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AS-503A/50l<A REQUIREMENTS FOR THE RTCC: 

GENERALIZED ITERATOR 

By William E. Moore, AMA 

1. SUMMARY 

This note describes the program logic for the iteration scheme to 
he used in the Real Time Computer Complex for AS-503A/504A. It is a 
general parameter adjustment scheme which finds the values of the con¬ 
trol parameters to achieve a given mission or part of a mission and may 
optimize the parameter if instructed. 

2. INTRODUCTION 

The program for an iterative method which designs the optimum mission 
that satisfies a given set of constraints is described in this internal 
note. It is sometimes no small task to find any set of initial condi¬ 
tions and control parameter values satisfying a set of constraints. 
The iterative method solves both of these problems, first obtaining a 
mission that satisfies the constraints (select mode) and then adjusting 
the initial conditions and control values until a function of these 
variables achieves a minimum or maximum value (optimizing mode). 

The method is completely general; it does not depend on the mission, 
the initial conditions, control parameters, constraints, or variable to 
be optimized. The values of the initial conditions and control para¬ 
meters appear as a vector of independent variables. The values of the 
constraints and of the variable to be optimized (that is, the variable 
to be maximized or minimized) appear as a vector of dependent vari- 
ables. The actual subroutine that computes the dependent variables 
from the independent variables is referred to as the trajectory computer. 
The particular trajectory computer to which this iteration scheme ap- n 
plies defines the mission to be obtained or optimized. 

A constraint may have either of two forms. It may be an equation, 
in which a quantity must have a given value, or it may be represented 
by an inequality. The distinction between these two forms is very im¬ 
portant, and is the basis of the success of the method. 



2 
4 

The functional flow of the program is described in section 3 find 
diagramed in section 4* Details of the program are described in sec¬ 
tion 5 and diagramed in section 6 for those who are interested. Since 
most of the program is devoted to logic and decisions^ there are few 
complex equations» These are incorporated into the flow chart. The 
The reference contains the mathematical details of the method. 

r 
k 

3. FUNCTIONAL FLOW 

The inputs to the load module include four quantities associated 
with each independent variable - a switch to designate if the variable 
is achieved^ a first guess (which is to be iteratively updated as the 
method proceeds^ a weighting (scaling) factor^ and a step size. 

The dependent variables are divided into three classes; 

1, Class 1,- Those representing equality constraints 
* 

2, Class 2.- Those representing inequality constraints 

3, Class 3.- The one representing the variable to he optimized 

Five numbers are provided to the load module for each dependent 
variable. One is a switch to designate if the variable is active, two 
define the desired values of the constraint for the variable, one desig¬ 
nates the class of the variable, and one is a weighting factor which 
applies only if the variable is of class 2. 

To start the computation, the actual weight for each dependent 
variable and several miscellaneous quantities are computed. The tra¬ 
jectory computer is called, and the first guesses are used as the 
values of the independent variables. Residuals and the length of the 
weighted residual vector Rj. are calculated. Class 2 variables which 
are acceptable are deleted from the weighted residual vector. 

The iteration loop begins by establishing a new set of nominal 
values of the independent variables. If, at any stage, a class 2 vari¬ 
able is close to a boundary, this boundary will act as a barrier. Con- 

noY.f?sses t0 a "barrier-checking procedure, which 
?! c?ndltlon-» and forces the value of the variable away, 

the variable to class 1, if in the 
optimize mode. Next the partial derivatives of all the dependent vari- 
ables with respect to each independent variable are computed by the 
SGCdnu me wioa• 
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Using these, the weights, the„ residuals, and the current values of 
a parameter called 1, increments fpr the independent variables are com¬ 
puted. These are compared to the step sizes used in the partial deriva¬ 
tive calculation. The value of X is increased and increments are re¬ 
computed until the increments are of appropriate size. Next the latest 
increments are added to the independent variables, and the new values 
are used in the trajectory computer. The residual vector computer is 
again called to obtain a new value of R_. This is compared with the 

previous value, and, if it is not smaller, the value of X is increased 
and the increments are recomputed until it is. 

f 

The increases of X have been of relatively gross size (multipli¬ 
cation by 8). An attempt is made to find a value of X, one-half or 
one-quarter as big, which might also be appropriate. Finally, the value 
of X is decided, and the values of the independent variables are the 
ones used in the next nominal trajectory. The iteration counter is 
advanced, X is reduced in value, and control passes back to the beginning 
of the loop. 

# 

* 

The select mode ends when all of the class 1 and 2 variables satisfy 
their constraints. Then the variable to be optimized is given a weight 
and introduced into the problems. The optimizing mode ends when no fur¬ 
ther change may be made in the values of the independent variables, or 
when the maximum number of interations for that mode is exceeded. 

The results are the final values of the independent variables, and 
their associated dependent variable. 
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5. DETAILED FLOW 
*- 

5.1 Input 

, The load module is capable of handling up to twenty candidates 
for independent and up to twenty candidates for dependent variables. 
For each of the independent variables, four input quantities are re¬ 
quired. These are a switch to show if the variable is active or not, 
a first guess of the value of the variable, a weight, and a step size 
to be used in partial-derivative computations. The latter two are 
needed only when the variable in question is active. 

All of the dependent variables can be thought of as having desired 
values. For consistency, the value for each variable is represented by 
two numbers, a lower and an upper limit of acceptability. For variables 
in class 1, these limits are the desired value in the equation decreased 
and increased, respectively, by a suitably small tolerance. For vari¬ 
ables in class 2, several situations can arise. If the inequality is 
two-sided, the limits are the obvious values from it. If the inequality 
is one-sided, the dependent variable in question may have a natural 
limit on the other side which can be used in combination with the given 
limit. If even this fails, the interval of acceptability must be chosen 
so that it contains exactly one- solution to the problem described by 
all the other constraints and the variable to be optimized. For a vari¬ 
able in class 3, the notion of acceptability reduces to a convenient 
fiction, and the limits (usually having the same value) designate the 
direction in which the variable to be optimized should move. If its 
value is smaller than the limits, the iterative adjustments will in¬ 
crease it,* if its value is larger, the adjustments decrease it. 

Thus, each dependent variable will have five input quantities - 
a switch to show whether the variable is active or not, lower and upper 
limits, the class designator, and the weighting factors for class 2 
variables. 

Other inputs are used for housekeeping. The procedure should know 
how many iterations are to be tried in the select mode and in both modes 
before terminating. Furthermore, there should be a switch to allow 
starting in the optimize mode if desired. 

5.2 Initialization 
t 

The switch must be examined to determine how many of each set of 
variables are active and to establish an array of indices for each set. 
One of these arrays permits the values of the active independent variables 
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to "be assigned the proper locations for the trajectory computer to use; 
the other array allows the values ^of the active dependent variables 
candidates to be arranged next to 'each other after the trajectory com¬ 
puter is finished. The two processes involved are called the open-ranks 
and close-ranks operations, respectively. Each call to the trajectory 
computer must be preceded by a call to an open-ranks subroutine and fol¬ 
lowed by a call to a close-ranks subroutine. Hereafter, the term "tra¬ 
jectory computer" will always refer to the set of all three subroutines. 

After'resetting the iteration counter, the trajectory computer is 
referenced, using the input first guesses as the values of the independent 
variables. If this trajectory cannot be computed, the whole procedure 
is abandoned. 

Next certain computations have to be performed once for all itera¬ 
tions. First, average values for each dependent value are calculated 
half-way between the limits. The weight for each class 1 variable is 
obtained from the deviations of the limits from the average value as 
follows. Let y - and y + &., be the lower and upper limits, respec¬ 

tively. Then 2 -40 j 
are the weights w.. These weights are averaged 

J 

using a crude geometric mean to get a number w to be used for the 

class 2 variables. Each class 2 variable has a weight equal to its 
weight factor times w . The class 3 variable is assigned a weight 

” * Q * 

based on the value resulting from the trajectory computer. If there 
are k, dependent variables of class 1 and if y - y is the residual of 

the variable to be optimized, the weight is (lO*j (2~^) k, / (y - y)^ 
-32 o 

if starting in the select mode, or (2 J ) f k^ / (y - y) if starting 

in the optimize mode. The factor f is the weight factor associated 
with the class 3 variable. 

# 

Another calculation pertaining to class 2 variables obtains 0.2% 
of the widths of their intervals. These numbers are used during the 
iterations to test how near a variable is to one of its limits. Finally, 

2ft 
the parameter, is set to a small value, 2 • , 

* 

5»3 Residual Computation 

The residual vector, weighted residual vector, and its length are 
now computed in the residual package. The residual vector is the set 
of differences between each dependent variable's value y and its 

✓ 
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average value y. as derived above. Now the class designators c. have 
J r j 

been assigned the value 1 for class 1 and 3 variables and 0 for class 
2 variables. Thus, the weights w. are replaced by c.w. = w. for those 

J J J 0 
variables within the given limits; for variables outside' the limits. 

the weights w. = w, are retained. The weighted residual vector is 
J J 

* /„ - \ _. ., ,_c g 1 / - \2 where n is the 
w. Cy. “ yJ; and its length PL = £ w (y. - y.) 
j _i J Jj . i .1 .1 

j~ = 1 

total number of dependent variables. 

If, while checking the values of the dependent variables, it should 
be found that all except the variable to be optimized are within their 
intervals, and if the iterations are still in the select mode, that 
mode is terminated. If there is to be an optimize mode, the weight on 
the variable to be optimized is reinitialized, and the iterations pro- 
cede in the optimize mode. If there is no variable to be optimized, 
the procedure is finished. 

The initial trajectory is the first in a sequence of trajectories 
designated a "lost good trajectory". As the iterations are performed, 
a new good trajectory is one that is better than the last good trajec¬ 
tory, in the sense that its value for IL is smaller than that of the 

old one. 

5•4 Iteration Loop 

Each trajectory is defined by the values of the independent vari- 
Qbles used to get it. Thus the values of the independent variables 
used to obtain the last good trajectory of a previous iteration must be 
saved separately from the current values of the independent variables, 
and are the nominal values of the independent variables. This, then, 
is the first step of each iteration, the transferral of the last good 
values into the nominal position. 

* 

There follows a lengthy procedure of barrier checking, in which 
each class 2 variable is examined to see where its value is in relation 
to its acceptable interval, and appropriate action is taken to treat the 
intervals. A discussion of this portion of the load module is post¬ 
poned until a later section. 

At this point, the iteration counter is advanced, and a test is 
made to see if all the allowable iterations have been used in either 
mode. 
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* 

4 

* 

Next, the partial derivative matrix subroutine is called, followed 
hy a call to a specialized matrix multiplication subroutine, which pro¬ 
cesses the partial derivative matrix P, the dependent variable weights 

m m 
w , and the weighted residual vector to get P WP and P WAy, where w 

is the matrix having the weights w along its diagonal and Ay is the 
/ ^ 

residual vector (so that wAy is the previously computed weighted 
residual vector). 

Now, using the current value, of X and the independent variable 
weights, and a vector of adjustments Ax.^ to the independent variables is 

obtained by referring to a simultaneous equation solver. If no solu¬ 
tion can be obtained by the equation solver, X is multiplied by 8, and 
the vector of adjustments is recomputed. 

If there is a solution, the absolute value of each component is 
tested against 65536 times the corresponding step-size. To guard a- 
gainst wild excursions of the independent variables, if any component 
is too big, X is multiplied by 8 and the vector of adjustments is 
recomputed. In this way, the value of \ builds up until all components 
are small enough. 

Now the independent variables are incremented by their adjustments 
and a new trajectory computation is done. The resulting dependent 
variables are used in the residual computation. If the new value of 

is not smaller than the old value, then X is multiplied by 8, and 

new increments in the independent variables are computed as above. 
This procedure continues until the new value of II finally is smaller 

than the old value. 

Meanwhile, each time the independent variables are incremented, 
and the resulting values are compared with the original values. If 
no change is detected, the increments have been choked to negligible 
values. When this happens in the select mode, it indicates that no 
solution to the problem as presented exists anywhere in the neighbor¬ 
hood of the current values of the independent variables, which consti¬ 
tute the best choice of these values in the least squares sense. When 
this happens in the optimize mode, the optimum value of the variable 
to be optimized has been obtained, and the current values of the inde¬ 
pendent variables are the answer to the original problem. 

The X-sizing subroutine is now called to further refine the value 
of X in an attempt to take larger corrections to the independent vari¬ 
ables. The last good trajectory from this subroutine becomes the new * 
nominal trajectory and control returns to the beginning of the itera¬ 
tion loop. 

fc 



5*5 Barrier Checking 
* * 

» 

This procedure is carried out only for the nominal trajectory 
available at the beginning of each iteration. It pertains only to the 
class 2 dependent variables, which will, for the rest of this section, 
be called "variables". 

In the select mode, search is made for variables which are inside 
the acceptable interval, but only just inside, that is, they are within 
0.2$ of full range of one of the limits. When a variable has such a 
value, a move procedure begins. The limit near the value of the vari¬ 
able is temporarily replaced by its opposite limit, thus shrinking the 
interval of acceptability to zero length. The residual vector and its 
length are then recomputed. The move counter, which has been continu- 
illy reset at every iteration, now begins to count, and control passes 
—-■to the basic iterations loop. As the iterations proceed, additional 
•ariables may have values which would start a move procedure. If this 
ippens, the limits are treated in the same way, and the move counter 
* jins to count from 1 again. Finally when the move counter reaches 6, 

—- the limits are restored to their values, as originally input, and 
e move counter reverts to being reset at every iteration. 

In the optimize mode, there are two procedures, a lock pi’ocedure, 
for variables already locked, an unlock procedure. The lock pro- 

:re is as follows: If any variable has a value outside the accept- 
* limits, it may be greater than the upper limit or less than the 
•r limit. In the former case, the value of the lower limit is re- 
'-3 by the value of the upper limit; in the latter, the value of the 
•r limit takes the place of the upper limit. In either case, the 
?ble is treated like a class 1 variable in the residual computations. 

:50th the number of iterations during which the value of a previously 
'• variable is inside the input limits and the number of iterations 
•.which the value is outside the limits are known. If any time after 
' the inside exceeds the outside by three or more, the unlock pro¬ 
restores the original input limits. When the limits are restored, 
iteration the required value is taken to be 1.6% of full range 

- original interval of acceptability. Thereafter, the interval 
: to its original form, and the variable is again treated‘like ' 

•’ variable in the residual computation. 

5*6 Partial Derivative Matrix Calculation 

'•dependent variable value x. is changed successively, and 
4 * 

• { by th<; corresponding step-size. The trajectory com- 
erencea, using the new set of independent variables thus 



yu^ujyu^ Mid i 

formed. The resulting values of the dependent variables will be de¬ 
noted by y, (xJ + Ax.). Let y. (x.) be the nominal values of the depen- 

J 1 i J **■ 

dent variables. Then, the elements of the partial derivatives matrix P 
5y, (xi + Ax^ -yjO^) 

are P,, *= 
ji 5x, 

«L 

Ax. 
l 

Thus, there are as many calls to the trajectory computer as there 
are independent variables, each one generating one column of P. If any 
of the references to the'trajectory computer fails, a step in the reverse 
direction is attempted, and if its trajectory succeeds, the required 
partial derivative may be obtained from it. If steps in both directions 
fail, the whole procedure must halt. 

5.7 Matrix Multiplication Subroutine 

The inputs to this routine are a matrix P, which has n rows, a 
vector of n weights, wj, and a vector of n weighted residuals WAY. 

Each row of P is multiplied by its corresponding weight, wl, giving a 
matrix WP a^d vector (WAY), both of which are multiplied ^ by the 
transpose P . This is done, in the usual way, by multiplying each of 
the columns of WP and WAy by each of the columns of P. 

5*8 Simultaneous Equation Solves 

The best method of solving simultaneous equations is to use a 
straight-forward elimination technique, followed by a back solution. 
If at any stage, division by a number small enough to cause underflow 
or division by zero would be required, the remaining equations may be 
interchanged. If all attempts at this fail, the subroutine returns 
with an error indication. 

5.9 X-sizing Subroutine 
* 

When a value of X has been arrived at by the above process, it is ' 
tested to see if a slightly smaller value with bigger increments might 
be even better. Thus, the latest values of the independent variables 
become the values for the last good trajectory, but we continue to work 
from the values we previously had, still using them as nominal values. 
X is replaced by x/2, and the increments are again computed. These are 
tested by the same procedures as before, comparison with a multiple of 

/ 



14 

the step-size and comparison with the value from the last good tra¬ 

jectory. If they pass the tests, thtese latest values of the independent 
variables now define the last good trajectory, X is replaced by X/2, 
and the whole process is repeated once more. If either of the two 
values of X fails to produce a better trajectory, the last good tra¬ 
jectory is the result of the subroutine. 

* 
t 
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