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ON OPTIMUM STEERING TO ACHIEVE'REQUIRED VELOCITY"

" ' ' " ' '!

: : •'.'.' . ABSTRACT

A well-known method of on-board guidance of space vehicles

is based on the concept of a "required velocity". The dynamics of the

powered -flight phase of the vehicle can be written in terms of a

velocity-to-be-gained as

v - a
-

where

v = v - v-g -r -

[<=]-
dv I-r
9r

and a is the thrust acceleration, v is the required velocity.
r "T '

In general! C J is a function of position _r and hence time-

varying . With reasonable approximations this equation can be

considered equivalent to the familiar "state equation"

x = [A ] x + u

of a dynamic system.

In this paper the necessary condition, that must be satisfied

by a fuel optimum guidance law, is developed for a system where

[AJis linear and time-invariant and |u| is a known function of time.

From this condition, with first order approximations, an explicit

guidance law is derived. Some conclusions, that have been
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previously obtained by other methods, are extracted from the

solution.

Numerical examples are included to indicate the performance

of this law in comparison to other familiar steering laws. The

near optimum law is shown to yield excellent results in practical

problems in which the assumptions of time-invariance and linearity

are not quite true. The results are compared with optimum

solutions obtained with the calculus of variations.

Computational aspects of the implementation of the law are

discussed. The mathematical form of this law is shown to result

in some computational simplifications. .

by Balraj G. Sokkappa
April 1965

IV



R-491

ON OPTIMUM STEERING TO ACHIEVE'"REQUIRED VELOCITY"

Introduction

The speed and weight (rather, the lightness) of digital space

computers have reached a stage where real time computation of

very sophisticated explicit guidance laws has become practical^-,.

Not only the rapid repetitive solution of guidance equations but the

generation of suitable commands, based on the solution, to control

the thrust direction is possible. Consequently, guidance laws that

result in improved fuel economy and which can be implemented for

on-board computation have received considerable attention recently.

In this paper the optimality of a certain type of steering,

referred to as the "required velocity steering" is discussed. A

time-optimal solution is derived on the basis of a constant linear

system. With first-order approximations, a steering law that is

practical to implement is derived. The performance of this, law is

compared, in numerical examples, with other methods of steering

that are presently used in this class of problems. The steering

law is applied to a translunar injection problem. The result is

seen to be extremely good, though the assumptions used in the

derivation are not quite valid for this problem. Some conclusions,

that are already well established by other methods, are also extracted

Required Velocity Steering

The solution to a major class of guidance problems is

based on the well-known concept of "required velocity (v )",

which is defined as that velocity which the vehicle should possess

at the present position (r) and time (t) in order to achieve the

desired objective. Most single impulse transfers would fall in

this category.

Based on v , a velocity-to-be-gained (v ) is defined as
o

yg = vr - v (i)

where v is the present velocity.



It can be shown that v satisfies the differential equation

dv

3v
* ~r

where the matrix C = Tdr

and a is the acceleration due to thrust.

It can also be shown that

-C v = v - g-g -r M

= b ' (3)

where g is the acceleration due to gravity.

The aim of the powered flight maneuver is to impart to the vehicle

the velocity v so that, at the cut-off point, the vehicle has the

corresponding required velocity. Hence, the steering law can

be considered as a control law designed to null the vector v
o

with the control effort a according to Eq (2).

An immediately evident way of achieving this is to

point the thrust such that

a * v = 0 (4)
6

In most practical cases this law is found to result in more

burning time and consequently costs more fuel than another

law designed to hold v irrotational. This law can be written as
o

v * v = 0 (5)
~~ Cf ~~ Cf

or from Eqs (2) and (3),

(b - a) * v = 0 (6)

This steering law has been found to give excellent performance
2

in many cases. Actually, both Eqs (4) and (5) can be written

in a more general form as

a * v = c b * v ( 7 )
- -g - -g

where c is a scalar.

# •x indicates time derivative of x

## jj * y indicates the cross product of x and y
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In most cases, near fuel-optimal performance can be achieved by

the proper choice of c. This method has been exhaustively in-
2

vestigated elsewhere .

In the following sections, a fuel-optimal policy will be de-

veloped, based on a system whose C matrix is constant and t..

linear. The results are extended for application to practical

problems.

Linear Time-Invariant System

Consider a three-dimensional system whose state can be

described by the differential equation.

x_ = A x + u (8) ,

where x is the state of the system,

"A is a-time- invariant (constant) matrix

and lu| = u i F( t) . (9)

A fuel-optimal control drives the state from x(0) to

zero in time T such that

T

J = \ lul dt (10)
J n . ,;0

,._3is minimized. Introducing a fourth variable XQ we can write

/ ' \

X
1

T0 0

0 A

/x \f X0

x

M
u

1

or

where

y = B y + a

I "0 \

(ID*

(12)

a = = u (13)

#
Superscript T indicates "transpose"



u.
and a. - — for i = 1, 2, 3

o

The adjoint to Eq (12) is given by

•
p = - B p

where

B
0 0

0 A

Using Pontryagin's Maximum Principle it can be

verified3 that

P3 "3

should be maximum for optimum control. Now choose p

so that

/ P O \
P =

Eq (13) can be written as

' «0 \

(14)

(I5) f

(16)

From Eqs (9), (10) and (11),

Therefore

Further, since

J = xQ(T)

P0(T) = -1

P0(t) = 0,

(17)

(18)

(19)

(20)

P0(t) = -

it
0 is the null vector

(21)



Hence from expression (16)

< P T
1 S j - - 1 > (22)

should be maximized for optimal control.

Therefore . w-

F(t) if |p| > 1
ff = lul =1 ~ (23)

0 if | p| < 1

H £
and ,—• = • ——;|u| |£|

Eq (23) indicates that ia should be pointed along p so that

p = k u (24)

where k is a scalar.

Since, from Eqs (14), (15), and (17),

p = - AT p (25)

~ (ku) = - AT ku (26)

or

k u + k u = - A T k u (27)

or „,
u = - (A1 + s I) u (28)

where

s(t) = ^- is a scalar (29)

TSince A is time -invariant and A and si commute

with each other the solution to the differential equation (28) is

*
-AT ( t - t i ) " )t Is dt

u(t) = e A (t ti; e Jtl u ( t ) (30)

u
I is the identity matrix



The Guidance Problem

Comparison of Eq (2) with Eq (8) indicates that the required

velocity guidance problem is very similar to the system we have

considered, with

x = v

... ' A = -C* (31)

and u = -a
Jjt

Assume that C can be considered linear and time
2invariant . Then for fuel-optimal control, from Eqs (28) and (31)

a = (C* - s l)a ' (32)

Hence CT

+ T - \ I s(t) dt

a (a) = eC ( a" t ) ' e * a(t) (33)

Now let T be the total time of burning so that from Eq (2)

^ * ( T - t )
v ( t ) + J e'^ V 1 ~ w a ( a )

(34)

_ C / T _ C T )
v (T) = 0 = e v (t) + \ e U u ; a (a) d a

Substitution of Eq (33) yields

a

T _ ^T - \ si dt

= e" "~ <<"*) J*- C ( T - t ) v ( t ) + e - C ( T - C T ) e C <<"*)« * a (t) d a
-g Jt

(35)

Making a change of variable in Eq (35) according to

a = t + z (36)

yields

0 = e"C (T"t)v (t) + \ e"
C (T"t"z) eC z e g ( z ) I a ( t ) d z

~g «JnU (37)



0 = e

where

and

-C' (T-t) f S C*z C* zj. f Cz C z g(z)I ... ,v ( t ) + e \ e e ee a ( t ) d z
->n -

t + z

s ( t ) d t

T = T-t is the time to cut-off,
g

(38)

(39)

(40)

Rearrangement of Eq (38) yields

Tr g-v (t) = \-g J0

*Tjl> «A» •*•

C'z Icf z + gl) ,.v ,e e s a.(t) dz (41)

At this point it is interesting to observe that if C is

skew-symmetric (norm-invariant system), C^ and C commute

and hence
T

* *C z C z ,e e =1

Equation (38) can then be integrated to yield

_a( t ) = - kj v (t)
o

a well-known fuel-optimal control law.



Practical Implementation

The optimal policy for thrust acceleration j.(t) should

satisfy Eq (41). In order to find a(t) explicitly in terms of

y the integral in Eq(41) has to be evaluated. In general, the
o

integral is difficult to evaluate exactly. However, if the

special features of the problem at hand are used to simplify

the integrand, a very useful form for ja(t) results:
Eq (32)can be rearranged as

;';

s a = C a - a

or T
rr< ry> o> -L f̂ -,

s_a a = a Cf a. - a a. (42)

Hence T ,,,T
a1 C"" _a T.

s = - g - - JL-^ (43)
I a-! |aj

, a , 2

Substituting Eq(23) into Eq (44) yields

p (t)" (45)

T *

Now from Eq (39) we can write

g (z) =-J 2 dt + \ ^r dF (46)

The first term is usually a slow varying quantity. Further, in

repetitive computation its value is continuously updated, so that

it can be treated as a constant, yielding

^^- (47)



Substitution of Eq (47) into Eq (41) yields

- v (t) = f g eC z eC zeL * VL/ J a (t) d z
o v

0

(48)

For chemical rockets

F(t) = r^- ^49)
Hence

g(z) = - k, z + log—"V7' > (50)
t 4 \T ~r Z/

Substitution of Eq (50) into Eq (48) yields

/-» T * * - T k 7 -Tlntr M - Z>r fg Cz C z i^ tz i iogu ;
= — -p \ 6 e e e e a_(t) dz- v_

(51)

In most practical problems higher powers of matrix
*

[ C T ] can be ignored compared to the identity matrix I. We
6

can expand the integral in Eq. (51) yielding, to a first-order

approximation ,

r g
ec*z ec*T

z e-i v e-i iog (i - 1± )̂ £(t) dz
•'r\

T
s

* + C* -k t )z] (1 -^-^)"1 a(t) dz (53)



In the Appendix (Eq. A-3) it is shown that

T .

a(t) dz

a(t) (54)

where sj and Sp are scalar factors given by Eq. (A-4) through

CA-7).

Substitution of Eq. (54) into Eq. (51) yields

r c' + c'T1'a(t) = k2 U + ? 2 T g ( C 2
+ C )J vg (55)

where k0 is a scalar whose value is immaterial since we are only
£

interested in the direction of <i (t).
*

The above equation indicates that when C is not

symmetric, the skew-symmetric part should be ignored (since
o-

C can be written as the sum of symmetric and skew-symmetric

matrices). This conclusion has been arrived at previously by a
2

different approach .

The implementation of Eq (55) for real-time computation

is shown in the form of a block diagram of Fig. 1. Some of the

numerical operations in this form, such as the matrix inversion,

are rather time consuming for on-board computation. An approx-

imation for the inverse operation yields

a(t) = k.
..T T
" ) -S-; 2

v (t)
g

(56)
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In problems where C'v is symmetric (a case that covers most
2

required-velocity guidance problems ), Eq (56) reduces (by

Eq (3)) to

a(t) = k U + b s T I . (57)

Further, since usually k.T «1, S
2 = 1 according to Eq (A-5).

&

Hence Eq (57) can be written as

a (t) = k, (v + b T ) . (58)
— Q — — CF

This steering law is very easy to implement as shown in Fig. 2.

A good estimation of T is not an easy matter. However, even
o

such a simple approximation as

v

T =
g 1*1

(59)

gives good results as shown in the numerical examples that

follow. If the optimum burning time is previously known, T

can be readily computed according to Eq (40).

12
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Numerical Examples

I Constant Time-Invariant System

Consider a two dimensional system with

c =
-2. 469 X 10-4 -2. 7317 x 10-4

•7. 7317 X 10"4 -2. 9653 X 10~4
sec

F(0) = 12. 5 Ibs

T = 1000 sec

1-1. 7164 X 104\

v ( 0 ) = x ( 0 ) =
o

1. 9175 X 10

ft
sec

The time and fuel Av required to drive .x to the origin

is tabulated below for the different steering laws. The optimum

was obtained by the methods of the calculus of variations

Time
(sec)

Av
(ft/sec)

Optimum

834. 38

22476. 44

v X v
g g

837. 36

22702. 86

Eq (58 )

834. 67

22497. 96

E q ( 5 6 )

834. 54

22487.98

II A Trans lunar Injection

The steering laws of Eq ( 5 ) and Eq (58 ) were used on

a typical translunar injection problem. A vehicle of initial mass

8000 slugs is to be injected from an earth orbit of 100 n. miles to

pass through an inertial point of radius 1. 8 x 10 n. miles and

201. 25 degrees ahead of ignition point at a specified time. The

engine has an initial thrust of 56, 667 Ibs and an exhaust velocity

of 12, 500 ft/sec.

Steering with Eq ( 5 ) took 1028. 07 sec and 10, 920. 64

ft/sec of Av whereas steering with Eq (58 ) took only 1021. 43 sec

14



and a Av of 10808.5 ft/sec.

Conclusions

The derivation of the steering law was based on several

assumptions. They are:
#

DC is linear and time invariant

* 1
2) Eigenvalues of C are smaller than -^

T
aTC* a=_ varies slowly with time

| a | 2

4) The optimum maneuver consists of a single .burn.

The application of this law has resulted in very nearly fuel-optimal

steering in systems in which these assumptions are valid. Several

numerical examples (not listed here) indicate that the steering law

developed here results in better performance than the laws that

have been in use so far, even in cases where the assumptions are

not valid, £.s in example II). The form of the steering law has an

advantage in that the direction of a is explicit; whereas in Eq ( 5 )

the direction of a_ is implicit and consequently a different set of

equations are required to pre-align the vehicle. This advantage

results in a small decrease in computer storage capacity. Further,

it is not always possible to find a solution to satisfy Eq ( 5 ), especially

when a is very small. The form of Eq (58 ) avoids this difficulty.

15



Appendix

The integral of Eq (53) can be written as

a(t) dz

"g
*v> *\

I + (C + C - ktl) z a'a(t) dz (A-l)

Tg(l +

;{igi

t/r) I +.(0* + C* - ktl) -|- a (t)

rp2 •- rp T 1
•*• — I T "••'- -'- ,*. 1+ _£ I +(c- + c- _ k l ) ^g a
7 |_^ T, 0 J

F T - i* *
T 1 C + C - k.I

(1 + t / r) + g + TU f T/T; -i- 2T j -i- 2 ig

rp
S Ir T1 -"- -'' -1

. JV. -L \ I"* -i^
T (1

 4 t g \ C + C T a a (t)
1 V J. 1 o 1 ' A — • 1 --1 . _ '^7\ ^ ; 2 g 4

r T* &1

! + C + C T „ a m
2 g "2 -

2 T

(A-2)

(A-3)

a(t)

16



where

s =

S ]f T

S
3 =(1 +t/r)+

(A-4)

(A -5)

-6}

(A-7)

17
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