MPAD REPDRT POM-TMOL『:

MSC INTERNAL NOTE NO. 68-FM-119

May 21, 1968

LOGIC FOR THE EARTH ORBITAL AEG IN THE APOLLO REAL-TIME RENDEZVOUS SUPPORT PROGRAM

By Edward J. Kenyon, Orbital Mission Analysis Branch

MISSION PLANNING AND ANALYSIS DIVISION

MANNED SPACECRAFT CENTER hoUston, TEXAS

> MSC INTERNAL NOTE NO. 68-FM-119

PROJECT APOLLO
 LOGIC FOR THE EARTH ORBITAL AEG IN THE APOLLO REAL-TIME RENDEZVOUS SUPPORT PROGRAM

By Edward J. Kenyon Orbital Mission Analysis Branch

May 21, 1968

MISSION PLANNING AND ANALYSIS DIVISION NATIONAL AERONAUTICS AND SPACE ADMINISTRATION MANNED SPACECRAFT CENTER HOUSTON, TEXAS

CONTENTS

Section Page
SUMMARY AND INTRODUCTION 1
Changes to the Drag Computation. 1
USE OF THE AEG AND DRAG SUBROUTINES 2
Initialization 4
Orbit Prediction 4
REFERENCES 26

LOGIC FOR THE EARTH ORBITAL AEG IN THE APOLLO REAL-TIME

RENDEZVOUS SUPPORT PROGRAM

By Edward J. Kenyon

SUMMARY AND INTRODUCTION

This report presents the program logic and equations for the analytic ephemeris generator (AEG) that will be used in the Apollo real-time rendezvous support program (ARRS - ref. 1) for earth orbital mission planning and in the Real-Time Computer Complex (RTCC). The AEG was initially developed in 1964 (ref. 2); the drag computation has since been modified. The modified drag routine and the complete flow charts are presented herein.

The development of the AEG is thoroughly described in references 2 through 4, and the development of drag computations is presented in reference 3 . Hence, this report only deals with changes incorporated into the computation of drag effects.

Changes to the Drag Computation

Basically, the changes to the drag computation can be broken down into three areas:

1. The method by which Simpson's rule is applied has been changed. Previously the effects of drag were multiplied by the proper Simpson's rule multiplier at the end of each drag step (usually 450 seconds) until the total update time had been reached. Presently each drag step is treated independently; it is integrated as if the step were the total update time. This method then divides the step into two equal parts, which produce the three points needed for the Simpson's rule integration. The process is repeated until the desired time is reached. This method has been found to be much more accurate than the one presented in the original flow charts (ref, 2).
2. In the earlier progrem the constants of integration, Al and A 2 , found in the equations for the elements $(e \sin g)$ and $(e \cos g)$ in subroutine DRAG were computed only one time for each vector update. Now, to improve the calculation of the drag force, TD, these constants are
evaluated at the beginning of each drag step using the drag-modified osculating elements produced at the end of the previous integration step.
3. The last change is in the AEG program logic. The original version sent the DRAG subroutine a set of osculating and mean elements at the beginning of the vector update, and DRAG used these elements to integrate out to the desired time. This method is a good one as long as the update is not much greater than 1 day. Longer updates should have the opportunity of using the AEG's complete equations so that all perturbations due to the earth's potential can be accurately applied to the elements. The change allows this to be done; the elements are now recomputed every 24 hours by letting the AEG break the total update into 24 -hour segments which are integrated separately by subroutine DRAG. Naturally, the last segment does not have to be equal to a full day. Using this improved method, the perturbations due to drag are added to a better set of mean elements, which, in turn, improves the overall prediction.

USE OF THE AEG AND DRAG SUBROUTINES

For the sake of brevity, the AEG and DRAG subroutines will be referred to collectively as "Subroutine AEG". The equations and logic have been programed in Fortran IV, and card decks are available for local usage. The argument of subroutine AEG is written (T, L_{1}, L_{2}) and the common, $/ A E G /\left(A, E, A I, G, H, A L, A N, G N, H N, R, U, K_{1}, K_{2}, R D, H D P, C D, A R E\right.$, WHT, AIDP, RECT, SPHER, PERIOD) where

A_{i}	a, semimajor axis, ft
E_{i}	e, eccentricity
AI_{i}	I, inclination, rad
G_{i}	g, argument of perigee, rad
H_{i}	h, inertial longitude of ascending node, rad
AL_{i}	l, mean anomaly, rad
AN_{i}	n, mean motion
GN_{i}	g, secular rate of advance of argument of perigee, rad/sec
$H N_{i}$	h, secular rate of regression of node, rad/sec

R_{i}	\mathbf{r}, radius, ft
U_{i}	u, argument of latitude
T	t, time, sec
$\mathrm{L}_{1}, \mathrm{~L}_{2}$	vehicle indices, 1,1 for the first vehicle coordinates only; 1, 2 for both vehicles; 2, 2 for the second vehicle only
$K_{1 i}$	initialization control number: zero to initialize, 1 otherwise
$\mathrm{K}_{2 i}$	drag control number: 1 if drag effects are to be computed, zero if not
RD_{i}	r, radius rate, fps
HDP_{i}	$h^{\prime \prime}$, secular node, rad
CD_{i}	C_{D}, drag coefficient
ARE $_{i}$	A_{L}, frontal area of vehicle, ft^{2}
$\mathrm{WHT}_{\text {i }}$	W_{L}, weight of vehicle, lb
AIDP $_{i}$	$I^{\prime \prime}$, mean inclination, rad
RECT	$\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \dot{\mathrm{X}}, \dot{\mathrm{Y}}, \dot{\mathrm{Z}}$
SPHER	$\mathrm{V}, \gamma, \psi, \mathrm{R}, \lambda, \phi$
γ	flight path angle
ψ	azimuth
λ	longitude
ϕ	latitude
All quan ocations am only ants $C D_{i}$ - The r	ies except T, L_{1}, and L_{2} are dimensioned variables, with eserved for each. Orbital elements are input to the they are to be initialized ($K_{1 i}=0$). The drag $A R E_{i}$, and $W H T_{i}$ are always input, as are $K_{2 i}, K_{3 i}, L_{1}, L_{2}$, are always output.

An example of the sperations of subroutine AEG is as follows
Initialization

Define values (through input) for $A_{i}, E_{i}, A I_{i}, G_{i}, H_{i}, A L_{i}, C_{D i}$, $A R E_{i}, W H T_{i}\left(i=L_{1}, L_{2}\right)$, and set $K_{l i}=0$. Call the AEG subroutine ($K_{l i}$ will be set to l after initialization is complete). If an error of input has been made (e.g., $G_{i}>\pi$), the message "AEG WILL NOT INITIALIZE" will be printed.

Orbit Prediction
To obtain a set of classical elements describing the vehicle's position and velocity at a time different from that at initialization, define new values for $T, K_{2 i}$, reset L_{1}, and L_{2}, and call the AEG subroutine. Output will be the orbital elements and the quantities $A N_{i}, G N_{i}, H N_{i}, R_{i}, U_{i}, G D_{i}, R D_{i}, H D P_{i}$, and $A I D P_{i}$.

TABLE I.- DEFINITIONS OF AEG FLOW CHART SYMBOLS

Variable	Definition	Unit
a	Semimajor axis	ft
e	Eccentricity	
I	Inclination	rad
g	Argument of perigee	rad
h	Longitude of ascending node	rad
ℓ	Mean anomaly	rad
n	Mean motion	rad/sec
g	Secular rate of change of argument of perigee	rad/sec
h	Angular rate of change of the longitude of the ascending node	$\mathrm{rad} / \mathrm{sec}$
R_{L}	Radius to either vehicle	ft
U	Argument of latitude	rad
g_{D}.	Secular rate of change of argument of perigee due to dras	$\mathrm{rad} / \mathrm{sec}$
t	EPOC	sec
L_{1}	Refers to Agena	
L_{2}	Refers to spacecraft	
K_{1}	Initialization control for AEG (0 for Initialization, 1 for no initialization)	
K_{2}	Drag control for AEG	
$\dot{R}_{\text {I }}$	Radius rate of change	fps
h	Mean longitude of the ascending node	rad
$C_{\text {D }}$	Drag coefficient	
A_{L}	Frontal area of vehicle	ft^{2}
${ }_{L}$	Weight of vehicle	1 b
K_{3}	Control number for reduced AEG	

TABLE I.- DEFINITIONS OF AEG FLOW CHART SYMBOLS - Concluded

Variable	Definition	Unit
I"	Mean inclination	rad
	Subscripts	
I	Initial quantity	
i	Vehicle index	
j	Initialization iteration index	

TABLE II. - DEFINITION OF SUBROUTINE DRAG FLOW CHART SYMBOLS

a	Semimajor axis	ft
e	Eccentricity	
3	Argument of perigee	rad
$e \sin g$	Becentricity multiplied by the sine of argument of perigee	
$e \cos g$	Eccentricity multiplied by the cosine of argument of perigee	
L	Argument of longitude	rad
U	Argument of latitude	rad
n	Mean motion number	
g	Secular rate of change of argument of perigee	$\mathrm{rad} / \mathrm{sec}$
r_{2}^{\prime}	Term computed in AEG	
C_{1}	Constants computed in AEG	
C_{2}	Constants computed in AEG	
C_{3}	Constants computed in AEG	
B	Sine of mean inclination	
$\Delta t_{\text {D }}$	Interval over which drag computed	sec
$a^{\prime \prime}$	Mean semimajor axis	ft
$e^{\prime \prime}$	Mean eccentricity	
d_{g}	Change in " g " due to drag	
$L^{\prime \prime}$	Mean argument of longitude ($g+\ell$)	
$d(e \sin g)$	Change in "e sin $g^{\prime \prime}$ due to drag	
$d(e \cos g)$	Change in "e cos g " due to drag	
g_{1}	Secular rate of change of perigee due to drag	$\mathrm{rad} / \mathrm{sec}$

TABLE II. - DEFINITION OF SUBROUTINE DRAG FLOW CHART SYMBOLS - Concluded Variable Definition Unit
$C_{L} \quad$ Drag coefficient
$A_{L} \quad$ Frontal area of vehicle ft^{2}
W_{L} Weight of vehicle lb
$\overline{\mathrm{a}}$ " Average mean "A" between two points it
dN Average rate of change of mean motion sec^{-1} number due to drag
C_{30}. Constant computed in AEG

Flow chart 2.- Subroutine DRAG.

Time step and Increment setup

Flow chart 2.- Subroutine DRAG - Continued.

Flow chart 2.- Subroutine DRAG - Continued.

Initlal drag effects set equal to zero

Flow chart 2.- Subroutine DRAG - Continued.

Little AEG section

$$
\begin{aligned}
& L=L_{D}{ }^{\prime \prime}+.75 \gamma_{2}^{\prime \prime} C_{7} \operatorname{SIN}\left(2 L_{D}{ }^{\prime \prime}\right) \\
& g=g+\text { RULE (4) } \\
& A_{1}=\operatorname{SIN} g(e \operatorname{SIN} g)+\operatorname{COS} g(e \operatorname{COS} g)-C_{2}\left(\operatorname{SIN} u^{\prime}\right)-C_{1}\left(\operatorname{COS} u^{\prime}\right) \\
& -\gamma_{2}^{\prime \prime} C_{51} \cos \left(3 u^{\prime}-g\right) \\
& A_{2}=\operatorname{COSg}(e \operatorname{SiNg})-\operatorname{SiNg}(e \operatorname{SiNg})-C_{2}\left(\operatorname{COS} u^{\prime}\right)+C_{1}\left(\operatorname{COS} u^{\prime}\right) \\
& -\gamma_{2}^{\prime \prime} C_{51} \operatorname{SIN}\left(3 u^{\prime}-g\right) \\
& C=g+(\dot{g} \Delta U) \\
& \text { (e } \operatorname{SIN} g \text {) }=A_{1} \operatorname{SIN} C+A_{2} \cos C+C_{2} \sin L+\gamma_{2}^{\prime \prime} C_{51} \operatorname{SIN}(3 L) \\
& +A_{3}[\cos (g \Delta t)-1]+R U L E(5) \\
& (e \cos g)=A_{1} \cos C-A_{2} \sin C+C_{1} \cos L+\gamma_{2}^{n} C_{51} \cos (3 L) \\
& +A_{3}[\operatorname{SIN}(g \Delta t)]+\operatorname{RULE}(6) \\
& g=\operatorname{TAN}^{-1}[(e \sin g) /(e \cos g)] \\
& e=\sqrt{e \operatorname{SIN} g)^{2}+(e \operatorname{COS} g)^{2}} \\
& \phi=0
\end{aligned}
$$

Flow chart 2.- Subroutine DRAG - Continued.

Flow chart 2.- Subroutine DRAG - Continued.

Flow chart 2.- Subroutine DRAG - Continued.

Calculation of dersity and drag force T_{D}

$$
\begin{aligned}
& R=a_{s}\left(1-e^{2}\right)^{3 / 2} /(1+(e \cos g) \cos u+(e \operatorname{SIN} g) \sin u) \\
& V=\sqrt{\mu\left(2 / R-1 / a_{s}\right)} \\
& V_{R}=V-\omega_{E} R \\
& R_{E}=R_{E Q} / \sqrt{\left(1+(\beta \operatorname{SIN} u)^{2}\left[\left(R_{E Q} / R_{p o l e}\right)^{2}-1\right]\right.} \\
& H_{E}=\left(R-R_{E}\right) / R_{E Q}
\end{aligned}
$$

Flow chart 2.- Subroutine DRAG - Continued.
Page 8 of 14

Flow chart 2.- Subroutine DRAG - Continued.

Simpson's rule section

Flow chart 2.- Subroutine DRAG - Continued.
Page 10 of 14

Summation of drag effects

$$
\begin{aligned}
& d_{a}=d_{a}+\text { RULE (1) } \\
& d_{e}=d_{e}+\text { RULE (2) } \\
& d(e \operatorname{SIN} g)=d(e \operatorname{SIN} g)+\text { RULE (5) } \\
& d(e \cos g)=d(e \operatorname{COS} g)+\text { RULE (} 6 \text {) } \\
& \mathrm{d}(\mathrm{gd})=\mathrm{d}(\mathrm{gd})+\text { RULE }(4) \\
& \bar{a}^{4 \prime}=\bar{a}^{11}+d_{a / 2} \\
& \eta_{0}=\eta_{0}+d \eta \\
& \dot{g}_{0}^{0}=\dot{g}_{0}^{0}(\eta) \\
& d_{\eta}=-3 / 4 d_{a} \eta_{b} / \text { al" }^{\prime \prime} \\
& \eta_{0}=\eta_{0}+d \eta_{\eta} \\
& \dot{g}_{0}=\dot{g}_{0} / \eta \eta_{0} \\
& \mathrm{~d} \overrightarrow{\boldsymbol{\eta}}=\mathrm{d} \bar{\eta}+2 \mathrm{~d} \boldsymbol{\eta} \\
& \eta_{z}=\eta_{0}^{\prime}+d \bar{\eta} \\
& \dot{g}_{z}=\dot{g}_{0}^{\prime} \eta_{z} / \eta_{0}^{\prime} \\
& \mathrm{d}_{\eta^{\prime}}=\mathrm{d}_{\eta^{\prime}}+2 \mathrm{~d}_{\eta} \\
& \eta_{Q}=\eta_{Q}+2 d \eta \\
& a_{0}^{1}=a_{0}^{1}+\text { RULE (1) } \\
& a_{0 Q}{ }^{\prime \prime}=a_{o Q}{ }^{\prime \prime}+\text { RULE (1) } \\
& \bar{a}_{1}^{\prime \prime}=a_{0 Q} Q^{\prime \prime}
\end{aligned}
$$

Flow chart 2.- Subroutine DRAG - Continued.

Modifying and setting suantities to be returned in subroutines argument

Flow chart 2.- Subroutine DRAG - Continued.

Flow chart 2.- Subroutine DRAG - Continued.
Page 13 of 14

Flow chart 2.- Subroutine DRAG - Concluded.

REFERENCES

1. Reini, W. A.: A Description of the Input to the Apollo Real-Time Rendezvous Support Program. MSC IN 67-FM-165, November 3, 1967.
2. Moore, A. J.; and Reini, W. A.: Logic and Equations for Analytic Ephemeris Generation. MSC IN 64-FM-50, November 23, 1964.
3. Kenyon, E. J.: Analytic Ephemeris Generation. MSC IN 68-FM-115, May 13, 1968.
4. Brouwer, Dirk: Solution of the Problem of Analytical Satellite Theory Without Drag. Astronautical Journal, Volume 64, No. 9, November 1959.
