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1 .O INTRODUCTION 

1.1 GENERAL 

Th is  r e p o r t  presents  t h e  conclusions o f  t h e  analyses of t h e  i n -  

f l i g h t  performance o f  t h e  Apo l l o  9 m iss ion  (AS-504/CSM-l04/LM-3) 

onboard guidance and nav iga t i on  equipment and i s  in tended as a supple- 

ment t o  the  MSC Miss ion  Report f o r  Apo l l o  9. The r e p o r t  was prepared 

and submi t ted under MSC/TRW Task E-388 (G&C Test  Ana lys is ) .  The work 
repo r ted  r e f l e c t s  a working i n t e r f a c e  between Task E-38B, MSC/TRW 

Task A-50 ( T r a j e c t o r y  Reconstruct ion)  and MSC/TRW Task E-72A (Guidance 

and Contro l  System Ana lys is ) .  The r e s u l t s  o f  these tasks a re  h i g h l y  
in terdependent  and the  cooperat ion and suppor t  o f  t h e  A-50 and E-72A 
task  personnel are g r a t e f u l l y  acknowledged. 

1.2 BACKGROUND 

The Apo l l o  9 miss ion  was the f i r s t  manned Lunar Module (LM) f l i g h t  
t e s t .  The pr imary purpose o f  the  miss ion  was t o  eva lua te  t h e  LM systems 

performance and per form se lec ted  Command and Serv ice Module and Lunar 
Module (CSM/LM) Operations. Th is  was the  f i r s t  f l i g h t  f o r  t h e  opera t i on  
and checkout of t h e  Abor t  Guidance System (AGS). The most s i g n i f i c a n t  
GN&C a c t i v i t y  occurred dur ing  the f i f t h  day o f  the  miss ion  when t h e  LM 
undocked from t h e  CSM, performed burns s imu la t i ng  the  l u n a r  miss ion  and 

concluded w i t h  a rendezvous and docking w i t h  t h e  CSM. Overa l l ,  space- 

c r a f t  performance data and miss ion event t imes are  presented i n  t h e  MSC 

M iss ion  Report  f o r  Apo l l o  9. 

. 
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2.0 SUMMARY 

The i n e r t i a l  subsystem performance was e x c e l l e n t  d u r i n g  the  mission. 

The c a p a b i l i t y  o f  a docked LM/CSM IMU al ignment was s u c c e s s f u l l y  demon- 

s t r a t e d .  

Performance o f  t he  LM and CSM DAP was very  good and complete ly  
nominal. 

a t t i t u d e  h o l d  inves t iga ted ,  except t h e  torque due t o  the  cg o f f s e t s  

d u r i n g  t h e  u l lages .  

preceding the  docked DPS burn, the crew repor ted  the  presence o f  apparent 
aerodynamic to rqu ing .  

t o  e i t h e r  s u b s t a n t i a t e  o r  r e f u t e  the cause o f  the  experienced to rqu ing .  

P r i o r  t o  t h e  LM DPS I n s e r t i o n  burn, an ex terna l  d i s t u r b i n g  torque about 
the  V-axis was ev ident .  

No externa l  torques were apparent d u r i n g  the  per iods o f  CSM 

During the  per iod  o f  CSM-LM docked a t t i t u d e  h o l d  

Inadequate da ta  were a v a i l a b l e  d u r i n g  t h a t  p e r i o d  

CES opera t ion  d u r i n g  t h e  AGS DPS Phasing burn was nominal. 

Performance o f  t he  spacecraf t  n a v i g a t i o n  systems d u r i n g  the  ren- 
dezvous p e r i o d  was e x c e l l e n t .  A l l  updates suppl ied t o  t h e  LM guidance 
computer d u r i n g  the  rendezvous were from the  rendezvous radar .  A l l  
Concentr ic  F l i g h t  Plan burn s o l u t i o n s  used were generated by the  LGC. 
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3.0 CSM IMU PERFORMANCE 

3.1 ASCENT VELOCITY COMPARISON 

Ana lys is  o f  the  CM and LM IMU's were based on separate s tud ies .  The 

ana lys i s  of t h e  CM system was based on the  S - I V B  as a standard.  Analys is  
o f  t he  LM I M U  i s  presented i n  Sect ion 5.0 and i s  based on the  DPS docked 
burn. 

Two f i n a l  t r a j e c t o r i e s  were generated by MSFC as a bas i s  f o r  

comparison f o r  t he  ascent phase, these being the  "Edi ted S- IVB I U  TM" 
t r a j e c t o r y  and the "F ina l  S - I V B  Observed P o i n t  Mass Tra jec to ry , "  

(OPMT). Reasons f o r  r e j e c t i o n  o f  t he  l a t t e r  a r e  shown i n  comparisons 

o f  F igures 3-1 through 3-3 w i t h  F igures 3-4 through 3-6 which present  

t h e  uncompensated v e l o c i t y  res idua ls  f o r  the ascent phase. As i n  the  

pas t ,  the  OPMT was r e j e c t e d  because o f  more e r r a t i c  t rends,  and 
reasonable e r r o r  se ts  which e f f e c t e d  a good boost  comparison were 

unachievable.  

I n  the  ana lys i s  o f  Apo l l o  9, f l i g h t  l oad  values were used i n  

p lace  o f  the data means as a basis of comparison w i t h  the  der ived  

e r r o r s  because the number o f  p r e f l i g h t  da ta  p o i n t s  were smal l  and 
because some o f  t he  inst ruments were showing s t rong t rends immediately 

p r i o r  t o  f l i g h t .  The i n f l i g h t  ( f r e e  f a l l )  measured values were used 

as comparisons t o  the der ived  data values f o r  P I P A  and I R I G  b iases.  

The CM e r r o r  sources a re  presented i n  Table 3.1. None o f  the  e r r o r  

sources exceeded the  one-sigma bounds f rom the  expected e r ro rs .  

Comparison w i t h  the  p r e f l i g h t  data t rends lends conf idence t o  the  
de r i ved  e r r o r  se t .  The compensated r e s i d u a l s  f o r  t h e  ascent phase 

a r e  presented i n  Figures 3-7 through 3-9. 

Due t o  the e x c e p t i o n a l l y  good f i t  t o  t h e  der ived  da ta  w i t h  
respec t  t o  the  expected e r r o r s ,  no d iscuss ion  o f  the  i n d i v i d u a l  e r r o r  
sources i s  necessary. One problem un re la ted  t o  A p o l l o  i s  ev iden t  f rom 
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Figures 3-2 and 3-9. 
corrected by using the standard technique o f  applying an  offset  velocity 
t o  the Apollo data equivalent t o  the time zero velocity difference 
between Apollo and Saturn data. 
acceleration domain where i t  was observed tha t  the Saturn S-IVB Y 
accelerometer sensed o u t p u t  was approximately 1 f t /sec2 higher for the 
f i r s t  four seconds o f  f l i g h t  than the Apollo sensed acceleration. 
has subsequently been established t h a t  Saturn accelerometers are 
susceptible t o  the l i f t -of f  vibration environment and the f i rs t  few 
seconds of Saturn data are suspect. 

The f irst  few seconds of velocity error  could not be 

The problem i s  more apparent i n  the 

I t  
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4.0 CSM DIGITAL AUTOPILOT 

The major p o r t i o n  o f  t h e  CSM and CSM/LM c o n t r o l  a c t i v i t y  du r ing  the  
m iss ion  was c a r r i e d  o u t  under SCS c o n t r o l .  Per iods o f  G&N c o n t r o l  were 

genera l l y  l i m i t e d  t o  the automatic maneuvers t o  t h e  SPS and docked 
DPS burn a t t i t u d e s ,  the  a t t i t u d e  ho ld  mode f o l l o w i n g  these automat ic 

maneuvers, and a l l  o f  t he  SPS burns. A f t e r  t he  SPS 6 burn,the DAP 

was i n  c o n t r o l  du r ing  t h e  o r b i t  r a t e  automat ic maneuver. A l l  o f  t he  
SPS burns and most o f  t he  automatic maneuvers and pe r iods  o f  a t t i t u d e  

h o l d  were analyzed; however, most o f  t he  a n a l y s i s  focused on the  RCS 

and TVC DAP ope ra t i on  w i t h  t h e  CSM/LM i n  the  docked c o n f i g u r a t i o n .  

An except ion  t o  t h i s  was the  o r b i t  r a t e  automat ic maneuver which was 

performed by the  CSM alone. 

Periods o f  DAP c o n t r o l  analyzed were: 

TVC DAP 

SPS burns 1 t o  8. Burns 1, 6 and 8 were n o t  examined 
i n  as much d e t a i l  as the o the rs  because o f  t h e i r  s h o r t  
d u r a t i o n .  
DAP Automatic Maneuvers 

o Maneuvers t o  a l l  o f  the SPS burns except SPS burns 
5, 6 and 8 ( d e o r b i t ) .  
these maneuvers. 

No data was a v a i l a b l e  du r ing  

o The maneuver t o  the  docked DPS burn a t t i t u d e .  

o The o r b i t  r a t e  automatic maneuver. 

DAP A t t i t u d e  Hold 

u l l a g e .  
preceding burn 5 ( l a s t  10 seconds) and d i d  n o t  a l l o w  com- 
p l e t e  phase plane swi tch ing  v e r i f i c a t i o n .  

A t t i t u d e  ho ld  preceding each o f  t he  burns and i n c l u d i n q  
Only l i m i t e d  data were a v a i l a b l e  du r ing  the  u l l a g e  

4.1 TVC DAP PERFORMANCE 

Data summarizing t h e  TVC DAP performance and SPS burn charac ter -  
i s t i c s  f o r  each of t he  SPS burnsare prov ided i n  Tables 4.1 t o  4.5. 
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Plots of a t t i t u d e  errors ,  gimbal trim angles, gimbal commands and mea- 
sured gimbal positions are given in Figures 4-1 t o  4-14. 
the measured gimbal positions, Ground Elapsed Time ( G E T )  relating t o  
the burns and peak body rates ,  the above d a t a  were obtained from computer 
words. Ignition times, ullage on-times, and burn  durations are based 
on RCS and SPS solenoid bilevel s ta tes .  Measured gimbal positions and 
peak bcdy rates were cbtained from time history tabulations. Autopilot 
performance was satisfactory d u r i n g  a l l  of the SPS burns dur ing  th i s  
mission. 

4.1.1 Attitude Errors 

Except for  

Peak att i tude errors in pitch and yaw fo r  a l l  of the burns during 
G&N control ( the only period of SCS control during a b u r n  were during 
the manual takeover near the end of burn  3 )  except SPS b u r n  5 were 
less t h a n  2.5 degrees. 
of 7 .2  degrees; the peak pitch at t i tude error for th i s  b u r n  was 3.2 
degrees. 
t ive t o  i n i t i a l  condition errors and mistrims t h a n  the other burns. 
In i t ia l  condition errors in yaw for  th i s  burn  included a 0.5 degree 
at t i tude error,  a 0.3 deg/sec rate  error  and -0.19 degrees of yaw engine 
mistrim. The resultant yaw at t i tude deviation (Figure 4-5) was 
consistent with preflight analysis. 

SPS b u r n  5 experienced a peak yaw at t i tude error 

Preflight simulations indicated t h a t  th i s  b u r n  was more sensi- 

During the preliminary analysis of t h i s  b u r n ,  i t  was n o t  entirely 
clear t h a t  the yaw gimbal actuator command was responding correctly t o  
null the increasing yaw at t i tude error .  For example, i t  can be seen 
from Figures 4-12 and 4-13 t h a t  there was a period of 8 seconds 
(54:26:39.9 to  54:26:47.9 G E T )  in which the at t i tude error increased 
monotonically from 5 degrees t o  7 degrees and the engine command 
remained constant. A d igi ta l  simulation of the CSM/LM DAP f i l t e r ,  
including the switchover logic,  was solved for  the f i l t e r  response 
to  the measured yaw at t i tude error shown in Figure 4-12. 
were then compared with the measured f i l t e r  response from the f l i gh t  
d a t a .  
Actuator Command ( Y C M D )  and the Yaw Trim Angle (YACTOFF).  

The results 

The  measured f i l t e r  response i s  the difference between the Yaw 
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r i g c r e  4-15 presents the  comparison o f  t h e  measured and computed f i l t e r  

response t o  the measured a t t i t u d e  e r r o r .  The maximum d e v i a t i o n  between 
computed and measured f i l t e r  output was 0.05 degrees. 

i s  t o  be expected because constant mass p r o p e r t i e s  (used i n  t h e  ca lcu-  
l a t i o n  o f  t h e  ga in  VARK) were assumed i n  t h e  s imu la t i on .  

Some d e v i a t i o n  

The reason f o r  t he  sudden change i n  the  a t t i t u d e  e r r o r ,  and conse- 
quent engine response, d u r i n g  t h e  l a s t  4 seconds of t h e  burn i s  due t o  

t h e  guidance commands be ing  s e t  t o  zero a t  t h i s  t ime.  

r e s u l t s  i t  i s  apparent t h a t  t he  engine response t o  the  yaw a t t i t u d e  
e r r o r  du r ing  SPS 5 was e n t i r e l y  nominal. 

From these 

4.1.2 I g n i t i o n  Trans ien ts  

The gimbal i g n i t i o n  t rans ien ts  appeared nominal i n  a l l  cases. The 

measured gimbal command du r ing  the f i r s t  5 seconds a f t e r  i g n i t i o n  i s  
p l o t t e d  on an expanded sca le  f o r  SPS 2 i n  F igure  4-2a. 

t he  peak-to-peak ampl i tude o f  t h e  i n i t i a l  gimbal excurs ion  caused by 

gimbal compliance du r ing  the  f i r s t  1/2 second o f  t h r u s t i n g  was l e s s  
than 0.45 degrees f o r  both p i t c h  and yaw. 

For a l l  burns 

Gimbal o s c i l l a t i o n s  r e f l e c t i n g  p r o p e l l a n t  s l o s h  were observed du r ing  
the  SPS 5 and SPS 7 burns. SPS 5 was a docked burn and fo l l owed  the  

docked DPS burn. 
observed i n  bo th  p i t c h  and yaw and were w e l l  damped w i t h i n  10 seconds 

a f t e r  i g n i t i o n .  
due t o  the  LM p r o p e l l a n t  du r ing  t h i s  burn. The t h e o r e t i c a l  
frequency o f  the LM p r o p e l l a n t  i s  approximately equal t o  t h a t  o f  the  

CSM a t  t h i s  time. Comparisons o f  the LM and CCM s losh  dynamics i n  
the  v i c i n i t y  o f  SPS 5 i g n i t i o n  are discussed i n  Sec t ion  6.1.2. 

gimbal o s c i l l a t i o n s  du r ing  burn 7 were a l s o  damped o u t  i n  about 10 

seconds. 
t h e o r e t i c a l  values. Slosh induced peak-to-peak engine d e f l e c t i o n s  
were l e s s  than 0.25 degrees f o r  burn 5 and 0 .6  degrees f o r  burn 7 .  

O s c i l l a t i o n s  dur ing burn 5 o f  about 0.5 HZ were 

It i s  be l i eved  t h a t  the  s losh  torques were predominately 

s losh  

The 

For bo th  burns the  measured s losh  frequencies agreed w i t h  the  
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4.1 .3  Manual Takeover 

The rate comnand MTVC mode was exercised during the l a s t  45 seconds 
of burn  8 and tested ra te  damped manual control with the LM attached. 
Transfer from CMC TVC t o  SCS MTVC occurred a t  25:21:34.8 GET. Manual 
control i s  accomplished in th i s  mode w i t h  the Rotational Hand Controller 
( R H C ) .  Body rates are commanded proportional t o  the RHC deflection, 
with the p i lo t  attempting t o  null the Flight Director Attitude Indicator 
(FDAI)  displayed at t i tude errors .  The FDAI displays the o u t p u t  of the 
at t i tude BMAG's which are uncaged a t  ignition. Roll control was 
accomplished using the at t i tude hold mode. 
deadband was selected for rol l  phase plane switching during MTVC. 
Figures 4-5 and 4-6 present plots of pitch and yaw at t i tude errors and 

rates during MTVC. I n  general , satisfactory control was maintained 
th roughou t  the manual control. Pitch and yaw at t i tude errors peaked 
a t  3.2 degrees and -4.3 degrees respectively, approximately 1 2  t o  15 sec 
a f te r  manual takeover. 
remained a t  burn termination. 
appeared t o  be excited dur ing  manual control. Considerably more 
RHC commands were issued in pitch t h a n  yaw, par t ia l ly  because of an 
i n i t i a l  0 .2  deg/sec body ra te  which was present in pitch compared 
t o  practically zero r a t e  in yaw. 

The minimum ra t e ,  narrow 

A residual cross axis velocity of -2.5 f t / sec  
Neither slosh nor bending oscil lations 

One roll  RHC correction was made about 1 . 2  seconds a f te r  Manual 
Thrust Vector Control (MTVC) in i t ia t ion .  This command was issued t o  
remove a rol l  rate which had bui l t  u p  t o  abou t  2 .5  deg/sec by the time 
the RHC action was taken. A continuous 1 . 2  second 2- je t  rol l  f i r ing  
from the time o f  transfer t o  SCS was responsible for  the ra te  build-up. 
The long j e t  f ir ing was caused by the roll  deadband being contracted 
from 5.0 degrees during G&N TVC t o  0.2 degrees a t  SCS in i t ia t ion .  The 
rol l  a t t i tude error which was present a t  the time of transfer t o  SCS 
was almost -4 degrees. This i n i t i a l  roll  transient and the resulting 
correctiveaction could have been avoided had the SCS rol l  a t t i tude  
deadband n o t  been i n i t i a l l y  s e t  a t  0 .2  degrees. I t  i s  recommended 
for  future f l ights  t h a t  preceding G&N controlled SPS burns, the SCS 
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J i jdband be s e t  a t  maximum deadband (+ 4 degrees o r  2 4.2 degrees, depend- 
i n g  on whether the  RATE SWITCH i s  se t  i n  t h e  MAX o r  M I N  p o s i t i o n ) .  

Estimated mis t r ims are presented i n  Table 4.4. These values were 
computed by comparing the i n i t i a l  t r i m  a t  i g n i t i o n  w i t h  thes ing le -sho t  
t r i m  values a t  switchover ( i g n i t i o n  t ime  + 6.42 seconds f o r  LM ON, 
+ 3.7 seconds f o r  LM OFF). 

switchover,  m is t r ims  were n o t  ca lcu la ted .  
m i s t r i m  us ing  the  above method occurred on burn  7 i n  which the  yaw 

m i s t r i m  was -0.486 degrees. Due t o  t h e  s losh  torques which had n o t  

subsided a t  t h e  t ime  of switchover,  a va lue  o f  YACTOFF a t  a l a t e r  t ime 

would probably g i v e  a b e t t e r  t r i m  t o  compare w i t h  t h e  i n i t i a l  value. 
Four seconds a f t e r  switchover,  YACTOFF has a va lue  o f  -0.802 and does 

n o t  change f o r  another 4 seconds. Comparing t h i s  va lue  w i t h  the  i n i t i a l  
t r i m  y i e l d s  an est imated yaw m is t r im  o f  0.316 degrees. I n  a d d i t i o n  t o  
i n i t i a l  m is t r im ,  Table 4.4 a l s o  l i s t s  values o f  t he  MCC t ime  updates 

which were communicated by vo i ce  p r i o r  t o  the  burns, values o f  PACTOFF 
and YACTOFF a t  i g n i t i o n ,  switchover, and c u t o f f ,  and measured engine 

p o s i t i o n  a t  i g n i t i o n .  Figures 4-3, 4-8, 4-11 and 4-14 present  p l o t s  
o f  PACTOFF and YACTOFF f o r  SPS burns 2, 3, 4 and 5, r e s p e c t i v e l y .  

I t  i s  c l e a r  from t h e  p l o t s  t h a t  the  cg t r a c k e r  i s  f o l l o w i n g  the  m i g r a t i n g  

cg * 

4.1.4 R o l l  TVC DAP 

For shor t  SPS burns i n  which t h e r e  was no 

The l a r g e s t  va lue  o f  est imated 

R o l l  c o n t r o l  was nominal throughout a l l  o f  the  burns. There were 

v e r y  few r o l l  f i r i n g s  du r ing  any o f  t h e  burns and i n  o n l y  one case an 

e x t e r n a l  r o l l  torque was d i s t i n c l y  evident.  Dur ing  burn 4 a r o l l  
1 a t t i t u d e  e r r o r  was 

was s a t i s f a c t o r y .  
t o rque  o f  about 1.25 f t - l b  was observed. The r o  
d r i v e n  t o  the  negat ive  deadband ,but r o l l  c o n t r o l  

Three r o l l  f i r i n g s  were observed dur ing the  burn 

4.1.5 S t r o k i n g  Tests 

The two s t r o k i n g  t e s t s  which 

o f  SPS burns 2 and 3 were n o t  ana 

were c a r r i e d  
yzed i n  deta 

o u t  d u r i n g  t h e  e a r l y  p a r t s  

1 f o r  t h i s  r e p o r t ,  b u t  
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a f a i r ly  detailed tiiiie history of the gimbal a c t u a t o r  response during 
each t e s t  was included f o r  reference. 
t o  the 40';) stroking t e s t  i n  b u r n  2 and  Figure 4-7a shows the 100% 
stroking t e s t  which was performed in b u r n  3 .  

Figure 4-2a presents the response 

4 .2  RCS DAP PERFORMANCE 

No anomalies were identified d u r i n g  the periods of RCS DAP control 
which were analysed. RCS DAP performance appeared nominal t h r o u g h -  
o u t  the mission. 

4.2.1 RCS DAP Automatic Maneuvers - 

Figures 4-17 t o  4-22 present plots relating t o  three automatic 
maneuvers: The maneuver t o  b u r n  2 a t t i tude ;  the maneuver t o  the 
docked DPS b u r n ;  and the Orbit Rate Automatic maneuver. I n  each case, 
plots o f  body rates and CDU angles are given with the desired body 
rates a n d  desired final CDU angles dashed in. Only the l a s t  40 seconds 
of  data during the maneuver t o  b u r n  2 was available, as i s  indicated 
in Figures 4-17 and 4-18. However, about 160 seconds of a t t i tude 
hold data following the maneuver was available and i s  included in 
the plots. 

Wide deadband was used during the maneuver t o  b u r n  2 and the 
docked DPS burn.  The orb i t  ra te  maneuver was carried o u t  in the 
narrow deadband. All o f  the maneuvers were successfully executed, 
with att i tude errors a t  the termination within the DAP deadband. 
The command and actual body rates were in agreement w i t h i n  %he l imits 
of the phase plane deadzone. No a t t i tude  overshoot was observed 
d u r i n g  any of the maneuvers. Atti tude hold was properly ini t ia ted a t  
the termination of a l l  of the maneuvers. 
determine t h e  frequency of RCS j e t  f i r ings  during the Orbit Rate 
Maneuver, b u t  data were n o t  available during t h a t  time period. 
of the estimated body rates (Figure 4-20) indicate t h a t  an excessive 
number o f  f i r ings  d i d  no t  occur. 
impulse. 

Bilevel d a t a  were searched t o  

Plots 

The majority of f i r ings were minimum 
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4.2.2 RCS DAP Attitude Hold 

Figures 4-23 t o  4-28 present phase plane plots of the periods of 
a t t i tude  hold preceding burns 3 and 4. 
i n  a l l  cases. No external torques were apparent i n  any of the periods 
of a t t i t ude  hold investigated except the torque due t o  the cg of fse t s  
during the ullages. The e f f ec t  of the 20 second 4- je t  +X ullage prior 

t o  b u r n  4 i s  seen in these figures. The cg of f se t  i n  pitch which was 
present during this  ullage was about 3 .4  inches and resulted in a 
pitch disturbing acceleration o f  about 0.024 deg/sec2 forcing the 
pitch phase plane t ra jectory t o  an a t t i tude  e r ror  of about -0.62 degrees. 
Figures 4-26 to  4-28 include the ullage maneuver as well as about 200 
seconds of p r i o r  coasting f l igh t .  Predictably, there were a large 
number of s ingle  j e t  f i r ings  during th i s  ullage to  bring the phase 
plane t ra jectory back into the deadzone. 

Nominal performance was indicated 

4.3 ENTRY DAP PERFORMANCE 

During the extra-atmosphere portion of entry,  the SCS was i n  control 
of the spacecraft. Sensing of 0.059 occurred a t  240:42:25 GET and the 
Entry DAP was placed in control of the spacecraft a t  240:46:47 GET. T h u s ,  
the only portions of the Entry DAP which were exercised were the 2-sec, 
predictive Roll D A P ,  and the pitch and yaw ra t e  dampers. 

Entry Roll DAP performance was found t o  be en t r ie ly  nominal t o  
the extent t ha t  TM data allowed analysis. On the basis of data obtained, 
r a t e  damping in the pitch and yaw axes appeared nominal although com- 
plete verification was n o t  possible due t o  low frequency of these 
data. 

4.3 

the 
a t  

1 Roll DAP Performance 

Entry Roll DAP performance was en t i re ly  nominal. The a b i l i t y  of 
R ~ l l  DAP t o  maintain the desired ro l l  angle i s  shown by Figure 4-29, 
me history of commanded and actual ro l l  angles d u r i n g  entry. 
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A number o f  large angle, a t t i  tude maneuvers were executed d u r i n g  
entry w i t h  l i t t l e  or no overshoot, supporting the assumption t h a t  j e t  
on-times were calculated correctly. Actual verification of the j e t  
on-time calculation could n o t  be done due to  the lack of necessary 
quantit ies on TM and the coarseness of the d a t a .  

4.3.2 Pitch and Yaw Rate Damping 

Every pitch f i r ing  d u r i n g  entry was verified to  have been i n  
accordance w i t h  the pitch ra te  damper design which limits pitch ra te  
t o  less  than two degrees per second. 

Yaw damper f i r ings are  commanded by the yaw DAP t o  execute co- 
ordinated turns according t o  r = p sin a with sin O. held a t  a constant 
-0.34202 (a = - 20" ) . 
yaw j e t s  are  fired to  damp the rates.  

When stabi 1 i ty-axi s yaw rates exceed 2"/sec, 

D u r i n g  two bank angle reversals,  a number o f  consecutive yaw axis 
f i r ings occurred when the yaw ra te  from the SCS data was apparently 
well below 2"lsec. However, since the f i r ings are based on the CMC 

ra te  estimates instead o f  the SCS data,  the ra te  estimator d a t a  were 
examined i n  detail d u r i n g  these periods. 
thruster act ivi ty  are shown i n  Figures 4-30 and 4-31. SCS s t a b i l i t y  
ax i s  yaw ra te ,  CMC yaw ra te  calculated from PREL and RREL data,  and 
yaw axis thruster ac t iv i ty  are shown i n  these figures. 

The periods of h i g h  yaw 

PREL and RREL were available a t  200 m sec intervals (every other 
DAP cycle) on the TM downlist, accounting for  the gaps i n  the p l o t s  of 
CMC estimated rates. 
data were available. Those firings which occurred when PREL and RREL 
data were available on T M  were according t o  the yaw DAP design; t h a t  
i s ,  the yaw rate had exceeded the 2"/sec ra te  deadband a t  the time of 
the firings. 
yaw ra te  was w i t h i n  the deadbands. 

Some thruster f i r ings occurred when no ra te  estimator 

In some instances, the rate  gyro data indicated that  the 
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The above ana lys i s  i n d i c a t e s  t h a t  s u f f i c i e n t  d i f f e r e n c e s  e x i s t  
between the  SCS data and r a t e  es t imator  da ta  t o  p rec lude use o f  t h e  SCS 

data as a c r i t e r i o n  f o r  v a l i d a t i n g  the yaw j e t  f i r i n g s  d u r i n g  per iods  

where r a t e  es t ima to r  da ta  i s  unava i lab le .  Several f a c t o r s  can c o n t r i b u t e  
t o  t h i s  var iance between the  analog and CMC r a t e  es t ima to r  data. 

t h e  i n t e r v a l s  o f  i n t e r e s t  occurred dur ing  pe r iods  o f  h igh  r o l l  r a t e s  
( >  10°/sec), t he  most probable cause i s  t h e  CDU sw i t ch ing  between h igh  

and l o w r a t e  sampling f requencies.  Th is  s w i t c h i n g  occurs f o r  r o l l  

r a t e s  i n  excess o f  4"/sec and can c rea te  r a t e  e r r o r s  as h igh  as l " / sec .  

Since 

Also, f, the  r a t e  o f  change o f  t he  angle between t h e  l o c a l  h o r i z o n t a l  

and t h e  r e l a t i v e  v e l o c i t y  vec tor ,  i s  i nco rpo ra ted  i n t o  the  r a t e  es t ima to r  

c a l c u l a t i o n s  when +0.5"/sec. Another p o t e n t i a l  source o f  e r r o r  i s  

s t r u c t u r a l  v i b r a t i o n s .  Although the r a t e  gyros and t h e  IMU a re  sub jec ted  

t o  the  same v i b r a t i o n  du r ing  reent ry ,  t h e i r  l o c a t i o n s  w i t h i n  the  CM 

s t r u c t u r e  cause some d i f f e rences  i n  the  ampli tudes and frequencies o f  
the  v i b r a t i o n s  app l i ed  t o  the  i n d i v i d u a l  p ieces o f  equipment. 
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5.0 LM IMU PERFORMANCE 

5.1 DPS 1 VELOCITY COMPARISON 

Ana lys is  of the  LM system was based on t h e  CSM as a standard.  

The LM e r r o r s  were n o t  co r rec ted  f o r  CSM e r r o r s  as determined from 
t h e  ascent da ta  for two  reasons. F i r s t ,  i n  t h e  CM/S- IVB comparison, 

t h e  S- IVB e r r o r s  a re  unknown and are thereby a t t r i b u t e d  t o  the  CSM. 

Second, f o r  t he  DPS burn, t he  average a c c e l e r a t i o n  over  t h e  burn was 

o n l y  0.13 g ' s  on the  LM X-axis. These two cond i t i ons  l end  t o  low 
conf idence l e v e l s  i n  the  der ived  LM s o l u t i o n ,  s ince  combinations o f  

ext remely smal l  e r r o r  sources could g i v e  a reasonable s o l u t i o n  t o  the  

smal l  res idua ls  invo lved.  Table 5.1 l i s t s  what a re  be l i eved  t o  be t h e  

major  LM e r r o r s  w i t h  respec t  t o  the CM f o r  t h i s  burn. 
s e t  i s  des i red,  i t  can be obtained by mere ly  s u b t r a c t i n g  the  CM e r r o r s  
f rom t h e  LM e r r o r s .  The except ion t o  the  above i s  t h a t  between ascent 

and DPS 1 , ACBX was changed from -1.214 cm/sec t o  zero due t o  an updated 

compensation l oad  between the t w o  f l i g h t  phases. 

I f  a CSM co r rec ted  

2 

The uncompensated v e l o c i t y  comparisons f o r  DPS-1 a re  shown i n  

F igures  5-1 through 5-3 and the  compensated r e s i d u a l s  a re  shown i n  

F igures 5-4 through 5-6, respec t ive ly .  

Due t o  the  e x c e p t i o n a l l y  good f i t  o f  t he  der ived  data w i t h  respec t  
t o  the  expected e r r o r s ,  no discuss on o f  t h e  i n d i v i d u a l  e r r o r s  i s  

necessary. 
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6.0 LM DIGITAL AUTOPILOT 

The degree o f  d e t a i l  and accuracy o f  t he  pos t  f l i g h t  ana lys i s  o f  t he  

LM DAP was dependent on the  ava i l ab le  te lemet ry  (TM) data.  An accurate 
ana lys i s  was n o t  always obtained s ince  the  m a j o r i t y  o f  the  LGC downl ink 

parameters used were sampled once pe r  two second TM cyc le .  I n  some 
cases, maneuvers and burns were performed over areas where coverage 

was n o t  ava i l ab le .  Th is  sec t ion  discusses the  t h r e e  d i s t i n c t  con- 

f i g u r a t i o n s  which the  LM DAP m u s t  c o n t r o l ,  i . e .  

a) LM/CSM Docked Conf igura t ion  

b )  Descent Conf igura t ion  

c )  Ascent Conf igura t ion .  

Automatic maneuvers, PGNCS c o n t r o l  l e d  burns and per iods  o f  a t t i  tude 

h o l d  were i n v e s t i g a t e d  f o r  each c o n f i g u r a t i o n .  

which were analyzed were: 
The var ious  modes 

a )  A t t i t u d e  Hold (coast ing and powered f l i g h t )  

b )  Manual Rate Command 

c )  Automatic Maneuvers 

d)  Autornati c S teer ing  . 
6.1 LM/CSM DOCKED CONFIGURATION 

The data used i n  the  ana lys is  o f  t h i s  c o n f i g u r a t i o n  were taken from 

t h e  computer words down1 inked  and the  associated osc i  11 ograph records.  

The maneuver t o  the  burn a t t i t u d e  and t h e  a t t i t u d e  h o l d  be fo re  and a f t e r  

t h e  burn were performed by the  CSM and are n o t  inc luded under t h e  LM ana lys i s .  

6.1 . I  Docked DPS Burn 

A 2 - j e t  u l l a g e  ( j e t s  6 and 14) was s t a r t e d  a t  49:41:25.6 and con- 

t i n u e d  u n t i l  49:41:35.2. I g n i t i o n  occurred a t  49:41:33.0 w i th  t h e  manual 

t h r o t t l e  s e t  a t  11.37% o f  maximum t h r o t t l e  s e t t i n g .  A t  49:41:45 the  manual 
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t h r o t t l e  had been placed a t  38% maximum s e t t i n g  and the  automat ic 

t h r o t t l e  s t a r t e d  b u i l d i n g  up t o  the  f i x e d  t h r o t t l e  p o i n t  a t  49:42:0.75. 

V65E was keyed i n  p r i o r  t o  i g n i t i o n  t o  i n h i b i t  t h e  X-axis RCS j e t s  
f r o m  f i r i n g  dur ing t h e  Docked DPS Burn. 

d u r i n g  r e a l t i m e  mon i to r i ng  t h e  appearance of 8 o r  9 r a p i d  RCS pulses a t  

i g n i t i o n .  A review o f  t h e  o s c i l l o g r a p h  records  and b i l e v e l  t a b u l a t i o n s  d i d  
n o t  subs tan t i a te  t h i s  observat ion.  
r e a l  t ime te lemet ry  noise.  
was du r ing  the  pe r iod  o f  ' u l l age .  

f o r  0.1 sec t o  p rov ide  +V r o t a t i o n .  Th is  f i r i n g  was i n  accordance 

w i t h  t h e  phase plane l o g i c .  

were f i r e d  throughout t h e  burn. The o n l y  RCS a c t i v i t y  was balanced 
coupled 2 - j e t  f i r i n g s  which produced r o t a t i o n s  about t h e  P-axis.  

f i r i n g s  were 0.1 sec i n  d u r a t i o n  which i s  a minimum impulse f o r  t h e  
LM/CSM docked con f igu ra t i on .  A sample o f  t he  P-axis phase plane i s  

shown i n  F igure  6-1 and i n d i c a t e s  t h a t  t he  f i r i n g s  occurred a t  t h e  

sw i t ch ing  1 i nes as planned. 

The f l i g h t  d i r e c t o r s  r e p o r t e d  

The observed f i r i n g s  must have been 

J e t s  1 and 10 (4U and 1D) came on 

One f i r i n g  d i d  occur a t  59:41:31.3 which 

Exc lus ive  of u l l a g e ,  no X-axis RCS j e t s  

A l l  

Peak angular r a t e s  f o l l o w i n g  t h e  t h r o t t l e - u p  t o  t h e  f i x e d  t h r o t t l e  

p o s i t i o n  were q u i t e  low (0.14 deg/sec about t h e  Q-ax is  and 0.2 deg/sec 

about t h e  R-axis) . The angular r a t e s  and a t t i  tude excursions ob ta ined 
du r ing  the  steady-state p o r t i o n  o f  t he  burn  were low and l e s s  than t h e  

values pred ic ted  by p r e f l i g h t  s imu la t ions .  The peak angu lar  r a t e s  

which occur red  du r ing  the  t h r o t t l i n g  p r o f i l e  near t h e  end o f  the  burn 
were -0.35 deg/sec f o r  t h e  Q-ax is  and 0.53 deg/sec f o r  t he  R-axis. 

Both peaks occurred a t  49:47:12. 
0.5 t o  0.6 deglsec which was p r e d i c t e d  by p r e f l i g h t  s imu la t i on .  

p l o t  o f  t he  LGC es t imated r a t e s  d u r i n g  the  t h r o t t l i n g  p r o f i l e  i s  con- 
t a i n e d  i n  Figure 6-2. 

BMAG's a re  shown i n  F igure  6-3. 

t he  curves i s  very good i n  the  two f i g u r e s .  

w i l l  be discussed i n  Sec t ion  6.1.2, very  e v i d e n t  i n  F igure  6-3. 
Th is  e f f e c t  i s  n o t  as pronounced i n  the  es t imated  r a t e s  because o f  t he  

f i l t e r i n g  ac t i on  o f  t h e  r a t e  es t ima to r  and t h e  low v i s i b i l i t y  a f f o r d e d  

These r a t e s  were w i t h i n  t h e  range of 
A 

For comparison, t h e  r a t e s  ob ta ined from t h e  CSM 

The general agreement o f  t h e  shape of 

The e f fec t  o f  s losh, which 
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by t he  1 sec TM data.  
be-gained i n  body coord inates f o r  t h i s  burn. 
a t  49:47:45, the  v e l o c i t y  e r r o r  i n  the  Y-axis was 3.5 f t / sec  and the  

v e l o c i t y  e r r o r  i n  the  Z-axis was -1.9 f t / s e c  a t  c u t o f f .  

F igure  6-4 conta ins  the  p l o t s  o f  v e l o c i t i e s - t o -  
The burn was terminated 

6.1.2 Slosh 

s losh,  or  an e f f e c t  which appeared t o  be s losh,  was q u i t e  ev iden t  
d u r i n g  the  docked DPS burn. The P i t c h ,  R o l l  and Yaw Log ic  E r r o r  t races  
(Channels GH1248, GH1249 and GH1247) osc i  11 a ted  q u i t e  n o t i c e a b l y  du r ing  

var ious  p o r t i o n s  of t h e  burn. The o s c i l l a t i o n s  were n o t  always sus ta ined 

and would appear and disappear a t  var ious  t imes du r ing  the  burn.  The 
f o l l o w i n g  t a b l e  summarizes some o f  t he  more no t i ceab le  o s c i l l a t i o n s .  

TIME - A X I S  VEHICLE WEIGHT FREQUENCY 

49: 44: 29 R o l l  57579 l b  0.39 HZ 

49 : 44 : 40 Yaw 57227 l b  0.37 H, 

49 : 46 : 7.5 P i t c h  5441 1 

49: 46: 7.5 R o l l  5441 1 

49: 46 :20.0 P i t c h  53990 

49:46:20.0 R o l l  53990 

L 

b 0.41 HZ 

b 0.40 HZ 

b 0.41 HZ 

b 0.41 HZ 

49:46:20.0 Yaw 53990 l b  0.40 HZ 

The above mentioned o s c i l l a t i o n s  d i d  n o t  show up i n  the  LM analog 
r a t e  t raced  on the o s c i l l o g r a p h  records,  b u t  t h i s  i s  probably  due t o  the  

sca l i ng .  

conta ined i n  F igure 6-3. 
i s  0.4 HZ be fore  the t h r o t t l i n g  p r o f i l e  was s t a r t e d .  Very s l i g h t  

o s c i l l a t i o n s  were observed i n  the Gimbal D r i ve  Actuators  (Channels 

GH1313 - P i t c h  and GH1314 - R o l l )  du r ing  the  per iods i n  which the  
l o g i c  e r r o r  t races  o s c i l l a t e d .  For instance,  t h e  frequency o f  o s c i l -  
l a t i o n  of t h e  R o l l  GDA a t  49:46:7.5 was 0.4 HZ. 

R o l l  GDA were i n  phase w i t h  t h e  p i t c h  l o g i c  o s c i l l a t i o n s  and were 180 
degrees ou t  of phase w i t h  the  r o l l  l o g i c  o s c i l l a t i o n s .  

The o s c i l l a t i o n s  are very no t i ceab le  i n  the  CSM r a t e  t races  
The frequency o f  the  o s c i l l a t i o n s  i n  F igure  6-3 

The o s c i l l a t i o n s  o f  the  
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Theore t ica l  c a l c u l a t i o n s  were made i n  an at tempt t o  i d e n t i f y  t h e  
presence o f  slosh. 

percentage o f  f u e l  l e f t ,  t he  c a l c u l a t e d  frequency o f  s losh  f o r  the  DPS 
tanks v a r i e d  between 0.355 HZ and 0.358 HZ. The t h e o r e t i c a l  frequency 

o f  s losh  f o r  the APS tanks was 0.6 HZ,but a t  t h i s  t ime the  APS tanks 

were f u l l  and would n o t  cause the  o s c i l l a t i o n s .  The t h e o r e t i c a l  

s losh  frequency f o r  the  CSM f u e l  and o x i d i z e r  tanks was 0.36 HZ 
based on the  amount o f  f u e l  remaining a f t e r  SPS 4 and the  a c c e l e r a t i o n  
obtained du r ing  the  Docked DPS burn. The t h e o r e t i c a l  s losh  masses 

were ca l cu la ted  and are  tabu la ted  below. 

Based on t h e  a c c e l e r a t i o n  o f  t he  v e h i c l e  arid t h e  

Fuel Ox id i ze r  

CSM a f t e r  SPS 4 150.0 kg 237.0 kg 

LM w i t h  0.714% f u e l  l e f t  336.9 kg 536.2 kg 
LM w i t h  0.690% f u e l  l e f t  336.9 kg 536.2 kg 
LM w i t h  0.53% f u e l  l e f t  331.3 kg 527.3 kg 

LM w i t h  0.509% f u e l  l e f t  328.9 kg 523.4 kg 

A rev iew o f  t h e  f i r s t  f o u r  SPS burns d i d  n o t  show any s t rong  evidence 

o f  s losh. 

d i d  show evidence o f  an o s c i l l a t i o n  o f  0.5 H Z .  
t h e  t h e o r e t i c a l  s losh  frequency o f  t h e  DPS tanks a t  t h i s  t ime. 

However, the  SPS 5 burn which fo l l owed  the  Docked DPS burn 

Th is  tu rns  o u t  t o  be 

I n  the  SUNDANCE p r e f l i g h t  so f tware  v e r i f i c a t i o n  t e s t i n g ,  runs 

were made f o r  the docked DPS burn w i t h  and w i t h o u t  s losh  modeling. 

For the  cases i n  which s losh  was modeled, t h e  gimbals were observed t o  
o s c i l l a t e  w i t h  a frequency o f  0.357 H Z .  
o f  the gimbals f o r  t h e  cases w i t h o u t  s losh  were rough ly  0.22HZ. Thus, 

i t  seems s a f e  t o  assume t h a t  t he  o s c i l l a t i o n s  o f  t he  r a t e  and l o g i c  
e r r o r  t races  were caused by s losh  and n o t  by the  Gimbal T r im  System. 

The maximum peak-to-peak ampl i tude o f  0.4 deg/sec of the  r a t e  o s c i l -  

l a t i o n s  i n  Figure 6-3 agreed w i t h  p r e f l i g h t  s i m u l a t i o n  r e s u l t s .  

The frequency o f  o s c i l l a t i o n  
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6.?.3 Compliance 

The Pitch and Roll Gimbal Drive Actuator positions (Channels GH1313 
and GH1314) along with the engine throt t le  profile are plotted i n  
Figure 6-5 for the beginning and end o f  the docked DPS burn .  A t  a b o u t  
49 : 42 : 09 the GDA ' s appeared t o  have reached s teady-s t a t e  posi t i  ons . 
Using the formulas in Reference 1 
t o  equivalent engine bell rotation, one obtains the following steady- 
s t a t e  trim positions: 

which relates  GDA position in inches 

Pitch = -0.0276 deg 
Roll = -1.525 deg 

The theoretical trim values based on the mass property data contained 
i n  Reference 2 are: 

Pitch = -0.421 deg 
Roll = -1.218 deg 

This amounts t o  an average difference between actual and theoretical 
trim of about 0.35 deg. 

I t  was very noticeable that  the gimbal drive actuators d i d  not 
show signif icant  act ivi ty  following the automatic throttle-up t o  the 
fixed thro t t le  position ( F T P ) ,  i . e . ,  the majority of compliance effects  
occurred between zero and 40% of FTP. Compliance i s  presently being 
modeled as a l inear thrust  misalignment and the above mentioned fac t  
does n o t  correlate with this  model. Also, the peak-to-peak excursions 
of the GDA's, obtained during the thrott l ing prof i le  a t  the end of the 
b u r n ,  were approximately midway between the corresponding values obtained 
from preflight simulations in which compliance was and was n o t  modeled. 
Further investigations should be conducted t o  determine the exact nature 
of cornpl i ance. 

6 . 2  DESCENT CONFIGURATION 

Two burns were performed in the descent configuration during the 
Apollo 9 mission. 
AGS control and i s  discussed in Section 7. The second b u r n  which was the 

The f i r s t ,  the DPS Phasing B u r n ,  was performed under 
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DPS I n s e r t i o n  Burn i s  discussed below. 

f o r  the automatic maneuvers t o  the  burn a t t i t u d e s .  

6.2.1 DPS I n s e r t i o n  Burn 

No TM coverage was a v a i l a b l e  

U l lage was i n i t i a t e d  a t  95:39:0.628 f o r  the  i n s e r t i o n  burn and 
cont inued u n t i l  95:39:9.138. 

f i r i n g s  occurred f o r  a t t i t u d e  c o n t r o l  as requ i red  by the  phase p lane 

l o g i c .  
were r e q u i r e d  f o r  a t t i t u d e  c o n t r o l .  The angular  r a t e s  and a t t i t u d e  

e r r o r s  throughout the burn were o f  the  o rde r  expected based on pre-  

f l i g h t  s imu la t ions .  
were 1.18 deg/sec and -0.67 deg/sec, r e s p e c t i v e l y .  The peak a t t i t u d e  
e r r o r s  f o r  both axes were l ess  than 11.7 degrees. F igu re  6-6 conta ins  

a p l o t  o f  t h e  U-axis a t t i t u d e  e r r o r  and t h e  associated U-axis RCS j e t  
f i r i n g s .  The deadband f o r  the  I n s e r t i o n  Burn i s  one degree and i t  can 

be observed t h a t  the  f i r i n g s  genera l l y  occur dur ing  the  per iods i n  which 
t h e  a t t i t u d e  e r r o r  exceeds 5 1 degree. The l a c k  o f  h igh  frequency 

da ta  prevents  an exact  i n v e s t i g a t i o n  o f  the  P and V-axes r e s p e c t i v e l y .  

The t ime pe r iod  covered by p l o t s  6-7 and 6-8 inc ludes  u l l age ,  the . 
I n s e r t i o n  Burn and a p o r t i o n  o f  the  n u l l i n g  o f  t he  r e s i d u a l  v e l o c i t i e s .  

A p l o t  o f  t he  ve loc i ty - to -be-ga ined from t h e  I n s e r t i o n  Burn i s  
conta ined i n  F igure 6-9. 

Dur ing t h i s  per iod ,  severa l  U, V j e t  

Numerous 1 and 2 - j e t  f i r i n g s  occurred throughout the  burn which 

The peak angular  r a t e s  about the  U and V axes 

F igu re  6-10 presents a t i m e  h i s t o r y  o f  t h e  gimbal d r i v e  ac tua to rs  

f o r  t he  I n s e r t i o n  Burn. 
GDA's i s  0.2 HZ. 

e x i s t i n g  dur ing  t h i s  burn i s  0.18 HZ. 
on the  osc i l l og raph  records revealed o s c i l l a t i o n s  i n  the  p i t c h  and r o l l  

axes o f  0.2HZ. As before,  there  seems t o  be a good c o r r e l a t i o n  between 

the ca l cu la ted  s losh  frequency and the  observed r a t e  osc i  1 l a t i o n s .  

The frequency o f  o s c i l l a t i o n  o f  bo th  o f  the  
The t h e o r e t i c a l  s losh  frequency f o r  the  cond i t i ons  

A rev iew o f  t he  LM r a t e  t races  
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Pre l im ina ry  ana lys i s  i nd i ca ted  t h a t  the t h r u s t  b u i l d u p  fo r  the I n -  
s e r t i o n  Burn had been very slow and t h a t  the change i n  v e l o c i t y  over a two 

second per iod  j u s t  managed t o  exceed the  th resho ld  va lue on the l a s t  pass 
through the AV Mon i to r .  A d e t a i l e d  rev iew o f  the  TM da ta  revealed t h a t  
the  AV f o r  the  f i r s t  pass through the AV Mon i to r  was 11 cm/sec, 12 

crn/sec f o r  t he  second pass, and 105 cm/sec f o r  the f o u r t h  pass. Due t o  
a da ta  dropout,  the  i n fo rma t ion  on the t h i r d  pass was n o t  a v a i l a b l e .  The 
r e q u i r e d  th resho ld  of 36 cm/sec a f te r  f o u r  passes was t h e r e f o r e  c e r t a i n l y  

exceeded w i t h  ease a f t e r  the  f o u r t h  pass. 

was exceeded on the  t h i r d  pass cannot be determined due t o  the l a c k  o f  
data.  

Whether o r  n o t  t he  th resho ld  

6.2.2 A t t i t u d e  Hold 

U and V-axes f o r  a pe r iod  o f  a t t i t u d e  h o l d  f o r  the unstaged c o n f i g u r a t i o n  
j u s t  p r i o r  t o  the  DPS I n s e r t i o n  Burn. 

s e t  t o  one degree which i s  the  powered f l i g h t  deadband. 

a u t o p i l o t  func t ioned p roper l y  i n  the a t t i t u d e  h o l d  mode and the phase 
planes were as expected. 

about the  V-axis i s  ev ident  i n  Figure 6-13. The exac t  na ture  o f  the 

d i s t u r b i n g  torque i s  n o t  known a t  t h i s  t ime. 

w i l l  be c a r r i e d  ou t  i n  t h i s  area. 

Figures 6-11, 6-12 and 6-13 conta in  phase plane p l o t s  f o r  the P, 

A t  t h i s  p o i n t ,  the deadband was 
The d i g i t a l  

The presence o f  an ex te rna l  d i s t u r b i n g  torque 

Fur ther  i n v e s t i g a t i o n s  

6.3 ASCENT CONFIGURATION 

The LM was staged a t  the beginning o f  the C S I  Burn and the  remaining 

rendezvous sequence was performed w i th  the ascent con f igu ra t i on .  A f t e r  

docking w i t h  the CSM, the crew t rans fe r red  t o  the  CSM and an unmanned 

APS Burn t o  d e p l e t i o n  was performed. The ana lys i s  o f  the  ascent con- 

f i g u r a t i o n  inc ludes  two burns,  an automatic maneuver, a pe r iod  o f  
a t t i t u d e  ho ld  and a pe r iod  du r ing  which manual c o n t r o l  was exerc ised.  

6.3.1 Automatic Maneuver 

Data cover ing the automat ic maneuver t o  the  CDH Burn a t t i t u d e  was 

rece ived  by the  HTV S t a t i o n  on Rev 61. 
2.0 deg/sec w i t h  commanded r a t e s  about the Q and R axes. F igure  6-14 i s  
a p l o t  of the  commanded and LGC veh ic le  r a t e s  about the  P, Q and R-axes. 

The maneuver was performed a t  
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The f i g u r e  shows a s l i g h t  r a t e  overshoot i n  the  Q and R-axes, b u t  t h e  

o v e r a l l  r a t e  performance was s a t i s f a c t o r y .  The r a t e  overshoot i s  

c h a r a c t e r i s t i c  o f  t he  r a t e  es t ima to r  and was a n t i c i p a t e d  based on 

p r e f l  i g h t  s imu la t ions .  
maneuver. The CDUXD, CDUYD and CDUZD a r e  the  f i n a l  d e s i r e d  b a l l  angles 
and t h e  p l o t s  i n d i c a t e  t h a t  t h e  automatic maneuver p rov ided t h e  

approp r ia te  veh ic le  r c t a t i o n .  

F igure  6-1 5 i 1 l u s t r a t e s  t h e  CDU angles d u r i n g  t h e  

6.3.2 A t t i t u d e  Hold 

F igures  6-16, 6-17 and 6-18 con ta in  phase plane p l o t s  o f  a pe r iod  

o f  a t t i t u d e  hold f o r  t he  ascent c o n f i g u r a t i o n  immediately f o l l o w i n g  the  
APS Burn t o  deplet ion.  The APS Burn was te rmina ted  by t h e  AV Mon i to r  
when low t h r u s t  was detected. The programmed guidance equat ions r e s e t  

t he  deadband t o  t h e  as t ronaut  s p e c i f i e d  value (5  degrees i n  t h i s  case) 
and dutomati ca l  l y  requested an u l l  age. 

back t o  t h e  TIG-5 program and remained t h e r e  i n  a 5 degree deadband u n t i l  

an "ENTER" was rece ived ( i . e . ,  u l l a g e  was te rmina ted  and r e - i g n i t i o n  

was n o t  requested). 
were zeroed and t h e  deadband was s e t  t o  0.3 deg by t h e  APS burn program 

P42. 
p r o p e r l y  dur ing  t h i s  p e r i o d  and t h e  phase planes were as expected. The 

t r a n s i t i o n  f r o m  the  5 deg deadband t o  the  0.3 deg deadband was very  
smooth and can be observed i n  t h e  above mentioned f i g u r e s .  

6.3.3 Manual Control  

The burr! proyrams were recyc led  

A f t e r  r e c e i v i n g  a "PROCEED", t h e  a t t i t u d e  e r r o r s  

E x i t  from P42 placed t h e  deadband back a t  5 deg. The DAP func t ioned 

I 

E i g h t  minutes o f  da ta  rece ived  by BDA Rev 63 were analyzed du r ing  
a p e r i o d  j u s t  p r i o r  t o  docking. The DAP was i n  a 0.3 degree deadband 

a t t i t u d e  h o l d  mode,but t h e r e  was a p ro fus ion  o f  RHC and TTCA a c t i v i t y  
a t  t h i s  t ime.  Figures 6-19, 6-20 and 6-21 present  phase p lane p l o t s  

d u r i n g  t h i s  per iod  of t h e  docking sequence. 
the  DAP was n u l l i n g  the  r a t e s  and ma in ta in ing  a 0.3 degree a t t i t u d e  

deadband a f t e r  t h e  re lease  o f  t he  RHC o r  TTCA. The dashed l i n e s  i n  the  
f i g u r e s  i n d i c a t e  r a t e  and a t t i t u d e  e r r o r s  induced by RHC a c t i v i t y .  

The f i gu res  i n d i c a t e  t h a t  



I .  

i -  

The o the r  a t t i t u d e  excurs ions were caused by TTCA a c t i v i t y .  
r a t e  changes f o r  each a x i s  (P,  U, V) dur ing  a minimum impulse l i m i t  cyc le  
a re  0.1 deg/sec f o r  t h i s  con f igu ra t i on .  
of t h i s  o rder  of magnitude whenever the re  was no RHC o r  TTCA a c t i v i t y .  

The t h e o r e t i c a l  

The observed r a t e  changes were 

6.3.4 C S I  Burn - 

The data f o r  t he  C S I  Burn was rece ived by TAN on Rev 61. Th is  was 
a + j e t  RCS PGNCS c o n t r o l l e d  burn. The 4 - j e t s  ( j e t s  2 ,  6, 10 and 14) 

were tu rned on a t  96:16:6.5 and the  burn was te rmina ted  a t  96:16:38.2. 

The phase planes presented i n  Figures 6-22, 6-23 and 6-24 i nc lude  the 
per iods  o f  a t t i t u d e  ho ld  p r i o r  t o  t h e  C S I  burn, t h e  burn, and the  n u l l i n g  

o f  r e s i d u a l  Vg's f o l l o w i n g  t h e  burn. The phase planes show t h a t ,  i n  

genera l ,  t he  DAP was ho ld ing  the appropr ia te  deadband (1.1 deg = 0.3 

narrow deadband + 0.8 deg "FLAT"). The spikes i n  r a t e s  are  a r e s u l t  

o f  t he  X and Z axes t r a n s l a t i o n s  f o l l o w i n g  the  burn.  
t h e  burn s t a r t e d ,  j e t s  6 and 10 began t o g g l i n g  on and o f f  t o  p rov ide  

a t t i t u d e  c o n t r o l  about the  U and V-axes ( j e t  6 t u r n i n g  o f f  produced a 
+U r o t a t i o n  and j e t  10 t u r n i n g  o f f  produced a - V  r o t a t i o n ) .  

p o s i t i o n  o f  the  cg, the angular  e r r o r s  remained a t  t h e  deadband 1 i m i  t s  

f o r  the  d u r a t i o n  o f  the  burn. 

S h o r t l y  a f t e r  

Due t o  the  

F igure  6-25 presents a t i m e  h i s t o r y  o f  t h e  ve loc i ty - to -be-ga ined 

f o r  the  C S I  burn. 
were 1.003, 0.04 and -1.361 f t / s e c  r e s p e c t i v e l y .  

The v e l o c i t y  e r r o r s  a t  c u t o f f  i n  t h e  X,  Y and Z-axes 

6.3.5 APS Burn t o  Dep le t ion  

The APS Burn t o  d e p l e t i o n  was i n v e s t i g a t e d  based on downlinked 
computer words rece ived by Texas on Rev 64. 

ve ry  much as expected based on p r e f l i g h t  s imu la t ions .  
be fo re  t h i s  burn was about 32 sec long.  

u l l a g e  t o  come on 3.5 sec be fore  i g n i t i o n .  The crew, a f t e r  observ ing 

Once again,  the  burn was 

The u l l a g e  

The normal sequence i s  f o r  
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a buildup of velocity, would key in "Proceed" sometime during th i s  
3.5 sec period and ignition would occur as planned. In  t h i s  case, 
the "Proceed" (V33E) had t o  be keyed in by telemetry and was somewhat 
delayed, 
proceeded as pl anned. 

Once the V33E was received, ignition occurred and the b u r n  

During the b u r n ,  the peak a n g u l a r  rates abou t  the Q and R-axes 
were of the order of 
predicted rates of 5.0 t o  6.0 deg/sec. 
cursions were o f  the order of 5 2.5 deg which a g a i n  agrees with preflight 
simulations. The l imit  cycle frequency was calculated during a steady 
s t a t e  portion o f  the burn  (101:57:43). 
frequency was 0.37 HZ for  the pitch axis (Q-axis) and 0.375 H Z  for  the 
ro l l  axis (R-axis).  Theoretical calculations based on the existing 
offset  accelerations predict a l imit  cycle frequency of 0.35 H for  
the Q-axis and 0.38 HZ for  the R-axis. 
the l imit  cycle frequency was 0.36 H Z  fo r  the pitch axis and  0.75 H Z  
for the rol l  axis .  

5.0 deg/sec. This compares favorably with the 
The larger angular error ex- 

The observed l imit  cycle 

Z 
Early i n  the f l i gh t  (101:53:30), 

Figure 6-26 i s  a phase plane plot of a steady s t a t e  p o r t i o n  o f  

the APS b u r n .  The original intent of the plot was t o  trace o u t  the 
shape of the limit cycle trajectory by plotting a suff ic ient  number 
of points. 
sampling frequency, a good outline of the l imit  cycle shape could n o t  
be obtained. 
cycle trajectory. 
results l i e  within a range consistent with preflight simulation resul ts .  

Figures 6-27 and 6-38 are plots o f  short segments of the UERROR 

However, due t o  the l imit  cycle frequency and low d a t a  

The dashed l ine o f  th i s  figure shows an approximate l imit  
The plot does show t h a t ,  on a qual i ta t ive basis,  the 

and V E R R O R ,  respectively, during the APS b u r n  t o  depletion. Also 
plotted are t h e  U-jet and V-jet f i r ings .  The je t - f i r ing  history i s  

available a t  10  msec intervals while the LGC a t t i tude  error  d a t a  i s  
available only a t  one-second intervals.  I n  general, the a t t i tude  
errors corroborate the j e t  f i r ings.  
a t t i tude deadband (one degree) i s  n o t  a constant, b u t  i s  a function 
of angular rate (see the switching curves i n  Figure 6-26) .  

I t  should be noted t h a t  the 
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-0.5 

The cross-coupl ing between t h e  c o n t r o l  axes descr ibed i n  Sec t ion  

2.1.1 o f  Reference 3 was ev ident  du r ing  t h i s  burn.  A l ong  f i r i n g  o f  
j e t  10 would be fo l lowed by a f i r i n g  o f  j e t  6, d u r i n g  which the re  

would be another s h o r t  f i r i n g  of j e t  10. Th is  e x t r a  f i r i n g  o f  j e t  10 
r e s u l t e d  from the  acce le ra t i on  coupled i n t o  the  V-axis f rom j e t  6 
(which produces a U-axis torque) du r ing  the  p e r i o d  when the  V-axis 

l i m i t  cyc le  was i n  i t s  "coast"  phase. 

e x t r a  f i r i n g s  were aga ins t  the o f f s e t  acce le ra t i on  and d i d  n o t  
represent  an i n e f f i c i e n t  use o f  f u e l .  

I t  should be noted t h a t  these 

The te rm ina t ion  o f  t he  burn and subsequent coas t ing  phase o f  t h i s  

burn were covered i n  Sect ion 6.3.2 o f  t h i s  r e p o r t .  
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7 .O  LM/AGS/CES CONTROLLABILITY 

7 . 1  DPS PHASING B U R N  (AGS) 

7 1 . 1  Telemetry Quantization Versus the Rate-Attitude Phase Plane 

The inf l igh t  telemetry data quantization was such tha t  i t  made i t  
impossible t o  determine w i t h  accuracy the Phase Plane about which the RCS 
system was operating. The telemetry encoder caused the ra te  channels i n -  
crement t o  be 0.107 deg/sec* and the a t t i t ude  channels increment t o  be 0.092 
deg*. Figure 7-1 shows the theoretical phase plane. The cross-hatched 
areas i s  a typical deadband area of the a t t i tude  and r a t e  telemetry 
resulting from the quantization employed. 
and shows the logic volts generated by changes i n  ra te  and a t t i t ude  
commands. The cross-hatched area resul ts  from a typical telemetry 
quantization e r ror  and demonstrates how much the logic volts can change 
without an a t t i tude  or ra te  change being shown on telemetry. 

Figure 7-2 i s  based on theory 

The CES telemetry channels were sampled a t  a 0.1 second rate. This 
sample r a t e  did not permit the accurate measurement of changes f a s t e r  t h a n  
about 2 . 5  HZ to  be recorded. 

The logic volt d a t a  was o f  greater value because the increment 
This error  was 20% of (because o f  the quantization) was 0.1 vol ts .  

the theoretical 0.5 volt  required to turn on a thruster  pa i r ,  b u t  
l ess  t h a n  10% of the logic volts generally present when the thrusters 
were on, and less  than 1% of the maximum logic vol ts .  
q u a n t i z a t i o n  error  of 0.197 deg/sec was about 40% o f  the maximum ra t e  
shown by telemetry, and a much greater percentage of the "average" 
r a t e .  For these reasons, i t  was decided t o  generate the ra te  from 

The r a t e  data 

* 7.0 volts ( r a t e  and  a t t i t u d e  scaling) = .02756 volts/TLM increment 
254 (TLM increments) 

= O.l97"/S/TLM increment .02756 volts 
.140 vol ts/deg/S 

"its = 0.092 deg/TLM increment .30 vol ts/deg 
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the logic volts in order t o  better determine the maximum rates present 
during the ullage and DPS-2 b u r n .  
r a te ,  the resul t  o f  the exercise was s t i l l  only an approximation. 
Also, because o f  these inherent errors ,  approximations of angular 
accelerations were n o t  considered. 

However, because of the sampling 

Figure 7-3 shows the logic volts generated during the ullage 
a n <  DPS-2 b u r n .  
from the f l i gh t  d a t a  by the TRW 1800 computer.) 
rates generated by solving ‘the following expression. 

(This figure and  a l l  subsequent figures were drawn 
Figure 7-4 shows the 

-t e* - logic volts + 2,63 
n - + e  L 

( P i t c h  & Roll = - 
typical ) 9.597 

1.5 

- logic volts + 3.59 t J ,  - - 
+ e  2 

(yaw) 9.597 - 
1 . 5  

The (+) - i s  dependent upon the recorded polar i t ies .  
e was taken from the recorded d a t a  and was assumed t o  be correct. This 
assumption was based on the fac t  that  a t t i tude error i s  a slow moving 
function compared t o  ra te .  
comprised only 1 /3  o f  the phase plane deadband in pitch and roll  ( 1 / 4  
in yaw), while the rate quantization error comprised the ent i re  phase 
plane deadband i n  pitch and roll ( and  752 of the yaw deadband). 

The value of 

Also, the at t i tude quantization error 

The pitch and roll  rates recorded inf l ight  are shown in Figures 7-5 
and  7-7 (yaw rate  no% shown). 
rates shown in Figure 7-4. 

These may be compared t o  the generated 
The quantization caused a bias in b o t h  

* Derived from the ATCA expression: . 
Logic volts = ([+ ( e )  (0.3) ( 7 )  2 ( e )  ( .140)  (22 .5) ]  - 4.57 - + 2.63) - 2 
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:~c, .?s;  t h e r e f o r e ,  t h e  zeros were loca ted  manually. 

f i g u r e s  revea ls  t h a t  t h e  generated ra tes  are  s i g n i f i c a n t l y  l a r g e r  than 
the  recorded r a t e s .  

apparent by t h i s  exerc ise,  i .e. , s t r u c t u r a l  resonance o r  l i m i t  cyc les ,  
t h a t  w r e  c o t  apparent i n  t h e  recorded data.  However, i n  r o l l  a s i g n i -  
f i c a n t  d i f f e r e n c e  e x i s t s .  Theore t ica l  deadbands of 0.2 deg/sec, p i t c h  

Comparison o f  t h e  

I n  p i t c h ,  no other  data o f  s i g n i f i c a n c e  became 

ana r o i l ,  and 3.4 deg/sec f o r  yaw are shown i n  F igures 7-4 and 7-5. 
T h e o r e t i c a l l y ,  any r a t e s  g r e a t e r  than these, w i t h  zero a t t i t u d e  

e r r o r ,  would cause the  t h r u s t e r s  t o  f i r e .  S i m i l a r l y ,  t h e  a t t i t u d e  

e r r o r s  recorded d u r i n g  t h e  u l l a g e  and burn are  shown i n  F i g u r e  7-6 

(zeros were loca ted  manual ly) .  

e r r o r  deadbands i n d i c a t e d .  

Th is  f i g u r e  has t h e  t h e o r e t i c a l  a t t i  tude 

By means o f  t h e  maximum r a t e s  and a t t i t u d e  
gure 7-1) 
u t i  1 i zed 

e r r o r s  shown 

was marked t o  

i n  p i t c h ,  yaw 

n F igures 7-4 and 7-6, t h e  phase p lane p l o t  ( F  

show the  extremes o f  a t t i t u d e  and r a t e  c o n t r o l  

and r o l l  d u r i n g  t h e  u l l a g e  and burn. 

O f  i n t e r e s t  i n  the  r a t e  and a t t i t u d e  data i s  t h e  apparent one-sided 

r o l l  i n s t a b i l i t y  beginn ing a t  93:47:46.6 and ending a t  93:47:53.0 (see 

F igures 7-4 and 7-6).  
w i t h  engine c u t o f f .  However, Figure 7-3 i n d i c a t e s  (+)  and ( - )  r o l l  

l o g i c  v o l t s  generated d u r i n g  t h i s  i n t e r v a l  w h i l e  t h e  a t t i t u d e  and r a t e  

f i g u r e s  do n o t  show an out-of-deadband s igna l  t h a t  would generate a 

( + )  l o g i c  vo l tage.  
q u a n t i z a t i o n  e r r o r  i s  causing a f a l s e  gyro n u l l  and t h e  zeros were 

The end o f  the apparent divergence i s  c o i n c i d e n t  

This  leads one t o  conclude t h a t  t h e  te lemet ry  

n o t  loca ted  c o r r e c t l y .  That i s ,  the discrepancy i s  based on a mis- 

l o c a t i o n  o f  t h e  a t t i t u d e  o r  r a t e  zero p o i n t .  
c a l c u l a t e d  from l o g i c  v o l t s  (F igure 7-4) i s  compared w i t h  t h e  r o l l  

r a t e s  recorded i n f l i g h t  shown i n  Figure 7-7, one may observe t h a t  t h e  
r o l l  r a t e  from f l i g h t  data does not show t h e  r a t e  peaks a f t e r  45 seconds 

t h a t  are shown on t h e  c a l c u l a t e d  r a t e  data.  The disagreement o f  t h e  

p l o t s  i s  a t t r i b u t e d  t o  the  te lemetry  q u a n t i z a t i o n  e r r o r .  Therefore,  

t h e  divergence d i d  n o t  e x i s t .  

Fur ther ,  when t h e  r a t e  
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O f  o ther  i n t e r e s t  i s  t h e  cont inued p i t c h  down command, w i t h  a 
few r o l l  l e f t  commands, 

cou ld  be explained by the  p o s i t i o n  of t h e  cg a long (+) Y and ( + )  Z 

p lus  the  hypothesis t h a t  t h e  t h r u s t  of D3 was g r e a t e r  than t h a t  o f  D1. 

However, t h i s  must remain a hypothesis i n  t h i s  a n a l y s i s  s ince  angular  
acce le ra t ions ,  necessary t o  t h e  proo f ,  cou ld  n o t  be obta ined f rom t h e  

data because o f  t h e  te lemet ry  q u a n t i z a t i o n  e r r o r .  

7.1 . 2  GTS Performance 

throughout t h e  u l l a g e  (see F igure  7-3).  Th is  

F igure 7-8 shows t h e  mot ion o f  t h e  DPS Engine through t h e  DPS-2 
burn. 

of 0.198 deg/sec. 

mot ion i s  so descr ibed on t h e  f i g u r e .  
t ime and p o l a r i t y  w i t h  t h e  l o g i c  v o l t s  shown i n  F igure  7-3. 

The slopes drawn on t h e  f i g u r e  are  drawn t o  t h e  nominal GDA r a t e  

The LM body a c c e l e r a t i o n  produced by t h e  engine 

The engine motions agree i n  

The f i r s t  mot ion o f  t h e  p i t c h  GDA i s  observed a t  Gimbal Enable, 
93:47:32.45 (32.45 on f i g u r e ) .  
t o  t h i s  t i m e  i s  a r e s u l t  o f  t h e  te lemet ry  sample r a t e  and i s  n o t  an 

anomaly a t t r i b u t a b l e  t o  t h e  GDA. The GDA t h r e s h o l d  was j u s t  overcome 
p e r i o d i c a l l y  a t  t ime increments much longer  than t h e  te lemet ry  sample 
r a t e  o f  0.1 sample/second. As a r e s u l t ,  t h e  apparent slow GDA mot ion 
was recorded. 

The apparent slow engine mot ion subsequent 

The GTS performance was s a t i s f a c t o r y  throughout t h e  DPS-2 burn. 

7.1.3 CG O f f s e t s  

From Figure 7-8, i t  may be observed t h a t  s t a t i c  p o s i t i o n  of t h e  

engine moved ( - )  0.234 degrees i n  p i t c h  and (+) 0.641 degrees i n  r o l l  
between DPS-2 S t a r t  and DPS-2 O f f .  

above mentioned engine motions stem from t h e  f o l l o w i n g  f a c t s :  

a )  P i t c h  engine b e l l  mot ion towards ( - )  Z causes body 
p i t c h  up and p o s i t i v e  go ing te lemet ry  vo l tage.  

b )  R o l l  engine b e l l  mot ion towards ( - )  Y causes body 
r o l l  r i g h t  and p o s i t i v e  go ing t e l e m e t r y  vo l tage.  

c )  P i t c h  engine b e l l  mot ion towards ( - )  Z i s  de f ined 
as (+) 6 

The p o l a r i t i e s  assigned t o  t h e  

P '  
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8 )  R o l l  engine b e l l  motion towards (+) Y i s  def ined 

The engine t h r u s t  i s  app l ied  t o  the  LM a t  s t a t i o n  X = 154". 

as ('1 6R 

P r i o r  

t o  the  burn the  cg i s  t h e o r e t i c a l l y  l oca ted  near the X a x i s  a t  X = 

192.49" (Ref.1).  

was a t  (-) 1.97 degrees i n  the  r o l l  p lane and (+) 1.49 degrees i n  

t h e  p i t c h  p lane p r i o r  t o  the  burn. 
( - )  1.33 degrees i n  r o l l  and (+) 1.26 degrees i n  p i t c h .  

From F igure  7-8 i t  may be observed t h a t  t he  engine 

A f t e r  t h e  burn, t he  engine was a t  
By t r igonometry ,  

P r i o r  DPS-2, cg Y = +1.32" 
cg z = +I .OO" 

Post DPS-2, Cg Y = +0.90" 
cg Z = +0.85". 

Resu l t i ng  cg mot ion f rom s t a r t  t o  end o f  burn: 

Y cg motion, ( - )  0.42" a long (+) Y 
Z cg motion, ( - )  0.15" a long (+) Z 

Th is  i s  t he  opposi te  d i r e c t i o n  f rom t h a t  p red ic ted .  There i s  no ex- 
p l a n a t i o n  f o r  t h i s  discrepancy a t  t h i s  t ime. However, the  change i s  smal l  
and cou ld  be the  r e s u l t  o f  a cg m i s t r i m  a t  t h e  s t a r t  o f  the  burn s ince  the  
prev ious burn (DPS 1 )  was w i t h  the  docked con f igu ra t i on .  

7.2 

7.2.1 

DESCENT STAGE ATTITUDE HOLD (AGS) 

Propel 1 a n t  Consumpti on 

The telemetered data ( rece ived by Ship Mercury i n  the  P a c i f i c )  

was extremely no isy .  As a r e s u l t ,  t he re  were many f a l s e  t h r u s t e r  
f i r i n g s  i nd i ca ted .  The fo l low ing  l i s t i n g  was der ived  from a count  

o f  i n d i c a t e d  f i r i n g s  vs. du ra t i on  i n  the  recorded 4-minute and 

45-second a t t i  tude ho ld  per iod  p r i o r  t o  DPS-2. 

Number o f  
I nd i ca ted  F i r i n g s  

478 
55 

2 
1 
7 7-5 

I n d i c a t e d  F i r i n g  
Dura t ion  (Seconds) 

0.014 
0.020 
0.030 
0.050 

0.070 



Number o f  
I nd i ca ted  F i r i n g s  

8 
1 
4 

7 
2 
2 
2 

1 
1 
1 

I n d i c a t e d  F i r i n g  
Durat ion (Seconds) 

0.080 
0.100 
0.150 

0.200 
0.250 
0.300 
0.400 

0.500 
0.600 

0.800 

However, a f t e r  t h e  data w e  screened o f  t h e o r e t i c a l l y  impossib le  

t h r u s t  combinations p l u s  t h r u s t  on i n d i c a t i o n s  when l o g i c  v o l t s  were 
n o t  g r e a t e r  than 0.5 v o l t s ,  t h e  above t a b u l a t i o n  was reduced t o  t h e  

f o l l o w i n g  one. 

Number o f  
I nd i ca ted  F i r i n g s  

24 
30 
1 
1 

I n d i  cated F i r i n g  
D u r a t i o n -  (Seconds) 

0.014 
0.020 

0.050 
0.080 

P r o p e l l a n t  usage p e r  t h r u s t e r  on t ime  was e x t r a c t e d  from t h e  

Spacecraf t  Operat ional  Data Book, Volume 11. 
f o l l o w i n g  t a b u l a t i o n  was devised. 

By t h i s  means t h e  

7-6 
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Length of Th rus te r  Pounds o f  Number o f  T o t a l  Pounds 
F i r i n g  (Seconds) Propel 1 a n t  Used F i r i n g s  Used 

0.014 0.0075 24 0.180 
0.020 0.0097 30 0.290 
0.050 0.0203 1 0.020 
0.080 0.0295 1 c =  

l b  = 0.109 min .520 l b  60 sec 
285 sec m i  n 

0.030 
0.520 

The Spacecraf t  Operat ional  D a t a  Book Volume I I p r e d i c t e d  0.11 4 

l b /m in .  Therefore,  i t  i s  concluded t h a t  t h e  p r o p e l l a n t  consumption 
was s a t i s f a c t o r y  as a r e s u l t  o f  a s a t i s f a c t o r y  CES. a t t i t u d e  h o l d  

performance. 
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8.0 RENDEZVOUS 

8.1 ONBOARD NAVIGATION 

Performance o f  t he  spacecra f t  nav iga t i on  systems du r ing  t h e  ren- 

dezvous p e r i o d  was e x c e l l e n t .  A l l  updates supp l i ed  t o  t h e  LM Guidance 

Computer (LGC) du r ing  t h e  rendezvous were from t h e  onboard rendezvous 

radar.  F igure  8-1 t o  8-6 present a comparison of LM s t a t e  vec to r  

components a f t e r  C S I  w i t h  the  TRW HOPE Program and the  i n t e g r a t e d  s t a t e  

vec to r  components. 

s t a t e s  would have propagated i n  the  absence o f  rendezvous rada r  ob- 

se rva t i ons .  

converge on t h e  BET s t a t e  vec tors  as radar  marks were incorpora ted .  

The i n t e g r a t e d  s t a t e  vec tors  show h o i  t h e  onboard 

From the  data, t he  tendency was f o r  t h e  s t a t e  vec to rs  t o  

Dur ing  t h e  LM separa t ion  per iod ,  t h e  command-module p i l o t  was 

making sex tan t  s i g h t i n g s  when the  LM was v i s i b l e  and updat ing  t h e  LM 
s t a t e  v e c t o r  i n  t h e  Command Module Computer (CMC). 
p resent  t h e  CMC r e l a t i v e  (CSM/LM) s t a t e  v e c t o r  components and t h e  

p r e l i m i n a r y  BET r e l a t i v e  vec to r  components d u r i n g  the  rendezvous 

per iod .  Although minimal CMC da ta  were a v a i l a b l e  du r ing  the  rendezvous 

period,those which were ob ta ined show c lose  agreement w i t h  t h e  BET 

re1  a t i v e  s t a t e  vec tors .  

8.2 RENDEZVOUS TARGETING 

Figures 8-7 t o  8-9 

Comparisons o f  a l l  executed nV s o l u t i o n s . d u r i n g  the  rendezvous w i t h  

t h e  pre-mission nominal A V ' S  are  shown i n  Table 8.1. The t o t a l  crV 

r e q u i r e d  t o  perform the  LM maneuvers was w i t h i n  4 percent o f  t h e  

nominal A V .  

Dur ing  the  rendezvous sequence, var ious  maneuver s o l u t i o n s  were 

a v a i l a b l e  t o  the  LM crew. These a d d i t i o n a l  s o l u t i o n s  were a v a i l a b l e  

as a comparison f o r  eva lua t i ng  t h e  pr imary s o l u t i o n  and f o r  backup 

purposes. 

t r a j e c t o r y ,  onboard c h a r t  s o l u t i o n s  were ca l cu la ted ,  and t h e  CSM had 

a c a p a b i l i t y  t o  so l ve  f o r  TPI and midcourse maneuvers. 
near  p e r f e c t  r e l a t i v e  t r a j e c t o r y  and t h e  accurate onboard n a v i g a t i o n  , 
a l l  s o l u t i o n s  were e q u a l l y  good and any one would have produced 

approximately t h e  same r e s u l t s .  A l l  of t he  a v a i l a b l e  s o l u t i o n s  a r e  
presented i n  Table 8.2. 

The RTCC was c a l c u l a t i n g  a s o l u t i o n  based on the  RTCC 

Due t o  t h e  

8- 1 



8.2.1 CSI Maneuver Evaluation 

Three CSI solutions were available; the LGC solution, the RTCC 
solution and the charts. Each of these solutions impulsively sumned 
w i t h  the LGC LM s ta tes  and then propagating bo th  LM and CSM orbi ts  t o  
the time of CDH yields nearly identical AH resul ts  as shown i n  Table 8.3.  

8.2.2 TPI Maneuver Evalution 

For TPI  , four  solutions were available; the L G C ,  CMC, RTCC and 

chart solution. 
i n  Table 8.4.  

All would. have produced equally good resul ts  as shown 
S t a r t i n g  from the TPI  maneuver, the LGC s t a t e  vectors 

(obtained by integrating forward from the l a s t  available LGC s t a t e  
vectors) were propagated out t o  the Distance of Closest Approach ( D C A )  
based on precision integration of the CSM orbi t  and by incorporating 
separately i n t o  the LM trajectory each of the available TPI  solutions 
as impulsive maneuvers. Also determined was the time a t  which the 
DCA occurred and theaV required to  match orbi ts  a t  t h a t  same time. 
The AV required is  equivalent t o  the b r a k i n g  I V .  
i n  the form of a s h i f t  from the expected time fo r  braking (TTPF)  
since time sh i f t s  from nominal are c r i t i ca l  due t o  l i g h t i n g  constraints 
d u r i n g  the braking period. 
actually used) i s  further substantiated by the smal 1 midcourse corrections 
( < 4  f t j s ec )  actually required a f t e r  T P I .  

The DCA time was p u t  

Accuracy of the LGC solution ( the burn  

The CSM would have performed the TPI maneuver as a mirror image 
b u r n  had the LM become incapacitated or had the LM primary and backup 
solutions f a i l e d  GO/NO-GO t e s t s .  To evaluate the CSM T P I  solution, 
the mirror image burn was simulated one minute a f t e r  the actual TPI  
time using the CSM A V  solution and using the CSM onboard s t a t e  vectors. 
The r u n  indicated the CSM trajectory distance of closest approach to  
the LM would have been 4200 f t  and the required b r a k i n g  would have been 
29 f t / s ec  (nominal 30 f t / s ec ) .  
within one minute of predicted intercept time. 
and are expected due to  the imperfections i n  the targeting scheme. 

The time o f  intercept would have been 
These errors are reasonable 
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A C S I  t o  i n t e r c e p t  e v a l u a t i o n - o f  t h e  LGC t a r g e t i n g  was eva lua ted  

S t a r t i n g  w i t h  

through s i m u l a t i o n  by r e - f l y i n g  each o f  t h e  a c t u a l  rendezvous s o l u t i o n s  

and by i n t e g r a t i n g  o u t  the  passive v e h i c l e  t r a j e c t o r y .  
t he  LGC onboard s t a t e  vec tors  imned ia te ly  p r i o r  t o  C S I ,  t he  C S I  AV was 
a p p l i e d  as an impulse t o  the  LM v e l o c i t y  s t a t e  and the  t r a j e c t o r y  was 

propagated t o  CDH t ime. As shown i n  Table 8.3, t he  e r r o r  between the  

nominal d i f f e r e n t i a l  a l t i t u d e  a t  CDH t ime and Ah from the  C S I  t a r g e t i n g  
i s  0.90 n.m., a reasonable e r r o r  cons ider ing  the  imper fec t i ons  i n  t h e  

t a r g e t i n g  scheme and p r e f l i g h t  s i m u l a t i o n  e r r o r  p r e d i c t i o n s .  A t  CDH 
t ime, the  CDH AV was i m p u l s i v e l y  app l i ed  and the  s t a t e s  were propagated 

t o  the  t ime o f  TPI. 

accomplished between CSI and TPI, i t  was considered u n r e a l i s t i c  t o  use 

the  progagated s ta tes .  Therefore, t h e  LM s t a t e s  were updated t o  the  

onboard values. 
(10 minutes p r i o r  t o  TPI)  before loss  o f  s t a t i o n  coverage. 
o f  TPI, t h e  T P I  AV s o l u t i o n  was impu ls i ve l y  a p p l i e d  and t h e  d i s tance  

of c l o s e s t  approach t o  the  t a r q e t  v e h i c l e  determined (Table 8.5).  
t h e  T P I  s o l u t i o n  and the  f i r s t  midcourse s o l u t i o n  t r a j e c t o r y  was 

determined. Also, the  T P I  and both TPM s o l u t i o n s  were used t o  so l ve  

f o r  a t r a j e c t o r y  propagated t o  i n t e r c e p t .  Resu l ts  o f  bo th  cases a re  

a l s o  shown i n  the  tab le .  The rendezvous t a r g e t i n g  e r r o r s  a r e  w i t h i n  

p r e f l i g h t  s i m u l a t i o n  e r r o r  p red ic t i ons .  

Since considerable rendezvous rada r  updat ing  was 

The values used were the  l a s t  a v a i l a b l e  onboard s t a t e s  

A t  t h e  t ime  

Next 
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TABLE 8.1. 
RENDEZVOUS TARGETING SUMMARY 

S o l u t i o n  Executed Maneuver A V  Non;inal*(Ft/Sec) AV Ac tua l  (Ft /Sec)  

CSM Separat ion 5.0 5.0 RTCC 

Phasing 88.8 90.5 RTCC 

I n s e r t i o n  41.8 43.1 RTCC 

C S I  38.9 40.0 LGC 

CDH 

TP I 

MCC 1 

39.1 

22.9 

0 

41.5 

22.3 

1.4 

LGC 

L GC 

LGC 

MCC 2 0 2.0 LGC 

Brak ing  28.7 27.8 

TOTAL 266.2 273.2 

Percent Above Nominal = 3.2 

* A p o l l o  9 Spacecraf t  Operat ional  T ra jec to ry ,  Rev is ion  2, 20 February 1969 
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s 
AVx--O 

A V Y 4  
hVz-* 5 .o 

AV =+ 0.9 X 
AVy" 
AV =-90.7 z 

AV --20.2 
AVy-+ 0.4 

X 

RSS 

+5.0 

RSS 

90.7oL 

RSS 

2 0 . 2 5 c  

AV =-40 
X 

p,Vy-O 
AVz--14 

RSS 

42.37 

TABLE 8.2 
RENDEZVOUS T ~ C E T I N C  

SOhITION 

\ 
Maneuver ICC AEA CHARTS cm: 

Separation 

Phaatng 

AV =19.6 

hVy= 0.6 
X 

A V p - 3 . 3  

ss 
9.8W 

AV --20. X 
AVy- 0 
AVZ- 1.1 

:ss 
!O. 180 TPI 

AVx--40 .  I 

.3Vz-0 
AVy=O 

I S S  

to.0 

AV =-40.7 X 

'V -0 Y 

sv -1) 2 

R S S  

40.7 No Solutlon 

ISS 

i l  .S25 

- 
RSS 

21.69: 

- 
RSS 

I . 38  

RSS 

42.011 

I 

AV, --19.! 
hVy-'-  0.1 

AVz 9.1 

AVx 19.4 
AVy 0 .4  

A d z  -9.7 

F 20.0 

D 1.0 

A h.0 

D 0.0 

AVx -4.6 

AVy 0.5 
EVZ 1-2.3 

? F 1.0 

u 0.0 
hVx- 0.2 
AV =-n.9 

Y 
AVz=-l .8 

RSS 

2.022 

2 7  .A 29 29.3 
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C S I  M 
TABLE 8.3  

NEUVER EVAL 

SOLUTION AH AT CDH T I G  (349094 SEC) 

LGC 9.9 n . m .  

RTCC 9.5  n . m .  

CHARTS 10.4 n . m .  

Postf  1 i g h t  10.5 n . m .  
BET 

NOTE: Nominal ah = 10.8 n .m.  

TABLE 8.4 

COMPARISON OF T P I  SOLUTIONS 

DISTANCE OF REQUIRED INTERCEPT T I M E  
SoLUT1oN CLOSEST APPROACH (FT)  BRAKING AV (FT/SEC)  S L I P  (SEC) 

LGC 2081 31.2 72 e a r l y  

CMC 657 29.5 32 e a r l y  

3973 34.8 140 e a r l y  RTCC 

CHARTS 1291 21.2 267 l a t e  

NOTE 1 - LGC predicted i n t e r c e p t  time: 

NOTE 2 - Actual A V  braking was 27 .8  f t / s e c .  

TTPF = 354587.67 secs  
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TABLE 8.5 

PGNCS TPI MANEUVER EVALUATION 

Maneuver Distance o f  Required Brakin I n t erce p t T i  me 
Closest Approach ( f t )  A v  ( f t /sec3 S l i p  (sec) 

TPI Only 3585 33.0 94 e a r l y  

TPI & TPM 3050 27.9 1 l a t e  

TP I ,  TPM 1 & 2 2926 30.5 37 e a r l y  

NOTE 1 - LGC predicted in tercept  time: TTPF = 354587.67 sec. 
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