PROGRAM TECHNICAL REPORT
TASK MSC/TRW G-14

GEMINI 7 INERTIAL GUIDANCE SYSTEM EVALUATION AND TRAJECTORY RECONSTRUCTION (U)

RECEIVED

1967 NOV 8 AM 824

MASA-WOO OFFICIAL

GEMINI 7 INERTIAL GUIDANCE SYSTEM EVALUATION AND TRAJECTORY RECONSTRUCTION (U)

15 FEBRUARY 1966

Prepared for
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION MANNED SPACECRAFT CENTER

Contract NAS 9.4810
Gemini MTCP

Issued as:
Supplemental Report 4
Tc:
Gemini Program Mission Report
Gemini VII
MSC-G-R-66-1
By:
Gemini VII Mission Evaluation Team
National Aeronautics and Space
Administration
Manned Spacecraft Center
Houston, Texas

TRWsystems

LIST OF CONTRIBUTORS

Electronics Division

R. J. Boyles
A. R. Dennis
R. G. Fierro
P. M. Jackson
R. E. Sansom

Computation and Data Reduction Center
J. N. Bausch

ABSTRACT

The report contains a detailed evaluation of the Gemini 7 inertial guidance system accuracy during the ascent and reentry phases of the mission. Total system error is found to be approximately equal to its specification, one standard deviation value. An analysis of the external tracking instrumentation accuracy is also included. The results of the error analyses are usedto construct a reference Gemini 7 trajectory for the ascent and reentry portions of the mission.

$$
\operatorname{Uifl}_{\text {(Reverse of this page blank.) }}
$$

.

V

CONTENTS

Section Page
1 INT RODUCTION AND SUMMARY 1
2 INERTIAL GUIDANCE SYSTEM PERFORMANCE ANALYSIS 3
3 REENTRY 25
4 TRACKING SYSTEM PERFORMANCE 31
5 TRAJECTORY RECONSTRUCTION 51
APPENDIX A TRAJECTORY PARAMETER LISTINGS
AND PLOTS A-1
APPENDIX B TRW REGRESSION PROGRAM (REMP)
MODIFICATIONS B-1
REFERENCES R-1

ILLUSTRATIONS

Figure
Page
GE/Final and 100K MISTRAM ΔV,
GE/Final and 100K MISTRAM ΔV, Thrust Coordinates 4
2
GE/Final and 100K MISTRAM ΔV,
Guidance Inertial Coordinates 5
GE/Final and 100K MISTRAM $\Delta \mathrm{P}$, Guidance Inertial Coordinates 6Navigation Velocity Error7
Thrust Coordinate ΔV with LMU Error Source Fit 12
Accelerometer Scale Factor History 13
Accelerometer Bias History 14
MISTRAM I 100K ΔV in Tracker Coordinates 19
MISTRAM I 10K ΔV in Tracker Coordinates and MISTRAM II Passive ΔR Sum Dot 20
GE MOD III ΔV in Tracker Coordinates 21
Ground Trace of the Spacecraft During Reentry 27
IGS and GTI Tracking Data Comparison 28
GE/Burroughs and GE/Final ΔV, Thrust Coordinates 36
GE/Burroughs and Compensated IGS ΔV, Thrust Coordinates 37
GE/Burroughs and Compensated IGS ΔP, Thrust Coordinates 38
GE/Final and Compensated IGS ΔV, Thrust Coordinates 39
GE/Final and Compensated IGS ΔP, Thrust Coordinates 40
MISTRAM I 100 K and Compensated IGS ΔV, Thrust Coordinates 41
MISTRAM I 100 K and Compensated IGS ΔP,Thrust Coordinates42
Dinctermed

ILLUSTRATIONS (Continued)

Figure		Page
20	MISTRAM I 10 K and Compensated IGS ΔV,	
	Thrust Coordinates	43
21	MISTRAM I 10 K and Compensated IGS $\Delta \mathrm{P}$,	
	Thrust Coordinates . .	44
22	Passive MISTRAM and Compensated IGS ΔV,	
	Thrust Coordinates	45
23	Passive MISTRAM and Compensated IGS ΔP,	
	Thrust Coordinates	46
24	Range BET and Compensated IGS $\triangle V$,	
	Thrust Coordinates	47
25	Range BET and Compensated IGS $\triangle P$,	
	Thrust Coordinates	48
26	TOPS BET and Compensated IGS ΔV,	
	Thrust Coordinates .	49
27	TOPS BET and Compensated IGS $\triangle P$,	
	Thrust Coordinates .	
A-1	Computed Thrust Velocity in Computer	
	Coordinates (Thrust Tailoff)	A-3
A-2	Inertial Flight Path Angle (Ascent)	A-4
A-3	Computed Acceleration, Thrust Coordinates	A-5
A-4	IGS Sensed Velocity Rev 1 Booster Chase	
	Maneuvers	A-6

UNCLASSIFIED

TABLES

Table		Page
1	Inertial Guidance Error at SECO	4
2	IGS Navigation Errors at SECO	9
3	IMU Analysis Recovered Error Coefficients	16
4	Preflight Expected Values of IMU Errors	15
5	Tracker Sigmas Used in Fit	17
6	Recovered Error Coefficients	18
7	Azimuth Update	23
8	Reentry Initial Conditions	25
9	Comparison of Reconstructed Trajectory With IGS Output .	26
10	Gemini 7 Impact Sumnary	26
A-1a	Reconstructed Ascent Trajectory	A -7
A-1b	Reconstructed Ascent Trajectory Associated Parameters	A-13
A-2a	Reconstructed Reentry Trajectory and Associated Parameters (BET)	A -19
$A-2 b$	Reconstructed Reentry Trajectory and Associated Parameters (7:18 Radar)	A -35
A-2c	Reconstructed Reentry Trajectory and Associated Parameters (IGS) .	A-53
A-3	PCM Edit Listing for Ascent Flight Phase	A-61
B-1	Unmodeled Errors and l-Sigma Uncertainties.	B-3

1. INTRODUCTION AND SUMMARY

Gemini Flight No. 7 was launched on 4 December 1965 from Com plex 19 at Cape Kerinedy, Florida. It was a 14 -day manned orbital flight that included orbit adjustment maneuvers. This report, submitted to the NASA Manned Spacecraft Center by TRW Systems in response to Task MSC/TRW G-14 of the Mission Trajectory Control Program, presents the results obtained from analysis of the inertial guidance system (IGS) performance during ascent and reentry flight phases and provides a reconstruction of the spacecraft trajectory during ascent and reentry.

The following is a brief summary of the analysis results:

- There was no evidence of IGS or component malfunctions during the ascent and reentry flight phases.
- The inertial guidance system (IGS) performance during ascent was satisfactory. Best estimates of IGS errors at injection are as follows:
$\Delta x=1440 \mathrm{ft}$
$\Delta \dot{x}=7.3 \mathrm{ft} / \mathrm{sec}$
$\Delta y=830 \mathrm{ft}$
$\Delta \dot{y}=10.0 \mathrm{ft} / \mathrm{sec}$
$\Delta z=230 \mathrm{ft}$
$\Delta \dot{z}=0.3 \mathrm{ft} / \mathrm{sec}$
- The dominant inertial measurement unit (IMU) errors of the flight were:
(a) Y gyro (pitch) drifts of $0.55 \mathrm{deg} / \mathrm{hr}$ constant drift rate and $-0.26 \mathrm{deg} / \mathrm{hr} / \mathrm{g}$ input axis unbalance and
(b) an X accelerometer scale factor error of approximately 217 parts per million
- The tracking data was of satisfactory quality. However, analysis indicated the presence of a refraction type error of approximately 12 parts per million in the index of refraction at the MISTRAM $100 \mathrm{~K} Q$ site. There is considerable uncertainty in this error magnitude and even in analytical error model, nevertheless the effect is clearly evident in the data. Also a $0.3 \mathrm{ft} / \mathrm{sec}$ range sum rate bias in the passive MISTRAM and approximate 0.1 milliradian azimuth bias in the GE Mod III data was found.
- The GE MOD III-Burroughs/inertial guidance update procedure was correctly performed but the aforementioned azimuth bias in MOD III data resulted in a 20-second residual IGS azimuth misalignment during ascent.
- Failure of the onboard, delayed-time-telemetry tape recorder resulted in the loss of IGS data during most of the dynamic portion of reentry, making a detailed IGS evaluation impossible. However, a comparison of IGS data after telemetry blackout with a segment of very low elevation ground tracking data indicates an IGS navigation error of approximately 3 nmi .

Section 2 of this report provides a detailed description of the analysis performed for the ascent portion of flight; this includes a discussion of:
a) Inertial Measurement Unit (IMU) accelerometer and platform errors
b) The radio guidance/inertial guidance update procedures
c) Airborne computer navigation errors

Section 3 provides a description of the IMU error analysis performed for the reentry flight phase, Section 4 describes the external tracking system performance and quality, and Section 5 presents a discussion of the trajectory reconstruction for ascent and reentry. Appendix A contains the Gemini 7 ascent and reentry reconstructed trajectory and support data, including listings and plots of the thrust acceleration profile, and Appendix B contains a discussion of alterations to the TRW regression program (REMP).

2. INERTIAL GUIDANCE SYSTEM PERFORMANCE ANALYSIS

Comparisons of IGS telemetered quantities and external tracking data were made for the purpose of evaluating the Gemini 7 IGS performance. The IMU evaluation was based in part on thrust (sensed) velocity comparisons (Figure 1) generated by scaling and biasing telemetered accumulated accelerometer count data and comparing the results with external tracking data adjusted for gravity and transformed to guidance coordinates. The residuals from these comparisons were attributed to IMU and tracking system errors.

Comparisons were also made between the telemetered total inertial position and velocity outputs from the airborne computer and external tracking data (Figures 2 and 3). These comparisons, called total inertial comparisons, include IMU and tracking system errors as well as airborne computer navigation errors caused by gravity approximations, truncation errors, etc. The difference between the thrust and inertial comparison sets are called delta-delta comparisons (Figure 4) and they provide a measure of the airborne computer computational error alone.

The inertial and delta-delta comparisons are referenced to the IGS computer coordinate system, which is an inertial, orthogonal, right-handed system referenced to the center of the earth. The x and z axes lie in a plane parallel to the geodetic tangent plane at the launch site at the time of platform release, with the x axis defined by the launch azimuth, positive downrange. The y axis is positive down along the geodetic vertical, and the z axis is directed so as to complete the righthanded x, y, z set.

Position and velocity comparisons were also made in the external tracking measurement coordinates. These were made for the purpose of isolating IMU and tracker error coefficients by performing computer regressions on the differences.

External tracking data used in the evaluation included Quick-Look MISTRAMI 10K and 100K, GE/Mod III/Final, GE/Mod III/Burroughs, Final MISTRAM, Passive MISTRAM II, and BET. An analysis of these data sources is described in Section 4.

Figure 1. Thrust Velocity Comparison in Computer Coordinates

Figure 2. Total Inertial Velocity Comparison in Computer Coordinates

Figure 3. Total Inertial Position Comparison in Computer Coordinates

The plots enclosed are referenced to liftoff time (19 hr 30 min 03.702 sec GMT) which occurred 3.512 seconds after IGS "go inertial."

2.1 IGS ERROR

The indicated IGS errors immediately following SECO (337 seconds from liftoff) and equally valid at separation (357 seconds from liftoff) are given in Table l. These values were obtained by evaluation of the position and velocity comparisons (Figures 2 and 3). The column headed 'IMU Error" represents the error contributed by the accelerometer, gyro, and platform alignment sources; the column headed 'Navigation Equation Errors" is the contribution due to various approximations within the airborne computer as observed from the delta-delta comparisons*; and the column titled "Total Guidance Errors" is the sum of the two and represents the total IGS error. These total errors result in velocity magnitude and flight path angle errors at separation of the following amounts:

$$
\begin{aligned}
& |\mathrm{V}|=9 \mathrm{ft} / \mathrm{sec} \\
& \gamma=-0.014 \mathrm{deg}
\end{aligned}
$$

Table 1. Inertial Guidance Error at SECO

Observation	Unit	IMU Error	Navigation Equation Errors	Total Guidance Errors
\dot{X}	$\mathrm{ft} / \mathrm{sec}$	5.6 ± 0.5	1.7 ± 0.2	7.3 ± 0.5
$\dot{\mathrm{Y}}$	$\mathrm{ft} / \mathrm{sec}$	9.9 ± 3.0	1.0 ± 0.1	10.9 ± 3.0
$\dot{\mathrm{Z}}$	$\mathrm{ft} / \mathrm{sec}$	0.2 ± 1.0	0.1 ± 0.1	0.3 ± 1.0
X	ft	800 ± 50	640 ± 10	1440 ± 51
Y	ft	820 ± 50	10 ± 3	830 ± 50
Z	ft	220 ± 10	10 ± 3	230 ± 10

Note: The \pm numbers are l-sigma estimates.

[^0]Table 2 is a comparison of the navigation errors observed on this flight with those predicted by preflight simulation. **

Table 2. IGS Navigation Errors at SECO

Trajectory	Position (ft)			Velocity (ft/sec)		
	X	Y	Z	$\dot{\mathrm{X}}$	$\dot{\mathrm{Y}}$	$\dot{\mathrm{Z}}$
	640	10	10	1.7	1.0	0.1
Simulation	175	60	-18	1.9	0.9	-0.15

2.2 IMU ANALYSIS

2.2.1 IMU Error

Analyses to recover IMU error source coefficients were performed by using the procedures and data processing programs as documented in Reference 1 except that the Recursive Error Modelling Program (REMP) was used for regression analysis. The IMU error source coefficients recovered in the analysis are presented in Table 3. These were ultimately derived from a hand fit to the MISTRAM and GE/Final thrust velocity residuals (Figure 1) and later substantiated by a computer regression analysis (see Section 2.2.2).

The most significant indications of the thrust velocity comparison plots are x and y velocity differences which build up to approximately 2.5 and $2 \mathrm{ft} / \mathrm{sec}$ at BECO and 6 and $10 \mathrm{ft} / \mathrm{sec}$ respectively at SECO. In addition, small z velocity errors are indicated until 310 seconds after which a negative slope of approximately $0.044 \mathrm{ft} / \mathrm{sec}^{2}$ is indicated by MISTRAM data.

The dominant error sources which contributed to the x axis residuals were an x accelerometer scale factor error of approximately 217 parts per million (ppm) and an IGS time scale factor error of -32.2 ppm .

[^1]The time error was evidenced by $0.8 \mathrm{ft} / \mathrm{sec}$ and $2 \mathrm{ft} / \mathrm{sec}$ jumps in the x velocity residuals at BECO and SECO respectively. The accelerometer and time scale factor errors alone did not provide a satisfactory fit to the data however.

Table 3. IMU Analysis Recovered Error Coefficients

Error Source	Recovered Coefficient	Units
X Accelerometer Scale Factor	217	ppm
Y Accelerometer Output Axis Sqd	100	$\mathrm{ppm} / \mathrm{cross} \mathrm{g}$
Nonlinearity		
Y Gyro Constant Drift Rate	0.55	$\mathrm{deg} / \mathrm{hr}$
Y Gyro Input Axis Unbalance	-0.26	$\mathrm{deg} / \mathrm{hr} / \mathrm{g}$
Platform Misalignment about Y	20	arc sec
\quad Accelerometer Axis	20	arc sec
Platform Misalignment about Z		
Accelerometer Axis	-32.2	ppm
IGS Time Scale Factor	19	ppm g
X Accelerometer Bias	45	ppm g
Y Accelerometer Bias	-33	ppm g
Z Accelerometer Bias		

Pitch type error sources were used to fit the y velocity residuals because they provided the necessary coupling in the x axis to null out the residual x axis velocity error. The pitch error sources which combined with the time accelerometer scale factor error sources to provide the best fit to both the x and y velocity residuals were: y gyro drifts of 0.55 degree per hour constant rate and -0.26 degree per hour per g input axis unbalance, and a pitch misalignment (PHIY) of 20 arc seconds.

The small z velocity residuals indicate negligible IMU error propagation in the z axis; however, a MISTRAM or GE/Mod III error is suggested by the systematic difference between the MISTRAM and Mod III residuals. By comparison of the difference between the two with propagations of possible MISTRAM and GE error sources, it was concluded that the observed tracker residuals are attributable to a -0.005 degree azimuth bias in the GE Mod III data. Since IGS z velocity updating was
accomplished with the Mod III data, the IGS experienced an equivalent residual azimuth misalignment (PHIZ) of 20 seconds after updating.

The z velocity slope of the MISTRAM residuals which exist even after SECO time suggests the presence of a MISTRAM error. Analyses revealed that a Q channel refraction error of approximately 6 n units would account for the velocity slope which occurred beyond SECO (see Section 5). A small residual velocity error still existed in the data after compensating for the refraction error. This was best fit by a z accelerometer output axis squared nonlinearity of approximately $100 \mathrm{ppm} / \mathrm{cross} \mathrm{g}$.

The fit associated with the recovered coefficients is presented in Figure 5, which also shows the preflight expected IMU errors presented in Table 4, propagated with the observed timing errors. Comparisons of the errors indicate that the actual pitch drift and resulting y velocity error approximates the preflight values. Conversely, the x accelerometer scale factor error and resulting x axis error was larger than the preflight values and the expected z axis drift was not evident during flight. However, the recovered scale factor error appears to be consistent with the accelerometer scale factor history. This is evident in Figure 6, which shows the variation of accelerometer scale factors between calibrations. The y and z accelerometer scale factors were somewhat constant for a three-month period just prior to launch and were most likely near their desired value during flight since their errors were not evidenced by the flight test data. The x accelerometer on the other hand demonstrated considerable scale factor variations throughout its calibration history.

Accelerometer biases were recovered during orbit phases of flight by determining the slope of IGS thrust velocities during an interval after insertion when no thrusting was being applied (Figure A-4 of Appendix A). The recovered biases are also presented in Table 3. Their small magnitudes are consistent with the accelerometer bias histories indicated in Figure 7.

Figure 5. Thrust Velocity Comparison in Computer Coordinates

Figure 6. Gemini 7 Accelerometer Scale Factor History

```
3150-6024-R8-000


Figure 7. Gemini 7 Accelerometer Bias History

Table 4. Preflight Expected Values of IMU Errors*
\begin{tabular}{lcl}
\hline \multicolumn{1}{c}{ Error Source } & Magnitude & Units \\
\hline X Accelerometer Bias & -38 & ppmg \\
Y Accelerometer Bias & 100 & ppmg \\
Z Accelerometer Bias & 11.2 & ppmg \\
X Accelerometer Scale Factor & 40 & ppm \\
Y Accelerometer Scale Factor & 0 & ppm \\
Z Accelerometer Scale Factor & 10 & ppm \\
X Gyro Constant Drift Rate & 0.08 & \(\mathrm{deg} / \mathrm{hr}\) \\
Y Gyro Constant Drift Rate & -0.07 & \(\mathrm{deg} / \mathrm{hr}\) \\
Z Gyro Constant Drift Rate & 0.02 & \(\mathrm{deg} / \mathrm{hr}\) \\
X Gyro Input Axis Unbalance & -0.1 & \(\mathrm{deg} / \mathrm{hr} / \mathrm{g}\) \\
Y Gyro Input Axis Unbalance & 0.22 & \(\mathrm{deg} / \mathrm{hr} / \mathrm{g}\) \\
Z Gyro Input Axis Unbalance & -0.11 & \(\mathrm{deg} / \mathrm{hr} / \mathrm{g}\) \\
X Gyro Spin Axis Unbalance & 0.26 & \(\mathrm{deg} / \mathrm{hr} / \mathrm{g}\) \\
Y Gyro Spin Axis Unbalance & 0 & \(\mathrm{deg} / \mathrm{hr} / \mathrm{g}\) \\
Z Gyro Spin Axis Unbalance & 0.07 & \(\mathrm{deg} / \mathrm{hr} / \mathrm{g}\) \\
\hline
\end{tabular}
*Obtained from Honeywell.

\subsection*{2.2.2 Regression Analysis}

A regression analysis was performed on the Gemini 7 IGS and tracker data. The following error model was chosen as a result of the hand fit. The regression program (REMP) assigned the coefficient values and the covariance matrix for these terms.
\[
\begin{aligned}
\mathbf{X S F} & =\mathbf{X} \text { accelerometer scale factor error } \\
\mathbf{T S F} & =\text { Timing scale factor } \\
\text { POX } & =\mathbf{X} \text { position bias } \\
\text { POY } & =\mathbf{Y} \text { position bias } \\
\text { POZ } & =\mathbf{Z} \text { position bias } \\
\text { PHIY } & =\text { Platform misalignment about } \mathbf{Y} \\
\text { YGIAU } & =Y \text { gyro input axis unbalance } \\
\text { XGIAU } & =\mathbf{X} \text { gyro input axis unbalance } \\
\text { YGCDR } & =Y \text { gyro constant drift rate }
\end{aligned}
\]
\[
\begin{aligned}
\text { A2 } 2(1) & =\text { MISTRAM I timing bias } \\
\text { G2(4) } & =\text { MISTRAM II timing bias } \\
\text { C2(3) } & =\text { GE Mod III timing bias } \\
\text { G3(4) } & =\text { MISTRAM II rate bias }
\end{aligned}
\]

Several other error sources were carried in the regression program as unmodeled effects; i.e., their effect is examined in the statistics of the recovered terms but no coefficients are solved for (see Appendix \(B\) for explanation of this technique).

The regression domain chosen was the following:
\begin{tabular}{ll}
\(\dot{P}, \dot{Q}, \dot{R} S U M\) & 10K MISTRAM \\
\(\dot{P}, \dot{Q}\) & 100K MISTRAM \\
\(\dot{R}, \dot{P}, \dot{Q}\) & GE Final (Mod III) \\
\(\dot{R} S U M\) & Passive MISTRAM
\end{tabular}

Table 5 lists the assumed noise estimates for these parameters over various time spans in the fit.

The velocity domain was selected for two main reasons: 1) it is completely insensitive to tracker position bias (DC only), and 2) the IGS errors are less correlated in this domain, which usually affords a more reliable inversion of the normal matrix (i.e., less numerical errors in inversion). The coefficients which were recovered fit the \(\Delta V\) curves (in IGS coordinates) quite well and are all of believable magnitudes.

The assumptions made in conjunction with the regression run are as follows:
a) The data noise was white (Gaussian).
b) The selected error model is sufficient to model all errors.
c) The tracker rate domain is the most desirable for regression purposes.

The MISTRAM I and II and GE Mod III rate residuals were fit quite well. The final recovered error coefficients are listed in Table 6 with their associated a posteriori l-sigma uncertainties.
Table 5. Tracker Sigmas Used in Fit
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Parameter & Sigma & From & To & Sigma & From & To & Sigma & From & To \\
\hline \(\mathrm{P}_{10 \mathrm{~K}}\) & 0.01 & 50 & 160 & 0.0025 & 160 & 280 & 0.01 & 280 & 360 \\
\hline \(\dot{Q}_{10 \mathrm{~K}}\) & 0.01 & 50 & 160 & 0.0025 & 160 & 300 & 0.01 & 300 & 360 \\
\hline \(\dot{\mathrm{R}}_{\text {SUM }}\) & 0.1 & 50 & 360 & & & & & & \\
\hline \(\dot{\mathrm{P}}_{100 \mathrm{~K}}\) & 0.02 & 50 & 160 & 0.005 & 160 & 360 & & & \\
\hline \(\dot{Q}_{100 \mathrm{~K}}\) & 0.025 & 50 & 160 & 0.001 & 160 & 330 & 0.025 & 330 & 360 \\
\hline \(\dot{\mathrm{R}}_{\text {MOD III }}\) & 0.15 & 50 & 360 & & & & & & \\
\hline \(\dot{\mathrm{P}}_{\text {MOD }}\) III & 0.25 & 50 & 320 & 0.5 & 320 & 360 & & & \\
\hline \(\dot{Q}_{\text {MOD III }}\) & 0.25 & 50 & 320 & 0.5 & 320 & 360 & & & \\
\hline \(\dot{R} S U M_{\text {PASSIVE MISTRAM }}\) & 0.1 & 180 & 360 & & & & & & \\
\hline
\end{tabular}
Note: Sigmas are all in \(\mathrm{ft} / \mathrm{sec}\) and the From/To times are in seconds from launch.

Table 6. Recovered Error Coefficients
\begin{tabular}{ccc}
\hline Error Terms & Coefficient & l Sigma \\
\hline XSF & 189 & 100 \\
PHIY & 26 & 32 \\
POX & 27 & 11 \\
POY & -68 & 112 \\
POZ & 27 & 64 \\
TSF & -56 & 23 \\
YGIAU & -0.18 & 0.72 \\
XGIAU & -0.05 & 0.59 \\
YGCDR & 0.35 & 0.84 \\
A2(1) & 0.007 & 0.007 \\
G2(4) & 0.007 & 0.0066 \\
C2(3) & 0.007 & 0.0082 \\
G3(4) & 0.27 & 1.7 \\
B5(2) & -12.4 & 30 \\
\hline
\end{tabular}

The terms YGCDR, YGIAU, XGIAU, POY, G3(4), and B5(2) were not well recovered since the ratios of a posteriori to a priori recovered error coefficient uncertainties were large. The main cause for this is that so many "unmodeled errors" were carried in the a posteriori statistics. This means that these errors very likely represent some combination of the total error model; however, such acombination is inopossible to determine using the data available. The term B5(Z) is a refraction error in the MOSTRAM IGOKQ leg. This termir was ariginally left out of the fit but the residuals indicated that it wan definitely present.

Examination of the histories of recovered error coefficients in the fit as the error model is expanded reveals that the fit is very stable; little cancellation exists and all variations are well within the estimated nncertainties.

Figures 8 through 10 are the tracker rate residuals used in the fit with the fit itself superimposed on the residuals. It is obvious that some error remains in the data, especially in Mod HII and the passive MISTRAM


Figure 8. GT-7 IGS Minus MISTRAM I



Figure 9. GT-7 IGS Minus MISTRAM I (10K)


Figure 10. GT-7 IGS Minus GE
range sum rate data. It was decided that a sufficiently good estimate of IGS error was obtained and that further investigation would not benefit this analysis effort appreciably.

Three timing errors A2(1), C2(3), G2(4) were carried, representing timing biases in the MISTRAMI, GE Mod III and Passive MISTRAM, respectively. It is obvious that the tracking systems have little or no relative timing error between themselves; thus, the \(\approx 0.0070\) second recovered coefficient for all three trackers should be considered as a bias in the IGS time word of the same amount.

\subsection*{2.3 AZIMUTH UPDATE}

An azimuth alignment correction is calculated at three separate times by the onboard computer. On the first pass through the navigation equations after platform release, the roll gimbal angle reading is compared with the desired value and the difference is used as a correction to the intended flight azimuth. This correction is called \(\Delta \eta_{x}\), where a positive value implies that the platform is rotated clockwise from the desired azimuth.

Additional azimuth corrections are made during flight at 100 and 140 seconds after liftoff. These are calculated by comparing the cross range ( \(z\) direction) velocity as measured by GE/Burroughs with that derived from the airborne system and attributing the residual to a platform misalignment.

The calculated updates are not telemetered; however, they are obtained quite accurately from the data analysis. Table 7 summarizes the updates determined by the following methods:
a) Calculated from the telemetry data and simulation of the inflight calculations.
b) Calculated from the jumps in the inertial velocity comparisons or the delta-delta curve.
c) Derived by IBM durring their postflight simulation.

The value indicated at 100 seconds includes that at 0 seconds. The value for 0 seconds in the delta-delta and TRW simulation column was determined from an observable jump in the IGS z velocity after Platform GoInertial. This jump corresponds to the IGS first correction.


Table 7. Azimuth Update
\begin{tabular}{ccccc}
\hline \begin{tabular}{c} 
Time \\
\begin{tabular}{c} 
Sec from \\
liftoff)
\end{tabular}
\end{tabular} \begin{tabular}{c} 
Flight Calculation \\
Simulation
\end{tabular} & Delta-Delta & \begin{tabular}{c} 
IBM Postflight \\
Simulation
\end{tabular} & Units \\
\hline 0 & -0.00006 & -0.00017 & -0.00017 & radians \\
100 & -0.00834 & -0.00857 & -0.00849 & radians \\
140 & 0.00003 & 0.00019 & 0.00012 & radians \\
Total & -0.00831 & -0.00838 & -0.00837 & radians \\
\((100\) and 140)
\end{tabular}

The total azimuth correction of -0.4763 has been included in all plots contained in this report.

The history of initial alignment error is:
\begin{tabular}{ll} 
GT-2 & \(\eta_{\mathbf{x}}=-0.29\) degrees \\
GT-3 & \(\eta_{\mathbf{x}}=-0.52\) degrees \\
GT-4 & \(\eta_{\mathbf{x}}=-0.12\) degrees \\
GT-5 & \(\eta_{\mathbf{x}}=-0.27\) degrees \\
GT-7 & \(\eta_{\mathbf{x}}=-0.48\) degrees
\end{tabular}

Mean value \(=-0.34\) degrees
1 -sigma spec value \(=0.25 \%\)

\section*{3. REENTRY}

\subsection*{3.1 INITIAL CONDITIONS}

The state vectors at retrofire, as calculated by the TRW postflight trajectory reconstruction (ESPOD) and as computed real time by the RTCC and used by the IGS, are given in Table 8.

Table 8. Reentry Initial Conditions*
\begin{tabular}{lccc}
\hline & IGS (RTCC) & Postflight (ESPOD) & IGS-Postflight \\
\hline \(\mathbf{x}\) & \(18,485,400 \mathrm{ft}\) & \(18,487,85 \mathrm{lft}\) & \(-2,451 \mathrm{ft}\) \\
\(y\) & \(11,702,400 \mathrm{ft}\) & \(11,699,406 \mathrm{ft}\) & \(2,994 \mathrm{ft}\) \\
\(\mathbf{z}\) & \(-49,500 \mathrm{ft}\) & \(-51,845 \mathrm{ft}\) & \(2,345 \mathrm{ft}\) \\
\(\dot{\mathbf{x}}\) & \(-11,874.9 \mathrm{ft} / \mathrm{sec}\) & \(-11,870.4 \mathrm{ft} / \mathrm{sec}\) & \(-4.5 \mathrm{ft} / \mathrm{sec}\) \\
\(\dot{\mathbf{y}}\) & \(18,780.6 \mathrm{ft} / \mathrm{sec}\) & \(18,783.1 \mathrm{ft} / \mathrm{sec}\) & \(-2.5 \mathrm{ft} / \mathrm{sec}\) \\
\(\dot{\mathbf{z}}\) & \(12,282.3 \mathrm{ft} / \mathrm{sec}\) & \(12,282.5 \mathrm{ft} / \mathrm{sec}\) & \(-0.2 \mathrm{ft} / \mathrm{sec}\) \\
\hline & \(* \mathrm{t}=18\) December \(1965,13^{\mathrm{h}} 28^{\mathrm{m}} 07^{\mathrm{s}}\) &
\end{tabular}

The coordinate system of the above vectors is that used by the RTCC: earth centered inertial, X through Greenwich at \(0^{h}\) day of launch. This initial condition difference is somewhat greater than has been found on previous flights where the resultant differences have been less than 2,000 feet and \(2 \mathrm{ft} / \mathrm{sec}\). However, it was also noted that the quality of the "fit" to the pre-retro tracking station data was poorer than usual. This problem is being investigated as part of the orbit phase trajectory reconstruction.

\subsection*{3.2 POST-RETRO FREE FLIGHT}

The best trajectory was fit to the post-retro fire tracking data (HAW and WHS), and the trajectory compared to the IGS output at two points under 400, 000 feet. The result is shown in Table 9.

Based upon the accuracy of the telemetry data, there is no significant position difference between the IGS and postflight reconstruction trajectories just prior to atmospheric reentry and telemetry blackout.

Table 9. Comparison of Reconstructed Trajectory With IGS Output
\begin{tabular}{c|ccc}
\hline \multirow{2}{*}{\begin{tabular}{c} 
Time From Retro- \\
Fire, Altitude
\end{tabular}} & \multicolumn{3}{|c}{ Spacecraft Position } \\
\cline { 3 - 4 } \begin{tabular}{c} 
Geocentric \\
Latitude (Deg)
\end{tabular} & Longitude (Deg) & Radius (Ft) \\
\hline \(1307 \mathrm{sec}, 383 \mathrm{~K} \mathrm{ft}\) & 28.874 & 257.899 & \(21,292,216\) \\
Reconstruction & 28.874 & 257.901 & \(21,293,093\) \\
IGS & & & \\
\(1360 \mathrm{sec}, 352 \mathrm{~K} \mathrm{ft}\) & 28.894 & 261.881 & \(21,261,090\) \\
Reconstruction & 28.893 & 261.901 & \(21,261,071\)
\end{tabular}

\subsection*{3.3 ATMOSPHERIC REENTRY}

Because of the loss of the onboard tape recorder data, there is no telemetry available on the portion of reentry between 1400 and 1800 seconds after retrofire, or from approximately 350,000 to 120,000 feet altitude. Ground radar tracking during most of this interval has provided reasonable position data but very poor velocity data. There is, however, approximately 100 seconds of overlapping Grand Turk radar tracking and telemetry data after blackout. The spacecraft covers an altitude range from 120, 000 feet to just after drogue deploy at about 60, 000 feet. Figure 11 shows the ground trace of the spacecraft as measured by the IGS and as given by the GTI tracking data. The target and ship-estimated-pickup points are also shown. An impact summary is given in Table 10. The resultant IGS error at drogue deploy is 3 nmi .

Table 10. Gemini 7 Impact Summary
\begin{tabular}{llc}
\hline \multicolumn{1}{c}{ Source } & \begin{tabular}{c} 
Longitude \\
(Deg)
\end{tabular} & \begin{tabular}{c} 
Geocentric \\
Latitude (Deg)
\end{tabular} \\
\hline Target Point & -70.0 & 25.234 \\
IGS (drogue deployment) & -70.10 & 25.280 \\
GTI Radar (drogue deployment) & -70.145 & 25.254 \\
Ship (pickup) & -70.146 & 25.216 \\
\hline
\end{tabular}

Figure 12 is a position comparison between IGS and GTI tracking data in guidance coordinates. The spacecraft is almost due north of the

Figure 11. Gemini 7 Reentry Ground Trace


Figure 12. Gemini 7 Reentry IGS Minus GTI-18 Radar Positions

GTI site at this time, but at an extremely low elevation angle. All the data is below \(3^{\circ}\); after 1840 seconds, the spacecraft is below \(1^{\circ}\); and after 1875 seconds the spacecraft is indicated as being below the horizon. Because of the low elevation, very large errors can be expected in the elevation measurement, which is mostly the \(x\) direction in the IGS coordinate set at this time. (The spacecraft has flown through a central angle of \(113^{\circ}\) since retorfire.) However, the range and azimuth measurement should be reasonable, resulting in valid \(z\) and y measurements, respectively. The smooth \(z\) curve reflects the good range measurement. The angular data after 1890 seconds is considered invalid.

As a rough measure of what this trend represents in terms of IGS accuracy, it was assumed that all the difference was due to IGS platform misalignment, that the spacecraft velocity could be considered a constant over the interval, and that the slope of the difference was IGS-sensed velocity error. The following errors result:
\[
\begin{aligned}
\Delta V_{\mathbf{x}} & =80 \mathrm{to} 100 \mathrm{ft} / \mathrm{sec} & \overline{V_{\mathbf{x}}} & =13,000 \mathrm{ft} / \mathrm{sec} \\
\Delta V_{\mathbf{y}} & =90 \mathrm{ft} / \mathrm{sec} & \overline{V_{\mathbf{y}}} & =18,000 \mathrm{ft} / \mathrm{sec} \\
\Delta V_{z} & =80 \mathrm{ft} / \mathrm{sec} & \frac{\overline{V_{z}}}{} & =400 \mathrm{ft} / \mathrm{sec}
\end{aligned}
\]

Equivalent IGS Platform Misalignment is:
Pitch up: \(\quad 0.3^{\circ}\) to \(0.4^{\circ}\)
Roll positive: \(0.4^{\circ}\)
The ratio of \(x\) to \(y\) error is only approximately correct for a pitch error however, the magnitude of the error is consistent with expected accuracies. The data is too poor to speculate further about the sources. No attempt was made to explain the initial position errors indicated on these curves at 1800 seconds because of uncertainty in initializing the IGS data.



\section*{4. TRACKING SYSTEM PERFORMANCE}

Tracking data available for analysis of the Gemini 7 IGS performance included the following:
a) GE Mod III/Burroughs
b) GE Mod III/Syracuse/Final
c) MISTRAM I Quick Look 10 K and l00K
d) Passive MISTR AM
e) Range \(B E T\)

Each of the above sets was used for position and velocity comparisons, as described in Section 2. The GE Mod III/Burroughs data were used for quick look analyses; however, detailed analyses were subsequently accomplished with the remaining sources. A TRW program (TOPS), which is used to produce powered flight best estimates of trajectory (BETs), was also used to aid the tracking data analysis.

For convenience, tracking system data were compared with inertial guidance data which has been corrected for guidance system errors derived from the hand fit results of Section 2.2.

Three main tracking system errors were extracted from the ensemble IMU/Tracker analysis scheme. These were:
a) An apparent refraction error in the \(Q_{100 \mathrm{~K}}\) MISTRAM I
system of \(\approx 12 \mathrm{n}\) units.
b) An azimuth bias of \(\approx 10^{-4}\) radians in the GE Mod III data.
c) A range sum rate \((R)\) bias of \(\approx 0.3 \mathrm{ft} / \mathrm{sec}\) in the passive MISTRAM data.

These errors were extracted by using the regression program (see Section 2.2) as well as by manually adjusting the observed residuals. It should be noted, however, that the uncertainities of these errors are large. The regression program included unmodeled effects for both the IMU and the tracking system, which resulted in relatively large a posteriori uncertainties.


\subsection*{4.1 GE MOD III}

\subsection*{4.1.1 GE Mod III/Burroughs}

The Burroughs raw data received consisted of raw counts recorded on punched paper tape at a rate of two data points per second. The data were transferred to magnetic tape at TRW and processed in the data reduction programs.

Figure 13 shows GE/Burroughs and GE/Final IGS coordinate velocity comparisons superimposed. Significant differences exist between them in the \(x\) and \(y\) directions. The \(x\)-difference is attributable to a 0.01-second timing error in the Burroughs, and the y-difference is most likely due to an incorrect refraction correction applied to the Burroughs data. This refraction correction is based upon ground refractometer measurements and is updated and refined by airborne measurements in the GE/Final data reduction.

\subsection*{4.1.2 GE Mod II/Syracuse/Final}

The GE/Final data were processed by GE/Syracuse from the ten per second Flight Data Recorder output. The data were available raw and unsmoothed in natural coordinates and as smoothed Cartesian \(x, y, z\) data. The final GE natural coordinate data were used in the computer regression analyses discussed in Section 3.

In general, the quality of the GE/Final data was quite good. No major errors were apparent, although the moderately large (approximately \(10^{-4}\) radian) azimuth bias mentioned in Section 3.2 serves to explain part of the \(z\)-coordinate difference between \(G E\) and MISTRAM comparisons (Figure l). This azimuth error was verified by the TRW TOPS BET analysis (Section 4.4), which also showed less than 0.05 -milliradian bias in the elevation measurements, and was further verified by the GE Mod III data analysis presented by General Electric in Reference 2.

Plots of the residuals between the GE/Final data and the corrected IGS trajectory are presented in Figures 16 and 17.

\subsection*{4.2 MISTRAM DATA}

The quick look data received consisted of scaled and corrected but unsmoothed position data measurements. These are: range sum measurement, R; range difference measurements from 10,000 foot baselines, \(P_{10 K}\) and \(Q_{10 K}\); and range difference measurements from 100,000 foot baselines, \(P_{100 K}\) and \(Q_{100 K}\). Also range sum, \(P\) and \(Q\), measurements from MISTRAM II (Passive mode) were obtained. The data were processed and differentiated in TRW programs to give essentially three sets of tracking data.

\subsection*{4.2.1 MISTRAM I}

MISTRAM I/IGS compensated thrust coordinate comparisons are presented in Figures 18 through 2l. (Also see Figure lfor uncompensated IGS MISTRAM velocity comparisons.) These differences show a generally good agreement with GE/Final data in the \(x\) coordinate. The \(z\) coordinate plots, however, indicate an approximate \(0.5 \mathrm{ft} / \mathrm{sec}\) difference with those of GE/Final, and while part of this is due to the aforementioned GE azimuth bias (Section 4.1), it was determined in the TOPS analysis (Section 4.5) that the MISTRAM \(100 \mathrm{~K} Q\) channel exhibited an error arising from an outlying site unaccounted refraction difference (see also the regression results of Section 2.2). The effect of this error is to "droop" the \(z\) coordinate comparisons after about 300 seconds (compare with the TOPS results of Figure 26). This error was not apparent in the 10 K measurements.

The TOPS BET results also showed an approximate 2 n -units refraction error of the same type in the MISTRAM l00K P channel. The effect of this error is most pronounced in the vertical (y) direction, and was of such a sign as to manifest itself also as a "droop" beginning at about 300 seconds. However, the \(Q\) refraction error also propagates into the \(y\) channel and on this flight was of opposite sign to the Perror, thereby resulting in some cancellation. The net effect of these two errors was to cause the y channel IGS/MISTRAM velocity differences to exhibit a negative slope after SECO, a phenomenon which is clearly apparent from Figure 7 and 18. The total magnitude of this combined refraction
error in the vertical channel is estimated at about \(-2 \mathrm{ft} / \mathrm{sec}\) at SECO . No other significant MISTRAM I errors were detected on this flight.

\subsection*{4.2.2 MISTRAM II (Passive Mode)}

MISTRAM II/Compensated IGS comparisons are shown in Figures 22 and 23. The regression results (Section 2.2) showed an approximate \(0.27 \mathrm{ft} / \mathrm{sec}\) range sum rate bias, which is confirmed by the TOPS BET. However, although in general MISTRAM II performed well on this flight compared to previous flights; its measurements could not be considered accurate enough to be used without benefit of measurements from other systems. For example, the \(P\) channel exhibited a large (approximately -6 foot) time varying bias, the source of which is unknown at present. Its character seemed to reflect both refraction and survey errors; however, a detailed analysis was not performed since it was not needed for the IMU analysis on this flight. The MISTRAM II \(Q\) channel also exhibited a refraction error of the same type as that found for MISTRAM I. The matnitude of this error was in the range of 5 to 10 n -units.

\section*{4. 3 RANGE BET}

Figures 24 and 25 show comparisons between compensated IGS and the AFETR Best Estimate of Trajectory (BET). This BET combined the measurements from MISTRAM I, 10 K and l00K, MISTRAM II, GLOTRAC, GE Mod III, and C-band FPQ-6 radars Numbers 19.18 (Merritt Island), 3.18 (GBI), 7.18 (Grand Turk Island). The program is a conventional least squares adjustment in which a constant bias error model for each observation is specified. The problems of this model are exemplified by the comparisons of Figures 18 and 24 , in which the BET shows remarkable agreement with the MISTRAM results, particularly in the \(x\) and \(z\) coordinates. This arises primarily because the MISTRAM data was heavily weighted in the adjustment, and because the program did not account for a refraction error. Furthermore, the estimate of MISTRAM l00K P bias was in gross error (by about l foot), thereby causing the \(B E T\) vertical velocity estimates to be in error by about \(10 \mathrm{ft} / \mathrm{sec}\) at SECO . The reason for the erroneous \(P\) bias estimate is not clear, but possibly arises from incorrect weighting of the other measurements used in the adjustment.

\subsection*{4.4 TOPS BET}

Figures 26 and 27 show comparisons between compensated IGS data and the TRW TOPS (Trajectory Optimization System) BET program. The input to TOPS included MISTRAM I ( \(\left.R_{S U M}, P_{10}, Q_{10}, P_{100}, Q_{100}\right)\); MISTRAM II ( \(R_{S U M}\), \(P, Q\) ), and GE Mod III (R, A, E, \(\dot{R}, \dot{\mathrm{P}}, \dot{Q}\) ) data described previously. The IMU/TOPS comparisons show good agreement, and the differences noted are within estimated l-sigma limits. Since the TOPS BET was derived without the use of IMU measurements, these results serve to verify the conclusions reached in Section 2.2 of this report.



Figure 13. Thrust Velocity Comparison in Computer Coordinates




Figure 15 . GE/Burroughs Thrust Position Comparison with IMU Errors Compensated



Figure 17. GE/Final Thrust Position Comparison with IMU Errors Compensated


Figure 18. MISTRAM I 100K Thrust Velocity Comparison with IMU Errors Compensated


Figure 19. MISTRAM I 100K Thrust Position Comparison with IMU Errors Compensated



Figure 20. MISTRAM I 10K Thrust Velocity Comparison with IMU Errors Compensated




Figure 22. MISTRAM II Passive Thrust Velocity Comparison with IMU Errors Compensated


Figure 23. MISTRAM II Passive Thrust Position Comparison with IMU Errors Compensated


Figure 24. Range BET Thrust Velocity Comparison
with IMU Errors Compensated
(1)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 5 & & & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & 4 & & & & & & & & & & & & & & & & \\
\hline & & & - & & & & & & & ) & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & + & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & + & 4 & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & , & & & & & & & & & & & & & \\
\hline & & & & & & & & - & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & H43 & & 4 & & & & +13 & + & & [3] & & 3+7 & 434 & & \% & 4 & & & & \% & & & & & & \\
\hline  & & & & & Hid & 駺 & & & & + & & 74 & & W & & & & & & & & & & & & \\
\hline + & & & & & + & + & & & 4 & T\#\# & 3 H2m & Heter & H2+ta & 3+15 & Hz & 3 & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & H2 & & & + & & & & & & & & & & & & & & \\
\hline & & & & & & & & & + & & - & + & & & & & & & & & & & & & & \\
\hline & W & & & W+ & & & & & & & , & - & 2 4 & +4 & & & & & & & & & & & & \\
\hline & & & & 1 & & & & & & \% & & & & & 14 \({ }^{4}\) & & & & & & & & & & & \\
\hline  & & & & & & & & & & & T & T & & \(+1\) &  & & & U1 & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & T & T & 1 & & & & & & & & & & & & & & & & & & & & & & & +7 \\
\hline & & T & & & & & & , & \# & & & & & & & & & & & & & & & & & \\
\hline & & \% & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline
\end{tabular}

in stooss manh Lifl oft
Figure 25. Range BET Thrust Position Comparison with IMU Errors Compensated

\section*{CONFIDENTIAE'}


Figure 26. TOPS BET Thrust Velocity Comparison with IMU Errors Compensated
CONFIDENTIAL


Figure 27. TOPS BET Thrust Position Comparison with IMU Errors Compensated

\section*{CONFIDENTIAL}

\section*{5. TRAJECTORY RECONSTRUCTION}

This section provides a description of the trajectory reconstruction for the ascent and reentry flight phases presented in Tables A-1 and A-2 in Appendix A. The data a re provided in an ECIG coordinate system with the origin at the center of the earth. The \(z\) axis is the North Polar, and the \(x-y\) plane is the equatorial plane with the \(x-z\) plane containing the Greenwich Meridian at Go-Inertial time. Trajectory parameters such as velocity magnitude, altitude, flight path angle, heading, latitude, and longitude are also presented.

The ascent reconstruction consists of corrected guidance data. Corrections applied to the ascent data were the IMU error source magnitudes presented in Table 3 in Section 3.

The reentry trajectory reconstruction was obtained by making use of the TOPS BET program. The BET was derived from four ETR tracking radars, the coverage of which was as follows:
\begin{tabular}{cc}
\(\frac{\text { Radar }}{}\) & \begin{tabular}{c} 
Data Spans (In sec from \\
retrofire)
\end{tabular} \\
\cline { 2 - 3 } 0:18 (Patrick AFB) & \(1545-1740\) \\
19:18 (Merritt Island) & \(1537-1707\) \\
3:18 (GBI) & \(1548-1751\) \\
\(7: 18\) (GTI) & \(1710-1943\) \\
TOPS BET & \(1551-1745\)
\end{tabular}

The TOPS program requires overlapping coverage of at least two radars therefore the BET presented terminates at 1751 seconds.

Listings of the BET, uncorrected Grand Turk (7:18) and reconstructed IGS reentry trajectories and their associated trajectory parameters are presented in Appendix A. The IGS reentry trajectory is uncorrected since no conclusive IMU error analysis for the reentry flight phase was possible.
(Rtverse of this page blank.)

\section*{CONFIDENTIAL}

\author{
APPENDIX A \\ TRAJECTORY PARAMETER LISTINGS AND PLOTS
}

\section*{PLOTS}
\begin{tabular}{|c|c|c|}
\hline Figure & & Page \\
\hline A-1 & Computed Thrust Velocity in Computer Coordinates (Thrust Tailoff) & A-3 \\
\hline A-2 & Inertial Flight Path Angle (Ascent) & A-4 \\
\hline A - 3 & Computed Thrust Acceleration in Computer Coordinates . . . . . . . . . . . . . . . . . . . & A-5 \\
\hline A-4 & Revision 1 Booster Chase Maneuver IGS Sensed Velocity Increments & A-6 \\
\hline \multicolumn{3}{|c|}{LISTINGS} \\
\hline Table & & Page \\
\hline A-1a & Reconstructed Ascent Trajectory & A-7 \\
\hline A-1b & Reconstructed Ascent Trajectory Associated Parameters & A-13 \\
\hline A-2a & Reconstructed Reentry Trajectory and Associated Parameters (BET) & A-19 \\
\hline A-2b & Reconstructed Reentry Trajectory and Associated Parameters (7:18 Radar) & A-35 \\
\hline A-2c & Reconstructed Reentry Trajectory and Associated Parameters (IGS) . & A-53 \\
\hline \multirow[t]{2}{*}{A-3} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{PCM Edit Listing for the Ascent
Flight Phase................................. A-61}} \\
\hline & & \\
\hline
\end{tabular}

\section*{UNCLASSIFIED}

Figure A-1. Computed Thrust Velocity in Computer Coordinates

\section*{CONFIDENTIAL}


Figure A-2. Inertial Flight Path Angle

CONFIDENTIAL



Figure A-4. Gemini 7 Revision 1 Booster Chase Sensed Velocity Increments



GEMINI rRAJECTORY IN ECIG
IME IN SECONDS FROM LIFTOFF




\footnotetext{



}







\begin{tabular}{|c|}
\hline z－dot \\
\hline \\
\hline 2232.400 \\
\hline 2220.949 \\
\hline 2211.31 \\
\hline 2199.41 \\
\hline 2185.442 \\
\hline 2170.028 \\
\hline 2154.549 \\
\hline 2139.500 \\
\hline 2124.097 \\
\hline 108.729 \\
\hline 2093.528 \\
\hline 2078．306 \\
\hline 2062.968 \\
\hline 47．814 \\
\hline 2032.385 \\
\hline 2016.789 \\
\hline 2001.047 \\
\hline 1985.464 \\
\hline 1969.613 \\
\hline 1953.645 \\
\hline 1937.563 \\
\hline 1921.057 \\
\hline 1904.452 \\
\hline 887.710 \\
\hline 1870.575 \\
\hline 1853.616 \\
\hline 1836.127 \\
\hline 18．533 \\
\hline 1800.737 \\
\hline 1782.647 \\
\hline 1764.482 \\
\hline 1745.879 \\
\hline 1733.225 \\
\hline
\end{tabular}

 ○ます。




 Mo io on moon









Z-DOT

\footnotetext{

}
\begin{tabular}{|c|}
\hline \multirow[t]{5}{*}{\begin{tabular}{l}
 \\

\end{tabular}} \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline
\end{tabular}




\(\stackrel{\downarrow}{\sigma}\)



\begin{tabular}{|c|}
\hline \multirow[t]{5}{*}{} \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline
\end{tabular}






(Reverse of this page blank.)

Table A-1b. Reconstructed Ascent Trajectory Associated Parameters


Table A-1b.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { TIME } \\
& \text { FROMMLIFTOFF } \\
& \text { (SECONOS) }
\end{aligned}
\] & inertial vel. magnitude (ft/SEC) & RELATIVE VEL. MA GNI TUDE (FT/SEC & \begin{tabular}{l}
INERTIAL FLT \\
PATH ANTIL (DEGREES)
\end{tabular} & \[
\begin{aligned}
& \text { INERTIAL } \\
& \text { HEADINT, ANGIE E } \\
& \text { (DEGRESS) }
\end{aligned}
\] & \[
\begin{gathered}
\text { ALTTUNDE } \\
(\mathbb{F E E T} \mid
\end{gathered}
\] & geodetic lat (DEGREES) & GEODETIC LUNG. \\
\hline 135.447 & 7185.9 & 5947.0 & 20.660 & 84.961 & 149378.0 & \({ }^{28.564}\) & -79.990 \\
\hline 131.897 & 7481.8 & 6239.0 & 20.382 & 94.942
84.928 & 159577.2
162147.2 & \begin{tabular}{l}
28.568 \\
28.572 \\
\hline
\end{tabular} & -79 \\
\hline 140. 344 & 7790.2 & 6543.5 & 20.855 & \({ }_{84.914}\) & 16 A 875. & 28.576 & \\
\hline 142.800 & \({ }_{8113.2}\) & 6863.0
7196.1 & 19.855 & \({ }_{84.903}\) & 67 & & \\
\hline 145.247 & 8449.7 & 71968.1 & 19.609
19.369 & \({ }_{84.892}\) & 258797.0 & 28. & \\
\hline 147.722
150.159 & 8805.7 & 7548.8
7914.9 & 19.140 & \({ }_{84.882}\) & & 28.591 & 705 \\
\hline 150.159
152.651 & 9174.9 & 7914.9
8305.4 & 18.917 & \({ }_{44.871}\) & 197644.0 & & \\
\hline 152.751
154.551
158 & 9568.2 & 8305.4
8617.1 & 18.917
18.752 & 84.871
84.884 & 203614.2 & \({ }_{28.601}^{28.969}\) & -79. \\
\hline 154.552
155.609 & ¢9882. & 8795.3
8798.1 & & 84.880 & 206997.7 & 28.603 & \\
\hline 155.689
157.036 & \({ }_{10077.3}\) & 8809.1 & 18.465 & 84.882 & 211569.2 & 28.606 & -79.540 \\
\hline 159.488
159 & 10158.0 & 8886.4 & 18.134 & 84.923 & 219364.5 & 28.612 & -79.478 \\
\hline 161.944 & 10241.8 & 8966.8 & 17.804 & 84.965 & 227098.7 & 28.618 & -79.415 \\
\hline 164.393 & 10328.1 & 9049 & 17.481 & 85.007 & 234735.2 & 28.623 & -79.351 \\
\hline 166.708 & 10411.4 & 9130.3 & 17.181 & \({ }^{85.048}\) & 241892.5 & 28.62 & -79.2 \\
\hline 168.8C8 & 10489.2 & 9205.5 & 16.915 & 85.0 & 248330 & 28.6 & -79.170 \\
\hline 17.230 & 10581.0 & 9385.4 & 16.6269 & \({ }_{85.166}\) & 262991.2 & 28.645 & -79.105 \\
\hline 173.650
176.074 & 10674.8 & 9417.5 & 15.919 & 5 & 27019 & 28.651 & -79.038 \\
\hline 176.074
178.495 & 10868.4 & 9572.5 & 15.571 & 85 & 2773 & 28.656 & -78.971 \\
\hline 178.495
180.922 & 10969.4 & & 15.227 & 95.285 & 28434 & 28.662 & -78.903 \\
\hline 180.922
183.343 & 11070.5 & 9768.7 & 14.287 & 95.325 & 2912 & 28.668 & \\
\hline 185.765 & 11174.5 & 9869.9 & 14.547 & 85.362 & 298130.5 & 28.674 & \\
\hline 188.185 & 11280.6 & 9973.3 & & 95 & . 5 & 28.679 & -78.694 \\
\hline 190.604 & 11389.0 & 10079.1 & 13.882 & \({ }^{6} 5.435\) & 311544.2 & 28.685 & -78.622 \\
\hline 193.024 & 11499.4 & 10188.9 & 13.554 & 85.472 & 318171.2 & 28.691 & -78.550 \\
\hline 195.443 & 11612.1 & 10247.2 & 13.228 & \({ }^{85} 5.54\) & 3345989.1 & \({ }_{28.702}\) & -78.403 \\
\hline 197.865 & 11726.7 & 10409.3 & 12.908 & 95.54 & & & \\
\hline
\end{tabular}
Continued
\[
\begin{aligned}
& \text { GEGDETIC LAT. GEODETIC LONG. } \\
& \text { (DEGREESI } \\
& \text { (DEGREES) }
\end{aligned}
\]
NERTIAL FLT
PATH ANGLE
COEGREESI
RELATIVE VEL.
MAGNITUUE
VEL.
UDE
EC) MAGNITUD
IFT/SECI NE
TIME200.285
202.712
205.132
207.551
209.971
212.393
214.813
217.232
219.651
222.078
224.498
226.918
229.338
231.761
234.186
236.610
239.035
240.657
243.148
245.593
248.041
250.487
252.936
255.381
257.829
260.276
262.732
265.178
\[
\begin{aligned}
& \text { IFT/SEC } \\
& 10524.0 \\
& 10641.4 \\
& 10750.7 \\
& 10882.5 \\
& 11007.0 \\
& 11133.7 \\
& 11263.1 \\
& 11394.9 \\
& 11529.6 \\
& 11667.1 \\
& 11807.3 \\
& 11950.3 \\
& 12096.2 \\
& 12245.4 \\
& 12397.8 \\
& 12553.5 \\
& 12712.0 \\
& 12822.7 \\
& 12989.0 \\
& 13158.6 \\
& 13331.8 \\
& 13508.5 \\
& 13689.4 \\
& 13814.2 \\
& 14063.3 \\
& 14256.4 \\
& 14455.0 \\
& 14657.6
\end{aligned}
\]
GEMINI 7 RECONSTRUCTED ASCENT TRASECTORY

\[
\begin{aligned}
& \text { GEMINI T RECONSTRUCTED ASCENT TRAJECTORY } \\
& \text { EL. RELATIVE VEL. INERTIAL FLT. INERTI }
\end{aligned}
\]
\[
\begin{aligned}
& \text { INERTIAL } \\
& \text { HEADING ANGLE } \\
& \text { (DEGRESS) }
\end{aligned}
\]

Table A-1b. Reconstructed Ascent Trajectory Associated Farameters - Continued
\[
\text { GEMINI } 7 \text { RECONSTRUCTED ASCENT TRAJECTURY }
\]
TIME

4383.644
4324.301
4388.543
4437.976
4470.549
4481.579
4530.978
4562.890
4553.018
4591.007
4612.809
4646.017
4646.596
4696.292
4686.453
4714.132
4772.493
4764.169
4782.768
4790.294
4824.766
4861.266
4840.235
4893.180
4900.042
4942.039
4922.750
4987.016
5023.399
500.9 .804
5026.103
5035.812
5055.815





\begin{tabular}{|c|}
\hline \multirow[t]{8}{*}{} \\
\hline \\
\hline
\end{tabular}


CONFIDENTIAL
Table A－2a．Reconstructed Reentry Trajectory and Associated Farameters（BET）－Continued



\section*{（Glilance time ease）}


5730165.0 C
\(570<174.62\) \(C \in \mathscr{C} 2 \cdot 5.054\)
\(4654158 . C 60\)

E31c059． 3 75－1800い241．50は
 53と5847．687－1758：551．0V0 \(5413261 \cdot 250-17578491.5 i v\)
 \(5482648 \cdot E 12-17561585.752\) \(55 c 7 j 58.812-17956482.250\)
\(5530374.312-17950542.500\) \(5.330374 .312-17954542.500\)
\(555364<.375-17545355.750\)
 \(5600941 .(ن)-17934203.25 u\)
\(562 \pm 185.312-1752 t \in 11.70 \mathrm{C}\)
 \(5 \operatorname{tc5} 357.5114-17917330.250\)
 \(5715335.437-17\) Gしたdj1．750
\(572 \varepsilon 265.375-1790 \cup 347.756\) \(5761129.250-17854647.750\) \(5783458.062-17888952.754\)
\(584 c 73=.562-17883224.250\)
与652123．812－17871754．0v！ 5\＆74736．162－17E6t．U24．250


 5与ETi7ソ．\＆12－17E37L4U．2お守


 \(1 \in U 1.01 L\)
\(1 \in C 2 . L L\) \(1 \in C 2 . し L\)
\(1 \in C 3.64 L\) 1603.606
1604.666 1605．6（ 1ヒCC．Cい
 0
0
0
0
0
-1 0
3
0
0
0
0
-1 1611 じし 1611.606
1612.06 161 シ．Cし 1614．0しC 1615.0 Cl
1616.0 .0 \(1617 . C C E\)
1618.060 1618.060
\(1618.00 \%\) 1620.060 1621.00
\(162 \% .06\) \(622 . \mathrm{Cu}\)
1623.0 Cl 1624．6．2． 2
5
0
\(\sim\)
0
0 3
\(\vdots\)
0
0
0
0 \(j\)
\(j\)
0
0
0
0 3
\(\vdots\)
0
\(\sim\)
0
0 5
\(\vdots\)
0
0
0
0
 3
\(\vdots\)
0
\(n\)
0
0

\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{5}{*}{}} \\
\hline & \\
\hline & \\
\hline & \\
\hline & \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline \multirow[t]{5}{*}{\begin{tabular}{l}
 \\
 \\
 \\

\end{tabular}} \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline
\end{tabular}




\section*{c51.ciu}
651.60
\(650^{\circ} \cdot 6 C^{\circ}\)
    1653.60
    1654. (c)10
    1654.4146
1655.046
    1650.04
1657.060
    1658.16 Cl
    1 e5s. 10 C
    166U.(it)

    662. RUL
1663.066
    \(16 \in 3.0 L\)
\(1 \in E 4.100\)
    \(1665.1,00\)
    l6EE.NLU
    \(1667 . C C C\)
    \(1667 . C \mathrm{Cl}\)
1668.0
1669.000
    669.0 C
1670.06 C
671.00 C
    671.000
672.000
    1673.060
16740
    1675.010
1675.060
676.000
    1676.000
1677.040
    03
0
0
0
0
0
0
-10
    35
30
0.
00
0
    亏
亏
0
0
0
0
0
0
0
0
    1682.06 C
Continued

\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{5}{*}{\begin{tabular}{l}
 \\

\end{tabular}}} \\
\hline & \\
\hline & \\
\hline & \\
\hline & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{5}{*}{\begin{tabular}{l}
 \\
 \\
 \\
 \\

\end{tabular}}} \\
\hline & \\
\hline & \\
\hline & \\
\hline & \\
\hline
\end{tabular}


\footnotetext{

}

CONFIDENTIALContinued



\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{\multirow[b]{2}{*}{N}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{-} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
 \\

\end{tabular}}} \\
\hline & \\
\hline
\end{tabular}

GI-7 BET TKACKEK REEATAY


CONFIDENTIAL
Table A-2a. Reconstructed Reentry Trajectory and Associated Parameters (BET) - Continued

INERIIAL
MAGAITULE
N


Table A-2a. Reconstructed Reentry Trajectory and Associated Farameters (BET) Continued
61-7 bet thacher rezatry

Continued
```

(BET) -

```
s


CONFIDENTIAL
Table A-2a. Reconstructed Reentry Trajectory and Associated Parameters (BET) - Continued








189574.281
189575.201 1895575.26
189576.281 189577.281 \(188957.2 \in 1\)
\(189519.2 E 1\) \(189579.2 E 1\)
\(118958 \mathrm{C} .\langle 81\)
185581.281 1885581.281
189562.261 189582.261
18553.241
189544.261 \(185584 . z \epsilon 1\)
\(185585 . z \epsilon 1\) 189586.281
\(189567 .<01\) \(1185557 .<01\)
189588.261
115589.281 185589.281
185550.281 185590.281
189591.281
169552.281 \(1895 S 2 . 亡 E 1\)
\(18 S 5 S 5.2 C 1\) \(189553 .<c 1\)
\(189594 . c 81\)
189555.281
 184597.281
\(185558 . z t 1\) 185550.261
189559.010
189606.001



            F゙No



                    EGREESI
-73.184
                                ioEGRESS
        INEEIIAL FLT.
PATHANGLE
CUEGKEESI
    INERTIAL
HLAOING ANG



        TIME
from Lificha
(SECCACS)

(Reverse of this page blank.)





\(\qquad\)

 6473u47．0t2－17812712．750

 \(6518964.250-17759217.750\)
\(6533979.937-17794324.000\) \(6545756.500-17789581.500\) \(\epsilon 564348.750-17785359.250\) 65756C1．000－17781328．000

 t \(\in 38154 . C 62-177 \epsilon 3359.750\)
te \(525 \in 2.625-17758984.750\)
 \(\epsilon \in 81477.375-17751045.250\)
\(\epsilon \in 95594.126-17746674.000\) \(67 C 9445.500-17742190.750\)




\section*{\(711 . \mathrm{Cc}\).} \(712 . \mathrm{ccc}\) \(13 . \mathrm{u} c u\)
\(14 . \mathrm{Cu}\) \(15 . L L\)
\(16 . C U G\) \(716 . \mathrm{CuG}\)
717.0 L
718.000 718.000 19.000
20.00 C 720.000
721.000
722.000 722.000
723.040 24．000 725.000
726.040
 \(\circ\)
8
0
\(\infty\)
\(N_{0}\)
\(N\) \(O\)
0
N
N 89
88
0
0
\(\sim\) 08
0
N 80
80
í
\(m\)
\(m\) 80
08
0
0
\(n\)
\(n\)
\(n\)



 8
0
i
N
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{\multirow[t]{6}{*}{\begin{tabular}{l}
 かNべーの○NN \\
 \\
 がmmmmmmm
\end{tabular}}} \\
\hline & & \\
\hline
\end{tabular}





GEMINI GUICANCE ANALYSIS PROGRAM
NASA MANAEC SPACECRAFT CENTER


\(\begin{array}{ll}n \\ n \\ w \\ n \\ 3 \\ 0 \\ w \\ u \\ u & \\ u\end{array}\)





\footnotetext{

}

\(Y-D O T\)

\(x\)-00T
4810.519





\author{
TIME
}


\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{4}{*}{\begin{tabular}{l}
momか~omNMomonanoo \\
 \\
 \\
 \\

\end{tabular}}} \\
\hline & \\
\hline & \\
\hline & \\
\hline
\end{tabular}
\[
\begin{aligned}
& \text { MNWNNNWHNHOWHONOO}
\end{aligned}
\]


EMINI
ASA
GGIDANCE TIME BASEI



\begin{tabular}{l}
20 \\
80 \\
\hline 0
\end{tabular} 98889898989888

Table A-2b, Reconstructed Reentry Trajectory and Associated Farameters (7:18 Radar) - Continued

NNNNNNNNNNNNNNNNNNNNNNNNNNN
\[
\text { GT-7 RE-ENTRY RAQAR } 7.18
\]
(FI/SEC)
\[
\begin{aligned}
& \text { RELATIVE VEL. } \\
& \text { MAGNTUDE } \\
& \text { (FISSEC) }
\end{aligned}
\]
\[
\begin{aligned}
& \text { INERTIAL FLT. } \\
& \text { PANH ANGLE } \\
& \text { (OEGREES) }
\end{aligned}
\]
\[
\begin{array}{r}
2.255 \\
5.928 \\
-4.714 \\
-3.1172 \\
-.465 \\
-3.804 \\
-4.511 \\
8.025 \\
-3.035 \\
-4.386 \\
-3.746 \\
3.636 \\
-3.755 \\
-2.963 \\
-3.937 \\
-3.827 \\
2.953 \\
\hline-110 \\
-3.404 \\
-3.703 \\
-2.867 \\
-3.222 \\
.111 \\
2.975 \\
-3.257 \\
7.468 \\
-3.053 \\
-3.341
\end{array}
\]
\[
\begin{aligned}
& 107.217 \\
& 104.202
\end{aligned}
\]
\[
\begin{aligned}
& \text { GEODETIC LAT. GEODETIC LONG. } \\
& (0 E G R E E S) \quad(D E G R E E S)
\end{aligned}
\]





\[
\begin{aligned}
& \text { GEODETIC LAT. GEODETIC LONG. } \\
& \text { (DEGREES) } \\
& \text { (OEGREES) }
\end{aligned}
\]







7.18
PRTIAL FLI.
TDH ANGLE
(DEGREES)

vel. relative vel. in NERTIAL VE
MAGNITUEG)
(FI/SEG)
 TIME
FROM LIFISFF
(SECCACS) 1189656.281
1189651.281
1189652.281
1189653.281
1189654.261
1189655.281
1189656.281
1189657.281
1189658.261
1189659.281
1189660.281
1189661.281
1189662.281
1189663.281
1189664.281
1189665.281
1189666.281
1189667.281
1189668.281
1189669.281
1189670.281
1189671.281
1189672.281
1189673.281
1189674.281
1185675.281
1189676.281
1189677.281


CONFIDENTIAL



3150-6024-R8-000
Page A-50
Table A-2b.



GT-7 RE-EATRY RACAR 7.18 MERTIAL FLT.
PATH ANGLE
(OEGREES)

 6 INERTIAL VEL.
MAGNITUCE MAGNITUCE
(FT/SEC)



Table A-2b. Reconstructed Reentry Trajectory and Associated Parameters (7:18 Radar) - Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|l|}{gt-7 re-entry racar 7.18} \\
\hline  & inertial vel. magnitude (ft/SEC) & relative vel. magnituce (FT/SEC) & INERTIAL FLT. PATH ANGLE (DEGREES) & INERTIAL heaing angle (DEGREES) & altitude (FEET) & \begin{tabular}{l}
(DEGREES \\
GEODETIC LAT.
\end{tabular} & GEOOETIC LONG. (DEGREES] \\
\hline 1189818.281 & 1817.7 & 449.0 & -. 007 & 93.881 & 35746.5 & 25.394 & -70.125 \\
\hline 1185819.281 & 1089.4 & 334.2 & -3.702 & 83.391 & 35745.7 & 25.394 & -70.125 \\
\hline 1189820.2日1 & 2386.7 & 1018.5 & . 404 & 95.199 & 35771.5 & 25.394 & -70.122 \\
\hline 1185821.z81 & 720.4 & 677.2 & -5.756 & 83.902 & 35771.7 & 25.394 & -70.125 \\
\hline 1189822.281 & 502.9 & 1366.7 & -46.886 & 18.035 & 35627.2 & 25.396 & -70.131 \\
\hline 1189823.281 & 1428.7 & 239.4 & 9.277 & 87.576 & 35586.5 & 25.397 & -70.135 \\
\hline 1189824.281 & 1083.1 & 636.5 & 24.296 & 78.908 & 35650.2 & 25.397 & -70.136 \\
\hline 1189825.281 & 1634.6 & 1177.3 & -1.307 & 134.967 & 35966.2 & 25.397 & -70.136 \\
\hline
\end{tabular}






Table A-2c. Reconstructed Reentry Trajectory and Associated Parameters (IGS) Continuta




icreri

－Continued
Parameters（IGS）
Table A－2c．Reconstructed Reentry Trajectory and Associated Parameters（IGS）
\begin{tabular}{|c|c|}
\hline vinor & \[
\begin{aligned}
& \text { rent } \\
& \text { (ET/SFC) }
\end{aligned}
\] \\
\hline 507．\({ }^{\text {a }}\) & －6R．84 \\
\hline 54.43 & －83．70 \\
\hline 525.77 & －115．50 \\
\hline 539．＾4 & －151．00 \\
\hline 404．98 & －172．51 \\
\hline \(470 . \mathrm{AR}\) & －2？7．95 \\
\hline 443.59 & －3n4．04 \\
\hline 440.71 & －3．0．04 \\
\hline 205.60 & － 238.84 \\
\hline 295.44 & －270．97 \\
\hline 209．04 & －305．74 \\
\hline 292.94 & －4？．70 \\
\hline 253．27 & －＜2\％，R4 \\
\hline 345．73 & －4n0． 97 \\
\hline 240.1 \％ & ． 4 C 4.58 \\
\hline 343．0？ & －522．9x \\
\hline 203.40 & －54h．a号 \\
\hline 2 n ． 20 & －592．4． \\
\hline 299．3） & \(-108.45\) \\
\hline 2ヶ0．0？ & －t21．A2 \\
\hline TEC．04 & －A2R．3n \\
\hline 257．9？ &  \\
\hline 351．56 & －Agr． 75 \\
\hline 710.60 & －721．A？ \\
\hline 207．7ג & －740．8？ \\
\hline 201．08 & －702．0k \\
\hline 17 O .08 & －901． 30 \\
\hline 1R月．）R & －825．85 \\
\hline 161．？ & －f57．n7 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { TME } \\
& \text { (SEC) }
\end{aligned}
\]} & \multirow[t]{3}{*}{\[
\underset{(F T)}{x}
\]} & \multicolumn{3}{|l|}{FADTH CENTFRFD INFRTIAI GRFFNWICH COMRDINATE SYCTEM} \\
\hline & & \multirow[t]{2}{*}{（Ft）} & \multirow[t]{2}{*}{\[
\stackrel{7}{(F T)}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
\mathrm{XAOT} \\
(F T / S F C)
\end{gathered}
\]} \\
\hline & & & & \\
\hline 20ッ7．0625 & norgeta．ar & －jetacasa． 7 m & RGOC5970．6） & 1274.67 \\
\hline Tn70．4375 & － 233401.00 & － 1 th50789． 27 & 9040410.37 & \\
\hline 2031．9125 & ancantl．pt & －1＋65p！no．0n & 9040173.87 & 1246.40 \\
\hline  & 9035659．00 & －1t＋555R1．no & R040528．50 & 1779.76 \\
\hline 2039．04？5 & 00256？1．t？ & －1ttraxal．as & P94R12？．97 & ！ 725.42 \\
\hline 2042．0？\({ }^{\text {P5 }}\) & an41404．an & －14651a87．？？ & 9047187．0n & 1708.46 \\
\hline 204R．5ヶ75 & 9847097．75 & －16t40704．27 & R94大011．\({ }^{\text {a }}\) &  \\
\hline ？ 055.9125 & 9055634．？ 2 & \(-1+146500.6\) ？ & 9042801.00 & l1at．os \\
\hline P057．0375 & 9059070．00 & －1At46702．27 & 9043107．\({ }^{\text {a }}\) & 1140．92 \\
\hline 5060．54．35 & 9n6！093．63 &  &  & 1171.47 \\
\hline 30tr．nts5 & 9043037．87 & －1＋tく3ARR．a & 994170 Rag & 11126.48 \\
\hline P0t5．4375 & onterla．as & －1At4？73日．1？ & 9940744.97 & 1114.70 \\
\hline Pnt7．9175 & 9060775．0n & \(-1+641847.0 n\) & Rn35．336．07 & \(1114 . ? 9\)
1097.67 \\
\hline 2070．1875 & 2971001．75 & －1A＋41011．75 &  & 100？．35 \\
\hline 2075．0635 & －077730．97 & －1f67921R．00
\(-16+38496.1 ?\) & 8929473）．1？ & －\(n 7\) A．as \\
\hline 2077.4275
2070.8125 & 9nR236A． \(7 \times\) & －16637738．75 & 89324ht．0n & 1070.71 \\
\hline 2094．54．5 & 2097440．75 & －1ftra＞80．？5 & 8030700． 75 & 1045．96 \\
\hline 2087．0AP5 & 909009n．42 & －1AFTE538．50 & Ra＞0？ 01.50 & In45．97 \\
\hline ？080．4375 & 9003553．75 & －1＋ADAR4．50 & 9977830.75 & 1735.84 \\
\hline ？091．93？5 & 9na5nll． 25 & －16424354．87 & 9074324．62 & \\
\hline 2094．1875 & 0097454.12 & -14672429.1 ？ & 9974701．97 & 11004．9？ \\
\hline 209t．56？5 & 9090846．27 & －1ヶt73n34．t？ &  & 1006．9 1006.18 \\
\hline 2101．4．775 & 9104772．00 &  & Qalkjliel？ & ORZ．4n \\
\hline 2106．1975 & 9107400.75 & -16420971.75
-144202097 & 2914．17．1？ & ORA． BO \\
\hline 2109．5675 & 31191K．6n
allintor &  & Raloata．nn & 974．85 \\
\hline ？110．0375 & allast．an & －－＋＋¢aspon & 80104．7a．1？ & －\({ }^{\text {a }}\) ． 37 \\
\hline T15．8175 & O11Pal5．A） &  & 90ก8470．月） & 047.90 \\
\hline
\end{tabular}

3150-6024-R8-000
Page A-56
Table A-2c. Reconstructed Reentry Trajectory and Associated Parameters (IGS) - Continued
```

 MOCT
    ```




        YNERTIAL
HEANING ANGLE
(DEGREESI


GFMINI-T
INERTIAL VFL. RELATIVE VEL. INFRTIAL FLT.
    TIME
FROM LIFTOFF
(SECONDS)

Table A-2c. Reconstructed Reentry Trajectory and Associated Parameters (IGS) - Continued

Table A-2c. Reconstructed Reentry Trajectory and Associated Parameters (IGS) - Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{GEMINI-7 REFMTRY SEGMEMT 4} & ay segment 4 & & & & \\
\hline \[
\begin{aligned}
& \text { TIMF } \\
& \text { FRCM IIFTOFF } \\
& \text { (SFCONDS) }
\end{aligned}
\] & infrtial vat. marinituce (ft/SFC) & rflative vel. magnitune |fT/SFC) & INERTIAL FLT. Path angle (DFGREESI & INFRTIAL HFADING ANGLF (DEGREFSI & ALTITISD (FEFT) & gennetic lat. (nEGREFS) & GEOMFTIC LONG. (TEGRFES) \\
\hline 1190005.484 & 1421.4 & 107. \({ }^{\text {P }}\) & 3.2 24 & 92.447 & 40184.0 & 25.435 & -70.097 \\
\hline 1190007.959 & 1403.1 & 108.0 & 2.781 & 93.353 & 40341.0 & 75.434 & -70.097 \\
\hline 1180010.359 & \(1889 . ?\) & 137.] & 3.584 & 94.389 & 40574.7 & ?5.434 & -70.037 \\
\hline 1189917.734 & 1377 & 150.8 & 3.212 & 05.382 & \(4072 \mathrm{~A} . ?\) & 25.427 & -70.037 \\
\hline 1189015.109 & 1361.9 & 171.? & 7.500 & 96.573 & 40992.2 & ?5.432 & -70.037 \\
\hline 118091).850 & 1346.7 & 200.6 & 1.006 & 98.082 & 41143.0 & 25.470 & -70.037 \\
\hline 1199022.350 & 1333.7 & 238.? & 7.058 & 99.505 & 41275.2 & 25.42 R & -70.038 \\
\hline 1180937.109 & 1320.0 & 200. 2 & !. 8 e5 & 101.910 & 41521.0 & 25.4.5 & -70.030 \\
\hline 1189031.859 & 1206.1 & 34.0 & 2.107 & 104.097 & 417320 & 75.421 & -70.040 \\
\hline 1189929.109 & 1279.4 & 307.5 & . 530 & 106.369 & 41950.0 & 25.415 & -70.044 \\
\hline 1190941.734 & 1273.6 & 471.1 & ,.017 & 107.988 & 42010.5 & 25.412 & -70.045 \\
\hline 1189943.959 & \(1263 . ?\) & 461.3 & . 910 & 109.404 & 42002.0 & 25.409 & -70.046 \\
\hline 1189046.359 & 1263.3 & 4a). 7 & . 167 & 110.350 & 42120.0 & 25.406 & -70.047 \\
\hline 1180949.734 & 1262.0 & 499.5 & -. 047 & 111.175 & 42120.5 & 25.404 & -70.040 \\
\hline 1189451.109 & 1248.3 & 544.4 & .681 & 113.169 & 42134.0 & 25.400 & -70.050 \\
\hline 1180053.484 & 1230.7 & 570.6 & . 186 & 114.371 & 42153.5 & 25.397 & -70.052 \\
\hline 1180958.359 & 1248.9 & 507.5 & -.586 & 115.607 & 42120.0 & 25.300 & -70.056 \\
\hline 1189060.734 & 1245.3 & 627.6 & -1.371 & 116.967 & 42065.0 & 25.387 & -70.058 \\
\hline 1180063.109 & 1239.9 & 669.7 & -. 463 & 118.970 & 42015.5 & 25.383 & -70.060 \\
\hline 1189967.850 & 1251.8 & 700.6 & -1.100 & 170.314 & 41927.2 & 75.375 & -70.054 \\
\hline 1189970.359 & 1246.2 & 7?8.7 & -1.950 & 121.598 & 41832.7 & 25.370 & -70.067 \\
\hline 1189972.734 & 1236.7 & 761.1 & -1.010 & 173.19? & 41752.0 & 25.366 & -70.060 \\
\hline 1189075.109 & 1241.7 & 775.7 & -1.423 & 123.875 & 41685.0 & 25.3A7 & -70.071 \\
\hline 1180977.484 & 1246.0 & 798.1 & -1.889 & 124.816 & 41505.0 & 25.357 & -70.074 \\
\hline 1189079.859 & 1245.3 & 828.3 & -7.558 & 125.103 & 41475.7 & 25.352 & -70.077 \\
\hline 1180084.734 & 1257.5 & 872.3 & -2.018 & 12R.1A9 & 41? ? 0 & 25.342 & -70.09? \\
\hline 1189089.484 & 1265.4 & 923.1 & -2.921 & 130.410 & 40954.7 & 25.33? & -70.08R \\
\hline 1199991.859 & 1768.6 & 051.1 & -3.428 & 131.648 & 40783.0 & 25.326 & -70.091 \\
\hline
\end{tabular}
Table A-2c. Reconstructed Reentry Trajectory and Associated Parameters (IGS) - Continued



\footnotetext{

}
Table A-3. PCM Edit Listing for Ascent Flight Phase - Continued
CEMINI FOIT DROGRAM
TIMF IN SECTNISS FROM LIFTOFF


\[
\stackrel{Y}{Y} \mid
\]
TEMINI FOIT PROGRAM

ioño
TIMT IN SECONDS FROM LIFTOFF

            CCMPUTFN POSITION VELOCIIY ANO ACCELERATION IN GUIDANCF THRUST COMRDINATFS
\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { KDCT } \\
\text { (FT/SFCT }
\end{gathered}
\] & \[
\begin{gathered}
Y \cap n T \\
(F T / S F C)
\end{gathered}
\] & \[
\begin{gathered}
2007 \\
\text { (FT/SEC) }
\end{gathered}
\] & \[
\begin{gathered}
\text { XDOOT } \\
(F T / S F C * 2)
\end{gathered}
\] & \[
\begin{gathered}
\text { YODOT } \\
\text { IFT/SEC*2 }
\end{gathered}
\] \\
\hline R44R.60 & -811R.46 & 9.13 & 41 & \\
\hline
\end{tabular}


GEMINI EDIT PROTIRAM
TIMF IN SFCONOS FROM LIFTOFF
CCMPUTED POSITION VFLOCITY AND ACCFLERATION IN GUIDANCF THRUST COOROINATFS

Table A-3. PCM Edit Listing for Ascent Flight Phase - Continued
TIMF IN SECRNDS FROM LIETOFF
\begin{tabular}{c} 
2ODOT \\
(FT/SFC \(\# 2\) ) \\
-.26 \\
-.23 \\
-.23 \\
-.23 \\
-.25 \\
-.30 \\
-.73 \\
-.77 \\
-.41 \\
.05 \\
.05 \\
.05 \\
.02 \\
.03 \\
.01 \\
.01 \\
.02 \\
-.01 \\
-.00 \\
.00 \\
-.02 \\
.01 \\
.01 \\
.01 \\
.04 \\
.00 \\
\hline.
\end{tabular}

Table A-3. PCM Edit Listing for Ascent Flight Phase - Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|l|}{GFMINI EDIT PROGRAM} \\
\hline \multicolumn{10}{|l|}{TIME IN SFCDNES FPDM LIFTOFF} \\
\hline & \multicolumn{9}{|l|}{CCMPUTEC POSITION VFLOCITY AND ACCELERATION IN GUIDANCE THRUST COOROINATES} \\
\hline \[
\begin{gathered}
\operatorname{TIMF} \\
(\text { SECS }
\end{gathered}
\] & \[
\begin{gathered}
X \\
(F T)
\end{gathered}
\] & \[
\stackrel{Y}{(F T)}
\] & \[
\stackrel{l}{(\mathrm{FT})}
\] & \[
\begin{gathered}
\text { XOCT } \\
\text { (FT/SEC) }
\end{gathered}
\] & \[
\begin{gathered}
\text { YOOT } \\
\text { (FT/SEC) }
\end{gathered}
\] & \[
\begin{gathered}
20 n T \\
(F T / S F C)
\end{gathered}
\] & \[
\begin{gathered}
\text { XONOT } \\
(F T / S F C * 2)
\end{gathered}
\] & \[
\begin{gathered}
\text { YODOT } \\
\text { (FT/SFC*2) }
\end{gathered}
\] & \[
\begin{gathered}
\angle 0 D C T \\
(F T / S E C * 2)
\end{gathered}
\] \\
\hline 309.224 & 4446903 & -2577950 & -9963 & 24643.04 & -5498.17 & -57.94 & . 01 & -.03 & -. 00 \\
\hline 401.977 & 4514724 & -7546359 & -912? & 24644.06 & -5608.41 & -59.25 & .01 & -. 01 & -. 00 \\
\hline 404.050 & 4545430 & -2560278 & -9244 & 24644.10 & -6698.47 & -59.10 & .02 & . 00 & . 01 \\
\hline 404.790 & 4622970 & -257863? & -9407 & ? 4644.7 ? & -6508. 30 & -59.07 & -. 13 & -. 03 & -. 00 \\
\hline 40A. 870 & 46P4?37 & -2592566 & -9524 & 24.44.07 & -6698. 17 & -57.87 & -. \(1^{18}\) & -. 06 & -. 04 \\
\hline 411.619 & 475195? & -2610974 & -9684 & 24642.64 & -8699.00 & -58.38 & -. 20 & -. 04 & -. 08 \\
\hline 413.694 & 4909115 & -2624982 & -0905 & 24642.68 & -6698.87 & -59.42 & -. 17 & -. 02 & -. 08 \\
\hline 416.42 h & 4970646 & -2643745 & -996R & 24642.00 & -660月. 50 & -58.73 & .01 & . 06 & . 02 \\
\hline
\end{tabular}


\section*{APPENDIX B}

\section*{TRW REGRESSION PROGRAM} (REMP) MODIFICATIONS

A change has been implemented in the TRW regression program (REMP) that allows the effect of unmodeled error uncertainties to be reflected in the a posteriori statistics of the error coefficients. This means that if a set of known functions are purposely omitted from the solution due to correlation or restrictions on model size, the uncertainties of these omitted errors can be effectively added to the uncertainties in the errors that are solved for. This change is mathematically sound and can be described in the following equations.

The usual expression for \(C_{K}\), the a posteriori covariance matrix of the error coefficients, is
\[
\begin{equation*}
C_{K}=\left(B_{\sigma_{m}}^{-1} B+C_{K_{o}}^{-1}\right)^{-1} \tag{1}
\end{equation*}
\]
where
\[
\begin{aligned}
& B \equiv \text { partial derivations of measurements with respect to error } \\
& \text { coefficients } \\
& \sigma_{m} \equiv \text { assumed white noise covariance matrix of data } \\
& C_{K_{o}} \equiv \text { a priori error coefficient uncertainties. }
\end{aligned}
\]

The more valid expression for \(C_{K}\), in light of functions which truly exist but are not solved for, is
\[
\begin{equation*}
C_{K}=\left(B_{\sigma_{m}^{T}}^{-1} B+C_{K_{o}}^{-1}\right)^{-1}\left[B^{T} \sigma_{m}^{-1}\left(\sigma_{m}+\beta \Sigma_{o} \beta^{T}\right)_{\sigma_{m}^{-1}}^{-1} B+C_{K_{o}}^{-1}\right] \tag{2}
\end{equation*}
\]
\[
\left(B_{\sigma_{m}}^{-1} B+C_{K_{o}}^{-1}\right)^{-1}
\]

\section*{UNCLASSSIFIED}

\section*{APPENDIX B}

TRW REGRESSION PROGRAM (REMP) MODIFICATIONS

A change has been implemented in the \(T R W\) regression program (REMP) that allows the effect of unmodeled error uncertainties to be reflected in the a posteriori statistics of the error coefficients. This means that if a set of known functions are purposely omitted from the solution due to correlation or restrictions on model size, the uncertainties of these omitted errors can be effectively added to the uncertainties in the errors that are solved for. This change is mathematically sound and can be described in the following equations.

The usual expression for \(C_{K}\), the a posteriori covariance matrix of the error coefficients, is
\[
\begin{equation*}
C_{K}=\left(B_{\sigma_{m}}^{-1} B+C_{K_{o}}^{-1}\right)^{-1} \tag{1}
\end{equation*}
\]
where
\[
\begin{aligned}
& B \equiv \text { partial derivations of measurements with respect to error } \\
& \text { coefficients } \\
& \sigma_{m} \equiv \text { assumed white noise covariance matrix of data } \\
& C_{K_{o}} \equiv \text { a priori error coefficient uncertainties. }
\end{aligned}
\]

The more valid expression for \(C_{K}\), in light of functions which truly exist but are not solved for, is
\[
\begin{align*}
C_{K}= & \left(B_{\sigma_{m}}^{-1} B+C_{K_{o}}^{-1}\right)^{-1}\left[B_{\sigma_{m}}^{-1}\left(\sigma_{m}+\beta \Sigma_{o} \beta^{T}\right) \sigma_{m}^{-1} B+C_{K_{o}}^{-1}\right]  \tag{2}\\
& \left(B_{\sigma_{m}}^{-1} B+C_{K_{o}}^{-1}\right)^{-1}
\end{align*}
\]

\section*{UNCLAASSIFIED}
where
\[
\begin{aligned}
& \beta \equiv \text { partial derivatives of measurements with respect to omitted } \\
& \text { error coefficients }
\end{aligned}
\]
with manipulation, Equation 2 can be written as
\[
C_{K}=C_{K}{ }^{*}+C_{K^{*}} B_{\sigma_{m}^{-1} \beta \Sigma_{o} \beta^{T} \sigma_{m}^{-1} B C_{K^{*}}=C_{K}+\Delta C_{K}, ~}
\]
where
\[
C_{K}^{*}=\left(B_{\sigma_{m}}^{-1} B+C_{K_{o}}^{-1}\right)^{-1}
\]

The REMP program now computes the \(\Delta C_{K}\) term and prints out both \(\mathrm{C}_{\mathrm{K}}\) and \(\Delta \mathrm{C}_{\mathrm{K}}\), omitting the old \(\mathrm{C}_{\mathrm{K}}\) * terms. It is obvious that the uncertainties of the solved-for error coefficients will now be larger than before ( \(\Delta C_{K}\) being always positive), sometimes much larger, depending of course on \(\beta\) and \(\Sigma_{0}\).

Table B-1 lists the unmodeled error sources considered in the Gemini 7 analysis. The associated l-sigma a priori uncertainties are also listed.

UWLLASSIFIED

\begin{tabular}{|c|c|c|}
\hline Symbol & Error Source & 1-Sigma Uncertainties \\
\hline \({ }^{B_{X}}\) & X accelerometer bias & 100 ppm \\
\hline \({ }^{B} \mathbf{Y}\) & Y accelerometer bias & 100 ppm \\
\hline \({ }^{B}\) Z & \(Z\) accelerometer bias & 100 ppm \\
\hline YSF & Y accelerometer scale factor & 160 ppm \\
\hline ZSF & Z accelerometer scale factor & 160 ppm \\
\hline PHIX & Platform misalignment about x accel axis & 44.8 arcsec \\
\hline A5(1) & MISTRAM I 10K P Leg refraction & 15 n units \\
\hline A6(1), A7(1), A8(1) & MISTRAM I 10K P Leg Internal X, Y, Z Survey & 5 ppm \\
\hline B6(1), B7(1), B8(1) & MISTRAM I lok Q Leg Internal X, Y, Z Survey & 5 ppm \\
\hline \[
A 5(2)
\] & MISTRAM I 100K P Leg Refraction & 15 n units \\
\hline A6(2), A7(2), A8(2) & MISTRAM I 100 K P Leg Internal \(X, Y\), Z Survey & 5 ppm \\
\hline B6(2), B7(2), B8(2) & MISTRAM I 100 K Q Leg Internal \(\mathrm{X}, \mathrm{Y}, \mathrm{Z}\) Survey & 5 ppm \\
\hline C4(3) & GE/Final Range Refraction & 15 n units \\
\hline
\end{tabular}

\section*{REFERENCES}
1. F. B. Lavenhar, "Preliminary Gemini G and C Data Reduction and Analysis Plan, "Space Technology Laboratories, 4160-6009-TU000, 30 October 1964.
2. 'Evaluation Report of Mod IIIA Radio Tracking System and Mod III G Missile Borne Guidance Equipment With Gemini Launch Vehicle 7 (U), " Technical Operating Report GE No. 66A200, 7 January 1966. (C)```


[^0]:    *Level changes at 107 seconds in the $x$ and $z$ curves are due to updating the initial earth rate conditions by the onboard computer as a result of the RGS/IGS update routine.

[^1]:    **The preflight values were determined from simulation results obtained by telephone from IBM. Since no exact simulation of the Gemini 7 trajectory was available, values were obtained by interpolating from a series of simulations for similar trajectories with various launch azimuths.

