NATIONAL AERONAUTICS AND SPACE ADMINISTRATION MSC INTERNAL NOTE NO. 66-FM-92

JAll 7. 196eptember 2, 1966

Tectinical Library, Beicomm, Ihe:

AS-204 REENTRY GUIDANCE AND NAVIGATION EQUATIONS AND FLOW LOGIC

By Oliver Hill and Donald Beggs
Mission Analysis Branch

MISSION PLANNING AND ANALYSIS DIVISION MANNED SPACECRAFT CENTER hoUston, TEXAS

PROJECT APOLLO

AS-204 REENTRY GUIDANCE AND NAVIGATION EQUATIONS AND FLOW LOGIC

By Oliver Hill and Donald Beggs
Mission Analysis Branch

September 2, 1966

MISSION PLANNING AND ANALYSIS DIVISION
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION MANNED SPACECRAFT CENTER hOUSTON, TEXAS

TABLES

Table Page
I VARIABLES FOR REENTRY GUIDANCE 12
II GUIDANCE GAINS AND CONSTANTS 14
III FINAL PHASE REFERENCE TRAJECTORY 16

FIGURES

Figure Page
1 Reentry steering 17
2 Navigation ΔV computation 18
3 Initialization 19
4 Targeting 20
5 Kepler 21
6 Predict 3 22
7 G-limiter 23
8 Lateral control 24

AS-204 REENTRY GUIDANCE AND NAVIGATION

EQUATIONS AND FLOW LOGIC
By Oliver Hill and Donald Beggs

SUMMARY AND INTRODUCTION

The basic guidance and navigation equations and flow logic applicable to the AS-204 mission are presented in reference 1. In order to reflect the current reentry guidance logic, constants, and gains for mission AS-204, some portions of reference 1 require minor modifications, which are presented in this note.

A method of generating a reference matrix (REFSMAT), which relates the platform alignment to an earth centered inertial (ECI) reference, is presented in detail. The real-time computer program is to have the capability of accepting any REFSMAT which will be in the form of a 3×3 matrix. Subroutine DELBTA which requires a REFSMAT input compensates for the error in the lift vector attitude resulting from a skewed platform.

REAL-TIME PROGRAM REQUIREMENTS

The current reentry guidance flow logic is presented in figures 1 through 8 of this document. The variable names and guidance gains and constants are presented in tables I and II, respectively. The final phase reference trajectory is presented in table III.

The navigation ΔV computation, figure 2, is included in order to have a more complete document. The navigation for the real-time computer program is to be obtained from the integration package. The total aerodynamic acceleration, D, used in the targeting phase, figure 4, is also to be obtained from the integration package.

Initialization Phase

The unit target vector URTO is defined by the longitude and geodetic latitude of the desired splash point. The time increment TN is a constant added to the current flight time in order to obtain a nominal time of flight.

In case of a RCS deorbit the command module will reenter with lift vector down. For a nominal reentry (SPS deorbit) the command module will reenter with lift vector up. The selection of the initial (entry) attitude of the lift vector for the real-time computer program is a flight controller function.

Platform Alignment

The platform alignment for the reentry simulation must be the same as the actual platform alignment and should be obtained from the realtime routine that defines the actual alignment. The platform alignment (REFSMAT) must be input into the real-time computer program as X, Y, and Z components of the ECI reference frame. The REFSMAT will be in the form of a 3×3 matrix.

Prior to launch the platform is aligned with the Z-platform axis along the local vertical (down), the X -platform axis pointing down range at an azimuth of $71.9901^{\circ} \mathrm{E}$ of true north, and the Y-platform axis completing the orthogonal set. The geodetic latitude of the launch pad is 28.53077760 . N. It should be noted that this latitude is not the local vertical along which the Z-platform axis is aligned. However, the geodetic latitude of the launch pad may be used for program development purposes until the data on the local vertical becomes available. The launch platform alignment will be used for all launch abort modes.

For SPS and RCS deorbits the platform will nominally be realigned prior to deorbit with the_Xsm (X^{\prime} - stable member) axis along the negative thrust vector $\left(-\bar{A}_{T}\right)$, the Y sm in the $-\bar{A}_{T} \times \bar{R} G$ direction, and the Zsm completing the orthogonal set. $\bar{R} G$ is the position vector of the spacecraft at retrofire. The primed axes represent the stable members with zero compensation in pitch and yaw engine gimbal angles. The following transformation accounts for the effect of the engine gimbal angles:
$\left[\begin{array}{l}X \operatorname{sm} \\ Y \operatorname{sm} \\ Z s m\end{array}\right]=\left[\begin{array}{llc}\cos P \cos Y & -\cos P \sin Y & \sin P \\ \sin Y & \cos Y & 0 \\ -\sin P \cos Y & \sin P \sin Y & \cos P\end{array}\right]\left[\begin{array}{c}X \operatorname{som} \\ Y_{s m}^{\prime} \\ Z_{s m}^{\prime}\end{array}\right]$

Using the small-angle approximation, the transformation reduces to

$$
\left[\begin{array}{l}
X_{s m} \\
Y_{s m} \\
Z_{s m}
\end{array}\right]=\left[\begin{array}{ccc}
1 & -Y & P \\
Y & 1 & 0 \\
-P & 0 & 1
\end{array}\right]\left[\begin{array}{c}
X_{s m}^{\prime} \\
Y_{s m}^{\prime} \\
Z_{s m}^{\prime}
\end{array}\right]
$$

Y and P are the yaw and pitch engine gimbal angles in radians. The small-angle approximation is used by MIT and is to be used in the real-time computer programs.

A more detailed description of the nominal reentry platform alignment is given in appendix A.

Stabilization and Control System

The stabilization and control system presented in reference 2 for the AS-202 mission must be modified slightly for the AS-204 mission. The commanded roll position (ROLLCD) computed in the lateral logic section of the reentry guidance is treated as a bank angle by the AGC. The roll attitude error (RAE) which drives the stabilization and control system is the error between a commanded roll gimbal angle and the current roll gimbal angle. The roll gimbal angle corresponding to ROLLCD (commanded bank angle) can be obtained by entering ROLLCD into the transformation given in Appendix B at entry point "B" and exit at point "C" with the commanded roll gimbal angle.

Subroutine DELBTA
The subroutine DELBTA which compensates for errors in the lift vector attitude resulting from a skewed platform is presented in appendix B. The subroutine is called from the reentry guidance lateral logic prior to calculating the commanded roll position ROLLCD.

4

APPENDIX A

PLATFORM ALIGNMENT FOR SPS AND RCS DEORBIT

The AS-204 command module platform (stable member) is to be aligned such that

$$
\left[\begin{array}{c}
\bar{X}_{s m} \\
\bar{Y}_{s m} \\
\bar{Z}_{s m}
\end{array}\right]=\left[\begin{array}{ccc}
1 & -Y & P \\
Y & 1 & 0 \\
-P & 0 & 1
\end{array}\right] \quad\left[\begin{array}{c}
\bar{X}_{s m}^{\prime} \\
\bar{Y}_{s m}^{\prime} \\
\bar{Z}_{s m}^{\prime}
\end{array}\right]
$$

The engine gimbal angle matrix is defined in the text of this document. The components of the primed platform matrix are shown in the following figure.

$\bar{R}_{G} \quad$ Position vector at retrofire
$\overline{\mathrm{V}}_{\mathrm{G}} \quad$ Velocity vector at retrofire

The platform attitude relative to the local horizontal is indiacated by the double primed axes. The rotated attitude indicated by the primed quantities is shown in the following figure.

where

$$
\begin{aligned}
& \bar{X}_{s m}^{\prime}=\cos \left(\gamma_{A T T}\right) \bar{X}_{s m}^{\prime \prime}+O\left(\bar{Y}_{s m}^{\prime \prime}\right)-\sin \left(\gamma_{A T T}\right) \bar{Z}_{s m}^{\prime \prime} \\
& \bar{Y}_{s m}^{\prime}=0\left(\bar{X}_{s m}^{\prime \prime}\right)+1\left(\bar{Y}_{s m}^{\prime \prime}\right)+O\left(\bar{Z}_{s m}^{\prime \prime}\right) \\
& \bar{Z}_{s m}^{\prime}=\sin \left(\gamma_{A T T}\right) \bar{X}_{s m}^{\prime \prime}+O\left(\bar{Y}_{s m}^{\prime \prime}\right)+\cos \left(\gamma_{A T T}\right) \bar{Z}_{s m}^{\prime \prime}
\end{aligned}
$$

The angle γ_{ATT} is defined by this figure.

APPENDIX B

SUBROUTINE DELBTA

The function of Subroutine DELBTA is to calculate a bias term which subsequently compensates for any roll attitude error resulting from an out-of-plane platform alignment. This correction is made by altering the roll command (ROLLCD) by the addition of a roll bias term (RBIAS). The roll command equation is given as

$$
\text { ROLLCD }=\text { K2ROLL } \cos ^{-1}\left(\frac{L / D}{L A D}\right)+2 \mathrm{KIROLL}+\operatorname{RBIAS}\left(\frac{\pi}{180}\right)
$$

The flow logic for the Subroutine DELBTA is as follows:

Assume a perfectly aligned platform. $\gamma_{\text {ATT }}$, (Appendix A), must be redefined as $\boldsymbol{\gamma}_{\mathrm{ATT}}=$ $\gamma_{A T T}+\cos ^{-1}[\operatorname{Unit}(\bar{R} G) \cdot \operatorname{Unit}(\bar{R})] . \quad \bar{R} G$, the CM position vector at retrofire is to be used in all computations of $\gamma_{\text {ATT }}$. Align the platform as specified in Appendix A using the current velocity $\bar{V}_{-}(\underline{V} G=\bar{V})$ and the current position_vector $\bar{R}(\bar{R} G=\bar{R})$ to form the TRIAD Ssm, Yam ${ }_{2}$ and Usm. Compute the unit platform axes $\mathrm{X} s m, \hat{Y}_{s m}$, and $\mathrm{Z} s m$ as specified in Appendix A.

Compute the command module unit stability axes and unit navigation base axes which are defined respectively as

$$
\begin{gathered}
\widehat{X_{s}}, \widehat{Y_{s}}, \widehat{Z_{s}} \\
\text { and } \\
\widehat{X_{n}}, \widehat{Y_{n}}, \widehat{Z_{n}}
\end{gathered}
$$

The following transformation matrices required to define the stability axes and the navigation base axes were developed for a righthand system. The unit vectors $\widehat{V}_{R}, \widehat{H}$, and \widehat{N} are defined in figure 1 of this Appendix. The subscripts s and n indicate the stability and navigation base axes, respectively.

$$
\begin{aligned}
& {\left[\begin{array}{c}
\widehat{\mathrm{X}_{s}} \\
\widehat{\mathrm{Y}} \\
\widehat{\mathrm{Zs}}
\end{array}\right]=\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -\cos \beta & \sin \beta \\
0 & \sin \beta & \cos \beta
\end{array}\right]\left[\begin{array}{c}
\widehat{\mathrm{V}}_{\mathrm{R}} \\
\widehat{\mathrm{H}} \\
\widehat{\mathrm{~N}}
\end{array}\right]} \\
& {\left[\begin{array}{c}
\widehat{\mathrm{Xn}} \\
\widehat{\mathrm{Y}_{n}} \\
\widehat{\mathrm{Zn}}
\end{array}\right]=\left[\begin{array}{rrr}
\cos 2 & 0 & -\sin 2 \\
0 & 1 & 0 \\
\sin 2 & 0 & \cos 2
\end{array}\right]\left[\begin{array}{c}
\widehat{\mathrm{X}_{s}} \\
\widehat{\mathrm{Y}_{s}} \\
\widehat{\mathrm{Zs}}
\end{array}\right]}
\end{aligned}
$$

$\beta=$ bank angle (roll attitude about the X-stability axis)
$\tau=33^{\circ}-\alpha$
$\alpha=$ angle of attack (positive acute angle)

The roll gimbal angle RGA (in radians) is obtained from the equation

$$
\mathrm{RGA}=\tan ^{-1}\left[\frac{\widehat{-Z_{n}} \cdot \widehat{Y}_{p}}{\widehat{Y_{n}} \cdot \widehat{Y}_{p}}\right]
$$

where \widehat{Y}_{p} is the platform unit Y-axis.

Figure 1. - Orthogonal set referenced to the osculating plane.

TABLE I. - VARIABLES FOR REENTRY GUIDANCE

BETA	Command module bank angle
BETA	Initial bank angle of CM at entry interface
DELV	Integrated acceleration vector
D	Total aerodynamic acceleration
\bar{G}	Gravity vector
K1ROLL	Indicator for roll switch
K2ROLL	Indicator for roll switch
LATANG	Lateral range error (radians)
LEQ	Excess centrifugal force over gravity
L/D	Desired lift-to-drag ratio in the osculating plane
PREDANGL	Predicted range for the final phase
Q7	Minimum drag for upcontrol
\bar{R}	Position vector
RBIAS	Roll command bias
RDOT	Altitude rate
\bar{R}_{G}	Position vector at platform alignment for deorbit
ROLLC	Roll command (radians)
$\overline{\mathrm{R}} \mathrm{TE}$	Vector east at initial target URTO
$\overline{\mathrm{R}}$ TINT	Target vector rotated through nominal flight time
RTOGO	Range-to-go parameter in final phase
SL	Sine of latitude
T	Time referenced to lift-off
THETA	Current great circle range-to-target (radians)
THETNM	Theta (nautical miles)
ŪNI	Unit vector normal to trajectory plane
URT	Current target vector
URTO	Initial target vector referenced to longitude and geodetic latitude of the desired splash point at lift-off

TABLE I. - VARIABLES FOR REENTRY GUIDANCE - Concluded

UTR		Normal to $\overline{\mathrm{R} T E}$ and $\overline{\mathrm{U}} \mathrm{Z}$
$\overline{\text { UZ }}$		Unit earth rate vector north
$\overline{\mathrm{V}}$	$*$	Relative velocity vector
VGI		Velocity vector at platform alignment for deorbit
$\overline{\mathrm{V}}$ I		Inertial velocity vector

TABLE II. - GUIDANCE GAINS AND CONSTANTS

	Symbol	Value	Units
G-limit	GMAX	322:	fpss
Normalization factor, acceleration	GS	32.2	fpss
Lateral switch gain	KLAT	0.0075	n.d.
Factor in L/D computation for final phase	K13P	4.	n.d.
Increment to Q7 to end Kepler	KDMIN	0.5	fpss
Time of flight calculation gain	KTETA	1000	sec
MAX L/D	LAD	0.3	n.d.
Lateral switch bias term	LATBIAS	. 00012	rad
LAD cos (15°)	L/DCMINR	0.2895	n.d.
Final phase L/D	LOD	0.18	n.d.
Minimum drag for upcontrol	Q7F	6.	fpss
Time increment to obtain nominal reentry flight time	TN	500.	sec
Minimum RDOT to initiate active guidance	VRCONTRL	700	fps
Velocity to switch to relative coordinates	VMIN	12833	fps
Velocity to stop steering	VQUIT	1000	fps
Angle in rad to n . mi.	ATK	3437.7468	n.mi./rad
Nominal G for scaling	GS	32.2	fpss
Atmospheric scale height	HS	28500	ft
Gravity harmonic coefficient	J	. 00162345	n.d.
Equatorial earth rate	KWE	1546.70168	fps
Earth gravitational constant	MUE	$3.986032233 \times 10^{4}$	$\mathrm{m}^{3} / \mathrm{sec}^{2}$
Earth radius	RE	21202900	ft

TABLE II. - GUIDANCE GAINS AND CONSTANTS - Concluded

	Symbol	Value	Units
Satellite velocity at $R E$.		25766.1973	fps
Earth rate	\therefore WIE -	$7.29211505 \times 10^{-5}$	$\mathrm{rad} / \mathrm{sec}$
	Targeti		
Pacific target:			
	Geodetic latitude		
	Longitude		
\cdots.	Time increment to obtain nominal flight time	500 sec	
Atlantic target (launch abort):			
	Geodetic latitude	$26.4{ }^{\circ} \mathrm{N}$	
	Longitude	$20.6^{\circ} \mathrm{W}$	
	Nominal flight time	1350 sec	
Switches		Ini	ial Value
RELVELSW	Relative velocity	tch	0
EGSW	Final phase switch		0
GONEPAST	Indicates overshoo	of target	0

table III. - FINAL PHASE REFERENCE TRAJECTORY

櫊皆	
	$\underset{\sim}{\sim} \underset{\sim}{\sim}$
z	

Figure 1.-Reentry steering.

$$
\frac{G}{2}=-\frac{M U E}{2 R^{2}}\left[\left(I+J\left(\frac{R E}{R}\right)^{2}\left(1-5 S L^{2}\right)\right) U N I T(\bar{R})+2 S L D\left(\frac{R E}{R}\right)^{2} \quad U Z\right]
$$

$$
\bar{V} I=\bar{T} E M+\frac{\overline{D E L V}}{2}+\Delta T \frac{\bar{G}}{2}
$$

MABA - MSC - FOD
MISSION PLANNING \& ANAI.YSIS DIVISION
MISSION ANALYSIS bRANC:A
Fot Mo. 15.678
Date 3-18-66_Gonhit/O. Hill

FIGURE 2.- NAVIGA TION \triangle V COMPUTATION. :

Figure 3.- Initialization.

MASA - MSC. FOD
MISSION MLANNINC \& ANALYSIS DIVISION WISSION ANALYSIS BRANCH
Plot No. $\quad 15,679$
FIGURE 4.- TARGETING
Onte $3-18-66$ Connution Hili

Figure 5.- Kepler.

NASA - MSC FOD
Ni・ッ:ION PLAFiNING a ANALYPA DIVIBION HiHSICIV ANALYSIS BRANCH
Plot No. $\quad 15.683$
Date $3=18-66 \quad$ G Hunt/0. Hidl

NASA - MSC - FOD
MİPION PLAPINING \& ANALYSIS DIVISION MIISEICN ANALYSIS BRANCH
Plot No. $-15,684$

Figure 8.- Lateral control.

REFERENCES

1. MIT Instrumentation Laboratory: Preliminary Guidance and Navigation System Operations Plan, Apollo Mission 204, R-507, June 1966.
2. Hill, Oliver: AS-202 Reentry Guidance and Navigation Equations and Flow Logic, IN 66-FM-26.
