MSC-01551

MPAD REPORT CON DD NOT REMOVE NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

MSC INTERNAL NOTE NO. 70-FM-14

February 16, 1970

RTCC REQUIREMENTS FOR APOLLO 14: NON-FREE-RETURN MODES OF THE TRANSLUNAR MIDCOURSE CORRECTION PROCESSOR

Lunar Mission Analysis Branch MISSION PLANNING AND ANALYSIS DIVISION

> MANNED SPACECRAFT CENTER HOUSTON TEXAS

The Flight Software Branch goncurs with the above recome

ferres C. Shokes,

Sellcom/K. Mertersteck6 XBN Library -IBN/J. Hoskins (5) /S. James (2)4 A. Hotheinz 19in Library -THM/D. P. Johnson (5)" . D. M. Gafford (4) -/SN65/Technical Library (2)-AA2/R. A. Gardinar AG/R. G. Chilton 6 AG2/D. C. Chesthan MA/R. F. Thompson XX/N. B. Evans R. J. Mard WT/B. H. Kchra Tela, Coheny A. G. Rosse R. H. Hicks R. P. Frank (5) 4 A. C. Bostick -L/J. B. Hermark (2) Wil. C. Dunseith 4 #35/L. J. Dungan -A. H. Reynolds * M/J. F. Nayary C. R. Russ

LL. L. Herberson (6) Ju-K. Henley C. Hichon THIS/Heport Control Files (25) -J. D. Yancharis Q. A. Holmest A. T. Zeiler A. S. Tavin/ R. F. Wiley Al. H. Sanders (

12/12/70 2:10 D

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION MANNED SPACECRAFT CENTER HOUSDON TITLES 77158

Feb. 5, 1970

MEADEANTEN TOA See list below

195/Chdef, Lover Minsion Analysis Branch

: MTCC requirements for Apollo 14 (8-3): Som-free return

The enclosed NSC Internal Note 70-FM-14 presents the requirements for updated document are as follows:

Division of the conic full mission select into two portions ("double select" or "split select"), for both options

2. Provision for computing plane changes ("bootstrap" protography) from a circular humar parking orbit following the first pass over the

3. Use of backward integration in lunar orbit to model LOE1 and D.G mecmetry, for option 4 only

4. Provision of a NED on perilume altitude to control LOIL, for

5. Provision for assessing the skeleton flight plan table to notermine flight path angle at LOI, for option 5 only

ald L. Barry

hanul

NASA - Manned Spacecraft Contor RELEASE APPROVAL		2. Identifi 70-2%	atolt fa
		Page 1	of Pages
то:		3.FRCH:	invite and inside
4. Title or S	<pre>ubject HIGC REQUIPEMENTS FOR -RETURN MODIAL OF THE THAN CONDUCTION FROMEWORR</pre>	APOLLO 14: MOM-FREE	Date of Paper February 16, 1970
5. Author(s)	Quentin A. Bolmes and Kem		
	6. Dis	tribution	
Number of Copies	Addresse	es	Special Handling Methods
		_	
This is	• Comparison of distribution on on addition to distribution of French Read Signature	on Release Approval d of Division Chief	
This is Signature of A	s an addition to distribution of Branch Heed Signature uppropriate Assistant Director	on Release Approval d of Division Chief	ated, Date Date
This is Signature of A	s an addition to distribution of Branch Head Signature	on Release Approval d of Division Chief	ated, Date

MSC INTERNAL NOTE NO. 70-FM-14

PROJECT APOLLO

RTCC REQUIREMENTS FOR APOLLO 14: NON-FREE-RETURN MODES OF THE TRANSLUNAR MIDCOURSE CORRECTION PROCESSOR

By Quentin A., Holmes and Kenneth T., Zeller Lunar Mission Analysis Branch

February 16, 1970

MISSION PLANNING AND ANALYSIS DIVISION NATIONAL AERONAUTICS AND SPACE ADMINISTRATION MANNED SPACECRAFT CENTER HOUSTON, TEXAS

Approved ar Mission Analysis Branch

Mission Planning and Analysis Division

RTOC REQUIREMENTS YOR APOLLO 16:

NON-FREE-RETURN MODES OF THE

TRANSLINAR MIDCOURSE CORRECTION PROCEEDER.

By Quantin A. Holmes and Kenneth T. Zeiler

SUMMARY AND INTRODUCTION

Bows are no situation is addn it is destinable to relax the investigate southing the transmission relations. The first black outling the start of the southing the start of the start outling the source of the sour

The non-free BM options of the real-time discurse processor are defined to next here needs. Two distinct options are would able option 4, a fixed orbit non-free-return BMP and option 5, a free orbit non-free-return BMP and option 5, a fixed orbit non-free-return BMP and option 5, a fixed orbit non-free-return BMP and option 5, a fixed option 4 and 5 are presented in the flow diagrame. The new formulation is based on the vote or first motion for submitting the submitting and the submitting option option and the submitting option option

ABBREVIATIONS

AZM	azimuti	

- BAP best adaptive path
- pps descent propulsion system
- g.e.t. ground elagged time
- G.m.t. Greenwich mean time
- HT heigh
- THEL inclination
- INT integrated
- LAT latitud
- LONG longitude
- LLS lunar landing site
- LN lupsr module
- LOI lunar orbit insertion
- LPO lunar parking orbit
- MAX maximum
- MCC midcourse correction
- MED manual entry device
- PC plane change
- RTCC Real-Time Computer Complex
- SEA sup elevation angle
- SPS service propulsion system
- TEI transearth injection
- TLI translunar injection
- TIMC first guess logic (backward iterator) for AV, AV, AV of the mission papeaver

SYMBOLS

	radius
121	auxiliary state
Sec. 11	Cartesian components of position vector
ž, ř, ž	Cartesian components of velocity vector
v	velocity
Y	flight-path angle
4	asimuth
	change
	time

Subscripts:

emp	carth-moon plane
pl	perilune
pfd	preflight data
ni	node
tle	translunar coast
τ.	Interneted

TRANSLINAR FLIGHT TIME.

Busification of perilume latitude and Atitude does not determine transmisser fluids three on a some-switch theyletony. Lade of reed for by non-free-return trajectories, The renee of acceptable fluids time is determined by two considerations. The first consideration is cover astay, and the meand consideration is preper lighting at the site of maintain and the scened consideration is preper lighting at the site of position and vectority. For a given inclination at the reliant, the to be the node can be bounded (min $\Delta T_{\rm DDS},$ max $\Delta T_{\rm DDS})$ to enforce the DPS

abort constraint. If the range is not violated, then the DM DPR has the ability to transfer the spacework to a free-return trajectory shortly after perilum is presed. Sum elevation at lumar landles is determined by the (s.s.t of DM landles, the acceptable range of HDA at lumar landlings is entered as a range in G.a.t. the corresponding limits (ini $\sigma_{\rm TDA}^{\rm ent}$).

max $M_{\rm DEA}$ for time to the nois are obtained by use of the mominal definition in EPO to first pass. The range used by the program insurves that both the EPS and the lighting construints are satisfied. The upper and lower lifts on throng the Tight time can be correctioned by a MFO.

A polynomial $\delta(ak)$ is used to predict the ordinant time to the order. This polynomial (ref.) is one he asily used only with addourse corrections that cocur within 30 hours of TLI it is used in the first general logic whenever the value that is gredicts for within the range of acceptable values. The difference between northen time of the mode validity to tract the first stores latio.

MECHOD.

The mudarlying assumption of the vector officet actual 10 that the difference between two could reductorise in a close surgestation of the difference between the corresponding puty of integrated fractactions, and the second structure of the dramation training of the difference between the second structure the COL LOI, PO, and TMT mergeners to be optimized as set by the use of each structure training. A second structure the contrast structure that are set of the difference between the second structure the second structure that are set of the second structure training of the second struct

ontinum for integrated trajectories.

Read on a state vector in translume cost, a mideourse mannever is computed to transfer the spacecraft to a conis trajectory which satisfies all mission constraints (full mission select). Sext, an intewrated mideourse manuscript is targeted to the could node.

As far as the nideourse maneuver is concerned, the discrepancy between comic and integrated trajectories is reflected in the difference in their respective mideourse maneuvers ($\Delta \hat{x}, \Delta \hat{y}, \Delta \hat{z}$). An auxiliary state \hat{u}^* is built according to

 $\delta^{+} = \delta S = \Delta \hat{X}_{+} - \Delta \hat{Y}_{+} - \delta \hat{Z}_{+}$ (1)

where SAC is the state vector that results after the conic midenurse and where δX_{\pm} , δX_{\pm} , δZ_{\pm} are integrated values. Prior to optimization

S' is substituted for the premidecurse state; the $\Delta V,~\Delta \gamma,~and~\Delta \psi$ required to regain SAO are computed and are used as first guesses for the midecurse maneuver.

At LOI, the discrepancy between comic and integrated trajectories is only in the magnitude and direction of their respective velocity vectors as the chemon pube.

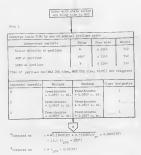
A velocity offset (AX", AY", AS") at LOI is computed according to

ΔX^{*} = (63I - 530)^{*}_X component (2)

 $\Delta \dot{Y}^{\alpha} = (831 - 830)_{\dot{Y} \text{ component}}$ (3)

During optimistion, the offset is node available to the trajectory computer. After easing propagation to the mode, the offset is applied before the LOT manevare is computed. This offset permits a coupled full-akseton copilainstein of the mideource correction, the LOI manevare, lumar orbit plane change, and transearth injection to be performed using cosit trajectories.

Because the translumar flight time changes as a result of optimjation, the original offreta may be alightly in error. This error is manifested as a difference between the predicted and the actual charactersitic velocities of the WOM and LOM manuscurs. News appropriate, version offsets are built with the new end conditions, and the optimization is presented.

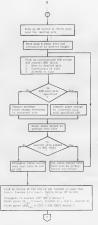

OPTION 4 - FINED ORBIT NON-FREE-RETURN BAP

The steps involved in computation of a non-free-veturm RAF with a fixed lumar orbit are shown in flow chert 1. The principal changes are division of the conic full mission select into two segments (split solid), the use of hashward integration in lumar orbit to solid, the LOII and DOI generity, and the provision for computing time changes insertions with the second second second second second second lumar lumping without the second second

OPTION 5 - FREE ORBIT NON-FREE-RETURN BAP

Flow chart 2 shows the logic used to compute a free orbit non-freereturn BAP. Split solect has been incorporated, a crude control on DOI is afforded by providing a NED on height of perilune (height of lumar orbit will be scaled to the value indicated by the H_c system parameter) and

accessing the skelton flight plan for the value of gamma at 1011. Bootstrup photography has also been included.



First chart 1 ... Excel orbit noneffice-areturn 24P.

Step 2

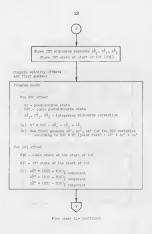
Independent variabl	65	First guess		2	tep size	Weight
& flight-path angle LOI		Fixed				
AA226 2007		St	ep 1		6.156i	8
A flight-path angle	MCC	St	ep 1		5 2544	8
AV HDC		St	epl		a. 25%h	8
Dependent variables	Mini	NUS	Maceimum		Weight	Class designator
8	= 0.01	0	= 0.010			1
INCL of perilune	90°	_	182*		6%	0
AHT NODE	= 0.1	n. mi.	+ 0.1 =.	=1.		1
Mass after LOI	100 00	0 15	100 000 1	ъ		3
AZM of LLS	Nomine - 0.01		* 0.01"			1
if to note	SEA] = MIN of	MAX of [Min of DPS, min d7 SEA] = 2 krs MIH of [Max of DPS, max d7 SEA] + 2 krs			0.125	0

Fing coart 1 = Continueds

Select a conic transcart time state vector at the			a specified :	115844	time unio	e.
Independent variable MT ₂₀₀ AF of THI A flight-path angle at THI AADM of THI		First	gorea	St.	P 4120	Velght
		Equation pico rpa p ^e Equation			1,547) 1,564 1,564 1,564	10"6
Dependent variable	Mint	nice.	*5.87000		Valant	Clas. designator
HT of entry ISIL of pr. return Transaction flight time	Scainal = 1.735 0° Equation = 0.1 br		Somiral + 1,735 m. 40 ⁴ Epistics + 0,1 hr	st.	8	1 0 1

Independent payrable	Piret	guess	Step size.	Setgh	
ST110	Presia	an step	\$1564	1076	
av at THI	Prevas	os atep	(1364	1	
a flight-path at TRI	Freda	Previous step		1	
ANDR OF THE	Previa	as step	+1561	1	
Schempest Awarmagie	Randaina	NASHID	Weight	Class designator	
Mass after THI	Select + 6000 1b	Select + 6000 .	23	3	
Wine to TR	Hostnal - 1,735 p. ml.	\$0054A1 # 1.735 z- b1.			
INCL of pr. revure	07	80*	8	0	
Transcarth flight time	Previous step = 0 hP	Previous ster + 8 br	0.185		
Sid50 earth laching	-2.22	+0.20			

Flow risker .- forting .


Store costs postufdoourse state (SSC) and costs where at obart of LO2 (ASC)

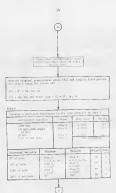
Dede	pendent variable	Welce	Deep adage	Vedyht
AZM ab	velocity at the node the node the mode the mode	Diep 2 Diep 2 Diep 2 Step 2	Diep 2 0 1554 Diep 2 0 1564	
Dependents variables	Mindaua	_		
х	Premidecurse positio	n Pressér + 0.657		
T	Premiécourse positio = 0.657 m. mi.	Fremidoourse position * 0.657 m. mi.		1
2	Presideourse positio	n Trenide * 0.657	Fremideourse position + 0.657 n. ml.	

6 co 53

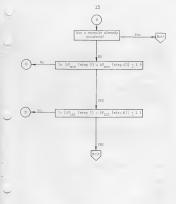
Independent variable		Value		Step state	Ve.	
AADM of MDD 6 flight-path ma mt MDD EF of MDC Time of the mode	gie	Step Step Step Step		e 1544 e 1544 e 1544	S.	12
Deperdent variable		ame.		Roccerat	Meaght.	Class
W of sole	32.07	2 9tep 2 5 a. mt + 0.5 a. mt.			1	
LAT of Nois	atep			0.01*	-	3
TG22 ft Note	31+9 = 0,		+			
INCL of peraltage	9.97				1 60	0

1 chapt ... Continued

Step 5


Mass after TEI

With comic trajectories, optimize mass after TEI by use of S' as the state vector and by offset of the state at start of LOI prior to computation of LOI manever


Interemdent variable	Value	Step size	Weight
A flight-path angle at TEI	Step 2	# 1544	8
MAZH TET	Step 2	\$ 1544	8
AV TEI	Step 2	\$ 1544	2
Time in lunar orbit	Step 2	4 1544	1070
AAZM of MCC	491	± 1564	51.2
A flight-path angle at MCC	ΔΥ'	¢ 1544	51.2
AV of MCC	AV'	¢ 1544	51.2

Dependent variable	Minimum	Maximum	Weight	Class
				GEB1205LOF
0	- 0.01°	+ 0.01°		1
IBCL of perilune	900	1820	61	0
AH_node	- 0.1 n. mi.	+ 0.1 n. mi.		1
Delts time to node	Lower limit: max (min 57	pg, min AT men)	0.125	P
NOTING STILL OF IDEC	Upper limit: nin (max 57	ps, max AT _{sen})	0.40)	
INCL of powered return	00	400	0.125	C
ALONG of earth landing	-0.20	+0.24		1
HI of entry	Sominal	Nominal		1

Step 2

T I COMPANY THE PLANESS OF

Oution 51 Pres orbit non-free-return MAP

^DComputed as 1 = 3.1 = 0.25(87)

Flow chart 2.- Free orbit nonfree return PAP.

Step 2

Select	and	ontimize	for	50	iterations

Independent variabl	first guess Step :			size	Weight		
AT to first pass		Nominal		01574		10-3	
& flight-path angle at LOI		Fixed				-	
AAZM of LOI		Nominal		61564		1	
AAZM of MCC		Step 1		01364		8	
A flight-path angle at MCC AV of MCC		Ste	rp 1	\$1544		8	
		Step 1			33,6	8	
Dependent variable Minis		#1.05	1ºax	iaron.	Weight	Class designator	
H7 of perilune	Nominal/MED -0.1 n. mi.		Nominal/MED 40.1 n. mi.			1	
INCL of perilune	90%		1820		64	0	
HT of LPO	Nominal = 0.5 n.	ni.	Nominal + 0.5 m.	ni.		1	
LAT of LLS	Nominal - 0,01°		Nominal + 0.01°			1	
LONG LLS	Nominal = 0.01°		Nominal + 0.01°			1	
Mass after LOPC	Select + 6000 1b		Select + 6000 1b			-1	
AZM of LLS	Nominal -	0.010	Nominal + 0.01°			1	
AT to mode MAX of MIN of	er (MIN MI er (MAX MI				0.125	0	

Pick up vector at the end of LPG (vector 1) such that G.m.t. (vector 1) = G.m.t. LOI + total AT in LPG

Propagate to nearest 180° EMP = vector 2 First guess $\Delta T_{1po} = 0.x.t.$ (vector 2) - 0.x.t. (vector 1) First guess $\Delta AZM_{tot} = 270° - ASM_{corp}$ (vector 2)

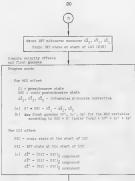
Step 28.

Independent variable ^{AS} ₂₅₀ aV of WII à flight-path angle of WII AXM of WII Dependent variable Min		Tirei guess Die		17 815C	Reads		
		Tration			+ 1564		
		2500 Fps G ⁴ Eggat510 Magimin			1564	1	
				+ 1564 + 1564 max Vetght		1	
						1	
						Class designator	
IT of extry	Nomical - 1:T35 n. #1.		Fornal + 1.735 z. m1.			1	
1921, of ur. return 00		1.0"		4.0"		0	
Trapsearth flight time	Equation - 0.01 hr		FORIDAL + 0.01 br			λ	

Step 22

Interestert variables		First gasss 54			ep #1.5e	No.222	
27 240		Trestour ater			1961	10*6	
SV of THE		Trevious step		1564			
		Treatest and		1564	1		
					1564	1 1	
		Not 19785		Weight	Clace designator		
Mage after IRI	Select + 6000 lbs		Belect + 6000 lbs			-1.	
IT of entry	Sounal - 1.735 n. ml.		Howinel + 1.735 m. mi.		**	1	
INCL of pr. return 0"		90.0		8		0	
Transcorth flight tare	Trevious step = 3 hr		Previous step + 8 hr		ey Symptons alog 0.125 + 8 hr		0
along of sarth landars	4.01		+0.01*		- 1	1	

Wine shart is Costoned;



Step 3

Indo	pendent variable	Value	Step size	Weight	
Scalar velocity at the mode AZM at the mode LOBD of the mode Time of the mode		Step 2 Step 2 Step 2 Step 2	0 156) 0 156) 0 156) 0 156) 0 156 tr	512 512 512 512	
Depenfent variable	Minimum	м	Maximum		
z	Fremideourse position - 0.657 m. mi.	Presideo + 0.657	1		
Y	Premideourse position - 0.657 m. mi.	+ 0.657	1		
2	Premidzourse position	Presidro + 0.657	1		

Independent variable AAEN at MCC a flight-path angle at NCC AT of MCC Time of the node		Value	Shep size	Veight 512 512 512 szered	
		Step 3 Step 3	0 15hk 0 15hk		
		Step 3 Step 3	4.152% Set tri		
Deputdent variable	Step	8	Step 2		-
LAT of mode	- 0.5 p. ml. Step 2 - 0.01°		+ 0.5 m. ml. Step 2 + 0.01°		
TORD of wonge	Step - 0.	1 5 6	Step 2 +0.01° 182°		
INCL of perilune	90*				

Ploy chart 2,- Continued.

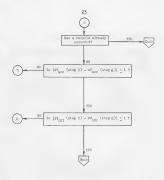
Flow chart 2.= Continued.

Step 5.

With comic trajectories, optimize mass after TEI by use of S' as the state rector and by officet of the state at start of 101 prior to computation of 101 memory.

Independent varial	ble	Val:	20	Step als	c Wes	sht
Δ flight-path angle at TEI ALME at TEI AV of TEI Time in lumar orbit AT to first pann ALMA at LOI ALMA at LOI ALMA to HOC AT LOC AT HOC AV OF HOC		Step 2 0 1541 Step 1 0 1561 L0' 0 1561 L0' 0 1564		 1564 1584 	8 8 10 10 10 511 511 511	
Dependent variable	Minima		Maxi	man	Veight	Class depimates
HT of perilune	Scaisel/MED		Nominal/MED			1
ISCL of perilune E7 of lunar urbit	90* Nominal - 0,5 n		1820 Rominal #1. + 0.5 p. mi.		64	1
LAT of luner landing	Hominal		Hominsl + 0.01°		-	1
LCHG of lunar landing site	- 0,015		0.010 + 0.010			1
AZM over lunar landing site	Ecwer 1	HED er limit: (nim dZ _{dra} , min dT _{pre})			1	0
Dalta time to node					0.125	0
	Upper 1 min (m	Tt Na	, ne	x 57 ₅₆₀)		
ISCL of powered return	00		40*		0.125	0
Delta LOBD of earth landing	- 0,20		* 0.2°			1
H7 of entry		. si.	Manis +1.7	96 m. ma.	-	
Mann after 721	=1.735 m		Step + 60			1

+


MSC Form 327A (Mor 65)

.Flow shart 2.- Continued.

51

1ECL of perilsne

Flow chart 2.= Concluded.

REFERENCES

- Zeiler, K. T.: Lamar Accessibility of the Hybrid Mission. MSC memo 69-FM52-223, June 28, 1968.
- Morrey, B. F.; McCaffety, B. O.; and Morrey, A. E.: EFOC Requirements for Mission G: The Translunar Midcourse Correction Processor. MSC 19 63-99-193, August 9, 1968.
- Sears, G.; and Redwine, W.: Optimum Translumar Flight Times for Premature TLI Statiown. ICC 3423,8-25, April 20, 1967.

NASA --- MEC