\ s
°<p<17.5°

MANEUVER
?

YES

CSM PERFORMS FIRST "CANNED"
MANEUVER AND [S INSERTED INTO
60-N M1 BY 20-N M| ORBIT.

THE CSM PERFORMS SECOND "CANNED"
MANEUVER AND CIRCULARIZES AT
PERICYNTHION.

~

NO

COMPUTE THE CSM-ACTIVE CPM MANEUVER
IN THE RTCC (ARRS), AND TRANSMIT IT
TO THE CSM.

THE CSM PERFORMS CPM OVER THE LM
APOCYNTHION. THE CSM WILL REMAIN IN
THIS HIGH PHASING ORBIT FOR THREE
REVOLUTIONS.

MSFN CHOOSES TIMES OF CS{ AND TPt
SO THAT CSI OCCURS OVER LM PERICYN-
THION AND TPl OCCURS 450 DEG LATER.

COMPUTE THE CSM-ACTIVE CSI MANEUVER
ONBOARD THE CSM (COLOSSUS P32).

THE CSM PERFORMS A "CANNED" MANEUVER
OVER THE LM APOCYNTHION. THE CSM IS
IBSERTED INTO A 60-N M1 BY 10-N M1 ORBIT.
FOR 3.5

COMPUTE THE CSM-ACTIVE CPM MANEUVER IN
THE RTCC (ARRS) AND TRANSMIT IT TO THE CSM.

THE CSM PERFORMS CPM OVER THE LM
PERICYNTHION. THE CSM WILL REMAIN IN

COMPUTE THE CSM-ACTIVE CS! MANEUVER

ON BOARD THE CSM (COLOSSUS P32).

THE CSM PERFORMS CSI OVER
LM PERICYNTHION,

COMPUTE CDH MANEUVER
ON BOARD THE CSM (COLOSSUS P33).

THE CSM PERFORMS CDH OVER LM
PERICYNTHION, ONE REVOLUTION
AFTER CSt.

THE LM IS POWERED UP,

THE CSM PERFORMS CSI OVER
LM APOCYNTHION.

COMPUTE THE CSM-ACTIVE CDH MANEUVER
ONBOARD THE CSM (COLOSSUS P33). .

l

THE CSM PERFORMS CDH OVER
Lm PERICYNTHION.

{F POSSIBLE.

COMPUTE LM-ACTIVE TPI MANEUVER O~
BOARD THE LM (LUMINARY P34).

COMPUTE CSM-ACTIVE TPI MANEUVER
TO OCCUR AFTER THE LM MANEUVER
TIME (COLOSSUS P34).

THE LM WILL PERFORM TPIIF (T IS
ABLE TO, IF NOT, THE CSM WILL
PERFORM TP1,

THE MIDCOURSE CORRECTION AND BRAKING
MANEUVERS WILL BE PERFORMED 8Y THE LM
WHENEVER POSSIBLE. THE CSM WILL ACT AS
A BACKUP ONLY.

Figure 4.
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THIS LOW PHASING ORBIT FOR 3.5
REVOLUTIONS.

Decision Flow Logic for
Rendezvous Following
Anytime Lift-off (Continued)
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TOTAL TIME FROM INSERTION TO RENDEZVOUS (MIN)
w
8

TOTAL CSM-ACTIVE AV (FPS)

AV REQUIRED FOR TPI (FPS)

5V REQUIRED FOR CDH (FPS)

COELLIPTIC DIFFERENTIAL ALTITUDE (N MI)

10 x 30 40 50 40 70 80
PHASE ANGLE AT LM INSERTION (DEG)

Figure 9. Performance, Time and Coelliptic Differential Altitude for
LM-Active CSI, CSM Rescue
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[a) '00 I ; . l ‘
b TR H MBI !
o BT M 4
1 2 3
DWELL REVOLUTIONS
274 386 497
TIME OF CSI MANEUVER (MIN)
366 478 590
TIME OF TPl MANEUVER (MIN)
2 14 FER DR B ol N R SEREY FDRRE SSREY RERRS M
w 300 feti / Pt
g S I BT A - A :
= 4 1
= %0 '// 7 : —= R
< ; : 4 : 2k Lt ‘ FIRST DWELL =1
z s AT It v MANEUVER 29 Z['. |
e 3 TA T : MIN AFTER
= R /r‘ LM INSERTIONT]
z el : ‘
TR (1538 A 7 st FIRST DWELL MANEUVER T
o) e o et e OVER LM PERICYNTHION .
<« S ER58E AR EE RS .
< 100 i
= ~ e
o
O 50
-
- S
S
A 0 1

60 80 100 120 140 160 180 200 220 240 260 780 300 320 340
INSERTION PHASE ANGLE (DEG)

NOTES:

(1) CSIIS PERFORMED 50 MIN AFTER
LM PERICYNTHION.,

COELLIPTIC DIFFERENTIAL ALTITUDE
IS 15 N M.

TPI IS PERFORMED 90 DEG WEST OF
LM PERICYNTHION.

(2

3

Figure 10. Input Parameters for the CSM High Apocynthion Dwell Followed
by LM-Active Coelliptic Sequence
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TIME MIN)

DWELL
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700 g2

600 FEHES

500
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300 ;

200 =

100

TOTAL AV FOR DWELL MANEUVERS (FPS)

60 80 100 120 140 160 180 200 220 240 260 280 300 320 340
INSERTION PHASE ANGLE (DEG)

NOTES: 1) LM-ACTIVE RENDEZVOUS
REQUIRES 127 FPS
2) CSM RESCUE REQUIRES
131 FPS

Figure 11. Performance and Time Requirements for the CSM High
Apocynthion Dwell Followed by LM-Active Coelliptic
Sequence
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(1) THE LM PERFORMS A 100-FPS HORIZONTAL
MANEUVER IMMEDIATELY AFTER INSERTION.
(2) THE CSM INITIATES A HOHMANN TRANSFER
TO A 20-N MI CIRCULAR ORBIT 10 MIN AFTER
THE LM MANEUVER.
(3) THE CSI MANEUVER IS PERFORMED AT THE
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(5) THE COELLIPTIC DIFFERENTIAL ALTITUDE IS
10 N MI.
(6) THE TPI MANEUVER IS PERFORMED 383.1 MIN
AFTER INSERTION.

Figure 12. Input Parameters and Performance Requirements for CSM-
Active Rendezvous Following a Planned LM Thrust at
Insertion
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