MSC-01594

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

MPAD REPORT CONTROL

COPY AND

MSC INTERNAL NOTE NO. 70-FM-26

February 26, 1970

RTCC REQUIREMENTS FOR APOLLO 14: TRAJECTORY COMPUTERS FOR TLI AND MCC PROCESSORS

Lunar Mission Analysis Branch

MISSION PLANNING AND ANALYSIS DIVISION

MANNED SPACECRAFT CENTER HOUSTON, TEXAS MSC INTERNAL NOTE NO. 70-FM-26

PROJECT APOLLO

RTCC REQUIREMENTS FOR APOLLO 14: TRAJECTORY COMPUTERS FOR TLI AND MCC PROCESSORS

By Brody O. McCaffety, William E. Moore, and Quentin A. Holmes Lunar Mission Analysis Branch

February 26, 1970

MISSION PLANNING AND ANALYSIS DIVISION NATIONAL AERONAUTICS AND SPACE ADMINISTRATION MANNED SPACECRAFT CENTER HOUSTON, TEXAS

Vinch Approved: Our . Berry, Chief

Lunar Mission Analysis Branch

Approved: fis John P. Mayer, Chie

Mission Planning and Analysis Division

CONTENTS

Section																					Page
1.0	SUMM	LARY AN	D INTRO	DUC	TIC	N															1
	1.1	The T	rajecto	ory	Сол	ipu	tei	°s													2
	1.2	Varia	bles, S	top	pin	ıg (Cor	ndi	ti	on	s										2
	1.3	Lunar	Orbits																		3
2.0	ABBR	EVIATI	ons .																		3
3.0	SUBR	OUTINE	s																		4
	3.1	Subro	utine B	URN																	5
		3.1.1	Funct	ion																	5
		3.1.2 3.1.3	Nomen Metho	clat d .	ur	е.	:	:	:	:	:	÷	÷	:	:	÷	÷	÷	:	÷	56
	3.2	Subrou	tine C	TBOL	Y.																8
		3.2.1 3.2.2 3.2.3	Funct: Nomene Method	ion clat	ure	•••	:	:	:	:	:	:	:	:	•	:	•	:	:	:	8 8 9
:	3.3	Subrou	tine DO	GAMM	Α.	• •				•											14
		3.3.1 3.3.2 3.3.3	Functi Nomeno Method	ion lat	ure	•	:	:	:	:	:	:	•	:	•	•	•	•	•	:	14 15 15
3	3.4	Subrou	tine EF	BETA		•	•	•	•	•	•	•				•					16
		3.4.1 3.4.2 3.4.3	Functi Nomenc Method	on lat:	ure	:	:	:	:	:	:	:			•			•	•	•	16 17 17
3	.5	Subrou	tine EP	HM .																	18
		3.5.1 3.5.2	Functi Remark	on . s .		:	:	•	:	:											18 18

Section Page 3.6.1 Function 3.6.2 Nomenclature 10 3.6.3 Method 10 3.7 Subroutine FCOMP 3.7.1 Function 20 3.7.2 Nomenclature 3.7.3 Method 3.8 Subroutine LIBRAT 22 3.8.1 Function 3.8.2 Nomenclature 3.8.3 Method 22 3.9 Subroutine LOPC 3.9.1 Function 3.9.2 Nomenclature 24 3.10 Subroutine PATCH 26 26 3.11 Subroutine RBETA 29 30 3.12 Subroutine RWTSIM 35

.

Section

																				*D
3.14	Subrou	tine RVIC).			•	•	•						•						35
	3.14.1 3.14.2 3.14.3	Functic Nomencl Method,	atu	е		:	:	:	:	:	:	:	:	:	•	:	•	•	:	35 35 36
3.15	Subrou	tine TLIE	RN .	•	•	•		•	•				•	•	•					37
	3.15.1 3.15.2	Functio Remarks	n .	:	:	:	:	:	:	:	•	·	:	÷	:	:	:	:	:	37 37
3.16	Subrou	tine TLMC	• •		•	•	·	•	•	•	•	•	•	•	•					37
	3.16.1 3.16.2 3.16.3	Functio Nomencl Method	n . atur	е.	•	:	:	:	:	:	:	:	:	:	:	:	:	:	:	37 37 38
3.17	Subrout	ine XBET.	Α.	•	•		•		•	•										39
	3.17.1 3.17.2 3.17.3	Function Nomencle Method	n . atur	e	:	:	:	:	:	:	:	:	:	:	•	:	:	:	:	39 39 40
3.18	Subrout	ine PRCOM	P.			•		•	•											41
	3.18.1 3.18.2 3.18.3	Function Nomencla Method	ı . itur		:	:	:	:	:	:	:	:	:	•	•		:	•	:	41 41 45
3.19	Subrout	ine MCOM	• •	•		•														47
	3.19.1 3.19.2	Function Method	· .	÷	:	:	•	:				:	•				:	:	÷	47 47
3,20	Subrout	ine PPC	• •				•													48
	3.20.1 3.20.2	Function Nomencla	ture	·	:	•	•		•			•							:	48 48
REFER	ENCES .		• •	• •																76

Dec

y

FLOW CHARTS

flow Chart		Pag
1	Subroutine PPC	50
2	Real time applications of the generalized iterator	59
3	Translunar midcourse first guess trajectory computer	60
14	Functional flow of analytical trajectory computer for conic mission	62
5	Integrating trajectory computer	71

RTCC REQUIREMENTS FOR APOLLO 14: TRAJECTORY COMPUTERS

FOR TLI AND MCC PROCESSORS

By Brody O. McCaffety, William E. Moore, and Quentin A. Holmes

1.0 SUMMARY AND INTRODUCTION

This note is the last of a series documenting the Generalized Iterator used in the RFOC translumar injection and mideourse correction processors for Apollo 14. The mathematical formulation of the iterator itself is general and is documented in reference 1; the programs for the various mission options provided by the processors have been documented in references 2 and 3. This note gives the trajectory computers of the translumar injection and midcourse correction processors.

The term "Generalized Iterator" as used here refers to the whole program - supervisor, trajectory computer, and iterator. The iterator is a general formulation that applies to any problem which involves the solution of another MTCC applications in addition to its use in the TLI and MCC processors. The supervisor sets the dependent and independent variables to solve a desired problem. The trajectory computer indicates the sequence of events or computations and edited information about the trajectory computer, and the subroutines used to construct a trajectory. This function, and their algorithms.

There are basically five types of trajectories generated by the TLI and MCC processors.

 a. Elliptical trajectories generated out of earth orbit (i.e., E-type ellipses and hybrid ellipses)

b. x, y, z, and t return-to-nominal trajectories generated during translunar coast

c. Free-return trajectories generated from EPO or translunar coast

d. Free-return, BAP reoptimized trajectories generated during translunar coast

e. Non-free-return, BAP reoptimized trajectories generated during translunar coast

These possibilities are shown in flow chart 3.

The calculation of each type involves the use of analytical and integrated computations. Conic, or analytical, trajectories are used in first guess routines to generate initial conditions and in optimizations to shorted computation time. Integrated calculations are necessary to provide precision target conditions. An explanation of the ways these computation modes are used together is contained in references 2, 3, 4, and 5,

1.1 The Trajectory Computers

Separate trajectory computers are used to provide first guesses for the midcourse correction, for the conic, and for the precision trajectory computations.

The MCC first guess trajectory computer solves Lambert's problem. Subroutine TLMC computes the first guess trajectory for the MCC. The flow diagram is shown in flow chart 4.

A functional flow diagram of the analytic trajectory computer for conic mission calculations is given in flow chart 5. This flow chart shows the general flow indicating the sequence of state vector calculations, the entry of the appropriate independent variables, the calculation of the dependent variables, and the sequence of the mass history calculations.

The precision propagation of an arc is done using the Herrick-Beta technique documented in the appendix of reference 5. Flow chart 5 shows the functional flow of the precision trajectory computer.

1.2 Variables, Stopping Conditions

Independent and dependent variables for the different trajectory computers are shown in tables I and II.

The stopping conditions for the computers are indicated in the flow diagrams but are also discussed here. Integrated trajectories that return to the nominal x, y, and z of the LOI node stop at the time of the node; the non-free-return RAF options also integrate the same are and stop on the time of the node obtained from the conic optimization. However, the precision transcenth trajectory used in the lunar flyby stops on an entry flight-path angle. Finally, during the iteration process, before the height of LDG are scaled to circular conditions. These vectors are used to compute the rest of the trajectory; thus, the integrity of those independent variables based on the desired height of the orbit is retained; for example, Ω_{1n}^{-1} , Δ_{1n}^{-1} .

1.3 Lunar Orbits

The initial lunar orbit may be either an ellipse or a circle. Subroutine PRCOMP is used with the LOI and DOI maneuvers. This subroutine integrates backward from the lunar landing site in an approximation to the initial LPO to obtain orbital elements at LOI and DOI times. This routine provides the link between the state vector at the start of LOI and the state vector at first pass over the lunar landing site.

2.0 ABBREVIATIONS

- BAP best adaptive path
- EOI earth orbit insertion
- EMP earth-moon plane
- EPO earth parking orbit
- LLM lunar landing mission
- LOI lunar orbit insertion
- LOPC lunar orbit plane change prior to lunar module ascent
- LPO lunar parking orbit
- MCC midcourse correction
- RTCC Real-Time Computer Complex
- TEI transearth injection
- TLI translunar injection

3.0 SUBROUTINES

The subroutines and computation modules used in the trajectory computers are listed in table III. The following subroutines are involved.

a. BURN - simulates impulsive thrusting for application of a delta velocity magnitude, delta azimuth, and delta flight-path angle in the topocentric reference frame.

b. CTBODY - used for propagation of a conic state vector for a specified time interval.

c. DGAMMA - determines the universal conic variable from periapsis to the nearest specified flight-path angle.

d. EBETA - determines the interval in the universal conic variable from a given state vector to periapsis.

 ELEMT - calculates a set of orbital elements from a given state vector, time, and central body constant.

 DFHM - obtains earth and moon states vectors relative to each other, solar position, and a precession-nutation-libration direction cosine matrix from the magnetic tape ephemeris.

 FCOMP - evaluates the universal conic functions for a specified value of the universal conic variable.

 LIBRAT - performs librations upon an input state vector and does a reference transformation.

 LOPC - computes the size and effect of the lunar orbit plane change (CSM2).

 PATCH - accomplishes patching of the geocentric and selenocentric vehicle state vectors at the sphere of action of the moon.

k. RBETA - determines the value of the universal conic variable to propagate from a given state vector to a specified radial magnitude.

1. RNTSIM - determines the landing conditions.

m. RTASC - determines right ascension of the Greenwich meridian.

n. RVIO - transforms a given set of coordinates in Cartesian or spherical form to the other form.

 TLIBEN - simulates the translunar injection thrusting maneuver by evaluation precomputed polynomials.

p.~TLMC - in control when first guesses for delta azimuth, delta velocity, and delta flight-path angle are determined for translunar abort of midcourse manevers.

q. XEETA - propagates a given state vector through a specified universal conic β to a desired state vector. The β is the stopping condition for XEETA.

r. PRCOMP - simulates lunar parking orbits from the start of LOI through first pass over the lunar landing site by integrating backwards in time in an approximation to the initial LPO.

s. MCOMP - computes the mass after each maneuver (accounting for maneuvers by the SPS or DPS) and returns an error message if all DPS fuel is used.

 PPC - computes AV for plane changes in circular lunar parking orbits using conic propagation.

The remaining text of this internal note will be devoted to a detailed description of the input, output, and the mathematics meeded for each of the subroutines listed above. All lumar orbit computations will be computed using the lumar radius at the landing site and not the mean radius of the moon.

3.1 Subroutine BURN

3.1.1 <u>Function.-</u> Subroutine BURN simulates impulsive thrusting of the vehicle. The ideal velocity equation is used to determine propellant consumption. This subroutine is used for the MCC, LOI, LOPC, and TEI

3.1.2 Nomenclature .-

Symbol	Input (I), Output (O)	Definition
v _c	0	circular velocity
Δv _R	0	characteristic delta velocity

Symbol	Input (I), output (0)	Definition
Δv		change in scalar velocity during burn
v _{pl}	I	velocity at perilune of the desired ellipse (if ellipse is required)
Δγ	I	change in flight-path angle during burn
$\Delta \psi$	I	change in azimuth during burn
I _{sp}	I	specific impulse
m _f /m _o	0	ratio of mass after burn to mass before burn
^g o	I	constant used to convert pounds force to pounds mass
ц	I	gravitational constant of current reference body
R	I	initial position vector
R	I	initial velocity vector
Υ _o	I	initial flight-path angle
R ₁ , R ₂	I	intermediate velocity vectors
R _f	0	final position vector
Rf	0	final velocity vector

3.1.3 <u>Method</u>.- The vector R_f is the same as R; that is, the routine assures that the position does not change during the maneuver. Compute the values for r and v according to equations (1) and (2)

$$r = \sqrt{R \cdot R}$$
 (1)

$$v = \sqrt{R \cdot R}$$
 (2)

If a circular state vector after the burn is specified, enter

Ŷ

.

 $\Delta \gamma = -\gamma_{O}$

 $\Delta v = v_c - v$

If an elliptical state vector is specified, enter

 $\Delta v = v_{pc} - v$ $\Delta \gamma = -\gamma_{o}$

In the other more general option, Δv , $\Delta \gamma$, and $\Delta \psi$ are entered as input. Compute equations (3) through (7)

d = R • R (3)

$$h = |R \times R|$$
 (4)

$$R_1 = R \cos \Delta \gamma + \frac{v^2 R - dR}{h} \sin \Delta \gamma$$
 (5)

$$\dot{R}_{2} = \frac{2R(R \cdot R_{1})}{r^{2}} \sin^{2} \frac{\Delta \psi}{2} + \dot{R} \cos \Delta \psi - \frac{R \cdot \dot{R}_{1}}{r} \sin \Delta \psi \qquad (6)$$

$$\dot{R}_{f} = \dot{R}_{2} \left(1 + \frac{\Delta v}{v} \right)$$
(7)

Equation (7) represents the velocity vector part of the state S_{f} after the burn. The characteristic velocity can be determined from equation (8).

$$(\Delta v_R)^2 = \Delta v^2 + 4v(v + \Delta v) \left(\sin^2 \frac{\Delta \gamma}{2} + \frac{h^2 \cos \Delta \gamma - hd \sin \Delta \gamma}{r^2 v^2} - \sin^2 \frac{\Delta \psi}{2} \right)$$
(8)

The mass ratio is represented by equation (9).

$$\frac{m_{f}}{m_{o}} = \exp \left(\frac{-\sqrt{(\Delta v_{R})^{2}}}{I_{sp}g_{o}} \right)$$
(9)

3.2 Subroutine CTBODY

3.2.1 Function -- Subroutine CTBODY determines the propagated state vector at a specified time, At, from a given epoch state vector. This is the classical problem of Kepler and must be solved iteratively because of the transcendental relationship between time and the anomalies.

3.2.2 Nomenclature .-

Symbols	<pre>Input(I), output (0)</pre>	Definition
К	I	central body indicator
ro	I	position vector magnitude

ols	Input (I), output (O)	Definition
	I	velocity vector magnitude
	I	gravity constant
	0	square of universal variable divided by semimajor axis
F ₂ , F ₄	0	functions of the universal variable
		semimajor axis
	I	initial position vector
	I	initial velocity vector
	I	initial time
	0	final position vector
	0	final velocity vector

radius of moon 3/2 J2, second harmonic of moon's gravity

3.2.3 Method. - Determine the interval of propagation with equation (10).

final time

 $\Delta t = t_f - t_o$ (10)

9

Symb vo μ α

> Fl F3 a Ro . R_o to Rf Rf rm

J

tf

If $|\Delta t| < 10^{-12}$, the final state vector is the initial state vector, and the operation is complete; if not $|\Delta t| < 10^{-12}$, equations (11) and (12) result

$$\frac{1}{a} = \frac{2}{r_0} - \frac{v^a}{\mu}$$
(11)

$$D_{o} = R_{o} \cdot \dot{R}_{o}$$
(12)

A first guess of the universal variable for the Newton-Raphson iteration is made from equations (13) and (1^{l_1}) .

$$\beta = \frac{1}{5} \Delta t \frac{\sqrt{\mu}}{r_0}$$
(13)

$$\alpha = -\frac{\beta^2}{a}$$
(14)

Subroutine FCOMP is entered to obtain F_1 , F_2 , F_3 , and F_4 ; and the time equation is evaluated according to equations (15) and (16).

$$t = \begin{bmatrix} \beta^2 F_1 + \frac{D_0}{\sqrt{\mu}} & \beta F_2 + r_0 F_3 \end{bmatrix} \frac{\beta}{\sqrt{\mu}}$$
(15)

$$r = \frac{D_{o}}{\sqrt{\mu}} \beta F_{3} + \beta^{2} F_{2} + r_{o} F_{4}$$
(16)

Increment β as defined by equation (17)

$$\beta = \beta + (\Delta t - t) \frac{\sqrt{p}}{r} \qquad (17)$$

Equation (15) is evaluated with the new value of β , and the Newton-Raphaon iteration [eq. (17)] continues until the covergence tolerance of 1 × 10⁻¹² is met.

$$\left|\frac{t - \Delta t}{\Delta t}\right| < 10^{-12}$$
 (18)

Exit with an error message if no convergence is obtained after, for example, 10 iterations.

As the iterations proceed, 8 will move in the same direction until it is very close to the answer. To protect against the tolerance of 10^{-12} in equation (18) being too small, the signs of successive values of 4t - tare compared. If two successive iterates about have different signs before equation (18) is satisfield. S is replaced by the sverage of the two values associated with these iterations, and the process is repeated until the relative difference between two values being averaged is less than 10^{-12} .

With the universal variable determined, the state vector at the final time is determined from equations (19) through (24).

$$f = 1 - \frac{\beta^2 F_2}{r_0}$$
(19)

$$g = t - \frac{\beta^3 F_1}{\sqrt{\mu}}$$
(20)

$$f = -\frac{\sqrt{\mu}\beta F_3}{r_o r}$$
(21)

$$g = 1 - \frac{\beta^2 F_2}{r}$$
 (22)

$$R_{f} = fR_{o} + gR_{o}$$
(23)

$$r_{f} = fR_{o} + gR_{o}$$
 (24)

Check to see whether the ascending node is to be precessed. If not, R, R are produced as output. Otherwise (at time $t_{\rm f}$), rotate R, R to selenographic coordinates $G_{\rm o}$ $G_{\rm o}$. The components of $G_{\rm o}$ and $G_{\rm o}$ will be x, y, z and x, y, z, respectively.

Compute n_1 , n_2 , and n with equation (25) through (27).

$$n_2 = zy - zy$$
 (26)

$$n = \sqrt{n_1^2 + n_2^2}$$
 (27)

If $n\leq 10^{-12},$ return without precessing the node. Otherwise, compute equations (28), (29), and (30).

$$\cos \Omega = \frac{n_1}{n}$$
 (28)

$$\sin \Omega = \frac{n_2}{n}$$
(29)

$$H = \frac{G_{o} \times G_{o}}{|G_{o} \times G_{o}|}$$
(30)

The components of H will be $h_1,\ h_2,\ h_3.$ Then $\cos i$ = $h_3,$ and $\sin i$ = $\sqrt{h_1^2+h_2^2}$

Compute equations (31) through (38)

 $\Delta \Omega = -Jr_m^2 \sqrt{\mu} \cos i \left(\frac{1}{a}\right)^3 \left(\frac{1}{a}\right)^{1/2} \quad \Delta t \quad (31)$

= -1.14161 × 10⁻⁵ cos i
$$\left(\frac{1}{a}\right)^{3} \left(\frac{1}{a}\right)^{1/2}$$
 At

$$d = G_0 \cdot G_0$$
 (32)

$$r^2 = R^2 = G_0^2$$
 (33)

$$v^2 = R^2 = G_0^2$$
 (34)

$$N = \begin{bmatrix} \cos \Omega \cos \Delta \Omega & -\sin \Omega \sin \Delta \Omega \\ \sin \Omega \cos \Delta \Omega & +\cos \Omega \sin \Delta \Omega \\ 0 \end{bmatrix}$$
(35)

$$M = \begin{bmatrix} -\cos i & (\sin \Omega \cos \Delta \Omega + \cos \Omega \sin \Delta \Omega) \\ \cos i & (\cos \Omega \cos \Delta \Omega - \sin \Omega \sin \Delta \Omega) \\ \sin i \end{bmatrix}$$
(36)

$$G = \frac{\frac{2r^2 - zd}{n}}{n} \mathbb{N} + \frac{\frac{z|G_0 \times G_0|}{n}}{n} \mathbb{M}$$
(37)

$$\dot{G} = \frac{zd - zv^2}{n} N + \frac{z|G_0 \times G_0|}{n} M \quad (38)$$

With the same time $t_{f}^{},$ rotate G, G back into selenocentric coordinates $R_{\rm p}^{},\,R_{\rm p}^{}.$

3.3 Subroutine DGAMMA

3.3.1 <u>Function</u>.- Subroutine DGAMMA determines the value of the universal variable necessary to obtain a state vector at a desired flightpath angle, with a specific initial position magnitude and the reciprocal of the seminajor axis.

3.3.2 Nomenclature .-

¢

Symbol	Input (I), output (O)	Definition
r ₀	I	magnitude of position vector at periapsis
1/a	r	reciprocal of semimajor axis
Υ	I	flight-path angle
Н	0	hyperbolic eccentric anomaly
Е	0	elliptic eccentric anomaly
β	0	universal variable
e	0	eccentricity

 $3.3.3 \ \underline{Method}.-$ Because the given state vector is computed at periapsis, equations (39) and (40) are satisfied.

 $e = 1 - \frac{r_0}{a}$ (39)

$$c = \sqrt{\left|\frac{2r_0}{a} - \frac{r_0^2}{a^2}\right|}$$
(40)

If $\frac{1}{a} < 0$, the orbit is hyperbolic.

$$H - \ln \left[\frac{c}{e} \tan \gamma + \sqrt{1 + \left(\frac{c \tan \gamma}{e} \right)^2} \right]$$

$$S = H \sqrt{|a|}$$

If $\frac{1}{a} > 0$, the orbit is elliptic.

$$\sin E = \frac{c \tan \gamma}{e}$$

$$E = \tan^{-1} \left(\frac{\sin E!}{\sqrt{1 - \sin^2 E}} \right)$$

(where $-\frac{\pi}{2} < \mathbb{E} < \frac{\pi}{2}$)

$$\beta = E \sqrt{a}$$

If $\frac{1}{a} = 0$, the orbit is parabolic.

$$\beta = (\sin \gamma / \cos \gamma) \sqrt{2r_0}$$

3.3.4 <u>Remarks</u>. On an ellipse, the eccentric anomaly is double-valued with respect to the flight-path angle. If is apparent from the equation for E that the algorithm always given the solution nearcy periapsis.

This formulation does not provide for optimization of the same tenergy arc from a hyperbolic energy through parabolic to an elliptical energy.

For the elliptic case, γ may be such that $|\sin E| > 1$. In this instance, γ cannot be achieved, and there is an error.

3.4 Subroutine EBETA

3.4.1 <u>Function</u>.- Subroutine EBETA determines the universal variable necessary to obtain the state vector at periapsis.

3.4.2 Nomenclat	ure	
Symbol	Input (1), output (0)	Definition
1/a	0	reciprocal of the semimajor axis
Ro	I	initial position vector
Ro	I	initial velocity vector
ro		magnitude of initial position vector
vo		magnitude of initial velocity vector
β	0	universal variable
μ	I	gravitational constant
Е		elliptical eccentric anomaly
Н		hyperbolic eccentric anomaly
е		eccentricity

 $3.4.3~\underline{Method}.-$ The universal variable and the state vector at periapsis are determined by equations (41) and (42).

$$D_{o} = R_{o} \cdot R_{o}$$
(41)

$$1/a = 2/r_0 - v_0^2/\mu$$
 (42)

If a > 0, the orbit is elliptic.

1

 $e \cos E = 1 - \frac{r_o}{a}$ $e \sin E = D_o / \sqrt{\mu a}$

$$E = \tan^{-1}(e \sin E/e \cos R)$$

$$\beta = -E\sqrt{a}$$

If
$$1/a = 0$$
, the orbit is parabolic.

$$\beta = -\frac{D_o}{\sqrt{\mu}}$$

If a < 0, the orbit is hyperbolic.

e cosh H = 1 -
$$r_0/a$$

e sinh H = $D_0 \sqrt{\mu |a|}$

$$H = \ln \left[\frac{e \cosh H + e \sinh H}{|(e \cosh H)^2 - (e \sinh H)^2|^{1/2}} \right]$$

 $\beta = -H\sqrt{|a|}$

This formulation does not provide for optimization of the same trajectory are from a hyperbolic energy through parabolic to an elliptic energy.

3.5 Subroutine EPHM

3.5.1 <u>Function</u>.- Bphemeris subroutines locate, transmit into core, and interpolate data from an ephemeris tape. From these data, earth and mon state vectors relative to each other, solar position, and a precessionmutation-libration direction cosine matrix are obtained.

3.5.2 <u>Remarks</u>.- The ephemeris subroutines used in the RTCC will be system subroutines.

3.6 Subroutine ELEMT

3.6.1 <u>Function</u>.- Subroutine <u>BLEWT</u> calculates a set of orbital elements from a given state vector, time, and central body constant.

3.6.2 Nomenclature .-

Symbol	Input (I), output (O)	Definition
R	I	position vector
R	I	velocity vector
н	0	angular momentum vector per unit mass
μ	I	gravity constant
8	0	semimajor axis
e	0	eccentricity
i	0	inclination of conic
n	0	mean motion
P	I	period
η	0	true anomaly

3.6.3 \underline{Method} - With R, R, t, μ specified, the following seven quantities are calculated.

$$\frac{1}{\alpha} = \left(\frac{2}{|\mathbf{R}|} - \frac{|\mathbf{R}|^2}{\mu}\right)$$

$$e = \sqrt{\left(1 - \frac{|\mathbf{R}|^2}{\mu}\right)^2 + \frac{(\mathbf{R} \cdot \mathbf{R})^2}{\mu}}$$
(43)

$$= \mathbf{V} \left(\mathbf{1} - \frac{\mathbf{1} \mathbf{x}_1}{\mathbf{a}} \right) + \frac{\mathbf{x}_1 \mathbf{x}_2}{\mathbf{\mu} \mathbf{a}}$$
(44)

$$H = R \times R$$
 (45)

$$i = \cos^{-1} \left(\frac{h_z}{|H|} \right)$$
 (46)

$$n = -\frac{\mu^{1/2}}{|a|^{3/2}}$$
(47)

$$\eta = \tan^{-1} \left(\frac{|\underline{H}| (\underline{R} + \underline{R})}{|\underline{H}|^2 - \mu |\underline{R}|} \right)$$

$$p = \frac{2\pi a \sqrt{a}}{a}$$
(48)

(49)

Equations (43) through (47) apply for all conics; equation (48) does not apply to circular orbits, and equation (49) does not apply to parabolas and hyperbolas.

3.7 Subroutine FCOMP

3.7.1 Punction.- Subroutine FCOMP determines the functions of the universal variable necessary to express two-body state vector quantities with a specific epoch state vector. The functions are well defined by circular and hyperbolic functions except as the universal variable sproaches zero. To avoid numerical difficulty, the same series expansion is always used. FCOMP is used by XEETA and CTBODY to evaluate the functions of the universal constant.

3.7.2 <u>Nomenclature</u>.-Symbol Input (I), Definition F₁ 0 functions of the universal variable a I parameter needed to obtain F 3.7.3 Method.-

$$F_{j} = \sum_{i=0}^{\infty} \frac{\alpha^{i}}{(2i+4-j)!} \quad j = 1,2$$
(50)

Equation (50) is used to compute F_1 and F_2 ; F_3 and F_4 are computed from equations (51) and (52).

$$F_3 = \alpha F_1 + 1$$
 (51)

$$F_{4} = \alpha F_{2} + 1$$
 (52)

Determine n (the number of terms to be used in the series) as follows: For $|\alpha|$ < x, n = y.

~	У
2-7	5
2-5	6
273	7
2-2	8
2-1	9
1	10
2	11
4	13
8	15
16	18
32	21
64	25
.28	30
56	38
12	46

3.8 Subroutine LIBRAT

3.8.1 <u>Function</u>.- Subroutine LIBRAT obtains an appropriate transformation matrix and transforms input state vectors from selenographic coordinates to other coordinate systems.

3.8.2 Nomenclature .-

Symbol	Input (I), output (0)	Definition
R	I and O	position vector
R	I and O	velocity vector
t	I	time of state vector
К	I	indicator
ME		moon with respect to earth

3.8.3 <u>Method.</u>- Six options exist from conversion of state vectors to different coordinate systems.

K = 1 - Earth-moon plane to selenographic K = 2 - Selenographic to earth-moon plane K = 3 - Earth-moon plane to selenocentric K = 4 - Selenocentric to earth-moon plane K = 5 - Selenocentric to selenographic K = 6 - Selenographic to selenocentric

When the earth-moon plane is involved, a matrix is used to convert either to or from this coordinate system. This matrix is formed as follows.

With the specified position $R_{\rm ME}$ and velocity $V_{\rm ME}$ of the moon with respect to the earth at each given time, \hat{I} , \hat{J} , and \hat{k} can be determined from equations (53), (54), and (55).

 $\vec{j} = \vec{k} \times \vec{i}$ (55)

Set A = $(\vec{1}, \vec{j}, \vec{k})$ and note that $\vec{1}, \vec{j}, \vec{k}$ are taken as column vectors. Let A^T denote the transpose of A. Then if the selencentric coordinates in the equatorial system are R, R, EMP coordinates are defined by equations (SGA) and (SGA).

(56a)

 $R' = A^T R$ (56b)

(57a)

or, equivalently,

R = AR' (57b)

When a conversion is made from the selenocentric coordinate system to the selenographic (moon-fixed) coordinate system, the libration matrix is used.

R = AR'

With the precession-nutation-libration matrix, B at each given time and the selencentric coordinates R, R, transform to the selencgraphic coordinates R', R" by equations (58a) and (58b).

R"	=	BR	(58a)

$$R = B^{T}R''$$
(59a)

. R = B^TR" (59b)

A combination of the two preceding techniques can be used to transform vectors from moon orbit plane to selenographic coordinates and the reverse.

3.9 Subroutine LOPC

3.9.1 <u>Function</u>.- Subroutine LOPC determines the size and effect of the lunar orbit plane change maneuver (CSM2).

3.9.2 Nomenclature .-

conversely,

Symbol	Input (I), output (0)	Definition
m	I	number of revolutions from first pass over lunar landing site (LLS) to (CSM2+ 1/4)
n	I	number of revolutions from (CSM2 + 1/4) to second pass over LLS
Р	I	period of orbit adjusted by the rotational rate of the moon
s _o	I	state vector at lunar landing
to	I	time at lunar landing

Symbol	Input (I), output (O)	Definition
Δt _l		time from first pass over LLS to CSM2
sl		state vector before CSM2
^{Δt} 2		time from first pass over LLS to second pass over LLS
⁸ 2		predicted state vector at second pass over LLS
tL		time of second pass over LLS if no CSM2
⁸ 3	0	state vector after CSM2
$\frac{m_{f}}{m_{o}}$	0	mass ratio of CSM2 maneuver
R ₂		position vector at second pass over LLS in selenographic coordinates
^R 2		velocity vector at second pass over LLS in selenographic coordinates
L	I	selenographic components of unit vector pointing to the LLS
0.2		

3.9.3 Method. - Compute equation (60).

1

$$\Delta t_{1} = \left(m - \frac{1}{4}\right)P \qquad (60)$$

Use CTEODY (regressed) to propagate S₀ from t₀ to $(t_0 + \Delta t_1)$ to obtain S₁. Then compute equation (61).

$$t_{L} = t_{0} + \Delta t_{2} = t_{0} + (m + n)P$$
 (61)

Use CTEODY (regressed) to propagate $\rm S_o$ to $\rm t_L$ to obtain $\rm S_2$. Call LIERAT at time $\rm t_L$ to transform $\rm S_2$ to selenographic coordinates $\rm R_o, R_o.$

		1	R2 × R2			
Δψ	=	-sin '		•	L	
			R2 × R2			
			·			

Call EURN to obtain S3 and $\frac{m_{f}}{m_{o}}$, using S1, $\Delta \psi$, and I39.

3.10 Subroutine PATCH

3.10.1 <u>Function</u>.- Subroutine PATCH finds a point at which there is a specific ratio between the spacecraft and the earth and the moon, and the spacecraft changes reference bodies at that point.

3.10.2 Nomenclature		
Symbol	Input (I), output (0)	Definition
R	I and O	position vector
R	I and O	velocity vector
t	I and O	time of vector
r		magnitude of position vector
i		reference body subscript: i = 1, primary body i = 2, secondary body
Q	I	direction of patch in time
ERROR	0	error return
ч	I	gravitational constant
a	I	acceleration with respect to body i
β	I	universal variable

Symbol	Input (I), output (0)	Definition
KREF	I	primary reference indicator
^R 21		position of the secondary body with respect to the primary body
r ₂₁		magnitude of Roy

3.10.3 <u>Method</u>.- In the following, if KREF = 1 (earth reference input), the earth is referred to as the primary body and the moon as the secondary body. If KREF = 2 (moon reference input), the moon is primary and the earth is secondary.

Subscripts 1 and 2 indicate primary and secondary bodies, respectively. The ratio is defined as follows.

Ratio =
$$\frac{r_2}{r_1} = \frac{distance of spacecraft from secondary body}{distance of spacecraft from primary body}$$

Therefore, for a specific two-body orbit, Ratio is a function of the orbital parameters, the universal variable 8, and the moon-earth ephemeris data. The procedure is to calculate a second order Taylor's expansion giving Ratio in terms of the following first and second partial derivatives.

$$\frac{d \text{ Ratio}}{d\beta}$$
 and $\frac{d^2 \text{Ratio}}{d\beta^2}$

Begin with an initial value of §, a corresponding initial value of Ratio, and an increasent, δB to §. Set Ratio ($\beta + \delta B$) equal to the desired value of Ratio, and solve the resulting quadratic equation for δB . If the discriminant is less than zero, set $d^2 \operatorname{Ratio}/d\delta^2 = 0$ and solve the linear equation instatic. With an initial guessed value of 8, propagate the initial state vector (by XBETA) to a final state vector at the pstch with respect to the primary reference body. The position of the secondary change is made, and π_2 and Δ_2 are calculated.

where R = $\begin{cases} \frac{1}{0.275} & \text{if the moon is the primary body} \\ 0.275 & \text{if the earth is the primary body} \end{cases}$

$$\frac{\mathrm{d} \operatorname{Ratio}}{\mathrm{d}\beta} = \frac{1}{r_2 \sqrt{\mu_1}} \left(\mathrm{d}_2 - \frac{r_2^2 \mathrm{d}_1}{r_1^2} \right)$$
(63)

(62)

where
$$d_i = R_i \cdot R_i$$
, $i = 1,2$

wÌ

$$\frac{d^{2}R_{B}io}{dB^{2}} = \frac{r_{1}}{\nu_{1}} \cdot \frac{v_{2}^{2} + R_{2} \cdot A_{2}}{r_{2}} - \frac{d_{1}d_{2}}{-\frac{u_{1}r_{1}r_{2}}{\nu_{1}r_{1}r_{2}}} - \frac{\frac{d_{2}r_{1}}{\nu_{1}r_{2}r_{2}} + \frac{r_{2}v_{1}^{2}}{r_{1}\nu_{1}} + \frac{r_{2}}{r_{1}r_{1}} + \frac{2d_{1}^{2}r_{2}}{\nu_{1}r_{1}^{2}}$$
(64)
where $v_{1}^{2} = \dot{R}_{1} \cdot \dot{R}_{1}v_{1} = 1.2$ and $A_{2} = \frac{u_{1}R_{1}}{r_{1}r_{2}} + \frac{(u_{1} + u_{2})}{r_{2}r_{1}r_{2}} R_{21}.$

$$\Delta \beta = \frac{2 \ \Delta Ratio}{\frac{d}{d\beta} + sign} \frac{(d \ Ratio)}{d\beta} \sqrt{\frac{(d \ Ratio)^2}{d\beta} + 2 \ \Delta Ratio} \frac{(d^2 Ratio)}{d\beta^2}$$

Replace β by $\beta+\Delta\beta$ and repeat the process until $\Delta Ratio$ is less than 1×10^{-12} . The last state vector and the with respect to the secondary body are the output state and time.

The initial first guesses for the earth and moon as primary bodies are the values of β needed to propagate to 40 e.r. and 10 e.r., respectively.

Upon further reference to the routine using a given primary body, the last value of distance in that particular primary body is used to derive a first guess for 8. This method implies that two distances are saved, one for each primary body, the maximum distance will be 60 er. if the earth is the primary body.

3.10.4 <u>Remarks</u>.- The last variable in the calling sequence is an error indicator which is a logical variable and which will return a value of .TRUE. when an error has occurred in the routine. There are four situations in which .TRUE, will be set up on the error indicator.

 If the patch iterative procedure fails to converge within 10 iterations.

b. If the ephemeris data table has not been initialized or the time calculated within the routine is outside the range of the ephemeris data.

c. If the magnitude of the input position vector is greater than be cr. when the earth is the primary body or 10 e.r. when the moon is the primary body and if the conic defined by the input state vector is such that the radius of periapsis is greater than 40 e.r. when the earth is the primary body or 10 e.r. when the moon is the primary body.

d. Any error indicator from subroutine RBETA.

3.11 Subroutine RBETA

3.11.1 <u>Function</u>.- Subroutine RBETA determines the universal variable necessary to obtain a state vector at a desired radial magnitude, given an initial state vector.

3.11.2 Nomenclature			
Symbol	Input (I), output (O)	Definition	
Ro	I	initial position state vector	
Ro	I	initial velocity state vector	
ro	I	magnitude of initial position . vector	
vo	I	magnitude of initial velocity vector	
Q	I	direction indicator	
β	0	universal variable	
Е		elliptic eccentric anomaly	
Н		hyperbolic eccentric anomaly	
ERROR	0	indicator of error return	
μ		gravity constant of reference body	
r	I	desired radius magnitude	
8.		semimajor axis	
e		eccentricity	

3.1.1.3 Method.- Subpourine RBETA is restricted to cases in which the desired radius magnitude is greater than the initial magnitude. If an orbit is circular, the subraft for gives a return with the error indicator set. TRUE, because any no sold suffice if the desired distance is the radius of the circle, and no sold suffice if the desired radius is double-valued; therefore an indicator q which the desired radius desired value. In general lowing in you desired of the initial position with respect to the direction of motion; if q = -1, the solution will be behind the initial position.
Determine the dot produce of R $_{\rm o}$ and R $_{\rm o}$, the semimajor axis, and the eccentricity with equations (65) through (67).

$$D_{o} = R_{o} \cdot R_{o}$$
(65)

$$\frac{1}{a} = \frac{2}{r_{o}} - \frac{v_{o}^{2}}{\mu}$$
(66)

$$e = \sqrt{\left(1 - \frac{r_o}{a}\right)^2 + \frac{D_o^2}{\mu a}}$$
(67)

If 1/a < 0, the orbit is hyperbolic.

1

$$\begin{array}{l} \cosh \ \mathrm{H}_{\mathrm{o}} = \frac{1}{\mathrm{e}} \left(1 - \frac{\mathrm{r}_{\mathrm{o}}}{\mathrm{a}} \right) \\ \\ \cosh \ \mathrm{H} = \frac{1}{\mathrm{e}} \left(1 - \frac{\mathrm{r}}{\mathrm{a}} \right) \\ \\ \mathrm{i}_{\mathrm{o}} = \pm \ln \left(\cosh \ \mathrm{H}_{\mathrm{o}} + \sqrt{\cosh^{2} \mathrm{H}_{\mathrm{o}}} - 1 \right) \end{array}$$

where the sign is chosen to be the sign of D_{o} .

$$H = \ln \left(\cosh H + \sqrt{\cosh^2 H - 1} \right)$$
$$\theta = H_0 - QH$$
$$\beta = Q[\theta] \sqrt{|a|}$$

If 1/a > 0, the orbit is elliptic.

$$\cos E_{o} = \frac{1}{e} \left(1 - \frac{r_{o}}{a}\right)$$
$$\cos E = \frac{1}{e} \left(1 - \frac{r}{a}\right)$$
$$E_{o} = \pm \tan^{2} \frac{\sqrt{1 - \cos r_{o}}}{\cos E_{o}}$$

where the sign is chosen to be the sign of D.

$$E = \tan^{-1} \frac{\sqrt{1 - \cos^2 E}}{\cos E}$$
$$0 = E_0 - QE$$

$$\beta = Q | \theta | \sqrt{a}$$

If 1/a = 0, the orbit is parabolic.

$$\beta = \frac{D_o}{\sqrt{\mu}} + Q \sqrt{\frac{D_o^2}{\mu} + 2(r - r_o)}$$

 $3.11.4, \underline{Remutks}$ - If any of the radicands involving r is less than zero, the distance r is impossible, and the calculation is suspended with error indicator set .TRUE.

3.12 Subroutine RNTSIM

3.12.1 <u>Function</u>.- Subroutine RNTSIM determines the landing conditions, conditions of delta time from entry to landing and longitude of landing.

3.12.2 Nomenclature .-

Symbol	Input (I), output (0)	Definition
λ	0	computed longitude of landing
$^{\lambda}$ L	I	longitude of landing
Δλ	0	error in longitude of landing
R	I	position vector at reentry
R	I	velocity vector at reentry
r	I	magnitude of position vector at reentry
v	I	magnitude of velocity vector at reentry
t	I	time of entry
RR	I	entry range, n. mi.
∆t	I	time from reentry to landing
$\phi_{\rm L}$	0	latitude at landing
$^{\alpha}L$	0	right ascension at landing
α _G	0	Greenwich right ascension at time of landing
γ	I	flight-path angle at reentry
θ	0	central angle between reentry and landing

3.12.3 Method.-With R, R, and RR specified, the values of p, θ , S, ϕ_L , and α_L can be determined with equation (68) through (72).

$$P = \frac{R}{v} \frac{1}{\cos \gamma} - \frac{R}{r} \tan \gamma \qquad (68)$$

$$S = \frac{R}{r} \cos \theta + P \sin \theta \qquad (70)$$

where S is the position at landing.

$$\phi_{\rm L} = \tan^{-1} \frac{{\rm S}_{\rm Z}}{\sqrt{{\rm S}_{\rm X}^2 + {\rm S}_{\rm Y}^2}}$$
 (71)

$$\alpha_{L} = \tan^{-1} \frac{y}{s_{x}}$$
(72)

Call RTASC at time t + Δt to obtain $\boldsymbol{\alpha}_{\mathbf{G}}^{}.$ Then

$$\Delta \lambda = \alpha_{\rm L} - \alpha_{\rm G} - \lambda_{\rm L}$$

$$\lambda = \alpha_L - \alpha_G$$

Reduce $\Delta\lambda$ by any excess multiples of 2π . If the result is greater than π_{τ} subtract 2π ; if the result is less than or equal to $-\pi_{\tau}$, and 2π . Thus, $-\pi < \Delta\lambda \geq \pi$.

To allow partial derivatives to be obtained correctly despite the discontinuities inherent in this scheme, the following procedure is used when computing the trajectories involved in partial derivative calculations. After each nominal trajectory computation, the value of $\Delta\lambda$ is retained. During the perturbed trajectory computations, this value, called $\Delta \lambda_0^{-1}$ is compared with the current value of Δ . If $(\Delta\lambda - \Delta\lambda_0) < -\pi$, then $\Delta\lambda$ is replaced by $\Delta\lambda + 2\pi$; if $(\Delta\lambda - \Delta\lambda_0) > \pi$, $\Delta\lambda$ is replaced by

Δλ - 2π.

3.13 Subroutine RTASC

3.13.1 <u>Function</u>.- Subroutine RTASC determines the right ascension of the Greenvich meridian. The computation for the right ascension is specified in reference 7.

3.14 Subroutine RVIO

3.14.1 <u>Function</u>.- Subroutine RVIO transforms a given set of coordinates in Cartesian or spherical form to the other form.

3.14.2 Nomenclature .-

Symbol	Input (I), output (0)	Definition
R	I and O	position vector
R	I and O	velocity vector
r	I and O	position magnitude
v	I and O	velocity magnitude
х	I and O	x component of position vector
у	I and O	y component of position vector
z	I and O	z component of position vector
x	I and O	x component of position vector
У	I and O	y component of position vector
· z	I and O	z component of position vector

Symbol	Input (I), output (0)	Definition
θ	I and O	latitude
φ	I and O	right ascension angl
γ	I and O	flight-path angle
ψ	I and O	azimuth angle

3.14.3 <u>Method.-</u> To transform spherical coordinates to Cartesian coordinates, use equations (73) through (76)

$x = r \cos \phi \cos \theta$	(73)
$y = r \cos \phi \sin \theta$	(74)
$z = r \sin \phi$	(75)

 $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} \cos \phi \cos \theta & -\sin \theta & -\sin \phi & \cos \theta \\ \cos \phi \sin \theta & \cos \theta & -\sin \phi & \sin \theta \\ \sin \phi & 0 & \cos \phi \end{bmatrix} \begin{bmatrix} v \sin \gamma \\ v \cos \gamma \sin \psi \\ v \cos \gamma \cos \psi \end{bmatrix} (76)$

To transform Cartesian coordinates to spherical coordinates, use equations (77) through (82).

 $r = \sqrt{x^2 + y^2 + z^2}$ (77)

$$\phi = \sin^{-1}\frac{z}{r}$$
(78)

 $\theta = \tan^{-1} \frac{y}{x}$ (79)

$$x = \sqrt{x^2 + y^2 + z^2}$$
(80)

$$r = \sin^{-1}\frac{\mathbf{R} \cdot \mathbf{R}}{rv}$$
(81)

$$\psi = \tan^{-1} \left(\frac{h_2}{2r - zv} \right) = \tan^{-1} \left(\frac{xy - yx}{2r - z \frac{R + R}{r}} \right)$$
(82)

3.15 Subroutine TLIBRN

3.15.1 Function -- Subroutine TLIERN simulates the translunar injection thrusting maneuver by use of a precomputed polynominal.

3.15.2 Remarks.- The method of this subroutine is contained in references 7 and 8.

3.16 Subroutine TLMC

3.16.1 <u>Function</u>.- Subroutine TLMC determines the first guesses for delta azimuth, delta velocity, and delta flight-path angle for a translunar state at abort or midcourse.

3.16.2	Nomenclature	
Symbol	Input (I), output (0)	Definition
S	I and O	state vector
t	I	time of state vector S
^t p	I	nominal time of node
x	I	x component of position vector
У	I	y component of position vector
z	I	z component of position vector

Symbol	Input (I), output (0)	Definition
r	I	desired radius at the perilune
λ		longitude of perilune in earth- moon plane system
v		velocity magnitude at perilune
γ		flight-path angle at perilune
¢	I	latitude of perilune in earth- moon plane system
ψ		azimuth of perilune in earth- moon system
Δt	I	amount of change in t _n (for non-free-return)
tn		adjusted time of node
ERROR	0	flight indicating an error in TLMC
ΔV	0	change in scalar velocity for MCC
Δγ	0	change in flight-path angle for MCC
Δψ	0	change in azimuth for MCC

3.16.3 <u>Method</u>.- Compute the adjusted time of node: $t_n = t_p + \Delta t$. The earth-moon plane (DMP) matrix is obtained by subroutine LIRRAT at the time t for use in transforming the DMP coordinates at the node to the selencentric system.

The next step sets the dependent variable limits, weights, and weight cuts. Three dependent variables, x, y, z, are defined as thecomponents of the position vector at abort or midcourse. They are designatedclass l variables. The minimum and maximum required values of the

position components are found by addition and subtraction of a small tolerance (10^{-5} e.r.) to the abort position components. Flight-path angle at time of abort is a class two dependent variable with limits of 90-182°.

After the dependent variables have been described, the independent variables are set up and given a first guess. The first independent variable is the longitude of perilume, and the second independent variable is the velocity of perilume. First guesses for these two variables are obtained from the empirical equations given in reference 3. The third independent variable is the szimuth at the perilume, and the first guess

is $-\frac{\pi}{2}$ to obtain a retrograde lunar approach hyperbola.

With the perilume forced to lie at the required EMP latitude and to have the required height and flight-path angle, the above independent variables determine the state vector at perilume in the DMP. This trajectory is propagated backward to the initial time, t. The generalized iterator then finds the set of independent variables messary to obtain the dependent variables at abort; that is, the above independents. Once converged, the differences between the azimuth, flight-path angle, and velocity before abort; and the values after above indecemptry to obtain the above node conditions are determined. These values become first guesses

3.17 Subroutine XBETA

3.17.1 <u>Function</u>.- Subroutine XBETA determines the state vector relative to the initial state vector for a desired value of the universal variable.

3.17.2 Nomenclature .-

Symbols	Input (I) output (0)	Definition
β	I	universal variable
K	I	central body indicator
Fi		functions of the universal variable
μ		gravity constant

Symbols	Input (I), output (0)	Definition
Ro	I	initial position vector
R _o	I	initial velocity vector
ro	I	magnitude of initial position vector
vo	I	magnitude of initial velocity vector
to	I	initial time
R	0	fixed position vector
R	0	fixed velocity vector
t	0	final time

3.17.3 Method.- From the initial state vector, the final state vector is determined as a function of β with equation (83) through (85).

$$D_{o} = R_{o} \cdot R_{o}$$
(83)

$$1/a = 2/r = v_0^2/\mu$$
 (84)

$$a = -\beta^2/a$$
 (85)

Call subroutine FCOMP and determine the functions of the universal variable. Use equations (86) through (94).

$$t = \left(\beta^2 F_1 + \frac{D_0 \beta F_2}{\sqrt{\mu}} + r_0 F_3\right) \beta / \sqrt{\mu}$$
(86)

$$t_{f} = t_{o} + t$$
 (87)

$$\mathbf{r} = \left(\frac{\mathbf{D}_{o}\mathbf{F}_{3}}{\sqrt{\mu}} + \beta \mathbf{F}_{2}\right)\beta + \mathbf{r}_{o}\mathbf{F}_{4}$$
(88)

$$f = 1 - \frac{\beta^2 F_2}{r_0}$$
 (89)

$$g = t - \beta^3 F_{\gamma} \mu \qquad (90)$$

$$f = -\sqrt{\mu} \beta F_3 / r_o r \qquad (91)$$

$$g = 1 - \beta^2 F_2 / r \qquad (92)$$

$$R = fR_{o} + gR_{o}$$
(93)

$$R = fR_{o} + gR_{o}$$
(94)

3.18 Subroutine PRCOMP

3.18.1 Function.- Subroutine FRCOMP constructs state vectors at LOI and DDI based upon the coordinates of the lunar landing site and the orientation and shapes of the LOI and DOI ellipses. This routine is called only twice during a real-time BAP computation: at the start of the first select mode and again at the beginning of the optimize mode.

3.18.2 Nomenclature .-

Symbol	<pre>Input (I), output (0)</pre>	Definition
ψLLS		selenographic approach azimuth to the lunar landing site
¢LLS		selenographic latitude of the lunar landing site

Symbol	Input (I), output (0)	Definition
λLLS		selenographic longitude of the lunar landing site
r _{lls}		radius of the lunar landing site
h _{alls}	I	apolune altitude of DOI ellipse during landing rev
h plls	I	perilune altitude of DOI ellipse during landing rev
Δω	I	central angle between perilune of DOI ellipse and lunar land- ing site during the landing rev
'nı	I	estimate of true anomaly of LOI (on ellipse)
HALPOL	I	apolune altitude of LOI ellipse
HPLPOL	I	perilune altitude of LOI ellipse
RVS2	I	number of complete revs spent in the DOI ellipse
RVS1	I	total number of revs spent in the LOI ellipse (a non-integer)
Rl		integer part of RVS1
DR1		decimal part of RVS1 converted to radiams
RALPOL	0	radius of apolune on the LOI ellipse
RPLPOL		radius of perilune on the LOI ellipse
alls		semimajor axis on the DOI ellipse
Tnd		time of the nodal state on the approach hyperbola

Symbol	Input (I), output (O)	Definition
TLLS		estimated time of first pass over the landing site
Δt ₂		increment of time required for a conic trajectory to propagate from a true anomaly of nl forward through DR1 radians along the LOI ellipse
η2 ^		true anomaly on the LOI ellipse at the position of DOI
ulls		selenocentric unit position vector of the landing site
u pc		selenocentric unit position vector to the hyperbolic perilune
DA		fraction of a rev (in radians) traveled in the DOI ellipse
102.22.R21		
lv2,γ2,ψ2		polar components of a seleno- graphic state vector over the lunar landing site at time T _{LLS}
TL		approximate time of DOI obtained by backward integration
A _L	0	semimajor axis of the DOI ellipse at time ${\rm T}_{\rm L}$
^E L	0	eccentricity of the DOI ellipse at time ${\rm T}_{\rm L}$
^u pl	0	unit selenocentric perilune position vector of the LOI ellipse at time ${\rm T}_{\rm L}$
RA2		apolune radius associated with the DOI ellipse at time ${\rm T}_{\rm L}$

Symbol	Input (I), output (0)	Definition
RP2		Perilune radius associated with the DOI ellipse at time ${\rm T}_{\rm L}$
$ \begin{cases} \varphi,\lambda,\mathbb{R} \\ V,\gamma,\psi \end{cases} $		polar components of a selen- ocentric state at the start
RÌI		position vector on the LOI ellipse obtained by backward integration to time T _{rad}
vĩı		velocity vector on the LOI ellipse obtained by backward integration to time T _{nd}
û'pl		unit perilune position vector associated with RII, VII
RA1		radius of apolune associated with TII, VII
RP1		radius of perilune associated with RII, VII
Δω _p	0	change in perilune position of the LOI ellipse because of propagation
Δh _a	0	change in apolune altitude of the LOI ellipse because of propagation
Δhp	0	change in perilune altitude of the LOI ellipse because of propagation
ΔΤ	0	time increment from LOI to DOI
SGSLOI	0	selenographic state vector at the end of LOI
¹ L	0	selenographic unit position vector of perilune on the DOI ellipse at time T

3.18.3 <u>Method</u>.- Input provides a nodal state on the approach hyperbola from the trajectory computer; the lumar landing site coordinates and the selenographic approach azimuth are taken from prelight data; while the size, orientation, and duration of the LOI and DOI ellipses are specified by MED quantities h_{alls} , h_{plls} , nl, Ha_{LPOI} HP_{LPO1}, RVS1, and RVS2, and $d\omega_1$.

Set $RA_{LPO1} = HA_{LPO1} + r_{11s}$, $RP_{LPO1} = HP_{LPO1} + r_{11s}$, and $a_{116} = r_{11s} + (h_{a11s} + h_{p11s})/2.0$; then use equation (95) to compute an estimate of the time of first pass over the lunar landing site.

$$T_{LLS} = T_{nd} + \frac{2\pi}{\sqrt{\mu}} \left\{ \text{Rl} \left[\frac{\text{RA}_{LPO1} + \text{RP}_{LPO1}}{.2 \cdot 0} \right]^{3/2} + \text{RVS2} \left[a_{11s} \right]^{3/2} \right\} + \Delta t_2 \quad (95)$$

where Δt_2 is the time increment required for a conic to propagate from a true anomaly of nl on the LOI ellipse forward through DRI radians. (The true anomaly at the end of this conic prapagation is saved as n2).

Next, form a unit position vector to the landing site, transform it to selencentric coordinates at time T_{LIS} , and call it u_{11S} . Let $\Delta a^* = \arccos(\hat{u}_{11S}, \hat{u}_{pc})$ and assume Δa to be Δa^* or $2\pi - \Delta a^*$ according to whether landing site passage occurs after or prior to $-\hat{u}_{pc}$ on the DOI ellipse, that is, if $(\hat{u}_{11S} \times \underline{u}_{pc}) \cdot RXV$ of hyperbola >0, $\Delta a = 2\pi - DA^*$. Form $DA^* = \Delta a = DR1$ and then use DA equal to DA^* or $2\pi + DA^*$ according to whether DA^* is positive or negative. Increment T_{LIS} by the conic time required to travel DA radians from the landing site back along the DOI ellipse. Recompute a selencentric unit position vector to the landing site with this updated time, and redetermine DA.

A selenographic state vector over the lunar landing site can be constructed in polar form according to $\phi 2 = \phi_{LLS}$, $\lambda 2 = \lambda_{LLS}$, $\psi 2 = \psi_{LLS}$ with equations (96) through (98).

 $R2 = a_{11s}(1 - e^2) / [1 + e \cos(\Delta \omega_1)]$ (96)

$$V2 = \left\{ \mu \left(\frac{2}{R^2} - \frac{1}{a_{11s}} \right) \right\}^{1/2}$$
(97)

$$\gamma 2 = -\operatorname{sign}(\Delta \omega_1) \operatorname{arc} \cos \left(\frac{\sqrt{\mu a_{11s}(1 - e^2)}}{(R2)(V2)} \right)$$
(98)

where $e = -1 + (h_{alls} + r_{lls})/a_{lls}$. Convert this state vector to Cartesian form, then transform to selenceentric form at time T_{LLS} and integrate backward through $2\pi \cdot RVS2 + DA$ radians. The time of resultant state vector will be used as T_L , the supproximate time of DOI. Calculate the associated semimajor axis, A_L , eccentricity E_L , and unit perilume position vector \hat{u}_L . Compute the radius at apolume RA2, and the radius at perlume RP2.

A state vector at the end of the LOI ellipse can be constructed in polar form by noting that no plane change occurs during the DOI maneuver. With the abbreviations A = $\frac{1}{2}$ (RA_{LPO1} + RP_{LPO1}) and E = -1 + $\frac{1}{2}$ (RA_{LPO1} + Guations (99) through (101) can be evaluated.

 $R = A(1 - E^2) / [1 + E \cos(n^2)]$ (99)

$$V = \mu \left(\frac{2}{R} - \frac{1}{A}\right)^{1/2}$$
 (100)

$$\gamma = sign(n2) \ arc \ cos \left[\frac{\sqrt{\mu A(1 - E^2)}}{(R)(V)} \right]$$
(101)

with ϕ_1 , λ , ψ , and time equal to their values at the start of the DOI ellipse (i.e., at the end of the backward propagation). Integrate this state vector backward in time to \underline{r}_{pd} to obtain RI_1 y^{II}. Compute the associated unit perlune position vector, \underline{u}_{p1} , radius at apolune, RA1, and radius at perlune R1.

Evaluate $\Delta \omega_p = \arccos(\hat{u}_{p1} \cdot \hat{u}'_{p1}) \operatorname{sign} [\hat{u}'_{p1} \times \hat{u}_{pL} \cdot (\operatorname{RlI} \times \operatorname{vlrI})]$ and form the differences $\Delta b_a = \operatorname{Ra2} - \operatorname{Ra1}$, $\Delta b_p = \operatorname{RP2} - \operatorname{RP1}$. Form $\Delta T = T_L - T_{nd}$; set the independent variable $\Delta T_{1st} \operatorname{pass} = T_{LLS} - T_{nd}$; and return to the main program.

3.19 Subroutine MCOMP

3.19.1 <u>Punction</u> - Subroutine MCOMP computes the mass of the spacecraft after each maneuver. The maneuver may be performed with either the SPS or the DPS. After the IM is undocked from the CSM, only SPS maneuvers are performed. An error message is returned if the IM fuel has been completely expended.

3.19.2 Method.- The subroutine is called with the maneuver AV, a docked or undocked indicator, a DPS or SPS indicator, the present space-oraft mass, the available LM fuel, the LM Yuel spect in previous maneuvers, and the specific inpulses of the SPS and DPS full throttle; and returns the mass after the maneuver.

An initial test is made to see whether the LM is still docked. If -AV/g I of SPS. it is not docked, the final mass is computed as me If it is still docked, a test is made to see whether the maneuver is to be performed with the DPS. If it is not to be performed with the DPS, -AV/g I of SPS the final mass is computed as me If it is to be performed with the DPS, the mass expended on the maneuver is computed as -AV/g I of DPS m_(1 - e). If the sum of this delta mass and any previous LM mass expended is greater than the LM fuel available for a maneuver. an error message is to be displayed which will indicate that this plan of maneuvers cannot be performed. If the sum of this delta mass and any previous expended LM fuel is less than the LM fuel available for maneuvers, a test is made to see whether the LM is to be dropped after this maneuver. If it is to be dropped, the final mass is computed as $m_0 - (m_{IM} - \Delta m_{total})$. If it is not to be dropped, the final mass is computed as $m_{c} - \Delta m$ of the maneuver.

3.20 Subroutine PPC

3.20.1 <u>Function</u>. Subroutine PPC accepts a selenocentric LPO state Vector and computes the delta V required to make a plane change which will place the spacecraft over a given photographic site $R_{\rm pq}$, revs later.

The selenographic state vector at passage over the photographic site is output. Several plane changes can be handled sequentially.

3.20.2 Nomenclature .-

Symbol	Definition
D	time from SMA to ND1
Dl	angle between ND1 and S used for first guess computation
DL	angle between SLLG and SG used for first guess computation
D/T	time from ND1 and SMB
DV	total accumulated velocity required
DVS	stored total velocity required (use for INTL $\neq 0$)
GMT	stored time from base time of original input state vector (used for INTL \neq 0)
H	unit angular momentum vector associated with SMB
H'	unit angular momentum vector associated with SMA
HSMA	negative angular momentum associated with SMA
i	counter for lunar photographic sites
INTL	<pre>initialization flag (INTL = 0 Iterate, INTL ≠ 0 transform previous iterated result)</pre>
IMAX	maximum number of photographic sites
К	iteration counter
ND1	unit nodal vector of parking orbits defined by SMA and SMB
PP	period of LPO
PSMB	unit projection of SMB into plane defined by SMA
R _{Ti}	number of passages over each photographic site
ŝª	current selenocentric base state vector (input state vector or previous site)
SIN	input selencentric LPO state master

⁸All state vectors are of dimension 13 and contain X, Y, Z, r, r^2 , r^3 . X, Y, Z, V, v^2 , v^3 , and time from base time. Thus, S(7) represents the velocity vector associated with the state vector S, and so on.

SĜ	selenographic state corresponding to S
SLLG	selenographic state vector associated with current λ_1 , ϕ_1 , ψ_1 (This state vector is saved for INTL = 0 execution.)
SMA	selenocentric state vector after the current maneuver
SMB	selenocentric state vector before the current maneuver
TSMB	HSMA × SMB
ΔAZ	required plane change
λi	selenographic longitude of photographic sites
$^{\lambda}$ LLS	selenocentric longitude associated with SLLS
$\lambda_{\rm ND}$	selenocentric longitude associated with NDL
μ	gravitational constant of the moon
¢i	selenographic latitude of photographic sites
Ψi	selenographic approach azimuth of photographic sites

Flow chart 1. - Subroutine PPC.

Flow chart 1. - Subroutine PPC - Continued,

Page 3 of 5

2

Flaw chart 1.- Subroutine PPC - Continued,

Page 4 of 5

Flow chart 1. - Submutate PPC - Continued,

Page 5 of 5

.

Flow chars 1. - Subroutine PPC - Concluded.

TABLE I .- INDEPENDENT VARIABLES FOR

THE TRAJECTORY COMPUTERS

	Reference frame	Use			
Variable		Analytic MCC first guess	Analytic trajectory computer	Integrating trajectory computer	
v _{pl}		1			
λ _{pl}	EMP	1			
ψ _{pl}	EMP	1			
c3			1	1	
ΔT _{EPO}			1	1	
δ			V	1	
σ			1		
ΔV _{MCC}			1	1	
Δγ _{MCC}			1	1	
Δψ _{MCC}			/	1	
Δψ _{LOI}			1		
YLOI			1		
Atlst pass LLS			/		
^T in lunar orbit			1		
Δψ _{TEI}		0	1		
ΔV _{TEI}			/		

		Use			
Variable	Reference frame	Analytic MCC first guess	Analytic trajectory computer	Integrating trajectory computer	
×mept	GC or SC	1			
ymcpt	GC or SC	1			
^z mept	GC or SC	1			
MASS			1	1	
$\Delta t_{\rm TL}$ Coast			1	1	
Hap			1	/	
H pc			1	1	
Ipc	EMP		1	1	
• _{pc}	EMP		~	1	
H _{fr-rtny}			1	1	
I _{fr}	EEP		√	1	
H _{nd}			1	1	
^{\$} nd	EMP		1	1	
λ _{nd}	EMP		1	1	
H _{LPO}			1		
Δh _n			/		
θ			1		
AVLOI			1		
4Vnor			,		

THE TRAJECTORY COMPUTERS

TABLE II .- DEPENDENT VARIABLES FOR

THE TRAJECTORY COMPUTERS - Concluded

.

	Reference frame	Use			
Variable		Analytic MCC first guess	Analytic trajectory computer	Integrating trajectory computer	
^{\$} LLS	SG		1		
λLLS	SG		/		
ΨLLS	SG		1		
MASSTEI			1		
^{∆t} TE Coast			1		

TABLE III .- BASIC MODULES USED IN TRAJECTORY COMPUTERS

MCC first guess trajectory computer	TLI/MCC analytic trajectory computer	TLI/MCC integrated trajectory	
EPHM (ephemeris)	DGAMMA	Integrator	
RVIO (Cartesian to spherical, etc.)	XBETA (BETA series sum- mation)	Forcing function	
PATCH (both ways)	BURN-impulsive	Runge Kutta	
EBETA	PATCH (both ways)	Predictor-corrector	
RBETA	EBETA	Editor	
XBETA (BETA series sum- mation)	XBETA (BETA series sum- mation)	EPHM	
EPHM	RBETA	BETA series summation	
CTEODY (BETA series summation)	EPHM (ephemeris)	RTASC	
LIBRAT	CTBODY	TLIBRN	
FCOMP	LIBRAT		
	EPHM		
	TLIBRN (cal- ibrated)	LIBRAT	
	ELEMT (orbital)	ELEMT (orbital)	
	CTBODY (BETA series sum- mation)	RVIO (Cartesian to spher- ical, etc.)	
	EBETA		
	RTASC		
	RVIO (Cartesian to spherical, etc.)		
	FCOMP		

Page 1 of 1

Flow chart 2 ,- Real time applications of the generalized Iterator.

Page 1 of 2

Flow chart 3, - Transfuriar middourse first quess trajectory computer,

Flow chart 4. - Functional flow of analytical trajectory computer for concernission,

Page 3 of 9

Flow chart 4 . - Functional flow of analytical trajectory computer for conic mission - Continued.

Page 5 of 9

Flow chart 4 .- Functional flow of analytical trajectory for cosic mission - Continued,

Page 6 of 9

Flow chart 4 .- Functional flow of analytical trajectory for conic mission - Certinued.

Flow chart 4.- Functional flow of analytical trajectory computer for conic mission - Continued,

Page 8 of 9

Flow chart 4 . - Functional flow of analytical trajectory computer for come mission - Continued.

Flow chart 4.- Functional flow of analytical trajectory for conic mission - Concluded.

Page 2 of 5

Flow chart 5. - Integrating trajectory computer - Continued.

Page 4 of 5

.

Flow chart 5. - Integrating trajectory computer - Continued.

REFERENCES

- Moore, William E.: AS-503/504 Requirements for the RTCC: The Generalized Iterator. MSC IN 66-FM-131, Nov. 4, 1966.
- Scheffman, David S.; Yencharis, Jerome D.; Zeiler, Kenneth T.: RTCC Requirements for Apollo 12 (Mission H-1): Translunar Injec-tion Processor. MSC IN 69-FM-250, Sept. 25, 1969.
- Holmes, Quentin A.; and Zeiler: HTCC Requirements for Apollo 14: XYZT and Free-Return Modes of the Translunar Midcourse Correction Processor. MSC IN 70-FM-15,
- 4. Holmes, Quentin A.; and Zeiler, Kenneth T. Zeiler: ETCC Requirements for Apollo 14: Non-Free-Reburn Modes of the Translumar Midcourse Correction Processor. MSC IN 70-FM-14, Feb. 16, 1970.
- Zeiler, Kenneth T.; Holmes, Quentin A.: RTCC Requirements for Apollo 14: Flyby Modes of the Translunar Midcourse Correction Processor. MSC IN 70-FM-11, Feb. 6, 1970.
- Moore, William E.: The Generalized Forward Iterator. MSC IN 66-FM-55, June 15, 1966.
- Martin, D. T.; and Redwine, W. J.: Empirical Simulation of the Nominal and Alternate Mission Translunar Injection Burn Fit for an Extended Range of Independent Variables. TRW Note No. 67-FMT-506 (A-77), April 14, 1967.
- Yencharis, J. D.: RTCC Requirements for Missions F and G: Empirical Equations for Simulating the Translunar Injection. MSC IN 68-FM-53, Feb. 26, 1966.
- Flanagan, P. F: RTCC Requirements for Missions E, F, and G: Greenwich Hour Angle Formulation for the Predictor. MSC IN 68-FM-53, Feb. 26, 1968.

76

NASA --- MSC

CHANGE SHEET

FOR

MSC INTERNAL NOTE 70-FM-26 (MSC-01594) DATED February 26, 1970 RTCC REQUIREMENTS FOR APOLLO 14: TRAJECTORY COMPUTERS FOR TLL

AND MCC PROCESSORS

By Brady O. McCaffety, William E. Moore, and Quentin A. Holmes

Change 2

November 12, 1971

Planetary Mission Analysis Branch

P. Mayer, Chie

Mission Planning and Analysis Division

NOTE: A black bar in the margin indicates the area of change.

After the attached enclosures, which are replacement pages, have been inserted and the pen-and-ink changes have been made, place this CHANGE SHEET between the cover and title page and write on the cover, "CHANGE 2 inserted."

Replace pages 43-44, 45-46, 65-66, and 67-68.

CHANGE HISTORY FOR 70-FM-26

_	Change no.	Date	Description
	1	5/25/70	Page 64: Pen-and-ink change to correct typographical error.
•			Page 66: Pen-and-ink changes to eliminate redundant computation.
			Page 67: Deleted page because computation is no longer needed.
			Page 68: Pen-and-ink changes to eliminate redundant computation of mass ratios.
			Replace page 72: Added a call to MCOMP for computation of mass ratios.
	2	11/12/71	These changes reflect the logic by which LPO-1 and LPO-2 are matched in the RTCC MCC processor.
•			
•			

Symbol	Input (I), output (0)	Definition
TLLS		estimated time of first pass over the landing site
Δt ₂		increment of time required for a conic trajectory to propagate from a true anomaly of nl forward through DRI radians along the LOI ellipse
n2		true anomaly on the LOI ellipse at the position of DOI
ulls		selenocentric unit position vector of the landing site
ûpe		selenocentric unit position vector to the node on the approach hyperbola
DA		fraction of a rev (in radians) traveled in the DOI ellipse
)φ2,λ2,R2 (V2,γ2,ψ2)		polar components of a selenor graphic state vector over the lunar landing site at time T _{LLS}
T_{L}		approximate time of DOI obtained by backward integration
AL	0	semimajor axis of the DOI ellipse at time ${\rm T}_{\rm L}$
EL	0	eccentricity of the DOI ellipse at time ${\rm T}_{\rm L}$.
û _{pl}	0	unit selenocentric perilune position vector of the LOI ellipse at time ${\rm T}_{\rm L}$
RA2		apolune radius associated with the DOI ellipse at time \mathbf{T}_{L}
		Change 2, November 12, 1971

Symbol	Input (I), output (0)	Definition
RF2		Perilune radius associated with the DOI ellipse at time ${\rm T}_{\rm L}$
$ \begin{cases} \varphi, \lambda, R \\ \forall, \gamma, \psi \end{cases} $		polar components of a selen i ocentric state at the start of DOI
RÌI		position vector on the LOI ⁻ ellipse obtained by backward integration to time T _{nd}
vĨī		velocity vector on the LOI ellipse obtained by backward integration to time \mathbb{T}_{nd}
ûjl		unit perilune position vector associated with RII, VII
RAL		radius of apolune associated with TII, VII
RP1		radius of perilune associated with RII, VII
Δω _p	0	change in perilune position of the LOI ellipse because of propagation
Δh _a	0	change in apolune altitude of the LOI ellipse because of propagation
Δh _p	0	change in perilune altitude of the LOI ellipse because of propagation
ΔT ,	0	time increment from LOI to DOI
SGSLOI	0	selenographic state vector at the end of LOI
uL	0	selenographic unit position vector of perilune on the DOI ellipse at time \mathbf{T}_{L}

Change 2, November 12, 1971

3.18.3 <u>Method</u>.- Input provides a nodal state on the approach hyperbola from the trajectory computer; the lumar landing site coordinates and the selencyrephic approach azimuth are taken from prelight data; while the size, orientation, and duration of the LOI and DOI allipses are specified by MED quantities h_{alls} , h_{plls} , η_l , H_{AIDOI} HP_{IPO1}, HVS1, and HVS2, and $\Delta\omega_{\eta}$.

Set $RA_{LPO1} = HA_{LPO1} + r_{11s}$, $RP_{LPO1} = HP_{LPO1} + r_{11s}$, and $a_{11s} = r_{11s} + (h_{a11s} + h_{p11s})/2.0$; then use equation (95) to compute an estimate of the time of first pass over the lunar landing site.

$$T_{\text{LLS}} = T_{\text{nd}} + \frac{2\pi}{\gamma_{\mu}} \left\{ \text{R1} \left\{ \frac{\text{RA}_{\text{LPO1}} + \text{RP}_{\text{LPO1}}}{s^{2}; 0} \right\}^{3/2} + \text{RVS2} \left[a_{\text{lls}} \right]^{3/2} \right\} + \Delta t_{2} \quad (95)$$

where Δt_2 is the time increment required for a conic to propagate from a true anomaly of n l on the LOI ellipse forward through DRI radians. (The true anomaly at the end of this conic prapagation is saved as n²).

Hext, form a unit position vector to the landing site, transform it to selencentric coordinates at time T_{LIS} , and call it \hat{u}_{11s} . Let $\Delta a' = \arccos(\hat{u}_{11s} \cdot \hat{u}_{pc})$ and assume $\Delta a to be \Delta a' \text{ or } 2\pi - \Delta a'$ according to whether landing site passage occurs after or prior to $-\hat{u}_{pc}$ on the DOI ellipse, that is, if $(\hat{u}_{11s} \times \underline{u}_{pc})$. RXV of hyperbola >0, $\Delta a = 2\pi - DA'$. Form $DA' = \Delta a = DRI$ and then use DA equal to DA'or $2\pi + DA'$. Sorm $DA' = \Delta a = DRI$ and then use DA equal to DA'or $2\pi + DA'$. Sorm DA' = a = DRI and then use DA equal to DA'or $2\pi + DA'$. Sorm DA' = bA' is positive or megative. Increment T_{LLS} by the conic time required to travel DA radians from the landing site back along the DOI ellipse. Recompute a selencentric unit position vector to the landing site with this updated time, and redetermine DA.

A selenographic state vector over the lunar landing site can be constructed in polar form according to $\phi 2 = \phi_{LLS}$, $\lambda 2 = \lambda_{LLS}$, $\psi \ \psi 2 = \psi_{LLS}$ with equations (96) through (98).

 $R2 = a_{11s}(1 - e^2) / [1 + e \cos(\Delta \omega_1)]$ (96)

Change 2, November 12, 1971

$$V2 = \left\{ \mu \left(\frac{2}{R^2} - \frac{1}{a_{11s}} \right) \right\}^{1/2}$$
(97)

$$\gamma 2 = -sign(\Delta \omega_1) \operatorname{arc} \cos \left(\frac{\sqrt{\omega_{11s}^{(1 - e^2)}}}{(R2)(V2)} \right)$$
 (98)

where $s=-1+(h_{all\,a}+r_{1l\,s})/a_{1l\,s}$. Convert this state vector to Cartesian form, then transform to selencemtric coordinates at time T_{LLG} and integrate backward in time through g_{1} . SXS2 + DA radians. The time of the resulting state vector will be used as T_{L} , the approximate time of DOI. Calculate the associated semi-major axis, A_{L} , eccentricity Z_{L} , eligan radius at perlume, RP2, flight-path angle n_{L} , and velocity V_{L} .

A state vector at the start of DOI can be constructed in polar form by noting that no plane change occurs during the DOI manever, that the true anomaly on LFOI is n2 at the impulsive position of DOI and that the altitude on LFOI and LFO2 differ by 5(Ah). We have

$$E = \{RA_{LPO1} - [R_{L} - \delta(\Delta h)]\} / \{RA_{LPO1} + [R_{L} - \delta(\Delta h)] \cos(\eta 2)\}$$
(99a)

$$A = RA_{1,PO1}/(1 + E)$$
 (99b)

$$V1 = \mu \left(\frac{2}{[R - \delta(\Delta h)]} - \frac{1}{2!} \right)^{1/2}$$
 (100)

$$Yl = sign (\eta 2) arc cos \left[\frac{\sqrt{\mu A (1 - E^2)}}{[R_1 - \delta(\Delta h)] Yl} \right]$$
(101)

with 4, λ , ϕ_{i} and time equal to their values at the start of the DOI cllipse (i.e., at the end of the backward integration). Integrate this may state vector backward in time to $T_{\rm end}$ to obtain R11, and vill. Store R11, Vill in selence the state of the state of the state vector $u_{\rm pl}$ radius at apolume RA1, radius at any the reliume R41, seinador arise A1, and eccentricity R1. Project $u_{\rm pc}$ onto the LPO1 plane and compute the angle an' between it and R11. Use subvorting DEIAT to compute the time increasent, DTODRM, required to travel from n to $n+\delta n'$ on the LOI ellipse. Transform $u_{\rm lis}$ to selencerable coordinates update $T_{\rm LDS}$ by DTODRM and repeat the backward integration of LFO2 and LFO1 plane to $T_{\rm DS}$ by DTODRM and repeat

Change 2, November 12, 1971

Page 5 of 9

Flow chart 4.- Functional flow of analytical trajectory for cocic mission - Continued,

Change 2, November 12, 1971

Page 6 of 9

Flow chart 4.- Functional flow of analytical trajectory for conic mission - Continued,

Change 2, Screaber 12, 1971

Page 7 of 9

Flow chart 4. - Functional flow of analytical trajectory computer for conic mission - Continued,

Change . Sovers-1 . . 1924

Mission Planning and Analysis Division NATIONAL AERONAUTICS AND SPACE ADMINISTRATION MANNED SPACECRAFT CENTER HOUSTON. TEXAS 70769

IN REPLY REFER TO: 70-FM54-123

: 35 1970

MEMORANDUM TO: See attached list

FROM : FM5/Chief, Lunar Mission Analysis Branch

SUBJECT : RTCC requirements for Apollo 14 (H-3): Trajectory computers for TLI and MCC processors - Change 1

Enclosed is Change 1 to MSC Internal Note No. 70-FM-26. This change reflects elimination of some redundant paths in the trajectory computers and some minor corrections to the original logic.

Karald L. Bex Ronald L. Berry

APPROVED BY: CR

John P. Mayer Chief, Mission Planning and Analysis Division

The Flight Software Branch concurs with the above recommendations.

James C. Stokes, Jr., Chief

/ Flight Software Branch

Enclosure

CHANGE HISTORY FOR 70-FM-26

-

Change no.	Date	Description	
1	5/25/70	Page 64: Pen-and-ink change to correct typographical error.	
		Page 66: Pen-and-ink changes to eliminate redundant computation.	
		Page 67: Deleted page because computation is no longer needed.	
		Page 68: Pen-and-ink changes to eliminate redundant computation of mass ratios.	
		Replace page 72: Added a call to MCOMP for computa- tion of mass ratios.	

CHANGE SHEET

FOR

MSC INTERNAL NOTE 70-FM-26 DATED FEBRUARY 26, 1970 RTCC REQUIREMENTS FOR APOLLO 14: TRAJECTORY COMPUTERS FOR TLI AND MCC PROCESSORS

By Brody O. McCaffety, William E. Moore, and Quentin A. Holmes

Change 1 May 25, 1970

Burg Ronald L. Berry, Chief

Lunar Mission Analysis Branch

William G. Sullivi Les John P. Mayer, Chief

Mission Planning and Analysis Division

Page 1 of 3 (with enclosures)

NOTE: A black bar in the margin indicates the area of change.

After the attached enclosures, which are replacement pages, have been inserted and after the following pen-and-ink changes have been made, place this CHANGE SHEET between the cover and title page and write on the cover, "CHANGE 1 inserted".

1. Page 64: reverse the direction of the arrow to $\begin{pmatrix} 1 \\ A \end{pmatrix}$ so that it points toward $\begin{pmatrix} 1 \\ A \end{pmatrix}$.

 Page 66: delete the block which reads "Compute the mass ratio using either SPS thrust parameters or DPS thrust parameters for the combined AV of LOI and DOI".

3. Page 66: replace 3/C with F/5 .

4. Page 68: delete the topmost block on page 68 which begins with "A) LOI MASS RATIO: WHERE $\rm M_{O}$ IS MASS BEFORE...".

Page 2 of 5

Flow chart 5 . - Integrating trajectory computer - Continued.

Change 1, May 25, 1970

i,