MSC INTERNAL NOTE NO. 70-FM-23

March 23, 1970

RTCC REQUIREMENTS FOR

APOLLO 14 (H-3) MISSION:

EARTH-CENTERED RETURN-TO-EARTH

CONIC SUBPROCESSOR

Lunar Mission Analysis Branch MISSION PLANNING AND ANALYSIS DIVISION

PROJECT APOLLO
 RTCC REQUIREMENTS FOR APOLLO 14 (H-3) MISSION: EARTH-CENTERED RETURN-TO-EARTH CONIC SUBPROCESSOR
 By D. R. Davis and T. P. Garrison
 TRW Systems Group

March 23, 1970

MISSION PLANNING AND ANALYSIS DIVISION NATIONAL AERONAUTICS AND SPACE ADMINISTRATION MANNED SPACECRAFT CENTER hOUSTON, TEXAS

MSC Task Monitor: R. S. Davis

Approved:
Ronald L. Berry, Chief
Lunar Mission Analysis Branch

Approved:

Section Page
1.0 SUMMARY AND INTRODUCTION 1
2.0 ABBREVIATIONS 1
3.0 EARTH-CENTERED SUBPROCESSOR MODES 2
3.1 Time Critical Unspecified Area 2
3.2 Fuel Critical Unspecified Area 4
3.3 Primary Target Point Mode 5
3.3.1 PIP tradeoff 5
3.3.2 PTP discrete 8
3.4 Alternate Target Point Mode 9
3.4.1 ATP tradeoff 9
3.4.2 ATP discrete 11
APPENDIX A - DEFINITION OF SYMBOLS USED IN FLOW CHARTS 13
APPENDIX B - LOGIC FLOW OF THE EARTH- CENTERED RETURN-TO-EARTH CONIC SUBPROCESSOR 21
SUBROUTINE DVMINQ 22
SUBROUTINE FCUA 26
SUBROUTINE INITAL 30
SUBOURTINE MAIN 34
SUBROUIINE MSDS 36
SUBROUTINE PRTIAL 40
SUBROUTINE RENTRY 42
SUBROUTINE RUBR 44
SUBROUIINE SCAN 47
SUBROUTINE TCOMP 50
SUBROUTINE TMIN 54
SUBROUTINE VACOMP 58
SUBROUTINE VARMIN 60
SUBROUTINE VELCOM 62
SUBROUTINE VUP2 64
REFERENCES 68

RTCC REQUIREMENTS FOR APOLLO 14 (H-3) MISSION:

EARTH-CENTERED RETURN-TO-EARTH CONIC SUBPROCESSOR
By D. R. Davis and T. P. Garrison
TRW Systems

1.0 SUMMARY AND INTRODUCTION

This documentation of the earth-centered return-to-earth conic subprocessor completes the logic specification, corrects errors found in reference 1 , and incorporates several changes that have been made since the previous documentation. New subroutines added are the analytic calibration subroutine and the entry simulation subroutine. This document completely defines the earth-centered conic subprocessor with the exception of the state vector advance subroutine. Some of the control logic has been restructured to correspond more closely with the current RTCC formulation or to present a more logical flow sequence. Modifications to the program which eliminate the polynomial curve fits in subroutine ETAARF are included in this document and are indicated by bars in the margin of the affected pages. Symbol definitions are, presented in appendix A for the logic defined in appendix B, which is the specification for the earth-centered return-to-earth conic subprocessor for Apollo 14 and subsequent missions and supersedes that defined in reference 1.

Detailed logic of the moon-centered return-to-earth conic subprocessor is presented in reference 2. The supervisory and precision computation logic which completes the RTCC requirements for the return-to-earth processor (RTEAP) for Apollo 14 and subsequent missions is presented in reference 3 .

> 2.0 ABBREVIATIONS

ATP	alternate target point
DV	change in velocity
DVM	maximum allowable DV

EFCUA extreme fuel critical unspecified area

FCUA	fuel critical unspecified area
MD	miss distance to a PTP
MDM	maximum allowable miss distance to a PTP
MSI	moon's sphere of influence
PTP	primary target point, that is, a point on the earth's surface
RTCC	Real-Time Computer Complex
RTEAP	Return-to-Earth Abort Processor
TCUA	time critical unspecified area

3.0 EARTH-CENTHERED SUBPROCESSOR MODES

The following subsections describe the manner in which solutions are generated in this subprocessor, the input required to operate the different modes, and the output parameters for each mode. In addition to the required input, each subprocessor mode is initialized with a premaneuver state vector(s) $X(j)$, where J_{m} is the total number of state vectors, and a reference epoch time from the abort processor's supervisory logic.

3.1 Time Critical Unspecified Area

The TCUA mode generates the trajectories that return to a specified: reentry target line with the smallest transit time without regard to landing point. This solution will be characterized by either maximum allowable DV at abort or by the maximum allowable reentry speed. The solution plane coincides with the preabort plane of motion if the preabort inclination is not greater than the maximum allowable inclination; otherwise, the maneuver plane is rotated to the plane characterized by maximum inclination (the rotation being through the smaller angle because there are generally two planes that have a specified inclination passing through the abort position).

The solution generated in this mode is user determined in the sense that it is characterized by either maximum reentry speed or maximum DV for the maneuver. The solution is generated in subroutine TMIN and the inclination constraints are checked in subroutine INITAL.

The input quantities for the TCUA mode are the following.
DVM Maximum DV to be used for the abort maneuver
To Time at which the maneuver is to be computed
ICRNGG Flag that defines the reentry mode which is to be simulated
$I_{\text {rmax }} \quad$ Maximum inclination computed at reentry
$U_{\text {rmax }} \quad$ Maximum reentry speed
RRBI Constant reentry relative range (down range) which will be substituted for the relative range value obtained from the reentry curve fits

IMSFN Flag that selects the reentry target line
The output quantities to the abort processor supervisory logic (ref. 3) are as follows.
$\overline{\mathrm{DV}} \quad$ Maneuver velocity vector increment (calibrated)
DVC Conic DV magnitude (uncalibrated)
$\overline{\mathrm{RR}} \quad$ Reentry radius vector
$\overrightarrow{\mathrm{U}}_{r} \quad$ Reentry velocity vector
$T_{r} \quad$ Time of reentry
λ_{z} and δ_{z} Longitude and geocentric latitude of landing site
$\eta_{r z} \quad$ Down-range angle from reentry to landing
${ }^{\theta}$ cr Cross-range angle from reentry to landing
$T_{r z} \quad$ Time from reentry to landing
NOSOLN Error flag indicating whether a valid solution was found in the conic program

3.2 Fuel Critical Unspecified Area

The FCUA mode generates the minimum fuel maneuver required to return to acceptable reentry conditions ignoring landing point constraints. The earth reference logic first analytically determines the fuel critical inplane solution that returns to the specified reentry target line. If the preabort inclination is acceptable, the solution is determined in the preabort plane. Otherwise, a plane change is made to the maximum inclination plane that is selected in the same manner as the TCUA mode, and the solution is found in this plane.

If sufficient DV is allowed for an abort, the return is computed to the selected reentry target line. However, if the DVM constraint is violated, the logic attempts to generate a trajectory using DVM to minimize the deviation from the desired reentry target line. The program uses flight-path angle at reentry as the independent variable to drive DV to DVM. If this solution is available, it becomes the solution returned by the FCUA mode and is called the extreme fuel critical unspecified area (EFCUA) solution. If the DVM cannot be satisfied by varying the reentry path angle between 90° and 110°, the logic returns no solution.

The input quantities for this option are identical to those given for the TCUA mode.

The output quantities to the abort processor supervisory logic (ref. 3) are as follows.

DV	Maneuver velocity vector increment (uncalibrated)
RR	Reentry radius vector
\bar{U}_{r}	Reentry velocity vector
T_{r}	Time of reentry
λ_{z} and δ_{z}	Longitude and geocentric latitude of landing site
$\eta_{r z}$	Down-range angle from reentry to landing
${ }^{\text {cr }}$	Cross-range angle from reentry to landing
T_{rz}	Time from reentry to landing
NOSOLN	Error flag that indicates whether a valid solution was found in the conic program

3.3 Primary Target Point Mode

This mode generates, for the maneuver time considered, the DV and trip time required to return to a specified PTP. Whenever the PTP is accessible within the constraints, the minimum fuel solution for the specified miss distance is generated.
3.3.1 PTP tradeoff.- Two formats are available for the PTP tradeoff mode, namely the near-earth tradeoff and the remote-earth tradeoff. The basic logic for generating solutions is identical; however, the near-earth format will consider up to five different values for MDM, while the remote-earth format is limited to the zero miss distance solution. Each tradeoff display consists of all the solutions for up to forty state vectors within the allowed range of maneuver times.

The logic presented is the current RTCC logic known as the fuelcritical PTP logic. The initial presentation of the PTP mode (ref. 4) considered the reentry maneuver as a planar profile. Because this approximation has proved invalid, the logic discussed here considers a reentry profile which has a cross-range component and whose characteristics are determined by the geocentric position as well as by the velocity magnitude and direction at reentry. The PTP solution generation logic is not an exact simulation, but this logic is the first iteration of a procedure which can generate a more precise PTP solution. The .. procedure is described here and is the same as that defined for the PTP discrete mode, except that for the PTP discrete mode only a single maneuver time and a single miss distance are considered.

The first computation is the determination of the minimum trip time solution (subroutine TMIN). For this transit time, the azimuth of a plane which contains the PTP is computed. This azimuth is tested against the pair of azimuths which were chosen as the most constraining planes based on the inclination and DVM constraints. If the azimuth or the plane which contains the site is acceptable, then the plane through the desired landing site is chosen to be the maneuver plane; otherwise, the constraint plane that has an azimuth closest to the azimuth of the site plane is selected. Note that this choice of azimuth minimizes the miss distance, where the miss distance may be defined (as a function of azimuth) as the minimum great circle distance between the desired landing site and the actual impact point. The reentry point is defined for the trajectory with the specified transit time and with the defined azimuth. The reentry trajectory and the associated impact point are computed for this reentry point. The coordinates of the PTP are offset by the negative of the difference between the impact point defined by this out-of-plane reentry profile and the one defined by the corresponding planar reentry profile. (This offset is defined such that, if the planar reentry trajectory passes through the offset landing point, the out-of-plane reentry profile would pass through the PTP!) For this new impact point, the miss distance is computed with the azimuth re-defined for the offset reentry to minimize the miss distance. The miss distance
is computed in subroutine MSDS. Transit time is now increased by a small amount, and the miss distance is recomputed by the above procedure. The logic next goes to subroutine TCOMP which computes the next value of transit time based on the present and past values of miss distance and the desired direction of motion of the impact point. At this point, the logic is attempting to minimize the miss distance; therefore, if the present value of miss distance is smaller than the past value, TCOMP continues to increase the transit time. This procedure continues until the maximum allowable miss distance is achieved or until a minimum in the MD is found. If a minimum is found, a flag is set based on the direction of motion of the impact point. If motion of the impact point is easterly, the miss distance should be maximized before the next minimum is sought. If motion of the impact point is westerly, the transit time is incremented by 24 hours and a new minimum immediately sought. When the miss distance is equal to the maximum allowable miss distance (MDM), a scan is performed by incrementing transit time. During this scan, the azimuth is varied for each trip time to generate the set of trajectories which miss by the specified miss distances. The miss distance is used in each case to minimize the required plane change and therefore DV. This procedure is repeated until the miss distance is larger than the maximum distance allowed. When the maximum distance is exceeded, the search is re-initiated to determine the next time interval of PTP accessibility within the framework of problem constraints. The entire process is repeated for each state vector.

The PTP tradeoff near-earth option produces a graph that presents time at abort along the abcissa and two other parameters, DV required for the abort and time at landing, along the ordinate. Both latter parameters are given for several fixed values of miss distance.

The PIP remote-earth option of the tradeoff display is designed to display abort solutions for those flight regions in which the DV difference between miss distance contours is very small. The interval between landing times of these solutions is approximately 24 hours. For this option, the abort time is plotted along the abcissa, and the required DV is plotted along the ordinate. Only the zero miss distance contour is presented in this option. The multiple curves which will appear on the display are identified by their time at landing, rather than with a separate curve. For aborts outside the MSI, only solutions which return directly to the earth (posigrade) are generated and displayed.

All solutions are computed to the specified reentry target line and include the selected reentry profile. All appropriate constraints are considered.

The input quantities for both PTP modes are as follows.
$T_{\text {omin }} \quad$ Earliest abort time to be considered
$T_{\text {omax }} \quad$ Latest abort time to be considered

DVM Maximum DV to be used for the abort maneuver
λ_{z} and $\delta_{z} \quad$ Langitude and geocentric latitude of the desired PTP landing site
$T_{\text {zmin }} \quad$ Minimum time at landing
$\mathrm{T}_{\text {zmax }} \quad$ Maximum time at landing
ICRNGG Flag that selects one of the reentry modes
$I_{r \max } \quad$ Maximum inclination at reentry
$\mathrm{U}_{\mathrm{rma}}$
RRBI

IMSFN
Maximum reentry speed
Constant reentry relative range (down range) which will be substituted for the relative range value obtained from the reentry curve fit

Flag that selects the reentry target line.
The abort time range indicated ($T_{o \max }-T_{o m i n}$) will be limited by the RIEAP logic to a maximum of either 24 hours on the trajectory of the input state vector or the period associated with the initial abort state vector, whichever is smaller.

The output of the PIP tradeoff option to the abort processor supervisory logic (ref. 3) is as follows.

DV
Change in velocity at abort (calibrated)
as a function of

T_{0}	Time at which abort solution is generated
T_{2}	Time of landing

NOSOLN Error flag that indicates whether a valid solution was found for any state vector in the conic program

The output is displayed as a set. of curves of constant miss distance with the DV required at abort and time at landing given as a function of abort time.
3.3.2 PIP discrete.- These computations are exactly those of the PIP tradeoff mode, except that a single miss distance, a single approximate landing time, and single time of maneuver are considered.

The following quantities are supplied to the PTP discrete option.
To Time at which an abort solution will be generated
$T_{z \min }, T_{\text {zmax }}$ Minimum and maximum landing times that bracket the approximate landing time of the abort solution
λ_{z} and $\delta_{z} \quad \begin{gathered}\text { Longitude and geocentric latitude of the desired } \\ \text { PTP landing site }\end{gathered}$
ICRNGG Flag that selects the reentry mode
MDM Maximum miss distance to a PTP
$I_{r \max } \quad$ Maximum inclination measured at reentry
$\mathrm{U}_{\text {rmax }} \quad$ Maximum reentry speed
RRBI Constant reentry relative range (down range) which will be substituted for the relative range value obtained from the reentry curve fit

IMSFN Flag that selects the reentry target line
The output quantities to the abort processor supervisory logic (ref. 3) are as follows.
$\overline{\mathrm{DV}}$
Maneuver velocity vector increment (calibrated)
$\overline{R R} \quad$ Reentry radius vector
$\bar{U}_{r} \quad$ Reentry velocity vector

T_{r}	Time of reentry
λ_{z} and δ_{z}	Longitude and geocentric latitude of landing site
$n_{r z}$	Down-range angle from reentry to landing
$\theta_{\text {cr }}$	Cross-range angle from reentry to landing
T_{rz}	Time from reentry to landing
NOSOLN	Error flag that indicates whether a valid solution was found in the conic program

3.4 Alternate Target Point Mode

The ATP generates solutions which return to lines defined on the earth's surface by successive pairs of latitude and longitude. The trajectories return in the plane of original motion if this plane satisfies the inclination constraint. If the plane of preabort motion is not acceptable, the return is computed in the plane with an acceptable inclination which requires minimum fuel for plane change. This logic operates in a manner quite similar to the PTP logic. The minimum trip time solution is generated (subroutine TMIN), and the miss distance for this trajectory is computed (subroutine MSDS). For the ATP mode, only the zero miss distance solution is an acceptable solution. The miss distance for the ATP is defined as the longitude difference between the impact point and the ATP measured at the latitude of the impact point. The logic then attempts to drive the miss distance to zero. If it succeeds, the solution is stored if no constraints are violated. After storing a solution or finding a non-zero minimum, the logic increments transit time to search for the next possible solution. If motion is easterly, the miss distance must first be maximized prior to seeking the next minimum. If motion is westerly, the transit time is increased by 24 hours and a new solution sought if the maximum trip time constraint is not violated. The logic is limited to ATP definitions which have a variation in latitude; that is, constant latitude ATP's are unacceptable.
3.4.1 ATP tradeoff. - The ATP procedure is applied sequentially to each state vector within the allowed range of maneuver times. The two formats for the tradeoff display are the same as that for PIP tradeoffs, except that for the near-earth format only the zero miss distance is computed and, in addition, the latitude of the landing point is displayed as an ordinate. The ATP tradeoff input are as follows.

$T_{\text {omin }}$	Earliest abort time to be considered
$T_{\text {omax }}$	Latest abort time to be considered

DVM Maximum DV to be used for the abort maneuver
$\begin{array}{ll}\lambda^{\prime}(j) & j \text { longitude-latitude pairs that define the ATP line }\end{array}$
mm Maximum value for j; that is, the number of points that defines the ATP line
$T_{\text {zmin }} \quad$ Minimum time at landing
$T_{\text {zmax }} \quad$ Maximum time at landing
ICRNGG Flag that selects one of the reentry modes
$I_{\text {rmax }} \quad$ Maximum inclination at reentry
$U_{r \max } \quad$ Maximum reentry speed
RRBI Constant reentry relative range (down range) which will be substituted for the relative range value obtained from the reentry curve fit

IMSFN
Flag that selects the reentry target line
The abort time range indicated ($T_{o m a x}-T_{o m i n}$) will be limited by the RTEAP logic to a maximum of either 24 hours on the trajectory of the input state vector or the period associated with the initial abort state vector, whichever is smaller.

The output of the ATP tradeoff option to the abort processor supervisory logic (ref. 3) is as follows.

The conic program returns
DV

```
change in velocity at abort (calibrated)
```

as a function of

> To Time at which abort solution is generated

Time of landing
Geocentric latitude of the landing site
Bror flag that indicates whether a valid solution was found for any of the state vectors in the conic program

The ATP format gives DV required at abort, time of landing, and, only in the near-earth option, latitude of landing as a function of abort time, but only for the zero miss distance condition.
3.4.2 ATP discrete.- The ATP discrete mode generates the ATP solution for a single maneuver time and a single approximate landing time. The following quantities are entered as input to the ATP discrete option.

To Time at which an abort solution will be generated
$T_{z \min }, T_{z \max }$ Minimum and maximum landing times that bracket the approximate landing time of the abort solution
$\begin{array}{ll}\lambda^{\prime}(j) & j \text { longitude-latitude pairs that define the ATP line } \\ \delta^{\prime}(j)\end{array}$
mm Maximum value for J, that is, the number of points that defines the ATP line

ICRNGG Flag that selects the reentry mode
$I_{\text {rmax }} \quad$ Maximum inclination measured at reentry
$U_{\text {rmax }} \quad$ Maximum reentry speed
RRBI Constant reentry relative range (down range) which will be substituted for the relative range value obtained from the reentry curve fit

IMSFN
Flag that selects the reentry target line

The output quantities to the abort processor supervisory logic (ref. 3) are as follows.

DV
Maneuver velocity vector increment (calibrated)

$\overline{\mathrm{RR}}$	Reentry radius vector
\bar{U}_{r}	Reentry speed vector
T_{r}	Time of reentry
λ_{z} and δ_{z}	Longitude and geocentric latitude of landing site
$\eta_{r z}$	Down-range angle from reentry to landing
$\theta_{c r}$	Crossmange angle from reentry to landing
$T_{r z}$	Error flag that indicates whether a valid solution was found in the conic program

APPENDIX A

DEFINITION OF SYMBOLS USED IN FLOW CHARTS

APPENDIX A

DEFINITION OF SYMBOLS USED IN FLOW CHARTS
A, B, C, D, E
a

AFG

CE
CNT
DDT
DFDA
DL
DT
DIDA
DV, DVS
DVC
DVM
DVSP
DVSSP
DVT, DVN, DVR

Coefficients of quartic equation giving normals to locus of acceptable abort velocity from preabort velocity

Semimajor axis
Flag used in subroutine MSDS in PTP mode. A nonzero value indicates that the preabort motion is retrograde and that the return plane is to be determined by computing the miss distance in two different planes and selecting the one that yields the smaller miss distance.

Cosine of eccentric anomaly
Number of steps taken across the landing site
Fraction of the step size to be taken in trip time Conic partial derivative $\partial f / \partial a$

Longitude difference between successive ATP points
Step size in trip time
Conic partial derivative $\partial T / \partial a$
Maneuver velocity change
Conic DV magnitude (uncalibrated)
Maximum allowable DV
Total DV for minimum DV solution previously found
Past value of DVSP
Tangential, normal, and radial components of the DV vector

E

RR

Eccentric anomaly
Eccentricity
Difference in transfer angle between impact point and PTP

True anomaly
Inclination
Number of state vectors to be considered

Indicator that gives number of roots
Longitude on ATP measured at latitude of impact point
Miss distance which is first found to satisfy the desired conditions

Minimum possible miss distance for the present trip time

Number of ATP latitude, longitude pairs
Flag that indicates whether solution has been found. If NOSOLN
$=0$, TCUA or FCUA solution found
$=1$, no solution found
$=2$, PTP or ATP solution found
Function that the PIP mode attempts to drive to zero to generate acceptable solutions

Step size in trip time for scanning across the maximum allowable miss distance contour

Preabort position vector

Reentry radius
Unit vector through impact point
Sine of eccentric anomaly
Indicates whether a zero miss distance is possible

Sine of true anomaly

SOL
SW

SW2

SW6

SW7

T
$\mathrm{T}_{1}, \mathrm{~T}_{2}, \mathrm{~T}_{3}$
$T_{\text {apo }}$
TARSP

Indicates whether a solution has been found
Flag used in TMIN. \quad SW $=0$ initially,$~ S W=1$ during the iteration for the minimum time solution, and $\mathrm{SW}=0$ if the upper bound on the iteration exceeds T $\mathrm{T}_{\text {max }}$

Control flag used in the PTP, ATP, and FCUA modes. For the PTP mode, flag is used to generate PTP solutions within a maximum miss contour. When SW2 $=0$, the logic is searching for the maximum miss boundary; when $\mathrm{SW} 2=1$, the direction for the optimizing scan is being determined; and when SW2 $=2$ the logic is performing the optimizing scan across the maximum miss contour. When SW2 is used in the ATP logic, it changes from 0 to 1 when the ATP line has been bracketed and a linear partial is to be used to generate the solution. For the FCUA mode, SW2 indicates the type of computation being performed. When SW2
$=0$, a solution is sought to the entry target line
$=1$, a solution is sought with DV $<$ DVM
$=2$, a solution is sought with DV $=$ DVM
Indicates whether the impact point moves easterly or westerly with increasing trip time
$=0$, indicates easterly motion
$=1$, indicates westerly motion
Indicates whether a time step based on longitude error has been previously taken $\theta \theta$, indicates no such step previously taken $=1$, otherwise

Trip time
Limits on transit time for iteration

Flight time from abort to reentry when the abort occurs at apogee on the post maneuver trajectory

Transit time that corresponds to MDI

TEST	Indicates whether the possibility of a zero has been detected in the function being minimized
TP	Past value of trip time
$T_{\text {max }}$	Maximum allowable trip time
$T_{\min }$	Minimum allowable trip time
T_{mt}	Minimum possible trip time, computed in subroutine TMIN
\bar{U}_{0}	Preabort velocity vector
U_{r}	Reentry speed
$\bar{V}_{\text {a }}$	Preabort velocity vector
$V T_{a}, V N_{a}, V R_{a}$	Tangential, normal, and radial components of the postabort velocity vector
$\mathrm{X}, \mathrm{X}(\mathrm{j})$	Seven-dimension array that defines the preabort state vector (i.e., position vector, velocity vector, and time)
$\hat{X}, \hat{\mathrm{Y}}, \hat{\mathrm{Z}}$	Unit vectors along geocentric Cartesian coordinate axes
$\bar{X}_{1}, \bar{x}_{2}, \bar{x}_{3},{\overline{X_{2}}}$	Values for nonradial component of speed
XK	Indicates whether the function is being minimized or maximized
$\bar{Y}_{1}, \bar{Y}_{2}, \bar{Y}_{3}, \bar{Y}_{4}$	Values for radial component of speed
α	Right ascension of impact point
β_{a}	Postabort flight-path angle
β	Preabort flight-path angle
${ }^{\beta} r$	Reentry flight-path angle

$\Delta \theta$	Maximum change in azimuth with allowable miss distance
δ^{\prime}	Latitude of one ATP point
δ_{z}	Geocentric latitude of the desired PIP
7	True anomaly
θ	Difference in azimuth from preabort plane to transfer plane
θ_{z}	Difference in azimuth from preabort plane to plane that contains the desired landing point
λ^{\prime}	Longitude of one ATP point
λ_{z}	Longitude of the desired PTP
${ }^{\mathrm{H}} \mathrm{e}$	Earth's gravitational parameter
ϕ	Angle inplane from abort to impact point
ϕ_{z}	Angle inplane from abort to desired landing point
$\omega_{\text {e }}$	Earth's rotational rate

21

APPENDIX B

LOGIC FLOW OF THE EARTH-CENTERED
RETURN-TO-EARTH CONIC SUBPROCESSOR

DVMINQ
Description Page 1

APPENDIX B

LOGIC FLOW OF THE EARTH-CENIERED
REIURN-TO-EARTH CONIC SUBPROCESSOR

SUBROUTINE DVMINQ

Purpose
This subroutine, called from FCUA, is used to establish the minimum fuel required to obtain safe reentry conditions with specified initial position, velocity, flight-path angle, reentry radius, and reentry flightpath angle. The input flag, FLAG, is used to specify whether apogee passage is desired on the postabort trajectory.

Input

FLAG	```Input flag = l, solution trajectory has a negative radial rate =-1, solution trajectory has a positive radial rate```
Q_{e}	$\begin{aligned} & \text { Postabort direction of motion } \\ & \quad=0 \text {, direct } \\ & =1 \text {, retrograde } \end{aligned}$
Qo	$\begin{aligned} & \text { Preabort direction of motion } \\ & \quad=0 \text {, direct } \\ & \quad=1 \text {, retrograde } \end{aligned}$
RR	Radial distance at reentry
R_{0}	Radial distance at abort
U_{0}	Preabort velocity
Bo	Preabort flight-path angle
${ }^{\beta} r$	Path angle at reentry

Output
DV
Minimum change in velocity required at abort
Apogee passage flag
$=0$, no apogee passage
$=1$, apogee passage
V_{a}
Postabort velocity magnitude

Ba. Postabort flight-path angle

FCUA
Description
Page 1

SUBROUTINE FCUA

Purpose

This subroutine computes the fuel critical unspecified area solution which has a reentry velocity and flight-path angle satisfying the reentry target line conditions and with DV less than DVM. This solution is generated through subroutine DVMINQ. DVMINQ generates the minimum DV solutions for a given preabort state, reentry radius, and reentry flightpath angle. The reentry speed for this solution is then computed, and the flight-path angle corresponding to this reentry speed is generated from the target line. If this reentry path angle is equal to the value supplied to DVMINQ, the solution is accepted; otherwise, the most recent value of path angle is supplied to DVMINQ, and the solution is repeated until convergence is achieved. The input constraints are then checked. If no solution is found that satisfies these constraints, the logic attempts to find an extreme fuel-critical solution with a reentry flightpath angle between 90° and 110° that satisfies the available fuel and maximum velocity at reentry constraints.

Input

DVM DV allowed for abort (may include rotation to acceptable inclination)

RR Reentry radius
\bar{R}_{a}, R_{a}
Position vector at abort and its magnitude

SW2 Control flag
$=0$, when generating the normal FCUA solution that satisfies the reentry target line $=1$ or 2 , when generating the EFCUA solution, depending on the state of the search

Bo Preabort flight-path angle
$\beta_{r} \quad$ Reentry flight-path angle

He Earth's gravitational parameter

FCUA
Description
Page 2

Output
DV
Change in velocity
U_{r}
Reentry speed
$\beta_{r} \quad$ Reentry flight-path angle

INITAL Description Page 1

SUBROUTINE INITAL

Purpose
This routine initializes the program at the beginning of each new state vector.

Input

DVM	Maximum allowable change in velocity
$I_{r m a x}$	Maximum inclination of postabort orbit
$R R$	Reentry radius
\bar{R}_{p}	Unit vector in direction of abort position vector
T_{0}	Time of abort
$T_{r Z}$ (avg)	Average time from reentry to landing
$T_{z \max }$ or STMX	Maximum time of landing
$T_{z m i n}$ or $S T M \mathbb{N}$	Minimum time of landing
\bar{U}_{0}	Preabort velocity vector
$U_{r \max }$	Maximum allowable reentry velocity
\bar{X}_{o}	Preabort position vector
δ_{z}	Latitude of desired landing site

Output
Aml Constraint that limits the inclination of the postabort orbit north of the equator

Am2 Constraint that limits the inclination of the postabort orbit south of the equator教

INITAL
Description Page 2
$T_{\text {max }}$
$\mathrm{T}_{\text {min }}$

Trip time increment used in searching for PTP and ATP solutions

Semi-latus rectum for preabort orbit
Preabort motion direction flag
Unit vector in airection of premaneuver angular momentum
Unit vector in preabort plane of motion which is orthogonal to abort position vector

Trip time for which motion of the impact point switches from easterly to westerly

Maximum allowable trip time
Minimum trip time

Magnitude of abort position
Azimuth of premaneuver velocity vector
Fraction of trip time increment to be taken during the search for PTP and ATP solutions

Magnitude of preabort velocity
Radial component of preabort velocity
Tangential component of preabort velocity

Right ascension at Greenwich at abort time
Right ascension of Greenwich at 0^{h} on day of abort
Preabort flight-path angle

Average down-range distance
Azimuth change to south inclination constraint
Azimuth change to north inclination constraint
Azimuth change to nearest inclination constraint

INITAL

Logic Flow
Page 2

SUBROUTINE MAIN

Purpose
This subroutine is the main control routine and the entry point for the conic program. In the flow chart are shown the logic flow for the overall program and the sequence in which subroutines are used to generate solutions.

Input
See section 3 for the mode specified input and appendix A.

Purpose
This subroutine computes the miss distance (i.e., the distance between the current impact point and the desired landing site) for the ATP and the PTP modes. If an ATP solution is being generated, the impact point may be computed immediately because the plane of the postmaneuver conic is known. From the impact point, the miss distance is computed as the longitude difference between the impact point and the desired landing line, measured at the latitude of the impact point.

For PTP modes, the return plane must first be determined. The return plane is chosen to be that which minimizes the miss distance from the site without violating either the inclination or ΔV constraints. The miss distance in this mode is the smallest distance between the impact point and the desired landing site. To determine the return plane, the subroutine first generates the azimuths of trajectory planes determined by the inclination and ΔV constraints and retains the most constraining set as limits on the azimuth of the postabort velocity vector. Next, the azimuth of a plane passing through the desired landing site (at the current transit time) is computed. If this azimuth is between the limiting values, then the plane through the site is determined to be the postabort plane of motion. Otherwise, the constraint plane nearest the plane passing through the site is selected. When the return plane is known, the impact point and corresponding miss distance may be determined. This subroutine was formulated using logic from subroutines PHICOM, THZCOM, and the ATP computations found in reference 1.

Input

Preabort azimuth
DVM
Maximum allowable DV
DVR
Radial component of the ΔV vector
\bar{R}_{p}
Unit vector in direction of abort point
\bar{R}_{1}
Unit vector in direction of preabort angular momentum
$+\quad \bar{R}_{2}$

$$
\text { Unit vector in direction of }\left(\bar{R}_{1} \times R_{p}\right)
$$

MSDS
Description
Page 2

$\mathrm{VT}_{\text {a }}$	Tangential component of the postabort velocity vector
VT。	Tangential component of the preabort velocity vector
α_{g}	Right ascension of Greenwich at the abort time
δ_{z}	Latitude of the desired landing site
$\begin{array}{ll} \delta^{\prime} & (\mathrm{mm}) \\ \lambda^{\prime} & (\mathrm{mm}) \end{array}$	mm latitude-longitude pairs defining the ATP line
λ_{z}	Longitude of the desired landing site
${ }^{\text {ar }}$	Transfer angle from abort to reentry
$\theta_{m d}^{\prime}$	Azimuth change to maximum inclination plane with an azimuth $>90^{\circ}$
$\theta_{m u}^{\prime}$	Azimuth change to maximum inclination plane with an azimuth $<90^{\circ}$
	Output
MD	Miss distance
δ	Latitude of the impact point
ϕ	Total transfer angle to the impact point
ϕ_{z}	Total transfer angle from abort to desired landing site
λ	Longitude of the impact point
θ_{z}	Azimuth change to desired landing site

Page 2

PRTIAL
Description
Page 1

SUBROUTINE PRTIAL

Purpose
The purpose of this subroutine is to compute the partial derivative $\partial \eta$ $\frac{a r}{\partial T_{a r}}$ from the conic equations of motion. The partial is computed by using the chain rule to write $\frac{\partial \eta_{a r}}{\partial T_{a r}}=\frac{\partial \eta_{a r}}{\partial a} \frac{\partial a}{\partial T_{a r}}=\left(\frac{\partial f a}{\partial a}-\frac{\partial f r}{\partial a}\right) \frac{\partial a}{\partial T_{a r}}$. The derivatives may then be calculated from Kepler's equations, and the polar equation of the orbit. Also from the fact that the perigee radius is nearly constant along the target line (it varies from 3091 n . mi. to $3465 \mathrm{n} . \mathrm{mi}$. as the entry speed varies from 25000 fps to 38000 fps), the approximation that perigee radius is constant is made.

Input

FLAG
$=1$, preapogee on conic trajectory
$=-1$, postapogee on conic trajectory
RR Reentry radius magnitude
$R_{a} \quad$ Abort radius magnitude
$\mathrm{U}_{r} \quad$ Reentry speed

Output
DNDT Conic partial derivative $\partial \eta_{\text {ar }} / \partial T$ ar

PRTIAL
Logic Flow
Page 1

42
RENTRY
Description
Page 1

SUBROUTINE RENTRY

Purpose
The function of this subroutine is to compute down-range distance, cross-range distance, and time from reentry to landing when the state vector at reentry is given.

Input

ICRNGG	```=1, constent G reentry = 2,G&N reentry = 10, compute RO only; RO is that portion of the down-range distance that depends on reentry speed only```
IMSFN	$=1$, use shallow reentry target line $=2$, use steep reentry target line
L/D	Lift over drag
RRBI	Constant relative range (down range)
\bar{R}_{0}	Unit vector in direction of abort point
$\overline{\mathrm{R}}_{1}$	Unit vector in direction of preabort angular momentum
\bar{R}_{2}	Unit vector in direction of ($\left.\bar{R}_{1} \times \bar{R}_{0}\right)$
U_{r}	Reentry speed
$n_{a r}$	Transfer angle from abort to reentry
θ	Azimuth change
	Output
${ }^{T} r$ r	Time from reentry to landing
$n_{r z}$	Down-range angle
${ }^{\text {cr }}$	Cross-range angle.

RUBR
Description Page 1

SUBROUTINE RUBR

Purpose
This subroutine constructs a trajectory between the radial distance at abort and the radial distance at reentry when the speed and path angle at the reentry altitude are given.

Input

QA	Apogee passage flag
QE	Postabort motion flag
RR	Reentry radius magnitude
R_{a}	Radial distance at abort
U_{o}	Preabort speed
U_{r}	Reentry speed
B_{o}	Preabort flight-path angle
B_{r}	Reentry flight-path angle

Output
A
DV Change in velocity required for an inplane maneuver
e
T Trip time from abort to reentry
$\mathrm{V}_{\mathrm{a}} \quad$ Postabort speed
$B_{a} \quad$ Postabort flight-path angle

Purpose

This subroutine is used only for non-zero maximum miss cases in the PTP mode. It determines the plane change permissable within the maximum miss constraint which minimizes ΔV required, and it controls the optimization scan across the maximum miss circle to produce the minimum $\Delta \mathrm{V}$ solution. At the completion of a scan, it re-initializes the problem to begin the search for the next solution region. This subroutine was formulated from part of the $T=f(M D)$ logic found in reference 1 .

Input

DVS	Saved value of DV
MD	Miss distance
MDSP (KK)	KK values of maximum allowable miss distance. Up to five values may be run during a single tradeoff case
SW6	East - west motion flag
T	Trip time
ϕ	Total transfer angle to impact point
ϕ_{2}	Total transfer angle from abort to desired landing site
	Output
T	Trip time
XK	Indicates whether the function is being minimized or maximized

TCOMP
Description Page 1

SUBROUTINE TCOMP

Purpose

This subroutine computes the new transit time based on the miss distance determined from the current transit time and the way that the miss distance is changing. This computation is done for both the ATP and PTP modes. This subroutine encompasses part of the ATP and $T=f(M D)$ logic found in reference 1.

Input

DVMAX	Maximum allowable DV
MD	Miss distance
MDM	Maximum miss distance
\bar{R}_{p}	Unit vector in direction of abort point
\bar{R}_{1}	Unit vector in direction of preabort angular momentum
\bar{R}_{2}	Unit vector in direction of ($\left.\bar{R}_{1} \times \bar{R}_{p}\right)$
T	Current value of trip time
$\mathrm{T}_{\text {max }}$	Maximum allowable trip time
T_{mt}	Minimum possible trip time
XK	Indicates whether the function is being minimized or maximized
α_{z}	Right ascension of desired landing site
$\delta^{\prime}(1), \delta^{\prime}(\mathrm{mm})$	Latitudes of end points on the APP line
ϕ	Total transfer angle to the impact point

51
TCOMP
Description Page 2

Total transfer angle from abort to desired landing site

Azimuth change between the preabort and postabort planes

Azimuth change to desired landing site

Output
Trip time for next iteration
Indicates whether the function is being minimized or maximized

Page 2

SUBROUTINE TMIN

Purpose

This subroutine computes the minimum trip time solution which returns to the reentry target line and satisfies the following constraints: maximum fuel, maximum reentry velocity, maximum inclination, and minimum landing time. The logic first generates the solution that has the maximum allowable reentry speed; and, if this trajectory satisfies all constraints, it is accepted and the subroutine is exited. Otherwise, an attempt is made to generate a solution using all the available DV to minimize the flight time. The procedure is to iteratively drive DV to DVM using transit time as the independent variable. The maximum entry speed solution is used as a lower bound on trip time; an upper bound is generated from the minimum fuel unspecified area solution. A new trip time is selected by averaging the upper and lower bounds, and the DV is computed for this flight time. If $D V=D V M$, the solution is accepted; otherwise, the upper or lower bound on transit time is reset with the current transit time depending on whether DV is greater than DVM or less than DVM. The iteration continues until an acceptable solution is generated or until the upper and lower bounds become equal.

Input

DVM	Maximum allowable DV at abort (with acceptable inclination)
$T_{\min }$	Minimum allowable transit time
$U_{r \max }$	Maximum allowable entry speed
θ_{0}	Azimuth change necessary to satisfy inclination constraint

Output
DV
Change in velocity
FLAG Used to force a solution with a negative radial rate from FCUA

T
Transit time
U_{r}
VT a
Reentry speed
Tangential component of postabort velocity
VT_{r}
Radial component of postabort velocity

VACOMP
Description
Page 1

SUBROUTINE VACOMP

Purpose
This subroutine computes the vector to the conic impact point, the latitude and longitude of the impact point, the postabort velocity vector, and the time of landing. In the case of a PTP solution, if a solution has been found within the maximum allowable miss distance, this subroutine tries to minimize fuel consumption by increasing the miss distance to the maximum allowable before it computes the impact point.

Input

\bar{R}_{p}	Unit vector in direction of abort point
\bar{R}_{1}	Unit vector in direction of preabort angular momentum
\bar{R}_{2}	Unit vector in direction of ($\overline{\mathrm{R}}_{1} \times \overline{\mathrm{R}}_{\mathrm{p}}$)
$\mathrm{VR}_{\text {a }}$	Radial component of postabort velocity
VTa	Tangential component of postabort velocity
θ	Change in azimuth to minimize the miss distance
θ_{0}	Change in azimuth to nearest acceptable plane
$\theta_{\text {mu }}^{\prime}, \theta_{m d}^{\prime}$	Maximum changes in azimuth from preabort azimuth based on inclination constraints

Output
$\overline{\mathrm{DV}}$
T_{z}
$\overline{\mathrm{V}}_{\mathrm{a}}$
α
δ
λ

Change in velocity vector
Time of landing
Postabort velocity vector
Right ascension of the impact point
Latitude of impact point
Longitude of impact point

VARMIN
Description
Page 1

SUBROUTINE VARMIN

Purpose
This subroutine determines the direction of the scan for the required landing site by deciding whether the difference between the past and present values of the miss distance is small enough to be considered an extremum and if so, sets the time increment, direction, and scan flag to the proper values.

Input
DDT Independent variable
MD Function to be minimized (miss distance)
MDP Past value of MD
$\mathrm{XK}^{\mathrm{a}} \quad$ Flag that indicates whether a minimization or maximization is to be performed

Output
DDT Independent variable
MDP Present value of miss distance stored for the next pass

SOL Flag that indicates a zero or an extremum
$\mathrm{XK}^{\mathrm{a}} \quad$ Flag that indicates whether a minimization or maximization is to be performed
${ }^{a}$ If $\mathrm{XK}=-1$, then a maximization is performed until an extremum is reached; then XK is set to l and the minimization is continued.

VELCOM
Description
Page 1

SUBROUTINE VELCOM

Purpose

This subroutine is used to generate trajectories which return to the reentry target line with a specified transit time.

Input
Desired transit time

RR
R_{a}
β_{r}
${ }^{B}{ }_{r p}$
Radial distance at reentry
Abort radial distance
Current value of the flight-path angle at reentry
Past value of the flight-path angle at reentry

Output
DT
p
Semilatus rectum
Apogee passage flag
QA

SW6
U_{r}
VR_{a}
VT a
β_{a}
${ }^{\beta} r$
$\eta_{a r}$
$\eta_{r z}$ (ave)
Direction of motion flag at impact point
Reentry speed
Radial component of required velocity
Tangential component of required velocity
Flight-path angle at abort
Flight-path angle at reentry
Transfer angle from abort to reentry
Down-range angle based on reentry speed only; that
is, geometry effects are neglected
Subroutine INTER, which is frequently used but not specified is a general interpolation subroutine. In this program, it is used to determine the reentry flight-path angle given the reentry speed and the data point for the specified reentry target line. Subroutines INTER and AESR, which are conic trajectory utility subroutines, are specified in reference 2.

$$
\begin{aligned}
& \text { VUP2 } \\
& \text { Description } \\
& \text { Page } 1
\end{aligned}
$$

SUBROUTINE VUP2

Purpose
This subroutine is used to calibrate the postabort velocity by accounting for the lunar third-body effects.

Input
$\overline{\mathrm{R}}_{\mathrm{a}} \quad$ Position vector at abort
$\bar{R}_{\text {moon }} \quad$ Position of the moon with respect to the earth
$\mathrm{T}_{\text {ar }} \quad$ Trip time from abort to reentry
$\overline{\mathrm{V}}_{\mathrm{a}} \quad$ Postabort velocity vector
${ }^{B} r \quad$ Reentry flight-path angle

Output
$\overline{\mathrm{V}}_{\mathrm{a}} \quad$ Postabort velocity calibrated to include the lunar third-body effects

Logic Flow Page 2

REFERENCES

1. Lee, W. R.: AS-503A Requirements for the RTCC: Return-to-Earth Abort Conic Subprocessor, Revision 1. MSC IN 67-FM-56, Dec. 12, 1967.
2. Northcutt, F. M.: RTCC Requirements for Apollo 14 (H-3) Mission: Moon-Centered Return-to-Earth Conic Subprocessor. MSC IN 70-FM-19, Jan. 30, 1970.
3. Davis, R. S.: RTCC Requirements for Apollo 14 (H-3) Mission: Return-to-Earth Processor Supervisory and Precision Computation Logic. MSC IN to be published.
4. Berry, R. L.; and Lee, W. R.: AS-503A Requirements for the RTCC: Return-to-Earth Abort Conic Subprocessor. MSC IN 66-FM-117, Oct. 19, 1966.
