

INERTIAL GUIDANCE SYSTEM EVALUATION
 TRAJECTORY RECONSTRUCTION II I
 (NASA-TM-X-61009) GEMINI GT-3 INERTIAI

N79-76309
GUIDANCE SYSTEM EVAIUATION TRAJECTORY
RECONSTRUCTION (NASA) 102 p

17 MAY 1965
Published as Supplemental Report 4 to the Gemini Program Mission Report GT-3
(Gemini 3) MSC-G-R-65-2 by:
National Aeronautics and Space Administration Manned Spacecraft Center

Houston, Texas

TRW space technology laboratories

NAS9-2938
Total Pages: 102
NASA-MSC-G-R-65-2
Supplemental Report 4

INERTIAL GUIDANCE SYSTEM EVALUATION TRAJECTORY RECONSTRUCTION (U)

17 MAY 1965

Published as Supplemental Report 4 to the Gemini Program Mission Report GT-3
(Gemini 3) MSC-G-R-65-2 by:
National Aeronautics and Space Administration
Manned Spacecraft Center
Houston, Texas

TRW space technology laboratories

INERTIAL GUIDANCE SYSTEM EVALUATION TRAJECTORY RECONSTRUCTION

4160-6047-TC000

17 May 1965

By

P. M. Jackson
W. R. Anders

Approved By: $\frac{\text { Qalent }}{\text { R. J. Bogts. }}$. Soyles

Approved By:

TABLE OF CONTENTS

1.0 Introduction 1
2.0 Summary 3
3.0 Ascent Analysis 5
4.0 Re-Entry Analysis 29
5.0 Trajectory Reconstruction 39
6.0 Tracking System Performance 59
7.0 References 71
Table
I Guidance Error At SECO 10
II GT-3 Navigation Errors 11
III Ascent Phase IMU Analysis Recovered Coefficients 15
IV Accelerometer Bias And Scale Factor Summary 24
v Errors At SECO 25
VI Azimuth Update 27
VII Indicated Position Summary 30
VIII Re-Entry Analysis Recovered Error Source Coefficients 38

TABLE OF CONTENTS

(Continued)
Appendix Page
I Ascent Thrust Profile 72
II Re-Entry Thrust Profile 84
III Ascent Gimbal Angles And Attitude Errors 94

LIST OF FIGURES

Figure Page
1 GE Final And 100K MISTRAM ΔV, Thrust Coordinates 6
2 GE Final And look MISTRAM ΔP, Thrust Coordinates 7GE Final And look MISTRAM ΔV, Guidance InertialCoordinates8
4 Navigation Velocity Error 9
5
100K MISTRAM ΔV, Thrust Coordinates, CalibrationComparison13
100K MISTRAM ΔV, Thrust Coordinates, CalibrationComparison14
7 Free-Flight Velocity Errors, Thrust Coordinates 19
8 Pitch Malfunction Error Propagation Curves 22
9Re-Entry Mode ΔP, Radar Initialized Guidance Trajectory35
12 Re-Entry Mode ΔV, Radar Initialized Guidance Trajectory 36
13 Re-Entry Mode Special Parameters 53
14 GE/Burroughs And 100K MISTRAM ΔV, Thrust Coordinates 62
15 10K MISTRAM And 100K MISTRAM ΔV, Thrust Coordinates 64

4160-6047-TC000 -vi-

LIST OF FIGURES
 (Continued)

Figure Page
16
Final MISTRAM And 100K MISTRAM ΔV, Thrust Coordinates 66
17 Passive MISTRAM And 100K MISTRAM ΔV, Thrust Coordinates 67
18
BET And 100K MISTRAM ΔV, Thrust Coordinates 68
19 Ascent Phase Thrust Profile 73
20 Inertial Flight Path Angle 74
21 Re-Entry Mode Thrust Profile 82
22 Gimbel Angles And Attitude Errors 95

Acknowledgements

The authors wish to thank R. J. Boyles for his contribution to this report and the computer programing staff headed by S. F. Needham and J. N. Bausch for the efficient and timely reduction of the data.

4160-604?-TCOOO
-l-
1.0 INTRODUCTION

GEMINI flight GT-3 was successfully launched on 23 March 1965 from Complex 19 at Cape Kennedy, Florida. This was the first manned orbital flight and the second to carry an inertial guidance system in the GEMINI spacecraft.

The purpose of this report is to present the results of the inertial guidance system analysis performed during ascent and re-entry and to provide a trajectory reconstruction of the spacecraft during ascent and re-entry. The contents of this report are as follows:

Section 2.0	- Provides a summary of the significant analysis results determined from this flight.
Section 3.0	- Provides a detailed description of the analysis performed during the ascent portion of flight. This includes a discussion of; a) inertial measurement unit (IMU) accelerometer and platform errors, b) the radio guidance - inertial guidance update procedure, and c) airborne computer computation errors.
Section 4.0	- Provides a description of the IMU error analysis performed during re-entry and the correlation between the ascent and the re-entry IMU analyses.

Section 5.0 - Provides tabular listings of the trajectory reconstruction during ascent and re-entry.

Section 6.0 - Describes the external tracking system performance and quallty.

Appendix - Contains listings and plots of the thrust acceleration profile for ascent and reentry and plots of the ascent gimbal angles and attitude errors.

The following is a brief summary of the major results from analysis of the data from this flight:
2.1 Excessive pitch type errors were noted during the ascent and re-entry modes of flight with magnitudes equivalent to the following constant pitch drift rates:
a. $1 \mathrm{deg} / \mathrm{hr}$ for the first 180 seconds of ascent.
b. $23 \mathrm{deg} / \mathrm{hr}$ after 180 seconds and at least until SECO.
c. $4.6 \mathrm{deg} / \mathrm{hr}$ during the entire post-retro phase of the re-entry mode.

Analyses of the observed errors and concurrent postflight tests on the GT-3 platform by Honeywell indicate the observed pitch errors are attributable to a malfunctioning Y gyro.
2.2 The major guidance system errors other than the pitch errors resulted from X and Z accelerometer acale factor errors of approximately 700 and 600 parts per million and bias errors of 340 and $180 \mathrm{ppm} g$ respectively. Comparisons of calibration data indicated that the large scale factor errors would not have been present, resulting in considerable improvement in guidance velocity magnitude accuracy, had the latest preflight calibration data been used.
2.3 Analysis of the update procedure indicated negligible azimuth drifts during the ascent phase and successful accomplishment of the GGS/IGS update procedure.
2.4 There was no evidence of an accelerometer count gain malfunction as observed on the GT-2 flight (see Reference 3).
2.5 The best estimate of the re-entry trajectory based upon corrected guidance data indicates that the spacecraft was 14 nautical miles North and 59 nautical miles West of the desired impact point at 799 seconds after retrofire. (This was at approximately 50,000 feet altitude and corresponds to the last available guidance or tracker trajectory point.) The IMU error while large made a relatively small contribution to the total impact miss.
2.6 In general, the quality of the tracking data was excellent. The quick look MISTRAM data was much improved compared to GT-2.

The principal discrepancy in the data received on this flight was a large systematic error, amounting to 2-3 feet per second in \dot{X} and 10-20 feet per second in \dot{Y}, noted between MISTRAM and GE Mod III late in flight.

Re-entry radar data was, in general, adequate with the exception of 3.18 data which exhibited very large systematic errors.

3.1 Introduction

Flight time history comparisons were made between guidance system telemetered quantities and external tracking data for the purpose of evaluating the Inertial Measurement Unit (IMU) accuracies and the navigation performance on GT-3. The IMU evaluation is based on thrust velocity comparisons (Figure 1) between the telemetered accumulated accelerometer count data properly scaled and biased and external tracking data converted to guidance thrust velocities (gravity removed). The guidance coordinate system is an inertial, orthogonal, right-handed system aligned with the launch site at inertial T_{0} and referenced to the center of the earth. The X and Z axes lie in a plane parallel to the geodetic tangent plane with the X axis defined by the launch azimuth positive downrange. The Y axis is positive down along the geodetic vertical and Z is directed so as to complete the right-handed X, Y, Z set.

Comparisons were also made between the telemetered total inertial position and velocity output of the airborne computer and external tracking dat (Figures 2, and 3). These are called inertial or totel comparisons and include alrborne computer navigation errore such as caused by gravity approximatione, truncation errora, etc. The difference between this set of comparisons and the thruat comparison set (DELTA-DELTA Comparisons, Figure 4) providen measure of the alrborne computer navigation error.

$$
\begin{gathered}
4160-6047-\mathrm{TCOOO} \\
-6-
\end{gathered}
$$

Figure 1

Figure 2

$$
\begin{gathered}
4160-6047-T C 000 \\
-8-
\end{gathered}
$$

Figure 3

4160-6047-TCOOO -10-

Comparisons were made using several sources of external tracking data including quick look MISTRAM I 10 K and 100 K , GE/Mod III/Final, GE Mod III/Burroughs, final MISTRAM, passive MISTRAM II and BET. The relative merits of these data sources are described in Section 6.0. The ascent analysis was based primarily on quick look MISTRAM I 100K data because of its superior quality. Details of the data processing required to obtain these comparisons are given in Reference 1.

The plots enclosed are referenced to liftoff which occurred 3.452 seconds after go inertial.

Guidance Error

The indicated guidance system error at SECO (334 seconds from liftoff) and equally valid at separation (359 seconds from liftoff) are given below. These values were obtained by examination of the position and velocity comparisons (Figures l-4).

TABLE I
GUIDANCE ERROR AT SECO

The column headed IMU ERROR represents the error contributed by the accelerometer and gyro sources, that headed NAVIGATION EQUATION ERRORS is the contribution due to various approximations within the airborne computer as observed from the Delta Delta Comparisons* and that titled TOTAL GUIDANCE ERROR is the sum of the two and represents the total IGS error. These total errors result in velocity magnitude and flight path angle errors at release of the following amounts

$$
\begin{aligned}
& \Delta|\mathrm{v}|=12 \mathrm{fps} \\
& \Delta r=.38 \mathrm{deg}
\end{aligned}
$$

The following table is a comparison between the navigation errors observed on this flight and those predicted by preflight simulation. **

TABLE II
GT-3 NAVIGATION ERRORS

	Position (ft)			Velocity (ft/sec)		
	X	Y	Z	$\dot{\mathrm{x}}$	\dot{Y}	\dot{z}
Actual	452	111	-568	-3.7	. 5	-1.5
Simulated	51	0	-160	-3.25	1.45	-. 45

The observed differences are most likely attributable to computational errors caused by the large position errors observed on this flight.

[^0]
$3 \cdot 3$

IMU Analysis
The thrust coordinate velocity comparison plots (Figures 5 and 6) indicate large steadily increasing X axis velocity errors throughout flight; and rapid negatively increasing Y velocity errors, beginning approximately 180 seconds from liftoff, abruptly reversing an increasing positive trend prior to that time. These anomalies are attributable primarily to excessive X and Z accelerometer bias and scale factor errors, and a pitch drift malfunction error occurring at approximately 180 seconds.

Preliminary observations of the data revealed that the major portion of the X error prior to 180 seconds could be attributable to an X accelerometer scale factor error; however, the velocity error trend beyond this period suggested the presence of an additional large magnitude error source. Since both the X and Y axis velocity comparisons indicated the presence of a large magnitude error source beginning mid-flight while the 2 axis seemed unaffected, it was concluded that a pitch type malfunction must have occurred during the latter period of the ascent phase.

Because of this apparent malfunction it was necessary to perform a soparate analysis before and after this occurrence. Table III summarizes the results of this analyais by listing error coefficients that could account for the ascent IMU error. This partitioning of the flight into time intervala lessened the accuracy with which the IMU errors could be ieolated, but permitted the identification of the type of errora present (1.e., gyro versus accelerometer or drift versus measurement) and approximate equivalent magnitudes.
$4160-6047-\mathrm{TCOOO}$
$-13-$

Figure 5

ASCENT PHASE IMU ANALYSIS RECOVERED COEFFICIENTS

Symbol	Error Source	Recove	Coefficient
VOX	X accel initialization	-. 25	fps
VOZ	Z accel initialization	-1.2	fps
XSF	X accel scale factor	687	ppm
ZSF	Z accel scale factor	522	ppm
B_{x}	X accel bias	340	ppm g
B_{y}	Y accel bias	-22	ppm ${ }^{\text {g }}$
B_{2}	Z accel bias	180	ppm ${ }^{\text {g }}$
YGCDR	Y gyro constant drift rate	1.0	$\mathrm{deg} / \mathrm{hr}$
DT	Time correlation error	-. 005	sec
$\begin{gathered} \text { YGCDR } \\ (180) \end{gathered}$	Y gyro constant drift rate initiated (180 seconds from go inertial)	23	$\mathrm{deg} / \mathrm{hr}$

3.3.1 Ascent Flight Prior to 180 Seconds

The first attempts at error source isolation involved the use of the Error Coefficient Recovery Program (ECRP) described in Reference 1. However, regressions using large error models such as that recommended in the GEMINI Accuracy Prediction Study, Reference 2, would not yield satisfactory results due to the similarity of error source propagations over this short time span. The usable data interval for regression which was very short (115 seconds) necessitated the making of a series of regressions using 5 to 10 term error models. The terms used in the regression were selected primarlly because of their representative types of propagations. These included the following: *

1. BX X accelerometer bias
2. $B Y$

Y accelerometer bias
3. BZ Z accelerometer bias
4. XSF X accelerometer scale factor
5. ZSF Z accelerometer scale factor
6. PHIY Platform misalignment about Y accel axis
7. PHIZ Platform misalignment about Z accel axis
8. YGCDR \quad Y gyro constant drift rate
9. YGIAU Y gyro input axis unbalance
10. XQUAD X accelerometer quadratic non-linearity
11. ZXMSL Z accelerometer misalignment toward X
12. $\mathrm{VOZ} Z$ accelerometer inftialization error

[^1]Figure 6 shows a fit obtained from one of the regression solutions. The error coefficients recovered from that solution which is typical of the regressions performed are indicated below.

X accelerometer scale factor	339 ppm
Z accelerometer scale factor	611 ppm
X accelerometer bias	467 ppm g
Y accelerometer bias	92 ppm g
Z accelerometer bias	-414 ppm g
Platform misalignment about Y	80 sec
accelerometer axes	
Platform misalignment about Z	
accelerometer axes	
Y gyro constant drift rate	$-6.9 \widehat{\mathrm{sec}}$
Z accelerometer initialization	$1.6 \mathrm{deg} / \mathrm{hr}$

The above coefficients are similar to those recovered from other regressions with the exception of the X and Z accelerometer biases which varied between large positive and negative values with successive error model variations. This is attributable to their high correlation with the pitch type error sources. The above coefficients were used in the trajectory reconstruction discussed in Section 5 because they provided the best fit to the early data.

Most significant among the regressions was the consistent indications of X and Z accelerometer scale factor errors of approximately 500 and 600 ppm and Y gyro constant drift rates between 1 and 1.6 degrees per hour. Discussions of these results at the Honeywell Company revealed that the above scale factor errors were consistent with the differences noted between successive calibrations (see Section 3.5). It was also noted that the Y gyro demonstrated constant drift rates of approximately 1 degree per hour during postfilght tests of the GT-3 platform.

Based upon the above results, further attempts to isolate the IMU errors were accomplished by using what was considered to be the best available set of calibrations. These were the accelerometer scale factor and misalignment values of the Cape calibrations and the accelerometer biases obtained from the analysis of the free flight velocity errors. These velocity errors during portions of the catch-up and re-entry mode are shown in Figure 7.

Figure 7 is a plot of scaled and corrected thrust velocity during time intervals of flight where the spacecraft is in virtual free flight. Since there should be no net accelerometer velocity output, all the indicated trends were assessed to be incorrect accelerometer biases.

The velocity comparisons resulting from the new set of calibration data are shown in Figures 5 and 6 where the term CAPE CALIBRATIONS refers to the combined set mentioned above. With the removal of the apparent calibration errors, hand fits of the new comparison curves were accomplished. These resulted in the following error source coefficients.

Z accelerometer initialization	-1.2 fps
Y gyro constant drift rate	$1.0 \mathrm{deg} / \mathrm{hr}$
X accelerometer initialization	-.25 fps
X accelerometer scale factor	267 ppm

The residuals indicated in Figures 5 and 6 show approximately .6 fps difference between the hand fit curve and the data at 160 and 340 seconds. This difference is attributed to a 5 millisecond time correlation error. The hand fit results are not as exact a fit to the observed error as could be expected consistent with MISTRAM accuracies; however, they do substantiate the drift type errors recovered by the regression and also indicate the presence of additional X accelerometer scale factor error.

3.3.2 Ascent Flight After 180 Seconds from Go-Inertial

The analysis of the Jater portion of the ascent flight consisted of determination of the time of malfunction occurrence, and isolation of the type of malfunction which caused the excessive Y axis velocity error.

Figure 6 which is a velocity comparison of the early portion of the ascent flight, shows a Y velocity error trend reversal beginning at approximately 180 seconds after go inertial. The X axis errors also show a rapid departure from the extension of the ECRP fit at this time. Observing the extension of the hand fit results between 180 and 200 seconds, it can be seen that the occurrence could have initiated at any time during that interval. Attempts to correlate this interval with flight events revealed only a rapid change in Y acceleration between 180 and 190 seconds from liftoff corresponding to the pitch down maneuver at that time (see Appendix I, Figure 19)." Because of the uncertainties in establishing the exact time by visual means, the time the occurrence initiated was considered in the analysis to be between 165 and 200 seconds from go inertial with close establishment of the time to result from attempts to provide curve fits to the data.

* Honeywell is conducting studies to determine the behavior of the Y gyro reaponse to the observed acceleration profile. Preliminary information indicates peculiar but not completely consistent gyro drift when the acceleration changes sign along the Y gyro spin axis.

Efforts to isolate the type and magnitude of the malfunction were based upon the assumption that the malfunction could be approximated by a single stationary error source initiated at one instant of time. Therefore, based upon this assumption, the IMU error simulation program (see Reference l) was modified to generate unit error propagations at discrete times after go inertial. Figure 8 presents plots of three of the error source propagations generated by the program. These are pitch type error sources including Y gyro constant drift rate, Y gyro input axis unbalance and platform misalignment about the Y accelerometer axis. These were considered the more probable based upon comparing their propagations with the observed flight X and Y axis velocity errors.

A composite hand fit to the Cape calibration velocity comparisons was accomplished resulting in the following recovered coefficients from the entire ascent phase.

Z accelerometer initialization	-1.2 fps
Y gyro constant drift rate (from go inertial)	$1.0 \mathrm{deg} / \mathrm{hr}$
X accelerometer initialization	-.25 fps
X accelerometer scale factor	267 ppm
Y gyro constant drift rate	
beginning at 177 seconds	$23 \mathrm{deg} / \mathrm{hr}$
(180 from go inertial)	
Time correlation	-.005 seconds

.09
.08
.07
.

6.0
$-.01$
GEMINI GT-3 SPECIRL E.R.P. YGIAU INITIATED AFTER T-0 (UNIT VALUE = 1 DEG $/$ Ma/ 6

The hand fit curve shown in Figures 5 and 6 resulted from the above coefficients with the exclusion of time correlation error which accounts for the residuals at 160 and 340 seconds. The residual at 200 seconds undoubtedly is due to the non-stationary nature of the malfunction and is a direct measure of the inadequacy of the basic stationary error assumption.

3.4 Preflight Calibrations

With the exception of X accelerometer bias, the calibrations used during flight, were those obtained at Honeywell on 26 February 1965. Another set of calibrations were obtained at Cape Kennedy prior to flight. These calibrations showed all the scale factor and X accelerometer bias values considerably different from those of the earlier set; however, only the X accelerometer bias value of the original (2-26-65) set was changed. Later X axis accelerometer calibrations showed additional large shifts in the X accelerometer bias and although the latest value was not flown, it was used in the ground alignment of the platform. The Honeywell and Cape calibration bias and scale factor values are shown in Table IV which also presents the accelerometer bias values determined from the postflight analysis of free flight velocity errors (Figure 7).

Table iV also indicates the difference between the Cape and Flight values the most significant of which are large magnitude scale factor changes of the three accelerometers. The X accelerometer was modified during the period between calibrations in an attempt to prevent the recurrence of the accelerometer malfunction noted on the GT-2 mission. This modification may provide an explanation for the observed variations of X accelerometer bias and scale factor; however, there are no obvious explanations for the 500 and $650 \mathrm{ppm} Y$ and Z accelerometer scale factor differences between measurements. (1 o specification is 130 ppm).
table IV
ACCELBROMEIER BIAS AND SCALE FACTOR SUMMARY

	Flight	$\begin{gathered} \text { Honeywell } \\ 2-26-65 \\ \hline \end{gathered}$	$\begin{gathered} \text { Cape } \\ 3-12-65 \end{gathered}$	FF Analysis	Flt-Cape
X accel. SF	.10009750 fps/pulse	same as flt.	. 10005550	Not Determined	420 ppm
Y accel. SF	.09029480 fps/pulse	same as flt.	.09023550	Not Determined	522 ppm
Z accel. SF	.09749790 fps/pulse	same as flt.	.09744700	Not Determined	657 ppm
X accel. bias	-.2616580 pulse/sec	+. 18 (approx.)	same as flt.	-. 1523	0
Y accel. bias	. 2300020 pulse/sec	same as flt.	. 218250	. 223	-36.2 ppmg
Z accel. bias	. 2233280 pulse/sec	same as flt.	.248254	. 281	77.6 ppmg

Except as otherwise noted, position and velocity comparisons were made by using the Flight calibrations. A set consisting of Cape calibration scale factors and misalignment terms and free flight determined biases was also used in the analysis of IMU performance. Figures 5 and 6 present velocity error curves resulting from the two sets of calibrations. These show a considerable decrease in the X axis velocity error due to using a later set of calibrations. A significant change in the early Y velocity error is also evident. Although the bias values used in generating the curves were obtained from postflight analyses, the major improvement in IMU errors is attributable to having the latest determined accelerometer scale factors. Table V shows the improvement in the error at SECO by using these Cape values.

TABLE V

ERROR AT SECO DUE TO CALIBRATIONS
Error at SECO (Flight Calibrations) 2/26/65

VELOCITY ERROR AT SECO
$\bar{X} \quad \bar{Y} \quad \frac{1}{2}$

X	Y	Z
43	-127	-1.4

X accel. scale factor	-420 ppm	-10.4	0	0
Y accel. scale factor	-652 ppm	0	0	+.23
Z accel. scale factor	-522 ppm	0	+3.6	0
X accel. bias	0	0	0	0
Y accel. bias	+36.6 ppmg	0	0	-.59
Z accel. bias	-77.6 ppm g	0	+.84	0

Error at SECO (Cape Calibrations) 3/12/65

$$
32.6-122.6-1.77
$$

The improvements resulting from Cape calibrations correspond to 11 fps total velocity and regligible difference in flight path angle.

Azimuth Update
An azimuth alignment correction is calculated at three separate times by the onboard computer. On the first pass through the navigation equations after platform release, the roll gimbal.angle reading is compared with the desired value and the difference is used as a correction to the intended flight azimuth. This correction is called $\Delta \eta_{\mathrm{x}}$ where a positive value implies that the platform is rotated clockwise from the desired azimuth.

The additional azimuth corrections are calculated during flight at 100 and 140 seconds after liftoff. These are calculated by comparing the crossrange (Z direction) velocity as measured by GE/Burroughs with that derived from the airborne system and attributing the residual to a platform misalignment.

The calculated updates are not telemetered; however, they are obtained quite accurately from the data analysis. Table VI summarizes the updates determined by the following methods:

1. Calculated by simulating the inflight calculations.
2. Calculated from the jumps in the inertial velocity comparisons or the DELTA DELTA curve.
3. Derived by IBM during their postflight simulation.

TABLE VI

AZIMUTH UPDATE
$\left.\begin{array}{lllll}\begin{array}{l}\text { Time } \\ (\mathrm{sec})\end{array} & \begin{array}{l}\text { Flt Calc. } \\ \text { Simulation }\end{array} & \text { DELTA DELTA }\end{array}\right)$

The calculated update values show agreement to within the . 1 fps velocity least count accuracy which is equivalent to . 00008 radians. The values indicated at 100 seconds include those at 0 seconds. The value for zero seconds in the DELTA DELTA column is that of IBM.

The Z axis velocities at 100 and 140 seconds were determined from the MISTRAM I data and compared to the GE/Burroughs telemetered values. The MISTRAM velocities were 348.39 and 198.55 at 100 and 140 seconds, respectively, which are in good agreement with the GE/ Burroughs values of 348.5 and 199.0 at the corresponding times. The net azimuth update corrections have been applied in all the plots included in this report.

The history of initial alignment error is

$$
\begin{aligned}
& \text { GT-2 } \eta_{\mathrm{x}}=-.29^{\circ} \\
& \text { GT-3 } \eta_{\mathrm{x}}=-.52^{\circ} \\
& 1 \sigma(\text { specification }) \quad \eta_{\mathrm{x}}=.25^{\circ}
\end{aligned}
$$

It is understood that the major contribution to the specification value is due to the inaccuracy in slewing the platform to a new azimuth as a result of updating the Agena orbit. On these two non-rendezvous flights a fixed azimuth was flown and the misalignment angles reflect only the basic inability to align the inertial platform with the outside world, not the slewing error. Since the errors observed on these two flights are already as large or larger than would be expected, it appears that when the slewing error is added, the total alignment uncertainty will be considerably larger than the present specification value.

Thla decument centalns Informetion offecting the nettene!
18. U.S.C., section 793 and 794, the trensmisilow or revelatio

4.0 RE-ENTRY ANALYSIS

4.1 Introduction

Analysis of the IMU performance during re-entry was based primarily on position comparisons in re-entry guidance coordinates. The guidance coordinate system, during re-entry is defined by the DCS inserted state vector (spacecraft position and velocity) valid at the intended time of retrofire. The guidance X axis is directed along the total inertial velocity vector, the Y axis is positive downward along the position vector from the earth's center and the Z axis completes the right handed set.

The tracking data, available for the analyses, were obtained from four C-band tracking radars. These covered the time interval between 455 and 800 seconds after retrofire or the whole atmospheric re-entry period. The lack of tracking data prior to this interval limited the isolation of re-entry mode initialization errors. It is expected that this problem will be solved on future flights by the timely arrival of high rate tracking data during intervals just prior to and following retrofire.

The method used in the analyses consisted of computing the guidance thrust velocities, as was done during the ascent data reduction. A re-entry trajectory reconstruction program was then used to generate the S / C trajectory using the guidance system output. This program has the capability of adjusting thrust data for gravity to form total inertial positions and velocities. These quantities were then compared with radar data to form the comparisons shown in Figures 9 and 10.

4.2 Impact Point Determination

Table VII shows the spacecraft position at 798.9 seconds as indicated from PCM telemetry, radar, STL reconatructed guidance data, and the STL reconstructed trajectory using corrected guidance data (see Sections 4.3 and

4160-6047-TC000 -30-
5.0). The time chosen corresponds to the last available reconstructed trajectory data point. The intended impact point is also presented.

Table VII

INDICATED POSITION SUMMARY

Deg. Latitude	Deg. Long. Altitude	
(Geocentric)	(Geodetic)	(Geodetic)

$T=798.9$

1. Radar (7:18)	22.364	22.499	-70.840	51148
2. Reconstructed Trajectory	22.373	22.508	-70.838	50270
(Corrected)	22.355	22.490	-70.848	359
3. Guidance Telemetry	22.369	22.504	-70.880	12338
4. Reconstructed Trajectory				
(Uncorrected)	21.89^{*}	22.025	-69.88^{*}	0

*Obtained from Canarvon MDIU print.

The corrected trajectory (2) which provides the best estimate of the spacecraft position indicates that the difference between the spacecraft position at 799 seconds and the intended impact was . 483 degrees in latitude and -.958 degrees in longitude. The altitude at this time was 50,270 feet. This difference corresponds to the following:

POSITION ERROR AT 799 SECONDS RELATIVE TO INTENDED IMPACT

North	West	Downrange	
$29 \pm .6 \mathrm{n.mi}$	$53 \pm .2 \mathrm{n.mi}$.	$59 \mathrm{n.mi}$. short	$13.6 \mathrm{n} . \mathrm{mi}$. left

The down and crossrange values are based upon a 115.7 degree heading from North which was that determined just prior to re-entry. The uncertainties assigned are combinations of the differences between the reconstructed trajectory and radar positions and rough estimates of radar accuracy. The difference in Table VII between the reconstructed guidance (2) and the onboard computed value (3) is attributable to errors in either the airborne computations or the reconstruction initialization. Since the longitude difference was nearly constant over the entire time interval, an initialization error is suspected.

The altitude difference between the uncorrected sources (3 or 4) and the actual trajectory (1 or 2) is due primarily to the pitch error contained In the guidance data.

4.3 IMU Analysis

Figures 9 and 10 present comparisons of IGS data with positions and velocities obtained from the four radars. The following table gives the position and velocity errars at 455 and 800 seconds from retrofire as indicated by the comperisons. These times correspond approximately to the beginning and end of atmosphoric rementry (soe Figure 21).

Figure 9

Figure 10

INEPTIAT, GUIDANCE SYSTEM ERROR DURING RE-ENTRY

	Position (ft)			Velocity (ft/sec)		
Time From Retrofire (sec)	X	Y	2	$\dot{\mathrm{X}}$	\dot{Y}	$\dot{\text { Z }}$
455	-4750	-8000	+7000	9	-6.5	0
800	-37500	+17500	-4500	-300	200	-120

The major portion of the error indicated at 455 seconds is due to one or more of the following causes:
a. The initialization state vector, calculated on the ground and transmitted to the S / C is incorrect.
b. The platform is incorrectly aligned, leading to a directional error in the retromaneuver impulse.
c. There is a data processing error, the most likely of which is a time correlation error.

Figures 11 and 12 were obtained by initializing the guidance data, at the time of the first radar data point (455 seconds), with radar positions and velocities. These were generated in order to determine the secondary effects of initialization errors upon the gravity computations. Comparison of the data indicates that the secondary effects were minor relative to the total error.

Figure 12

The manner in which the errors increase after 455 seconds is indicative of guidance system IMU and/or alignment errors. A pitch type error was suggested by the approximately asymetric X and Y position error propagations. The philosophy involved in isolating the major contributing error sources was to first extract, from the error curves, the effects of those IMU errors which were considered as "known". These consisted of accelerometer bias and Z accelerometer scale factor errors recovered from the ascent analysis and verified somewhat by the preflight calibration differences. A fit to the residual position error was then accomplished from which a -4.6 degree per hour Y gyro constant drift rate was recovered as the major pitch error. An alternate hand fit was accomplished which recovered an initial pitch misalignment of $-2900 \widehat{\mathrm{sec}}$ as the major pitch error. Either of these recovered coefficients or combinations of the two could provide an explanation of the observed errors; however, isolation of the exact error source is difficult due to high correlation among error sources.

The drift rate error is considered the more probable because it and other recovered coefficients of the fit from which it was derived are somewhat closer in agreement with the ascent analysis results. The recovered coefficients from both fits are summarized in Table VIII.

Alternate fits were also accomplished for the Z axis error. However, both indicated a large initial platform misalignment about the X accelerometer axis as the major error source.

The fits to the re-entry data are tabulated in Table VIII. The coefficients labeled FIT 1 and FIT 2 are associated with the X and Y axes and those labeled FIT 3 and FIT 4 are associated with the Z axis error. The coefficient sets represented by FIT 1 and FIT 3 were used to compensate the IGS data for reconstruction of the re-entry trajectory. The position error propagation of these are shown as a dashed curve on the plots of Figure. 11.

TABLE VIII

RE-ENTRY ANALYSIS RECOVERED ERROR SOURCE COEFFICIENTS
(1) X and Y Axis Error Source
(A) Knowns from Ascent Analysis

X accelerometer bias
Z accelerometer bias
Z accelerometer scale factor
(BX)
(BZ)
(ZSF)

FIT 1 340 180 611
 180 611
(B) Recovered From Re-Entry Analysis

Y gyro constant drift rate (YGCDR)
Platform misalignment about Y accelerometer axis

X accel scale factor
(XSF)

Initial Errors at Retro
X guidance position

$(X O)$	-7816	-7870	ft
$(Y O)$	-4475	-4475	ft
$\left(\mathrm{V}_{\mathrm{XO}}\right)$	4.8	3.7	fps
$\left(\mathrm{V}_{\mathrm{YO}}\right)$	-9.1	-5.2	fps

(2) Z Axis Error Source

FII 3
FII 4
UNITS
(A) Known From Ascent Ascent Analysis

Y accelerometer bias $\quad(B Y) \quad-22 \quad-22 \quad$ ppm \&
(B) Recovered from Re-Fntry Analysis

Platform misalignment about X accelerometer axis
Platform misalignment about Z accelerometer axis
(PHIX) -1080
.886
sec
(PHIZ) - 200
Bec

Initial Errors at Retro

Z position	(20)	4443	4443	ft
Z velocity	$\left(V_{z O}\right)$	-4.74	-4.74	fes

5.0 TRAJECTORY RECONSTRUCTION

This section provides a trajectory reconstruction for ascent from liftoff to 370 seconds (11 seconds after separation) and for re-entry from 462 seconds to 799 seconds after retro (16865 to 17202 seconds after liftoff).

The data is provided in an ECIG coordinate system which is a right-handed inertial Cartesian coordinate system with the origin at the center of the earth. The Z axis is the North polar axis, the $X-Y$ plane is the equatorial plane with the $X-Z$ plane containing the Greenwich meridian at Go Inertial $\left(14^{\mathrm{h}} 23^{\mathrm{m}} 56.612^{\mathrm{s}}\right.$) time for the ascent segment, and time of retrofire (18^{h} $47^{\mathrm{m}} 47.612^{\mathrm{s}} \mathrm{GMT}$) for re-entry.

The ascent reconstruction consists of corrected guidance data from 0 to 86.687 seconds and quick look 100K MISTRAM data from 89.109 until 369.765 seconds. Section 3.0 provides a description of the corrections that were applied to the guidance data.

The re-entry reconstruction was derived from corrected guidance data. Section 4.0 provides a description of the corrections applied. Special parameters are also provided for the re-entry trajectory reconstruction. These consist of velocity magnitude, relative flight path angle, altitude and geodetic latitude and longitude. The first three special parameters are plotted in Figure 13.

TIME IN SECONCS FROM LIFTJFF

200.566
1326.885
GEMINI TRAJECTORY IN ECIG

$$
\begin{aligned}
& \text { 1. - }
\end{aligned}
$$

…spiontechnolng: anoratopize GEMINI TRAJECTORY IN ECIG
TIME IN SECDNCS FROM LIFTOFF

4160-6047-TCOOO
-46-

RE-ENTRY TRAJECTORY RECONSTRUCTION
EARTH CENTERED INERTIAL GREENHICH COORDIMATE SYSTEM

ononrrinonnnenononnononrrnoinno 9285153.5
9268393.6
9243387.0
9226554.7
9209694.8
9184548.8
9167631.2
9150695.0
9125453.3
9108353.1
9091370.1
9066199.8
9049072.2
9032071.0
9006890.6
8989769.5
8972658.2
8955689.6
8930591.5
8913673.1
8896780.5
8871814.2
8854871.3
8838086.8
8813293.6
8796609.5
8779970.2
8755426.6
87388814.0
 -18545961.
-18542074.5
-18536104.5
-18531971.7
-18527742.
-18521270.
-18516807.
-18512254.
-18505310.
-18500501.
-18495642.
-18483293.
-18483194.50
-18478055.0
-18470302.
-18464937.
-18459501.
-18454039.
-18445832.
-18440212.
-18434533.
-18426019.
-18420156.0
-18414282.
-18405489.
-18399489.00
-18393444.00
-18384416.

0

2843.70	-5145.41
2824.64	-5044.92
2805.75	-4944.95
2775.24	-4795.33
2755.50	-4688.40
2736.01	-4578.90
2704.42	-4418.58
2681.00	-4309.92
2655.71	-4198.93
2613.94	-4040.46
2581.86	-3933.77
2549.21	-3829.87
2501.81	-3668.28
2470.19	-3555.57
2439.04	-3438.50
2393.15	-3264.28
2361.81	-3145.88
2328.65	-3024.38
2281.61	-2849.84
2250.20	-2728.96
2221.48	-2610.05
2180.65	-2438.15
2156.24	-2321.87
2133.04	-2208.16
2099.95	-2050.58
2079.77	-1953.48
2060.96	-1861.09
2037.14	-1765.96
1976.89	-1633.33

$$
\begin{aligned}
& 8253009.31 \\
& 8242420.94 \\
& \hline 8232040.81 \\
& 8217126.06 \\
& 8207271.87 \\
& \hline 8197642.56 \\
& 8183865.19 \\
& 8174727.50 \\
& \hline 8165952.75 \\
& 8153271.81 \\
& 8144986.12 \\
& \hline 8136919.25 \\
& 8125379.12 \\
& 8117873.06 \\
& \hline 8110605.75 \\
& 8100342.12 \\
& 8093681.62 \\
& \hline 8087318.50 \\
& 8078277.75 \\
& 8072481.00 \\
& \hline 8066933.44 \\
& 8059163.96 \\
& 8054218.00 \\
& \hline 8049511.00 \\
& 8042956.50 \\
& 8038796.06 \\
& \hline 8034832.50 \\
& 8031063.75 \\
& 8025832.06 \\
& \hline
\end{aligned}
$$

$$
\begin{gathered}
\text { YOOT } \\
\text { IFT/SEC) }
\end{gathered}
$$

$$
\begin{aligned}
& 2843.70 \\
& 2824.64 \\
& \hline 2805.75 \\
& 2775.24 \\
& 2755.50 \\
& 2736.01 \\
& 2704.42 \\
& 2681.00 \\
& \hline 2655.71 \\
& 2613.94 \\
& 2581.86 \\
& \hline 2549.21 \\
& 2501.81 \\
& 2470.19 \\
& 2439.04 \\
& 2393.15 \\
& 2361.81 \\
& 2328.65 \\
& 2281.61 \\
& 2250.20 \\
& \hline 2221.48 \\
& 2180.65 \\
& 2156.24 \\
& 2133.04 \\
& 2099.95 \\
& 2079.77 \\
& 2060.96 \\
& 2037.14 \\
& 1976.89
\end{aligned}
$$

GEMINI GT-3 FREE FLIGHT AND REENTRY RECONSTRUCTION
EARTH CENTERED INERTIAL GREENHICH
COORDINATE SYSTEM

GEMINI GT-3 FREE-FLIGHT AND RE-ENTRY RECONSTRUCTION
TIME
GEMINI GT-3 FREE-FLIGHT AND RE-ENTRY RECONSTRUCTION
ALTITUDE GEDOET
(FEET) (DEGREES) (DEGREES)
GEMINI GT-3 FREE-FLIGET AND RE-ENTRY RECONSTRUCTION

71.1280

6.0 TRACKING SYSTEM PERFORMANCE

6.1 Introduction

Many sets of tracking data were used in the Velocity Comparison Program during the course of the GT-3 analysis. These sets of data are obtained from essentially two different tracking systems for the ascent phase the GE Mod III system which is used as the primary ascent guidance system and the MISTRAM (Valkyria and Eleuthera) tracking system. During the re-entry phase, tracking data was received from four radar tracking stations.

The purpose of this section is to discuss the relative merits of the different sets of data and to present velocity comparison plots using this data which have not been included in previous sections of this report.

The tracking data received on this flight included:

For Ascent

GE Burroughs
GE Final
MISTRAM I Quick Look 10 K and 100 K
MISTRAM II Passive
MISTRAM Final
BET

4160-6047-TC000

For Re-Entry
Patrick AFB TPQ-18 Radar ($0: 18$)
Merritt Island TPQ-18 Radar (19:18)
Grand Turk TPQ-18 Radar (7:18)
Grand Bahama Island TPQ-18 Padar (3:18)

Delivery dates on most of the data were timely and considerably better than GT-2. For the ascent phase the GE Burroughs data was available on time to complete the quick look analysis. Quick Look MISTRAM data and GE Final data were received about 4 calendar days after the flight and were used to perform the final ascent guidance analysis.

For convenience all of the velocity comparisons using the different sets of data are displayed with those using quick look l00K MISTrAM data as a reference. It is felt that the look Quick Look MISTRAM data represented the best tracking data received on GT-3 based principaily on its low noise content.

6.2 GE Mod III

The GE Mod III radio guidance system is used as primary guidance on GEMINI. The tracking portion of this system consists of a monopulse radar tracker which measures position and an interferameter rate system which measures range rate and two lateral rates. The data from this aystem is aveilable from two data extraction systems - the Burroughs, where the data is sampled at a 2 per second rate, and the GE FDR (Filght Data Recording) unit, where the data is sampled at a 10 per second rate.

GE Mod III/Burroughs

The Burroughs data at a 2 per second rate is recorded on the interwediate punched paper tape. This data which consists of raw counts is available
within a few hours after the flight and is processed in the STL data reduction programs and used for the quick look analysis. Figure 14 shows the velocity comparisons using Burroughs (and look MISTRAM) data. There is generally good agreement between the two sets of tracking data except toward the end of flight where the Burroughs data is noisy. This is expected since the elevation angle during the noisy region from 320 seconds to end of powered flight ranges from 10 degrees to less than 4 degrees and the range varies from 2.5 million feet at 320 seconds to over 3.5 million feet at 370 seconds. The timing error noted on this flight was 5 milliseconds compared to a value of 25 milliseconds noted on GT-2; an accuracy of 1 millisecond is expected.

GE Mod III/Final

GE/Final data is processed by GE/Syracuse from the 10 per second FDR output. The velocity comparisons using this data are shown in Figure 1 of Section 3.0 of this report. The principal difference between this data and the STL processed Burroughs data in addition to the sampling rate is the amoothing and refraction corrections applied. The GE/Final Syracuse processed data has significantly more smoothing applied as can be observed by comparing it with the Burroughs data of Figure 14 late in flight. The differences in refraction correction methods did not appear to have any significant effect on this flight as there are no significant systematic differences between the Burroughs and the GE Final data.

However, there are some significant systematic differences noted between the GR final data and the lOOK MISTRAM. These differences have propagated to the following values toward the end of flight; 2-3 feet per second in $\dot{X}, 10-20$ feet per second in \dot{Y}, and 1 foot per second in \dot{Z}. These differences also seem to exist between the Burroughs and 100K MISTRAM data although it is less obvious due to the higher Burroughs noise content.

Figure 14

These errors are quite large especially in the Y (vertical) direction. The ratio and sense of the X to Y velocity error suggests an error in the measurement of elevation rate (E) by one or both systems as opposed to an elevation type error. This suggests an error in the GE \dot{P} measurement and/or the MISTRAM P measurement. The error in either case is very much larger than expected even for the low elevation angles encountered.

6.3 MISTRAM Data

MISTRAM Quick Look Data

The quick look MISTRAM I data received is fully scaled and corrected but unsmoothed and in the system's measurement coordinates. This consists of R. $P_{10 K}, Q_{10 K}, P_{100 K}, Q_{100 K}$ position data where R is a range sum measurement, $P_{10 K}$, and $Q_{10 K}$ are range difference measurements from the 10,000 foot baselines and $P_{100 K}$ and $Q_{100 K}$ are range difference measurements from the 100,000 foot baselines. The two sets of range difference measurements along with the range sum measurement were processed to give essentially two redundant sets of tracking data. This data is differentiated and rotated into the proper coordinate system by the STL programs. Figure 15 shows the multiple plot of 10 K MISTRAM and 100 K MISTRAM used in velocity comparisons. There is good agreement between these two sets of data except for noise content. The MISTRAM 100 K data is far superior to the lOK data as far as noise content is concerned as expected. Most of the noise indicated by the velocity comparisons until late in flight is caused by the large $P C M$ timing quantizing error.

There does not appear to be any significant ambiguities in the quick look data as were observed on GT-2. The general quality of this data is excellent.

Final MISTRAM And Passive MISTRAM

The Range (ETR) generates final MISTRAM data which consists of a merge of MISTRAM 10K, 100K and passive MISTRAM II. Comparisons using final MISTRAM data are shown plotted along with 100K MISTRAM I in Figure 16.

Comparisons using MISTRAM II passive data are shown in Figure 17. There appears to be a bias in this data of about 10 feet per second toward the end of flight in \dot{Y}. This difference is also seen in the final MISTRAM comparisons and is presumably caused by the use of the passive MISTRAM II data in the final solution. An example of the passive MISTRAM influence on the final MISTRAM solution can be seen just before 300 seconds in Figures 16 and 17 where a systematic perturbation of like magnitude and duration is noted in both sets of data.

On this flight MISTRAM I actively tracked throughout the entire powered portion of flight. MISTRAM II passively tracked from about 190 seconds until the end of powered flight. The range sum measurements from this passive mode of tracking is ambiguous and must be zero set by the ETR in the data processing.

In summary the final MISTRAM data was disappointing and in fact degraded in comparison with the quick look data. The differences between the final and quick look MISTRAM data are extremely large from the standpoints of MISTRAM specifications although they appear small with relation to the guidance error.

BET

The BET (Best Estimate Trajectory) data is a merge of range tracking systems to produce the ETR best estimate tracking data for the flight. Comparisons using this data are shown in Figure 18. Since only the accurate ETR systems used on GEMINI are the MISTRAM systems the BET data should and does

> 4160-6047-TCOOO . .amer

Figure 16

Figure 18

agree with the final MISTRAM solution. GE Mod III is not operated by the ETR and is generally not available for this purpose.

The BET like the final MISTRAM was of limited use on this flight because of the weight placed on the passive MISTRAM data.

6.4 Radar Data

Radar data from four stations were used for the re-entry analysis. MISTRAM and GE tracking are not available during this period because the beacon transponders for these systems are located in the TItan GLV. The GEMINI spacecraft does carry a radar beacon and track was accomplished with the following radars for the following time spans. Times are referenced to retro fire which occurred 16403 seconds after liftoff.

Radar	Time Span	Track Mode
Patrick (0:18)	$450-609$	Beacon
Merritt Island (19:18)	$469-513$	Beacon
	$513-617$	Skin
Grand Turk (7:18)	$614-674$	Skin
	$675-899$	Beacon
Grand Bahama Island (3:18)	$595-686$	Beacon

Position and velocity comparisons using this data are shown in Section 4.0 . The data from the GBI (3:18) radar is poor as san be eapcially noted from the position comparison plots. The ETR had no explanation for this performance except that the tracking geometry from that station was very
poor. Elevation angles ranged from about 8 degrees at 595 seconds to less than 2 degrees at 686 seconds.

There is a marked discontinuity in the position comparisons around 675 seconds. At this time the velocity residuals settle down and the noise level is relatively low until end of tracking. The time of this discontinuity corresponds with the time that the Grand Turk station switched from skin to beacon mode track. The data is expected to be better in the beacon track mode. Therefore, the data from about 600 seconds to 675 seconds has to be discounted because of the combination of poor quality GBI tracking and Grand Turk skin tracking during that region.

In the Z (crossrange) direction there is about a 1,000 foot bias between the beacon track 7.18 data (after 675 seconds) and the earlier data described by the 0.18 and 19.18 radars. This error is quite large and 1s suspected to be in the 7.18 radar data.

6.5 Summary

In general the quality of the tracking data was excellent. It was especially gratifying to note the improved quality of MISTRAM quick look data compared to GT-2.

The principal discrepancy in the data received on this flight is the large aystematic error noted between MISTRAM and GE data late in flight.

Radar data received was, in general, adequate with the exception of 3.18 data which exhibited very large systematic errors.

1. 4160-6009-TU000, "Preliminary GEMINI G And C Data Reduction And Analysis Plan," by F. B. Lavenhar, dated 30 October 1964. (U)
2. 4160-6016-TU000, "GEMINI Inertial Measuring Unit Accuracy Prediction Study," by R. E. Sansom, dated 8 February 1965. (U)
3. 4160-6029-TCOOO, "GEMINI GT-2 Inertial Guidance System Evaluation Trajectory Reconstruction (U)," by R. J. Boyles, dated 10 March 1965. (C)

Appendix I

ASCENTT THRUST PROFILE

Guidance thrust, position, velocity, and acceleration quantities during ascent are listed along with plots of the thrust accelerations and the inertial flight path angle.

FROS PAEE TECHNOLOOY LABOPATORIES

accelerometer biases (pulses/sec)

CGFPUTEO DOSTTTON VELOCIT AND ACCELERATION IM GUTOANCE THRUST COBRDIATES

TXUS SPACE TEGHNOLOGY LABORATORIES hompson ramo woclorioga ime.
TIME in SECONOS fROM LIfTOFF
COAFUTED POSTTION VELOCTTY ANO LCCELERATION IN GUIDANCE THRUST COORDINATES

time	${ }^{x}$	$\stackrel{\square}{*}$	2	\times xDOT	yoot	2 DOT	xDDot	Yodot	20001
[SECS]	TFT	(FT)	(FT)	(FT/SEC)	(FT/SEC)	(FT/SEC)	(FT/SEC.2)	(FT/SEC*2)	(FT/SEL*2

Thesi spage tecmnology lasoratories

Appendix II

RE-ENTRY THRUST PROFILE

Guidance thrust, position, velocity, and acceleration quantities during re-entry are listed along with a plot of the thrust accelerations.
4160-6047-TC000
Figure 21
 YHOMPSON BAMO WCOEDind Ement RY

> TEAEA SPAZE TECHNOLOGY LAECRATCRIEE
April 3， 1965

5 COUR									
IIME	x	Y	2	\times OCT	yoot	200t	xDDOT	roogit	2000
TETC51	TFT	（17T	TFT	TFTISES	TFITSECT	TFT／SECT	（FT／SEC＊21	5こご2	SEC． 2
323.421	：－10319\％．7	33338.1	－1135．4	－33C． 39	106.45	－3．37	－． 04	－． 01	－． 01
326.249	－104125．5	33639.0	－1145．3	－335．41	106.48	－3．60	－． 04	－． 02	． 00
32E． 171	－1047t1．8	33843.6	－1152．1	－33C．5	106.44	－3．66	－． 05	－． 02	． 00
331.015	－1057C2．2	34146.1	－1162．1	－33C．79	10t． 28	－3．42	－． 08	－． 02	． 02
$3{ }^{3} 2.921$	－108332．8	34348.8	－1168．8	－330．84	106.34	－3．41	－． 01	－． 03	－． 00
23 5.765	－1C7274．1	34651.0	－1178．3	－331．17	106.27	－3．50	－． 07	－． 03	－． 01
337.687	－107910．6	34855.1	－1185．5	－331．22	106.14	－3．64	－． 05	－． 03	－． 01
उदट． 51	－159947．1	35155.2	－1194．5	－331．44	105.98	－3．49	＝． 06	－． 03	－．00
342.437	－105494．7	35359.1	－1202．4	－331．39	106.13	－3．54	－． 07	－． 01	． 02
345.281	－110427．8	35560．6	－1212．3	－331．82	105.97	－3．57	－． 08	． 50	． 00
347.187	－11030．3	35862.1	－1219．J	－331．81	106.03	－3．35	－． 09	－． 02	． 01
35C．031	－1120C4．5	36164.1	－1223．9	－332．09	106.06	－3．56	－． 07	－． 02	－． 00
352.957	－112944．0	36463.8	－1238．6	－332．22	105.30	－3．42	－． 09	－． 03	－． 01
उ：4．131	－113542．9	30567.2	－1245．3	－332．41	105.85	－3．55	－． 07	$\cdots 05$	． 01
35i．6C\％	－114525．1	36957.7	－1255．2	－332．9C	105.80	－3．41	－． 12	－． 05	． 31
355.531	－1151t4．9	37170.9	－1261．9	－332．35	105.55	－3．45	－． 13	－． 08	.01
3E2．314	－116112．3	31470.9	－1271．	－333．41	105.30	－3．45	－． 13	－． 38	－． 02
364．296	－116751．6	37674.4	－1こ15．7	－333．1？	105．15	－3．45	－． 11	－． 25	－． 33
367.124	－117655．1	37971.7	－1288．9	－333．85	105.10	－3．55	$=.10$	－． 33	－． 04
365．062	－119342．9	35175.6	－1275．0	－334．10	105.16	－3．71	－． 12	－． 03	－． 03
371．905	－117253．5	36474.3	－1305．6	－334．52	105.00	－3．74	－． 12	－． 06	－． 02
372.328	－113735．6	了י¢75．1	－． 113.8	－334．11	104．85	－3．79	－． 11	－． 37	－． 3 r
37t．671	－1209E5．0	39.373 .6	－1324．6	－33－．00	104．50	－3．93	－． 13	－． 05	－． 02
378．59；	－121532．3	39174.5	－1322．0	－335．25	104．53	－3．77	－． 15	－． 07	－． 01
381.43 ？	－12248C． 1	35484．2	－1344．2	－335．88	104.40	－4．C5	$=.22$	－． 05	－． 02
322．359	－123125．8	33652.4	－1352．0	－33t． 13	104.07	－3．87	－． 21	－． 19	－． 03
38 t .2 C 3	－1240E2．7	35947.8	－1353．4	－33t．75	103.71	－4．c8	－． 24	－． 16	－． 33
उEと．124	－12473E．5	$44^{4} 46.7$	－1371．2	－337．36	103.28	－4．13	－． 25	－． 17	－． 05
3rc． 3 E．	－12565C． 7	40437.3	－1383．2	－332．13	102.92	－4．17	－． 25	－． 18	－． 06
392．892	－126340．8	40.637 .1	－1391．5	－332．38	102.39	－4．4．3	－． 24	－． 17	－． 08
$35 \times .734$	－1273C4．5	4×929.0	－1404．4	－33．21	102.04	－4．61	－． 27	－． 18	－． 10
397.671	－1279t2．3	41125.2	－1413．6	－335．6R	101．7C	－4．93	－． 31	－． 20	－． 10
$4 C 6.515$	－128929．8	41413.4	－1427．7	－34c．68	101.15	－5．14	－． 34	－． 23	－． 10
41.8 .431	－1255E3．2	द1607．1	－1433．C	－341．33	100.43	－5．3d	－． 36	－． 24	－． 09

MENE SPACE TECMROLOEY LAEORETORIEE

GEMINI EOIT PROGRAM

 -90-

(r)

-31.77	-3.65
-33.21	-3.78
-35.12	-3.72
-37.22	-3.60
-38.75	-3.69
-40.44	-3.82
-42.14	-3.99
-43.89	-4.16
-45.21	-4.51
-45.85	-4.82
-48.77	-5.09
-51.25	-5.33
-53.74	-5.18
-55.85	-5.54
-59.53	-4.58
-52.87	-3.56
-66.64	-2.56
-5.6 .58	-2.16
-70.32	-1.55
-72.64	-1.09
-74.48	-.59
-75.74	-.27
-78.94	1.14
-80.39	1.95
-52.08	3.00
-83.54	4.03
-85.21	4.71
-57.13	5.63
-86.85	6.26
-90.16	6.15

TiA- SPACE TECHMOLOGY LADORATORIES т

\rightarrow (1) M-

\square

$$
\infty
$$

+

TAGL SPACE TECHNOLOGT LAEORATORIES
GEMINI ECIT PROGRAM

$-105.19 \quad 11.73$

14895.60
401.05
428.45
457.50
473.36
487.51
504.11
513.53
513.05
504.75
498.75
496.25
496.30
506.08
501.11
510.20
-71.78
-70.51
-69.16
-66.53
-60.30
-55.40
-50.97
-46.77
-43.21
-40.28
-35.72
-31.17
-27.38
-24.37

-15.38

-
$\begin{array}{r}7.08 \\ 9.70 \\ \hline\end{array}$ 15.26
-105.19
-102.48
-100.04
-97.53
-95.91
-96.31
-96.54
-95.21
-92.80
-90.21
-86.51
-92.35
-79.35
-75.10
-72.05
-69.78
-66.51
-62.99
-60.19
-58.96
-53.92
-52.18
-50.00
-48.15
-46.83
-44.36
-41.96
-40.07
-39.04
-38.07
-37.41

Appendix III

ASCENT GIMBAL ANGLES AND ATTITUDE ERRORS

[^0]: * Level changes at 106 seconds in the \dot{X} and \dot{Z} curves are due to updating the initial earth rate conditions by the onboard computer as a result of the RGS/IGS update routine.
 ** The preflight simulation values were obtained by telephone from IBM.

[^1]: * Error source notations refer to the hardware definition of the axes which has the Y accelerometer and gyro along the negative Z computer direction; the Z accelerometer and gyro along the Y computer direction and the X accelerometer and gyro axes coinciding with the computer X axis.

