

3150-6027-R8-000 Jotal Pages: 101

MSC-G-R-66-2 Supplemental Report 4

PROJECT GEMINI TASK MSC/TRW G-14

TRW NOTE NO. 66 FMT-230

(67- 8700

GEMINI 6 INERTIAL GUIDANCE SYSTEM EVALUATION AND TRAJECTORY RECONSTRUCTION(U)

30 JUNE 1966

Prepared for MISSION PLANNING AND ANALYSIS DIVISION NATIONAL AERONAUTICS AND SPACE ADMINISTRATION MANNED SPACECRAFT CENTER HOUSTON, TEXAS

NAS 9-4810

Issued as: Supplemental Report 4 To: Gemini Program Mission Report Gemini VI-A MSC-G-R-66-2

GROUP

after

Gemini VI-A Mission Evaluation Team By: National Aeronautics and Space Administration Manned Spacecraft Center Approved by. Houston, Texas

5 Year

declassified

R.J.Boyles, Task Manager

Approved by_

.McCarthy, Manage Systems Engineering Department

Approved by

C.W.Pittman, Manager **Mission Planning and Operations** Mission Trajectory Control Program

(Reverse of this page blank)

TRW SYSTEMS DOWNGRADED YEAR INTERVALS DECLASSIE ETER 12 YEARS

This document contains information affecting the national d of the United States within the meaning of the Espianage Laws, Title 18, U.S.C., Section 793 and 794, the transmission of any manner to an unauthorized person is prohibited by law.

ABSTRACT

This report contains a detailed accuracy evaluation of the Gemini 6 inertial guidance system during the ascent and reentry phases of the mission. An analysis of the external tracking instrumentation accuracy is also included. The results of the error analyses are used to construct reference Gemini 6 ascent and reentry trajectories.

(Reverse of this page blank)

4

Un de la serie

CRUESSIFIED

CONTENTS

.

1.	INTR	TRODUCTION AND SUMMARY 1					
2.	INER PER I	TIAL GUIDANCE SYSTEM FORMANCE ANALYSIS	2-1				
	2.1	Summary of Data Used in Analysis	2-1				
	2.2	Inertial Guidance System Error	2-6				
		2.2.1 Free Flight Fix	2-7				
	2.3	Inertial Measurement Unit Error Analysis	2-9				
		2.3.1IMU Error.2.3.2Honeywell Preflight Error	2-9				
		Coefficient Prediction	2-11				
		2.3.4 Error Coefficient Recovery	2-12				
		2.3.5 December 12 Gemini 6 Attempted Launch Data Analysis	2-19				
	2.4	Azimuth Update	2-22				
	2.5	Conclusions	2-24				
3.	REE	NTRY	3-1				
	3.1	Reentry Simulation Results	3-2				
4.	TRA	CKING SYSTEM PERFORMANCE	4-1				
	4.1	GE Mod III	4-2				
	4.2	MISTRAM Data	4-2				
		4.2.1 MISTRAM I Quick Look Data	4-2				
		4.2.2 MISTRAM II (Passive Mode)	4-4				
		4.2.3 MISTRAM Final	4-4				
	4.3	Range BET	4-5				
	4.4	Discussion of Tracking Data Evaluations	4-5				
5.	TRA	JECTORY RECONSTRUCTION	5-1				
	5.1	Reentry Trajectory Reconstruction	5-1				
6.	ONB	OARD RADAR PERFORMANCE	6-1				
	6.1	Trajectory Reconstruction	6-1				
	6.2	Conclusion	6-2				

3150-6027-R8-000 Page vi

CONTENTS (Continued)

APPENDIXES

А.	Trajectory Reconstruction	A-1
в.	TRW Regression Program (REMP) Modifications	B-1
с.	Preflight Calibration History Plots	C-1
REFERENC	CES	R-1

Total Pages: 101

Page

ILLUSTRATIONS

		Page
1	GE/Final and 100K MISTRAM ΔV , Sensed Coordinates	2-2
2	GE/Final and 100K MISTRAM ΔV, Guidance Inertial Coordinates	2-3
3	GE/Final and 100K MISTRAM ΔP , Guidance Inertial Coordinates	2-4
4	Navigation Velocity Error	2-5
5	Sensed Coordinate ΔV with IMU Error Source Fit	2-8
6	Sensed Velocities Revolution 3 RDVZ Phase	2-13
7	Sensed Velocities Revolution 5 RDVZ Phase	2-14
8	Sensed Velocities Revolution 8	2-15
9	Gemini 6 Abort Sensed Velocity Error	2-20
10	Gemini 6 MSC Reentry Simulation Minus Radar BET (IGS Coordinates)	3-3
11	GE/Burroughs and Compensated IGS ΔV , Sensed Coordinates	4-7
12	GE/Burroughs and Compensated IGS ΔP , Sensed Coordinates	4-8
13	GE/Final and Compensated IGS ΔV , Sensed Coordinates	4-9
14	GE/Final and Compensated IGS ΔP , Sensed Coordinates	4-10
15	MISTRAM I 100K and Compensated IGS ΔV , Sensed Coordinates	4-11
16	MISTRAM I 100K and Compensated IGS ΔP , Sensed Coordinates	4-12
17	MISTRAM I 10K and Compensated IGS (V, Sensed Coordinates	4-13
18	MISTRAM I 10K and Compensated IGS ΔP , Sensed Coordinates	4-14
19	Passive MISTRAM and Compensated IGS 4V, Sensed Coordinates	4- 15
20	Passive MISTRAM and Compensated IGS ΔP , Sensed Coordinates	4-16
21	MISTRAM Final and Compensated IGS ΔV, Sensed Coordinates	4-17
22	MISTRAM Final and Compensated IGS ΔP , Sensed Coordinates	4-18
23	Range BET and Compensated IGS ΔV , Sensed Coordinates	4-19
24	Range BET and Compensated IGS ΔP , Sensed Coordinates	4-20

URCERSER

3150-6027-R8-000 Page viii

ILLUSTRATIONS (Continued)

		Page
25	TRW Range Comparison (Original Gemini 6 Trajectory)	6-3
26	TRW Azimuth Comparison (Original Gemini 6 Trajectory)	6-4
27	TRW Elevation Comparison (Original Gemini 6 Trajectory)	6-5
28	TRW Range Comparison (Second Gemini 6 Trajectory)	6-6
29	TRW Azimuth Comparison (Second Gemini 6 Trajectory)	6-7
30	TRW Elevation Comparison (Second Gemini 6 Trajectory)	6-8
31	NASA Range Comparison (Second Gemini 6 Trajectory	6-9
32	NASA Azimuth Comparison (Second Gemini 6 Trajectory)	6-10
33	NASA Elevation Comparison (Second Gemini 6 Trajectory)	6-11
34	Radar PCM Range (230 through 325 Seconds)	6-12
35	Radar PCM Range (330 through 358 Seconds)	6-13
36	Radar PCM Azimuth (230 through 340 Seconds)	6-14
37	Radar PCM Azimuth (340 through 358 Seconds)	6-15
38	Radar PCM Elevation (230 through 340 Seconds)	6-16
39	Radar PCM Elevation (340 through 358 Seconds)	6-17

.

¥

¥

TABLES

1	Inertial Guidance Error at SECO +20 Seconds	2-7
2	Recovered IGS Error Coefficients	2-10
3	Accelerometer Bias Constants	2-12
4	Accelerometer Bias Error	2-12
5	IGS Error Source Comparison	2-21
6	Azimuth Update	2-23
7	IGS Error History	2-25
8	Reentry Initial Conditions	3-1
9	Gemini 6 Reentry Impact Location	3-2
10	Tracking Data Bias Errors	4-3

1. INTRODUCTION AND SUMMARY

Gemini 6 was launched on 15 December 1965 from Complex 19 at Cape Kennedy, Florida. The primary objective of this flight was to perform a rendezvous with the orbiting Gemini 7 spacecraft. TRW Systems is submitting this report to the NASA Manned Spacecraft Center in response to Task MSC/TRW G-14 of the Gemini Mission Trajectory Control Program, Contract NAS 9-4810. This document presents the results obtained from analysis of the inertial guidance system (IGS) performance during the ascent and reentry flight phases and provides a reconstruction of the spacecraft trajectory during ascent and reentry.

The following is a brief summary of the analysis results:

a) The IGS performance during ascent was approximately within anticipated uncertainties. Best estimates of IGS error at insertion (SECO + 20 seconds) are as follows:

ΔΧ	=	$+671 \pm 100 \text{ ft}$	$\Delta \dot{X}$ = +0.2 ± 0.5 ft/sec
ΔΥ	=	+856 ± 200 ft	$\Delta \dot{Y} = +10.3 \pm 3 \text{ ft/sec}$
ΔZ	=	$-449 \pm 100 \text{ ft}$	$\Delta \dot{Z} = -2.3 \pm 1 \text{ ft/sec}$

b) Major contributors to the above IGS errors were determined by regression and visual analysis to be the following:

X accelerometer bias	=	197 ± 10 ppmg
X accelerometer scale factor	=	-76 ± 9 ppm
Z accelerometer misalignment towards X	=	84 ± 24 sec
Y gyro constant drift rate	=	$0.34 \pm 0.1 deg/hr$
X gyro input axis unbalance	=	$-0.23 \pm 0.7 \text{ deg/hr/g}$
Platform misalignment about Y accelerometer axis		$-40 \pm 42 \ \widehat{sec}$

Timing errors, both correlation and scale factor (clock rate error), were found to be significant at SECO but have not been listed as major error sources.

c) The support tracking systems, GE Mod III, MISTRAM I and MISTRAM II performed within anticipated urcertainties with the exception of a P bias in the MISTRAM I data of -1.5 feet in the 100 K baseline data and -0.1 feet in the 10 K baseline data.

d) No major IGS problems were evident from the available data during reentry. Loss of spacecraft telemetry during the "blackout" period precluded a more detailed IGS analysis. The IGS and ship indicated impact points are summarized below for comparison with respect to the target.

Source	Geodetic Latitude (deg north)	Longitude (deg west)	Miss (n mi)
Ship	23.375	67.875	14.3
IGS	23.7	67 . 74	7.3
Target	23.61	67.83	-

e) Coarse agreement was obtained between a reconstructed Gemini 6 to Gemini 7 relative position vector and the telemetered rendezvous radar value. However, uncertainties in the trajectory reconstructions limited the calculated vector accuracies to 1 - 3 n mi.

Section 2 of this report discusses the IGS detailed accuracy analysis. Section 3 describes the IGS performance during reentry, and Section 4 contains the external tracking system performance. The ascent and reentry trajectory reconstruction is presented in Section 5. Section 6 discusses the rendezvous radar/trajectory reconstruction comparisons. Appendix A contains a list of trajectory reconstruction, and Appendix B contains a mathematical description of the TRW error regression program (REMP). Appendix C presents the preflight calibration history plots.

2. INERTIAL GUIDANCE SYSTEM PERFORMANCE ANALYSIS

CONTROLITI

2.1 SUMMARY OF DATA USED IN ANALYSIS

Comparisons of IGS telemetered navigation quantities and external tracking data were made to evaluate the accuracy of the Gemini 6 IGS performance. The IGS evaluation was based in part on sensed velocity comparisons (Figure 1). These were generated by comparing external tracking data, adjusted for gravity, with the telemetered accelerometer accumulated count appropriately biased and scaled to engineering units. The residuals from these comparisons were attributed to inertial measurement unit (IMU) and tracking system errors.

Comparisons were also made between the telemetered total inertial position and velocity outputs from the airborne computer and external tracking data (Figures 2 and 3). These comparisons (called total inertial comparisons) include airborne computer navigation errors caused by gravity approximations, truncation errors, etc., as well as IMU and tracking system errors. The difference between the sensed and inertial comparison sets are called delta-delta comparisons (Figure 4), and provide a measure of the airborne computer computational error alone.

The sensed, inertial, and delta-delta comparisons are plotted in the IGS computer coordinate system, which is an inertial, orthogonal, righthanded system referenced to the center of the earth. The x and z axes lie in a plane parallel to the geodetic tangent plane at the launch site at platform release time, with the x axis nominally defined by the launch azimuth (actually to the misaligned azimuth), positive downrange. The y axis is positive down along the geodetic vertical, and the z axis is directed to complete the right-handed x, y, z set.

Position and velocity comparisons were also made in the external tracking measurement coordinates to isolate IMU and tracker error coefficients by performing a statistical regression analysis on the differences. External tracking data used in the evaluation included Quick Look MISTRAM I 10K and 100K, GE MOD III/Final MISTRAM, Passive MISTRAM II, and AFETR BET. An analysis of these data sources is described in Section 4.

The plots enclosed are referenced to liftoff time (13:37:26:471 GMT) which occurred 3.279 seconds after IGS "platform release."

2.2 INERTIAL GUIDANCE SYSTEM ERROR

The indicated inertial guidance system errors following the end of the powered ascent phase (SECO + 20, 359 seconds from liftoff) are contained in Table 1. These errors were obtained from an analysis of available tracking and guidance data. For purposes of presentation, Figures 2 and 3 have been included, although the regression analysis which recovers the IMU error was performed in the tracker domain. The column headed "IMU Error" represents the error contributed by the accelerometer, gyro, and initial platform alignment sources. The column headed "Navigation Equation Errors" is the contribution due to various approximations within the airborne computer as observed from the delta-delta comparisons, and the column titled "Total Guidance Errors" is the sum of the two and represents the total IGS error. These total errors result in velocity magnitude and flight path angle errors at SECO + 20 seconds of the following amounts:

> $\Delta |V| = 1.0 \text{ ft/sec}$ $\Delta \gamma = -0.02 \text{ deg (indicating the guidance velocity vector is pitched down)}$

Table 1 also presents simulated navigation errors. * With the exception of the large x position error, the actual navigation errors approximate the simulation values. The major contributor to the 1048-foot x error was an IGS initial x position error of approximately 700 feet (Figure 3). This error is associated with the airborne computer's detection of platform release time and suggests that the IGS computer began navigation early by approximately 0.45 second. The remaining 400 feet of x position navigation error is due principally to the integration of the x velocity error.

^{*}The preflight values were determined from simulation results obtained from IBM. Since no exact simulation of the Gemini 6 trajectory was available, values were obtained by interpolating from a series of simulations for similar trajectories with various launch azimuths.

IGS Coordinate	IMU Errors	Navigation Errors	Total Guidance Errors	Simulated Navigation Errors*	NASA Computed Total Guidance Errors**
ΔX	-1.9 ± 0.5	+2.1 ± 0.2	+0.2 ± 0.5	+1.9	+0.8 \pm 1.5
ΔY	+9.3 ± 3.0	+1.0 ± 0.1	+10.3 ± 3.0	+0.9	+11.0 \pm 3.0
ΔZ	-2.5 ± 1.0	+0.2 ± 0.1	-2.3 ± 1.0	-0.15	-2.3 \pm 0.5
ΔX	-415 ± 100	+1086 ± 10	+671 ± 100	+213	$+570 \pm 150$
ΔY	+800 ± 200	+56 ± 3	+856 ± 200	+78	+235 ± 50
ΔZ	-500 ± 100	+51 ± 3	-449 ± 100	-18	-450 ± 100

Table 1. Inertial Guidance Errors at SECO + 20 Seconds

*No one sigma estimate available

** NASA/MSC furnished these guidance error estimates and uncertainties Note: The ± numbers are one sigma estimates

2.2.1 Free Flight Fix

A comparison was made between the IGS position/velocity vector after SECO and a position/velocity vector derived from a trajectory reconstruction of the free flight interval during Revolution 1. The tracking data used in this reconstruction consisted of the following radars (measuring range, azimuth, elevation):

- Grand Turk
- Bermuda
- Canarvon
- White Sands
- Eglin

An examination of the orbital fit to these station's data indicates residuals which are within the expected uncertainties and lends credence to the corrected position/velocity vector at the comparison time.

This comparison has been made to support the estimation of the IGS errors, although it is only one point in time, the leverage afforded by five radars tracking during free flight yields effectively much more than a single point comparison. Figure 5 presents the Free Flight Fix point at

(This page is Unclassified)

3150-6027-R8-000 Page 2-9

349 seconds as a heavy X. The most important direction is the vertical, as evidenced by the diverging tracker comparisons (Figure 5). The accuracy of the Free Flight Fix point is assumed to be about ± 2 ft/sec in the vertical and downrange directions and about ± 5 ft/sec in crossrange. The GE and MISTRAM uncertainties (including biases) are both about ± 10 ft/sec in the vertical direction at the time of comparison.

2.3 INERTIAL MEASUREMENT UNIT ERROR ANALYSIS

2.3.1 IMU Error

Analyses to recover IMU error source coefficients were performed by using procedures and data processing programs as documented in Reference 1 with the exception that the Recursive Error Modeling Program (REMP) was used for regression analysis. The IMU error source coefficients recovered in the analysis are presented in Table 2. These were recovered as follows:

- a) Errors in the accelerometer biases were recovered during orbit phases of flight, and the ascent comparisons were precompensated for their effect (Section 2.3.3).
- b) IGS/tracker comparisons were made in the rate domain of the tracking systems and a regression analysis was performed in that domain.

The general effect of IMU errors on the Gemini 6 ascent flight can be seen in the IGS/GE Mod III final sensed velocity comparison (Figure 1). These show x, y, and z velocity differences that build up to -0.5, 1.0, and -1.5 ft/sec at the end of the booster stage (BECO), and -2, 10, and -2 ft/sec at SECO, respectively.

The dominant errors that contributed to the x axis residuals were a time correlation error of 0.015 second, a time scale factor (IGS clock drift) error of -63 parts per million (ppm), and an X accelerometer scale factor error of -76 ppm. The timing errors were evidenced by -0.5 and 1.5 ft/sec jumps in the x velocity residuals at BECO and SECO, respectively. The minus sign associated with the clock drift error indicates that the onboard clock is running too fast.

The recovered IGS error coefficients presented in Table 2 that account for the major portion of y axis residuals were the X accelerometer bias (which results in an initial misalignment error about the Y accelerometer),

(This page is Unclassified) ³

Coefficients
S Error
vered IC
. Reco
Table 2

		æ		0.52F							72
	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5 6 9 1		8 8 	47	 ©	0 9			٥	
SNORS		6 4.9	58		۹ —	+ -1.0	99			٥	4 -38
ERF	513 2	Q. 4.	26.	0,0,1,0	£I	ō r.	ř.			٥	<u>.</u> .
MEASURED	NO. OF SIGMAS			n, ci nj ni -i		<u>م</u>					
PREFLIGHT	RECOVERED	10.9 - 12.3 19.8 19.8 12.0		12 138 - 38 11 - 38 1		5 N 1		•	* * * *		
	re sec DŽ	23	2.3		3		۰		-4.8	48	- 1.97
	ΔΥ΄	-2.4 .6 .2.7 12.	75		0	2.7	2.7				10.2
YSIS	AX AX	4	-1.3		0	£	R	· · · · · ·			0.1-
NASA ANAI	NO. OF SIGMAS			<u>មេសាសិស ក</u>		ĸj			- 2 2		
	RECOVERED	100 56. 100 100		51		* , ₩		*	# # -40. -70. 013		_
	ALOCITY No MECOMOS	م	¢,	28	58		•	- 22	\$	-5.62	8
	;	-4.9 33 6£	A. 15	8	8	9.15 1.12	10.27		8	-4.8	9.7
YSIS	Ennor DX	4 6. -1.	%	ō	ō	35 14	94.		-1.32	4.32	8 7
TRW ANAL	NO. OF SIGMAS	ហ ភេស ស ស ស		-		n N			<u>9</u> 9		
	RECOVERED COEFFICIENT	197 ±10 - 60 ± 5 - 29 ± 5 - 76 ± 9 92 ±155 84 ± 24		** ** **		.34± J .04± .27		2 142	-40 ±42 -45 ±24 .045± .002 -63 ±60		_
	UNITS	Smort Smort		DEG/HR DEG/HR DEG/HR DE&/Mr/s DE&/Mr/s DE&/Mr/s		DEG/HM		SEC SEC	PPR CC CC	_	
	IGS ERROR SOURCE	ACCELEROMETER X BIAS 7 BIAS 2 BIAS X SCALE FACTOR 2 SCALE FACTOR 2 MESALIGN TOWARDS X	TOTAL I AZIMUTH AND ROLL GYRO DRFT	X GYRO CONST. DRIFT RATE Z GYRO CONST. DRIFT RATE Z GYRO CONST. DRIFT RATE Z GYRO DRIFT AXIS UNBALANCE Z GYRO GYIN AXIS UNBALANCE X GYRO SPIN AXIS UNBALANCE	TOTAL II	PITCH GYRO DRIFT Y BYRO COMSTANT DRIFT RATE Y GYRO INPUT AXIS UNBALANCE	TOTAL II	OTHER PLATFORM MISALIONMENT ABOUT X ACCELEROMETER AXIS D ATTONU UNANTER AXIS	Y ACCELERONGETER ANS NGS AZMUTH MESALGHMENT IGS THEE CORFELATION IGS THE SCALE FACTOR	TOTAL IE	TOTAL (I - INC)

• • • • •

13. 周。 4世 4 THIS COLUMM INDICATES HOW MANY APPRICH ONE SIGMAS ARE REPRESENTED BY THE ERROR COEFFICIENT

DENOTES THAT EITHER THE COEFFICIENT MAS NOT USED IN THE REGRESSION ANALYSIS OR WAS NOT AVAILABLE

3150-6027-R8-000 Page 2-10

the Z accelerometer misalignment and scale factor, the Y gyro constant drift rate, and the platform misalignment about the accelerometer Y axis. The Y gyro drift and platform misalignment also contributed significantly to the x axis residuals.

The z axis residuals show a velocity error of approximately -1.0 ft/sec at 140 seconds. This is attributable to an azimuth misalignment of -45 arc seconds (Section 2.4 discusses the azimuth updating). The residuals then show a nearly constant -2.0 ft/sec error between 180 and 330 seconds. This trend resulted from the IGS azimuth misalignment and the partially compensating X gyro input axis unbalance drift.

Figure 5 presents the velocity comparisons between IMU and tracking data in several combinations. The very heavy line denotes the total effect of the IMU errors recovered in the regression analysis. It is observed that this heavy line fits all the curves within anticipated bounds except for the MISTRAM 100K comparison in the y direction. Analysis of the MISTRAM data revealed a P bias in that system of -1.5 feet (100K baseline) (Section 4). When the effect of this bias is accounted for, the fit improves to an acceptable level. It should be noted that since the regression analysis was accomplished in the rate domain ($\dot{R} \dot{P} \dot{Q}$) of the tracker any strictly DC bias (i.e., ambiguities) will not affect the regression solution.

2.3.2 Honeywell Preflight Error Coefficient Prediction

A set of predicted IGS error source coefficients was determined by Honeywell based upon a final instrument calibration. These are presented in Table 2 along with error sources recovered from both the NASA and TRW postflight analysis. The most significant observation is that the total X gyro drift rate (constant plus unbalance) determined postflight equals the summation of the predicted X gyro drifts. No attempt was made to distinguish between the types of X gyro drift in the postflight analysis because of the high correlation between their velocity propagations on the flight. Otherwise, there is little similarity between the preflight and postflight error source coefficients. Figure 5 shows a propagation of the velocity error due to the preflight estimated error coefficients on the observed residuals (combined with actual IGS timing errors). A reasonable fit to the x axis residuals was obtained, and the z axis discrepancy is for the most part attributable to the IGS azimuth update error on this flight. However, the

predicted y error is one-half the magnitude and of the opposite sign to compensate the TRW proposed flight error. Section 2.3.5 gives additional evaluation of the preflight values, and Appendix C presents calibration history plots.

2.3.3 Accelerometer Bias Updating

An inflight updating of the X accelerometer bias value was accomplished after Revolution 3 of the Gemini 6 orbit. The X bias error was determined to be approximately 198 ppm g and was corrected onboard for that amount. The bias values before and after correction are presented in Table 3. Figures 6 through 8 are plots of IGS sensed velocities during intervals of Revolutions 3, 5, and 8 when no thrusting was being applied. The slopes of the velocity plots provide an estimate of the accelerometer bias errors. Comparisons of the velocity slopes of Revolution 3 (before bias correction) with those of Revolution 5 and 6 (after bias correction) show that the X accelerometer bias error calculation was adequate. Table 4 summarizes the accelerometer bias values determined from the sensed velocity plots.

	Before Updating	After Updating	Difference (ppm g)
кх	1.8058311	1.870000	198
KY	-0.07332507	-0.07332507	0
KZ	0,08083010	0.08083010	0

Tal	ble	3. 1	Accel	lerometer	Bias	Constants
-----	-----	------	-------	-----------	------	-----------

Table 4.Accelerometer Bias Error (Determined from
Sensed Velocities)

Revolution No.	Accele	erometer Bias (ppm g)
	x	У	Z
3 (before update)	198	-24.5	-73
5 (after update)	-13.2	-28.7	-59.5
8	-14.5	-28.8	-60.2

-

(IGS COORDMUATES)	LATFORMS		ଽୣ୵୶ୄୠ୵ୄୠ୶ୠୄୠ୕୳ଡ଼୵ଢ଼୵ଢ଼୵୶ୄୄୄୄୄୄୢୄୄୄ୶୵ୠୄ୷ <mark>ଢ଼</mark> ୄୄୄୠୄୠୄୠୄୠୄୠୄୠୄ୷ୠୄ୵ଢ଼ _୶		مدرعه مارا بعداره مروسه مراجع شاريد معرار مراجع			ملارعة المحالية المحالية والمحالية والمح	atsil ^{ih} I3 ^m 55.4 ⁸ FROM L∕O
VELOCITIES	165 COMPUTER 163 1 AXIS X X X X Z		๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛		and a support of the second				•
T-6 REV. 8		<u>e</u>	H H	2	0	© EC)	۵ ۵	- the second	N

3150-6027-R8-000 Page 2-15

2.3.4 Error Coefficient Recovery

Regression analyses were performed on the residuals between the tracking data and the IGS data corrected for the free flight recovered accelerometer bias since these biases were considered to be well established. A minimization of the regression error model size is desirable due to the high correlation among many Gemini IMU error sources. Therefore, the following representative error model was chosen for the regression.

IGS Sources:

XSF	=	X accelerometer scale factor error
ZSF	=	Z accelerometer scale factor error
ZXMSL	=	Z accelerometer misalignment toward X
YGCDR	=	Y gyro constant drift rate
XGIAU	=	X gyro input axis unbalance
YGIAU	Ξ	Y gyro input axis unbalance
PHIX	Ξ	Platform misalignment about the X accelerometer axis
PHIY	=	Platform misalignment about the Y accelerometer axis
PHIZ	=	Platform misalignment about the Z accelerometer axis
POX	= '	X computer axis position bias
POY	=	Y computer axis position bias
POZ	=	Z computer axis position bias
DT	=	Time correlation error
TSF	=	Timing scale factor.

Tracker Sources:

MISTRAM II passive range sum rate bias

The regression domain chosen was the following:

10K MISTRAM	P Q RSUM		
100K MISTRAM	Ρ́Q		
GE Final (Mod III)	ŔPQ		
Passive MISTRAM	RSUM		

The following eight guidance errors were omitted from the regression solution but their statistical affect is accounted for in the regression program.

Z gyro input axis unbalance
X gyro spin axis unbalance
Y gyro spin axis unbalance
Z gyro spin axis unbalance
Z gyro constant drift rate
X velocity bias
Y velocity bias
Z velocity bias

Carrying these terms for their statistical affect means the following: More than likely, these errors are present to some degree in the system, and since many of them look alike it would be difficult to separate them from one another—this dilema usually manifests itself in the form of large (many sigma) errors which tend to compensate one another. Solving only for a representative set of errors usually avoids this phenomenon. However, the accuracy of the resulting error coefficients must reflect the fact that they are indeed only a representative set. The mathematics of this procedure is presented in Appendix B.

The results of the regression analysis have been presented, in part, in Table 2. In addition to the IMU errors, a range rate bias error of -0.18 ± 0.06 ft/sec was found in the MISTRAM II system. This error is well within the apriori uncertainty of 0.5 ft/sec. No other tracking errors were considered and none were carried statistically in the solution.

The regression results were not as good as anticipated; the normalized RMS of the residuals remaining after the regression fit was 1.9, ideally it would be 1.0. This means that either a total (3 trackers, 9 observations) effective one sigma error remains in the data or the noise estimates of the input IMU-tracker comparisons were incorrect (they would have to have been estimated too small). More than likely, a combination of these has resulted in this large RMS.

Recovery of the MISTRAM I and II and GE Mod III position bias was accomplished by compensating the IMU/tracker position domain residuals with the errors recovered in the regression analysis and estimating the bias levels from the remaining position errors (Section 4).

CONFIDENTIAL

The IMU model used in the regression analysis was based on engineering judgement. The preflight model and coefficients did not influence the regression analysis, and, as it turns out, the preflight values are insufficient to correct the observed IMU errors. The recovered IMU coefficients are all tolerable (within specification) with the exception of the Z accelerometer misalignment toward X. This 3 sigma coefficient (84 sec) has an <u>a posteriori</u> uncertainty of 24 sec, which is slightly less than the specification (30 sec). This indicates that the flight test did improve the statistical knowledge of this error somewhat. The following information was obtained about this and other coefficients from examining the regression computer runs:

- a) ZXMSL is not excessively correlated with other terms in the fit.
- b) Along with the following terms ZXMSL did the most towards fitting the data.

XSF	(X Accelerometer Scale Factor)
XGIAU	(X Gyro Input Axis Unbalance)

- c) As the regression solution (Recursive Error Modeling Program) proceeded, solving the least squares solution again with the addition of each new error term the ZXMSL coefficient remained relatively stable—its variation remaining within the a posteriori one sigma level. This tends to indicate that no serious compensational effects are occurring with all error coefficients other than G3(4), XSF, DT, TSF, PHIZ, and ZSF which were in the solution ahead of ZXMSL.
- d) Error terms which change significantly when ZXMSL enters the solution change well within their one sigma uncertainty.
- e) Exactly half of the other error sources had more statistical improvement from the flight test.* The following table indicates the order of statistical improvement of the recovered coefficients (best at the top left etc.)

XSF	POX	POY	YGCDR
G3(4)	POZ	PHIX	YGIAU
DT	PHIZ	PHIY	YGIAU
TSF	ZXMSL	ZSF	

^TImprovement may be defined here as the ratio of the a priori to the a posteriori uncertainty.

In light of these points it is reasonable to believe that the system suffers either the indicated ZXMSL error or some very similar error produced by a combination of the omitted errors. This latter possibly being less likely than the first.

2.3.5 December 12 Gemini 6 Attempted Launch Data Analysis

The Gemini 6 mission schedule for 12 December 1965 was cancelled just prior to liftoff. However, the IGS was in the ascent mode for approximately 850 seconds, and PCM telemetry data were collected.

An analysis of the data was conducted in an effort to recover IMU error sources. The IGS sensed velocity error curves of the cancelled mission are presented in Figure 9. The x and z errors build up proportional to t^2 (time squared) indicating a platform drift rate, and the y error builds up linearly indicating an error source proportional to the integral of gravity. The IMU error sources that could have caused the velocity errors were:

<u>x Axis</u>

Y gyro constant drift and/or Y gyro input axis unbalance

-0.20 deg/hr (/g) (total) (pitch down drift)

3150-6027-R8-000

Page 2-19

z Axis

X gyro constant drift	-0.43 deg/hr (/g) (total)
and/or	(z axis down drift)
X gyro input axis unbalance	

y Axis

IGS time scale factor and/or Z accelerometer bias 276 ppm (g) (total) and/or Z accelerometer scale factor

No distinction between g dependent and non g dependent drift could be made since the IMU senses a constant 1g input. The true error sources could have been combinations of the error sources or any one alone, but having

(This page is Unclassified)

Figure 9. Gemini 6 Abort Sensed Velocity Error

_

3150-6027-R8-000 Page 2-21

coefficients which netted the indicated values. A comparison of the above error coefficients with the preflight coefficients for the same error sources is presented in Table 5.

	Error Value		
Error Sources	Attemped Launch	Preflight	
Summation of Y Gyro			
Constant Drift Rate (deg/hr) and Input Axis Unbalance (deg/hr/g)	-0.19	-0.24	
Summation of X Gyro			
Constant Drift Rate (deg/hr) and Input Unbalance (deg/hr/g)	-0.43	-0.23	
Summation of Z (Vertical)			
Accelerometer Bias (ppm g) and Scale Factor (ppm)	276	226*	

Table 5.IGS Error Source Comparison

*The sign sense is such that the Z accelerometer bias and the scale factor coefficients must be added with opposite signs for their comparison.

-CONMOUNTLAL

When the actual flight test results are considered, Table 5 becomes rather inconclusive. Both the attempted launch data and preflight data indicate a positive pitch (up) error while the postflight data indicates the opposite situation. The X gyro errors are different by one sigma specification ($\approx 0.2 \text{ deg/hr}$) and the postflight data supports the preflight value of -0.23 deg/hr/g.

If it is assumed that the postflight determined onboard clock drift was correct for the attempted launch, the attempted launch value for the total of Z bias and scale factor should be 339 ppm (g), not 276, indicating a difference of 100 ppm with the preflight data. Since it is not known what clock is used, (or its accuracy) in preflight testing, little can be said regarding the value of the vertical direction comparisons. In light of all these discrepancies, nothing of real value can be extracted from the attempted launch data to support or refute the postflight determined errors. It appears, in fact, that the limited and static test afforded by the cancelled launch cannot be compared to the dynamic test of the flight either due to lack of system stability or the severe change of the test environment.

2.4 AZIMUTH UPDATE

An IGS azimuth alignment correction is calculated at three separate times by the onboard computer. On the first pass through the navigation equations after platform release, the roll gimbal angle reading is compared with the desired value, and the difference is used as a correction to the intended flight azimuth. This correction is called $\Delta \eta_x$, where a positive value implies that the platform is rotated clockwise from the desired azimuth.

Additional azimuth corrections are made during flight at 100 and 140 seconds after liftoff. These are calculated by comparing the crossrange (z direction) velocity as measured by GE/Burroughs with that derived from the airborne system and attributing the residual to a platform misalignment about the vertical axis.

The calculated updates are not telemetered; however, they are obtained quite accurately from the data analysis. Table 6 summarizes the updates determined by the following methods:

Calculated from the telemetry data and simulation of the a) inflight calculations

Page 2-23

- Calculated from the jumps in the inertial velocity b) comparison or the delta-delta curve
- Derived by IBM during their postflight simulation. c)

The value indicated at 100 seconds includes that at zero seconds. The value for zero seconds in the Flight Calculation Simulation column was determined from an observable jump in the IGS z velocity after platform release. This jump corresponds to the first ICS correction. The value for zero seconds in the delta-delta column is that of IBM. The consistency of results presented in Table 6 indicates that the IGS satisfactorily performed the required update calculation. However, the IGS/GE Mod III tracker comparisons of Figure 1 show a z velocity error at 140 seconds. The -0.9 ft/sec value at that time therefore indicates that the Burroughs update value telemetered to the IGS was incorrect. This error is apparently associated with the Burroughs computation of the update values for rendezvous missions since it has not existed on any of the previous flights, all of which were of the nonrendezvous type (i. e., nonvariable launch azimuths).

Time (sec from liftoff)	Flight Calculation Simulation	Delta -Delta	IBM Postflight Simulation	Units
0	0.00120	0.00106	0.00106	rad
100	-0.0093 8	-0.00924	-0.00960	rad
140	0.00020	0. 00008	0.00039	rad
Total	∫ -0.00918	-0.00916	-0.00921	rad
(100 and 140)	-0. 5261	-0. 5261	-0.5276	deg

Table	6.	Azimuth	Update
-------	----	---------	--------

The total azimuth correction of -0.5261 degree has been included in all comparisons contained in this report.

-CONTIDENTIAL

The history of initial alignment error for six Gemini flights is:

<u>Flight No</u> .	Alignment Error (deg)
2	-0.29
3	-0.52
4	-0.12
5	-0.27
6	-0.53
7	-0.48

Mean Value = -0.37 degree

NASA/Honeywell Specification Value 0.75 degree

2.5 CONCLUSIONS

- a) Digital data analysis accomplished on this flight established that the guidance system performed approximately within the anticipated uncertainties and did not malfunction in any way. Table 7 is a history of total IGS errors at SECO + 20 for Gemini flights GT-2, 3, 4, 5 and 6; a column has been included which represents anticipated IMU uncertainties due only to assumed a priori component accuracies (i. e., this column does not include the affect of navigation errors which vary from flight to flight).
- b) It must be concluded at this time, that the preflight error coefficients for this flight are of little value to the postflight analysis.
- c) The inflight azimuth update was, as usual, performed correctly by the IGS computer. However, the fact that an erroneous GE/Burroughs value was commanded, results in an IGS error of 5 ft/sec crossrange.
- d) Accelerometer bias error measurement and compensation was satisfactorily accomplished during orbital flight.
- e) The regression analysis indicated that the presence of serious unmodeled errors is not likely and that substantial faith can be had in the significant recovered error coefficients.

	GT-2	GT - 3	GT-4	GT-5	GT-6	Assumed 1 IMU Specification
ΔX (ft)	N/A	N/A	-80	487	-415	800
ΔΥ	-1100	N/A	-700	115	+800	1340
ΔZ	-200	-1000	900	-100	- 500	1180
ΔX́ (ft/sec)	N/A	N/A	-1.3	0.8	-1.9	4.29
ΔÝ	-11	N/A	-4.8	-0.5	+ 9.3	9.76
ΔŻ	-6	-2.5	13.4	-3.9	-2.5	11.15

* Table 7. IMU Error History

(N/A indicates "not applicable" due to system malfunction affecting these parameters)

*Ingredients for this table can be found in Reference 2.

3. REENTRY

A detailed IGS analysis during reentry was precluded by the loss of spacecraft telemetry during the dynamic atmospheric reentry portion of flight. This loss resulted from a failure of the onboard tape recorder earlier in the mission.

Table 8 gives the state vectors at retrofire as calculated by the TRW Systems postflight trajectory reconstruction and as computed real time by the Real Time Computer Complex (RTCC) and used by the IGS.

	IGS(RTCC)	TRW Postflight	Difference
X (ft)	11564700	11563563	1137
Y (ft)	18416400	18416701	-301
Z (ft)	2253900	2254076	- 176
X (ft/sec)	-19615.2	-19616.15	0.05
Ϋ́ (ft/sec)	10799.7	10798.67	1.03
Ż (ft/sec)	12004.2	12004.50	-0.3

Table 8. Reentry Initial Conditions

t = 12:14:53:24 from zero hour GMT day of Gemini 7 launch

The coordinate system of the above vectors is that used by the RTCC, i.e., earth-centered inertial, x through Greenwich at zero hours day of the Gemini 7 launch. This initial condition difference is much less than that of the Gemini 7 mission and is more consistent with that of previous missions.

No overlapping segment of tracking and spacecraft telemetry data were available for an explicit evaluation of the IGS accuracy performance. A straight extrapolation of the ground trace of the spacecraft, as determined by the tracking systems, lies within about 5 miles of the IGS indicated position when telemetry is recovered. This kind of extrapolation is rather crude and the result takes no account of the crossrange steering that the astronaut performs. About the most this limited analysis showed was that the IGS-indicated spacecraft position after blackout was not obviously inconsistent with previous tracking data.

UNCLASSING

Table 9 summarizes the Gemini 6 impact point determined by the IGS and by the recovery ship. The target location is also presented. It was concluded, from an analysis of the available data, that the IGS estimate of actual impact is probably the more correct of the two.

Source	Geodetic Latitude (deg North)	Longitude (deg West)	Target Miss (n mi)	
Ship	23.375	67.875	14.3	
IGS	23.70	67.74	7.3	
Target	23.61	67.83		

Table 9. Gemini 6 Reentry Impact Location

3.1 REENTRY SIMULATION RESULTS

MSC/MPAD generated a reentry trajectory using a simulation that had the following boundary conditions:

- a) Spacecraft initial conditions were obtained from the White Sands radar (WHS-16) vector during the free flight portion of reentry.
- b) The end point was taken as the ship indicated pickup position (23.375°N, 67.875°W).
- c) In the absence of IGS telemetry of gimbal angles, spacecraft bank angles were assumed so as to give the ship impact.

The simulation showed reasonably good agreement with the TRW postflight trajectory above 300,000 feet. Figure 10 is a comparison of the simulation with the merge of radar tracking data during the high acceleration atmospheric reentry interval of flight. There are fairly large errors in the flight path direction (Δx and Δy); however, the most interesting error is the very large negative trend in the crossrange z direction. The error curve indicates that the simulation has placed the spacecraft 4 n mi south of the radar estimate.

This comparison lends weight to the argument that the ship-indicated pickup point is considerably south of the true impact, since at 182,000 feet a trajectory consistent with the ship value is already 4 miles in error to the south.

Page 3-3

3150-6027-R8-000

Page 4-1

4. TRACKING SYSTEM PERFORMANCE

Tracking data available for analysis of the Gemini 6 IGS performance during ascent included the following:

- a) GE Mod III/Burroughs
- b) GE Mod III/Final
- c) MISTRAM I Quick Look 10K and 100K
- d) Passive MISTRAM II
- e) MISTRAM Final (GLAD)
- f) Air Force Eastern Test Range (AFETR) BET

Each of the above sets were used for position and velocity comparisons as decribed in Section 2. The GE Mod III/Burroughs data were used for quick look analyses; however, detailed analyses were subsequently accomplished with the remaining sources.

An ensemble IMU/tracking system analysis was performed on this flight and is discussed in Section 2. The tracker error sources recovered by the analysis are presented in Table 9. Also presented are error sources obtained by the AFETR, GLAD, and BET programs. Comparisons show that there was generally good agreement among the recovered coefficients for the various error source extractions.

The most significant of the recovered error sources were MISTRAM I P_{10K} and P_{100K} biases of -0.1 and -1.5 feet, respectively. The affects of the P_{100K} bias on IGS coordinate comparisons is discussed in Section 2 and is indicated in Figure 5.

The following sections provide a brief discussion of the tracking data. To clearly show the tracking data quality, each set of data are compared with the TRW Systems BET, which is IGS output corrected for the analyzed error sources (Figures 11 through 24).

4.1 GE MOD III

The GE Mod III tracking system consists of a monopulse radar tracker that measures position and a doppler, interferometer rate system that measures range rate, and two lateral rates. The data from this system are available from two data extraction systems: 1) the Burroughs, where the data are extracted at a 2 per second rate, and 2) the GE Flight Data Recording (FDR) unit, where the data are sampled at a 10 per second rate.

The Burroughs data consist of raw counts recorded on punched paper tape. The data were transferred to magnetic tape at TRW Systems and processed in the data reduction programs. The Mod III final data were processed by GE/Syracuse from the 10 per second FDR output. The data were available unsmoothed in measurement coordinates and in smoothed Cartesian coordinates. The final measurement coordinate (\dot{R} , \dot{P} , \dot{Q}) data were used in the computer regression analyses discussed in Section 2.

The quality of the Mod III data was relatively good, and the bias errors were negligible (see Table 10). The GE final data are compared with the IGS data before IMU error compensation in Figure 1 and after compensations in Figures 13 and 14. Comparisons of the Burroughs and compensated IGS data are presented in Figures 11. There was what appears to be an elevation type error between the GE final data and the TRW processed Burroughs data, which results in a 5 ft/sec difference in y at the end of flight. This error has been observed on previous flights and is thought to be an error in the TRW/Burroughs reduction. The problem is being investigated. There is good agreement between the TRW and GE/Syracuse reductions in the x and z directions except for a 5-millisecond timing difference.

4.2 MISTRAM DATA

4.2.1 MISTRAM I Quick Look Data

The MISTRAM I quick look data received are corrected but unsmoothed and in the system's measurement coordinates. This consists of R, P_{10K} , P_{100K} , Q_{10K} , and Q_{100K} position data, where R is a range sum measure ment, P_{10K} and Q_{10K} are range difference measurements from the 10,000foot baselines, and P_{100K} and Q_{100K} are range difference measurements

			TRW Systen	ns Analysis	MISTRAM F	inal (GLAD) *	AFETF	k BET *
System E	ror	Units	Error Coefficient	1 Sigma Uncertainty	Error Coefficient	1 Sigma Uncertainty	Error Coefficient	1 Sigma Uncertainty
MISTRAM I	R	ft	1	1 1 1	8.7	1.6	-0.15	0.94
	P10K	ft	-0.1	0.05	-0.12	0.01	-0.082	0.008
	Q 10K	ft	0.02	0.05	-0.027	0.01	0.006	0.010
	P100K	ft	-1.5	0.5	-1,8	0.11	- 1. 4	0.082
	Q 100K	ft	0.2	0.1	-0.079	0.13	0.22	0.094
MISTRAM II	ĸ	ft	-21	5	-26.6	1.2	-24.9	1.0
	ቤ	ft	- 1. 8	0.5	-2,17	0.18	-1.56	0.146
	α	ft	-2.8	0.5	-1.29	0.06	-1.59	0.045
	•ଅ	ft/sec	0.065	0.02	1	8	1 1 1	6 8 8

Table 10. Tracking Data Bias Errors*

*1) MISTRAM final (GLAD) results obtained from Reference 3.

AFETR (BET) results obtained from Reference 4.
No attempt was made to recover error sources left blank.

3150-6027-R8-000 Page 4-3

1 1

1 :

1 1 1 1 1

;

25

-20

ŧ

Ц

GE MOD III

1

0. 05 0. 05

-0.03 -0.01

mili rad mili rad

К Ы

3150-6027-R8-000 Page 4-4

from the 100,000-foot baselines. The two sets of range difference measurements along with the range sum measurement were processed to give essentially two redundant sets of tracking data.

- / -

The MISTRAM I data were of good quality, but had P_{100K} and P_{10K} biases of approximately -1.5 and -0.1 feet, respectively. The effect of the P bias was to cause the MISTRAM/IGS y velocity residuals to droop starting near BECO and continue somewhat exponentially until termination of the data. Figure 5, which presents comparisons of the best estimate of actual IGS error with that indicated by MISTRAM 100K residuals, shows that the apparent y velocity error resulting from the P bias is -8 and -16 ft/sec at SECO and separation, respectively. Table 10 presents other MISTRAM I errors recovered from analyses. The overall quality of the MISTRAM I data is indicated in Figures 15 through 18, which compare the MISTRAM I and compensated IGS data.

4.2.2 MISTRAM II (Passive Mode)

MISTRAM II/compensated IGS comparisons are shown in Figures 19 and 20. The analysis results show an approximate 0.13 ft/sec range sum rate bias and range sum bias of -21 feet. The results also indicate P and Q biases of -1.8 and -2.8 feet, respectively.

4.2.3 MISTRAM Final

The MISTRAM final is a best estimate trajectory based upon the available MISTRAM data (both active and passive). The tracking errors recovered by the GLAD BET program, which was used by AFETR for the generations of MISTRAM final, are listed in Table 10. The recovered error source coefficients compare favorably with the TRW analysis values and those derived from the range BET analysis, which are also presented. Comparisons of MISTRAM final and compensated IGS data are presented in Figures 21 and 22. These show little residual x and z velocity differences, but a y velocity error of approximately 3 ft/sec at SECO. This residual difference resulted from an apparent 0.3-foot P bias excess correction applied to the MISTRAM 100K data used in the MISTRAM final. A correction of 1.8 feet was used in the MISTRAM final reduction, but the TRW analysis and AFETR BET indicated that 1.5 and 1.4-foot corrections, respectively, were necessary (see Table 10).

4.3 RANGE BET

Figures 23 and 24 show comparisons between compensated IGS and the AFETR Best Estimate of Trajectory (BET). This BET combined the measurements from MISTRAM I, 10K and 100K, MISTRAM II, GLOTRAC (using the MISTRAM signal in a passive mode), GE Mod III (rate only), and C-band FRQ-6 radars Number 19:18 (Merritt Island), 7:18 (Grand Turk), 3:18 (GBI), and 0L18 (Patrick AFB). The program is a least squares adjustment in which a constant bias error model for each observation is specified. The recovered bias magnitudes, Table 10, and the AFETR BET/compensated IGS (TRW BET) residuals, Figure 23 and 24, indicate very good agreement between the TRW and AFETR analyses.

4.4 DISCUSSION OF TRACKING DATA EVALUATIONS

The judgement that Mod III data are good is relative to expected performance. Though the system appears to be relatively free of bias, in actual fact the elevation angle data becomes very noisy under 10 degrees elevation angle, and no precision angle information is available near the end of flight where the elevation angle is 5 degrees. MISTRAM data, which could, because of the ambiguities on biases, be judged as <u>poor</u>, is in fact generally much superior to the Mod III data for postflight IGS analysis purposes. This is because the problem with MISTRAM is uncorrected bias error though the data are relatively noise free for IGS analysis purposes. At least ideally, the MISTRAM bias error can be extracted in the postflight analysis; however, there is no way to obtain information from the very noisy Mod III angular data at the lower elevation angles, and usually this data is discarded from the analysis.

To carry the discussion one step further and show the scheme of the analysis procedure, it is found that at elevation angles below 5 to 7 degrees the refraction correction becomes uncertain. This uncertainty affects all ground tracking systems. At this point, trajectory accuracy depends on the IGS, for though it is potentially the most biased of all the systems, it has low noise throughout, and is not ordinarily subject to abrupt level changes. It is insensitive to low elevation angles, and the majority of its systematic errors are well defined and removable.

3150-6027-R8-000 Page 4-6

In summary, the higher elevation GE Mod III tracking establishes confidence in the MISTRAM angle measurements (P and Q). The biascorrected high precision MISTRAM allows detailed evaluation of the IGS bias errors before the tracker angle data becomes uncertain at the very end of flight. The corrected IGS output provides detailed trajectory reconstruction over the unfavorable segments of the trajectory with respect to the tracking systems, i.e., very early and very late in flight. The evaluations of the tracking systems should be related to how each fits into the analysis being attempted on Gemini. On this particular flight the above procedure was implicit in the engineering analysis of the IMU and tracking error sources. The tracking systems operated as well as they ordinarily do and afforded considerable insight into the guidance system errors. Fortunately, no large or unusual tracking errors were present or at least detectable to any disturbing degree.

3150-6027-R8-000 Page 4-7

Confidential--

۲

.

5. TRAJECTORY RECONSTRUCTION

This section provides a description of the trajectory reconstruction for the ascent and reentry flight phases. A listing of the BET is presented in Appendix A.

The ascent data are provided in an earth-centered inertial coordinate system. The z axis is aligned with the earth's rotational axis, positive north, and the x-y plane is the equatorial plane with the x-z plane containing the Greenwich meridian at platform release time. Trajectory parameters such as velocity magnitude, altitude, flight path angle, heading, latitude, and longitude are also printed, as well as the sensed trajectory from the "EDIT" program which includes the acceleration profile.

The ascent reconstruction consists of IGS data, corrected for IMU error source magnitudes presented in Section 2.

5.1 REENTRY TRAJECTORY RECONSTRUCTION

A detailed reentry reconstruction was severely compromised by the loss of spacecraft telemetry data during the dynamic atmospheric reentry portion of flight. Therefore, a reentry trajectory of varying quality was reconstructed as follows:

a) 335,000 to 180,000 feet

High-speed tracking data from MLA, PAT, GBI, and GTI were processed to give the spacecraft trajectory in an earth referenced set of parameters. The coverage of the tracking data was as follows:

Radar	Data Spans (in sec from retrofire)
(Patrick AFB)	1347 - 1606
(GBI)	1398 - 1640
(GTI)	1569 - 1601
(Merritt Island)	1317 - 1588
	<u>Radar</u> (Patrick AFB) (GBI) (GTI) (Merritt Island)

When tracking data overlapped, it was statistically merged together into a "best" trajectory. BET position estimates should be accurate to 1000 through 2000 feet; however, instantaneous velocity errors may be as large as 500 ft/sec or more. The GBI determined trajectory (1603 through 1636 seconds from retro) is from data collected at 1 degree elevation. It is obviously subject to major errors (the spacecraft is shown as rising) and should be disregarded for analysis purposes. It is included only for completeness because of the interest in data at this time of flight.

The reconstruction consists of the following segments:

Time from Retro	<u>Gemini 6 Elapsed Time</u>	Source
1320 - 1436	92278 - 92394	Merritt Island
1436 - 1602	92394 - 92560	BET
1603 - 1636	92561 - 92594	GBI

b) 85,000 to 59,000 feet (92689 - 92721 GET)

The data given over this period are uncorrected guidance data. Since there was no period of overlapping IGS telemetry and ground tracking data during or after the high acceleration portion of reentry, no attempt was made to specify the accuracy of these parameters.

UNCLASSING

6. ONBOARD RADAR PERFORMANCE

This section is devoted to a presentation of the onboard radar data together with comparisons of the telemetered data with predicted radar values. Serious problems in the terminal guidance scheme, the radar, and the IGS itself could be reflected in such comparison if the comparisons were accurate. However, it is evident from examining the different sets of data (Figures 25 through 33) that the trajectories of Gemini 6 and the target vehicle Gemini 7 were not determined with sufficient accuracy to yield anything more than a very gross check on the radar.

6.1 TRAJECTORY RECONSTRUCTION

Using the TRW System orbit determination program, trajectories for Gemini 6 and Gemini 7 were generated during the rendezvous period (Revolution 166). The Gemini 7 trajectory was based on a curvefit that contained station passes over ASC 165, PRE 166, HAW 166, PRE 167, and HAW 167. Except for the low elevation (6 degrees) pass at Ascension Island, there was no ground tracking of Gemini 7 from three revolutions prior to one revolution after rendezvous. Therefore, an accurate rendezvous reconstruction or analysis was severely compromised. This trajectory was used throughout the analysis.

The results of two TRW produced Gemini 6 trajectories are presented here. The first trajectory (used in Reference 5) was a composite of an orbital curve fit before the brake maneuver and another fit using HAW 04 and Cal 04 data extrapolated backwards to just after these maneuvers. IGS thrusting data prior to the brake maneuver was included in the orbital fit. The comparison in Figures 25 through 27 show the results of the fit. A second trajectory was produced by constructing a tape of artificial spacecraft accelerations that matched the observed telemetry data. This was done in an attempt to get a more realistic trajectory during the entire rendezvous span and see if such smooth step acceleration functions could be more accurately handled in the orbit reconstruction program. Figures 28 through 30 show the results of this trajectory. Figures 31 through 33 are comparisons produced by NASA/MSC, and Figures 34 through 39 are plots of the telemetered onboard radar data used in the comparisons.

6.2 CONCLUSIONS

No conclusion concerning the onboard radar accuracy can be realistically made in the presence of such dramatically diverse comparison results. The fact that the vehicles were together at a given time is irrefutable which means the prediction schemes are in error either due to insufficient data or some procedural error.

The excessively noisy real time telemetry data seriously impaired a more thorough analysis. It is suggested that every effort be made to keep the IGS on during the total rendezvous interval. Reference 5 should be consulted for further scrutiny of the rendezvous interval of this mission.

UNCLASSER

Figure 25. TRW Range Comparison (Original Gemini 6 Trajectory)

3150-6027-<u>R</u>8-000 Page 6-3

TRW Azimuth Comparison (Original Gemini 6 Trajectory) Figure 26.

3150-6027-R8-000 Page 6-5

Elevation Comparison (Original Gemini 6 Trajectory) TRW27. Figure

TRW Range Comparison (Second Gemini 6 Trajectory) Figure 28.

21

TRW Azimuth Comparison (Second Gemini 6 Trajectory) Figure 29.

3150-6027-R8-000 Page 6-7

3150-6027-R8-000

Page 6-8

Figure 31. NASA Range Comparison (Second Gemini 6 Trajectory)

3150-6027-R8-000

Page 6-9

NASA Azimuth Comparison (Second Gemini 6 Trajectory) Figure 32.

3150-6027-R8-000

Page 6-10

Figure 34. Radar PCM Range (230 through 325 Seconds)

3150-6027-R8-000 Page 6-12

Figure 35. Radar PCM Range (330 through 358 Seconds)

3150-6027-R8-000 Page 6-13

Figure 36. Radar PCM Azimuth (230 through 340 Seconds)

3150-6027-R8-000 Page 6-14

3150-6027-R8-000 Page 6-15

31 50-6027 -R8-000 Page 6-16

⁽Reverse of this page is blank)

Page 6-17

3150-6027-R8-000

UNCLASSIFIED

3150-6027-R8-000 Page A-1

APPENDIX A

TRAJECTORY RECONSTRUCTION

Figure		Page
A-1	Ascent Sensed Acceleration	A-3
Tables		Page
A-1	Ascent Trajectory Reconstruction— Earth-Centered Inertial Coordinates	A-4
A-2a, b	Ascent Trajectory Reconstruction— Special Earth-Fixed Coordinates	A-6
A-3	Ascent (Uncorrected) Sensed Trajectory IGS Coordinates	A-10
A-4	Reentry Trajectory Reconstruction	A-12

(Reverse of this page is blank)

UNCLASSIFIED

(in ...

GEMINE TRAJECTORY IN ECIG

			TIME IN SECO	NUS FOCH LIFTOFF		
T I ME	x	¥	2	X-00T	100 T	2-007
1-642	1026477	-18152112	9927350	1325.598	209.578	6.779
4.023	3029677	-18151636	4927970	1328.659	190.973	17.103
6.402	3032303	-18151204	992 9031	1231.797	172.279	27.614
P.763	3035978	-18150817	9928130	1335.142	153.025	50-962
13.558	3042344	-18150183	9928353	1347.511	112.767	43.098
15.915	3045539	-18149940	9928518	1346.400	91.309	75.977
11.138	3049362	-18149719	9928755	1355-822	40.478	105-075
23.215	3055416	-18149532	9929225	1359.474	19.944	114.979
25.705	3058810	-18149518	9929541	1366.929	-8.220	134.998
28.194	3052225	-18149573	9929309	1392-065	-63.697	170-576
32 . 5 94	3064330	-18149838	9930538	1406.090	-85.0P1	185.525
35.076	3071961	-18150086	9931125	1427.993	-113.864	205.334
40.057	3079108	-18150796	9932254	1484.973	-171.102	248.813
42.545	3082847	-18151257	9932903	1519.854	-199.573	272.553
45.035	3086679	-10151700	9933611	1559.751	-227.073	296.949
49.429	3093705	-18152901	9935014	1541.393	-277.767	341.995
51.925	3097868	-18153630	9935899	1694.545	-306.009	367.425
54.422	3165519	-18155296	9937865	1/52./04	-361.956	471-120
59.410	3111226	-18156234	9938951	1890.254	-389.850	450.376
61.902	3115999	-18157239	9940112	1950.414	-416.077	481.621
66.304	3124971	-18159166	9942360	2083.284	-459.169	540.365
66.800	313017?	-18160342	9943750	2165.248	-482.158	573.340
71.293	3135679	-18161570	9945222	2252.627	-503.119	507-09A
76.273	3147350	-18164180	9948418	2437.40?	-545.324	475.899
78.174	3152053	-18165233	9949729	2515.050	-561.5*0	702.113
80.665	3159457	-16166657	09*1514	2623+381	-581.610	731.722
83.157	3165135	-18168129	9953381	2735.846	-598.723	767.797
85.650	3172097	-10169620	9955347	2851.655	-512.405	R11.083
90-638	3179355	-18171182	9959627	2972+077	-625.125	905,180
93.134	3194828	-18174362	9961944	3232.528	-649.970	953.075
95.038	3201085	-18175605	9963796	3339.522	-656.937	989.553
100.031	3216495	-16178927	9968978	3640.284	-672.121	1096.356
102.532	3227804	-18190614	9971757	3802.441	-676.784	1175.946
105.026	3237498	-18182302	9974652	3972,307	-477.381	1185.457
109.451	3255775	-18185294	9980092	4293.165	-673.627	1273.754
111.948	3266733	-18186969	9993337	4484.319	-667.236	1326.241
114.444	3278172	-18188621	9996719	4682.469	-639,598	1383.321
119.435	3302579	-18191811	9993908	5105.988	-620.048	1497.013
121.938	3315640	-18193334	9997725	5331,801	-596.742	1553.782
126.340	3340021	-18195874	10004795	5748,591	-557.920	1658.865
128.833	3354689	-18197241	10009016	5996.594	-536.982	1720.749
131.333	3369970	-18198556	10013387	5253+809 6521-397	-516.986	1783.615
136.324	3402529	-18201034	10022619	6799.714	-475.050	1917.656
138.229	3415686	-18201922	10026323	7019.463	-457.644	1972.008
140.733	3452319	-18203040	10036561	7630.789	-408.540	2122.080
145.727	3471754	-18205079	10041953	7955.777	-382.002	2201.694
148.248	3492244	-18206006	10047609	8299.385	-353.171	2285.494
152.650	3530163	-18207442	10059006	8940.178	-298.175	2441.039
155.146	3552959	-18208144	10064216	9327.942	-264.179	2534.819
157.162	3572095	-18208648	10069406	9654.276	-235.191	2513.552
162.641	3625368	-18209561	1008 3633	9822.770	-101.373	2585.994
167.360	3672145	-18209740	10095800	9999.914	11.572	27/7+179 2569-976
169.825	3696910	-16209673	10102124	10095.466	70.045	2567.121
172.290	3721913	-18209427	10108430	10192.653	129.786	2554.770
176.441	3764564,	-18208677	10119002	10260.921	232.086	2540.076
178,908	3790258	-18208027	10125258	10463.280	294.096	2529.757
181.382	3816269	-18207223	10131504	10567.826	354.946	2519.177
186.275	3868490	-18205169	10143768	10780.281	483.195	2493.674
188.695	3894719	-18203922	10149788	10898.355	546.762	2479.573
191.117	3921222	-18202520	10161721	10998.503	610.937	2464-057
195.962	3975050	-18199243	10167632	11223.985	742.556	2430+122
198.384	4002372	-18197363	10173496	11339.120	809.845	2411.975
203.233	4057932	-18193104	10185099	11575.764	947.429	2372+685
205.654	4086102	-18190726	10190818	11696.536	1017.644	2352.035
208.076	4114578	-18188175	10196489	11819.349	1089.279	2330.650
212.919	4172422	-10182547	10207669	12070.661	1235.901	2286.254
215.340	4201800	-18179465	10213177	12199.624	1310.980	2263.417
217.763	4231516 4261503	-151/6196	10224020	12330.448	1387.456	2239.672
222.608	4291911	-18169095	10229366	12598.238	1544.455	2190.434
225.028	4322563	-18165260	10234637	12735.351	1625.125	2165.353
229.668	4384876	-18156998	10244991	13016.034	1790.017	2113.305
232.289	4416560	-18152562	10250075	13159.897	1874.797	2086.334
234.714	4448547	-18147912	10255101	13306.646	1960.748	2058.958
238.862	4503558	-18139594	10263422	13559.797	2109.540	2011.983
241.233	4536716	-18134355	10268280	13713.308	2199.963	1983.483
643.0DU	45/0184	-10158402	10213054	13569.265	2791.900	1974.690

3150-6027-R8-000 Page A-5

Table A-1.Ascent Trajectory Reconstruction—Earth-CenteredInertial Coordinates (Continued)

GENINI TRAJECTORY IN ECIG

TIME IN SECONDS FROM LIFTOFF

TIME	x	۲	1	X-DRT	Y-001	Z-007
						1075 303
246.087	4604034	-16123230	10277766	14028.435	2383.020	1995.213
248.513	4638200	-10111120	10287400	141904011	2578.470	1964.629
250.959	40/31/0	-10111129	10200499	14536.143	7477.949	1013 205
233.400	4764306	-18098024	10295975	14699-036	779.929	1901.177
258.302	4780479	-16091097	10300341	14874.907	2883.710	1768.465
260.752	4817144	-18083903	10304633	15054.567	2989.448	1734.769
263.205	4854300	-18076436	10308845	15238.330	3098.158	1499.967
265.655	4891865	-16068710	10312969	15425.417	3208.969	1664.593
268.102	4929833	-18060723	10316996	15616.312	3321.713	1428.253
270.550	4968303	-18052449	10320937	15811.020	3437.723	1591.058
272.996	5007223	-18043895	10324783	16009.978	3555.847	1553.221
275.444	5046568	-18035041	10328539	16213-004	2011+414	1719.200
277.889	5086553	-18025901	10352191	10421.437	3039 645	1422 934
280.336	5127000	-18010443	10330130	100 74.127	4017.584	1405.127
282+015	5105367	-17000788	10341518	17004.029	4149.858	1362.811
204.400	5778170	-17989484	10344795	17230-635	4284.936	1319.675
200.361	5290630	-17978820	10347970	17463-195	4424.099	1274.995
291.707	5322051	-17968242	10350923	17693.052	4561.847	1231.052
294 . (12)	5343250	-17957528	10353720	17924.390	4700.772	1186.479
297.064	5418267	-17942938	10357237	18237.069	4889.963	1125.268
299.381	5460812	-17931434	10359790	18482.517	5039.005	1077.288
301.707	5504098	-17919534	10362238	18735.621	5192.973	1027.655
304.025	5547834	-17907313	10364562	18995.221	5351+097	976.648
306.343	5592161	-17894724	10366765	19262.402	5514.116	923.974
308.658	5637078	-17881764	10368841	19536.977	541.909	109.040
310,982	5682796	-17868162	10370/9/	20112 895	6035-639	756-551
313.297	5729024	-1/854596	10376797	20113-595	6282.125	674 . 221
316.340	5/9003/	-17821075	10376276	20828.797	5477.642	410.898
330 093	5867543	-17805771	10377620	21157.520	5681.430	544.273
323.302	5937011	-17790078	10378803	21497.491	6892.330	475.580
325.621	5987279	-17773800	10379824	21851.271	7111.37A	404.083
337 030	4028310	-17757045	10380475	22210.000	7339.147	330-151
321.737	6090231	-17739792	10381351	22603-969	7576.345	253.015
332.577	6143209	-17721905	10381946	23005.745	7924.852	172.115
334.892	6196941	+17703496	10362147	23427.011	8083.910	88.79A
337.942	6269260	-17678307	10362245	73980.917	8479.105	-24.325
338.737	6288369	-17671574	10382214	24127.321	8520.559	-54.244
340.093	6321204	-17659938	10382112	24213.191	8600.802	-85.563
342.405	6377183	-17639976	10381873	24200.295	8662.878	-120.959
344.528	6428546	-17621525	10381583	24185.587	8718.604	-152.376
346.660	6480089	-17602879	10381225	24169.514	8773.971	-164.045
348.938	6535110	-17582831	10380767	24150-498	8832.224	-200 410
354.408	6667095	-1/534135	10379349	24100.309	0022.202	-330.677
350.505	6711504	-17496203	10377962	24060.182	9074.721	-352.081
341.823	6105075	-17466935	10376719	24030 882	9155.984	-+10.040
363.887	6895106	-17447988	10375841	24011.802	9207.968	-440.915
366-605	6960331	-17422870	10374587	23986.612	9276.546	-481.97A
368.663	7009690	-17403720	10373563	23967.525	9328.190	-513.046
371.381	7074794	-17378277	10372114	23942.295	9395.486	-553.336
373.438	7124014	-17358901	10370944	23922.263	9446.819	-584.381
376.261	7191511	-17332131	10369235	23893.251	7516.784	-575.146
378.433	7243360	-17311404	10367840	23871.047	9570.568	-658,330

Table A-2a. Ascent Trajectory Reconstruction---Special Earth-Fixed Coordinates

		MINE SC PECENSTR	NICTED ASCENT T	RAJECTORY			
TIME FROM LIFTURE TIME	INFOTIAL VEL. MAREITURE (FT/SEC)	RELATIVE VEL. WASHITHEE (ET/SEC)	INFOTTAL FLT. Path Angle (Degrees)	INFOTIAL HEADING ANGLE LDEGREESI	ALTITUCE (FFET)	GENDETIC LAT. (DEGREES)	GENNETIC LUNG. (DEGREES)
1.647	1341.0	14.0	.***	89,004	10.5	24.507	-80.555
4.073	1347.4	24.0	1.440	36,374	44.5	24.507	-80.555
A .477 A 787	1764.5	75.7	7.471	80,038	339.4	28-507	
11.143	1744.5	197.0	4.745	#9, P01	554.2	74.507	-80.555
13.578	1749.7	177.4	5.420	97.874	A.c.7	29.507	-80.555
16.740	1351.6	157.0	6.493	49,815 AQ. 80A	1147.5	28.507	-80.555
23.12R	1 740.4	21 2.	9.017	PC 744	2115.7	29.507	-10.555
23.11.	1744.7	718.5	10.971	40,774	75 84 . 5	24.507	-80.555
25.7C*	1377.4	271.3	11.385	19.AC 2	3710.4	2#.507	-80.555
30.484	1407.0	341.0	14.378	99.579	4720.5	28.508	-80.555
77.554	1420.0	7.045	14.071	40,440	4477.R	28.508	-80.554
34.076	1467.7	4CP.5	14.744	P9,412	4177.4 34.37 3	74.504	-80.554
40.557	1515.4	40/ 5	10.474	99.164	8555.0	28.508	-80.555
47.546	1556.0	541.7	19.747	99.008	9851.7	28.508	-90.552
45.035	1604.0	500.C	20.77?	**.*39	11217.5	28.50R	-80.551
47.475	1400 5	547.7 AR6.5	71.494	48.541	12487.5	28,509	-#0.550
51,975	1740.7	745.7	27.103	AA.417		28.509	-80.547
\$4,477	1 . 27. 1	P07.P	73.767	R9.7F7	17336.2	28.509	-80.544
56.414	1897.5	874.5	74.377	8P.14P	19231.7	24.510	-80.541
61.007	7051.4	1014.0	25.247	97.759	22279.0	29.511	-80.535
67.879	7114.P	1077.0	25.704	P7. = 6 G	75001.2	24.511	-#0.531
64.364	2200.7	1157.7	242033	A7.3C7	77447.7	28.512	-80.527
68.800	2201.2	1241.2	25.270	37.001	20014.0	28.512	-80.522
71.203	7386.6	1370.0	24.419	#6. P67	37102.0	24.513	-40.516
77.757	7485.4	1470.7	24.540	94.455	25700.0	28.514	- 50 - 509
78.174	2670.9	1-1-40	26.468	84.375	40250-0	28.516	-80-696
80.445	77P4.5	1497.4	25.604	94. 154	41177.7	28.517	-R0.48P
A3.157	2903.0	1407.5	26.527	84.103	45498.7	28.51A	-80.479
85.144	2027.7	2045.4	26.340	85,847	53723.5	28.520	- 40.469
00.410	1700.0	7172.1	26.234	24,757	55783 S	28.522	-90.446
93.134	3432.0	· • • • • • • • • • • • • • • • • • • •	26.049	94.007	50490.5	28.524	-00.433
95,018	3444.4	7414.7	25.916	84.P13	63397.7	28.525	-80.422
100.071	3847 C	2712.0	25.435	84.401	71407.0	28.529	-80.392
102.537	6075.7	2477.7	25.142	94.214	75415.5	28.532	-80.375
105.774	4200.4	3040.2	24.014	84.05)	70940.5	2R.535	-50.356
107.547	4528.4	3366.1	24.175	83.801	87958.2	28.537	-80.317
111.940	4773.7	3547.0	23.793	43.653	92654.2	28.543	-80.299
114.444	4374.7	3739.7	23.396	87.455	07480.0	2P.546	-80.275
116.574	5256.0	5442.7	22.510	83.116	10/473+/	28.554	-#0+250
121.030	5585.4	4377 6	22.043	92.077	112482.5	28.558	-80.195
123.842	576 5.4	4552.1	21.714	92.980	116712.7	28.561	-80.172
126.340	400°.1	4790.7	71.319	R2.771	177110.0	28.566	-80.140
131.333	6= 73.7	52C4 0	20.514	A7.413	133304.7	28.576	-#0.071
133.A2P	£796.7	5563.5	26.305	47. 452	139110.5	28.587	-#0.034
136.326	7780.9	5843.7	20-005	87.497	145090.7	28.587	-79.995
134.270	7305.4	6065.4	10.786	P7.446	149756.5	28.592	-79,963
140.773	7417.2	634F . L	19.510	·?. · · · ·	156047.7	28.598	-79.919
145.727	P263.6	7.113.2	10,749	87.709	147492.2	28.605	-79.874
148.248	P615.6	7362.0	19.744	97.254	175999.5	28.619	-79.775
150.744	RCR1.2	7774.7	18.509	92.222	183026.0	28.627	-79.721
152.650	5272.7	A017.6	18.334	92.197	148520.7	28.673	-79.679
157.142	10004.5	8761.1	17.948	97.146	202066-0	28.648	-79.571
160.140	10073.4	48.05.0	17.544	47.190	211174.5	28.659	-79,497
162.441	1015A.C	8447.2	17.219	42.243	218740.5	28.668	-79.433
167-360	10795+2	9046.4	16.625	92.336	232824.0	28.685	-79.312
169.475	10415.7	0134.*	16.727	87.386	240082.5	28.404	-79,747
172.200	10508.6	977t.5	16.079	47.477	247274.5	28.703	-79.147
173.577	10573.5	97#9.4	15.827	47.473 87.470	252161.5	28.709	-79.136
178.904	10768.P	9479.4	15.734	A7.590	266269.7	28.727	-79.002
181.3#2	10	9=77.7	14.030	87.154	273744.0	28.736	-78.934
103.446	10977.5	9477.P	14.544	A7.730	290127.2	28.745	-78.864
168-655	11100.5	9980.7	14-367	82.849	293457.0	28,752	-78.795
191.117	11247.7	4988.4	13.741	42.978	307017.2	28.771	-78.655
193.53#	11396.7	10 191.0	13.494	83.069	306496.5	28.780	-78.584
195.562	11621.1	1070.0	13.710	**.166	312915.7	28.789 38.707	-78.511
200.412	11776.5	10424.7	12.643	93.345	125540.0	28.806	-78.364

3150-6027-R8-000 Page A-7

Table A -2a.Ascent Trajectory Reconstruction---Special
Earth-Fixed Coordinates (Continued)

	GEMINT 4C PECENTINGTED ASCENT TRAJECTORY									
TIME FRAM LIFTAFE (SFCCNOS)	INFOTIAL VEL. MAGNETHOF (FT/SFC)	RELATIVE VEL. MAGNITUPE (ET/SEC)	INFRTIAL FLT. PATH ANGLE (DEGREES)	INSPITAL HEADING ANGLE (DEGREES)	ALTITUDE (FEFT)	CEPPETIC LAT. (DEGREES)	GENDETIC LONG. (DEGREES)			
203-233	11854.7	10540.3	12 341							
205-654	11974-1	17657.9	12.042	87.574	337647 0	20.017	~ 18.289			
768.674	12956-1	1 3777.7	11.802	83.680	343884 7	78 833	- /0.213			
710.457	12220.5	10000.0	11.527	87.787	340944.2	28.840	-78 059			
717.719	32347.5	11074.9	11.751	83.895	355770 . 5	28.849	-77-979			
215.340	12476.9	111*?.4	10.070	94.003	761530.7	28.857	-77.899			
217.767	12608.8	117#2.*	10.70*	84.113	367254.0	78.866	-77.818			
220.142	12747.0	11414.7	10.439	84.774	377890.7	28.874	-77.736			
777.40*	37880.2	11440.0	10.171	44, 315	378450.7	28.882	-77.653			
225.02*	13010.0	11456.0	9.005	94.444	383430.5	28.490	-77,569			
277.445	1316 7. 1	11070.4	0,443	84. * 84	30031A.K	78_89#	-77.484			
770.044	14307.4	11972.1	9,384	84.467	394617.7	78.90A	-77.397			
374 714	17447.0	1/110.5	9,124	#4,779	399914.2	78.914	-77.310			
337 140	13741 7	17471 7		44.842	41497	28.922	-77.221			
738.802	17860.1	12528 1		#7.004	41020	78.930	-77.131			
241.211	14029.4	12682.7	8.202	85 101	474741 6	28.935	-77.068			
243.460	14197.4	17948 F	7.950	85.304	433143 0	/8.945	-76.976			
244.CP7	14759.5	13014-4	7.716	85.414	477013 5	28.450	-74 744			
248,413	14520 0	13147.4	7.478	85.579	432557.0	28.945	-74 403			
250,640	1470E.0	1 2 3 57 . 4	7.243	85.647	437141.2	28.973	-76.592			
253.4CA	149.4.7	13535.4	7.00	85.756	441639.7	28-990	-76.494			
255.456	15047.4	13717.7	6.777	85.471	445049.0	28.987	-76.393			
258.307	15754.7	13903.4	6.54F	85.485	450358.5	28.994	-76.291			
260.752	15446.7	14004.1	6.322	##.101	454580.7	29.001	-76.187			
263.205	14647.7	142#9.e	6.045	A4.218	45P711.5	29.000	-76.082			
764.654	1***3.4	144#9.7	5,872	44,739	442730.0	29.015	-75,075			
744.177	14049.5	14403.4	4,643	*0.453	454467.5	29.071	-75.866			
270.550	1425#.5	14907.*	R.474	°6.571	470488.7	29.028	-75,756			
272.004	16477.5	15116.4	5.219	94.489	474711.5	20.034	-75.645			
274.444	14404.7	14334.4	5.(64	RA.807	477834.5	79.040	-75.532			
277.uuc	1+020-1	35563.6	4.797	86.924	491347.7	79.046	-75.417			
242,015	171-148	19797.5	4,544	97.045	484761.2	29.052	-75.300			
284 440	1771947	11000	4,441	47.17	487041.0	29.056	-75.219			
285.503	17376.1	14147.47	4.037	47.748	490271.7	29.062	-75.099			
289.241	10050.0	14438 3	3 937	87.400	443343.5	29.067	-74.978			
291.757	1#317.1	14950-0	1 447	87 407	4999113 3	20.077	-74.854			
794.021	12565.5	17205.7	3.441	87.724	501862.2	29.092	-74 417			
257.644	18914.8	17551.2	3.217	97.878	505189.2	29.000	-74.613			
790, 141	19147.4	17872.*	3.032	87.956	507599.5	29.092	-74.327			
301.707	15440.1	19104.0	2. 347	##.115	509000.0	29.096	-74.200			
704.075	15768.7	1933.c	2.00	88,215	512000.2	29.100	-74.071			
304.343	20057.4	13492.7	2.4#4	98.355	514175.2	29.104	-73.039			
304.444	202/5.0	jaooc*e	2.305	*#.477	516133.5	29.107	-73.806			
310.C42	776 84.5	1031A.7	2.125	98.400	517970.2	79.110	-73.670			
313.757	21032.4	19447.7	1.947	88.775	510497.7	29.113	-73.533			
	21454.0	20 397.5	1.711	RP. Peq	521762.5	29.117	-73.348			
370 683	21821.4	27454.4	2.523	P4.015	523145.5	29.130	-73.205			
173. 207	22540 5	2 3 9 7 6 1	1.355	NO. 141	474477.5	29.177	-73.058			
325.421	25082.0	7173244	1.1/8			20.124	-72.909			
327.938	23403-0	2101247	1.004	PO 514	577404 7	29,125	-72.758			
330. 344	77841.2	22477.4	.640	89.470	528207.0	20.120	-72.00			
7 32. 577	24701-4	22033.6	489	89.807	528768.7	20 120	-73 365			
334.802	74787.7	23415.0	. 171	49.945	<29170.2	29,120	-72.121			
337 043										
330 337	7 419.7	24041.4	.113	90.129	529457.5	29.12#	-71.900			
340.003	74445	24727.0	• ? •]	99.173	529488 .7	29.12#	-71.741			
343.408	75704 4	74377.7	•075	90.234	529506.2	29.12#	-71.740			
344.428	25700 E	24 24 2 2	. 327	90.771	5295 34 . 5	29.127	-71.560			
346.660	25712.5	24341.7	.327	90.403	-79559.7	29.126	-71.411			
348.978	75714.8	24745.0	.021	90.471	529374.0	29.125	-71.252			
54.4C	24717.2	24340.0	-030	90.700	57 YE 10.7	/** 124	-71.083			
356. 464	24717.1	24145.1	.021	30.859	\$29703.3	79.117	-70.87C			
758,607	24717.7	24149.4	. 172	90. 340	529730.7	20.116	-70.740			
361. 773	24710.3	24351 .*		91.067	429774.2	29,111	-70.125			
363.887	25770.e	24352	.074	91.141	529802.7	29,104	-40.071			
366.605	25722.5	24354.7	.034	91.746	524840.4	29.104	-69.769			
364.443	24773.¢	24756.1	. 725	91.325	57986A.7	29.101	-49.414			
371.771	24775.p	2435P.0	. 130	01.430	« 200no, 2	29.097	-69-414			
173.438	2*726.5	24356.8	.030	91.509	529941.5	29,093	-69.261			
376.2A1	24726.4	24358.6	.040	91.416	5299 M . 2	29.048	-69.051			
378.434	24726.4	24358.8	-042	91_658	530022-0	29.083	-44 800			

· · · · · ·

٩,

CEMINE .	66.	PECCHSTPHCTED	ASCENT	TRAJECTORY
----------	-----	---------------	--------	------------

ττ»r ♥ (S=C)	0FLATINF FLT. PATH AAFIF {DECOFF\$}	RELATINE HEADING ANGLE (DECREES)	INCOTINE LONG. (SEGREES)	GENCENTRIC LAT. {DEGREES}	PADINS TO FAPTH CENTER (FFET)
		-43 607	-10.534	28. 744	20905876.0
7-307	59.550	1.454		78.744	70909934 . C
9.421	P0.21C	2.1*7	-90.514	78.945	20910047.7
17.067	*****	7.749	-90.504	28.344	20910205.0
14.442	#8.647	15.444	- 47.494	78.344	20910421.7
14.417		15 212	-90.475	28.745	20911028.0
22.02	P#.4*C	17. 445	- 93.463	78.346	20911564.C
74.417	PR 445) P. 774	- 97.453	28,344	20911981.2
26.494	PR. 264	20.550	-=7.444	28.344	709124-0.0
28.944	AP. 225	16,799	- = = = = = = = = = = = = = = = = = = =	78.344	20913802.0
31.4/1	84.759	64 - 85A		28. 344	20914604.7
35.867	P4. C7P	19.440	-10.405	78.747	20915277.7
38,355	87.1*2	74.778	-90.394	28.347	20914247.5
40.845	Ml.C77	76.772	- 40, 743	78, 747	20017402.7
43.336	78. RPC	74.040	-80.361	78.347	20919718.5
48.314	74.316	79.591	-80,340	28.347	20921042.0
50.814	71.900	+0.153	-83.338	24.347	209225*1.7
42.70×	70.242	PC.F10	-10.329	28.74	20923749.5
55.204	+7.047	*1.16*		77.74	20925418.7
57.701 AC.105	65.71C	P2,040	-80,200	28.349	20929094.7
67.689	61.154	P7.208	-90.276	28.949	20931104.5
45.1*1	59.77*	P2.141	-90.252	28.340	20933241.0
67.047	58.719	#7, C&P	-=0.7=1	78.750	20934953.0
64,543		R].#74	-=0.736	25.320	2043130247
			- 00 330	28 341	10030774 F
17.079	54,7P7 53 04 P	81.802		28.357	2073777
77-062	51.456	P1.771 -	-80,197	28.753	20945066.7
76.447	49.563	#1.767	-90.170	28.354	20947894.0
A1.453	48.87*	P1.90*	-90.156	28.354	209501?7.0
83.944	47.200	\$2.267	-90.137	78.3*5	20953183.7
88.679	45.474	F2+247	-90.097	28.358	20959648.7
91.473	43.207	61.69C	-*0.074	78.359	2096 3075.5
92.017	41,570	#1.457	-90,753	28.251	20966634.0
96.413	40.801	P1.772	0.030	28.363	20970329.2
QA.317	39.415	P1.17c	-90.012	28.364	20973240.0
100.034	38.//1	P1.019	-79,960	28.368	20981244.7
10*.911	36.573	#D. 641	-79,933	20.771	20985455.7
JOA, 205	35.478	FC. 937 _	- 79,004	28.373	20989787.0
110-876	34.355	PC.526	-79,074	78.376	20994246.5
112.730	73.5.7	90.894	-79-817	28.387	2100246*.*
117.773	31.544	F3.799	-79.783	28.785	21007404.7
120.218	30. FFE	PO.643	-79.74R	28.389	21012245.2
122.714	70. 474	F0.643	-79.710	28,392	21017307.0
125.217	24.634	80.40*	-79.671	78.397	21024523.0
127.619	27.135	PO. = 70	-79,599	28-405	21031917.5
1-2.117	76.344	80.576	-79,555	24.410	21037440.7
134.612	25.714	PC.ECE	-79,509	28.415	21043009.7
137,107	25.004	P9.637_	-79,461	24.420	2104800.0
139.603	24.490	P0.654	-79.411	28.476	21054874.2
141.408	24.061	P0.480	-79.372	26.431	21059535.2
144.012	23.57*	PU. 70P	-79.318	28.437	21065814.0
140 004		80.743	-79.203	28.450	21072257.1
151-527	22.090	60.793	-79,142	28.458	21085750.2
154.023	21.6**	P0.425	-79.078	28.465	21092763.0
145.929	21.344	PC. 849	-70,027	28.477	21098257.5
159.425	20.053	EC.0843	-78,944	28.447	21109649.7
163.419	20-171	8C.574	-78.814	28.497	21120624.7
165.920	19.776	P1.04P	-78,740	24.506	21128441.5
168.417	19,341	81.110	-78.666	20.515	21135915.0
170.639	19.0**	81.391	-78,599	28.573	21142507.7
175.104	18,931	P1+27/ 01-373	-78.448	28.541	21156942.0
177.256	18.005	61.377	-78.396	78.547	21161820.7
179.720	17.727	#1.44P	-78.319	28.556	21168893.2
182.187	17.368	#1.532	-78.241	74.565	21179910.0
184.661	17.011	#1.217	-78.167	28.574	21182875.5
189.854	16.300	A1.917	-78.003	28.591	21196447.7
191.974	15.944	#1.972	-77.974	28.600	21203061.7
194.396	15.622	P2.034	-77.843	28.609	7120960R.2
196.817		#Z.148	-77,762	28.618	21716042.5
201.447	14.407	F 14299	-77.404	28.676	21272497.7 71778874.7
204.091	14.26*	#7.416	-77.511	78.644	21235000.0

· Time from platform release

Table A-2b. Ascent Trajectory Reconstruction---Special Earth-Fixed Coordinates (Continued)

	GENTNT	SC PECONSTRUCTED	ASCENT TRAJECTORY		
TIPF (SEC)	PFI ATTVF FIT. PATH ANGLE (DEGREFS)	RELATIVE HEADING Angle (Degrees)	INCOTIAL LONG. (DEGREES)	CENCENTRIC LAT. (DEGREES)	RADIUS TO Farth Center (FEFT)
206-512	13,031	P2.642	-77.476	28.652	21241282.7
205.913	13.401	A7.771	-77.340	28.661	212473PP.2
211.345	13.271	P7.900	-77,253	28.470	21253419.2
213.776	17.947	P3.030	-77.165	29.678	21259370.C
216.19R	12.622	#1.101 83.201	-74.984	78.495	21271037.0
221.042	11.984	P3.423	-76-895	28.703	21276753.5
227.441	11.470		-74.803	24.711	71292379.7
110.007	11.717		-76.709	28.720	21287940.7
228.307	11.047	P2.81P	-76.615	28.728	21203402.7
230.727	10.747	H3.049	-76.520	26.730	21200740.2
235.5AR	10.142	F4.213	-76.325	28.752	21309282.5
237.003	C. P4 C	P4.745	-76.227	28.750	21314414.2
240.419	9.557	P4.474	-76.176	28.767	21319440.7
247.041	9.361	P4+566	-76.057	28.773	21322R6P.2
244. 12	9.077	P4.697	-75.954	28.780	21377779.2
240.344	8.570	F4.555	-75.746	28.795	21337315.7
251.797	P. 7/7	F5+C85	-75.549	28.803	21 34 1947.7
254.739	7.97\$	#5.216	-75.532	28.810	21346528.2
256.4.85	7,712	P5.247	-75.422	28.B17	21351010.2
256.125	7.447	P*.478	-75.311	28.P24	21355421.2
251.581	7.167	85.00	-75.044	24.431	21379/23.7
266.686	8.9-J	PK. 474	-76.968	28.845	21362062.2
268.934	6.423	P6.006	-74.851	28.852	21372097.7
271.791	6.176	#4.140 _	-74.733	28.858	21375999.5
772 870	5.576	86.272	-74.617	28.865	21379919.0
274.775	5.416	P4.405	-74.491	7P.P71	21383535.2
278.773	5.44 P	86.* 37	-74.367	28.877	21387142.0
291.149		94,471	-74.24?	28.083	2139065°.C
243.615	4.579	FF. 803	-74.117	28.893	21396342.0
284.294	4.553	P7.078	-73.897	28.899	21399567.0
290.182	4.371	P7.152	-73,745	78.904	21402687.0
292.430	4.151	17.704	-73.63?	2F. 004	21405655.*
204.586	3,940	P7.475	-73.501	28.914	21408457.2
297.300	3.736	P7.453	-73.371	28.014	21414457.5
300.343	3.467	P7.851	-73.067	28.929	21416863.2
304.086	7.047	A7.0A1	-72.925	28.033	71419168.5
207.304	2.863	PP.112	- 72 . 787	28.037	21421354.7
370.627	7.666	**.747	-77.646	28.040	21423427.0
311.937	2.470	PR. 174	-77,803	28.947	21427224.0
314.241	2.776	88.447	-72.210	28.950	21428939.2
319,419	1. 27	PP.819	-72.013	28.954	21431001.2
771.036	1.676	PR.953	-71.860	28.956	21432420.7
324.767	1,444	P9.091	-71.703	7 P. OKR	21433710.5
376.591	1.254	P9.779	-71.343	78.942	21435862.7
378.900	1.007	A9.510	-71.219	28.963	21436722.2
333,633	.700	A9.452	-71.05?	28.064	21437434.0
335.056		89.797	-70.8A1	28.965	21437904.7
238.171	. 340	P9.542	-70.70*	28.965	71438396.0
	120	50.133	-70.474	28.965	214386P3.5
347.014	+140	CO.143	-70,412	28.065	21430714.7
343.372	-020	9C.24P	-70.306	28.565	71438732.7
345.684	.070	c0.341	-70.124	28.064	21438761.7
347.007	. 029	°0.426	-69,957	28.063	21438813,8
349.629	•024	90.511	-69.611	28.960	21438841.2
352.217	•029	°U.8U.5	-69.181	20.956	71438911.7
457.687 350 784	-077	PO. 508	-69.017	2R. 054	21438940.7
361.882	.074	c0.033	-68.857	28.957	21438970.7
365.102	.0 ² E	e1.122	-68.599	28.948	2143901F.2
367.166	•03f	\$1.206	-68.437	28.945	21439044.5
365.084	.0?6	91.316	-69.067	28.939	21439123-0
371.942	.077	S1.490	-67.P4R	24.033	21439168.2
376 317	- 041	91.594	-67.687	28.930	21439204.0
375.540	.04?	91,707	-67.465	28.924	21439254.5
361.712	.044	0].794	-67,295	28.920	2145-244.5

Page A-10

Ascent (Uncorrected) Sensed Trajectory -IGS Coordinates Table A-3.

GEMINE EDIT PROGRAM

TINE IN SECUNDS FROM LIFTOFF

COMPUTED POSITION VELICITY AND ACCELERATION IN GUIDANCE THRUST COORDINATES

TIME (SECS)	Х (FT)	4 (FT)	2 (FT)	XDUT (FT/SEC)	YDOT (FT/SEC)	ZOOT (FT/SEC)	XDD3T (FT/SEC+2)	40007 (FT/SFC+2)	2000T (FT/SFC+2)
1.642		-401		10	-172.71	.11	.10	-40.45	• 0 •
4.023	-	-928	1	.06	-270.08	-51	.04	-41.15	.13
6.402	,	-1687	2	. 12	-467.69	1.20	.13	-41.85	
11.163	2	-3914	Ř	. 96	-567.53	2.00	.17	-47.27	. ? 4
13.538	5	-5382	13	1.73	-668.29	2.49	-1*	-47.64	•26
15.915	8	-7091	20	1.70	-770.08	3.29	• 50	-43.12	.24
18.749	14	-9447	30 -	2.28	-893.08	5.70	• 20	-46.28	.27
23.215	27	-13875	51	3.68	-1090.49	5.36	.93	-44.79	.28
25.705	39	-16730	64	6.26	-1202.88	5.74	1.49	-45.40	. ? 5
28.194	61	-19866	80	12.39	-1316.82	6.42	3.31	-46.00	. 31
30.004	156	-25260	111	33.05	-1520.82		6.15	-46.95	.37
35.076	259	-30029	132	50.23	-1638.57	8.57	7.84	-47.4P	. 35
37.567	410	-34258	154	71.97	-1757.45	9.44	9,55	-47.96	.45
40.057	621	-36782	179	97.96	-1877.47	10.60	11.34	-48.42	
42.040	1263	-48733	242	163.34	-2120.70	14.27	15.05	-49.74	47
47.525	1718	-54165	279	203.12	-2243.71	15.88	14.94	-49.58	.53
49.429	2136	-58528	311	236.73	-2338.52	17.17	18.41	-49.81	. 4 2
51.925	2786	-64521	354	285.03	-2463.18	17.95	20.50	+50.13	.00
56.916	4479	-77441	444	395.72	-2715.08	19.69	23.75	-50.89	. 63
59.410	5540	-84372	493	456.38	-2842.83	20.54	25.42	-51+21	1.11
61.902	6759	-91616	548	522.22	-2970.69	24.08	27.13	-51.31	1.64
63.808	7804	-97370	591	515.19	-3196-66	33.40	30.42	-51.19	2.04
68.800	11044	-113328	763	726.44	-1324.32	37.94	32.36	-51.14	2.05
71.293	12959	-121774	864	610.43	-3451.26	43.17	34.20	-51.24	2.06
73.783	15095	-130527	977	897.56	-3579.13	49.51	36.06	-51.43	1.10
76.273	19382	-139397	1210	1063.11	-3805.95	55.40	40.19	-51.41	.93
	17501								
80.665	22159	-156380	1345	1167.47	-3933.00	53.91	\$2.70	-51.40	1.41
83.157	25204	-166341	1483	1277.01	-4061.19	58.73	44.85	-51.67	3.11
88.144	32144	-187237	1839	1510.17	-4321.18	85.70	49.20	-57.46	5.63
90.638	36067	-198178	2071	1636.03	-4452.16	100.23	*1.74	-52.74	5.70
93.134	40314	-209456	2339	1768.08	-4584.4R	114.26	54.57	-52.#7	5.55
95.038	43781	-218262	2566	2019.91	-4655.19	124.52	10.97	-52.55	5.48
100.031	53873	-242332	3255	2173.45	-4947.68	151.65	63.20	-52.76	5.57
102.532	59510	-254870	3653	2335.50	-5078.16	165.97	56.51	-51.91	5.42
105.026	65545	-267696	4084	2505.56	-5207-11	160.07	69.86	-51.52	5.57
107.547	77335	-280984	4036	2023.90	-5433.69	205.23	75.65	-50.89	5.97 6.53
111.948	84635	-304966	5468	3020.52	-5560.38	221.73	79.02	-50.40	7.57
114.444	92424	-319002	6048	3221.51	-5685.94	243.54	82.64	-49.67	8.43
116.939	100719	-333337	6684	3432.33	-5808.73	266.46	86.41	-48.85	8.44
121.938	118990	-362977	8125	3883.58	-6048.55	310.37	93.61	-48.53	8.91
123.842	126557	-374583	8733	4064.30	-6141.08	327.61	95.17	-49.09	R.03
126.340	137013	-390079	9579	4308.38	-6265.33	349.90	99.47	-50.17	9.00
128.638	148089	-405987	10481	4560.66	-6391.94	371.89	103.02	-51.73	9.67
133.828	172160	-438431	12441	5093.53	-6652.70	414.43	111.10	-53.01	9.00
136.324	185224	-455203	13504	5376.23	-6785.92	437.40	115.69	-53.81	9.45
138.229	195674	-468223	14355	5599.53	-5888.95	455.01	119.19	-54.37	9.78
140.733	210079	-485651	15528	5904.13	-7026.29	480.97	129.92	-55.18	10.23
145.727	241151	-521427	18060	6551.15	-7305.63	534.06	135.73	-56.85	11.15
148.248	258106	-540030	19442	6900.56	-7450.00	562.79	141.96	-57.79	11.66
150.744	275780	-556807	20884	7263.56	-7595.40	592.51	148.79	-58.77	12.22
152.650	289893	-573385	22035	7552.35	-7708.13	616.30	154.39		12.04
157.162	325590	-608781	24949	8278.97	-7951.33	675.99	167.65	-61.50	11.77
160 160	360334	-435681	34073	8270 24	-8013 41	680 88		-15.00	1 41
162.641	371399	-652667	28679	8472.70	-8049.08	684.08	41.51	-14.82	1.45
165.138	392686	-672811	30391	8577.17	-9085.27	687.78	42.21	-14.56	1.49
167.360	411855	-690818	31924	8671.76	-8117.75	691.39	42.97	-14.70	1.55
169.825	433361	-710873	33033	81/6.//	-9139.00	695.09	43.//	-14.69	1.47
173.977	470186	-744851	36532	8963.44	-8214.98	701.42	45.29	-14.72	1.32
176.441	492410	-765135	38264	9076.13	-8249,84	704.72	46.12	-13.98	1.07
178.908	514948	-785535	/40006	9190.65	-8283.46	706.81	46.87	-13.51	• 71
181.302	560905	-826597	43502	9426.06	-8348.34	708.39	41.47	-12.74	09
186.275	583941	-846910	45222	9544.54	-9378.77	707.68	49.30	-12.35	52
188,695	607193	-857230	46933	9664.94	-8408.28	706.06	50.12	-11.95	89
191.117	630748	~\$87629 -908087	48640	9787.47	-9436.86	703.15	50.97	-11.53	-1.27
195.962	678770	-928634	52030	10038.31	-8490.42	695.40	71e/0 52.55	-10.63	-1.86
198.384	703237	-949228	53708	10166.42	-9515.61	690.78	53.42	-10.15	-2.14
200.812	728076	-969931	55379	10296.86	-9539.87	685.16	54.24	-9.76	-2.34
203.233	753174	-990642	57031	10429.53	-8562.90	679.23	55.11		-2.55
208-074	804334	-1032216	60289	10700.45	-8605.77	666-07	56-86	-8.41	-2.84
210.497	830406	-1053074	61893	10839.10	-8625.81	659.04	57.79	-7.96	-2.95
212.919	856828	-1073987	63480	10980.28	-8644.32	651.71	50.73	-7.51	-3.06
215.340	883583	-1094936	65049	11123.60	-5662.10	644.28	59.67	-7.04	-3.19
220.182	938148	-1136955	68130	11417.02	-8693.86	629-12	61.59	-6.05	-3.39
222.608	966036	-1158070	69644	11567.53	-8707.64	619.78	62.60	-5.56	-3.45
225.02B	994213	-1179158	71134	11720.38	-8720.69	611.55	63.63		-3.52
227.448	1022763	-1200276	74052	12033.37	-9732.41	632.81	64.48 42 74	-4.67	-1.61
232.289	1081016	-1242599	75479	12193.72	-1752.45	584.84	64.89	-3.67	-3,40
234.714	1110781	-1263832	76885	12357.31	-8760.98	575.40	67.92	-3.16	-3.86
237.140	1140959	-1285093	78270	12523.84	-8767.97	566.06	69.44	-2.35	-3.92

7

3150-6027-R8-000 Page A-11 v

Table A-3. Ascent (Uncorrected) Sensed Trajectory -IGS Coordinates (Continued)

GEMINI EDIT PROGRAM

TIME IN SECONDS FROM LIFTOFF

COMPUTED POSITION VELOCITY AND ACCELERATION IN GUIDANCE THRUST COORDINATES

TIME (SECS)	Х (FT)	Y (FT)	2 (FT)	XDOT (FT/SEC)	YDOT (FT/SEC)	2007 (FT/SEC)	XODOT (FT/SEC#2)	VDODT (FT/SEC#2)	2009T (FT/SFC#?)
238-802	1161870	-1295670	79205	12639.21	-8772.26	559.66	70.11	-2,34	-3.99
241.233	1192813	-1321008	80554	12811.02	-8777.60	550.02	71.29	-1.79	-3.93
243.660	1224113	-1342314	91878	12985.15	-8781.41	540.58	72.53	-1.37	-3.90
246.087	1255839	-1363628	83178	13162.83	-8783.87	530.84	73.85	76	-4.05
248.513	1267988	-1384937	84453	13343.76	-8784.90	520.79	75.23	74	-4.15
250.959	1320857	-1406428	85715	13529.15	-8785.11	510.55	76.62	•35	-4.25
253.406	1354197	-1427926	86951	13718.39	-9783.67	503.00	78.07	1.00	-4.32
255.856	1368032	-1449435	88163	13911.48	-9780.17	489.35	79.58	1.70	
258.302	1422303	-1470908	69347	14107.91	-8775.14	478.50	81.15	2.42	
260.752	1457115	-1492401	90505	14308.50	-9769 44	467.05	87.79	2+21	-4.04
263.205	1492467	-1513901	91637	14513.76	-9/39.71	435.29	14.70		-4 95
265.655	1528284	-1535350	92738	14/22.11	-8748.72	443.44	PO.27	5 2 4	-5.04
268.102	1504560	-1556738	93807	14952.95	-9720 04	410 43	80.04	6.56	-5.14
270.550	1601392	-15/810/	94847	15135.00	-9704 10	410.03	07.70	7.52	-5.22
272.996	1638733	-1599421	95856	155/7+77	-9684.47	393.11	94.00	8.47	-5.32
275.444	10/0024	-1620706	07770	15835.76	-8662.47	379.85	95.87	°.50	-5.45
211.889	17543 23	-1667.080	08693	16073-66	-3638-62	366-59	98.10	10.26	-5,54
280.330	1781243	-1677566	99300	16239.70	-8620.49	357.08	100.18	11.13	-5.64
202.013	1921255	-1696612	100156	16485.83	-9592.22	343.21	102.65	12.16	-5.78
286.903	1861866	-1719569	100978	16739.94	-8561.79	328.95	104.92	13.19	-5.90
269, 351	1903130	-1740482	101765	16999.75	-9528.07	314.28	107.64	14.45	-5.05
291.707	1943490	-1760536	102488	17256.52	-8492.71	300.01	110.54	15.83	-6.21
294.021	1983710	~1780141	103166	17514.93	-9454.87	285.45	113.39	17.29	-6.37
297.064	2037536	-1805786	104004	17864.35	-8399.48	265.63	116.63	10.04	-5.54
299.381	2079251	-1825198	104602	18138.67	-9353.32	250.37	119.72	20.57	-5.70
301.707	2121773	-1844572	105166	18421.51	-8303.45	234.60	123.45	22.30	-5.89
304.025	2164615	-1863761	105692	18711.55	-9249.99	218.43	127.25	24.12	-7.11
306.343	2208521	-1882814	106179	19010.01	-8192.52	201.75	170.75	25.73	-7.32
308.658	2252690	-1901713	106626	19316.67	-9131.04	184.58	134.71	27.62	-7.58
310.982	2298135	-1920527	107034	19634.39	-8064.72	166.70	1 49.26	29.67	-/
313.297	2343973	-1939119	107399	19960.73	-7993.78	145.12	143.91	32+20	34
316.340	2405386	-1963290	107811	20405.36	-/891.41	123.07	149.27	340.00	
318.657	2453061	-1981482	108074	20758.95	-7907.52	103.69	158.84	40.06	-9.91
320.983	2501794	-1999539	108292	21125.64	-7716.94	83.00	150.81	40.26	-9.00
323.302	2551208	-2017319	108460	21505.00	-7620.61	61.PD	167.05	42.01	-9.37
325.621	2601539	-2034876	108577	21899.06	-7517.80	39.60	173.80	45.91	-9.74
327.938	2652739	-2052165	108643	22309.65	-7408.30	16.69	191.08	49.03	-10.17
330.254	2704908	-2069192	108654	22736.97	-7791.31	-7.32	189.01	57.44	-10.61
332.577	2758246	-2085987	108605	23184.86	-7165.57	-32.63	195.92	55,78	-10.99
334.892	2812445	-2102416	108502	23651.92	-7031.51	-58.66	199.63	57.92	-11.14
337.942	2885546	-2123593	108270	24268.39	-6850.50	-93.15	204.51	60.75	-11.63
338.737	2904890	-2129018	108193	24431.38	-6301.94	-102.26	205.78	61.48	-11,50
340.093	2938154	-2138199	108047	24537.07	-6770.37	-107.78	3.38	• • • •	.01
342.405	2994907	-2153852	107797	24545.67	-6767.82	-104.20	2.78	•	•0*
344.528	3047024	-2168219	107568	24550.76	-6766.61		· · · · · · · · · · · · · · · · · · ·		.04
346.660	3099367	-2182643	107339	24554.63	-6/65.60	-107.65	1.22	• 6 2	
348.938	3155289	-2198050	107093	24556.95	-6764.90	-107 79		-14	- 17
354.408	3289639	-2235057	106303	24328.40	-6766 76	-107.71		.07	03
350.505	3341150	- 2249241	106211	24556 52	-6766 67	-107.97	.80	-03	- 03
341 003	3392043	7705 917	106051	245566 47	-6766 18	-107.95	- 52	.20	- 06
341 007	34/1/43	- 22001 74	105704	24561 97	-6763.79	-108-06	- 63		10
344 406	3522420	-2217564	105107	24561 75	-6762.89	-108.38	-58	.15	15
368.663	3430761	-2331477	104963	24565.20	-6762.49	-109.00	.58	.09	19
371.381	3704516	-2346957	104667	24567.23	-6763-03	-109.32	.47	.01	13
373-438	3767043	-2363766	104441	24568-07	-6767.64	-109.74	- 30	00	05
376.261	3826405	~2382858	104132	24567.96	-6762.66	-109.56	•02	.04	.07
378.413	3879763	-2397566	103894	24568.17	-6762.68	-109.47	04	01	.07
380.489	3930291	-2411454	103669	24568.00	-6762.70	-109.29	.01	03	00
383.214	3997229	-2429880	103371	24568.01	-6762.82	-109.61	•00	07	02
385.425	4051548	-2444833	103128	24568.11	-6762.94	-109.53	01	00	02
388.221	4120237	-2463741	102822	24567.90	-6762.86	-109.65	04	.01	• 0 7
390.278	4170789	-2477656	102596	24567.93	-6762.67	-109.46	02	•01	.01
392.994	4237510	-2496023	102299	24567.74	-6762.80	-109.38	.01	+.01	.01
395.052	4288062	-2509938	102074	24567.97	-6762.82	-109.60	01	02	01
397.761	4354616	-2528259	101777	24567.98	-6762.94	-109.52	01	01	00
399.817	4405143	-2542167	101552	24567.60	-0/02.75	-109.53	03	.01	.01
402.538	4471985	-2560567	101254	24567.81	-5/67.88	-109.45	02	- 01	• • • •
404.593	4522464	-2574462	101029	24567.64	-0/0/.09	-109.47	• 01		.00
407.304	4589065	-2592796	100733	24567.65	-0102.82	-103.24		- 01	00
409.357	4639496	-2606678	100508	24567.68	-0/02+83	-109.40		01	07
412-073	4706241	-2625051	100211	24301.39	-0102.00	-109.34	01	-01	01
4144129	4 /56744	-2058953	99980	2470/0/2	-6762.70	-109-44	01		- 00
910.844	4823441	-2037313	44088	24707.03	-6762.71	-109.47		- 01	- 00
418.899	+8/3920	-2011209	99463	2430/1300	-6767-62	-109.39	01	01	
424 320	4940785	-2009014	33103	24301431	-6762.R6	-109-51	03	01	.0
424.309	5057041	-2721870	70007	24567.50	-5762.87	-109.33	.03	01	0
420.000	5174480	-2740184	98347	24547.72	-6762.79	-109.45	08	.06	-,1
431.312	5178880	-2755155	98105	24567.62	-6762.71	-109.46	.02	.01	

1

Table A-4. Reentry Trajectory Reconstruction

	GT-6 RE-ENTRY MERRITI ISL									
TIME FROM LIFTOFF (SECONDS)	INERTIAL VEL. MAGNITUDE (FT/SEC)	RELATIVE VEL. MAGNITUDE (FT/SEC)	INERTIAL FLT. PATH ANGLE (DECREES)	INERTIAL HEADING ANGLE (DEGREES)	ALTITUDE (FEET)	GEODETIC LAT. (DEGREES	GEODETIC LONG. (DEGREES)			
92277.529	25547.1	24188.4	-3.311	93.570	335280.5	28.469	-91.449			
92278.529	25531.9	24183.7	-6.260	95.665	333653.0	28.472	-91.376			
92279.529	26043.6	24700.9	-2.033	99.608	329999.0	28.457	-91.303			
92280.529	26470.0	21.672 0	4.775	97.004	330665.0	28.445	-91.228			
92282.529	25934.9	24584.6	-1.374	97.871	331937.7	28.432	-91.078			
92283.529	25994.5	24641.9	165	97.341	333365.2	28.422	-91.002			
92284.529	25541.2	24186.8	-4.638	94.953	332053.7	28.412	-90.928			
92285.529	25533.4	24186.1	-6.438	96.032	329001.7	28.409	-90.855			
92287 529	25640.3	2505/ 1	-2.115	97.031	327733.0	28.398	-90.781			
92288.529	26375.9	25025.4	4.084	96,991	330382.0	28.379	-90.630			
92289.529	25862.1	24504.7	239	95.818	330512.0	28.373	-90.555			
92290.529	25677.8	24329.6	-4.854	97.310	330417.0	28.365	-90.481			
92291.529	25631.1	24294.9	-8.218	97.997	326633.0	28.353	-90.408			
92293.529	25980.6	24457.9	-2.005	97.075	325876 7	28.348	-90.350			
92294.529	25687.2	24330.1	-2.027	95.569	323453.5	28.337	-90.186			
92295.529	25945.1	24590.9	.045	97.030	323088.2	28.325	-90.111			
92296.529	26265.2	24910.8	4.184	95.646	324053.5	28.317	-90.036			
92297.529	25937.5	24586.8	-1.308	98.098	326955.5	28.312	-89.960			
92299.529	25572.0	24,241.7	-6.1/0	96.020	319/72.7	28.289	-67.666			
92300.529	25908.9	24552.1	.517	96.192	317924.7	28.281	-89.741			
92301.529	26117.8	24765.0	1.743	97.386	319458.2	28.275	-89.666			
92302.529	25812.8	24456.0	769	96.272	319462.5	28.264	-89.591			
92303.529	25796.4	24441.7	-1.535	96.883	318746.7	28.260	-89.517			
92305 529	257990.8	24040.2	402	98.315	318691.2	28.245	-89.442			
92306.529	25771.7	24,20.7	-2.828	97.686	315840.7	28.229	-89.295			
92307.529	25897.8	24544.7	824	97.578	315468.0	28,221	-89.221			
92308.529	25801.9	24446.3	-1.167	96.780	315774.7	28.211	-89.146			
92309.529	25972.9	24624.9	-1.591	98.953 99.012	314417.5	28,202				
92311 529	25665 1	2/309 1	-2 / 90	04 221	31 2040 0	20, 102	60 ,001			
92312.529	25758.9	24401.3	995	96.229	312384.5	28,182				
92313.529	25870.3	24516.3	804	97.465	311898.2	28.166	-88.776			
92314.529	25993.6	24640.6	.412	97.792	310779.5	28.156	-88.702			
92315.529	25955.8	24603.6	385	98.110	312014.2	28.147	-88.627			
92317.529	25706 9	24330.3	-3.493	97.564	310024.0	28.138	-88.553			
92318,529	25975.4	24.623.2	119	98.106	308276 7	28.120	-68.480			
92319.529	26016.4	24666.1	251	98.672	308379.7	28.110	-88.331			
92320.529	25867.2	24513.3	871	97.641	307948.2	28,100	-88.257			
92321.529	25753.5	24398.3	-1.630	97.168	308215.0	28.090	-88.182			
92323 529	42(12+1 25955 5	24421.4	-2.184	97.904	306361.7	28.082	-88.109			
92324.529	25744.9	24390.1	-1.802	97.298	305517.2	28.061	-87.961			
92325.529	25689.3	24334.4	-2.266	97.162	304586.0	28.052	-87.887			
92326.529	25900.7	24547.0	357	97.804	303406.7	28.044	-87.813			
92327.529	25941.2	24589.7	646	98.522	304197.2	28.033	-87.739			
92329.529	25899.4	245548.7	-1.349	98.793	302542.2	28.021	-67.665			
\$2330.529	25797.4	24443.3	-1.229	97.765	301451.2	28,003	-87.517			
92331.529	25815.2	24459.6	690	97.442	301651.5	27.992	-87.443			
92332.529	25983.7	24634.6	998	99.208	300907.5	27.982	-87.369			
92333.529	25769.1	24417.7	-2.420	98.367	300399.0	27.972	-87.295			
92335.529	47 (44.7 25807.6	24,571.0	-2.093	97.740	298710.7	27.963	-87.222			
92336.529	25878.3	24525.3	785	77.540 98.316	298/20.2	27.963	-67.073			
92337.529	25899.4	24549.3	-1.485	98.990	297428.7	27.932	-87.000			
92338.529	25918.5	24569.9	-1.690	99.350	297184.7	27.922	-86.926			
92339.529	25892.0	24540.7	-1.192	98.787	296014.7	27.907	-86.852			
92341.529	25885.6	24513.2		78.455 08.571	296052.2	27.900	-86.778			
92342.529	25928.0	24577.8	-1.439	99.086	294856.2	27.880	-86.630			
92343.529	25913.5	24560.9	883	98.601	294001.5	27.866	-86.556			

-COMPIDENTIAL

3150-6027-R8-000 Page A-13 .

0

GT-6 RE-ENTRY MERRITT ISL (CONT.)

TIME FROM LIFTOFF (SECONDS)	INERTIAL VEL. MAGNITUDE (FT/SEC)	RELATIVE VEL. MAGNITUDE (FT/SEC)	INERTIAL FLT. PATH ANGLE (DEGREES)	INERTIAL HEADING ANGLE (DEGREES)	ALTITUDE (FEET)	GEODETIC LAT. (DEGREES)	GEODETIC LONG. (DEGREES)
92344.529	25780.7	244.24.4	-1.232	97,506	294354.0	27.859	-86.482
92345.529	25911.0	24563.3	-1.937	99.692	292864.5	27.847	-86.408
92346.529	26078.5	24738.3	-1.850	101.347	292391.0	27.835	-86.335
92347.529	25738.8	24382.9	-1.360	98.270	291511.7	27.821	-86.261
92348.529	25562.3	24200.9	388	96.025	291074.0	27.815	-86.188
92349.529	25800.2	2445.2	568	98.088	290969.0	27.805	-86.114
92350.529	25877.4	24528.1	-1.773	99.438	290517.7	27.794	-86.040
92351.529	25818.1	24466.9	-1.717	99.021	289469.7	27.783	-85.967
92352.529	25868.6	24516.6	949	98.952	288998.5	27.772	-85.893
92353.529	25888.3	24536.6	826	99.061	288563.5	27.761	-85.819
92354.529	25852.7	24501.7	-1.407	99.205	288192.7	27.750	-85.745
92355.529	25832.3	24480.9	-1.440	99.122	287295.0	27.739	-85.672
92356.529	25839.9	24488.4	-1.298	99.129	286834.2	27.728	-85.598
92357.529	25840.6	24489.9	-1.526	99.314	286290.2	27.717	-85.525
92358.529	25840.3	24488.4	-1.131	99.113	285369.5	27.705	-85.451
92359.529	25840.5	24488.2	949	99.054	285106.5	27.694	-85.377
92360.529	25840.7	24489.5	-1.317	99.319	284485,5	27.684	-85.304
92361,529	25837.9	24486.9	-1.403	99.384	283957.5	27.672	-85.230
92362.529	25826.4	24475.2	-1.380	99.347	283372.7	27.660	-85.157
92363.529	25827.7	24476.9	-1.472	99.458	282554.5	27.649	-85.084
92364.529	25824.9	24473.8	-1.364	99.426	282011.7	27.638	-85.010
92365.529	25853.2	24502.2	-1.152	991493	281439.5	27.626	-84.937
92366.529	25845.4	24494.0	-1.046	99.446	280771.5	27.614	-84.863
92367.529	25852.8	24501.3	924	99.457	280378.7	27.603	-84.790
92368.529	25840.4	24489.9	-1.328	99.666	279930.5	27.591	-84.716
92369.529	25823.9	24473.7	-1.543	99.739	279328.0	27.580	+84.043
92370.529	25820.0	24488.8	-1.197	99.569	2/8524.0	27.508	-84.570
92371.529	25820.7	24469.1	-1.052	99.544	2/8112.7	27.550	-64.490
92372.529	25820.7	24470.1	-1.335	99.744	2/7469.7	27.545	-64.423
92373.529	25828.5	24478.3	-1.373	99.848	2/0940.5	2(.)))	-64.349
92374.529	25785.4	24434.7	-1.482	99.759	2/02/0.7	41.741	-04.2/0
92375.529	25816.7	24466.0	-1.208	99.800	275211 2	21.209	-04.205
92376.529	25834.8	24484.2	-1.111	97.004	271.570 6	~(+47) 27 1.05	-91. 056
92377.529	25818.4	24408.1	-1.339	77.727	272062 5	27,403	-04.090
943/8.329	25782.9	24432.3	-1.405	97.701 00.071	272215 2	27 161	-02.010
74277.249	27819.4	24408.9	-1.1//	77+7/4	272870 7	27.401	-93 937
72300,329	40000./	24400.2	-1.100	100.0/3	272270 5	27 136	-93 761
94001.049	27613.4	24403.0	-1 203	100.121	271752 7	27 1.21	-03. 601
72302.327	2009.0	24427.2	_1 290	100 108	271065 2	27 1.12	43 618
92303.520	42(72+1 25707 0	24442.4	-1 218	100.098	270518 0	27.300	-83.5//
92395 520	25706 J	24457.4	-1 269	100.20%	269954.5	27.387	-83.471
02386 520	25799 0	21,138.0	-1 287	100.237	269364.5	27.374	-83,398
92387.529	25789.5	21.1.39.2	-1.168	100.225	268777-5	27.362	-83.325
92388.529	2570/ 7	21.1.1.1.5	-1.139	100.277	268312.2	27.350	-83.252
92389.529	25778.8	24428.8	-1.219	100.316	267715.5	27.337	-83.179
92390 529	25776.3	24426.4	-1.278	100.380	276126.7	27.324	-83.106
92391.520	25783 0	21.1.33 1	-1.275	100.449	266556.5	27.312	-83.034
92392.529	25777.5	21.1.27.7	-1.227	100.459	265998-0	27.299	-82.961
92393.529	25760.7	24410.9	-1.237	100.462	265372.0	27.286	-82.888

GT-6 BET TRACKER REENTRY

TIME FROM LIFTOFF (SECONDS)	INERTIAL VEL. MAGNITUDE (FT/SEC)	RELATIVE VEL. MAGNITUDE (FT/SEC)	INERTIAL FLT. PATH ANGLE (DEGREES)	INERTIAL HEADING ANGLE (DEGREES)	ALTITUDE (FEET)	GEODETIC LAT. (DEGREES)	GEODETIC LONG. (DEGREES)
92394.529	26128.3	24776.5	-1.507	100.043	265308.0	27.272	-82.820
92395.529	26023.6	246.3.3	-1.411	100.417	264625.5	27.259	-82.746
92396.529	25955.5	24605.2	-1.375	100.451	263981.2	27.247	-82.673
92397-529	25883.3	24532.7	-1.360	100.386	263357.0	27.234	-82.600
92398.529	25857.1	24506.9	-1.282	100.522	262739.7	27.221	-82.526
92399.529	25810.6	24460.9	-1.292	100.652	262158.5	27.208	-82.454
92400.529	25812.4	24462.6	-1.273	100.667	261561.2	27.195	-82.381
92401.529	25782.4	24432.8	-1.255	100-712	260988.5	27.182	-82.308
92402.529	25772.4	24422.5	-1.208	100.698	260412.5	27.169	-82.235
92403.529	25769.7	24423.4	-1.089	101.464	259886.2	27.156	-82,162
92404.529	25726.2	24375.4	-1.344	100.535	259309.2	27.143	-82.090
92405.529	25735.7	24385.6	-1.258	100.740	258710.0	27.130	-82.017
92406.529	25735.5	24386.1	-1.266	100.883	258133.2	27.117	-81.945
92407.529	25744.6	24395.7	-1.190	101.019	257563.2	27.103	-81.872
92408.529	25724.9	24375.9	-1.207	101.035	257011.2	27.090	-81.800
92409.529	25711.4	24362.7	-1.208	101.129	256456.2	27.077	-81.727
92410.529	25716.1	24367.6	-1.232	101.175	255899.7	27.063	-81.655
92411.529	25710.2	24361.6	-1.162	101.183	255348.2	27.050	-81.583
92412.529	25709.5	24361.0	-1.209	101.231	254803.2	27.036	-81.510
92413.529	25693.2	24344.6	-1.250	101.240	254236.2	27.022	-81.438
92414.529	25693.1	24344.7	-1.186	101.311	253680.7	27.009	-81.366
92415.529	25692.5	24344.3	-1.151	101.372	253140.0	26.995	-81.293
92416.529	25699.5	24351.0	-1.179	101.337	252609.5	26.981	-81.221
92417.529	25674.9	24326.5	-1.284	101.376	252029.5	26.967	-81.149
92418.529	25693.2	24344.0	-1.013	101.270	251499.2	26.954	-81.077
92419.529	25662.3	24313.6	-1.148	101.376	251037.2	26.940	-81.005
92420.529	25627.7	24280.4	-1.594	101.626	250356.0	26.926	-80.933
92421.529	25671.0	24322.3	-1.130	101.432	249762.7	26.912	-80.860
92422.529	25617.3	24270.7	990	101.883	249252.7	26.898	-80.789
92423.529	25635.5	24287.4	-1.243	101.601	248733.0	26.884	-80.717
92424.529	25635.0	24287.1	-1.315	101.643	248167.5	26.870	-80.645
92425.529	25587.9	24240.2	-1.473	101.683	247516.0	26.856	-80.573
92426.529	25604.3	24250.2	~1.269	101.653	246896.5	26.842	-80.501
92427.529	25576.3	24228.2	-1.259	101.703	246322.0	26.828	-80.429
92420.529	25612.4	24264.4	-1.239	101.731	245749.7	26.814	-80.358
96469+769	27790.0	24250.0	-1.205	101.799	245175.0	26.799	-80.286
92430.729	27747.0	24190.4 abaa(a	-1.241	101.098	244601.0	26.785	-80.214
92431.529	25574.0	24220.3	-1.201	101.000	244031.0	20.771	-80.143
96436.969	477 (3 · (24220.0	-1.210	101.091	243404.1	20. () (-00.071
96433+769	20401+1	24140.0	=1.J10	102.039	242094.2	20.142	-00.000
92434.729	25701.1	24213.0	•1.316 1.161	102.01	242200.0	20.120	70 857
92435.520	25512 1	24131.0	-1.255	102.014	241172 5	20.113	-70 785
02h37 520	25162 1	20110 8	-1 227	102.021	2411 3.7	26 684	-70 71
02438-520	25480 6	24142.1	-1.233	102.095	240002.2	26.670	-79.643
02430 520	25hhh 5	24007 3	-1 228	102 164	230178 2	26 655	-79 572
92459.529	25431.4	24084.3	-1.228	102.214	238022.2	26.641	-79.501
92441.529	25308.8	23963.4	-1.324	102.541	238337.7	26.626	-79.430
92442.529	25500.3	24152.1	-1.156	102.079	237773.5	26.611	-79.359
92443.529	25403.3	24056.3	-1.225	102.319	237230.5	26.597	-79.288
92444.529	25379.0	24032.3	-1.220	102.389	236669.5	26.582	-79.217
92445 529	25369.7	24022.7	-1.134	102.351	236138.0	26.567	-79.146
92446.529	25270.1	23925.2	-1.370	102.729	235573.2	26.552	-79.076
92447.529	25385.8	24038.4	-1.109	102.345	235013.5	26.537	-79.005
92448.529	25382.7	24034.4	- 999	102.217	234531.5	26.522	-78.934
92449.529	25178.7	23834.0	-1.199	102.882	234045.2	26.508	-78.864

3150-6027-R8-000 Page A-15

GT-6 BET TRACKER REENTRY

TIME FROM LIFTOFF (SECONDS)	INERTIAL VEL. MAGNITUDE (FT/SEC)	RELATIVE VEL. MAGNITUDE (FT/SEC)	INERTIAL FLT. PATH ANGLE (DEGREES)	INERTIAL HEADING ANGLE (DEGREES)	ALTITUDE (FEET)	GEODETIC LAT. (DECREES)	GEODETIC LONG (DECREES)
92450.529	25392.9	24044.2	982	102.185	233539.2	26.493	-78.793
92451.529	25238.2	23892.4	-1.274	102.727	233032.7	26.478	-78.723
92452.529	25250.4	23903.7	-1.133	102.588	232461.0	26.463	-78.653
92453.529	25171.3	23826.9	-1.415	102.998	231910.2	26.448	-78.583
92454.529	25193.7	23848.3	-1.312	102.856	231292.5	26.432	-78.513
92455 529	25204.0	23858.6	-1.302	102.883	230696.7	26.417	-78.44z
92456.529	25126.4	23781.2	-1.248	102.950	230110.2	26.402	-78.373
92457.529	25166.1	23819.6	-1.062	102.768	229602.2	26.386	-78.303
92458.529	25203.0	23856.2	-1.252	102.724	229079.7	26.371	-78.233
92459.529	25141.7	23796.5	-1.259	103.028	228492.5	26.356	-78.163
92460.529	25131.7	23785 6	-1.312	102.889	227925.0	26.341	-78.093
92461.529	25051.2	23706.3	-1.175	103.137	227352.2	26.325	-78.023
92462.529	25081.6	23736.7	-1.376	103.134	226779.2	26.310	-77-954
92463.529	25003.5	23658.8	-1.183	103.209	226193.2	26.294	-77.884
92464 529	25014.8	23670.2	-1.300	103.241	225638.2	26.279	-77.815
92465.529	25024.1	23678.6	-1.380	103.109	225054.0	26.263	-77.746
92466.529	24925.7	23582.5	-1.389	103.517	224424.2	26.248	-77.677
92467.529	24938.1	23592.9	-1.133	103.239	223873.5	26.232	-77.608
92468.529	24920.4	23575.7	-1.272	103.328	223327.0	26.216	-17.539
92469.529	24904.9	23560.2	-1.316	103.340	222747.0	26.201	-77.470
92470.529	24856.6	23511.7	-1.168	103.350	222196.0	26.185	-77.401
92471.529	24809.5	23466.2	-1.287	103.625	221632.0	26.169	-77.332
92472.529	24794.5	23450.6	-1.224	103.566	221087.5	26.153	-77.264
92473.529	24791.8	23447.1	-1.247	103.448	220532.2	26.137	-77.195
92474.529	24775.5	23431.1	-1.348	103.528	219944.0	26.122	-77.127
92475.529	24696.1	23352.5	-1.123	103.683	219423.0	26.106	-77.058
92476.529	24698.3	23354.4	-1.340	103.638	218850.2	26.090	-76.990
92477.529	24610.6	23267.8	-1.062	103.866	218306.0	26.074	-76.922
92478.529	24656.0	23311.7	-1.329	103.643	217796.7	26.058	-76.854
92479.529	24598.3	23254.7	-1.348	103.763	217201.0	26.042	-76.786
92480.529	24543.0	23199.8	-1.133	103.870	216637.7	26.026	-76.719
92481.529	24522.0	23178.7	-1.239	103.871	216138.7	26.010	-76.651
92482.529	24467.5	23125.0	-1.248	104.010	215578.2	25.994	-70.504
92483.529	24441.9	23099.4	-1.429	104.029	2149 (0.2	25.910	-10.510
92484 .529	24439.7	23095.9	-1-315	103.055	214407.5	27.902	-10.449
92485.529	24373.5	23030.5	-1.200	103.999	213009.2	27.940	-10.302
92486.529	24317.9	22975.2	-1.100	104.096	213324.7	25.930	-76.315
92487.529	24269.2	22926.3	-1.046	104.087	212833.0	25.914	-76.248
92488.529	24253.3	22910.3	-1.107	104.089	212391.7	25.898	-76.181
92489.529	24250.1	22909.0	-1.940	104.327	211077.5	25.002	- (0,115
92490.529	24161.9	22819.0	-1.045	104.157	211033.7	25.005	-70.040
92491.529	24101.3	22758.7		104.229	210501.7	47.049 05 800	+()·904
92492.529	24070.7	22(21.5	-1.084	104.17	210120.5	47.033	-(2.910
92493.529	24040.3	22699.2	-1.3((104.401	209743.0	22:01	-19.090
92494.529	23969.3	22020.1	001	104.202	209009.5	25.001	-12-104
92495.529	23944.7	22003.2	-1.301	104.405	200302.0	25.768	-75.653
92490.729	43947•9	22003.1	-1+)+2	104.781	207565 0	25 752	-75 588
94491.749	23(14.1	22500 0	1/9	104.365	207104.5	25.736	-75.523
92490.529	230713 F	22709.0	- 814	104.563	206649.2	25.720	-75.458
92499.749	43(13+7 22722 1	22280 2	-1 400	104.520	206100.2	25.703	-75.393
92501.520	23620 8	22276.8	-1.707	104.254	205782.0	25.687	-75.328
92502-529	23501 2	22250-3	-1.328	104.708	205221.2	25.671	-75.264
92503.529	23543.7	22200.3	979	104,375	204813.7	25.655	-75,199
92504 529	23540.2	22195.9	-1.491	104.211	204216.7	25.639	-75.135
92505.529	23465.3	22124.1	-1.672	104.690	203535.5	25.623	-75.071

CONCIDENTI

لمتقلق

GT-6 BET TRACKER REENTRY INERTIAL VEL. RELATIVE VEL. INERTIAL FLT. INERTIAL ALTITUDE GEODETIC LAT. TIME GEODETIC LONG FROM LIFTOFF MAGNITUDE MAGNITUDE PATH ANGLE HFADING ANGLE (FEET) (DEGREES) (DEGREES) (FT/SEC) (FT/SEC) (SECONDS) (DEGREES) (DEGREES) 92506.529 23350.9 22008.4 -.893 104.592 203006.5 25.607 -75.007 92507.529 23332.5 21989.0 202646.5 -.939 25.591 -74.943 104.447 202186.7 92508.529 23307.2 21963.7 -1.364 25.575 -74.879 23189.9 23160.4 21847.2 92509.529 -.852 104.623 201657.7 25.560 -74.816 21817.1 21812.9 92510.529 201227.0 -1.273 104.524 25.544 -74.753 92511.529 23156.2 200626.7 25.528 -74.690 92512.529 22987.0 21643.6 - .445 104.600 200184.2 25.512 -74.627 92513.529 23010.7 21667.5 -1.625 104.582 199765.7 -74.564 92514.529 22862.2 21520.2 - .614 104.843 199292.2 25.481 -74.502 22889.9 22726.4 21544.5 -1.387 92515.529 104.286 198835.5 25.465 -74.439 92516.529 21383.5 104.766 -.219 198473.0 25.449 -74.377 21448.9 25.433 25.418 92517.529 22791.7 -1.964 104.674 198079.7 197600.2 -74 .315 21247.0 92518.529 104.726 22590.5 - 109 -74.254 92519.529 22666.7 21322.3 -1.659 104.498 197320.7 25.402 -74.192 92520.529 22543.5 21202.3 -1.543 105.020 196585.5 25.387 -74.131 92521.529 21120.5 -.712 104.326 196119.7 -74.070 25.371 92522.529 22368.7 104.239 21021.6 .281 196053.0 25.356 -74.009 92523.529 22390.2 21041.1 -73.948 -73.887 103.925 195950.5 195594.7 -.927 25.341 -.722 105.944 92524.529 22152.5 20816.7 25.326 92525.529 22392.6 21040.6 -1.024 103.487 195104.7 25.310 -73.827 92526.529 22193.4 20841.3 -1.248 103.471 194727.2 25.296 -73.766 194170.7 92527.529 22066.5 20732.3 -1.671 106.145 104.704 25.280 -73.706 92528.529 20762.9 -3.074 193273.5 25.264 -73.647 -.870 105.904 92529.529 21862.0 20525.4 192432.7 25.249 -73.587 104.393 92530.529 21693.5 20347.1 1.936 192761.7 25.233 -73.528 21894.4 20547.1 104.315 92531.529 -1.627 192861.0 25.219 -73.469 92532.529 21808.2 20467.6 -3.185 105.093 191735.5 25.203 -73.410 105.712 21581.3 92533.529 20242.6 .102 191128.2 25.188 -73.352 92534.529 .731 -2.184 -.780 20073.8 191355.5 25.172 -73.294 92535.529 21467.4 20127.3 191028.2 105.396 25.158 -73.236 92536.529 21508.6 20159.5 104.209 190454.0 25.142 -73.178 92537.529 21217.3 19872.5 190275.0 -.049 104.898 25.128 -73.120 92538.529 21146.5 19812.1 -.771 106.380 190114.2 25,112 -73.063 -.447 92539.529 92540.529 25.098 21215.0 19857.4 102.895 189926.2 -73.006 -1.467 21689.6 189529.5 188864.7 25.083 20354.9 106.348 -72.948 92541.529 20349.7 21708.9 -1.548 102.569 25.067 -72.889 92542.529 21436.4 20097.2 -6.253 -72.831 104.549 187399.7 25.054 92543.529 21133.6 -3.817 2.159 105.003 19792.1 185403.5 184960.2 25.039 -72.774 92544.529 20871.3 19537.8 25.024 -72.717 92545.529 20564.3 19221.0 185647.2 185276.2 -.045 105.253 25.008 -72.662 92546.529 20572.8 19235.4 -2.065 105.969 24.993 -72.607 92547.529 92548.529 20504.9 19173.3 -2.726 106.690 184167.5 24.977 -72.552 20390.4 19047.9 -1.167 105.365 183518.5 24.962 -72.498 92549.529 20570.2 20478.7 -1.477 -1.718 19232.5 106.056 183143.0 24.947 -72.443 92550.529 19156.5 108.073 182596.7 24.930 -72.389 20408.4 92551.529 19072.9 ·215 106.451 182312.7 24.914 -72.334 92552.529 19531.9 18196.0 182212.7 .090 106.396 24.898 -72.281 92553.529 19669.9 18340.1 -1.244 107.187 24.883 182174.7 -72.229 18258.5 92554.529 19617.7 1.089 102.882 182031.2 24.869 -72.177 20416.3 92555.529 19049.2 -.871 101.521 182198.7 24.858 -72.122 92556.529 20041.6 18701.8 105.933 24.844 181842.0 -72.068 103.447 92557.529 20024.4 18669.3 2.659 182642.5 24.830 -72.014 -3.909 -.058 4.361 92558.529 20392.4 19050.4 105.216 182788-2 24.817 -71.960 92559.529 20140.6 18797.5 105.543 180470.7 24.802 -71.905 92560.529 18702.3 107.695 20025.4 182324.0 24.787 -71.853

3150-6027-R8-000 Page A-17

TIME FROM LIFTOFF (SECONDS)	INERTIAL VEL. MACNITUDE (FT/SEC)	RELATIVE VEL. MACNITUDE (FT/SEC)	LNERTIAL FLT. PATH ANGLE (DEGREES)	INERTIAL HEADING ANGLE	ALTITUDE (FEET)	GEODETIC LAT. (DEGREES)	GEODETIC LONG. (DEGREES)
92561.529	19177.6	17837.1	1,283	105.899	182627.2	24.773	-71.814
92562.529	19107.3	17762.7	1.013	105.369	184606.7	24.760	-71.763
92563.529	19059.2	17710.1	.369	104.738	183119.0	24.745	-71.712
92564.529	18824.1	17481.4	5.321	104.794	184375.5	24.734	-71.661
92565.529	18740.1	17410.0	2.864	107.179	186669.7	2 24.719	-71.612
92566.529	18808.5	17476.6	997	107.176	185559.0	24.703	-71.563
92567.529	18623.7	17273.0	2.575	104.401	186377.2	24.690	-71.513
92568.529	18512.6	17158.6	3.327	103.745	187830.7	24.678	-71.464
92569.529	18470.1	17132.2	.348	106.468	188249.5	24.665	-71.415
92570.529	18274.2	16947.6	2.631	107.756	188122.2	24.649	-71.366
92571.529	18185.7	16838.6	5.299	104.325	189959.2	24.635	-71.319
92572.529	18144.7	16787.0	3.917	103.092	190892.7	24.625	-71.270
92573.529	18009.1	16669.4	2.642	106.137	192876.0	24.612	-71.222
92574.529	17888.5	16559.8	3.644	107.408	193049.0	24.597	-71.175
92575.529	17836.8	16481.7	6.283	102.750	194787.2	24.583	-71.129
92576.529	17727.5	16373.6	7.228	102.474	196939.0	24.576	-71.080
92577:529	17544.9	16218.8	7.233	106.717	199163.2	24.562	-71.035
92578.529	17445.5	16 128.6	7.302	107.890	201319.2	24.548	-70.990
92579.529	17358.6	16038.3	7.407	107.456	203537.2	24.534	-70.945
92580.529	17244.0	15924.1	7.370	107.549	205794.5	24.520	-70.900
92581.529	17150.0	15813.9	7.494	105.359	207939.7	24.506	-70.856
92582.529	17129.0	15777.6	7.589	102.969	210218.5	24.495	-70.811
92583.529	17025.1	15685.2	7.599	104.815	212464.5	24.485	-70.766
92584.529	16909.7	15574.3	7.574	105.520	214679.5	24.472	-70.722
92585.529	16749.2	15403.6	7.438	104.110	216894.7	24.461	-70.678
92586.529	16639.5	15306.6	7.584	105.925	218929.0	24.450	-70.635
92587.529	16579.8	15262.0	7.786	107.826	221288.0	24.436	-70.592
92588.529	16405.5	15078.6	7.763	106.701	223451.2	24.423	-70.550
92589.529	16443.9	15105.1	7.789	105.094	225624.5	24.410	-70.508
92590.529	16370.6	15030.7	7.769	104.963	227802.0	24.400	-70.465
92591.529	16015.8	14688.1	7.799	106.664	230031.0	24.388	-70.423
92592.529	15986.2	14665.9	7_854	107.617	232129.5	24.375	-70.383
92593.529	16245.8	14919.2	7.606	106.977	234328.7	24.362	-70.341
92594.529	16380.0	15037.4	8.276	104.463	236670.2	24.351	-70.299

ONEUNENEN

GEMINI-6 GBI REENTRY (This data subject to gross error.)

(Reverse of this page is blank)

UNCLASSIFIED

(Reverse of this page blank)

TRW REGRESSION PROGRAM

(REMP) MODIFICATIONS

APPENDIX B

: 4²

3150-6027-R8=000 Page B-1

APPENDIX B TRW REGRESSION PROGRAM (REMP) MODIFICATIONS

A change has been implemented in the TRW regression program (REMP) that allows the effect of unmodeled error uncertainties to be reflected in the a posteriori statistics of the error coefficients. This means that if a set of known functions are purposely omitted from the solution due to correlation or restrictions on model size, the uncertainties of these omitted errors can be effectively added to the uncertainties in the errors that are solved for. This change is mathematically sound and can be described in the following equations.

The usual expression for C_{K} , the a posteriori covariance matrix of the error coefficients, is

$$C_{K} = \left(B^{T} \sigma_{m}^{-1} B + C_{K_{0}}^{-1} \right)^{-1}$$
 (B.1)

where

- B = partial derivations of measurements with respect to error coefficients
- $\sigma m \equiv$ assumed white noise covariance matrix of data
- $C_{K_0} \equiv$ a priori error coefficient uncertainties

The more valid expression for C_{K} , in light of functions which truly exist but are not solved for, is

$$C_{K} = \left(B^{T}\sigma_{m}^{-1}B + C_{K_{o}}^{-1}\right)^{-1} \left[B^{T}\sigma_{m}^{-1}\left(\sigma_{m} + \beta\Sigma_{o}\beta^{T}\right)\sigma_{m}^{-1}B + C_{K_{o}}^{-1}\right]$$

$$\left(B^{T}\sigma_{m}^{-1}B + C_{K_{o}}^{-1}\right)^{-1}$$
(B.2)

UNCLASSIFIED

3150-6027-R8-000 Page B-4 URCLASSING

where

- β = partial derivatives of measurements with respect to omitted error coefficients
- $\Sigma_{o} \equiv$ a priori statistics of omitted terms

with manipulation, Equation (B.2) can be written as

$$C_{K} = C_{K}^{*} + C_{K}^{*}B^{T}\sigma_{m}^{-1}\beta\Sigma_{o}\beta^{T}\sigma_{m}^{-1}BC_{K}^{*} = C_{K}^{*} + \Delta C_{K}^{*}$$

where

$$C_{K}^{*} = \left(B^{T}\sigma_{m}^{-1}B + C_{K_{o}}^{-1}\right)^{-1}$$

The REMP program now computes the ΔC_{K} term and prints out both C_{K} and ΔC_{K} , omitting the old C_{K}^{*} terms. It is obvious that the uncertainties of the solved-for error coefficients will now be larger than before (ΔC_{K} being always positive), sometimes much larger, depending of course on β and Σ_{c} .

UNCLASSIFIED

UNCLASSIFIED 3150-6027-R8-000 Page C-1 Page C-1

APPENDIX C

PREFLIGHT CALIBRATION HISTORY PLOTS

~

Figures		Page
C-1	Accelerometer Bias History (Deviation From Flight Constant)	C-3
C-2	Accelerometer Scale Factor History (Deviation From Flight Constant)	C-4
C-3	Gyro Input Axis Unbalance Drift History	C-5
C-4	Gyro Constant Drift Rate History	C-6
C-5	Gyro Spin Axis Unbalance Drift History	C-7

(Reverse of this page is blank)

Unclassified

Figure C-1. Accelerometer Bias History (Deviation From Flight Constant)

٩.

Figure C-2. Accelerometer Scale Factor History (Deviation From Flight Constant)

Figure C-3. Gyro Input Axis Unbalance Drift History

¥

٩.

3150-6027-R8-000 Page C-7

Figure C-5. Gyro Spin Axis Unbalance Drift History

(Reverse of this page blank)

REFERENCES

i i sign

- F.B. Lavenhar, "Preliminary Gemini G and C Data Reduction and Analysis Plan," Space Technology Laboratories, 4160-6009-TU000, 30 October 1964.
- R. E. Sansom, "Gemini Inertial Measurement Unit Error Budget and Burnout Covariance Matrices (U)" TRW Systems, 3150-6026-R8000, March 10, 1966.
- "Final Flight Test Data Mistram Coordinate Systems (1 and 3) After Test No. 7100 (U), "Gemini Missile Number GT-6, OD Item 9.2.1.3 No. 20. (C)
- 4. "Final Flight Test Data Best Estimate of Trajectory Coordinate Systems No. 1 and 3 After Test No. 7100, "Gemini Missile No.GT-6, OD Item No. 9.2.1.3-26.
- 5. R. J. Boyles, "Gemini 6 Orbit and Reentry Trajectory Reconstruction," TRW Systems, 3150-6002-R0000, 2 March 1966.

(Reverse of this page blank)

BERLASSIED.