FILE COPY 10 HOT REMOVE

MSC INTERiAAL MOTE [:O. $64-$ FM-5,

PROJECT GEMINI

DETERNIMATION OF ORBITAL ARRIVAL TIMES AND THE RELATIVE CONDITIONS BETWEEIV TLE AGENA AND GENINI SPACECRAFT VEHICIES AT AN OPBITAL COMPARISON POIITT

Prepared by:

Prepared by:

NATIONAL AERONAUTICS ARED SPACE ADRI...STRATION

MARTED SFACETRALT CE:TER

HOUSTC: :, TLTAS
November 23, 1064
Section Page

1. Introduction 1
2. Subroutine THETR 1
3. Subroutine TDA 2
4. Subroutine TAUA 3
5. Subroutine TDF'A 3
6. Employment of the Subroutines 3
APPENDIX 6
Detailed Flow Charts
Definitions of Flow Chart Symbols
Input and Output of Subroutines

A basic requirement of the Gemini real time mission program has been the development of techniques for the rapid determination of arrival times of the Spacecraft and Agena vehicles at specific or relative orbital loeations. A specific orbital location would be an apogee or perigee, a "counter" crossing, or some latitude or longitude; and a relative orbital location woulc be an Agena phase match witr a specific Spacecraft locetion. A second requirement of the program, related to the first, is the determination of relative conditions between the two vehicles at an orbital location, such as phase angle (measured from the common node of the two arbital planes) and height difference (measured after the Agena has beer: "backed" to phase match with the Spacecraft).

The several subroutines presented in this note represent methods of corputation of the above requirements. The fundamental mathematical tool used in determination of arrival times is the analytic ephemeris generatior. (AEG) subroutine, which lends itself readily to orbital iterations of tiic nature. Once the arrival tines have been established, the relative cencitions are extracted from the orbital elements of both vehicles at these times. Thus, the arrival time and relative conditions subroutines are necessarily presented together. The Subroutines THETR, TIVA, TAUA anci TIMFA are working programs and are in constant employment by RAB perscnnel.

2. Subroutine THETR

This subroutine determines the phase angle between the Agena and Spacecraft, measured as the difference in central angles from the common node of their orbital planes. The equation employed by Subroutine THETR is:

$$
\theta_{R}=U_{1}-U_{2}-2 \tan ^{-1}\left\{\tan \left(\frac{h_{1}-h_{2}}{2}\right)\left[\frac{\sin \frac{1}{2}\left(I_{1}+I_{2}-\pi\right)}{\sin \frac{1}{2}\left(I_{1}-I_{2}+\pi\right)}\right]\right\}
$$

where the above symbols and subscripts are defined in the Appendix. The arc tangent tern in the equation represents the correction in phase arale for the "wedge angle" between the two orbital planes.

3. Subroutine TIM:

This subroutine employs the AES and THETR subroutines to determine three arrival times: (1) the time of arrival of the Spacecraft at a counter latitude (or maneuver point), (2) ihe time of arrival of the Spacecraft at any desired argument of latitude, and (3) the time of Agena phase match with a given Spacecraft argument of latitude.
The Spacecraft counter latitude is referenced to the argument of latitude of an early Spacecraft apogee, and advances in time as the secular rate of the argument of perigec, as given by the equation:

$$
U_{C}=U_{O C}+\dot{g} \Delta t
$$

where $\dot{\delta}$ is the addition of the drag and oblateness terms for the secular advance of perigee. Time of arrival of the Spacecraft at the counter then is simply the time when the argument of latitude of the Spacecraft is equal to the argument of latitude of the counter.
In order to advance the Spacecraft to a desired argument of latiude, the increment of central angle between its present location and the future location must be known, or

$$
\Delta U_{1}=u_{c}-u_{0}
$$

The ir rement of tire 2 equired for the Spacecraft to advance is given by:

$$
\Delta t=\frac{\Delta U_{1}}{\delta}
$$

where:

$$
\dot{\mathrm{U}}=\mathrm{n}+\dot{\mathrm{g}}
$$

When the AEG Subroutine is advanced through Δt, a new argument of latitude, $U(t+\Delta t)$, is obtained and:

$$
\Delta U_{2}=U_{C}-v(t+\Delta t)
$$

where ΔU_{2} is smaller then ΔU_{1}. Thus, the iterative process is to shrink ΔU to zero through successive approximations of Δt. To find the Agena time of phase match with the Spacecraft argument of latitude, the quantity Θ_{R} is similarly reduced to zero.
4. Subroutine TAUA

The purpose of this subroutine is to determire the relative conditions of height difference and time "lag" between the Agena and Spacecraft, where the Agena must be "backed" to phase match with the Spacecraft at a desired comparison point. First, the Spacecraft is advanced in time (as well as the Agena) using Subroutine TDA, to some argument of latitude which is to be used as a comparison point. Subroutine THETK is called here to determine the phase angle between the two vehicles. Then, while holding the Spacecraft at the comparison point, the equation:

$$
\Delta t=\theta_{R} / \dot{U}_{1}
$$

is employed successively to determine the time increments through which Subroutine AEG will be called on to back the mena to phase match with the Spacecraft.
5. Subroutine TIMFA

The time of arrival of the Spacecraft at its next apogee is computed in Subroutine TIMFA. Since its mean anomaly at apogee will be T, the iterative process employs the equation: :

$$
\Delta t=\frac{\pi-I_{2}}{n_{2}}
$$

where I_{2} is the Spacecraft's current meal anomaly, and n_{2} is its anomalistic mean motion. The AEG Subroutine is calied upon to advance the vehicle through Δt until this time increment is satisfactorily small. It should be mentioned that in earth-orbits mean anomaly becomes practically undefined for orbits with near or below 0.00 eccentricity.
6. Employment of the Subroutines

The folloring symbols are those employed as FORTRAN variables in the working suḅoutines TINFA, TINA, THETR, and TAUA. Their algebraic symbol definitions are given in the Appendix.

AN, $G N, H N, G D=n, \dot{G}, \dot{h}, \dot{E}_{D}$, secular rates
$R, R D, U=r, \dot{r}, u$
$T=t$, current time
$C D, \operatorname{ARE}$, WHT $=C_{D}, A_{L}, W_{L} ; d r a g$ constants
$K 2, K 3=k_{2}, k_{3}$; AEG contrcl numbers
HDP, AIDP = $h^{\prime \prime}$, $I^{\prime \prime}$; AEG mean elements
$\mathrm{L} 1, \mathrm{~L} 2=\mathrm{L}_{1}, \mathrm{~L}_{2} ;$ vehicle indices
$A N I, A N F=N_{A}$ (initial), N_{A} (final); apsis ccunter numbers
TFA, UOC $=t_{f a}, u_{o c}$; Errivil time and argument of latitude of a cour.ter crossing
$T A=t_{A}$; time lag between Agena and Spacecraft
DELTH $=\Delta H$; height difference between Agena and Spacecraft
$C R=\theta_{R}$, phase angle
DDS $=\delta 6$; angular tolerance on iteration:
DEIT $=\delta t$, time tolerance on iterations
All of the above quantities are subscripted (two locaticas) variables except T, L_{1}, L_{2}, ANI, ANF, TFA, UOC, TA, DELTH, OR, DOS, and DELT.
The argument of subroatine TIMFA is written:
tmpa ($A, E, A I, G, H, A L, A: C, G N, H N, R, U, G D, A N I, ~ D E L T, T, K 2$, TFA, OOC, RD, HDP, CD, ARE, WHT, K3, AIDP)

This subroutine is employed as follows:
a. First, the AEG Subroutine must be called and initialized, and values are given to ANI, DEIT, T, K2, CD, ARE, WHT, and K3.
b. Subroutine TIMFA may now be called, with output of time of arrival and orbital elements of the Spacecraft at apogee, and with the "reference" counter argument of latitude ($u_{o i}$). The Agena is not advanced by TIFTA.

The argumert of Subroutine TIn:A is written:
TIMA ($A, F, A I, G, H, A L, A N, G N, H N, R, U, G D, V O C, T, T F A, A I T, A N I, D C S$, $\left.L_{2}, L_{1}, K 2, R D, H D P, C D, A R E, K 3, A I D P\right)$.

The initial employment of TIMA for determining Spacecraft and figena arrival times at counter latitudes must be preceded by either TIFFA for the, determination of $u_{O C}$ for a given N_{A}, or these quantities must be input (along with the initialization of the AEG). Other quantities winich must be always defined are GD, T, TFA, ANF, (ANI), DOS, $I_{i}, L_{1}, K 2, C D, A R E$, and K3. The different manners in which TIMA nay be used are as follows:
a. Spacecraft arrival time at a counter latitude -- set $L_{2}=2, L_{1}=1$, $A N F=N_{A f}, A N I=N_{A}$ and call the subroutine. Both vehicles are advanced tc the arrival time.
b. Agena arrival time at phase match with a Spacecrafi counter latitude .- set $\mathrm{L}_{2}=\mathrm{L}_{1}=1$ and continue as above. Only the Agera is advanced.
c. Spacecraft arrival time at any argument of latitude -- set $U O C=u$, $L_{2}=L_{1}=2 ; A N I=A N F$, and continue as above. Only the Spacecriaft is advanced.

The argunent of Subroutine THETR is written:
thetr ($\mathrm{U}, \mathrm{AI}, \mathrm{H}, \mathrm{OR}$)
Subroutine THETR is generally called after the Spacecraft and Agena have been advanced to a counter latitude by Subroutine TIMA. Values of U_{i}, AI_{i} and H_{i} are extracted for the computation of $O R$.

The argument of Subroutine TAUA is written:
TAUA ($A, E, A I, G, H, A L, A N, G N, H N, R, U, G D, T, T F A, D O S, K 2, T A, R D$,
HDP, DELTH, CD, ARE, WHT, K3, AIDP)
The required input values are the same as for TIMA except for UOC, L_{1} and L_{2}. Once TANA has been called (usuilly immediately following TIMA), the subroutine will yield as output the relative quantities of $T A$ and DELTH. The orbital element of both vehicles are returned as the same as those which came from TIMA.

APPELi.jIX
FLOV CHART OF SUBROUTINE TIMFA

LIST OF VARIABLES FOR SUBROUTINE TIMFA

VARIABLE

DEFINITION

UNIT

SEMI－MAIOR AXIS
FT
ECCENTPIICITY
INCLINATION RAD
ARGIJMENT OF PERIGEE
LONGITUDE OF ASCENDING NODE ．RAD
MEAN ANOMALY RAD
MEAN MOTION NUUTAEER
ANGULAR RATE OF APSUMENT OF PERIGËE ANGULAR RATE OF ASLENDIING NODE RADIUS OF VEHICLE
ARGUMENT OF LATITUDE $(g+f)$
RACISEC
た我：「．
RADIEEC
FT
RAD
RATE OF CHANGE OF ARGUMENT AT PERIGEE BECAUSE OF DRAG
COUNTER NUMBER
CONVERGEN＝E LIMIT ON TIME．ITERATION
$\begin{array}{ll}\mathrm{N}_{4} & \text { COUNTER } \\ \delta t & \text { CONVERGE } \\ t & \text { EFOEH } \\ k_{2} & \text { DRAG CONT } \\ t_{\alpha} & \text { TIME OFAG A }\end{array}$
DRAG CONTRGL NUMEER I 1 FORDRAG，O FOR
$\begin{array}{ll}\mathrm{N}_{4} & \text { COUNTER } \\ \delta t & \text { CONVERGE } \\ t & \text { EFOEH } \\ k_{2} & \text { DRAG CONT } \\ t_{\alpha} & \text { TIME OFA A }\end{array}$
TIME OF ARRIVAL AT COIJNTER
ARGUMENT OF LATITUDE OF COUNTER
RADIUS RATE
RAD：SL：

MEAN（SECULAR）LONGITUDE OF ASCEINDING NODE

RAD
DRAG COEFFICIENT
FRONTAL AREA OF VEHICLE
WEIGHT OF VF．HICLE
REDUCED AEG CONTROL NUMBER（O IF
COMPLETE AEG REQUIRED， 1 FOR REDUCED AEG－
MEAN INCLINATION
RAD
TIME OF SPACECRAFT ARRIVAL AT FIRET APOGEE

FLOW CHART OF SUBRCUTINE TIMA

$$
\begin{aligned}
& \pi=3.1814526 r_{0} \\
& t_{0 C 1}=t_{0 c} \\
& K_{q}=10 \\
& \operatorname{It} m a=0 \\
& U_{0 c 1}-J_{i=} \\
& B=L_{k}-L_{j} \\
& \dot{U}=n_{k}+\dot{g}_{k} \\
& t_{0}=\tau, K_{1 i}=0
\end{aligned}
$$

$$
\begin{aligned}
u_{c}= & u_{0 c}+2 \pi\left(N_{F}-N_{1}\right) \\
& +\dot{G}_{k}\left\{\left(t-t_{D}\right)!B\right\} \\
d g= & d g+\dot{g}_{D_{k}} \Delta t \\
u_{c}= & u_{c}+d g \\
\Delta u= & u_{c}-u_{k}
\end{aligned}
$$

CALL AEG
INPUT/OUTPUT

$$
a_{i}, \epsilon_{1}, J_{1}, g_{1} n_{1}, g_{1}, n_{1} \dot{g}_{1}, \dot{h}_{1}, h_{1}^{\prime}, I_{i}^{\prime}, \dot{\bar{y}}_{0}
$$

$$
C_{D i}, W_{L i}, A_{L i}, K_{1}, K_{2} K_{3}, L_{1}, L_{2}, R_{i}, \dot{L}_{1}, u_{i}, t
$$

LIST OF VARIABLES FOR SUBROUTINE SIMA

VAR; ABLE
DEFINITION

SEMI MAJOR AXIS . FT
ECCENTRICITY
INCLINATION
ARGUMENT OF PERIGEE LONGITUDE OF ASCENDING NODE MEAN ANOMALY MEAN MOTION NUMBER ANGULAR RATE OF ARGUMENT OF PERIGEE
ANGULAR RATE OF ASCENDING NODE RADIUS OF VEHICLE ARGUMENT OF LATITUDE $(g+f)$
RATE OF CHANGE OF ARGUMENT OF PERIGEE BECAUSE OF DRAG ARGUMENT OF LATITUDE OF COUNTER EPOCH
TIME OF ARRIVAL AT COUNTER
FINAL COUNTER NUMBER
INITIAL COUNTER NUMBER
CONVEFGE.NCE LIMIT ON ANGULAR ITERATION

RAD
VEHICLE NUMBER
VEHICLE NUMEEF
DRAG . OIITROL NUMBER($\ddagger, F O R D R A G ; O-N O$
RADIUS RATE
MEAN (SECULAR) LONGITUDE OF
ASCENDING NOE
DRAG COEFFICIENT
FRONTAL AREA OF VEHICLE
WEIGHT OF VEHICLE LBS
REDUCED ARG CONTROL NUMBER (O IF COMPLETE AEG REQUIRED, 1 FOR REDUCED AEG)
MEAN INCLINATION
F F/SEC

RAD
$F T^{2}$

FLOW CHART OF SUBROUTINE THETR

LIST OF VARIABLES IN SUBROUTINE THETR

VARIABLE DEFINITIONUNITS
uIhe
ARGUMENT OF LATITUDE $(g+f)$
ARGUMENT OF LATITUDE $(g+f)$ RAD RAD
INCLINATION RAD
LONGITUDE OF ASCENDING NODE RAD
PHASE ANGLE RAD

FLOW CHAP.T FOR SUBROUTINE TAUA

LIST OF VARIABLES FOR SJBROUTIHE TAUA

VARIABLE	DEFINITION	Usi
a	SEMI-MAJOR AXIS	FT
e	ECCENTRICITY	
I	INCLINATION	RAD
9	ARGUMENT OF PERIGEE	RAD
h	LONGITUDE OF ASCENDING NODE	RAD
l	MEAN ANOMALY	FAD
n	MEAN MOTION NUMBER	AD/SEC
$\dot{9}$	ANGULAR RATE OF ARGUMENT OF PERIGEE	RAD/SEC
ti	ANGULAR RATE OF ASCENDING NODE	P.ADISEC
R_{5}	RADIUS OF VEHICLE	FT
u	ARGUMENT OF LATITUDE ($g+f$)	RAD
$\dot{9}$	RATE OF CHANGE OF ARGUMENT OF PERIGEE BECAUSE OF DRAG	RAD/SEC
t	EPOCH	SEC
t_{α}	TIME OF ARRIVAL AT COUNTER	SEし
<0	CONVEREENCE LIMIT ON ANSULAR	
	ITERATION	P.AD
K_{2}	DRAG CONTROL NUMBER(1 FOR DRAG, O FOR NO DRAG)	-
$\stackrel{L}{*}^{\text {R }}$	TIME LAG BETWEEN TWO VEHICLES RADIUS RATE	$\begin{aligned} & \mathrm{FEC} \\ & \mathrm{FT} / \mathrm{SE} \end{aligned}$
$\stackrel{K}{*}^{-}$	MEAN (SETULAR) LONGITUDE OF ASEENDIN.j	
	NODE	PAO
Shd	CONVERJENこE LIMIT ON HEIGHT ITERATION	- FAD
$\overbrace{1}$	DRAG COEFFICIENT	
A_{L}	frontal area of vehicle	$F T^{2}$
W_{1}	WEIGHT OF VEHICLE	LBS
K_{3}	REDUCED AEG CONTROL NUMBER (O IF	
	COMFLETE AEG REQUIRED, 1 FOR REDUCED AE	EG) -
I'	MEAN INCLINATION	RAD

I CONSTA: :NPUT
a. Category

1. π
2. δt
II. VARIABLE INPUT
N_{A}, n_{2}, I_{2}
III. OUTPUT
$t_{F A}, u_{O C}, a_{2}, e_{2}, I_{2}, g_{2}, h_{2}, I_{2}, n_{2}, \dot{\dot{g}}_{2}, \dot{h}_{2}, r_{2}, u_{2}, \dot{\dot{g}}_{D 2}$, $N_{A}, \dot{r}, \dot{h}^{\prime \prime}, I^{\prime \prime}$
IV. CONSTANT AND VARIABLE INPUT REQUIRED FOR:

AEG/DRAG
I. CONSTANT INPUT
a. Category

1. π
2. None
3. None
II. VARIABIE INPUT
u_{i}, I_{i}, h_{i}
III. OUTPUT
θ_{R}
I. CONSTART I:IPUT
a. Category
4. None
5. $S \theta, \delta H_{d}$
6. None
II. VARIABLE IINPUT
$t_{O C}$
III. OUTPUT
$t_{g}, \Delta t$
IV. CONSTANT EVD VARIf:BLE INRUT REGUIPED FOR

AEG/DRAG and THETr.
I. CONSTANT INPUT
a. Category

1. π
2. $\mathrm{K}_{9}, \varsigma \theta$
3. None
II. VARIfBLE INPUT

$$
N_{I}, N_{F}, t, n_{i}, \dot{\varepsilon}_{i}, L_{1}, L_{2}
$$

III. OUTPUT
$t_{O C}, u_{O C}, a_{i}, e_{i}, I_{i}, g_{i}, h_{i}, l_{i}, n_{i}, g_{i}, \dot{h}_{i}, r_{i}, u_{i}, g_{D i}$,
$\dot{r}_{i}, h_{i} ", I_{i}{ }^{\prime \prime}$
IV. CONSTANT AND VARIAELE INFJT REQUIZED FOR AEG/DRAG

