DOCUMENT NO. D5-15560-6

TITLE APOLLO/SATURN V POSTFLIGHT TRAJECTORY - AS-506

MODEL NO. SATURN V CONTRACT NO. NAS8-5608, Schedule II, Part IIA, Task 8.1.6, Item 42

October 6, 1969

S.C. Krmesce

S. C. Krausse, Manager

FLIGHT SYSTEMS ANALYSIS

ISSUE NO.
ISSUED TO

D5-15560-6
REVISIONS
REV.

ABSTRACT AND LIST OF KEY WORDS

This document presents the postflight trajectory for the Apollol Saturn V AS-506 flight. Included is an analysis of the orbital and powered flight trajectories of the launch vehicle, the free flight trajectories of the expended S-IC and S-II stages, and the slingshot trajectory of the S-IVB/IU. Trajectory dependent parameters are provided in earth-fixed launch site, launch vehicle navigation, and geographic polar coordinate systems. The time history of the trajectory parameters for the launch vehicle is presented from guidance reference release to Command/ Service Module (CSM) separation.

Tables of engine cutoff, stage separation, parking orbit insertion, and translunar injection conditions are included in this document. The heliocentric parameters of the S-IVB/IU are given. Figures of such parameters as altitude, surface and cross ranges, and magnitudes of total velocity and acceleration as a function of range time for the powered flight trajectories are presented.
The following is a list of key words for use in indexing this document for data retrieval:

Apollo/Saturn V
AS-506
Postflight Trajectory
Powered Flight Trajectory
Orbital Trajectory
Spent Stage Trajectory
Slingshot Trajectory

CONTENTS

PARAG		PAGE
	REVISIONS	
	ABSTRACT AND LIST OF KEY WORDS	ii
	CONTENTS	ir
	ILLUSTRATIONS	vi
	TABLES	vii
	REFERENCES	vii
	ACKNOWLEDGEMENT	ix
	SOURCE DATA PAGE	ix
	SECTION 1 - SUMMARY AND INTRODUCTION	1-1
	SECTION 2 - COORDINATE SYSTEMS AND LAUNCH	
	SECTION 3 - POWERED FLIGHT TRAJECTORY RECONSTRUCTION	
3.1	POWERED FLIGHT TRAJECTORY	3-1
3.1 .1	Ascent Phase	3-1
3.1 .2	Second Burn Phase	3-1
3.1 .3	Targeting Parameters	3-2
3.2	DATA SOURCES	3-2
3.2 .1	Ascent Phase	3-2
3.2.2	Second Burn Phase	3-4
3.3	TRAJECTORY RECONSTRUCTION	3-4
3.3.1	Ascent Phase	3-4
3.3.2	Second Burn Phase	3-6
	SECTION 4 - ORBITAL TRAJECTORY RECONSTRUCTION	4-1
4.1	ORBITAL TRAJECTORIES	4-1
4.2	ORBITAL DATA SOURCES	4-2
4.2 .1	Orbital Tracking Data	4-2
4.2 .2	Orbital Venting Acceleration Data	4-2
4.3	TRAJECTORY RECONSTRUCTION	4-2
4.3 .1	Parking Orbit Insertion Conditions	4-2
4.3 .2	Translunar Injection Conditions	4-3
4.4	ORBITAL TRACKING ANALYSIS	4-3
	SECTION 5 - TRAJECTORY ERROR ANALYSIS	5-1
5.1	ERROR ANALYSIS	5-1
5.1 .1	Quantity of Tracking Data	5-1
5.1 .2	Quality of Tracking Data	5-1
5.1 .3	Consistency Between Tracking and Guidance Velocity Data	5-2
5.1 .4	Continuity Between Trajectory Segments	5-2
5.2	TRAJECTORY UNCERTAINTIES	5-3

CONTENTS (Continued)

PARAGRAPH		PAGE
	SECTION 6 - SPENT STAGE TRAJECTORIES	6-1
$\begin{aligned} & 6.1 \\ & 6.2 \end{aligned}$	S-IC SPENT STAGE TRAJECTORY	6-1
	S-II SPENT STAGE TRAJECTORY	6-1
	SECTION 7 - S-IVB/IU SLINGSHOT TRAJECTORY	7-1
	APPENDIX A - definitions of trajectory SYMBOLS AND COORDINATE SYSTEMS	A-1
	APPENDIX B - TIME HISTORY OF TRAJECTORY PARAMETERS - METRIC UNITS	B-1
	APPENDIX C - TIME HISTORY OF TRAJECTORY PARAMETERS - ENGLISH UNITS	C-1

ILLUSTRATIONS

FIGURE
PAGE
3-1 Ground Track and Tracking Stations - Ascent Phase

3-7
$\begin{array}{lll}3-2 & \text { Altitude - Ascent Phase } & 3-7\end{array}$
3-3 Surface Range - Ascent Phase 3-9
3-4 Cross Range - Ascent Phase
3-10
3-5 Space-Fixed Velocity and Flight Path Angle Ascent Phase

3-11
3-6 Total Inertial Acceleration - Ascent Phase $\quad 3-12$
3-7 Mach Number and Dynamic Pressure - S-IC Phase 3-13
3-8 Altitude - Second Burn Phase 3-14
3-9 Space-Fixed Velocity and Flight Path Angle Second Burn Phase

3-15
3-10 Total Inertial Acceleration - Second Burn
$\begin{array}{lll}3-11 & \text { Available Tracking Data - Ascent Phase } & 3-16 \\ 3-17\end{array}$
3-12 Antenna Locations and Center of Gravity 3-18
3-13 Azimuth Angle Tracking Comparison - Ascent
Phase
3-14 Elevation Angle Tracking Comparison Ascent Phase
3-15 Slant Range Tracking Comparison - Ascent Phase
4-1 Orbital Acceleration Due to Venting $\begin{array}{rr}3-21 \\ 4-4\end{array}$
4-2 Ground Track 4-5
5-1 Estimated Trajectory Uncertainty - Ascent
Phase
5-4
6-1 Ground Tracks for S-IC and S-II Spent Stages 6-4
7-1 Slingshot Maneuver Longitudinal Velocity Increase
7-2 Trajectory Conditions Resulting from Siing-
$\begin{array}{lll} & \text { Shot Maneuver Velocity Increment } & \\ 7-3 & \text { S-IVB/IU Velocity Relative to Earth Distance } & 7-4\end{array}$
7-4 S-IVB/IU and Spacecraft Relative Trajectories 7-5

TABLES

TABLE PAGE
3-I Times of Significant Events 3-22
3-I I Significant Trajectory Parameters 3-23
3-III Engine Cutoff Conditions 3-24
3-IV Stage Separation Conditions 3-25
3-V Targeting Parameters 3-26
3-VI Available Tracking Data - Powered FiightTrajectory3-27
4-I Summary of Orbital C-Band Tracking Data Available
4-6
4-6
4-I I Orbital Venting Acceleration Polynomials 4-7
4-I I I Parking Orbit Insertion Conditions 4-8
4-IV Translunar Injection Conditions 4-9
$4-V$ CSM Separation Conditions 4-10
$4-V I$ Parking Orbit Tracking Utilization Summary 4-11
4-VII Post TLI Tracking Utilization Summary 4-12
5 -I Tracking Data Spread - Ascent Phase 5-5
5-I I Tracking Data Spread - Parking Orbit Phase 5-6
5-I I I Tracking Data Spread - Post TLI Phase 5-7
6-I S-IC Spent Stage Trajectory Parameters 6-3
6-II S-II Spent Stage Trajectory Parameters 6-4
7-I Comparison of Slingshot Maneuver VelocityIncrement7-67-II Comparison of Lunar Closest ApproachParameters7-7
7-III Heliocentric Orbit Parameters 7-8
D5-15560-6

REFERENCES

1. NASA Document SE 008-001-1, "Project Apollo Coordinate System Standards," June, 1965.
2. NASA Document M-D E 8020.008B, "Natural Environment and Physical Standards for the Apollo Program," April, 1965.
3. NASA Document MFT-1-69, "AS-506 G Mission Launch Vehicle Operational Trajectory," July 14, 1969.
4. Lockheed Document TM 54/30-150, "Manual for the GATE Program," September, 1967.

ACKNOWLEDGEMENT

The analyses presented in this document were conducted by the following Boeing personnel:
G. Engels
J. Graham
J. Jaap
J. Liu

The analysis presented in Section 7 of this document was conducted by the following MSFC personnel of the S\&E-AERO-M Division and is included for completeness in terms of spent stage trajectories:
D. McFadden
C. Varnado

Questions concerning the information presented in this document should be directed to the technical supervisor:
R. D. McCurdy, AG-13

The Boeing Company
Huntsville, Alabama 35807

SOURCE DATA PAGE

The following listed government-furnished documentation was used in the preparation of this document:

Exhibit FF
Line Item Date
Number GFD Title Received

R-AERO-P-\#35C OMPT Format 6/16/69
R-AERO-P-\#17 Tracking and Network Specifications

7/9/69
R-AERO-P-\#35b
Transponder Locations
7/9/69
N/A
I-MO-\#4a
I-MO-\#4c
I-MO-\#4f
I-MO-\#6
I-M0-\#9
I-MO-\#17c
I-M0-\#18a
I-M0-\#18c

Operational Trajectory Certified
Data (MSFC supplied)
7/18/69
Insertion Point and/or Orbital
Elements
7/17/69
Six Seconds Raw Radar
7/17/69
Meteorological Data (Final) 7/25/69
IP Raw MP
Pulse Radar
Final Significant Time of Events
7/17/69

Preliminary Guidance Velocities
7/25/69
7/25/69
Orbital Venting Accelerations Data Cards

7/18/69
9/8/69

SECTION 1

SUMMARY AND INTRODUCTION

The Apollo/Saturn VAS-506 vehicle was launched from Launch Complex 39, Pad A at the Kennedy Space Center on July 16, 1969, at 8:32:00 A.M. Eastern Standard Time (Range Time Zero) at an azimuth of 90 degrees east of north. Range time, which is referenced to Range Time Zero, is used throughout this document unless otherwise specified. Guidance reference release (GRR) was established to have occurred at -16.968 seconds. First motion occurred at 0.3 second. At 13.2 seconds, a roll maneuver was initiated, orienting the vehicle to a flight azimuth of 72.058 degrees east of north. This flight azimuth, dependent on the launch time, launch day and month, is calculated using polynomial coefficients taken from the guidance presettings in order to achieve the desired translunar targeting parameters. The translunar targeting parameters are functions of the moon position, earth parking orbit inclination, earth-moon distance, and moon travel rate.

The vehicle performed with only minor deviations throughout the entire flight. The vehicle was inserted into a parking orbit at 709.33 seconds at an altitude of $191.1 \mathrm{~km}(103.2 \mathrm{nmi})$ and a total space-fixed velocity of $7,793.1 \mathrm{~m} / \mathrm{s}(25,567.9 \mathrm{ft} / \mathrm{s})$. The vehicle remained in orbit for approximately one and one-half revolutions. The S-IVB stage was restarted during the second revolution approximately midway between Australia and Hawaii, at $9,856.2$ seconds.

At $10,213.03$ seconds, the vehicle was injected onto a circumlunar trajectory at an altitude of $334.4 \mathrm{~km}(180.6 \mathrm{nmi})$ and a total space-fixed velocity of $10,834.3 \mathrm{~m} / \mathrm{s}(35,545.6 \mathrm{ft} / \mathrm{s})$. At 11,723 seconds, the CSM separated from the launch vehicle at an altitude of $7,065.7 \mathrm{~km}(3,815.2 \mathrm{n} \mathrm{mi})$ and a total space-fixed velocity of $7,608.6 \mathrm{~m} / \mathrm{s}(24,962.6 \mathrm{ft} / \mathrm{s})$. Following LM extraction, the launch vehicle maneuvered to a singshot attitude fixed relative to local horizontal. The retrograde velocity to achieve S-IVB/IU lunar slingshot was accomplished by a LOX dump, APS burn, and LH_{2} venting. The S-IVB/IU closest approach of $3,379 \mathrm{~km}(1,825 \mathrm{n} \mathrm{mi})$ to the lunar surface occurred at 78.70 hours into the mission.

The impact location of the expended S-IC stage was determined to be 30.212 degrees north 1 atitude and 74.038 degrees west longitude at 543.7 seconds. The impact location of the expended S-II stage was determined to be 31.535 degrees north latitude and 34.844 degrees west longitude at $1,213.7$ seconds.

Section 2 of this document defines the coordinate systems and launch parameters used for the postflight trajectory analysis.

SECTION 1 (Continued)

The postflight mass point trajectory related parameters and analytical procedures are presented in Sections 3 through 7. The trajectory is divided into six phases:
a. Ascent Phase
b. Orbital Phase
c. Second Burn Phase
d. Post TLI Phase
e. Free Flight Phase
f. Slingshot Phase

The ascent phase, covering the portion of fight from guidance reference release to orbital insertion (709.33 seconds), is discussed in Section 3. This trajectory was established from data provided by external C-band radars and telemetered onboard data obtained from the ST-124M inertial platform.

The second burn phase, discussed in Section 3, covers the portion of flight from S-IVB restart preparations to translunar injection ($10,213.03$ seconds). This trajectory was established by integrating the ST-124M platform telemetered guidance velocities between constraining state vectors obtained from the orbital and post TLI trajectory phases.

The orbital phase, discussed in Section 4, covers the portion of flight from orbital insertion to S-IVB restart preparations ($9,278.2$ seconds). The orbital trajectory was established from data provided by the C-band radars of the Manned Space Flight Network.

The post translunar injection (TLI) phase, discussed in section 4 , covers the portion of flight from the translunar injection to CSM separation (11,723 seconds). This trajectory was established from data provided by the C-band radars of the Manned Space Fiight Network.

The error analysis of the reconstructed trajectory is discussed in Section 5. The criteria for error analysis are included and trajectory uncertainty limits are assigned to the boost, parking orbit, second burn, and post TLI phases.

The free flight phase, discussed in Section 6, covers the trajectories of the expended S-IC and S-II stages. These trajectories are based on initial conditions obtained from the postflight trajectory at separation. The nominal separation impulses for both stages were used in the simulation.

SECTION 1 (Continued)

The slingshot phase, discussed in Section 7, covers the trajectory of the S-IVB/IU after it was separated from the CSM/LM. This trajectory was produced by integrating orbital model equations forward from a state vector at 21.58 hours GMT, July 16, 1969, which was established by Goddard Space Fifight Center from Unified S-band (USB) tracking data.
Appendix A provides a detailed definition of the symbols, nomenclature, and coordinate systems used throughout the document.

Appendix B tabulates the time history of the trajectory parameters in metric units.

Appendix C tabulates the time history of the trajectory parameters in English units.

THIS PAGE INTENTIONALLY LEFT BLANK.

SECTION 2

COORDINATE SYSTEMS AND LAUNCH PARAMETERS

The time history of Observed Mass Point Trajectory parameters in both metric and English units is tabulated in Appendices B and C, respectively. These tabulations are in earth-fixed launch site, launch vehicle navigation, and geographic polar coordinate systems. These coordinate systems are defined in Reference 1, "Project Apollo Coordinate System Standards," (PACSS) and are designated PACSS10, PACSS1, and PACSS13, respectively. The trajectory symbols and terminology used in this document are defined in Appendix A.

The Fischer Ellipsoid of 1960 (Reference 2) is used as the representative model for the earth and its gravitational field. All latitude and longitude coordinates are defined with respect to this ellipsoid.

The geographic coordinates for Launch Complex 39, Pad A, at the Kennedy Space Center are as follows:

$$
\begin{array}{ll}
\text { Geodetic Latitude } & 28.608422 \text { degrees north } \\
\text { Longitude } & 80.604133 \text { degrees west }
\end{array}
$$

The height of the center of gravity of the launch vehicle above the reference ellipsoid is 59.4 m (194.9 ft).

The azimuth alignments are as follows:

Launch Azimuth
Fiight Azimuth
ST-124M Platform Azimuth
90.0 degrees east of north 72.058 degrees east of north 72.058 degrees east of north

> D5-15560-6

THIS PAGE INTENTIONALLY LEFT BLANK.

SECTION 3

POWERED FLIGHT TRAJECTORY RECONSTRUCTION

3.1 POWERED FLIGHT TRAJECTORY

3.1.1 Ascent Phase

A comparison of actual and nominal times for significant fight events is presented in Table 3-I. The nominal times for these events are taken from Reference 3.

The tracking stations and the vehicle ground track for the ascent phase are shown in Figure 3-1.

The actual altitude, surface range, and cross range are shown in Figures 3-2 through 3-4, respectively, for the entire ascent trajectory. The magnitude of the total space-fixed velocity vector and the associated flight path angle are shown in figure 3-5. The magnitude of the total inertial acceleration vector is shown in Figure 3-6. Mach number and dynamic pressure are shown during the S-IC phase of the ascent trajectory in Figure 3-7.

Various trajectory parameters, such as altitude, velocity, and acceleration are given at some significant event times in Table 3-II.

Engine cutoff and stage separation conditions are given in Tables 3-III and 3-IV, respectively.

The ascent trajectory, from guidance reference release to parking orbit insertion, is tabulated in Tables $B-I$ through B-III in metric units, and in Tables $C-I$ through C-III in English units. These tables present the trajectory in the earth-fixed launch site (PACSS10), launch vehicle navigation (PACSS13), and geographic polar (PACSS1) coordinate systems. The definitions pertaining to the trajectory symbols and the coordinate systems are given in Appendix A.

3.1.2 Second Burn Phase

A comparison of actual and nominal times for significant flight events pertaining to the second burn phase is included in Table 3-I.

The actual altitude is shown in Figure 3-8. The magnitude of the total space-fixed velocity vector and the associated flight path angle are shown in Figure 3-9. The magnitude of the total inertial acceleration vector is shown in Figure 3-10. The maximum total inertial acceleration and earth-fixed velocity are shown in Table 3-II.

3.1.2 (Continued)

The second burn trajectory, from the time of S-IVB restart preparations to CSM separation, is tabulated in Tables B-V through B-VII in metric units, and in Tables C-V through C-VII in English units. These tables present the trajectory in the earth-fixed launch site (PACSS10), launch vehicle navigation (PACSS13), and geographic polar (PACSS1) coordinate systems. The definitions pertaining to the trajectory symbols and the coordinate systems are given in Appendix A.

3.1.3 Targeting Parameters

The actual and nominal targeting parameters are given in Table 3-V. These nominal parameters are used in the guidance computer as terminal conditions for the powered flight phases. The actual targeting parameters were close to nominal.

3.2 DATA SOURCES

3.2.1 Ascent Phase

Tracking data and telemetered guidance velocity data were received during the period from first motion through orbital insertion. The time periods for which tracking system coverage was available are shown in Figure 3-11 and itemized in Table 3-VI. The geographic locations of the tracking stations and the ground track for the ascent trajectory are shown in figure 3-1. The antenna locations for the tracking system and the vehicle center of gravity are shown in Figure 3-12.

Considerable C - Band tracking data were furnished by the stations located at Cape Kennedy, Patrick Air Force Base, Merritt Island, Grand Turk Island, and Bermuda Island. These tracking data were provided as measured parameters in azimuth angle, elevation angle, and slant range. These measurements are defined in Reference 1 and designated as PACSS3a.

Comparisons between these data and the ascent trajectory were calculated in PACSS3a. The position components of the ascent trajectory in PACSS10 were corrected for the differences between the center of gravity and the transponder location. The corrected position components were transformed into the measured parameters of PACSS3a. Differences or deviations (tracking data minus corresponding parameters derived from the ascent trajectory) were calculated, smoothed, and plotted as functions of time, and are shown in Figures 3-13 through 3-15.

Cape Kennedy (1.16) radar provided tracking data from 25 to 400 seconds. The azimuth angle measurements were noisy throughout the time span of tracking, and oscillated about

3.2.1 (Continued)

the trajectory up to about 175 seconds. After 175 seconds, the azimuth angle measurements agree favorably with the trajectory with maximum deviation of 0.016 degree. The elevation angle measurements were noisy throughout the tracking period with maximum deviation of 0.037 degree from the trajectory. The slant range measurements contained little noise throughout the tracking period with maximum deviation of 48 m (157 ft) from the trajectory.

Patrick (0.18) radar provided tracking data from 25 to 500 seconds. The azimuth angle measurements contained iftte noise throughout the tracking period. They deviated considerably from the trajectory up to about 225 seconds, but agree excellently thereafter with maximum deviation of 0.008 degree. The elevation angle measurements were noisy during the early portion (25 to 75 seconds) and the later portion (465 to 500 seconds) of tracking. The elevation angle measurements also deviated considerably from the trajectory up to about 100 seconds, and agree favorably with the trajectory in the time span from 100 to 465 seconds with maximum deviation of 0.028 degree. The slant range measurements contained little noise throughout the tracking period with maximum deviation of 32 m (105 ft) from the trajectory.

Merritt Island (19.18) radar furnished data from 80 to 425 seconds. The azimuth angle measurements were of good quality except in the time spans of $80-120$ and $165-200$ seconds, where the data were erratic. The azimuth angle measurements reached a maximum deviation of 0.059 degree at 115 seconds, and decreased rapidly thereafter with near zero deviation after 300 seconds. The elevation angle measurements were of good quality and deviated a maximum of 0.030 degree from the trajectory. The slant range measurements were of good quality except in the time span of 170-200 seconds, where the data were erratic. The slant range measurements had a discontinuity at about 390 seconds, indicating a switch from beacon to skin tracking. The maximum deviation of slant range measurements from the trajectory amounted to $35 \mathrm{~m}(115 \mathrm{ft})$.

Grand Turk (7.18) radar supplied data from 230 to 520 seconds. The azimuth and elevation angle measurements were noisy and erratic throughout the tracking period. Although the slant range measurements contained little noise and deviated reasonably from the ascent trajectory, the data were considered as invalid and were not used in the trajectory reconstruction.

Bermuda (67.16) radar provided data from 275 to 710 seconds. The azimuth angle measurements contained little noise through-

3.2.1 (Continued)

out the tracking period. Except for a characteristic deviation from 500 to 600 seconds, the azimuth angle measurements were in good agreement with the trajectory with maximum deviation of 0.012 degree. The elevation angle measurements were noisy at the beginning (275 to 330 seconds) of tracking. A characteristic deviation occurred from 500 to 625 seconds. The elevation angle measurements were in good agreement with the trajectory near the end of tracking with a deviation of 0.022 degree at parking orbit insertion (709.33 seconds). The slant range measurements contained little noise throughout the tracking period; however, a large deviation occurred in the interval 375 to 575 seconds. Approaching the end of the tracking period, the deviation in the slant range measurements decreased rapidiy with a deviation of $48 \mathrm{~m}(157 \mathrm{ft})$ at parking orbit insertion.

Bermuda (67.18) radar provided data from 250 to 710 seconds. The azimuth angle measurements contained little noise throughout the tracking period. As with the 67.16 radar, a characteristic deviation was evident from 500 to 600 seconds. Otherwise, the azimuth angle measurements were in good agreement with the trajectory with maximum deviation of 0.024 degree. The elevation angle measurements were noisy at the beginning (250 to 330 seconds) of tracking. A characteristic deviation occurred from 500 to 625 seconds. The elevation angle measurements were in good agreement with the trajectory near the end of tracking with a deviation of 0.030 degree at parking orbit insertion. The slant range measurements contained little noise throughout the tracking period; however, a large deviation occurred from 400 to 575 seconds. Approaching the end of the tracking period, the deviation in the slant range measurements decreased rapidly with a deviation of $20 \mathrm{~m}(66 \mathrm{ft})$ at parking orbit insertion.

3.2.2 Second Burn Phase

Telemetered guidance velocity data during the S-IVB second burn period were received. Also, C-band radar tracking data were obtained from the Redstone Ship from 9,726 to 10,098 seconds. These tracking data were found to be invalid and were not used in the trajectory reconstruction.

3.3 TRAJECTORY RECONSTRUCTION

3.3.1 Ascent Phase

The ascent trajectory from guidance reference release to orbital insertion was established by a composite solution of available tracking data and telemetered onboard guidance velocity data.

3.3.1 (Continued)

Before the data were used in the trajectory solution, one or more of the following processing steps was performed:
a. Inspecting for format and parity errors
b. Time editing
c. Data editing and filtering
d. Refraction correction
e. Reformatting
f. Coordinate transformation

The position components of the tracking point of the vehicle in PACSS10 were established by merging the launch phase and ascent phase trajectory segments.

The launch phase (from first motion to 20 seconds) was established by integrating the telemetered guidance accelerometer data and by constraining it to the early portion of the ascent phase trajectory. The ascent phase (from 20 seconds to orbital insertion at 709.33 seconds) was based on a composite fit of external tracking data and telemetered onboard guidance velocity data. The ascent phase was constrained to the insertion vector obtained from the orbital analysis of section 4 . The output data were transformed to the vehicle center of gravity.
A computer program (GATE), which uses a guidance error model, was utilized. The telemetered guidance velocity data were used as the generating parameter, and error coefficients were estimated to best fit the tracking observations. The Kalman recursive method was used for the estimation. Reference 4 gives a theoretical discussion of the GATE program.

The position components, in PACSS10, were filtered and differentiated to obtain vehicle velocity and acceleration components. Since numerical differentiators tend to distort the data through the transient areas (engine cutoffs), the guidance velocity data were integrated and used to fililin these areas.

The trajectory data in PACSS10 were then transformed to several coordinate systems. Various trajectory parameters were also calculated and are presented in Appendices B and C. In calculating the Mach number and dynamic pressure, measured meteorological data were used up to an altitude of $56.0 \mathrm{~km}(30.2 \mathrm{n} \mathrm{mi})$. Above this altitude the measured data were merged into the U.S. Standard Reference Atmosphere.

3.3.2 Second Burn Phase

The second burn trajectory was established by combining an orbital trajectory segment and a powered fiight trajectory segment.

The orbital trajectory segment covers the portion of flight from the beginning of S-IVB restart preparations ($9,278.2$ seconds) to 9,715 seconds. This trajectory segment was obtained from the orbital solution as described in section 4.
The powered flight trajectory segment covers the time span from 9,715 seconds to translunar injection (10,213.03 seconds). This trajectory segment was established by integrating the telemetered guidance velocity data forward from the state vector at 9,715 seconds and constraining the end point to the translunar injection vector (obtained from the post TLI trajectory of Section 4). The GATE program was utilized for the solution.

The Redstone Ship tracking data during the second burn phase were noisy and erratic. These tracking data were not utilized in the trajectory reconstruction.

The position components, in PACSS10, were filtered, differentiated, shaped, and transformed in the same manner as described in Paragraph 3.3.1.

Figure 3-1. GROUND track and tracking stations - ascent phase

FIGURE 3-2. ALTITUDE - ASCENT PHASE

figure 3-4. Cross range - ascent phase
Sヨ38930－379N甘 HL甘d LH9I7J

FIGURE 3－5．SPACE－FIXED VELOCITY AND FLIGHT PATH ANGLE－ASCENT PHASE

FIGURE 3-6. TOTAL INERTIAL ACCELERATION - ASCENT PHASE

FIGURE 3-7. MACH NUMBER AND DYNAMIC PRESSURE - S-IC PHASE

FIGURE 3-8. ALTITUDE - SECOND BURN PHASE

FIGURE 3-12. ANTENNA LOCATIONS AND CENTER OF GRAVITY

FIGURE 3-13. AZIMUTH ANGLE TRACKING COMPARISON - ASCENT PHASE

Figure 3-14. elevation angle tracking comparison - ascent phase

TABLE 3-I. TIMES OF SIGNIFICANT EVENTS

EVENT	RANGE TIME, SEC		
	ACTUAL	NOMI NAL	ACT-NOM
Guidance Reference Release	-16.968	-16.987	0.019
First Motion	0.3	0.3	0.0
Start of Time Base 1	0.6	0.7	-0.1
Mach 1	66.3	65.6	0.7
Maximum Dynamic Pressure	83.0	81.3	1.7
S-IC Center Engine Cutoff	135.20	135.26	-0.06
S-IC Outboard Engine Cutoff	161.63	161.08	0.55
S-IC/S-II Separation Command	162.3	161.8	0.5
S-II Center Engine Cutoff	460.62	460.08	0.54
S-II Outboard Engine Cutoff	548.22	551.65	-3.43
S-II/S-IVB Separation Command	549.0	552.4	-3.4
S-IVB Ist Guidance Cutoff	699.33	699.49	-0.16
Parking Orbit Insertion	709.33	709.49	-0.16
Begin S-IVB Restart Preparations	9.278 .2	9,277.3	0.9
S-IVB Engine Reignition (STDV Open)	9,856.2	9,855.5	0.7
S-IVB 2nd Guidance Cutoff	10,203.03	10,204.06	-1.03
Translunar Injection	10,213.03	10,214.06	-1.03
CSM Separation	11.723	11,704	19
Begin Slingshot Maneuver	17,467.7	17,404.4	63.3

TABLE 3-II. SIGNIFICANT TRAJECTORY PARAMETERS

event	parameter	Value
First Motion	Range Time, sec Total Inertial Acceleration, $\mathrm{m} / \mathrm{s}^{2}$ (ft/s2)	$\begin{array}{r} 0.3 \tag{g}\\ 10.47 \\ (34.35) \\ (1.07) \end{array}$
Mach 1	Range Time, sec Altitude, km (n m1)	$\begin{array}{r} 66.3 \\ 7.8 \\ (4.2) \end{array}$
Maximum Dynamic Pressure	Range Time, sec Dynamic Pressure, $\mathrm{N} / \mathrm{cm}^{2}$ ($1 \mathrm{~b} f / \mathrm{f} \mathrm{t}^{2}$) Altitude, km ($n \mathrm{mi}$)	$\begin{array}{r} 83.0 \\ 3.52 \\ (735.2) \\ (73.6 \\ (7.3) \end{array}$
Maximum Total Inertial Acceleration: S-IVB ist Burn S-IVB 2nd Burn	Range Time, sec Acceleration, $\mathrm{m} / \mathrm{s}^{2}$ (ft/s ${ }^{2}$) (g) Range Time, sec Acceleration, $\mathrm{m} / \mathrm{s}^{2}$ (ft/s2) (g) Range Time, sec Acceleration, $\mathrm{m} / \mathrm{s}^{2}$ (ft/s ${ }^{2}$) (g) Range Time, sec Acceleration, $\mathrm{m} / \mathrm{s}^{2}$ $\left(\mathrm{ft} / \mathrm{s}^{2}\right)$ (g)	$\begin{array}{r} 161.71 \\ 38.61 \\ (126.67) \\ (3.94) \\ 460.70 \\ 17.84 \\ (58.53) \\ (1.82) \\ 699.41 \\ 6.73 \\ (22.08) \\ (0.69) \\ 10.203 .11 \\ 14.22 \\ (46.65) \\ (1.45) \end{array}$
Maximum Earth-Fixed Velocity: S-IVB ist Burn S-IVB 2nd Burn	Range Time, sec Velocity, m / s (ft / s) Range Time, sec Velocity, m/s (ft / s) Range Time, sec Velocity, m / s (ft/s) Range Time, sec Velocity, m/s (ft/s)	$\begin{array}{r} 162.30 \\ 2,402.7 \\ (7,882.9) \\ 549.00 \\ 6,515.7 \\ (21,377.0) \\ 709.33 \\ 7.389 .5 \\ (24,243.8) \\ 10,203.50 \\ 10,433.4 \\ (34,230.3) \end{array}$

SNOILIONOJ JコOLกJ ヨNIGNヨ III－\＆ヨาg＊1

PARAMETER	S－IC CECO	S－ICOECO	S－I CECO	S－II OECO	$\begin{aligned} & \text { S - IVB IST } \\ & \text { GUIDANCE } \\ & \text { CUTOFF } \end{aligned}$	$\begin{aligned} & \text { S-IVB 2ND } \\ & \text { GUIDANCE } \\ & \text { CUTOFF } \end{aligned}$
Range Time，sec	135.20	161.63	460.62	548.22	699.33	10，203．03
$\text { Altitude, }{ }_{(n \mathrm{nmi})}^{\mathrm{mm}}$	$\begin{array}{r} 44.0 \\ (23.8) \end{array}$	$\begin{array}{r} 66.1 \\ (35.7) \end{array}$	$\begin{array}{r} 180.2 \\ (97.3) \end{array}$	$\begin{array}{r} 187.3 \\ (101.1) \end{array}$	$\begin{array}{r} 191.1 \\ (103.2) \end{array}$	$\begin{array}{r} 320.9 \\ (173.3) \end{array}$
Surface Range， $\begin{gathered}\mathrm{km} \\ (\mathrm{n} \mathrm{mi})\end{gathered}$	$\begin{array}{r} 46.4 \\ (25 . i) \end{array}$	$\begin{array}{r} 93.6 \\ (50.5) \end{array}$	$\begin{aligned} & 1.114 .3 \\ & (601.7) \end{aligned}$	$\begin{aligned} & 1.618 .4 \\ & (873.9) \end{aligned}$	$\begin{array}{r} 2,633.5 \\ (1,422.0) \end{array}$	
$\begin{array}{r} \text { Space-Fixed Velocity, } \mathrm{m} / \mathrm{s} \\ (\mathrm{ft} / \mathrm{s}) \end{array}$	$\begin{array}{r} 1,979.0 \\ (6,492.8) \end{array}$	$\begin{array}{r} 2,764.1 \\ (9,068.6) \end{array}$	$\begin{array}{r} 5,707.5 \\ (18,725.4) \end{array}$	$\begin{array}{r} 6,916.1 \\ (22,690.6) \end{array}$	$\begin{array}{r} 7,791.2 \\ (25,561.7) \end{array}$	$\begin{array}{r} 10,841.2 \\ (35,568.2) \end{array}$
Flight path Angle．deg	22.957	19.174	0.897	0.619	0.011	6.914
Heading Angle，deg	76.315	75.439	79.646	82.396	88.414	59.934
Cross Range， $\begin{aligned} & k m \\ &\left(\begin{array}{ll}n & m i\end{array}\right)\end{aligned}$	$(0.1)^{0.2}$	$\begin{array}{r} 0.5 \\ (0.3) \end{array}$	15.0 (8.1)	$\begin{array}{r} 27.4 \\ (14.8) \end{array}$	$\begin{array}{r} 60.9 \\ (32.9) \end{array}$	
	$\left(17^{5.7}\right)^{4}$	$\begin{array}{r} 12.6 \\ (41.3)^{2} \end{array}$	$\begin{array}{r} 111.9 \\ (367.1) \end{array}$	$\begin{array}{r} 174.1 \\ (571.2) \end{array}$	$\begin{array}{r} 274.3 \\ (899.9) \end{array}$	
Eccentricity						0.97548
$\begin{aligned} & C_{3}^{*}, \\ & m^{2} / s^{2} \\ & \left(f t^{2} / s^{2}\right) \end{aligned}$						$\begin{array}{r} -1,480,682 \\ (15,937,928) \end{array}$
Inclination，deg						31.386
Descending Node，deg						121．849

[^0]TABLE 3-IV. STAGE SEPARATION CONDITIONS

PARAMETER	$\begin{aligned} & \text { S-IC/S-II } \\ & \text { SEPARATION } \\ & \text { COMMAND } \end{aligned}$	$\begin{aligned} & \text { S-II/S-IVB } \\ & \text { SEPARATION } \\ & \text { COMMAND } \end{aligned}$
Range Time, sec	162.3	549.0
Altitude $\binom{\mathrm{km}}{\mathrm{mi}}$	$\begin{array}{r} 66.7 \\ (36.0) \end{array}$	$\begin{array}{r} 187.4 \\ (101.2) \end{array}$
Surface Range, $(\mathrm{nm} \mathrm{mi})$	$\begin{array}{r} 95.1 \\ (51.3) \end{array}$	$\begin{aligned} & 1,623.4 \\ & (876.6) \end{aligned}$
Space-Fixed Velocity, m/s (ft / s)	$\begin{gathered} 2,773.9 \\ (9,100.7) \end{gathered}$	$\begin{array}{r} 6,918.8 \\ (22,699.5) \end{array}$
Flight Path Angle, deg	19.020	0.611
Heading Angle, deg	75.436	82.426
$\text { Cross Range, }{ }_{(n \mathrm{~mm})}^{\mathrm{km}}$	(0.3)	27.5 (14.8)
Cross Range Velocity, m/s (ft / s)	$\begin{aligned} & 12.8 \\ & (42.0) \end{aligned}$	$\begin{array}{r} 174.7 \\ (573.2) \end{array}$
Geodetic Latitude, deg N	28.865	31.883
Longitude, deg E	-79.676	-64.147

TABLE 3-V. TARGETING PARAMETERS

PARAMETER	ACTUAL	NOMINAL	ACT-NOM
S-IVB IST GUIDANCE CUTOFF			
Range Time, sec	699.33	699.49	-0.16
Altitude, km (n mi)	$\begin{array}{r} 191.1 \\ (103.2) \end{array}$	191.3 (103.3)	$(-0 . i)^{-0.2}$
$\begin{array}{r} \text { Space-Fixed Velocity, } \mathrm{m} / \mathrm{s} \\ (\mathrm{ft} / \mathrm{s}) \end{array}$	$\begin{array}{r} 7,791.2 \\ (25,561.7) \end{array}$	$\begin{array}{r} 7,791.4 \\ (25,562.3) \end{array}$	$\left(\begin{array}{r} -0.2 \\ (-0.6) \end{array}\right.$
Flight Path Angle, deg	0.011	-0.002	0.013
TRANSLUNAR INJECTION			
Range Time, sec	10,213.03	10,214.06	-1.03
Eccentricity	0.97696	0.97667	0.00029
$\mathrm{c}_{3}, \quad \mathrm{~m}^{2} / \mathrm{s}^{2}$	-1,391,607	-1,408,484	16,877
$\left(\mathrm{ft}^{2} / \mathrm{s}^{2}\right)$	$(-14,979,133)$	$(-15,160,796)$	(181,663)
Inclination, deg	31.383	31.379	0.004
Descending Node, deg	121.847	121.866	-0.019

(PACSS3a)
** Data invalid

THIS PAGE INTENTIONALLY LEFT BLANK.

SECTION 4

ORBITAL TRAJECTORY RECONSTRUCTION

4.1 ORBITAL TRAJECTORIES

The S-IVB/LM/CSM was inserted into a circular parking orbit at 709.33 seconds. While in parking orbit, vehicle subsystem checkout was carried out from the tracking stations and Mission Control Center at Houston. During the second revolution, approximately midway between Australia and Hawaii, the S-IVB stage was restarted and the vehicle was placed onto a circumlunar trajectory.

The parking orbit insertion conditions were close to nominal. The space-fixed velocity at insertion was equal to nominal, and the flight path angle was 0.013 degree greater than nominal. The eccentricity was 0.00001 less than nominal. The apogee and perigee were $0.5 \mathrm{~km}(0.3 \mathrm{n} \mathrm{mi})$ and $0.6 \mathrm{~km}(0.3 \mathrm{n} \mathrm{mi})$ less than nominal, respectively.

The translunar injection (TLI) conditions were also close to nominal. The eccentricity was 0.00029 greater than nominal, the inclination was 0.004 degree greater than nominal, the node was 0.019 degree lower than nominal, and C_{3} was 16,877 $\mathrm{m}^{2} / \mathrm{s}^{2}\left(181,663 \mathrm{ft}^{2} / \mathrm{s}^{2}\right)$ greater than nominal. The space-fixed velocity was $3.2 \mathrm{~m} / \mathrm{s}(10.5 \mathrm{ft} / \mathrm{s})$ greater than nominal, and the altitude was $3.1 \mathrm{~km}(1.6 \mathrm{n} \mathrm{mi})$ less than nominal.

The parking orbit trajectory spans the interval from insertion to begin S-IVB restart preparations (9,278.2 seconds). The post TLI trajectory covers the period from translunar injection (10,213.03 seconds) to CSM separation (11,723 seconds). These two orbital trajectories were established by the integration of the orbital model equations using the insertion/injection vector as the initial conditions.

The insertion/injection conditions, as determined by the Orbital Correction Program (OCP), were obtained by a differential correction procedure which adjusted the estimated insertion/injection conditions to fit the C-band radar tracking data in accordance with the weights assigned to the data. After all available C-band radar tracking data were analyzed, the stations and passes providing the better quality data were used in the determination of the insertion/injection conditions.
4.2 ORBITAL DATA SOURCES

4.2.1 Orbital Tracking Data

Orbital tracking was conducted by the NASA Manned Space Fiight Network (MSFN). A summary of the C-band tracking data is given in Table 4-I. There were also considerable Unified S-band (USB) tracking data available during these periods of flight which were not used due to the abundance of C-band radar data.

4.2.2 Orbital Venting Acceleration Data

During the orbit, no major thrusting occurred; however, the orbit was continuously perturbed by low-level LH2 venting thrust. To accurately model the orbit of the vehicle, this perturbation was taken into account. The venting model was derived from telemetered guidance velocity data from the ST-124M guidance platform. The guidance velocity data were fitted in segments by polynomials in time. These polynomials were analytically differentiated to obtain the acceleration components measured by the guidance platform. Table 4-II lists the acceleration polynomials derived by this method. Figure 4-1 reflects the best estimate of the total venting acceleration (RSS of components) after atmospheric effects and biases have been removed.

4.3 TRAJECTORY RECONSTRUCTION

4.3.1 Parking Orbit Insertion Conditions

The Orbital Correction Program (OCP) was used to solve for the parking orbit insertion conditions utilizing C-band tracking data and the above-mentioned vent model. The insertion conditions are given in Table 4-III. The parking orbit solution was based on a composite fit of the two Bermuda stations at insertion, pass one of Carnarvon, pass two of Patrick, and pass two of Carnarvon. This combination of trackers is geometrically spaced to insure adequate coverage of the parking orbit. The Bermuda data at insertion were also used in the trajectory reconstruction of the ascent phase. The use of Bermuda data in the ascent phase solution and also in the orbital phase solution aids in assuring the continuity of the trajectory. The orbital solution, with the exception of the FPS $-16 M$ Bermuda radar, is based on the higher quality FPO-6 radars. The ground track from parking orbit insertion to CSM separation is given in Figure 4-2. The parking orbit trajectory in PACSSI is given in Tables B-IV and C-IV.

4.3.2 Translunar Injection Conditions

The translunar injection (TLI) conditions were determined by the Orbital Correction Program (OCP) utilizing the post injection C-band tracking data. The TLI conditions are given in Table 4-IV. The TLI state vector obtained by the GATE program from the integration of guidance velocity data agreed favorably with the OCP determined TLI vector. The post TLI trajectory is included in Tables B-V through B-VII in metric units and Tables C-V through C-VII in English units. The CSM separation conditions are given in Table $4-V$.

4.4 ORBITAL TRACKING ANALYSIS

The stations used to obtain the parking orbit insertion conditions and translunar injection conditions are given by Tables 4-VI and 4-VII, respectively. These two tables also include the number of data points and the Root-Mean-Square (RMS) errors of the residuals for each data type. These RMS errors represent the difference between the actual radar observations and the calculated observations based on the orbital ephemeris defined by the initial conditions. The RMS residual errors in clude high frequency errors (assumed Gaussian), systematic errors due to instrumentation biases, mathematical model error, and errors in the correction for atmospheric refraction.

The maximum RMS error of the radar residuals for the parking orbit was $18 \mathrm{~m}(59 \mathrm{ft})$ in slant range, 0.030 degree in elevation angle, and 0.015 degree in azimuth angle. The maximum RMS error of the radar residuals for the post TLI trajectory was 18 m (59 ft) in slant range, 0.025 degree in elevation angle, and 0.020 in azimuth angle. The magnitudes of these RMS errors are reasonable and indicate the validity of the parking orbit and post TLI trajectory.

우N	1	$\underset{\sim}{\sim}$	-	$\stackrel{1}{+}$

LONGITUDE - DEGREES
FIGURE 4-2. GROUND TRACK

TABLE 4-I. SUMMARY OF ORBITAL C-BAND TRACKING DATA AVAILABLE

STATION	TYPE OF RADARS	REV 1	REV 2	POST TLI
Bermuda	FPS-16M	X		
Bermuda	FPQ-6	X	X	X
Tananarive	FPS -16M	X	X	
Carnarvon	FPQ-6	x	x	
California	TPQ-18	X		X
Patrick	FPQ-6		X	X
Grand Turk	TPQ-18		X	X
Redstone Ship	FPS-16M		X	
Hawai i	FPS-16M			X
Antigua	FPQ-6			X
Ascension	TPQ-18			X

TABLE 4-II. ORBITAL VENTING ACCELERATION POLYNOMIALS*

$\ddot{\chi} * *$			
Tb	710	1,483	9,535
Te	1,483	9,535	9,840
c_{0}	$-0.29883288 \times 10^{-5}$	-0.12140570×10-5	$-0.61607689 \times 10^{-6}$
C_{1}	$0.19159214 \times 10^{-7}$	-0.25510786×10-9	$0.49930034 \times 10^{-7}$
C_{2}	-0.46780418×10-10	$0.13961048 \times 10^{-11}$	-0.39763102 $\times 10^{-9}$
C_{3}	$0.34343775 \times 10^{-13}$	-0.59877535 10^{-15}	$0.86249576 \times 10^{-12}$
C_{4}	0	$0.89589398 \times 10^{-19}$	0
C_{5}	0	-0.44624259×10-23	0
$\ddot{\mathrm{Y}}$			
$\mathrm{T}_{\mathrm{b}} \quad 710$			
$\mathrm{T}_{\mathrm{e}} \quad 9,840$			
C_{0}	$0.13272155 \times 10^{-7}$		
c_{1}	$0.60177901 \times 10^{-11}$		
C_{2}	0		
C_{3}	0		
C_{4}	0		
C_{5}	0		
710 Z			
T_{b}	710	1,483	9,535
T_{e}	1,483	9,535	9,840
${ }^{\text {c }}$	$0.54491435 \times 10^{-5}$	$0.39339382 \times 10^{-6}$	-0.26517094×10-6
C_{1}	$-0.37627287 \times 10^{-7}$	-0.24289009 $\times 10^{-8}$	$0.10419636 \times 10^{-7}$
C_{2}	$0.86370452 \times 10^{-10}$	$0.15008060 \times 10^{-11}$	-0.92767644×10 ${ }^{-10}$
C_{3}	$-0.61633706 \times 10^{-13}$	-0.30356055 $\times 10^{-15}$	$0.22408258 \times 10^{-12}$
C_{4}	0	$0.20894634 \times 10^{-19}$	0
C_{5}	0	-0.21112472×10 ${ }^{-24}$	0

* Polynomials are of the form $a=C_{0}+C_{1} t+C_{2} t^{2}+C_{3} t^{3}+C_{4} t^{4}+C_{5} t^{5}$ where a is the acceleration component ($k m / \mathrm{s}^{2}$) and $t=T-T_{b}$ where $T_{b} \leq T_{<} T_{e}$. The begin time (T_{b}) and the end time (T_{e}) for the polynomial segments are expressed in seconds.
** The acceleration components are expressed in the launch vehicle platform-accelerometer system (PACSS12).
D5-15560-6

TABLE 4-III. PARKING ORBIT INSERTION CONDITIONS

PARAMETER	VALUE
Range Time, sec	709.33
Altitude $\binom{\mathrm{km}}{\mathrm{mi}}$	$\begin{array}{r} 191.1 \\ (103.2) \end{array}$
$\text { Space-Fixed Velocity, } \underset{(\mathrm{ft} / \mathrm{s})}{\mathrm{m} / \mathrm{s}}$	$\begin{array}{r} 7,793.1 \\ (25,567.9) \end{array}$
Flight Path Angle, deg	0.012
Heading Angle, deg	88.848
Inclination, deg	32.521
Descending Node, deg	123.088
Eccentricity	0.00021
$\text { Apogee*, }{\underset{(n m i}{n m})}^{k m}$	$\begin{array}{r} 186.0 \\ (100.4) \end{array}$
$\text { Perigee*, }{ }_{(\mathrm{nm}}^{\mathrm{n} \mathrm{mi})}$	$\begin{gathered} 183.2 \\ (98.9) \end{gathered}$
Period, min	88.18
Geodetic Latitude, deg N	32.672
Longitude, deg E	-52.694

[^1]TABLE 4-IV. TRANSLUNAR INJECTION CONDITIONS

* Twice the specific energy of orbit
$C_{3}=V^{2}-\frac{2 \mu}{R}$
where $V=$ Inertial Velocity
$\mu=$ Gravitational Constant
$R=$ Radius vector from center of earth

$$
D 5-15560-6
$$

TABLE $4-V . \quad$ CSM SEPARATION CONDITIONS

PARAMETER	value
Range Time, sec	11,723
Altitude, ${ }_{(\mathrm{nm} \text { mi })}$	$\begin{array}{r} 7,065.7 \\ (3,815.2) \end{array}$
$\text { Space-Fixed Velocity, } \underset{(\mathrm{ft} / \mathrm{s})}{\mathrm{m} / \mathrm{s}}$	$\begin{array}{r} 7,608.6 \\ (24,962.6) \end{array}$
Flight Path Angle, deg	45.148
Heading Angle, deg	93.758
Geodetic Latitude, deg N	31.246
Longitude, deg E	-90.622

TABLE 4-VI. PARKING ORBIT TRACKING UTILIZATION SUMMARY

STATION	TIME OF TRACK (SECONDS) BEGIN END	DATA TYPE	VALID OBSERVATIONS	RMS ERROR OF RESIDUALS
Bermuda (FPS-16M)	714	Azimuth Angle Elevation Angle Slant Range	$\begin{aligned} & 6 \\ & 7 \\ & 7 \end{aligned}$	$\begin{aligned} & 0.010 \mathrm{deg} \\ & 0.030 \mathrm{deg} \\ & 18 \mathrm{~m}(59 \mathrm{ft}) \end{aligned}$
Bermuda $(F P Q-6)$	714	Azimuth Angle Elevation Angle Slant Range	$\begin{aligned} & 7 \\ & 6 \\ & 7 \end{aligned}$	$\begin{aligned} & 0.015 \mathrm{deg} \\ & 0.023 \mathrm{deg} \\ & 3 \mathrm{~m} \quad(10 \mathrm{ft}) \end{aligned}$
Carnarvon $(F P Q-6)$	3,174 3,456	Azimuth Angle Elevation Angle Slant Range	$\begin{aligned} & 48 \\ & 47 \\ & 47 \end{aligned}$	$\begin{aligned} & 0.005 \mathrm{deg} \\ & 0.017 \mathrm{deg} \\ & 10 \mathrm{~m}(33 \mathrm{ft}) \end{aligned}$
Patrick $(F P Q-6)$	5,748 6,096	Azimuth Angle Elevation Angle Slant Range	$\begin{aligned} & 52 \\ & 53 \\ & 58 \end{aligned}$	$\begin{aligned} & 0.007 \mathrm{deg} \\ & 0.011 \mathrm{deg} \\ & 9 \mathrm{~m} \quad(30 \mathrm{ft}) \end{aligned}$
Carnarvon $(F P Q-6)$	8,772 9,090	Azimuth Angle Elevation Angle Slant Range	$\begin{aligned} & 50 \\ & 49 \\ & 54 \end{aligned}$	$\begin{aligned} & 0.003 \mathrm{deg} \\ & 0.007 \mathrm{deg} \\ & 7 \mathrm{~m} \quad(23 \mathrm{ft}) \end{aligned}$

TABLE 4-VII. POST TLI TRACKING UTILIZATION SUMMARY

STATION	TIME OF TRACK (SECONDS) BEGIN END	DATA TYPE	$\begin{gathered} \text { VALID } \\ \text { OBSERVATIONS } \end{gathered}$	RMS ERROR OF RESIDUALS
Hawai (FPS-16M)	10,218 10,752	Azimuth Angle Elevation Angle Slant Range	$\begin{aligned} & 84 \\ & 87 \\ & 85 \end{aligned}$	$\begin{aligned} & 0.017 \mathrm{deg} \\ & 0.025 \mathrm{deg} \\ & 18 \mathrm{~m}(59 \mathrm{ft}) \end{aligned}$
California (TPQ-18)	10,464 11,526	Azimuth Angle Elevation Angle Slant Range	$\begin{aligned} & 80 \\ & 84 \\ & 83 \end{aligned}$	$\begin{aligned} & 0.009 \mathrm{deg} \\ & 0.009 \mathrm{deg} \\ & 9 \mathrm{~m}(30 \mathrm{ft}) \end{aligned}$
Bermuda $(F P Q-6)$	10,944 11,520	Azimuth Angle Elevation Angle Slant Range	$\begin{aligned} & 48 \\ & 49 \\ & 46 \end{aligned}$	$\begin{aligned} & 0.008 \mathrm{deg} \\ & 0.012 \mathrm{deg} \\ & 5 \mathrm{~m}(16 \mathrm{ft}) \end{aligned}$
Grand Turk (TPQ-18)	11,028 11,520	Azimuth Angle Elevation Angle Slant Range	$\begin{aligned} & 35 \\ & 33 \\ & 35 \end{aligned}$	$\begin{aligned} & 0.020 \mathrm{deg} \\ & 0.012 \mathrm{deg} \\ & 14 \mathrm{~m}(46 \mathrm{ft}) \end{aligned}$
Antigua (FPQ-6)	11,052 11,520	Azimuth Angle Elevation Angle Slant Range	$\begin{aligned} & 27 \\ & 27 \\ & 30 \end{aligned}$	$\begin{aligned} & 0.009 \mathrm{deg} \\ & 0.016 \mathrm{deg} \\ & 14 \mathrm{~m}(46 \mathrm{ft}) \end{aligned}$

SECTION 5

TRAJECTORY ERROR ANALYSIS

5.1 ERROR ANALYSIS

The confidence level or uncertainty one may assign to a reconstructed trajectory depends on the degree of fulfillment of the following criteria:
a. Quantity of Tracking Data
b. Quality of Tracking Data
c. Consistency between Tracking and Guidance Velocity Data
d. Continuity between Trajectory Segments

These criteria vary from flight to flight. Therefore, a rigorous statistical error analysis of the reconstructed trajectory is difficult to obtain. The following paragraphs summarize the results for this flight, and lead to the position and velocity uncertainties for the reconstructed trajectory.
5.1.1 Quantity of Tracking Data

The available tracking data for the powered fight phases are given in Figure 3-11 and Table 3-VI. The tracking coverages for the parking orbit and post TLI phases are given in Table 4-I.

The tracking stations for the ascent and post TLI phases provided extensive redundant coverages. The available tracking data during parking orbit provided adequate coverage. The Redstone Ship C-band tracking data were available for a portion of the second burn phase.

5.1.2 Quality of Tracking Data

The tracking data were generally of good quality. The Grand Turk (7.18) radar data for the ascent phase and the Redstone Ship radar data for the second burn phase were found to be invalid. However, the tracking data furnished before and after the second burn phase were of good quality.

Comparisons of the tracking data in measured parameters (PACSS3a) with the ascent trajectory are shown in Figures 3-13 through 3-15. These plots indicated that the tracking data from the different stations were mutually consistent. Except for the characteristic data deviations from the Bermuda stations occurring approximately in the time span 400-600 seconds, the tracking data deviations were of acceptable magnitude. The tracking data obtained during the parking orbit and post TLI phases were

5.1.2 (Continued)

of good quality. The RMS errors of residuals for each data type are given in Tables $4-V I$ and $4-V I I, ~ r e s p e c t i v e l y . ~$

The tracking data were transformed into the earth-fixed launch site coordinate system (PACSS10) and differenced with the reconstructed trajectory to provide a more direct indication of the spread of the tracking data. The tracking data spreads for the ascent, parking orbit, and post TLI phases are given in Tables 5-I through 5-III, respectively.
5.1.3 Consistency Between Tracking and Guidance Velocity Data

The consistency between tracking and guidance velocity data can be obtained by examining the guidance velocity error plots during powered flight trajectory segments. These error plots give the differences between the guidance velocities from the ST-124M platform and those derived from the reconstructed trajectory.

The guidance velocity error plots for the ascent phase had reasonable shapes and magnitudes. The maximum error amounted to $1.5 \mathrm{~m} / \mathrm{s}(4.9 \mathrm{ft} / \mathrm{s})$ in the X-direction, $2.8 \mathrm{~m} / \mathrm{s}(9.2 \mathrm{ft} / \mathrm{s})$ in the Y-direction, and $0.7 \mathrm{~m} / \mathrm{s}(2.3 \mathrm{ft} / \mathrm{s})$ in the Z-direction, referenced to launch vehicle platform-accelerometer coordinate system (PACSS12).

The guidance velocity error plots for the second burn phase had reasonable shapes and magnitudes. The maximum error amounted to $1.2 \mathrm{~m} / \mathrm{s}(3.9 \mathrm{ft} / \mathrm{s})$ in the X-direction, $1.7 \mathrm{~m} / \mathrm{s}$ ($5.6 \mathrm{ft} / \mathrm{s}$) in the Y -direction, and $0.9 \mathrm{~m} / \mathrm{s}(3.0 \mathrm{ft} / \mathrm{s})$ in the Z-direction, referenced to PACSS12.

5.1.4 Continuity Between Trajectory Segments

The continuity between trajectory segments can be obtained by examining the spread of solutions at parking orbit insertion and translunar injection before the trajectory segments were merged together.

Comparisons of the spread of solutions at the parking orbit insertion obtained independently by the powered flight and orbital analyses yielded good agreement. The position and velocity components of the solutions had a spread of 70 m (230 ft) and $0.3 \mathrm{~m} / \mathrm{s}(1.0 \mathrm{ft} / \mathrm{s})$ in the downrange direction, $170 \mathrm{~m}(558 \mathrm{ft})$ and $0.8 \mathrm{~m} / \mathrm{s}(2.6 \mathrm{ft} / \mathrm{s})$ in the vertical direction, and $130 \mathrm{~m}(427 \mathrm{ft})$ and $1.7 \mathrm{~m} / \mathrm{s}(5.6 \mathrm{ft} / \mathrm{s})$ in the crossrange direction, referenced to the earth-fixed launch site coordinate system (PACSS10).

5.1.4 (Continued)

Comparisons of the TLI vectors determined independently from the powered flight and orbital analyses yielded good agreement. The TLI vector from the powered flight analysis was obtained by propagating forward the state vector at 9,715 seconds (from parking orbit analysis) to $10,213.03$ seconds. The TLI vector from the orbital analysis was determined separately by using the post TLI tracking data. The position and velocity components of the two solutions had respectively a spread of 90 m $(295 \mathrm{ft})$ and $0.3 \mathrm{~m} / \mathrm{s}(1.0 \mathrm{ft} / \mathrm{s})$ in the X-direction, 80 m $(262 \mathrm{ft})$ and $1.2 \mathrm{~m} / \mathrm{s}(3.9 \mathrm{ft} / \mathrm{s})$ in the Y -direction, and 430 m ($1,411 \mathrm{ft}$) and $1.4 \mathrm{~m} / \mathrm{s}(4.6 \mathrm{ft} / \mathrm{s})$ in the Z -direction, referenced to the earth-fixed launch site coordinate system (PACSS10).

A dispersion analysis was performed for the parking orbit trajectory. Three solutions were obtained by judiciously selecting various tracking data combinations. The parking orbit insertion vectors had a spread in position and velocity components respectively of $60 \mathrm{~m}(197 \mathrm{ft})$ and $0.3 \mathrm{~m} / \mathrm{s}(1.0 \mathrm{ft} / \mathrm{s})$ in downrange (Z), $275 \mathrm{~m}(902 \mathrm{ft})$ and $0.1 \mathrm{~m} / \mathrm{s}(0.3 \mathrm{ft} / \mathrm{s})$ in vertical (X), and $80 \mathrm{~m}(262 \mathrm{ft})$ and $0.2 \mathrm{~m} / \mathrm{s}(0.7 \mathrm{ft} / \mathrm{s})$ in crossrange (Y), referenced to the earth-fixed launch site coordinate system (PACSS10).

5.2 TRAJECTORY UNCERTAINTIES

Based on the information of Paragraph 5.1, past experience, and engineering judgment, the trajectory uncertainties were estimated.

The trajectory uncertainties for the ascent phase are shown in Figure 5-1. At S-IC OECO, the uncertainties in position and velocity components in PACSS10 are $\pm 60 \mathrm{~m}(\pm 197 \mathrm{ft})$ and $\pm 0.4 \mathrm{~m} / \mathrm{s}$ $(\pm 1.3 \mathrm{ft} / \mathrm{s})$, respectively. At S-II OECO, the uncertainties in position and velocity components in PACSS10 are $\pm 350 \mathrm{~m}(\pm 1,148$ $\mathrm{ft})$ and $\pm 0.7 \mathrm{~m} / \mathrm{s}(\pm 2.3 \mathrm{ft} / \mathrm{s})$, respectively. At insertion and throughout the parking orbit, the uncertainties in position and velocity components in PACSS 10 are $\pm 500 \mathrm{~m}(\pm 1,640 \mathrm{ft})$ and $\pm 1.0 \mathrm{~m} / \mathrm{s}(\pm 3.3 \mathrm{ft} / \mathrm{s})$, respectively. The trajectory uncertainties increased to $\pm 750 \mathrm{~m}(\pm 2,461 \mathrm{ft})$ in position components and $\pm 1.5 \mathrm{~m} / \mathrm{s}(\pm 4.9 \mathrm{ft} / \mathrm{s})$ in velocity components at TLI. The trajectory uncertainties at CSM separation are $\pm 1,500 \mathrm{~m}$ ($\pm 4,921 \mathrm{ft}$) in position components and $\pm 2.0 \mathrm{~m} / \mathrm{s}(\pm 6.6 \mathrm{ft} / \mathrm{s})$ in velocity components.

SINJNOdWOJ R1IJ073＾ 0ヨXIJ－HIV甘ヨ

* Expressed in PACSS10

* Expressed in PACSS10
TABLE 5-III. TRACKING DATA SPREAD* - POST TLI PHASE

STATION	$\text { MIN } \begin{gathered} \text { SLANT RANGE } \\ \text { MAX } \end{gathered}$	ΔX	ΔY	ΔZ
Hawai (FPS-16M)	$\left.\begin{array}{lll} 1,476 & \mathrm{~km} & 4,259 \mathrm{~km} \\ 797 \mathrm{nki} \end{array}\right)(2,300 \mathrm{nki})$	$\begin{gathered} 250 \mathrm{~m} \\ (820 \mathrm{ft}) \end{gathered}$	$\begin{gathered} 400 \mathrm{~m} \\ (1,312 \mathrm{ft}) \end{gathered}$	$\begin{gathered} 1,000 \mathrm{~m} \\ (3,281 \mathrm{ft}) \end{gathered}$
California (TPQ-18)	$\begin{array}{lll}3,315 & \mathrm{~km} & 6,836 \mathrm{~km} \\ (1,790 \mathrm{n} \mathrm{mi}) & (3,691 \mathrm{n} \mathrm{mi})\end{array}$	$\begin{gathered} 500 \mathrm{~m} \\ (1,640 \mathrm{ft}) \end{gathered}$	$\begin{gathered} 700 \mathrm{~m} \\ (2,297 \mathrm{ft}) \end{gathered}$	$\begin{gathered} 400 \mathrm{~m} \\ (1,312 \mathrm{ft}) \end{gathered}$
Bermuda (FPQ-6)	$\begin{aligned} & 6,582 \mathrm{~km} \\ & (3,554 \mathrm{nki})(3,207 \mathrm{~km} \\ & (3,892 \mathrm{nki}) \end{aligned}$	$\begin{gathered} 1,200 \mathrm{~m} \\ (3,937 \mathrm{ft}) \end{gathered}$	$\begin{array}{r} 600 \mathrm{~m} \\ (1,969 \mathrm{ft}) \end{array}$	$\begin{gathered} 1,200 \mathrm{~m} \\ (3,937 \mathrm{ft}) \end{gathered}$
Grand Turk (TPQ-18)	$\begin{array}{cc}6,224 & \mathrm{~km} \\ (3,361 \mathrm{n} \mathrm{mi}) & (3,024 \mathrm{~km} \\ (3,793 \mathrm{n} \mathrm{mi})\end{array}$	$\begin{gathered} 1,100 \mathrm{~m} \\ (3,609 \mathrm{ft}) \end{gathered}$	$\begin{gathered} 2,000 \mathrm{~m} \\ (6,562 \mathrm{ft}) \end{gathered}$	$\begin{gathered} 800 \mathrm{~m} \\ (2,625 \mathrm{ft}) \end{gathered}$
Antigua (FPQ-6)	$\begin{array}{cl} 7,298 & \mathrm{~km} \\ (3,941 \mathrm{n} \mathrm{mi}) & (4,895 \mathrm{~km} \\ (4,263 \mathrm{n} \mathrm{mi}) \end{array}$	$\begin{gathered} 1,500 \mathrm{~m} \\ (4,921 \mathrm{ft}) \end{gathered}$	$\begin{array}{cl} 1,500 & \mathrm{~m} \\ (4,921 \mathrm{ft}) \end{array}$	$\begin{gathered} 1,500 \mathrm{~m} \\ (4,921 \mathrm{ft}) \end{gathered}$

* Expressed in PACSS10
D5-15560-6

THIS PAGE INTENTIONALLY LEFT BLANK.

SECTION 6
SPENT STAGE TRAJECTORIES

6.1 S-IC SPENT STAGE TRAJECTORY

Postflight predictions of earth surface impact parameters for the spent S-IC stage were computed using a mass point trajectory simulation computer program. S-IC postflight burnout position and velocity data were combined with nominal main propulsion system decay performance and nominal retro rocket performance to initialize the simulation program.

Three separate theoretical trajectories were computed for the spent S-IC stage. These three trajectories represent the following booster atmospheric entry conditions:
a. Zero-degree angle-of-attack entry
b. Ninety-degree angle-of-attack entry
c. Tumbling entry

The tumbling booster case is considered to define actual case impact conditions although no tracking coverage was available for confirmation.

Results of the three computed S-IC spent stage trajectories are summarized in Table $6-I$. The ground track is shown in Figure 6-1.

6.2 S-II SPENT STAGE TRAJECTORY

Three separate theoretical trajectories, corresponding to the zero-degree, ninety-degree, and tumbling case trajectories computed for the S-IC stage, were computed for the spent S-II stage.

The computed results, assuming a tumbling stage, were considered to define stage impact conditions since no tracking coverage of the spent S-II stage was available.

Results of the three computed S-II spent stage trajectories are summarized in Table 6-II. The ground track is shown in Figure 6-1.

FIGURE 6-1. GROUND TRACKS FOR S-IC AND S-II SPENT STAGES

TABLE 6-I. S-IC SPENT STAGE TRAJECTORY PARAMETERS

EVENT	PARAMETER	VALUE
Impact: Tumbling Case	Range Time, sec	543.7
	Latitude, deg N	30.212
	Longitude, deg E	-74.038
	Surface Range, km (n mi)	$\begin{array}{r} 661.4 \\ (357.1) \end{array}$
$\begin{aligned} \text { Impact: } & 0^{\circ} \text { Angle-of- } \\ & \text { Attack } \end{aligned}$	Range Time, sec	503.5
	Latitude, deg N	30.231
	Longitude, deg E	-73.942
	Surface Range, $\begin{aligned} & \mathrm{km} \\ & (\mathrm{mi})\end{aligned}$	$\begin{array}{r} 671.0 \\ (362.3) \end{array}$
Impact: 90 Angle-ofAttack	Range Time, sec	577.8
	Latitude, deg N	30.198
	Longitude, deg E	-74.105
	$\text { Surface Range, }{ }_{(n \mathrm{~km}}^{\mathrm{mi})}$	$\begin{array}{r} 554.9 \\ (353.6) \end{array}$
Apex: Tumbling Case	Range Time, sec	269.1
	Altitude, ${ }_{(\mathrm{n} ~ \mathrm{~mm}}^{\mathrm{km})}$	$\begin{gathered} 115.0 \\ (62 . i) \end{gathered}$
	Surface Range, $\begin{aligned} & (n \mathrm{~km} \\ & \mathrm{mi})\end{aligned}$	$\begin{array}{r} 327.4 \\ (176.8) \end{array}$

D5-15560-6

TABLE 6-II. S-II SPENT STAGE TRAJECTORY PARAMETERS

EVENT	PARAMETER	VALUE
Impact: Tumbling Case	Range Time, sec	1,213.7
	Latitude, deg N	31.535
	Longitude, deg E	-34.844
	Surface Range, km ($n \mathrm{mi}$)	$\begin{array}{r} 4,392.5 \\ (2,371.8) \end{array}$
$\text { Impact: } \begin{aligned} & 0^{\circ} \text { Angle-of- } \\ & \text { Attack } \end{aligned}$	Range Time, sec	1,179.9
	Latitude, deg N	31.497
	Longitude, deg E	-34.582
	$\text { Surface Range, } \underset{(n \mathrm{~mm})}{ }$	$\begin{array}{r} 4,417.8 \\ (2,385.4) \end{array}$
$\begin{aligned} & \text { Impact: } 90^{\circ} \text { Angle-of- } \\ & \text { Attack } \end{aligned}$	Range Time, sec	1,252.7
	Latitude, deg N	31.573
	Longitude, deg E	35.113
	Surface Range, $\begin{aligned} & \text { km } m i)\end{aligned}$	$\begin{array}{r} 4,366.7 \\ (2,357.8) \end{array}$
Apex: Tumbling Case	Range Time, sec	587.0
	Altitude, km (n mi)	$\begin{array}{r} 188.8 \\ (101.9) \end{array}$
	Surface Range, km ($n \mathrm{mi}$)	$\begin{array}{r} 1,862.9 \\ (1,005.9) \end{array}$

SECTION 7

S-IVB/IU SLINGSHOT TRAJECTORY

Following LM extraction, the $S-I V B / I U$ was placed on a lunar slingshot trajectory. This was accomplished by slowing down the S-IVB/IU to make it pass by the trailina edge of the moon and obtain sufficient energy to continue to a solar orbit. The velocity increase was achieved by a combination of 108second LOX dump, $280-s e c o n d$ APS burn, and LH2 vent. A time history of the vehicle longitudinal velocity increase for the slingshot maneuver is presented in Figure 7-1. Table 7-I presents a comparison of the actual and nominal velocity increase due to the various phases of the maneuver. The major error contribution in total velocity increase is the resulting $7.3 \mathrm{~m} / \mathrm{s}(24.0 \mathrm{ft} / \mathrm{s})$ from the continuous venting system (CVS) as compared to $3.5 \mathrm{~m} / \mathrm{s}(11.5 \mathrm{ft} / \mathrm{s})$ for the predicted value. Figure 7-2 presents the resultant conditions for various velocity increases at the given attitude of the vehicle for the maneuver.

The S-IVB/IU closest approach of 3,379 kilometers ($1,825 \mathrm{nmi}$) above the lunar surface occurred at 78.70 hours into the mission. The trajectory parameters were obtained by integrating forward a vector furnished by Goddard Space Flight Center (GSFC) which was obtained from USB tracking data during the active lifetime of the S-IVB/IU. The actual and nominal conditions at closest approach are presented in Table 7-II. Figure 7-3 illustrates the influence of the moon on the S-IVB/IU energy (velocity) relative to the earth and shows that the S-IVB/IU escaped as a result of the lunar encounter. Ficure 7-4 illustrates the relationship between the S-IVB/IU and the spacecraft in the lunar vicinity, with all paths shown in the spacecraft's orbital plane. The spacecraft had completed one lunar revolution prior to S-IVB/spacecraft close approach, at which time the two vehicles were approximately $3,500 \mathrm{~km}(1,890$ $n \mathrm{mi}$) apart. Some of the heliocentric orbit parameters of the S-IVB/IU are presented in Table 7-III. The same parameters for the orbit of the earth are also presented for comparison.
D5-15560-6

ATTITUDE (LOCAL HORIZONTAL REFERENCE SYSTEM) 218° PITCH
170° YAWL
170° ROLL

FIGURE 7-2. TRAJECTORY CONDITIONS RESULTING FROM SLINGSHOT MANEUVER

FIGURE 7-3. S-IVB/IU VELOCITY RELATIVE TO EARTH DISTANCE

TABLE 7-I. COMPARISON OF SLINGSHOT MANEUVER VELOCITY INCREMENT

PARAMETER	ACTUAL	NOM I NAL
Longitudinal Velocity Increase, m/s (ft / s)	$\begin{array}{r} 36.3 \\ (119.1)^{3} \end{array}$	$\begin{array}{r} 31.5 \\ (103.3) \end{array}$
$\text { LOX Dump } \begin{gathered} \mathrm{m} / \mathrm{s} \\ (\mathrm{ft} / \mathrm{s}) \end{gathered}$	$\begin{array}{r} 17.0 \\ (55.8) \end{array}$	$\begin{array}{r} 16.0 \\ (52.5) \end{array}$
$\begin{gathered} \text { APS Burn, } m / s \\ (f t / s) \end{gathered}$	$\begin{array}{r} 12.0 \\ (39.4) \end{array}$	$\begin{array}{r} 12.0 \\ (39.4) \end{array}$
Continuous Vent System*, m/s (ft/s)	$\left(\begin{array}{r} 7.3 \\ (24.0 \end{array}\right.$	$\left(\begin{array}{r} 3.5 \\ (11.5) \end{array}\right.$

* Latched open at 17,468 seconds

TABLE 7-II. COMPARISON OF LUNAR CLOSEST APPROACH PARAMETERS

PARAMETER	ACTUAL	NOMINAL
$\text { Selenocentric Distance, }\left(\begin{array}{ll} \mathrm{km} \\ \mathrm{mi}) \end{array}\right.$	$\begin{array}{r} 5,117 \\ (2,763) \end{array}$	$\begin{array}{r} 3,700 \\ (1,998) \end{array}$
Altitude Above Lunar Surface, km (n mi)	$\begin{array}{r} 3,379 \\ (1,825) \end{array}$	$\begin{array}{r} 1,962 \\ (1,059) \end{array}$
Time from Launch, hr	78.7	78.4
Velocity Increase Relative to Earth from Lunar Encounter, km / s ($\mathrm{n} \mathrm{mi} / \mathrm{s}$)	$\begin{array}{r} 0.680 \\ (0.367) \end{array}$	$\begin{array}{r} 0.860 \\ (0.464) \end{array}$

TABLE 7-III. HELIOCENTRIC ORBIT PARAMETERS

PARAMETER	S-IVB/IU	EARTH
Semimajor Axis, $\quad 10^{6} \mathrm{~km}$	$\begin{array}{r} 143.08 \\ (77.26) \end{array}$	$\begin{array}{r} 149.00 \\ (80.45) \end{array}$
$\begin{aligned} \text { Aphelion, } & 10^{6} \mathrm{~km} \\ & \left(10^{6} \mathrm{n} \mathrm{mi}\right) \end{aligned}$	$\begin{array}{r} 151.86 \\ (82.00) \end{array}$	$\begin{array}{r} 151.15 \\ (81.61) \end{array}$
$\text { Perihelion, } 10^{6} \mathrm{~km}$	$\begin{array}{r} 134.30 \\ (72.52) \end{array}$	$\begin{array}{r} 146.84 \\ (79.29) \end{array}$
Inclination,* deg	0.3836	0.0000
Period, days	342	365

* Measured with respect to the ecliptic plane

DEFINITIONS OF TRAJECTORY SYMBOLS AND COORDINATE SYSTEMS

SYMBOL
XE, YE, ZE
DXE, DYE, DZE DDXE, DDYE, DDZE

DEFINITION

Position, velocity, and acceleration components of vehicle center of gravity in EarthFixed Launch Site Coordinate System. The origin of this system is at the intersection of Fischer Ellipsoid (1960) and the normal to it which passes through the launch site. The X axis coincides with the ellipsoid normal passing through the site, positive upward. The Z axis is parallel to the earth-fixed flight azimuth, defined at guidance reference release time, and is positive down range. The y axis completes a right-handed system. This coordinate system is identical to Standard Coordinate System 10 of Project Apollo Coordinate System Standards, abbreviated as PACSS10.

Position, velocity, and acceleration components of vehicle center of gravity in Launch Vehicle Navigation Coordinate System. The origin of this system is at the center of the earth. The X axis is parallel to Fischer Ellipsoid normal through the launch site, positive upward. The Z axis is parallel to the flight azimuth, positive downrange. The Y axis completes a right-handed system. The direction of the coordinate axes remains fixed in space at guidance reference release. This coordinate system is identical to Standard Coordinate System 13 of Project Apollo Coordinate System Standards, abbreviated as PACSS13.

GC DIST
GC LAT
GD LAT
LONG

Position components of vehicle center of gravity in Geographic Polar Coordinate System. Position in this system is defined by the geocentric distance (GC DIST), geocentric latitude (GC LAT), geodetic latitude (GD LAT), and longitude (LONG). Geocentric distance is the distance from the geocenter to vehicle center of gravity. Geocentric latitude is the angle between the radius vector of the subvehicle point and the equatorial plane, positive north of the equatorial plane. Geodetic latitude is the

APPENDIX A (Continued)

SYMBOL

EF VEL VEL-AZ VEL-EL

SF VEL
FLT-PATH
HEAD

DEFINITION
angle between the normal to the Fischer Ellipsoid through the subvehicle point and the equatorial plane, positive north of the equatorial plane. Longitude is the angle between the projection of the radius vector into the equatorial plane and the Greenwich meridian, positive east of the Greenwich meridian. This coordinate system is identical to Standard Coordinate System 1 of Project Apollo Coordinate System Standards, abbreviated as PACSSI.

Earth-fixed velocity of vehicle center of gravity in Geographic Polar Coordinate System. Velocity in this system is given in terms of azimuth (VEL-AZ), elevation (VEL-EL), and magnitude of the velocity vector (EF VEL). Azimuth is the angle between the projection of the velocity vector into the local horizontal plane and the north direction in this plane, positive east of north. Elevation is the angle between the velocity vector and the local horizontal plane, positive above the horizontal plane. This coordinate system is identical to Standard Coordinate System 1 of Project Apollo Coordinate System Standards, abbreviated as PACSS1.

Space-fixed velocity of vehicle center of gravity in Geographic Polar Coordinate System. Velocity in this system is given in terms of heading angle (HEAD), flight path angle (FLT-PATH), and magnitude of velocity vector (SF VEL). Heading angle is the angle between the projection of the velocity vector into the local horizontal plane and the north direction in this plane, positive east of north. Flight path angle is the angle between the velocity vector and the local horizontal plane, positive above the horizontal plane. This coordinate system is identical to Standard Coordinate System 1 of Project Apollo Coordinate system Standards, abbreviated as PACSS1.

APPENDIX A (Continued)

SYMBOL
ALTITUDE

RANGE

TIME

DEFINITION
Perpendicular distance from vehicle snter of gravity to Fischer Ellipsoid, positive above Fischer Ellipsoid.

Surface range, measured along Fischer Ellipsoid from the launch site to the subvehicle point.

Range time, referenced to nearest integer second before IU umbilical disconnect.

APPENDIX B

TIME HISTORY OF TRAJECTORY PARAMETERS - METRIC UNITS
The postflight trajectory, from guidance reference release to CSM separation,is tabulated in metric units in Tables B-I through B-VII.

Table $B-I$ gives the earth-fixed launch site position, velocity, and acceleration components for the ascent phase of the fight.

Table B-II gives the launch vehicle navigation position, velocity, and acceleration components for the ascent phase of the flight.

Table B-III gives the geographic polar coordinates for the ascent phase of flight.

Table B-IV gives the geographic polar coordinates for the parking orbit phase of flight.

Table B-V gives the earth-fixed launch site position, velocity, and acceleration components for the second burn phase of the flight.

Table B-VI gives the launch vehicle navigation position, velocity, and acceleration components for the second burn phase of flight.

Table B-VII gives the geographic polar coordinates for the second burn phase of flight.

noy
m / s

$$
\stackrel{u}{>}^{x}
$$

$$
\stackrel{u_{x}^{x}}{x}
$$

TABLE B-I		EARTH-FIXED LALNCH SITE POSITIONS, VELOCITIES, AND ACCELERATIONS - ASCENT PHASE (CONT,)							$\begin{aligned} & \text { DDZE } \\ & \text { M/S SQ } \end{aligned}$
TIME	XE	YE	7.E	DXE	Ore	D2E	DDXE	OOYE	
SFC	M	M	M	m/s	M/S	M/S	M/S SQ	M/S SO	
58.0	5669	24	996	235.9	-0.4	86.2	6.19	-0.04	5.68
59.0	5908	23	1085	242.1	-0.4	92.0	6.23	-0.03	5.91
60.0	6153	23	1180	248.4	-0.5	98.0	6.27	-0.02	6.15
61.0	6405	22	1282	254.7	-0.5	104.3	6.31	0.00	6.38
62.0	6662	22	1389	261.0	-0.4	110.8	6.35	0.03	6.60
63.0	6927	22	1503	267.4	-0.4	117.5	6.38	0.05	6.83
64.0	7197	21	1624	273.8	-0.4	124.4	6.41	0.07	7.08
65.0	7474	21	1752	280.2	-0.3	131.6	6.42	0.07	7.33
66.0	7757	21	1887	286.6	-0.2	139.1	6.42	0.07	7.58
MACH 1									
66.300	7844	21	1930	298.5	-0.2	141.4	6.42	0.07	7.66
67.0	8047	20	2030	293.0	-0.2	146.8	6.41	9.07	7.85
68.0	8343	20	2181	299.4	-0.1	154.8	6.40	0.07	8.12
69.0	8646	20	2340	305.8	0.0	163.0	6.40	0.09	8.39
70.0	8955	20	2507	312.2	0.1	171.6	6.41	0.12	8.66
71.0	9271	21	2683	318.7	0.3	180.4	6.43	0.16	8.93
72.0	9592	21	2868	325.1	0.4	189.4	6.46	0.19	9.22
73.0	9921	21	3062	331.6	0.6	198.8	6.49	0.20	9.52
74.0	10256	22	3266	338.1	0.8	208.5	6.51	0.22	9.83
75.0	10597	23	3479	344.6	1.1	218.5	6.53	0.23	10.14
76.0	10945	24	3703	351.1	1.3	228.8	6.56	0.22	10.46
77.0	11299	26	3937	357.7	1.5	239.4	6.58	0.22	10.78
78.0	11660°	27	4182	364.3	1.7	250.3	6.60	0.21	11.08
79.0	12028	29	4438	370.9	1.9	261.6	6.62	0.19	11.39
80.0	12402	31	4705	377.6	2.1	273.1	6.65	0.17	11.70
81.0	12783	33	4984	384.2	2.3	285.0	6.68	0.14	12.00
82.0	13170	36	5275	390.9	2.4	297.1	6.72	0.12	12.31
maximum drnamic pressure									
83.000	13565	38	5578	397.7	2.5	309.6	6.75	0.09	12.63
84.0	13966	41	5894	404.4	2.6	322.4	6.78	0.09	12.95
85.0	14374	43	6223	411.2	2.7	335.5	6.81	0.09	13.24
86.0	14788	46	6565	418.0	2.8	348.8	6.85	0.09	13.52
87.0	15210	49	6921	424.9	2.9	362.5	6.89	0.08	13.80
88.0	15638	52	7290	431.8	2.9	376.4	6.94	0.06	14.06
89.0	16073	55	7674	438.8	3.0	390.6	6.99	0.03	14.33
90.0	16516	58	8072	445.8	3.0	405.1	7.03	-0.00	14.62
91.0	16965	61	. 8484	452.9	2.9	419.9	7.07	-0.04	14.94
92.0	17421	63	8912	459.9	2.9	435.0	7.10	-0.07	15.27
93.0	17885	66	0354	467.0	2.8	450.4	7.11	-0.08	15.61

$\stackrel{\sigma}{\circ}$ 1431.2
山い $\stackrel{+}{\circ}$
首

－
$\stackrel{\stackrel{\rightharpoonup}{*}}{\sim}$586.0
592.9
599.8
606.7
613.7

620.8| $0 N$ |
| :--- |
| N |
| No |
| 0 |
| 0 |

DXE
M／S474.2
481.3
488.4
495.4
502.5
509.6516.6
530.6
530.60
in
in$\therefore \begin{aligned} 5 \\ 0 \\ 0\end{aligned}$N～$\stackrel{0}{\circ}$in o
ñ
N
N
N∞
O웅
NN$\stackrel{\sim}{n}$
\square

$$
\begin{aligned}
& 42285 \\
& 43633 \\
& 45011 \\
& 46420
\end{aligned}
$$

$$
\begin{aligned}
& 20297 \\
& 1010 N 3705
\end{aligned}
$$S－IC CENTER ENGINE CUTOFF（ENGINE SOLENOIDI

 ごきごこ゚ジさ
\qquad
\square
I ENG I NE

$$
\underset{\sim}{\boldsymbol{x}} \mathbf{X}
$$

的会N

n
$n$$\stackrel{N}{N}$Min
Nis
ñ
ñ云N
N
N
N
Ning

135.200
TIME
SEC

TABLE B-1.

$3 \mathrm{~S}$

 でき

 NNNNNNNNNNNNNNNNN N N N N NO NO．
 MDYE
M／S SO

家主

nno
N
N
N
N o
on
o
N
N
m

∞
0
0
0
0

0
0
0
N
N
N Mo
0
∞
N
N
N
 $\infty=N$
∞
N_{N}^{N}
N
N
N

\qquad
is

$$
\underset{x}{\sim}
$$品

$\underset{>}{\underset{\sim}{x}}$

$$
\underset{x}{\underset{x}{x}}
$$

TME SEC

DO2E
M/S SQ $\stackrel{n}{i}$
ASCENT PHASE (CONT.) $\stackrel{\rightharpoonup}{n}$

O2E
M/S 莫

$$
\begin{array}{lcc}
& \text { S-IVB 15T GUIDANCE CUTOFF } \\
699.330 & -360536 & 60931 \\
700.0 & -362521 & 61115 \\
702.0 & -36867 & 61655 \\
704.0 & -374444 & 62217 \\
706.0 & -38452 & 62772 \\
708.0 & -386489 & 6328
\end{array}
$$

OYE
M / S M NNNN

$$
\begin{aligned}
& 54214 \\
& 54728 \\
& 55244 \\
& 55763 \\
& 56286 \\
& 56811 \\
& 57338 \\
& 57869 \\
& 58403 \\
& 58939 \\
& 59479 \\
& 60021 \\
& 60566
\end{aligned}
$$

$$
709.330{ }^{\text {PARKING ORBIT INSERTION }} \underset{-390587}{ }
$$ 279.4

-2959.9
-2965.5
-2980.7
-2995.9
-3011.1
-3026.3 n
$\stackrel{n}{\circ}$
$\stackrel{\sim}{0}$
$\dot{\sim}$
2702683

N

ぞッ

 $\stackrel{n}{i}$


```
```

Mxs

```
```

```
```

Mxs

```
```

$\stackrel{n}{i}$

DOXS
M/SSO
DOYS
M / S SO
i óoóóoóóóóóóóó
0
i
io 11
$\underset{\sim}{\sim}$
DOLS
M/S S
. $\dot{0} \dot{0} \dot{\sim}$

$\dot{\infty}$
$\dot{\sim}$
$\underset{\sim}{\infty}$

m

LS
-5.533
-5.156
-4.768
-4.379
-3.990
-3.601
-3.212
-2.824
-2.435
-2.046
-1.657
-1.268
-0.880
-0.491
-0.102
0.287
0.676
1.065
1.181

 moxs
$M / S S Q$

24.765
24.890
25.016
25.146
$F \stackrel{0}{\circ}$

－
号ま

${ }^{\infty}$

 04
0
0
0
0
0 n
0
0
0
0
0
0 6410.1192
6411.192

 6414.025
6414.749
6415.481
6416.218 6415.481
6416.218

 n
N
合
 ióóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóó ．

[^2]

\cdots

a in in in in minumum
0000
0000
$000 N$

$=-$
\sim
0
0
N
0
0
4
$0 \sim$
0
0
0
0
0
0
0
0
0
0

6493.345
6493.546

n
0
0
0
0
0
0
0
6494.127
6494.215
 c
5
5
5
0
5
0
0
0
0 4
4
\vdots
0
\vdots
0
5
0
0
 48
$=8$
0
0
0
5

 n
N
0
0
in
N
N
0
0 7
a
N
N
0
0
0 N
N
N
a
a
0
0 $N o$
0
0
0
0
0
0
0
0 -0
0
0
0
0
0 0
0
0
N
0
0
0
0
0
0
0
0
 a
0
0
0
0
0
∞
∞
0
5
0
0

 ióóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóó

\square
$-$

IIIIIIIII
-

$00 \times S$
$M / S S 0$
11

N
0
0
0
0
n
n
 $\begin{array}{llllll}0 & 0 & 0\end{array}$

-1765.0

1199.536

6435.789
6433.946 6432.090
6430.181 430.181
6428.249 6428.249
6426.284 6426.284
6424.284 6422.251
6420.184

$$
6418.084
$$ 6418.082 CENTER ENGIN

6.417 .443 6415.945
6413.773 6411.564
6409.321

 6397.587 6395.140
6392.660 6390.146
6387.597 6385.014 6382.397
6379.743 6377.054
6374.329 6371.567 6368.768
6365.931 6363.056
6360.144 6360.144
6357.193 6354.205
6351.177 6348.112

TIME

460.620

 NNNNNNNNNNNNNNNNNNNNNNNNNANANNNNNNANOAN NN

－

 $\underset{\mathbb{C}}{\underset{\alpha}{2}}$ $\underset{M / S}{S F}$
 ASCENT PHASE (CONT.)

ALtitude

 45.5
44.9
44.4

 N

$$
2
$$

4
-0
0
0
 n
N
+
+
∞
N

 00
0
0
0
∞
$+\infty$
+
0
∞
∞
N 28.4872
28.48890 $0 \uparrow$
0
0
0
0
0
0
0
0
0
∞
N
N

 28.5005
28.5026

 $+\sim 0$
N
N
N
N
N
N
N
N

 28.5483
28.5516
28.5550

 28.5694
28.5732

 $0 M K$
\sim
\sim个OO
080
0
0
0
0
0
0
0
0 00
0
0
0
0
0
0
0
0
0
1
1
1

 $\begin{array}{ll}N & 0 \\ N & \\ N & 4 \\ \sim & 4 \\ 0 & 0 \\ 0 & 0 \\ 1 & 1\end{array}$ 0
0
N
4
N
N

 N
+
+
0
0
0
 N
N
N
0
0 0
0
0
0
0
0
0
0 00
0
40
40
0
0
0
0 0
i
M
0
0
0
0

0 | n |
| :---: |
| 0 |
| \sim |
| |
| |
| 0 |
| 0 |
| 0 |

 00000000000000000000 94.
95.
96.
97.
98.
99.
100.
101.
102.
103.
104.
105.
 a
0
0
0.0
0
0
0
0
0
0
 00
0
0
0
$=0$
$=1$
0
0
0
 0
0
0
\vdots
\vdots
\vdots
\vdots
\vdots
 135.200

$$
\begin{aligned}
& \text { EF VEL } \\
& M / S
\end{aligned}
$$

\qquad 4
N
N
H
0
0
\sim
\sim
 0
0
0
0
N $N \sim N$
N
N
N
N n
\dot{N}
No
N
N 0∞
N_{0}
N
N_{∞}
∞
∞

 $N O$
0
0
0
0
0
0
 -
∞
∞
∞
∞
 M
 i 29.0600 29.07361
29.0992 29.0992
29.1124
 0
0
0
0
0

 29.2881
29.3019
29.3158

$\underset{M}{\text { RaNGE }}$

合页	

$\underset{\text { SEC }}{\text { TIME }}$	GC KMIST	$\begin{aligned} & \text { LONG } \\ & \text { DEG E } \end{aligned}$	GC LAT DEG N	$\begin{gathered} \text { VEL-AZ } \\ \text { DEG. } \end{gathered}$	$\begin{gathered} \text { VEL-EL } \\ \text { DEG } \end{gathered}$	EF VEL M/S	$\begin{array}{r} \text { HEAD } \\ \text { DEG } \end{array}$	$\begin{gathered} \text { FLT-PATH } \\ \text { DEG } \end{gathered}$	$\begin{aligned} & \text { SF VEL } \\ & M / S \end{aligned}$	$\underset{M}{\text { RANGE }}$	ALTITUDE
67.20	6563.108	-55.5203	32.4170	87.10	0.01	7207.2	87.25	0.01	7610.8	2439862	191109
674.0	6563.111	-55.3713	32.4233	87.19	0.01	7220.2	87.34	0.01	7623.7	2453868	191114
676.0	6563.112	-55.2219	32.4294	87.28	0.00	7233.2	87.42	0.00	7636.7	2467900	191117
678.0	6563.112	-55.0723	32.4353	87.37	-0.00	7246.2	87.50	-0.00	7649.8	2481957	191119
680.0	6563.111	-54.9225	32.4410	87.45	-0.00	7259.3	87.59	-0.00	7662.8	2496040	191120
682.0	6563.110	-54.7723	32.4465	87.54	-0.01	7272.4	87.67	-0.01	7676.0	2510147	191121
684.0	6563.108	-54.6218	32.4519	87.63	-0.01	7285.6	87.76	-0.01	7689.1	2524281	191121
686.0	6563.106	-54.4710	32.4570	87.72	-0.01	7298.8	87.84	-0.01	7702.3	2538440	191121
688.0	6563.105	-54.3200	32.4620	87.81	-0.01	7312.0	87.93	-0.01	7715.5	2552624	191121.
690.0	6563.103	-54.1686	32.4668	87.90	-0.01	1325.3	88.01	-0.00	7728.8	2566835	191121
692.0	6563.102	-54. 3170	32.4714	87.99	-0.00	7338.6	88.10	-0.00	7742.1	2581071	191121
694.0	6563.102	-53.8651	32.4757	88.09	-0.00	7351.9	88.18	-0.00	7755.5	2595333	191122
696.0	6563.102	-53.7129	32.4799	88.18	0.90	7365.3	88.27	0.00	7768.8	2639620	191124
698.0	6563.104	-53.5603	32.4839	88.27	0.01	7378.7	88.36	0.01	7782.2	2623934	191127
S-IV9 S-IVB 1ST GUIDANCE CUTOFF											
700.0	6563.107	-53.4075	32.4877	88.36	0.01	7389.3	88.44	0.01	7792.9	2638273	191131
702.0	6563.110	-53.2547	32.4913	88.45	0.01	7389.4	88.53	0.01	7792.9	2652621	191136
704.0	6563.113	-53.1017	32.4947	88.54	0.01	7389.4	88.62	0.01	7792.9	266696.8	191140
706.0	6563.116	-52.9488	32.4979	88.63	0.01	7389.4	88.70	0.01	7792.9	2681316	191144
708.0	6563.119	-52.7959	32.5009	88.72	0.01	7399.4	88.79	0.01	7792.9	2695664	191149
709.330	$\begin{aligned} & \text { IRK ING OR } \\ & 6563.052 \end{aligned}$	$\begin{aligned} & \text { INSERTIOA } \\ & -52.6941 \end{aligned}$	32.5027	88.78	0.01	7389.5	88.85	0.01	7793.1	2705210	191082

-1 0 0

32.6722
$709.330 \quad 6563.052 \quad-52.6941$

[^3]
SF VEL
M / S

GO LAT
DEG N

$$
\begin{gathered}
\text { ALTITUOE } \\
\text { KM } \\
198.301 \\
198.164 \\
198.014 \\
197.926
\end{gathered}
$$

	TABLE B-V,	TH-FI XED	SITE POS	VELOCIT	AND ACCE	TIONS -	BURN	(CONT,	
TIME	XE	YE	ZE	OXE					
SEC	M	M	$\frac{2 E}{M}$	M/S	$\begin{aligned} & \text { DYE } \\ & M / S \end{aligned}$	$\begin{aligned} & \text { OLE } \\ & \text { M/S } \end{aligned}$	$\begin{aligned} & \operatorname{DOXE} \\ & M / S S O \end{aligned}$	nove M/S SQ	$\begin{aligned} & \text { DDZE } \\ & \text { M/S SQ } \end{aligned}$
9898.0	-8013721	-2395661	-5900256	7355.6	-1410.9				
9900.0	-7998994	-2398479	-5903198	7372.0	-1410.9	-1477.7	8.18	2.07	6.58
9902.0	-7984233	-2401288	-5906114	7388.3	-1402.5	-1464.6	8.19	2.09	6.57
9904.0	-7969440	-2404089	-5909004	7404.7	-1439.5	-1451.4	8.20	2.10	6.57
9906.0	-7954614	-2406881	-5911868	7421.2	-1394.1	-1425.1	8.20	2.11	6.58
9908.0	-7939756	-2409665	-5914705	7437.6	-1389.8	-1411.9	8.21	2.12	6.59
9910.0	-7924864	-2412441	-5917515	7454.0	-1385.6		8.22	2.13 2.15	6.60
9912.0	-7909940	-2415208	-5920299	7470.5		-1398.7	8.22 8.21	2.15 2.15	6.61 6.61
9914.0	-7894982	-2417966	-5923057	7486.9	-1376.9	-1385.5	8.21 8.21	2.15 2.17	6.61 6.61
9916.0	-7879992	-2420715	-5925788	7503.3	-1372.6	-1352.3 -1359.0	8.21 8.20	2.17 7.19	6.61 6.62
9918.0 9920.0	-7864959	-2.223456	-5928493	7519.7	-1369.2	-1345.0	8.20 8.20	2.19 2.20	6.62 6.62
9920.0 9922.0	-7849913 -7834824	-2426188	-5931172	7536.1	-1363.7	-1332.6	8.20	2.22	6.62 6.62
9924.0	-7819702	-2431625	-5933824	7552.5 7568.9	-1359.3	-1319.3	8.19	2.24	6.63
9926.0	-7804549	-2434330	-5939448	7568.9	-1354.8	-1306.1	8.20	2.25	6.63
9928.0	-7789362	-2437026	-5941620	7685.3	-1350.3	-1292.8	8.21	2.25	6.63
9930.0	-7774142	-2439713	-5944166	7618.7	-1345.8 -1341.3	-1279.5	8.27	2.26	6.64
9932.0	-7758889	-2442391	-5946685	7634.7	-1341.3	-1266.2	8.23	2.27	6.64
9934.0	-7743603	-2445060	-5949178	7634.7	-1336.7	-1253.0	8.24	2.29	6.64
9936.0	-7728284	-2447720	-5951644	7667.6	-1332.1	-1239.7	8.24	2.30	6.65
9938.0	-7712933	-245037c	-5954083	7684.1	-1327.5	-1226.4	8.24	2.31	6.66
9940.0	-7697548	-2453011	-5956496	7797.6	-1322.9	-1213.1	8.24	2.32	6.66
9942.0	-7682130	-2455643	-5958882	7717.1	-1318.2	-1199.7	8.24	2.33	6.66
9944.0	-7666680	-2458265	-5961242	7733.6	-1313.5 -1308.8	-1186.4	8.25	2.34	6.66
9946.0	-765119ti	-2460879	-5963574	7750.1	-1308.8 -1304.1	-1173.1	8.25	2.36	6.66
9948.0	-7635679	-2463482	-5965981	7766.6	-1304.1	-1159.8	8.25 8.24	2.36	6.67
9950.0	-7620130	-2466076	-5969160	7793.1	-1299.4 -1294.6	-1146.4	8.24 8.26	2.37	6.67
9952.9	-7604547	-246866C	-5970413	7799.5	-1294.6	-1133.1	8.26	2.39	6.68
9954.0	-758993?	-2471235	-5972639	7816.1	-1289.8 -1285.0	-1119.7	8.27	2.41	6.68
9956.0	-7573293	-2473800	-5974838	7.332 .7	-1285.0 $-1 \geq 30 . ?$	-1106.3	8.27	2.41	6.68
9959.0	-7557601	-2476356	-5977011	7849.7	-1275.3	-1093.0	8.28	2.42	6.68
9960.0	-7541986	-7478971	-5979157	7865.3	-1275.3	-1079.6	8.28	2.43	6.68
9967.0	-7526139	-2491437	-5991276	7887.3	-1270.4	-1066.2 -1052.9	8.29	2.44	6.68
9964.0	-7510356	-2483964	-5933368	7998.9	-1255.5 -1260.6	-1052.9	8.27	$? .45$	6.69
9966.0	-749454?	-2496480	-5985434	7915.4	-1260.6	-1030.5	8.27 8.27	2.47	6.70 6.70
9969.9	-7478695	-2488986	-5997472	7931.9	-1255.7	-1026.1	8.27 8.26	2.48	6.70
9970.7	-7462914	-2491493	-5989494	7948.4	-1245.7	-1012.7 -999.3	8.26 8.26	2.49	6.69
9972.0 0974.0	-7446991	-2493969	-5991449		-1245.7	-999.3	8.26 8.25	2.50 2.52	6.72 6.70
9974.0	-7430954	-2496445	-5993428	7981.4	-1240.7	-985.9 -972.4	P. 25 8.78	2.52 2.51	6.70 6.70
9976.9	-7414974	-2498912	-5995359	7999.4	-1235.7	-972.4	8.78	2.51	6.70
9978.1	-7398956	-2501369	-5997265	8918.7	-1225.9	-959.2	9.28	2.46	6.60
9980.0	-739790?	-2503815	-5999143	3035.6	-1225.9	-946.0	9.30	2.46	6.60
$998 \geq 0$	-7366810	-250625?	-6000996	8055.3	-1220.9	-932.8	9.32 9.34	2.47	6.58

$\xrightarrow{\circ}$

$\underset{\times}{\underline{x}}$

 \sim
\sim
\sim
\sim に

-7070706
-7053804

 -7020154 -7098626 N
-696055 N
0
0
0
0
i -6952211
-6935174
-691007 -6918007
-6900846
-6893647 -6990846
-6893647
-6866488
 No 00
v
je
ip

TIME
SEC

nove
$M / S S Q$

R2E M / S

ves

10434.7
1.3407 .5
10404.7
13722.1
13399.3
13396.5

 -

 ∞
0
0
i
TABLE B-V, EARTH-FIXED LAUNCH SITE POSITIONS, VELOCITIES, AND ACCELERATIONS - SECOND BUPN PHASE (CONT.)

8
\vdots
\vdots
DLE
M/S $\stackrel{\infty}{\stackrel{\infty}{\dot{\sim}}}$1542.8
$\underset{\sim}{w}$ -5499949
-5374800
-5241280
-5100440
-4953262
-4800649
-4643428
-4482349
-4318087
-4151249
-3982378
-3811959
-3640420
-3468145
-3295471
-3122699
-2950091
-2777883
-2606280
-2435464
-2265595
-2096816
-1929248
-1763003 -1686998
$\underset{\sim}{w}$

$\underset{x}{u} \underset{x}{ }$	

$\stackrel{4}{㐅}$ 9

-2745.9
BASE 6
7290.6
7296.4
7328.2

TABLE B-VI.

9899.0
9903.0
9902.0
9904.0
9906.0
9908.0
9910.0
9912.0
9914.0
9915.0
9918.0
9920.0
9922.0
9924.0
9926.0
9929.0
9930.0
99332.0
9934.0
9936.0
9938.0
9940.0
9942.0
9944.0
9946.0
9948.0
9950.0
9952.0
9954.0
9956.0
9958.0
9960.0
9962.0
9964.0
9966.0
9968.0
9979.0
9972.0

$$
\begin{aligned}
& \text { noxs } \\
& M / 5 \mathrm{SQ} \\
& \\
& \\
& 2.91 \\
& 2.91 \\
& 2.91 \\
& 2.92 \\
& 2.92 \\
& 2.92 \\
& 2.93 \\
& 2.93 \\
& 2.94 \\
& 2.94 \\
& 2.94 \\
& 2.95 \\
& 2.96 \\
& 2.96 \\
& 2.95 \\
& 2.95 \\
& 2.96 \\
& 2.97 \\
& 2.97 \\
& 2.97 \\
& 2.97 \\
& 2.98 \\
& 2.99 \\
& 3.00 \\
& 3.00 \\
& 3.01 \\
& 3.01 \\
& 3.01 \\
& 3.01 \\
& 3.03 \\
& 3.04 \\
& 3.05 \\
& 3.06 \\
& 3.07 \\
& 3.08 \\
& 3.09 \\
& 3.10 \\
& 3.11 \\
& 3.12 \\
& 3.12 \\
& 3.13 \\
& 3.15 \\
& 3.15 \\
& 3.16
\end{aligned}
$$

5

-5426.196
-5416.122
-5405.997

$0 \pm$
0
0
0
0
0
0
0
0
1

11

```
~z
```


$\underset{\text { STME }}{\text { SFC }}$	XS$k \times 4$		7.8$K M$	$\begin{aligned} & n \times 5 \\ & 4 / 5 \end{aligned}$	$\begin{aligned} & \text { nys } \\ & M / s \end{aligned}$	$\begin{aligned} & \mathrm{DrS} \\ & \mathrm{M} / \mathrm{S} \end{aligned}$	$\begin{aligned} & \operatorname{mox} \times s \\ & M / S \end{aligned}$	$\begin{aligned} & \text { gTYs } \\ & \text { M/S SO } \end{aligned}$	$\begin{gathered} \text { ODLS } \\ \hline / \mathrm{SO} \mathrm{~S} \end{gathered}$
10156.0	4426.562	-80.135	-4958.125						
10158.0	4443.015	-79.504	-4945.824	9230.6	311.5 317.1	6136.5 6164.4	3.84 3.86 3.8	1.80 1.83	13.93 13.98
10160.0	4459.484	-78.866	-4933.467	8230.6 8239.4	317.1 320.5 32.8	6164.4 6192.4	3.86 3.88	1.83 1.86	13.98 14.03
10162.0	4475.969	-78.221	-4921.054	8246.2	324.6	6220.4 6220.5	3.88	1.86 1.87	14.03 14.08 14.08
10164.0	4492.469	-77.568	-4908.585	8254.0	328.3	6248.7	3.91	1.87	14.08 14.14
10166.0	4508.985	-76.907	-4896.059	9?61.9	332.1	6277.0	3.93	1.88 1.89	14.14 14.18
10158.0	4525.517	-76.239	-4883.477	8269.8	335.9	6305.5	3.97	1.89 1.90	14.18 14.23
10170.0 10172.0	4542.064	-75.564	-4870.837	8277.8	339.7	6334.0	3.98	1.92	14.23 14.28
10172.0 10174.9	4558.628	-74.991	-4859.141	3295.7	343.5	6362.6	4.00	1.94	14.28 14.33
10174.7 10176.0	4575.207 4591.803	-74.191	-4845.387	8293.8	347.4	6391.3	4.02	1.96	14.39
10178.0	4591.803 4608.414	-73.491 -72.784	-4932.576 -4910.706	8331.8 83.09 .7	351.4 355 35.5	6420.2 6440.4	3.99	2.37	14.52
10180.?	4625.041	-72.069	-4806.779	9317.4		6449.4	3.71	2.05	14.70
10182.0	4641.684	-71.346	-4793.790	8325.2	363.8	6479.3 8508.9	3.85 3.96 3.85	2.08	14.87
10184.0	4658.34 ?	-70.614	-4780.743	8333.0)	367.7	6538.7	3.93	2.10	14.96 14.95 14.95
10186.0	4675.016	-59.874	-4767.635	8340.9	372.2	6568.6	4.00	?.11	14.95 14.95
10189.0 10190.	4691.706	-69.125	-4754.468	3348.9	376.4	6598.6	4.05	2.12	14.95 14.99
10190.3 10192.0	4709.412	-68.368	-4741.241	8357.1	38. .7	6628.6	4.11	2.13	14.99 15.05
10194.0	4725.134 4741.973	-67.6)3	-4727.954	8365.4	384.9	6658.7	4.16	2.14	15.10
10196.0	4758.629	-66.829	-4714.606 -4701.198	8373.8 9392.3	389.2 393.5	6698.9	4.22	2.14	15.10
10198.0)	4775.402	-65.255	-4687.730	8390.9	393.5 397.9	6719.1 6749.4	4.27	2.15	15.12
$10200 . ?$	4792.193	-64.455	-4674.200	8399.5	397.9 402.1	6749.4 6779.7	4.32	2.16	15.13
10202.0	4809.001	-63.646	-4660.611	3408.4	406.4	6809.9	4.37	2.15	15.15
s-iva zno guidance cutaff									
10203.030	4817.664	-63.226	-4653.589	8413.0	408.5	6925.5	4.60	1.	15.02
10204.0	4825.924	-62.930							
10206.0	4842.678	-62.011	-4633.284	83970	409.2	6834.2	-6.45	0.16	6.18
10208.0	4859.410	-61.192	-4617.579	3394.?	409.5	8846.5 6850.7	-6.43 -6.44	0.188	6.14
10210.0	4876.166	-60.373	-4605.849	3371.3	409.6	6858.7 6870.9	-6.44 -6.45	c. 38	6.12
10212.0	4992.896	-59.553	-4592.095	835 A .4	410.0	6883.1	-6.47	0.18	6.09 6.06
anslunar injectition (tli)									
10213.030	4901.532	-59.131	-4595.002	9351.7	410.3	6899.3	-6.47	0.09	6.05
10259.0	5205.789	-43.970	-4326.277	9108.2					
10303.0	5602.723	-23.222	-2964.391	7757.4	412.7		-6.7c	0.06	5.57
10350.0	5982.387	-2.440	-3597.276	7419.3	415.1	7365.7 7593.3	-6.92	0.33	4.89
10450.0	6344.497	18.363	-3225.617	7066.0	415.9	7787.6	-1.03	-0.01	4.22
10455.0	6689.013	39.129	-2412.055	6714.8	414.5	7949.7	-7.05 -6.99	-0.02 -0.04	3.56 2.93 2.03
10503.0	7016.059	59.806	-2411.149	\$369.6	412.4	8081.7	-6.85	-0.05	2.93 2.35

n ${ }^{\circ}$	Nuninmumminoogontontinninnsm
Nu	¢MONNONHDNOKOM－NNNNNNNNN
00	
0	－

SECOND BURN PHASE（CONT．）

n2S
M / S

XS KM

CSM SEPARATION
11723.090
ALTitude

11.29

保

$$
\begin{aligned}
& \tilde{C} \\
& \dot{0}
\end{aligned}
$$

$$
0
$$

$$
\begin{aligned}
& \underset{\sim}{u} \\
& \underset{\infty}{2}
\end{aligned}
$$

 N
\mathbf{O}
\mathbf{O}

T-PATH
DEG
0.02
MNJNNーNNMNowNMNOMNN

GC LAT	VEL-AZ
OEG N	DEG

-11.6048
-11.2582

ALTITUDE

TIME
SEC

ALTITUDE
M

199348
199526
199711
199905
200107
200318
270537
200766
201004
201251
201508
201775
202053
202341
202639
202949
203269
203601
203945
204300
204667
205047
205440
205845
206264
206695
207141
207600
208073

\footnotetext{
VEL-AL
DEG
 in in

LONG
DEGE

ALTITUDE
M

217045
217780
218534
219307
220099
220911
221743
222595
223467
224360
225275
226210
227169
228147
229149
230173
231221
232291
233385
234503
235644
236811
238001
239217
240459
241726
243019
244338
245684
247056
248456
249884
251339
252922
254334
255875
257445
259045
260674
262333
264023
265743
267494

		$\begin{aligned} & \text { t } \\ & 0 \\ & 0 \\ & \text { N } \end{aligned}$		$\begin{gathered} \text { n } \\ \stackrel{y}{m} \\ \stackrel{y}{m} \end{gathered}$	
$\begin{aligned} & \frac{山}{3} \\ & \frac{u}{n} \end{aligned}$	 	$\begin{aligned} & \text { N } \\ & \text { シ } \\ & \text { む } \\ & 0 \end{aligned}$		$\begin{aligned} & \underset{j}{j} \\ & \underset{\sim}{\infty} \\ & 0 \end{aligned}$	OnTOm $\dot{\infty} \dot{\sim} \dot{\sim} \dot{\sim} \dot{\sim}$ 응응으윽
		$\begin{aligned} & \overline{0} \\ & \dot{0} \end{aligned}$		$\stackrel{\hat{m}}{\stackrel{y}{n}}$	
	 	$\begin{aligned} & n \\ & \dot{\sim} \\ & \dot{i n} \end{aligned}$		$\begin{aligned} & \text { T} \\ & \dot{8} \end{aligned}$	
$\begin{aligned} & \stackrel{\rightharpoonup}{\Psi} \\ & \gg n \\ & \stackrel{u}{x} \end{aligned}$	 	$\begin{aligned} & N \\ & \stackrel{0}{0} \\ & \stackrel{+}{0} \end{aligned}$		\approx $\underset{\sim}{\sim}$ $\stackrel{y}{*}$ $\underset{\sim}{2}$	
	 	$\stackrel{\sigma}{\underset{\sim}{\circ}}$	$\underset{\sim}{M} \underset{\sim}{M} \underset{\sim}{N} \underset{\sim}{N}$ MNNA	$\begin{aligned} & \stackrel{0}{0} \\ & \stackrel{\circ}{\circ} \end{aligned}$	
	 	$\begin{aligned} & 0 \\ & 0 \\ & \dot{\alpha} \\ & i \end{aligned}$		$\begin{aligned} & \ddagger \\ & \dot{\sim} \\ & \stackrel{y}{n} \end{aligned}$	
$\begin{aligned} & \text { Ez } \\ & \text { s } \\ & \text { 心㟧 } \end{aligned}$	 	$\begin{aligned} & c \\ & \stackrel{c}{\circ} \\ & \stackrel{0}{0} \end{aligned}$		＋ 0 \sim \sim 0	－000～O がすNが
				－	
艺荷	 	水荡			
$\begin{aligned} & \text { 合 } \\ & y_{0} \end{aligned}$	 				
$\frac{w}{\underline{E}} \underset{\sim}{u}$	000000000000000000000000 			O 0 m N	

THIS PAGE INTENTIONALLY LEFT BLANK.

APPENDIX C

TIME HISTORY OF TRAJECTORY PARAMETERS - ENGLISH UNITS
The postflight trajectory, from guidance reference release to CSM separation, is tabulated in English units in Tables C-I through C-VII.

Table C-I gives the earth-fixed launch site position, velocity, and acceleration components for the ascent phase of flight.
Table C-II gives the launch vehicle navigation position, velocity, and acceleration components for the ascent phase of

Table C-III gives the geographic polar coordinates for the ascent phase of flight.

Table C-IV gives the geographic polar coordinates for the parking orbit phase of fiight.

Table $C-V$ gives the earth-fixed launch site position, velocity, and acceleration components for the second burn phase of flight.

Table C-VI gives the launch vehicle navigation position, phacity, and acceleration components for the second burn

Table C-VII gives the geographic polar coordinates for the second burn phase of fiight.

 DOZE
FT／S S

 ※゙

$\underset{\times}{\boldsymbol{u}}$

TIMF	TABLE C	EARTH-FIXED		VELOCITIES, AND ACCELERATIONS - ASCENT PHASE (CONT.)					
	$x E$	re	zF	dxe	DYE	dze	DDXE	dove	Doze
SEC	FT	Ft	FT	FT/S	FT/S	FT/S	FT/S So	FT/S So	FT/S SO
58.0	18598	78	3269	774.0	-1.4	282.8	20.30	-0.12	18.64
59.0	19382	77	3561	794.4	-1.5	301.8	20.43	-0.10	19.40
60.0	20187	75	3873	814.9	-1.5	321.6	20.56	-0.05	20.16
61.0	21012	74	4205	835.6	-1.5	342.1	20.72	0.01	20.92
62.0	21858	72	4557	856.3	-1.5	363.4	20.83	0.10	21.67
63.0	22725	71	4932	877.2	-1.3	385.4	20.94	0.17	22.42
64.0	23613	69	5328	898.2	-1.2	408.3	21.02	0.22	23.22
65.0	24521	68	5748	919.2	-1.0	431.9 .	21.06	0.23	24.04
66.0	25451	68	6192	940.3	-0.9	456.4	21.06	0.24	24.88
MACH 1									
66.300	25735	67	6331	946.6	-0.7	463.9	21.05	0.23	25.14
67.0	26402	67	6661	961.3	-0.5	481.7	21.03	0.23	25.75
68.0	27374	67	7156	982.3	-0.?	507.9	21.00	0.23	26.63
69.0	28366	66	7677	1003.3	0.1	534.9	20.99	0.30	27.53
70.0	29380	67	8226	1024.4	0.4	562.9	21.03	0.41	28.41
71.0	30415	67	9803	1045.5	0.9	591.7	21.10	0.53	29.30
72.0	31471	68	9410	1065.6	1.4	621.5	21.19	0.62	30.24
73.0	32548	70	10047	1087.8	2.0	652.3	21.29	0.67	31.23
74.0	33647	73	10715	1109.1	2.8	684.0	21.37	0.71	32.25
75.0	34767	76	11415	1130.6	3.5	716.8	21.44	0.75	33.27
76.0	35909	79	12149	1152.0	4.2	750.6	21.53	0.73	34.33
77.9	37071	84	12917	1173.6	5.0	785.4	21.60	0.72	35.37
78.0	38255	89	13720	1195.2	5.7	821.3	21.65	0.69	36.37
79.0	39461	95	14560	1216.9	6.3	858.1	21.73	0.64	37.37
83.0	40689	102	15436	1238.7	6.9	896.0	21.83	0.55	38.37
81.0	41939	109	16352	1260.6	7.4	934.9	21.93	0.47	39.38
82.0	43210	117	17307	1282.5	7.8	974.8	22.03	0.39	40.40
maximum drnamic pressure									
83.000	44504	125	18307	1304.6	8.2	1015.7	22.14	0.31	41.45
84.0	45820	133	19338	1326.8	9.5	1057.7	22.24	0.28	42.48
85.0	47158	142	20417	1349.1	8.8	1100.6	22.36	0.29	43.44
86.0	49518	151	21540	1371.5	9.1	1144.5	22.48	0.29	44.36
87.0	49901	160	22707	1394.1	9.4	1189.3	22.62	0.26	45.27
88.7	51306	170	23919	1416.8	9.6	1235.0	72.77	0.20	46.14
89.0	52734	179	25177	1439.7	9.7	1281.6	22.92	0.10	47.02
97.0	54195	189	26482	1462.7	9.7	1329.1	23.07	-0.00	47.96
91.0	55660	199	27936	1485.8	9.7	1377.6	23.19	-0.13	49.00
92.0	57157	209	29238	1509.0	9.5	1427.2	23.28	-0.22	50.09
93.0	58678	218	30590	1532.3	9.3	1477.8	23.33	-0.26	51.20

1555.6
1579.9
1602.2
1625.5
1648.7
1671.8
1694.9
1717.9
1740.9
1763.8
1786.7
1809.5
1837.2
1854.9
1377.4

ODZE
FT／S SQ

DOZE
FT/S $\$ 0$

IDI $\begin{array}{rr} & \\ 728 & 157021 \\ 746 & 161831 \\ 765 & 166725 \\ 785 & 171713 \\ 806 & 176783 \\ 828 & 181939 \\ 851 & 187185 \\ 875 & 192520 \\ 900 & 197947 \\ 926 & 293467 \\ 953 & 209079 \\ 980 & 214787 \\ 1099 & 220591 \\ 1038 & 226492 \\ 1069 & 232491 \\ 1099 & 239591 \\ 1131 & 244792 \\ 1163 & 251095 \\ 1197 & 267502 \\ 1231 & 270636 \\ 1266 & 277363 \\ 1302 & 284202 \\ 1339 & 291152 \\ 1377 & 298215 \\ 1417 & 305392 \\ 1457 & \end{array}$

SOLENOIDI

TIME
SEC
FT/S ODO

※~둥
光年

$\underset{\sim}{\underset{\sim}{*}}$

t
0
0
0
0
0
0
5537453
564691$-0 \times$
0
0
0
0
0
0
0${ }^{-}$$\stackrel{o}{c}$ ∞
\sim
\sim
\sim
\sim
\sim
 ê
O
î
in

x
$\underset{\sim}{x} \underset{\sim}{c}$
$\underset{\sim}{c}$

$\underset{\times 1}{\boldsymbol{4}}$

$\stackrel{N}{\infty}$
 423399
421989
420507 420507
418951
417321
 413837
411982

 \sim
\sim
0
0
0
0

 ${ }_{\infty}^{\circ}{ }_{\infty}^{\infty}$
 N
N
N
N
N N n
\sim
\sim
\sim
\sim
0
0
0

	TABLF C-I.		VELOCITIES, AND ACCELERATIONS - ASCENT PHASE (CONT.)						
$\begin{aligned} & \text { TIME } \\ & \text { SEC } \end{aligned}$	$\begin{aligned} & \text { XE } \\ & \text { FT } \end{aligned}$	$\begin{aligned} & Y E \\ & F T \end{aligned}$	$\begin{aligned} & \text { ZE } \\ & \text { F } \end{aligned}$	$\begin{aligned} & \text { DXE } \\ & \text { FT/S } \end{aligned}$	$\begin{aligned} & \text { OYE } \\ & \text { FT/S } \end{aligned}$	$\begin{aligned} & \text { OZF } \\ & \text { FT/S } \end{aligned}$	$\begin{aligned} & \text { DOXE } \\ & \text { FT/S SQ } \end{aligned}$	$\begin{aligned} & \text { DDYE } \\ & \text { FT/S SO } \end{aligned}$	$\begin{aligned} & \text { DOZE } \\ & \text { FT/S SO } \end{aligned}$
586.0	-287780	112791	6194278	-6171.6	641.9	21052.1	-29.77	2.09	10.55
588.0	-300181	114079	6236403	-6229.3	646.1	21073.2	-28.88	2.12	10.55
590.0	-312697	115375	6278570	-6297.1	650.3	21094.3	-29.00	2.13	10.57 10.58
592.0	-325329	116680	6320780	-6345.?	654.6	21115.4	-29.09	2.14	10.58
594.0	-338078	117994	6363032	-6403.5	658.9	21136.6	-29.17	2.15	10.54
596.0	-350943	119316	6405326	-6461.9	663.2	21157.6	-29.27	2.16	10.49
598.0	-363926	120446	6447662	-6520.6	667.5	21178.5	-29.38	2.16	10.46
600.0	-377026	121986	6490040	-6579.4	671.9	21199.4	-29.47	2.17	10.44
602.0	-390244	123334	6532460	-6638.4	676.2	21220.3	-29.55	2.19	10.44
604.0	-403580	124691	6574922	-6697. 6	680.6	21241.2	-29.62	2.21	10.41
606.0	-417034	126056	6617425	-8756.9	685.0	21262.0	-29.69	2.22	10.38 10.36
608.0	-430607	127431	6659969	-6816.4	589.5	21282.7	-29.78	2.22	10.36
610.0	-444300	128814	6702556	-6976.3	693.9	21303.4	-29.87	2.22	10.36
612.0	-458112	130206	6745183	-6935.9	698.4	21324.2	- 29.98	2.24 2.26	10.39 10.39
614.0	-472043	131698	6787852	-6995.9	702.9	21344.9	-30.08	2.26	10.39 10.36
616.0	-486096	133018	6830563	-7056.2	707.4	21365.7	-30.16	2.25	10.36
618.0	-500268	134437	6873315	-7116.6	711.9	21386.4	-30.24 -30.32	2.23 7.22	10.32 10.30
620.0	-514562	135865	6916108	-7177.1	716.3	21407.0	-30.32 -30.41	2.22 2.25	10.30 10.27
622.0	-528977	137303	6958943	-7237.9	720.8	21427.6	-30.41	2.25 2.28	10.27 10.23
624.0	-543514	138749	7001819	-7298.8	725.3	21448.1	-30.50	2.28 2.30	10.23 10.20
626.0	-559172	140294	7044735	-7359.9	729.9	21468.5	-30.58	2.30	10.20
629.0	-572953	141669	7087693	-7421.1	734.5	21488.9	-30.66	2.29	10.21
630.0	-587857	143142	7130691	-7492.5	739.1	21509.3	-30.75	2.28	10.19
632.9	-602883	1.44625	7173730	-7544.1	743.6	21529.7	-30.82	2.26 2.25	10.16
634.0	-618033	146116	7216809	-7605.8	748.1	21550.0	-30.88	2.25 2.25	10.13
636.0	-633307	147617	7259930	-7667.6	752.6	21570.2	-30.96	2.25	10.11
638.0	-648704	149127	7303090	-7729.6	757.1	21590.4	-31.05	2.28	10.09
640.0	-664225	150646	7346291	-7791.9	761.7	21610.5	-31.15	2.29	10.05
642.0	-679871	152173	7399532	-7854.7	766.3	21630.6	-31.22	2.28	10.01 9.99
644.0	-69564?	153711	7432813	-7916.7	770.8	21650.6	-31.30	2.27	9.99 9.98
646.0	-711539.	155257	7476135	-7979.4	775.4	21670.6	-31.38	2.27	9.98 9.97
648.0	-727560	156812	7519496	-9042.3	779.9	21690.5	-31.47	2.28	9.97
650.0	-743707	153376	7562897	- 3105.3	784.5	21710.5	-31.56	2.29	9.98 10.01
652.0	-759981	15995 C	7606337	-8168.5	789.1	21730.4	-31.66	2.35	10.01
654.0	-776382	161533	7649818	-8231.9	743. 7	21750.4	-31.74	2.32	9.99
656.0	-792909	163125	7693339	-8295.5	798.3	21770.4	-31.82	2.32 2.31	9.93 9.89
658.0	-809564	164726	7736900	-3359.2	803.0	21790.2	-31.91	2.31	9.89
660.0	-826346	166337	7790500	-9423.1	$8) 7.6$	21809.9	-32.01	2.31	9.86
662.3	-843256	167956	7824139	-9497. 2	812.7	21829.6	-32.08	2.31	9.82
664.0	-860295	169585	7867818	-9551.4	816.3	21849.3	-32.10	2.30	9.82
666.0	-87746?	171224	791.1536	-9615.6	821.4	21868.9	-32.16	2.29 2.31	9.81
668.0	-894758	172871	7955294	-3680.?	326.0	21888.4	-32.41	2.31	9.74
670.0	-912183	174578	7999000	-8745.4	930.6	21907.8	-32.76	2.34	9.61

	TABLE C-I, EARTH-FIXED LAUNCH SITE POSITIONS, VELOCITIES. AND ACCELERATIONS - ASCENT PHASE (CONT.)							
time	XE	YE	2 E	DXE	Ore	DZE	DOXE	DDYE
SEC	Ft	Ft	Ft	FV/S	FT/S	FT/S		
672.0	-929740	176193	8042925	-8911.2	835.3	21926.9	-33.04	2.35
674.0	-947428	177869	9086797	-9877.3	884.0	21945.9		2.34 2.34 2.34
676.0	-965249	179553	8130708	-9943.5	844.7	21964.9	-33.02	2.34 2.35
678.0	-983202	181248	8174657	-9509.5	849.4 854.1	22003.2	-32.97	2.37
680.0	-1001287	182951	8218644	-9375.4	854.1 858.8	22002.3	-32.96	2.38
682.0	-1019504	184664	8262670 8306734	-9141.3 -9207.2	886.8	22041.5	-32.93	2.37
684.0	-103785?	186386	8306734	-9207.2	886.6	22060.7	-32.90	2.36
686.0	-1056332	188118	8350836	-9273.0	868.3 8771	22079.9	-32.88	2.37
688.0	-1074944	189860	8394976	-9338.8 -9404.6	873.1 877.8	22099.1	-32.87	2.37
690.0	-1093688	191610	843915	-9470.3	882.6	22118.4	-32.85	2.37
69.0	-1112563	193371	R483373	-9536.3	887	22137.6	-32.83	2.37
694.0	-1131569	195141	. 8527629	-9536.0	887.3	22159.6	-32.82	
696.0	-1150706	196920	8571924	-9601.6	${ }_{896.1}^{892.1}$	22176.2	-32.81	2.37
69.8	-1169975	198709	8616257	-9667.2	896.8	22176.2	-32.81	
699.370	$\begin{aligned} & \text { S-IVB } 1 \text { ST GU GU } \\ & -118286 ? \end{aligned}$	cutoff	8645761	-9710.9	900.0	22189.	-32.80	2.38
700.0	-1189374	200507	8660627	-9729.2	931.4	22187.0	-25.06	1.66
702.0	-1208883	20231 ?	8704978	-9779.2	904.5	22165.0	-24.96	1.66
704.0	-1228491	204125	8749285	-9820.1	907.8	22142.8	-24.94	1.66
706.0	-1248201	205044	8793550	-9878.9	911.1	22120.5	-24.92	1.67
708.0	-1268009	207769	8937769	-9929.7	914.4	22098.1	-24.89	1.66
709.330	PARKING ORBI	$\mathrm{T}_{20 \mathrm{IONO}}^{2090}$	8867971	-9962.3	916.8	22083.4	-24.88	1.66

TABLE C－II，LAUNCH VEHICLE NAVIGATION POSITIONS，VELOCITIES，AND ACCELERATIONS－ASCENT PHASE

$\overrightarrow{0}$
0
0
ng
0
0

 $\begin{array}{ll}4 & t \\ 0 & 0 \\ 0 & 0 \\ 1 & 1\end{array}$

t
0
0
i

 1275.7
 OZS
FT／S
$\begin{array}{ll}\text { NOXS } & \text { DOYS } \\ \text { FT／S SO } & \text { FT／S SO }\end{array}$

$\underset{\underset{\sim}{\sim}}{\underset{\sim}{\sim}}$

告先 4

信 \qquad

o in M M Nin o o o o

0.638

10.399

I ヨSVd ヨWII Jo 1甘VIS

FT/S SO
 $\stackrel{\sim}{n}$

TABLE C-II. LAUNCH VEHICLE NAVIGATION POSITIONS, VELOCITIES, AND ACCELERATIONS - ASCENT PHASE (CONT.)								
time	$\times 5$	rs	25	Dxs	ors	ozs	00xs	Dors
SEC	NM	NM	NM	Ft/s	fi/s	FT/S	FT/S SQ	ft/s so
58.0	3444.309	14.317	13.308	766.1	408.9	1564.0	20.11	-0.16
59.0	3444.437	14.384	13.567	796.2	408.9	1583.2	20.24	-0.15
60.0	3444.568	14.452	13.829	8.35 .5	408.7	1603.2	29.35	-0.10
61.0	3444.702	14.519	14.095	827.0	408.6	1623.9	20.50	-0.04
62.0	3444.840	14.586	14.364	847.5	409.6	1645.4	20.61	0.04
63.0	3444.981	14.653	14.636	963.2	403.7	1667.7	20.71	0.11
64.0	3445.126	14.721	14.913	888.9	408.8	1590.7	20.79	0.15
65.0	3445.274	14.788	15.193	909.7	409.9	1714.6	20.82	0.17
66.0	3445.425	14.855	15.477	930.4	409.0	1739.3	20.81	0.16
67.0	3445.580	- 14.922	15.766	951.2	409.2	1764.9	20.77	0.15
68.0	3445.739	14.990	16.058	971.9	4.109 .4	1791.3	20.73	0.15
69.0	3445.900	- 15.057	16.355	992.7	409.6	1818.6	20.71	0.21
70.0	3446.765	-15.125	16.657	1313.4	409.9	1846.8	20.74	0.32
71.0	3446.234	- 15.192	16.963	1034.2	410.2	1875.9	20.80	0.44
72.0	3446.406	- 15.260	17.274	1055.0	41.97	1905.9	20.88	0.52
73.0	3446.581	15.327	17.591	1075.9	411.2	1936.9	20.96	0.56
74.0	3446.760	15.395	17.912	1096.9	411.8	1968.9	21.03	0.61
75.0	3446.942	15.463	18.239	1117.9	412.4	2002.0	21.09	0.64
76.0	3447.128	- 15.531	18.571	1139.7	413.0	2036.1	21.17	0.61
77.0	3447.317	15.599	18.909	1160.2	413.6	2071.2	21.23	0.60
79.0	3447.510	15.667	19.253	1181.4	414. ?	2107.3	21.26	0.56
79.7	3447.706	- 15.735	19.603	1232.7	414.7	2144.5	21.33	0.50
80.0	3447.906	- 15.803	19.959	1224.1	415.1	2182.6	21.42	0.41
91.0	3448.109	- 15.872	20.321	1245.5	415.5	2221.8	21.50	0.33
82.0	3448.316	$6 \quad 15.940$	20.690	1267.1	415.8	2262.0	. 21.60	0.23
maximum ornamic pressure								
83.090	3448.526	516.009	21.066	1289.7	416.3	2303.3	21.68	0.15
84.0	3449.747 34489	$7 \quad 16.077$	21.448	1310.4	415.1	2345.5	21.77	0.11
85.9	3448.957	716.146	71.838	1332.2	416.2	2388.9	21.88	0.11
86.7	3449.178	16.214	22.235	1354.1	416.3	2433.0	21.99	c. 11
87.3	3449.403	316.283	22.639	1376.2	415.4	2478.1	22.12	0.07
88.9	3449.631	16.351	23.050	1308.4	416.4	2524.1	22.25	0.01
$89 . ?$	3449.863	316.420	23.470	1423.7	415.4	2571.0	22.39	-0.10
90.0	3450.999	-16.488	23.897	1443.1	416.2	2618.9	22.53	-0.21
91.0	3450.339	$9 \quad 16.557$	24.332	1465.7	415.9	2667.8	22.62	-0.34
92.9	3450.581	16.625	24.775	1499.3	415.5	2717.5	27.70	-0.44
93.0	3450.929	316.693	25.226	1511.0	415.1	2768.7	22.73	-0.49

D5-15560-6

 ASCENT PHASE (CONT.)

time	TABLE C-II, LAUNCH	VEHICLE NAVIGATION POSITIONS, VELOCITIES, AND ACCELERATIONS - ASCENT PHASE (CONT.)						
	X 5	Ys	2S	DxS	drs	DZS	ooxs	ooys
SEC	NM	NM	NM	FT/S	FT/S	FT/S	FT/S SO	FT/S SQ
136.0	3464.882	19.591	55.215	2448.5	403.5	6080.1	10.85	-c. 09
137.0	3465.288	19.657	56.222	2459.4	403.4	6164.8	10.89	-0.01
139.0	3465.691	19.723	57.243	2470.2	403.5	6250.1	10.92	0.18
139.0	3466.099	19.790	58.280	2481.2	4.33 .7	6336.3	10.95	0.21
140.0	3466.508	19.856	59.330	2492.1	403.9	6423.7	10.99	0.29
141.0	3466.919	19.923	60.395	25.3 .1	404.3	6512.2	11.06	0.40
142.9	3467.332	19.989	61.474	2514.2	4.94 .6	6601.9	11.12	0.23
143.0	3467.747	20.056	62.568	2525.3	404.7	6692.7	11.18	0.21
144.0	3468.164	20.123	63.677	2536.3	404.9	6786.1	11.28	0.14
145.0	3469.587	20.189	64.892	2547.6	405.3	6879.6	11.41	0.07
146.0	3469.003	20.256	65.942	2559.7	405.0	6974.2	11.53	-0.00
147.0	3469.425	70.323	67.098	2570.5	405.0	7070.0	11.66	-0.05
148.0	3459.849	20.389	68.269	2592.3	404.4	7167.1	11.79	-0.07
149.0	3477.275	20.456	69.457	2594.1	404.9	7265.6	11.89	-0.08
150.0	3470.703	20.522	70.661	2535.1	404.9	7365.3	12.02	-0. 28
151.0	3471.134	20.589	71.881	2618.1	404.7	7466.4	17.16	-0.08
152.9	3471.566	20.656	73.118	2630.3	404.6	7568.9	12.28	-0.09
153.)	3472.005	20.722	74.373	2642.7	404.5	7672.6	12.38	-0.08
154.0	3472.436	23.789	75.644	2655.1	404.4	7777.8	12.52	-0.08
155.0	3472.974	20.855	76.933	2567.7	404.3	7884.5	12.66	-0.09
156.0	3473.314	20.922	78.239	2580.4	404.2	7992.9	12.81	-0.05
157.0	3473.757	20.98 A	79.564	2493.?	404.?	8102.5	12.96	-0.05
158.0	3474.201	21.055	89.906	2706.2	404.2	8213.3	13.10	0.08
159.9	3474.648	21.121	82.267	2719.4	404.2	8326.7	13.25	-0.02
160.0	3475.097	21.188	83.647	2732.7	404.2	8441.0	13.39	-0.05
161.0	3475.548	71.254	85.046	2745.2	404.1	8556.9	13.54	-0.06
	S-IC dutroaro engine	CUTOFF IFNGINE	SOLENOITI					
161.630	3475.835	21.296	95.942	2754.7	474.0	8630.7	13.62	-0.23
162.0	3476.003	21.321	86.468	2753.0	404.7	9659.1	-13.42	-c. 10
163. 200	S-IC/S-II SEPARATION	COMMAND	86.895	2747.7	403.9	9666.5	-30.98	-0.04
162. 20	3476.134	71.341	86.895	2747.7	403.4	8666.5	-30.98	-0.04
164.0	3476.890	21.454	99.317	2605.5	407.7	9867.3	-30.85	-0.03
166.0	3477.774	21.587	92.175	2637.)	403.3	9878.0	-24.46	-0.33
168.0	3474.637	21.719	95.036	2597.5	402.9	8715.7	-23.63	-0.16
170.0	3479.482	21.952	97.912	2543.1	432.4	875 K .6	-22.42	-0.26
172.0	3480.312	21.984	100.801	24.98 .4	401.9	8801.6	-22.28	-0.33
174.9	3481.127	72.110	103.706	2453.7	401.5	4947.2 9893.5	-22.17	-0.17
176.7	3491.927	22.349	106.626	24.19 .6	401.7	9893.5	-22.0n	-0.22
178.?	3492.713	22.380	109.561	2365.6	400.6	8339.9	-21.94	-0. 21

ABLE C-II.	VEHICLE	TION POS	S, VEL	AN	LERATI	ASCENT PH	(CONT.)
$\times 5$	YS	25	Dxs	DYS	DZS		
NM	NM	NM	FT/S	Fr/S	FT/S	FT/S 50	FT/S So
3483.484	22.512	112.511	2321.9				
3484.241	22.644	115.477	2278.2	439.1	8986.5	-21.86	-0.21
3484.984	22.775	119.458	2234.7	309.3	9083.3	-21.78	-0.21
3485.713	22.907	121.455	2191.2	398.8	9127.5	-21.72	-0.21
3486.427	23.038	174.467	2147.9	398.4	9174.9	-21.68	-0.20
3487.127	23.169	127.495	2104.7	398.0	9222.4	-21.62	-0.20
3487.812	23.300	130.538	2061.6	397.6	9270.2	-21.56	-0.20
3488.484	23.431	133.597	2718.7	397.2	9318.1	-21.48	-0.21
3489.141	23.561	136.672	1975.9	396.7	9366.4	-21.41	-0.20
3489.785	23.692	139.763	1933.4	396.3	9414.9	-21.16	-0.21
3499.414	23.827	142.870	1891.0	395.9	9463.7	-21.20	-0.18
3491.029	23.953	145.993	1949.3	395.5	9512.9	-21.35	-0.18
3491.631	24.083	149.133	1805.7	395.1	9562.4	-21.35	-0.18
3492.218	24.213	152.289	1763.7	394.6	9611.9	-20.72	-0.22
3492.792 3493.359	24.342	155.460	1723.3	394.0	9660.8	-19.60	-0.27 -0.32
3493.357 3493.902 3490.48	2.4 .472	158.648	1895.2	393.3	9709.0	-19.63	-0.36
3493.902 3494.438	24.601	161.852	1648.7	392.5	9756.5	-17.84	-0.36 -0.39
3494.438 3494.964 3495	24.730	165.071	1513.4	391.7	9803.7	-17.46	-0.39
3494.964 3495.478	24.850	168.306	1578.7	391.3	9850.3	-17.32	-0.37
3495.478 3495.980	24.988 25.116	171.556	1544.1	390.2	9898.0	-17.18	-0.35
3495.980 3496.472	25.116 25.244	174.822 173.103	1509.8	389.5	9945.4	-17.14	-0.34
3496.95?	25.372	181.400	1475.5	388.8	9992.9	-17.16	-0.34
3497.420	25.500	184.713	1441.1	388.1	10040.8	-17.20	-0.35
3497.878	25.627	199.042	14372.1 13721	387.3 386.6	10088.9	-17.23	-0.38
3498.324	25.754	191.387	1337.5	386.6	10137.3	-17.26	-0.40
3498.758	25.881	194.748	1372.9	385.8 385.7	10185.9	-17.29	-0.38
3499.181	26.008	198.125	1268.?	385.3 394.3	10234.8	-17.32	-0.34
3499.593	26.134	201.518	12.33 .5	384.3 383.7	10284.9 10333.4	-17.33 -17.34	-0.33
3499.993 3500.382	26.260	204.927	1198.4	383.7	10333.4	-17.34	-0.35
3500.382 3500.760	26.386	209.353	1164.0	392.2	10383.0 10432.9	-17.37 -17.40	-0.35
3500.760 3501.126	26.512	211.795.	1129.1	391.5	10432.9	-17.40	-0.35
3501.126 3501.48 J	26.637	215.754	1094.2	330.9	10533.5	-17.41	-0.35
3501.483 3501.923	26.763	218.730	1559.3	390.1	10593.3	-17.43	-0.35
3501.823 3507.154	25.897	222.222	$1) 74.3$	379.3	10535.3	-17.46	-C.36
3507.154 3502.474	27.C12	225.731	989.3	378.6	10586.5	-17.50 -17.53	-0.35
3502.474 3502.782	27.137	729.257	254.1	377.9	10738.1	-17.53	-0.33 -0.33
3532.782 3502.079	27.2 .61	233.900	ง19.0.	377.3	10790.3	-17.57	-0.33
3502.779 3503.764	27.385	236.361	333.8	376.6	10342.2	-17.59	-0.33 -0.33
3503.764 3503.639	27.509	239.933	949.5	375.9	10994.6	-17.61	-0.33
3503.638 3503.900	27.633	243.533	813.2	375.2	10947.3	-17.65	-0.33
3503.900 3504.150	27.756	247.145	777.9	374.6	11000.3	-17.69	-c. 35
3504.150	27.379	750.774	742.4	373.9	11053.7	-17.74	-c. 35

[^4]

	TABLE C-II.	VEHICLE NAVIGATION POSITIONS, VELOCITIES, AND ACCELERATIONS - ASCENT PHASE (CONT.)						
time	xs	ys	25	nxs	DYS	ozs	ooxs	onvs
SEC	NM	NM	NM	FT/S	FT/S	FT/S	FT/S So	FT/S SQ
266.0	3504.398	28.002	254.422	706.8	373.2	11107.4	-17.78	-0.33
268.0	3504.615	28.125	258.087	671.2	372.5	11161.4	-17.79	-0.34
270.0	3504.830	28.247	261.769	635.6	371.8	11215.6	-17.80	-0.34
272.0	$35 \mathrm{C5.034}$	28.370	265.470	599.9	371.1	11270.3	-17.84	-0.34
274.0	3505.225	28.492	269.189	564.2	370.4	11325.3	-17.90	-0.34
276.0	3505.405	29.613	272.926	528.3	369.7	11380.7	-17.94	-0.34
278.0	3505.573	28.735	276.681	492.3	369.0	11436.4	-17.98	-0.34
280.0	3505.729	29.856	289.454	456.3	368.3	11492.3	-18.02	-c. 33
282.0	3505.873	28.977	284.247	420.1	367.6	11548.6	-18.07	-0.32
284.0	3506.006	29.098	288.057	383.9	367.)	11605.3	-18.12	-0.32
286.0	3506.126	29.219	291.887	347.6	366.3	11662.4	-19.16	-0.31
288.0	3506.234	29.339	295.735	311.7	365.7	11719.7	-18.19	-0.29
290.0	3506.331	29.460	299.602	274.8	365.1	11777.3	-18.23	-0.29
292.0	3506.415	29.590	303.488	238.2	364.5	11835.2	-19.28	-0.30
294.0	3506.488	29.700	307.393	2.1 .5	363.8	11893.5	-18.34	-0.31
296.0	3506.548	29.819	311.318	164.8	363.2	11952.2	-18.39	-0.28
298.0	3506.596	29.939	315.262	127.9	362.6	12011.3	-18.43	-0.27
300.0	3506.632	30.058	319.225	91.0	362.0	12070.7	-18.46	-0.30
302.0	3506.656	30.177	323.208	54.0	361.4	12130.4	-18.50	-0.32
304.0	3506.668	30.296	327.211	16.9	360.9	12190.4	-18.55	-c. 32
306.0	3506.667	30.415	331.233	-20.3	360.1	12250.8	-18.62	-0.30
308.0	3506.654	30.533	335.275	-57.7	359.5	12311.6	-18.70	-0.31
310.0	3506.629	30.651	379.338	-95.2	358.8	12372.7	-18.76	-0.33
312.0	3506.592	30.769	343.421	-132.9	358.2	12434.3	-18.81	-0.33
314.0	3506.542	30.887	347.524	-170.5	357.5	12496.2	-18.86	-0.32
315.0	3506.479	31.005	351.647	-728.3	355.8	12559.4	-18.92	-0.32
318.0	3506.404	31.122	355.791	-246.3	356.2	12621.1	-18.98	-0.32
320.0	3506.317	31.239	359.956	-294.3	355.5	12684.3	-19.04	-0.31
322.0	3504. 217	31.356	364.141	-322.5	354.9	12747.8	-19.11	-c. 30
324.0	3506.105	31.473	369.348	-350.8	354.3	12811.6	-19.17	-C.31
326.9	3505.980	31.589	372.576	-399.3	353.6	12875.8	-19.22	-0.32
328.)	3505.842	31.706	375.824	-437.9	353.0	12940.5	-19.30	-0.31
330.0	3505.691	31.822	381.095	-476.5	352.3	13305.5	-19.38	-0.29
332.0	3505.528	31.937	385.396	-515.4	351.7	13071.0	-19.46	- 0.29
334.9	3505.352	32.053	389.699	-554.4	351.1	13136.9	-19.51	-0.29
336.0	3505.163	32.169	394.034	-593.6	350.5	13203.2	-19.57	-0.29
338.0	3504.961	32.284	398.391	-632.9	349.9	13269.9	-19.66	-0.30
340.0	3504.747	32.399	402.770	-577.3	349.3	13337.1	-19.74	-0.29
342.0	3504.519	32.514	407.171	-711.9	349.7	13404.7	-19.83	-0.27
344.0	3504.278	32.620	411.595	-751.7	349.2	13472.6	-19.93	-0.26
346.0	3504.024	32.743	416.041	-791.7	347.6	13541.1	-20.01	-0.28
348.0	3503.757	32.857	420.509	-831.8	347.0	13610.0	-20.06	-0.29
350.0	3503.476	32.971	425.000	-872.0	346.4	13679.3	-20.13	-0.28

 $\dot{\sim} \dot{m} \dot{\tilde{m}} \dot{\mathrm{~N}} \dot{m} \dot{m} \dot{m} \dot{m}$

$\underset{\text { FT/S }}{\substack{\text { D2S } \\ \text { fis }}}$

$\stackrel{0}{\tilde{\tilde{\omega}}}$
$\stackrel{\sim}{\sim}$

©
Dxs
FT / S

n
n
}{}
i

\sim^{π}

$\sim \frac{\pi}{2}$

	S-II/S-ivb Separation	C.DMMAND
549.000	3395.25 ?	43.436
550.0	3394.226	43.485
552.0	3392.153	43.583
554.0	3390.065	43.680
556.0	3387.955	43.777
558.0	3785.925	43.974
560.0	3393.675	43.971
562.0	3381.504	44.067
564.0	3379.313	44.167
566.0	3377.103	44.258
568.0	3374.871	44.354
570.0	3372.620	44.448
572.0	3370.348	44.543
574.0	3368.056	44.637
576.6	3365.744	44.732
579.0	3363.419	44.825
58).0	3361.055	44.919
598.0	3358.692	45.713
584.0	3356.286	45.136

$\underset{S \in C}{\operatorname{IME}}$

\qquad
\qquad

OD 2S
FT/S SO

6.93
6.92
6.96
6.96
6.95
6.95
6.96
6.96
6.95
6.96
6.96
6.95
6.95
6.94

6.94
6.9 .34
-13.34
-13.42
-13.51
-13.59
-13.67

-13.72

- ASCENT PHASE (CONT.)

ELOCITIES, AND
oxs

```
~준
```


$709.330^{\text {PARKING ORBIT INSERTION }} 50.665$

$$
1598.961
$$

0
4
$\underset{1}{4}$

LONG GC LAT

	のmかmoñNN NMOCNON 	$\stackrel{\sim}{N}$		$$	
	 	$\begin{aligned} & \$ \\ & 0 \\ & 0 \\ & \hline \end{aligned}$		$\begin{aligned} & N \\ & \stackrel{1}{1} \\ & \dot{\sim} \end{aligned}$	

TIME SFC	GC DIST	LONG DEGE	GC LAT DEG N
58.0	3444.365	-80.5944	28.4497
59.0	3444.494	-80.5935	28.4499
60.0	3444.626	-80.5926	28.4592
61.0	3444.767	-80.5916	28.4505
62.0	3444.901	-80.5906	28.4508
63.0	3445.044	-80.5895	28.4511
64.0	3445.190	-80.5883	28.4515
65.0	3445.339	-80.5870	28.4518
66.0	3445.492	-80.5857	28.4522

M
n
n
n
N
N -90.5853
-90.5843
-80.5829
-80.5813
-80.5797
-80.5780
-99.5762
-80.5743
-80.5723
-90.5703
-80.5691
-80.5658
-80.5634
-80.5610
-80.5584
-80.5556

-90.5529 | | |
| :--- | :--- |
| 4ACH 1 | |
| $66.3 n 0$ | 3445.539 |
| 67.0 | 3445.649 |
| 68.0 | 3445.809 |
| 69.0 | 3445.972 |
| 70.0 | 3446.139 |
| 71.0 | 3446.309 |
| 72.0 | 3446.489 |
| 73.0 | 3446.660 |
| 74.0 | 3446.841 |
| 75.0 | 3447.025 |
| 76.0 | 3447.213 |
| 77.0 | 3447.404 |
| 78.0 | 3447.599 |
| 79.0 | 3447.747 |
| 89.0 | 3448.000 |
| 81.0 | 3448.205 |
| 82.0 | 3448.414 |

EF VEL
FT/S
 $V F L-F L$
$D E G$ -

D5－15560－6

ALtituone
60246
61816
63409
65026
66666
68330
70017
71727
73461
75218
76998
78801
80628
82477
84350
85245
88164
99106
92071
94059
96070
98106
100165 98106
100165

102248 | 0 |
| :---: |
| 0 |
| |
| N |
| 0 |
| 0 |
| 0 |
| 0 | 0

0
0
0
0
0
0
0
0
0

 $\stackrel{0}{0}$ 0
\sim
\sim
\sim 133941
136384
 141347
143866 モしモカウI

O
岂
岂

$\begin{array}{cc}n \\ 0 & 0 \\ \text { N } \\ 0 & \sim \\ \sim\end{array}$4055.8$40 R 9.3$
4174.24711.54901.94999.3
5098.25078.2
5193.5∞
$\dot{\sim}$
\dot{n}
i
VEL－EL
DEG 今ま゙$\begin{array}{ccc}\text { ENGINE CUTOFF } & \text { IENGINE SOLFNOIDI } \\ -9) .1517 & 28.5739 & 72.41\end{array}$5z
S．
GU

$$
25 \cdot 82
$$

 28.5005
28.5026
28.5048
28.5070
28.5093 28.5093
28.5117 28.5117
28.5141
28.5166

$$
\begin{gathered}
6 \varepsilon \angle 5 \cdot 32 \\
\operatorname{BNISN} \exists 1
\end{gathered}
$$

000000
TIME

0.0
0.0
0.0
0.0
0
000
0.0
0.0
0
0
-

$0:$

ALTITUOE
FT

146407
148964
151534
154123
156724
159339
161970
164615
167276
169952
172644
175351
178074
180813
183569
186342
189131
191937
194761
197603
200463
203341
206238
209153
212088
215043

$\begin{aligned} & \text { N } \\ & \text { O} \\ & \stackrel{y}{N} \end{aligned}$	$\begin{aligned} & N \\ & \text { N } \\ & \text { © } \\ & \sim \end{aligned}$	$\stackrel{\rightharpoonup}{\infty}$ $\stackrel{\infty}{\infty}$ $\stackrel{y}{\infty}$	
			N
N	$\stackrel{\circ}{\circ}$		
-	$\dot{0}$	$\stackrel{\square}{-}$	$\dot{\sim}$

in

6567.0 岕9068.7
9095.5

HEAD FLT-PATH
DEG DEG\dot{m}
$\dot{\sim}$
$\dot{\sim}$
\dot{m}
5719.9
5804.45804.4
5890.0
5976.91
0
0
0
0Con
No
No
0
0
0
0N
$\dot{\sim}$
$\dot{\sigma} \underset{\sim}{\sim}$
N~~~守n 0
us
n
5
7851.9
7878.2
VEL-EL
DEG$\begin{array}{ll}\underset{\sim}{n} & \underset{\sim}{\sim} \\ \underset{\sim}{\sim}\end{array}$

 72.61
72.62
72.63
72.64 72.62
72.64
TABLETABLE C-III.
$\begin{array}{ll}\text { LING } & \text { GC LAT } \\ \text { DEGE } & \text { DEG } N\end{array}$
GC OIST

 3469.246
 3469.698

 3469.688
 3470.133

 3470.133
 3470.591
3471.031

 \(\begin{array}{ll}152.0 & 3472.397 \\ 153 . n & 3472.859 \\ 154.0 & 3473.322 \\ 155.0 & 3473.787 \\ 156.7 & 3474.259 \\ 157.0 & 3474.731 \\ 158.0 & 3475.207 \\ 159.0 & 3475.696 \\ 163.0 & 3476.164 \\ 161.0 & 3476.653\end{array}\)

 136.0
 137.0
138.0
139.0
140.0
141.0
142.0
143.0
144.9
145.0
146.0
147.0
149.0
149.0
150.0
151.7
152.0
153.0
154.0
155.0
156.0
157.0
158.0
159.0
163.0
161.0

72.77$161.630 \begin{array}{lll}\text { S-IC OUTBOARO ENGINF COTOFF } \\ 3475.963 & -79.6998 & 28.7007\end{array}$
$162.0 \quad 3477.143 \quad-79.6828 \quad 79.7 C 29$

$\begin{array}{llll} & \text { S-IC/S-1I SECARATION COUMAND } \\ 162.300 & 3477.290 & -79.5764 & 28.7 C 46 \\ & & & \\ 164.7 & 3478.112 & -79.5398 & 28.7146 \\ 166.0 & 3479.066 & -79.5966 & 28.7263 \\ 169.7 & 3490.003 & -79.5533 & 28.7390 \\ 171.0 & 3480.928 & -79.5098 & 28.7498 \\ 172.7 & 3481.940 & -79.4650 & 29.7616 \\ 174.0 & 3492.741 & -79.4220 & 28.7735 \\ 174.0 & 3487.630 & -79.3777 & 28.7854 \\ 178.0 & 3434.508 & -79.3331 & 28.7974\end{array}$

 FT/S
8049.3
8080.4

 GEOGRAPHIC POLAR COORDINATES -

に

TIME
SEC

$\underset{\text { atituon }}{\text { altite }}$

$\begin{aligned} & \frac{山}{>} \\ & \frac{4}{4} \\ & \frac{4}{2} \end{aligned}$	

 $\propto \propto$

ALTITUDE
FT

537962
5339506
541023
542513
543975
545411
546821
548204
5495622
550895
552203
553486
554744
555979
557190
558378
559543
560685
561806
562905
563983
565040
566076
567092
568089
569065
579023
570962
571883
572786
573671
574539
575391
576226
577046
577851
578642
579417
580179
580928
581664
582387
583099

TIME
SEC

TABLE C-III, GEOGRAPHIC POLAR COORDINATES - ASCENT PHASE (CONT.)											
$\begin{gathered} \operatorname{TIME} \\ S E C \end{gathered}$	$\begin{aligned} & \text { GC OIST } \\ & \text { NM } \end{aligned}$	$\begin{aligned} & \text { LONG } \\ & \text { DEG E } \end{aligned}$	$\begin{aligned} & \text { GC LAT } \\ & \text { DEG } \end{aligned}$	$\begin{gathered} \text { VEL-AZ } \\ \text { DEG. } \end{gathered}$	$\begin{gathered} V F L-E L \\ D E G \end{gathered}$	EF VEL FT/S	$\begin{gathered} \text { HEAD } \\ \text { DEG } \end{gathered}$	$\begin{gathered} \text { FL T-PATH } \\ \text { DEG } \end{gathered}$	SF VFL FT/S	RANGE NM	$\underset{\text { FT }}{\text { ALTITUDE }}$
438.0	3536.986	-70.5849	30.7499	78.17	1.20	16183.5	79.08	1.11	17503.7	540.969	583799
440.0	3537.096	- 70.4863	30.7676	78.23	1.17	16286.8	79.13	1.08	17607.0	546.166	584489
442.0	3537.205	-70.3870	30.7954	78.29	1.14	16390.9	79.18	1.06	17711.1	551.39	585168
444.0	3537.312	-70.2871.	30.8031	78.35	1.12	16495.9	79.22	04	17816.2	556.660	585837
446.0	3537.417	-75.1865	30.8209	78.41	1.10	16601.9	27	02	17922.3	561.958	586497
44 . 0	3537.521	-70.0852	30.8387	78.47	1.08	16708.9	. 32	1.0	18029.3	567.289	587148
450.0	3537.624	-69.9832	30.8565	78.53	1.05	16816.9	79.37	0.98	18137.3	572.655	587792
452.0	3537.725	-69.8305	30.9743	78.59	1.34	16925.7	79.42	0.96	18246.2	578.055	588427
454.0	3537.825	-69.7772	30.8922	78.65	1.02	17035.6	79.47	0.95	18356.1	583.491	589056.
456.0	3537.925	-69.6731	30.9101	78.71	1.00	17146.3	79.53	0.93	18466.9	588.961	589678
458.0	3538.023	-69.5683	30.9280	78.77	0.99	17258.1	79.58	$0.9 ?$	18578.7	594.467	590294
460.0	3538.120	-69.4627	30.9459	78.83	0.97	17370.9	79.63	0.90	18691.5	600.009	590904
	S-II CENTEQ	ENGINE CuToff	1 Engine	enoiol							
460.620	3538.149	-69.4309	30.9513	78.85	0.97	17404.8	79.65	0.97	18725.5	601.678	591086
462.0	3538.216	-69.3565	30.9638	78.89	0.95	17473.8	79.68	0.88	18791.6	605.585	591508
464.0	3538.310	-69.2496	30.9818	78.96	0.92	17562.4	79.74	0.85	18883.2	611.191	592099
466.0	3538.4 Cl	-69.1422	30.9997	79.02	0.99	17654.4	79.79	0.83	18975.3	616.827	592672
468.0	3538.491	-69.0341	31.0176	79.08	0.87	17747.0	79.84	0.81	19067.9	622.492	593235
470.0	3538.579	-69.9254	31.0355	79.14	0.85	17840.9	79.90	0.79	19160.9	628.187	593786
477.0	3538.665	-68.8162	31.0534	79.21	0.83	17934.3	79.95	0.78	19255.2	633.911	594331
474.0	3538.751	-68.7063	31.0713	79.27	0.83	18.029 .1	80.01	0.77	19349.1	639.665 645.449	594871
476.0	3538.836	-68.5958	31.0892	79.33	0.82	18122.3	80.07	0.77	19443.3	645.449 651.264	595410
478.0	3538.922	-68.4846	31.1071	79.40	0.82	18217.2	80.12	0.76	19538.2	651.264 657.108	595950
480.0	3539.008	-68.3729	31.1249	79.46	0.82	18312.8	80.18	0.76	19633.9	657.198	596491
482.9	3539.094	-68.2605	31.1427	79.53	0.82	18409.3	80.24	0.76	19730.4	668.889	597583
484.0	3539.181	-68.1475	31.1606	79.59	0.82	18506.6	80.29	0.76	19827.8	674.827	598133
486.9	3539.268	-68.0338	31.1784	79.66	0.82	18604.9	880.45	0.77			598686
498.0	3539.356	-67.9195	31.1962	79.73	0.82 0.82	18703.9 18803.8	80.41 80.47	0.77	20125.1	689.795	598686 599242
490.7	3539.445	-67.8046	31.2139	79.79	0.82	18803.8	90.47	0.77	20125.1	696.7928	
492.0	3539.533	-67.6889	31.2316	79.84	3.82	18904.6	80.53	0.77	20225.9	692.828 698.892	599802
494.0	3539.623	-67.5727	31.2494	79.93	0.82	19008.2	80.59	3.77	20327.6	698.892	R00364 600930
496.7	3539.713	-67.4557	31.2671	80.00	0.82	19108.6	80.65	0.77	20430.0	774.989	600930 601500
498.0	3539.803	-67.3391	31.2847	80.07	0.82	19211.9	80.71	0.77	23533.4	711.119	601500
500.0	3539.894	-67.2198	31.3024	80.14	0.81	19302.6	80.78	0.76	20624.1	717.280	602071
502.0	3539.984	-67.1010	31.3199	80.21	0.89	19383.6	80.84	0.75	20705.2	723.467	602635
504.0	3540.072	-66.9816	31.3375	80.28	2.78	19464.2	80.90	0.73	20785.9	729.681	603191
506.0	3540.159	-64.9617	31.3550	80.35	0.77	19545.0	80.97	0.72	20866.7	735.921 742.186	603740 604282
508.3	3547.246	-66.7412	31.3724	80.42	0.76	19626.1	81.03	0.71	20947.8	742.186	604282
510.0	3540.331	-66.6202	31.3898	80.47	0.75	19708.6	81.10	0.70 0.69	21030.3 21112.4	748.477 754.794	604817
512.0	3540.415	-66.4986	31.4071	80.57 80.64	0.73 0.73	19790.\%	81.16	0.69 0.69	21194.8	761.137	605871
514.0	3540.498	-66.3765	31.4243	90.64	0.73	13873.0	81.23	0.68	21194.8		

ALIITUDE
FT

621572
621848
622115
622374
622624
622866
623099
623323
623540
623748
623948
624141
624325
624502
624672
624934
624989
625137
625277
625411
625538
625659
625773
625880
625982
626078
626168
626253
626332
626406
626475
626540
626599
626654
626705
626752
626794
626833
626869
626901
626930
626956
626979

 -10 Mo Mo

$$
\begin{aligned}
& \text { SF VEL } \\
& \text { FT/S }
\end{aligned}
$$

23270.6
23307.3
23344.1
23381.2
23418.4

 00
∞
∞
N
N
N
N
N

 HEAD
DEG

 $0 N$
0
0
0
0
0
0 5
m
m
0
0
0
1 BN
R
~
N
0
0

 1

	 品NANANANAN NNNNNNNNNNNNNNNNN	$\begin{aligned} & \text { n } \\ & \stackrel{\circ}{\mathrm{C}} \\ & \underset{\sim}{n} \end{aligned}$	
	 －$\dot{\sim}$ 	$\begin{aligned} & \sigma \\ & \text { Na } \\ & \dot{\sim} \\ & \underset{\sim}{N} \end{aligned}$	umotis からல்が \qquad
$\begin{aligned} & \stackrel{4}{\underset{\sim}{2}} \approx \\ & \text { 出 } \end{aligned}$	 NNNNNNNNNNNN N	$\stackrel{0}{0}$ $\stackrel{\sim}{n}$ \sim	NNMmer ペべト 0000伿伿的 NNNNN
$\begin{aligned} & \frac{I}{6} \\ & 0 \\ & \frac{1}{4} \\ & \frac{1}{4} \end{aligned}$		$\begin{aligned} & \overrightarrow{0} \\ & \dot{0} \end{aligned}$	
	人	$\begin{aligned} & \stackrel{\rightharpoonup}{5} \\ & \infty \\ & \infty \\ & \infty \end{aligned}$	さ～NOR $\dot{\infty} \infty$

い	
い	\pm
岕	NMNMm＠m

 0
0
0
$\stackrel{\infty}{\infty}$

3543.795
3543.796
GC LAT
OEG
NNONNNNNNNNNNNNN

-53.4075
-53.2547
-53.1017
-52.9498
-52.7959
INSERTION
-52.6941

IVB 15 T
mmommmommmommom
$\underset{\text { sine }}{\text { rine }}$
0
$\dot{N} S O O$
N
$\begin{array}{ll}694.0 & 3543.791 \\ 696.0 & 3543.792 \\ 69.8 .0 & 3543.792\end{array}$
-54.3200
-54.1686
-54.0170
-53.8651
-53.7129
-53.56 .33
699.330
700.0
702.0
704.0
706.0
709.0
709.230

TABLE C-IV. GEOGRAPHIC POLAR COORDINATES - PARKING ORBIT PHASE

HEAD
DEG

88.85
99.62

－

$\stackrel{*}{\text { ¢ }}$

「z ご 岂

n
n
n
n
n
0
0
n
i

 $\begin{array}{ccc}\infty \\ 0 & 0 \\ 0\end{array}$

 C
0
0
0
0

先

$$
\begin{aligned}
& -7698672 \\
& -7708344
\end{aligned}
$$

-19136551

$\dot{\sim}$

S－IVB RE－IGNITION（STOV TPENI

$$
\begin{array}{r}
-7669513 \\
-7679757
\end{array}
$$ -77179918

-7727618
-7737770 -7737720
-7746799
-7756353 -7756393
-7765839
-7775393 -7775393
-7794859 -7794324
-78.73753

-30761031
-30545947
 -33112164 -298935745
-296752865
-294 -29452865
-29230909 -29907903
-29783975 -28558953
-28332866 とクbscliz－
G98ZEEBZ－ S－IVB RF－I
-2727709 c
0
N
0
0
0
0
0 $9964 . \mathrm{C}$ 9866.0
9869.0 $\stackrel{S}{\substack{c}}$ 0
\vdots
0
0
0 9974.0 9878.0
9880.0 9892.0
984.0 9884.0
9986.7

$$
\begin{aligned}
& -7669513 \\
& -7679757 \\
& -7699576
\end{aligned}
$$

$$
\begin{aligned}
& -7708344 \\
& -771799 ?
\end{aligned}
$$ $86867922-$

$11182622-$
chbcciaz－
 \qquad
 c
\dot{c}
$\dot{\infty}$
0
0
0 $\stackrel{c}{9}$ $0 c$
N
N．
0
0
0 9994．？$\quad-76329947$

 -4110.8
 -4067.2
-4023.5

-3892.4
-3848.7
-3805.0
-3805.0
-3761.2
-3717.4
-3717.4
-3629.7
-3585.9
-3585.9
-3542.0
-3499.2
-3454.3
-3410.4
-3416.4

-4559.8
-4545.8
-4531.7
-4517.4-4533.1
-4499.7-4474.2
-4459.6
-4444.9-4375.4
-4340.1
-4324.9$-4184.1$$-4152.0$-4119.7
-4119.7
-4103.3

-437.0| 9 |
| :---: |
| 0 |
| 0 |
| 0 |

 24132.5
 24186.2
24240.0
24293.8
74347.6
24401.6
24455.5
24509.5
24563.4
$24617 . ?$
24571.0
34724.3
24778.0
24832.4
24935.2
24940.1
24794.1
251048.1
25172.2
25155.2
75210.3
2515 h. 2
75210.3
25264.3
25210.3
25254.3
25318.5
25372.6
253726.7
25489.8
25535.0
25435.0
25599.0
25589.2
25543.4
25597.7
25497.7
25752.1
25306.4
25306.4
$\sigma \sim$
an
$-\infty$

YE
F

XF
FT
-26291736
-26243417
-26194991
-26146457
-26097816
-26049067
-26009217
-25951244
-25951244
-25932172

-25803703
-25754307
-257.34904
-25655103
-257955103
-25605474
-2555564
-25605474
-25555648

$-2545547 ?$
-25405521
-25355263
-25355263
-25304997
-25254422
-25304997
-25254422
-25203830
-25153148
-2520384
-25153148
-25102349
-25102349
-25051441
-25007425

-24949301
-24998069
-24846777
-24898087
-24846777
-24795778
-24795710
-24743710
-24692052
-24692052
-24640276
-24640276
-24588392
-2453440
-24484299
-2453442
-24484299
-24432089
-24379771
-74327342

9899.0
9990.0
9902.0
TIME
SEC
9994.0
9906.0
9908.0
9910.0

0
$\frac{8}{\sigma}$
$\frac{8}{0}$
0
c
$\dot{\sigma}$
$\dot{\sigma}$
$\dot{\sigma}$
0
9920.0
9922.0
9924.0
9925.0
9029.0
9029.0
993.0
993.0
9934.0
c
0
co
0
0
0
9938.6
9940.0
9940.0
942.0
9942.0
9944.0
9944.0
9946.0
9948.0
9948.0
9950.0
9952.0
9954.0
9954.0
9956.0
9958.0
999.0
$c \circ$
$\dot{C} \dot{\sim}$
$\dot{\circ} \dot{0}$
c
0
0
0
0
0 c
$\dot{0}$
\dot{c}
$\dot{\sigma}$
0
 c
0_{0}
σ_{0}
0 c
0
\vdots
\vdots
σ

 -8238502
-8246399
-8254259
-8252049
-8869883 mo
α
0
0
0
0
0
0
1
1
 1
 $a \sim \alpha$
$\alpha=0$
0
0
0
α
1
1
 $\underset{\sim}{\sim}$ -8411533
-8418633
 -8439799
-844665 C -84406357
-945357
-946744 -8460449
-9467297 $-8474 C 36$
-8480947
-8487570 0

 $\stackrel{\substack{n \\ i}}{\substack{n \\ i}}$ $-241164 C 5$
-24063365 -2406336
-24010201
-23956914
-23903503 -23993503
-23349488
-23796310 -23796310
-23742528
-23698622 -23688622
-2634597
-23580437

 $\underset{\substack{\text { Eic } \\ \sim \\ \sim}}{\sim}$ Nos -23142695
-23087411 -23087411
-23032011
-22076484

 $90952522-$
$2548522-$
$2 L 504922-$ と86802ヶ22－
¢ $95125<2-$ 1

 Mr

 999.0
 $\begin{array}{r}\circ \\ 8 \\ 8 \\ 0 \\ 0 \\ \hline\end{array}$ 0 0.
i.
8.0
8.8
C 10010.0 10012.0
10014.0
$10014 . n$ c
1
0
0
0
0 $\stackrel{0}{\circ}$ 0
0
N
0
0
0
0 $c c$
$\dot{4}$.
0.
0.
0. cic c
j
4
0
0
0
0 6
\dot{c}
co
0.0
0.0 c
$\dot{0}$
0
0
0
0 9
0
4
4
9
9 5
0
0
0
c
0
0 0
0
0
c．
c
c 0
$\dot{\sim}$
0
0
0

 \circ
$\dot{\circ}$
$\stackrel{0}{\circ}$
0

0 | \because |
| ---: |
| |
| |
| 0 |
| 0 |
| 0 |

 -19898797
-10899112
-19899342 -19899342
-19899487
-19899546

 ∞
N
∞
∞
∞
∞
∞
0
1
1

－ 21487277 -21428226
-21369042 -21369742
-21309722
-21250268 － 21190679 -21130954
 -6
$\sigma 0$
00
00
0
0
0
0
0
10

 -20709650
-20648276
-20587264
-20526162 -20587264
-20526162
$-2046497 n$ -20403539
-20342016 -20342016
-20280352
-20219547
 0
in
N
0
0
0
0
10
1
 -19907382
-19844718
-19791909

 $91262561-$
$00920561-$ -19529216
-19465676 50
0
0
0
0
0
5
0
0
10
1

n
$\underset{1}{\infty} \underset{\sim}{\infty} \underset{\sim}{\sim}$

0
0
0
$0 \sim$
0
0
0
0
0

a
$\dot{+}$
$\stackrel{+}{\omega}$
$\stackrel{1}{n}$

$\underset{\text { FT／S }}{\text { DXE }}$

$\stackrel{.}{0}$
$\stackrel{y}{m}$
$\stackrel{y}{m}$
$\stackrel{y}{m}$

34104.4

出

®
0
的

0
10
0

－

$\underset{\times}{\underset{\sim}{w}}$

10203.930
（11080 NOT 123 FNI
$10213.030^{\text {TRANSLUNAR }} \begin{aligned} & \text {－1719652 }\end{aligned}$

\％	
$\begin{gathered} \text { Nan } \\ 0 \end{gathered}$	

$\stackrel{N}{i}$

TIME
SEC

10.67

AEGIN S-IVB RESTART PREPARATIONS -- START OF TIME BASE 6


```
~5
```


FT/S 50-
$\underset{\mathrm{FT} / \mathrm{S} \text { SO }}{\text { ODOS }}$

 óócóóojóóojóojód

-3529.486

-3519.748
-3514.137
~~

-3466.695
-3479.694
-340.135

\circ
\vdots

o

FN
-3371.332

| $T 1 M E G$ |
| :---: | :---: |
| $S E C$ |

N

-3363.099
s-iva re-ignition (stov open) S-IVB RE-IGNITION (STOV OPEN) $\underset{-68.509}{1134.666}$

TIME SEC

\square

 1896.367
1904.832
1913.305

TIME
SEC

 $\sigma=$
0
0
0
an
N

$\stackrel{N}{\text { No }}$ MO
N
0
0
0°
0 n
0
0
0
0
0
0
0
0
0
0
0 2092.780
2101.403
2110.033 2110.077 2127.314
2135.966

+
0
∞
0
\sim

 2328.193
2337.020
 ∞
0
0
\vdots
N

N | σ |
| :---: |
| 4 |
| 4 | $\stackrel{c}{N}$ NNNNNNNNNNNNNNNNNNANNNNNNNNNNANNNNNNANNNN

0
0
8
8
0 88: 0
0
0
0
0 6
06
08
08 $\stackrel{\dot{c}}{\dot{\sim}}$ O 08
00
00
00
0.
0. 90
00
00
00
0. 0
0
0
0
0
0
0
0 000
00
00
008
00
0
0 0.0
$\infty 0$
0.
0.
0. 90
$\dot{0} \dot{1}$
$0-9$
-0. 00
04
00
0.
-0. 60
80
00
00 00
00
$0=1$
$0=1$
 $0 c$
$0 \times$
$=1$
$=1$
0

0 | c |
| :--- |
| $\dot{0} \dot{0}$ |
| -1 |
| 0 |
| 0 | 0

$\dot{0}$
$\underset{\sim}{N}$
$\underset{\sim}{1}$
-0

 0
~
示
$=0$

 90
4
4
4
-1
0
9
 0
\sim
0
0
0
0
0

	TABLE C-VI, LAUNCH VEHICLE NAVIGATION POSITIONS, VELOCITIES, AND ACCELERATIONS - SECOND BURN PHASE (CONT.)									
	tima	xs	vs	zs	nxs	$\mathrm{crss}_{\mathrm{Fr} / \mathrm{S}}$		Doxs FT/S SO	odys FT/S SQ	Dozs $\mathrm{FT} / \mathrm{S} \mathrm{SO}$
	SEC	NM	NM	NM	FT/S	FT/S	Fi/s			
	10156.0	2393.152	-43.269	-2677.173	26978.1	1028.6	20132.8	12.60	5.91	45.71
	1015月.0	2399.036	-42.929	-2670.531	27003.4	1040.5	20224.4	12.67	6.91	45.88
	1016).0	2407.929	-42.584	-2663.859	27028.8	1052.6	20316.3	12.74	6.09	46.03
	10162.0	2416.830	-42.236	-2657.157	27054.3	1064.8	20408.5	12.81	6.12	46.20
	10164.0	2425.739	-41.383	-2650.424	27980.1	1077.1	20501.1	12.90	6.15	46.38
	10166.0	2434.657	-41.527	-2643.661	27105.9	1089.5	20594.0	12.96	6.19	46.54
	10168.n	2443.594	-41.166	-2636.867	27131.9	1101.9	20687.2	13.01	6.24	46.68
	10173.0	2452.518	-40.801	-2630.042	27158.0	1114.4	20780.7	13.06	6.30	46.84
	10172.9	24.1 .46 ?	-40.432	-2623.186	27184.2	1127.1	20874.6	13.12	6.35	47.00
	10174.0	2470.414	-40.059	-2616.300	27210.5	1139.9	20968.7	$13.1{ }^{\circ}$	6.44	47.21
	$10176 . n$	2479.375	-39.682	-2609.382	27236.8	1152.9	21063.6	13.09	6.57	47.63
	10178.3	2489.345	-39.390	-2602.433	27362.7	1166.2	21159.5	12.83	6.71	48.23
	10180.9	2497.323	-38.914	-2595.452	27298.2	1179.7	21256.5	12.62	6.82	48.78
	10182.0	2506.309	-38.524	-2589.440	27313.5	1193.4	21354.3	12.67	6.97	49.08
	10184.0	2515.304	-39.129	-2581.395	27339.1	1237.2	21452.5	12.91	6.89	49.05
	10186.0	2524.307	-37.729	-2574.317	27365.1	1221.3	21550.5	13.12	6.93	49.04
	10189.7	2533.319	-37.325	-2557.207	27391.5	1234.9	21648.8	13.29	6.97	49.19
	10190.0	2542.339	-36.916	-2560.065	27418.3	1248.9	21747.4	13.47	6.99	49.38
\bigcirc	1019.0	2551.363	-36.503	-2552.891	27445.4	1262.9	21846.2	13.66	7.00	49.53
P_{0}	17194.0	2550.407	-36.085	-2555.684	27472.9	1276.9	21945.3	13.86	7.03	49.53
	10196.0	2569.454	-35.682	-2533.444	27500.8	1791.0	22044.4	14.02	7.05	49.60
U		2578.511			27529.1	1305.1	22143.6	14.18	7.07	49.66
\cdots	10200.0	2587.577	-34.803	-2523.866	27557.5	1319.3	22243.0	14.35	7.05	49.71
	10202.0	2596.653	-34.366	-2516.528	27586.5	1333.4	22342.3	14.55	6.98	49.74
		2no guidan	toff							
	10203.030	2601.330	-34.140	-2512.737	27631.6	1340.1	22393.3	15.09	6.12	49.28
	10204.0	2605.736	-33.925	-2509.159	27591.6	1342.7	22421.8	-21.16	0.53	20.29
	10206.0	2614.810	-33.483	-2501.773	27549.4	1343.3	22462.1	-21.10	0.27	20.14
	10208. ${ }^{\text {c }}$	2623.872	-33.041	-2494.373	27507.2	1343.9	22502.3	-21.12	0.28	20.06
	10210.9	2632.919	-32.599	-2486.959	27465.0	1344.5	22542.4	-21.17	0.27	19.98
	10212.0	2641.052	-32.156	-2479.533	27422.6	1345.0	22592.2	-21.21	0.27	19.90
		unar inject	(TLI)							
	10213.930	2646.599	-31.928	-2475.703	27400.7	1345.3	22602.7	-21.24	0.27	19.85
	10250.0	2810.901	-23.715	-2336.003	26601.6	1353.9	23307.6	-21.98	0.20	18.27
	10300.0	3025.229	-12.539	-2140.600	25483.4	1361.6	24165.6	-22.70	0.11	16.05
	10350.0	3230.231	-1.317	-1938.594	24338.2	1365.0	24912.4	-23.07	0.02	13.83
	10400.0	3425.755	9.915	-1730.895	23192.3	1364.4	25549.7	-23.13	-0.05	11.68
	$10450 \cdot 3$	3611.773	21.128	-1518.388	22030.2	1360.2	26091.7	-22.92	-0.12	9.63
	10500.0	3798.369	32.292	-1301.916	20894.2	1352.9	26514.7	-22.49	-0.18	7.72

DOZS
FT/S SQ

5.98
4.41
3.02
1.81
0.75
-0.16
-0.93
-1.58
-2.13
-2.58
-2.95
-3.25
-3.49
-3.68
-3.83
-3.94
-4.02
-4.07
-4.10
-4.11
-4.11
-4.09
-4.07
-4.03
SECOND BURN PHASE (CONT.)
$\stackrel{1}{2}$
649365

SF VEL
FT/S

25559.5

FLT-PAT
DEG

$\begin{aligned} & 0 \\ & \stackrel{0}{4} \underset{\sim}{U} \\ & \underset{\sim}{U} \end{aligned}$	-
	-
	\%
	n
$\stackrel{\omega}{3}$	-
-	$\stackrel{+}{\sim}$
$\stackrel{4}{4}^{4}$	\pm

9280.0

ALTITUDE
FT

645645
645586
645529
645475
645425
645378
645334
645293
645256
645223
645192
645166
645142
645122
645106
645094
645086
645082
645082

VEL-EL
DEG

N~NNNのNNMNONOMNONGKN

$$
\approx
$$

NNNNNNNNNNNNNNNNNNN

ALTITUDE
FT

645142
645148
645158
645171
645188
645209
645235
645265
645391
645344
645392
645448
645511
645583
545663
645752
645850
645959
646079
646208
646349
646503
646669
646948
647041
647248
647470
647706
647959
649228
648514
648918
649139
649479
649938
650217
650617
651037
651479
651942
652428
652938
653471

$\begin{aligned} & \stackrel{u}{\sim} \stackrel{n}{s} \\ & \stackrel{4}{u} \end{aligned}$	
	${ }^{\circ}$
	${\underset{\sim}{\sim}}_{\sim}^{\sim}$

$\begin{aligned} & \stackrel{4}{4} \\ & \stackrel{4}{4} \end{aligned}$	THNさのヘNOm，
	\bigcirc

$\stackrel{\square}{42}$	
كّهِ	さMmN゙0¢
式晏	

zo	－vas
¢	

SF VEL FT/S	$\begin{gathered} \text { ALTITUOE } \\ \text { FT } \end{gathered}$
28263.8	654029
28317.2	654612
28370.9	655221
29424.8	655857
28478.8	856520
28533.0	657211
28587.4	657931
28642.0	658680
28696.8	659461
28751.7	660272
28806.9	661116
28862.2	661993
28917.8	652903
28973.5	663947
29929.5	664827
29085.6	665842
29142.0	666894
29198.5	667983
29255.3	669110
29312.1	670275
29369.2	671481
29426.5	672727
29484.0	674015
29541.8	675345
29595. 7	676718
29657.8	679134
29716.1	879595
29774.6	681102
29933.3	682654
29892.3	684254
29951.5	685902
30017.9	697598
30070.6	699344
30130.5	691141
30190.6	692990
30251.0	694891
30311.6	696845
30372.4	698853
30433.4	700916
30494.6	703035
30556. 1	705211
30617.9	707444
30679.9	709737

0
-

 in in

 1.0399
1.1226
1.2055

 1.6219
1.7055
1.7904
1.9733
1.9574 1.9733
1.9574
2.0416
2.1250 0040
$-5 N 0$
$0 \sim N$
NNN
N N 2.21950
2.3707
2.4646
2.5405
 0
0
\sim
\sim
\sim

LONG
OEG F

Altitude

VEL-EL

HEAD
DEG

SF VEL
$\frac{1}{4}$

VFL-AZ

GC LAT

TABLE C-VII.

 ตn in in in minnininininininininininininin

N
$\dot{\sigma}$
$\stackrel{N}{N}$
$\underset{N}{N}$$\alpha$
σ
σ
$\underset{\sim}{4}$$\stackrel{0}{\stackrel{\circ}{\circ}}$

THIS PAGE INTENTIONALLY LEFT BLANK.

[^0]: ＊Twice the specific energy of orbit
 $C_{3}=v^{2}-\frac{2 \mu}{R}$
 where $V=$ Inertial Velocity
 $R=$ Radius vector from center of earth

[^1]: *Based on a spherical earth of radius $6,378.165 \mathrm{~km}$ (3,443.934 n mi)

[^2]:

[^3]: TIME
 SEC

[^4]: TIME
 SEC

 TIME
 SEC

