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Closed-Loop Control of Stochastic Nonlinear Systems 

Abstract 

. A new approach for optimum control of stochastic nonlinear sys- 
tems is developed from practical engineering assumptions. 
amenable to this  new approach include optimum guidance and navigation 
systems for space and terrestrial  vehicles, optimum closed-loop process 
controllers, and optimum controllers for systems with unknown para- 
meters. The classical quadratic synthesis approach - optimization of a 
deterministic cost and perturbation estimation and control about that solu- 
tion - is shown to give 2470 more cost and 9770 more mean-squared 
terminal e r r o r  than the combined optimization approach presented for a 
sample problem involving control of a first-order system with an un- 
known time constant. Furthermore, the optimum controller automatically 
designs the best controller to minimize the effects of the unknown para- 
meter without artificial augmentation of the cost function as is done in the 
sensitivity theory approach. The solution is obtained by expansion of the 
cost function in a power series around a deterministic trajectory with the 
assumption of linear perturbation estimation and control about that tra- 
jectory. Optimization of the expanded cost function gives necessary con- 
ditions dependent on the covariance matrices and the deterministic portion 
of the cost. When the necessary conditions are solved, a set  of open- 

Systems 

loop controls, perturbation controller gains, and perturbation estimator 
gains are obtained that can be precomputed and implemented into the 
sys tem. 

by Dr. G. T. Schmidt 
October 1970 

”/ 
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Closed- Loop Control of Stochastic Nonlinear Systems 

George T. Schmidt 

Charles Stark Draper Laboratory 

Massachusetts Institute of Technology 

C amb r idge , Mas sac huse t t s 

1. Introduction 

This paper considers the closed-loop control of systems with un- 
known parameters. Since linear systems with unknown parameters may 
be considered nonlinear systems, the solution offered in this paper effect- 
ively treats treats a much wider class of problem - control of stochastic 
nonlinear systems. Problems in this category include optimum guidance 

and navigation systems for space and terrestrial  vehicles and optimum 
closed-loop process controllers. 
trol  technique, however, involves only unknown parameters. Many sys- 
tems have characteristics that are either unknown o r  highly variable. 
The control system designer must take this into account in order to 
achieve sat  is f ac t ory results . 

The example used to illustrate the con- 

There a re  two ways of approaching the problem which have been 
. -  found useful. 

changes on system performance and to try to design a controller so these 
effects are tolerable. Second, 
if it is possible to make continuous measurements of system behavior and 
determine the dynamical characteristics, the controller parameters can 
then be adjusted based on these measurements. 

334 approach . 

First ,  it is possible to study the effect of these .unknown 

This is called the sensitivity approach 2 . 

This is called the adaptive 

The solution offered here lies somewhere in between these two 
approaches. The technique developed can handle a priori  statistical in- 
formation about the unknown parameters and does not require an artificial 
augmentation of the cost to cause the controller to consider the unknown 
parameters. The dimension is the number of state variables and unknown 

0 
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parameters.  The controller is partially adaptive in the sense that the 
unknown quantities a re  estimated and control action taken. 
gains used a re  determined from nominal values of the parameters and 
nominal values of their statistics rather than basing the gains on the pres- 
ent-observed quantities. 
could be done but is impractical at the present time. 

However, the 

Given an infinitely fast computing machine, this 

The approach is based on using practical engineering assumptions 
to achieve a solution to the control problem. 
nonlinear and subject to independent white noise. 
ments corrupted by white noise a re  available and are  related to the state 
of the system. 
function that measures the performance of the system. 
assumption made in Section 2 is that a controller can be built that wil l  
keep the actual state vector near a pre-planned value during the operation 
of the system so that the expected value of the first-order state deviations 
is zero. 
these perturbations small is a linear function of the best estimate of these 
deviations. Third, the best estimate is to be obtained from a linear filter. 
The cost function is then expanded in a power ser ies  around the pre- 
planned trajectory. Because the deviations a re  held to first-order, the 
expansion is correct to second-order. 
f irst-order terms in the expansion a re  zero and the expected value of 
second-order terms a re  covariance matrices. Thus, the cost function is 
actually evaluated in terms of a deterministic part due to the pre-planned 
trajectory and calculatable covariance matrices due to the statistical 
effects. 

The system is assumed 
Some nonlinear measure- 

It is desired to minimize the expected value of a cost 
The first practical 

Second, the assumption is made that the controller that keeps 

Then, in taking the expected value, 

The cost, once evaluated, is to be minimized, subject to the con- 
straining differential equations. 
approach is used to determine the necessary conditions for optimality. It 
is first  shown that the optimal linear filter is a Kalman filter used to 
estimate the deviations. Second, the optimal perturbation controller is 

5 identical in form to that obtained by quadratic synthesis . 
most important result shows that the necessary conditions defining the 

In Section 3 the calculus-of-variations 

The third and 
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pre-planned or  deterministic trajectory'ispecify the trajectory as a func- 
tion of the covariance matrices as well as of the deterministic part of the 

cost. 
which picks the pre-planned trajectory on deterministic cri teria alone and 
then uses perturbation estimation and control to follow it. The combined 
optimization procedure defined in this paper gives a set  of necessary con- 
ditions that can be straightforwardly applied in practical problems to 

This latter result is different from the quadratic synthesis approach 

design the best trajectory considering the statistical nature of the problem. 

Section 4 presents the design of a controller for a first-order sys- 
tem with an unknown time constant. For the cri teria used, the quadratic 
synthesis approachwould give 24.230 more cost and 9770 more mean-squared 
terminal e r r o r  over the combined optimization procedure. It is shown that this 
procedure automatically designs the best controller to minimize the effects of 
the unknown time constant. 

Y 

2. Transformation of the Performance Index 
I 

Consider a stochastic nonlinear system subject to independent 
zero-mean white noise n , - 

Continuous measurements a re  available, subject to independent zero- 
mean white noise v . - 

a h (xa, u , t) +v(t)  (2- 2)- 

, 
Explicit control over the state and the measurements is allowed through 

a u . It is desired to minimize the expected value of a cost function of the 
form 
- 

< J 1 >  = < J (xa, ua, t) > - -  
Define a system of identical dynamics to that of Eq. 2-1 except 

for the white noise 



k = f (x ,  u ,  t ) ,  x(0) = < Ja(0) 7 - - -  - - 
and let 

a .bx = x - x 

bu = u a -  u - - - 

Assuming continuous first and second derivatives of J with respect to x 
and u exist, the cost Eq. 2 - 3  can be expressed in an infinite series around 
a cost associated with the noise-free dynamics Eq. 2-4 where the partial 
derivatives in the expansion would be evaluated on the noise-free dynamics. 
In general, an infinite number of terms must be considered to adequately 
represent the cost function. 
exist a suitable control law that makes the system with noise approximate 
the noise-free dynamics; i. e . ,  a controller that guarantees that a first-  
order representation of 6x is valid where Eq. 2-1  is linearized to give 

- 
- 

It will, therefore, be specified that there 

- 

or 

dx = F 6 x  + G d u  + n - - - - 

Representation of 6x to first-order retains J correct to second- - 1 
order 

T + 0 . 5  dx Jxx 6x + 0 . 5  6uT Juu 6u - - - - 
_. _I 

+ 0 . 5  du T Jux bx + 0.5 bx T Jxu bu > (2-9) A - - - - 
L - 
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T his 
tight 
ence 

. .  
t 

equation is valid for  any control system that has the ability to exert 

control such that the effects of noise can be overcome. In the pres- 
of noise this surely requires feedback. Thus, ' I  small" noise is not 

explicitly assumed, but, rather, the existence of a suitable perturbation 
controller that exerts "reasonable" values of 6u in keeping 6x small. It 
should be noted that, for those states which a r e  controllable, their per- 
turbations a re  controllable through Eq. 2- 8. For uncontrollable states, 
their perturbations a re  also uncontrollable, so that their deviations must 
remain small for Eq. 2-9 to be a valid representation of the cost. 

- - 

A.t this point two practical constraints are imposed which then 
provide an elegant solution to this control problem. They are: 

(1) The control perturbation to be applied is a linear 
function of an estimate of the state perturbation 

where the gains C depend on the noise-free system 
and are  to be determined in some optimal way. It 
wil l  be seen that, when the gains are picked in an 
optimal manner, they a r e  independent of any un- 
controllable states, but the control does depend on 
those states through the estimates of them. 
more, i t  is assumed that 6u can be applied exactly, 
although the method of analysis to be used can be 
easily extended to the case where this is not true. 

Further- 

- 

(2- 10) 

A 
(2) The estimate 6x is to be obtained from an unbiased 

linear estimator that has the property 
- 

< e ( t ) >  = 0 - 
where the e r r o r  in the estimate is defined as 

(2-11) 

A e = bx - bx - - - 

5 
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and the form of the perturbation estimator is spec- 
ified as 

i\ h b x  = F bx + G bu + K (bm - h b e  - h bu) (2-13) - -x - -u - - - - - 
with K to be determined in an optimal fashion, 

With the constraint of Eq. 2-13, the initial conditions, 

h 
a b x ( O ) >  - = 0 (2- 14) 

Cbx(O)> - = 0 (2- 15) 

the linearized me asur erne nt s , 

(2- 16) 

and the perfect knowledge of 6u; Eq. 2-8, 2-10, and 2-13 yield for all 
time: 

- 

h 
< 6 x ( t ) >  - = 0 (2- 17) 

(2- 18) < d x ( t ) >  - = 0 

<bu(t). - = 0 (2- 19) 

Using these last two conditions in taking the expected value of the 
cost function Eq. 2-9 results in the elimination of the expected values of 
6x and bu; then using the general relationship for any y ,  w , and V, - - - -  

T T y v w  = t r ( V w  y ) - - -  

Eq. 2-9 becomes 

t 

(2- 20) 

/ 
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f. 

B. 

+O. 5 t r  (Jux c 6x 6u T >)  - -  
+O. 5 t r  (Jm ~ 6 u  6x T > 

- -  - 
Now, using the control law 6u = - C d x  A and defining 

- - 
T E = c e e > = cov. of the estimation e r r o r  -- 

A A AT X = < 6x 6x > = cov. of the estimate - -  
AT Z = < e  6x > = cross-cov. of the e r r o r  and the estimate - -  

T X = C 6x 6x > = cov. of the actual state deviation - -  
A 

where, from e = 6x - 6x and Eq. 2-22 -- 2-25 - - - 

T A 
X = E + X - Z - Z  

then Eq. 2-21 becomes 

I A < J ~ >  = ~ ( x , U , t ) +  0 . 5 t r  J ~ ~ ( E + X - Z - Z ~ )  
- -  [ -  

h A 
C X C'] - 0 . 5  t r  

(2-21) 

(2- 22) 

(2-23) 

(2- 24) 

(2-25) 

(2-26) 

* 
(2-27) 

The original expected value of the cost function has now been evaluated 
in terms of a deterministic part J (x ,  u ,  t) and second moments. This 
cost is to be minimized, subject to the differential constraints on x,/and 

- -  
the covariance matrices must also obey differential equations. They'are 1 
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(2-28) 

ti A A  T T  X = ( F - G C ) X + X ( F - G C I T - K M Z - Z M  K + K U K T  (2-29) 

(2- 30) i = ( F - K M ) Z + Z ( F - G C ) T - E M  T T  K + K U K ~  

with given initial conditions and 

M = h  
-X - 

T Q d (t - t ' )  = < n( t )  n ( t ' )  7 - - 
T u 6 (t - t') = < v ( t )  - - v( t ' )  7 

(2- 31) 

(2- 32) 

(2-33) 

The optimization problem is to minimize Eq. 2-27, subject to 
Eq. 2-28, 2-29, 2-30, and 2-4, by finding the optimal control - u, the 
optimal linear feedback controller gains C, and the optimal linear filter 
gains K .  
the cost by the appearance of covariance matrices. 

The original statistical measure of performance is reflected in 

3.  The Necessary Conditions 

The derivation of the necessary conditions for optimality proceeds 
in the usual calculus-of-variations approach. 
assume the original cost function was to be minimized over a fixed time 
and w a s  of the form 

Firs t ,  for convenience, 

rn 

a a  < J 1 >  = < k [xa(T)] + 1 L (X , u  , t ) d t  > - -  
0 

(3- 1) 

and define 

S(T) = kxx 

8 



I. 

Lxu N (x, U ,  t) = - -  

(3- 3) 

(3- 4) 

Then, Eq. 2-27 becomes 

(3- 5) 

A 
E (T) + X (T) - Z (T) - Z (T) 

A 

1 A 
It can be shown that with 6Z(O) = 6X(O) = SE(0) = 0 and an assumption 
that the initial e r r o r  and the estimate a re  uncorrelated (Z(0) = 0), by 
choice of 

K =  EM^ u-l . (3-7) 

then 

(3- 9) 6 < J >  1 = O  

The cost is optimized (stationary) with respect to changes in K. Further- 
more, this choice of K for the optimal linear filter results in the estimate 

and the e r r o r  in the estimate being orthogonal for all time. This K 
corresponds to the Kalman filter and the cost function now reduces to / 

9 



+ 0.5 t r  [S(T) E (T)] + 0. 5 t r  S(T) $(TI] [ 

TA 1 + O . ~ t r [ a ( A E + A X + B C f r C T - N C ~ - ~  A h X C  )dt  

(3- 10) 

subject to 

x = f ( X J  U J  t )  (3-11)  - - -  - 

E = F E + E F ~ + Q - E M ~ U - ' M E  (3- 12) 

(3- 13 )  x = (F - G c )  fi + fi (F - G c ) ~  + E MT U-1 M E 

The derivation of the necessary conditions for optimality now pro- 
Adjoin to the cost the ceeds in the usual calculus-of-variations approach. 

constraints (x E and X) by means of arbitrary multipliers (p 0. 5P 
0. 5s) and define a Hamiltonian 

A 
- - 

h 
H = L + p T f  + 0 . 5  t r  (PE)+ 0.5 t r  (SX) - -  

+ 0 . 5  t r  ( A E  + A $  + B C ~  cT - N C X  A - N T A  x c  T 

The adjoint variables must satisfy 

P = - 2HE J P(T) = S(T) 

(3- 14)  

(3-15)  

(3- 16)p 

(3- 17) . 

10 



The optimal control parameters (u and C) are determined from i 
Hu = 0 (3- 18) 
- 

HC = 0 (3- 19) 

Using Eq. 3-17 first, results in 

T S = - (F - GC) S - S (F - GC) + N C . +  CT NT - CT B C  - A (3-20) 

Similarly application of Eq. 3-16 yields 

P = - (F -  EM^ u-l M ) ~  P - P (F -  EM^ u-l M) 

- M ~  u-l M E S  - S E M ~  u-l M --A (3-21) 
A 

Application of Eq. 3- 19 yields for arbitrary X 

C = B-l (GT S + NT) 

and substituting into Eq. 3-20 gives 

(3-22) 

(3- 23) T T T T  S =  -F S - S F + ( G  S + N  B - ' ( G ~ s + N ~ ) - A  

The feedback-controller gains C are identical to those that would 

be obtained by usinggquadratic synthesis around a given reference tra- 
jectory. However, application of Eq. 3-18 and 3-15 shows quite clearly 
that the noise-free system must be chosen to include the effects of the 
stochastic nature of the problem: 

H = 0 = Lu + pT G + 0.5 [t. (PE)] + 0.5 [tr (Sa, ]  
U U 

- - U - 

t r  (AE + A X  A + B C f i C T  - N C g  - N  T A  X C  T ) ]  (3-24) 
U - 

11 



T 
T A  T (3- 25) 

A 
t r ( A E + A X + B ’ C f i C T - N C f t - N  X C  ) ]  

X - 
Only for the case of a linear system with linear measurements, noises 
independent of the state and control, and quadratic cost a r e  the terms in- 
volving the derivatives of traces equal to zero, and in that case the noise- 
free trajectory may be designed without regard for the statistics. 
section has shown that, under practical engineering constraints of linear 
perturbation estimation and feedback control, the overall optimization 
procedure results in a set  of necessary conditions that can be straight- 
forwardly applied in practical design problems. 

This 

Finally, the end result  of the optimization program will  be an 
optimal control history u(t), an optimal trajectory x(t), a set  of feedback 
controller gains C(t), and a set  of estimator gains K(t) .  A l l  of these 
quantities can be calculated a pr ior i  and implemented into the system. 
In Reference 1 some special cases are’ considered together with a com- 

6 parison of the work most closely related to this approach . 

- - 

4. Example. Closed-Loop Control of a First-Order System With 
Unknown Time Constant 

As an illustration of the new control technique, a closed-loop 
controller w i l l  be designed for the stochastic first-order system 

(4- 1) 

The inverse-time constant ba is assumed to be an unknown constant picked 
from a Gaussian distribution with mean b. This unknown parameter is con- 
sidered to be another state variable so that the augmented state vector is 

/ of dimension 2 and obeys 

12 
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a & 

-x2 x1 

0 
-L 

The noise-free system obeys 

+ 

-x2 x1 I 0 - 
U 

0 - 

+ 

with the assumed initial conditions 

x2(0) = < b a  > = b 

XI (0) = +O) > = 0 

(4- 3) 

Furthermore, it is assumed that the expected value of ya at the terminal 
time is specified as 

x l (T)  = < y a ( T ) >  = 1 

The matrices F and G a re  

F =  [:‘ .-:Ij , G =  

0 li 
(4- 6) 

(4- 7 1 

M 
Linear measurements’ of ya corrupted by white noise a re  available 

to the controller 

1 3 
. .  



.- 
' ?  

ma ya + v 

then 

M = [l 01 

The stochastic cost function to be minimized is 

T 

0 
J1> = 0. 5 K 1 (uaI2 dt > 

(4- 8 )  

(4-9) 

(4- 10) 

Taking the expected value with the assumption of perturbation estimation 
and control results in 

T 

0 
< J 1 > =  0.5 [ u 2 d t + 0 . 5 t r  (4-11) 

where 

B = Luu = 1  (4- 12)  

F rom Eq. 4- 11 i t  is clear that no penalty would be attached to deviations 
in  xa(T) away from specified nominal x (T). 1 1 
to weight terminal mean- squared deviations in the perturbation controller 

Thus, the cost is augmented 

The numerical values used in the solution to this problem 
T = 10, b = 1, U = 1, 

(4- 13) 

were  
, 

14 



and 

The necessary conc 

1 

Q =  [ 
0 

2 

0 

S(T) = 

O 0 1.  
0 O 1  

itions were so-ved numerAza 

(4- 14) 

. (4- 15) 

(4- 16) 

ly, using a first-order 
1 method . 

compared with the quadratic-synthesis approach. 
nominal trajectory is determined from the same necessary conditions 
with the exception that the adjoint variables a re  determined’without regard 
to the statistics so that 

The results of this combined optimization approach will be 
In this latter case the 

- p = - F T p  - (4- 17) 

as a result of minimizing 

T 
0. 5 1 u2 dt 

0 
(4- 18) 

/ 

without the covariance terms. The time constant is being identified. 
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The optimal deterministic control signals a r e  shown in Figure 1.  
The quadratic-synthesis approach results in a control u = 2 exp (t - lo) ,  
minimizing the energy integral Eq. 4-18 with a value of 1. 00. 
bined optimization approach yields a value of 1.31 for the energy integral. 
However, the quadratic-synthesis approach yields a value of 1. 51 for the 
remaining matrix terms in the cost Eq. 4-13 as opposed to 0. 71  for the 
combined optimization. The total average cost is thus 2. 51 versus 2. 02; 

the quadratic synthesis approach actually costs 24.2% more. Such a sub- 
stantial improvement in performance in a more practical problem would 
be significant. 

The com- 

‘The difference in cost between the two approaches is due primarily 
to the performance inminimizing the mean-squared deviation in the state at 
the terminal time. Figure 2 and 3 show the differences between the two cases 
inthis respect, 1.36 versus 0.69. Figure 4 gives the covariances for the 
inverse-time constant (4.42 versus 3. 37). Note that the estimationof the in- 
verse time constant is poorer in the combinedoptimization case. This is because 
the control system tends to minimize the sensitivity to the unknown parameter. 

This last  statement can be better understood from Figure 5. The 
final value of x1 can be written as 

‘ T  T 

0 0 
xl(T)  = - b  / x1 dt + / u  dt (4- 19)  

Clearly,. variations in x (T) with respect to changes in b are  minimized, 
if the a rea  under the x1 versus t curve is minimized. The combined op- 
timization procedure attempts to do jus t  that, as is shown in Figure 5, 

completely automatically as opposed to the sensitivity- theory design 
approach to problems of this type. 

1 
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-3 .5  t 

‘ . i  
5. Summ ar y 

This paper has presented a new technique for  the control of stoch- 
astic nonlinear systems. 
cedure was  seen to offer substantial improvements in system perform- 
ance a s  compared to the quadratic synthesis approach. Certainly the 
main disadvantage of the procedure lies in the fact that it is only approp- 
riate in situations where the reference- trajectory concept is valid. One 
situation where this is true is in atmospheric-entry problems where the 
reference- trajectory concept is well-established and this technique has 

might include, for example, optimal guidance and navigation policies for 
space and terrestr ia l  vehicles and optimum closed-loop process control- 
lers. The extension of the theory to discrete systems represents a 
straightforward, but not necessarily trivial task. 

For the sample problem considered, the pro- 

been applied to that particular problem 1 , Other possible applications 

-. 
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Figure 1 Optimal Control Input 
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COVARIANCES FOR STATE X i  
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Figure 2 Covariances for x1 - Quadratic Synthesis 
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Figure 3 Covariances for x1 - Combined Optimization 
"0 
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COVARIANCES FOR INVERSE TIME CONST. 

Figure 4 Covariances for Inverse Time Constant 

Figure 5 Optimum Trajectory for x1 P 
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Manned Spacec raft Cent e r 
Houston, Texas 77058 
ATTN: Apollo Document Control Group (BM 8 6 )  

M. Holley 
T. Gibson 

KSC : 
National Aeronautics and Space Administration 
J. F. Kennedy Space Center  
J. F. Kennedy Space Center ,  Florida 32899 
ATTN: Technical Document Control Office 

National Aeronautics and Space Administration 
Langley Research Center  
Hampton, Virginia 
ATTN: M r .  A.T.  Mattson 

GA . 
Grumman Aerospace) Corporation 
Data Operations and Services,  Plant 25 
Bethpage, Long Island, New Y o r k  
ATTN: M r .  E. Stern 

NA R: 
North American Rockwell, Inc. 
Space Division 
12214 Lakewood Boulevard 
Downey, California 9024 1 
ATTN: CSM Data Management 

D/ 096-402 AE99 

NAR RASPO: 
NASA Resident Apollo Spacecraft Program Office 
North American Rockwell, Inc. 
Space Division 
122 14 Lakewood Boulevard 
Downey, California 9024 1 

GE: 
General  Electr ic  Company 
Apollo Systems 
P. 0. Box 2500 
Daytona Beach, Florida 32015 
ATTN: E. P. Padgett, Jr. /Unit 509 
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