MSC INTERNAL NOTE NO. 70-FM-26

$$
\text { February 26, } 1970
$$

RTCC REQUIREMENTS FOR APOLLO 14:

 TRAJECTORY COMPUTERS FOR TLI AND MCC PROCESSORS Lunar Mission Analysis Branch MISSION PLANNING AND ANALYSIS DIVISION ; MANNED SPACECRAFT CENTER HOUSTON,TEXAS

PROJECT APOLLO

RTCC REQUIREMENTS FOR APOLLO 14: TRAJECTORY COMPUTERS FOR TLI AND MCC PROCESSORS

By Brody 0. McCaffety, William E. Moore, and Quentin A. Holmes Lunar Mission Analysis Branch

February 26, 1970

MISSION PLANNING AND ANALYSIS DIVISION NA TIONAL AERONAUTICS AND SPACE ADMINISTRATION MANNED SPACECRAFT CENTER HOUSTON, TEXAS

Approved:

Approved:
fy JohnP. Mayer, Chief Mission Planning and Analysis Division
Section Page
1.0 SUMMARY AND INTRODUCTION 1
1.1 The Trajectory Computers 2
1.2 Variables, Stopping Conditions 2
1.3 Lunar Orbits 3
2.0 ABBREVIATIONS 3
3.0 SUBROUTINES 4
3.1 Subroutine BURN 5
3.1.1 Function 5
3.1.2 Nomenclature 5
6
3.2 Subroutine CTBODY 8
3.2.1 Function 8
3.2.2 Nomenclature 8
3.2.3 Method 9
3.3 Subrout ine DGAMMA 14
3.3.1 Function 14
3.3.2 Nomenclature
15
15 15
3.3.3 Method
3.3.3 Method
3.4 Subroutine EBETA 16
3.4.1 Function 16
3.4.2 Nomenclature
17
17
3.4.3 Method 17
3.5 Subroutine EPHM 18
3.5.1 Function 18
3.5.2 Remarks 18
3.6 Subroutine ELEMT 18
3.6.1 Function 18
3.6.2 Nomenclature 19
3.6.3 Method 19
3.7 Subroutine FCOMP 20
3.7.1 Function 20
3.7.2 Nomenclature 20
3.7.3 Method 20
3.8 Subroutine LIBRAT 22
3.8.1 Function 22
3.8.2 Nomenclature 22
3.8.3 Method 22
3.9 Subroutine LOPC 24
3.9.1 Function 24
3.9.2 Nomenclature 24
3.9.3 Method 25
3.10 Subroutine PATCH 26
3.10.1 Functíon 26
3.10.2 Nomenclature 26
3.10.3 Method 27
3.11 Subroutine RBETA 29
3.11.1 Function 29
3.11.2 Nomenclature 30
3.11.3 Method 30
3.12 Subrout ine RNTSIM 33
3.12.1 Function 33
3.12.2 Nomenclature
33
33
3.12.3 Method 34
3.13 Subroutine RTASC 35
3.13.1 Function 35
3.14 Subroutine RVIO 35
3.14.1 Function 35
3.14.2 Nomenclature 35
3.14.3 Method 36
3.15 Subroutine TLIBRN 37
3.15.1 Function 37
3.15.2 Remarks
3.15.2 Remarks 37
3.16 Subroutine TLMC 37
3.16.1 Function
37
37
3.16.2 Nomenclature
37
37
3.16.3 Method 38
3.17 Subroutine XBETA 39
3.17.1 Function 39
3.17.2 Nomenclature
39
39
3.17.3 Method 40
3.18 Subroutine PRCOMP 41
3.18.1 Function 41
3.18.2 Nomenclature 41
3.18.3 Method 45
3.19 Subroutine MCOMP 47
3.19.1 Function 47
3.19.2 Method 47
3.20 Subroutine PPC 48
3.20.1 Function 48
3.20.2 Nomenclature 48
REFERENCES 76

FLOW CHARTS
Flow ChartPage
1 Subroutine PPC 50
2 Real time applications of the generalizediterator 59
3 Translunar midcourse first guess trajectory computer 60
4Functional flow of analytical trajectory computerfor conic mission62
5 Integrating trajectory computer 71

RTCC REQUIREMENTS FOR APOLLO 14: TRAJECTORY COMPUTERS

FOR TLI AND MCC PROCESSORS

By Brody 0. McCaffety, William E. Moore, and Quentin A. Holmes

1.0 SUMMARY AND INTRODUCTION

This note is the last of a series documenting the Generalized Iterator used in the RTCC translunar injection and midcourse correction processors for Apollo 14. The mathematical formulation of the iterator itself is general and is documented in reference 1 ; the programs for the various mission options provided by the processors have been documented in references 2 and 3 . This note gives the trajectory computers of the translunar injection and midcourse correction processors.

The term "Generalized Iterator" as used here refers to the whole program - supervisor, trajectory computer, and iterator. The iterator is a general formulation that applies to any problem which involves the solution of a minimum or maximum value of a given function. The technique has other RTCC applications in addition to its use in the TLI and MCC processors. The supervisor sets the dependent and independent variables to solve a desired problem. The trajectory computer indicates the sequence of events or computations needed to generate the desired trajectory. This note gives the functional and detailed information about the trajectory computer, and the subroutines used to construct a trajectory, their function, and their algorithms.

There are basically five types of trajectories generated by the TLI and MCC processors.
a. Elliptical trajectories generated out of earth orbit (i.e., E-type
ellipses and hybrid ellipses)
b. x, y, z, and t return-to-nominal trajectories generated during translunar coast
c. Free-return trajectories generated from EPO or translunar coast
d. Free-return, BAP reoptimized trajectories generated during translunar coast
e. Non-free-return, BAP reoptimized trajectories generated during translunar coast

These possibilities are shown in flow chart 3.
The calculation of each type involves the use of analytical and integrated computations. Conic, or analytical, trajectories are used in first guess routines to generate initial conditions and in optimizations to shorted computation time. Integrated calculations are necessary to provide precision target conditions. An explanation of the ways these computation modes are used together is contained in references 2, 3, 4, and 5 .

1.1 The Trajectory Computers

Separate trajectory computers are used to provide first guesses for the midcourse correction, for the conic, and for the precision trajectory computations.

The MCC first guess trajectory computer solves Lambert's problem. Subroutine TLMC computes the first guess trajectory for the MCC. The flow diagram is shown in flow chart 4.

A functional flow diagram of the analytic trajectory computer for conic mission calculations is given in flow chart 5. This flow chart shows the general flow indicating the sequence of state vector calculations, the entry of the appropriate independent variables, the calculation of the dependent variables, and the sequence of the mass history calculations.

The precision propagation of an arc is done using the Herrick-Beta technique documented in the appendix of reference 5. Flow chart 5 shows the functional flow of the precision trajectory computer.

1.2 Variables, Stopping Conditions

Independent and dependent variables for the different trajectory computers are shown in tables I and II.

The stopping conditions for the computers are indicated in the flow diagrams but are also discussed here. Integrated trajectories that return to the nominal x, y, and z of the LOI node stop at the time of the node; the non-free-return BAP options also integrate the same arc and stop on the time of the node obtained from the conic optimization.

However, the precision transearth trajectory used in the lunar flyby stops on an entry flight-path angle. Finally, during the iteration process, before the height of LOI is completely correct, the position and velocity vectors at the start of LPO are scaled to circular conditions. These vectors are used to compute the rest of the trajectory; thus, the integrity of those independent variables based on the desired height of the orbit is retained; for example, $\Delta \mathrm{T}{ }_{10}, \Delta \mathrm{~T} \mathrm{lls}^{\circ}$.

1.3 Lunar Orbits

The initial lunar orbit may be either an ellipse or a circle. Subroutine PRCOMP is used with the LOI and DOI maneuvers. This subroutine integrates backward from the lunar landing site in an approximation to the initial LPO to obtain orbital elements at LOI and DOI times. This routine provides the link between the state vector at the start of LOI and the state vector at first pass over the lunar landing site.

> 2.0 ABBREVIATIONS

> best adaptive path

BAP	best adaptive path
EOI	earth orbit insertion
EMP	earth-moon plane
EPO	earth parking orbit
LIM	lunar landing mission
LOI	lunar orbit insertion
LOPC	lunar orbit plane change prior to lunar module ascent
LPO	lunar parking orbit
MCC	midcourse correction
RTCC	Real-Time Computer Complex
TEI	transearth injection
TLI	translunar injection

3.0 SUBROUTINES

The subroutines and computation modules used in the trajectory computers are listed in table III. The following subroutines are involved.
a. BURN - simulates impulsive thrusting for application of a delta velocity magnitude, delta azimuth, and delta flight-path angle in the topocentric reference frame.
b. CTBODY - used for propagation of a conic state vector for a specified time interval.
c. DGAMMA - determines the universal conic variable from periapsis to the nearest specified flight-path angle.
d. EBETA - determines the interval in the universal conic variable from a given state vector to periapsis.
e. ELEMT - calculates a set of orbital elements from a given state vector, time, and central body constant.
f. EPHM - obtains earth and moon states vectors relative to each other, solar position, and a precession-nutation-libration direction cosine matrix from the magnetic tape ephemeris.
g. FCOMP - evaluates the universal conic functions for a specified value of the universal conic variable.
h. LIBRAT - performs librations upon an input state vector and does a reference transformation.
i. LOPC - computes the size and effect of the lunar orbit plane change (CSM2).
J. PATCH - accomplishes patching of the geocentric and selenocentric vehicle state vectors at the sphere of action of the moon.
k. RBEPA - determines the value of the universal conic variable to propagate from a given state vector to a specified radial magnitude.

1. RNTSIM - determines the landing conditions.
m. RTASC - determines right ascension of the Greenwich meridian.
n. RVIO - transforms a given set of coordinates in Cartesian or spherical form to the other form.

- TLIBRN - simulates the translunar injection thrusting maneuver by evaluation precomputed polynomials.
p. TLMC - in control when first guesses for delta azimuth, delta velocity, and delta flight-path angle are determined for translunar abort of midcourse maneuvers.
q. XBETA - propagates a given state vector through a specified universal conic β to a desired state vector. The β is the stopping condition for XBETA.
r. PRCOMP - simulates lunar parking orbits from the start of LOI through first pass over the lunar landing site by integrating backwards in time in an approximation to the initial LPO.
s. MCOMP - computes the mass after each maneuver (accounting for maneuvers by the SPS or DPS) and returns an error message if all DPS fuel is used.
t. PPC - computes ΔV for plane changes in circular lunar parking orbits using conic propagation.

The remaining text of this internal note will be devoted to a detailed description of the input, output, and the mathematics needed for each of the subroutines listed above. All lunar orbit computations will be computed using the lunar radius at the landing site and not the mean radius of the moon.

3.1 Subroutine BURN

3.1.1 Function.- Subroutine BURN simulates impulsive thrusting of the vehicle. The ideal velocity equation is used to determine propellant consumption. This subroutine is used for the MCC, LOI, LOPC, and TEI
burns.

> 3.1.2 Nomenclature.-

Symbol	Input (I), Output (O)	Definition
v_{c}	0	circular velocity
$\Delta \mathrm{v}_{\mathrm{R}}$	0	characteristic delta velocity

Symbol	$\begin{aligned} & \text { Input (I), } \\ & \text { output (0) } \end{aligned}$	Definition
$\Delta \mathrm{v}$		change in scalar velocity during burn
v_{pl}	I	velocity at perilune of the desired ellipse (if ellipse is required)
$\Delta \gamma$	I	change in flight-path angle during burn
$\Delta \psi$	I	change in azimuth during burn
$I_{s p}$	I	specific impulse
m_{f} / m_{0}	0	ratio of mass after burn to mass before burn
g_{0}	I	constant used to convert pounds force to pounds mass
μ	I	gravitational constant of current reference body
R	I	initial position vector
R	I	initial velocity vector
γ_{0}	I	initial flight-path angle
\dot{R}_{1}, \dot{R}_{2}	I	intermediate velocity vectors
R_{f}	0	final position vector
\dot{R}_{f}	0	final velocity vector

$$
\begin{align*}
& r=\sqrt{R \cdot R} \tag{1}\\
& v=\sqrt{\dot{R} \cdot \dot{R}} \tag{2}
\end{align*}
$$

If a circular state vector after the burn is specified, enter

$$
v_{c}=\sqrt{\frac{p}{r}}
$$

$$
\begin{aligned}
& \Delta \mathrm{v}=\mathrm{v}_{\mathrm{c}}-\mathrm{v} \\
& \Delta \gamma=-\gamma_{0}
\end{aligned}
$$

If an elliptical state vector is specified, enter

$$
\begin{aligned}
& \Delta v=v_{p c}-v \\
& \Delta \gamma=-\gamma_{o}
\end{aligned}
$$

In the other more general option, $\Delta v, \Delta \gamma$, and $\Delta \psi$ are entered as input. Compute equations (3) through (7)

$$
\begin{align*}
& d=R \cdot \dot{R} \tag{3}\\
& h=|R \times \dot{R}| \tag{4}
\end{align*}
$$

$$
\begin{equation*}
\dot{R}_{1}=\dot{R} \cos \Delta \gamma+\frac{v^{2} R-\dot{d}}{h} \sin \Delta \gamma \tag{5}
\end{equation*}
$$

$$
\begin{gather*}
\dot{R}_{2}=\frac{2 R\left(R \cdot \dot{R}_{1}\right)}{r^{2}} \sin ^{2} \frac{\Delta \psi}{2}+\dot{R} \cos \Delta \psi-\frac{\mathrm{R} \times \dot{R}_{1}}{r} \sin \Delta \psi \tag{6}\\
\dot{R}_{f}=\dot{R}_{2}\left(1+\frac{\Delta v}{v}\right) \tag{7}
\end{gather*}
$$

Equation (7) represents the velocity vector part of the state S_{f} after the burn. The characteristic velocity can be determined from equation (8).

$$
\begin{equation*}
\left(\Delta v_{R}\right)^{2}=\Delta v^{2}+4 v(v+\Delta v)\left(\sin ^{2} \frac{\Delta \gamma}{2}+\frac{h^{2} \cos \Delta \gamma-h \alpha \sin \Delta \gamma}{r^{2} v^{2}} \sin ^{2} \frac{\Delta \psi}{2}\right) \tag{8}
\end{equation*}
$$

The mass ratio is represented by equation (9).

$$
\begin{equation*}
\frac{m_{f}}{m_{0}}=\exp \left(\frac{-\sqrt{\left(\Delta v_{R}\right)^{2}}}{I_{s p} g_{0}}\right) \tag{9}
\end{equation*}
$$

3.2 Subroutine CTBODY

3.2.1 Function.- Subroutine CTBODY determines the propagated state vector at a specified time, Δt, from a given epoch state vector. This is the classical problem of Kepler and must be solved iteratively because of the transcendental relationship between time and the anomalies.

3.2.2 Nomenclature.-

Symbols
Input (I),
output (0)

Definition

K	I	central body indicator
r_{0}	I	position vector magnitude

Symbols	$\begin{aligned} & \text { Input (I), } \\ & \text { output (0) } \end{aligned}$	Definition
v_{0}	I	velocity vector magnitude
μ	I	gravity constant
α	0	square of universal variable divided by semimajor axis
$\begin{aligned} & \mathrm{F}_{1}, \mathrm{~F}_{2} \\ & \mathrm{~F}_{3}, \mathrm{~F}_{4} \end{aligned}$	0	functions of the universal variable
a		semimajor axis
R_{0}	I	initial position vector
\dot{R}_{0}	I	initial velocity vector
t_{0}	I	initial time
R_{f}	0	final position vector
\dot{R}_{f}	0	final velocity vector
r_{m}		radius of moon
J		$3 / 2 J_{2}$, second harmonic of moon's gravity
t_{f}	I	final time
$3 \cdot 2 \cdot 3 \mathrm{Metl}$	the interv	of propagation with equati

If $|\Delta t|<10^{-12}$, the final state vector is the initial state vector, and the operation is complete; if not $|\Delta t|<10^{-12}$, equations (11) and (12) result

$$
\begin{equation*}
\frac{1}{a}=\frac{2}{r_{0}}-\frac{v_{0}^{2}}{\mu} \tag{11}
\end{equation*}
$$

$$
\begin{equation*}
D_{0}=R_{0} \cdot \dot{R}_{0} \tag{12}
\end{equation*}
$$

A first guess of the universal variable for the Newton-Raphson iteration is made from equations (13) and (14).

$$
\begin{equation*}
B=\frac{1}{5} \quad \Delta t \frac{\sqrt{\mu}}{r_{0}} \tag{13}
\end{equation*}
$$

$$
\begin{equation*}
\alpha=-\frac{\beta^{2}}{a} \tag{14}
\end{equation*}
$$

Subroutine FCOMP is entered to obtain F_{1}, F_{2}, F_{3}, and F_{4}; and the time equation is evaluated according to equations (15) and (16).

$$
\begin{align*}
& t=\left[\beta^{2} F_{1}+\frac{D_{0}}{\sqrt{\mu}} B F_{2}+r_{0} F_{3}\right] \frac{\beta}{\sqrt{\mu}} \tag{15}\\
& r=\frac{D_{0}}{\sqrt{\mu}} B F_{3}+\beta^{2} F_{2}+r_{o} F_{4} \tag{16}
\end{align*}
$$

Increment B as defined by equation (17)

$$
\begin{equation*}
\beta=\beta+(\Delta t-t) \frac{\sqrt{\mu}}{r} \tag{17}
\end{equation*}
$$

Equation (15) is evaluated with the new value of β, and the NewtonRaphson iteration [eq. (17)] continues until the covergence tolerance of 1×10^{-12} is met.

$$
\begin{equation*}
\left|\frac{t-\Delta t}{\Delta t}\right|<10^{-12} \tag{18}
\end{equation*}
$$

Exit with an error message if no convergence is obtained after, for example, 10 iterations.

As the iterations proceed, β will move in the same direction until it is very close to the answer. To protect against the tolerance of 10^{-12} in equation (18) being too small, the signs of successive values of $\Delta t-t$ are compared. If two successive iterations should have different signs before equation (18) is satisfied, B is replaced by the average of the two values associated with these iterations, and the process is repeated until the relative difference between two values being averaged is less than 10^{-12}.

With the universal variable determined, the state vector at the final time is determined from equations (19) through (24).

$$
\begin{align*}
& f=1-\frac{\beta^{2} F_{2}}{r_{0}} \tag{19}\\
& g=t-\frac{B^{3} F_{1}}{\sqrt{\mu}} \tag{20}
\end{align*}
$$

$$
\begin{align*}
& \dot{f}=-\frac{\sqrt{\mu} \beta F_{3}}{r_{0} r} \tag{21}\\
& \dot{g}=1-\frac{\beta^{2} F_{2}}{r} \tag{22}\\
& R_{f}=f R_{o}+g R_{o} \tag{23}\\
& \dot{R}_{f}=\dot{f R}_{o}+\ddot{g R_{o}} \tag{24}
\end{align*}
$$

Cheak to see whether the ascending node is to be precessed. If not, R, R are produced as output. Otherwise (at time t_{f}), rotate R, R to selenographic coordinates G_{0}, \dot{G}_{0}. The components of G_{0} and \dot{G}_{0} will be $\mathrm{x}, \mathrm{y}, \mathrm{z}$ and $\dot{\mathrm{x}}, \dot{\mathrm{y}}, \dot{z}$, respectively.

Compute n_{1}, n_{2}, and n with equation (2j) through (2?).

$$
\begin{align*}
& n_{1}=\dot{z} x-\dot{z} \dot{x} \tag{25}\\
& n_{2}=\dot{z} y-z \dot{y} \tag{26}\\
& n=\sqrt{n_{1}^{2}+n_{2}^{2}} \tag{27}
\end{align*}
$$

If $\mathrm{n} \leq 10^{-12}$, return without precessing the node. Otherwise, compute equations (28), (29), and (30).

$$
\begin{array}{r}
\cos \Omega=\frac{n_{1}}{n} \\
\sin \Omega=\frac{n_{2}}{n} \\
H=\frac{G_{0} \times \dot{G}_{0}}{\left|G_{0} \times \dot{G}_{0}\right|} \tag{30}
\end{array}
$$

The components of H will be h_{1}, h_{2}, h_{3}. Then $\cos i=h_{3}$, and $\sin i=\sqrt{h_{1}^{2}+h_{2}^{2}}$

Compute equations (31) through (38)

$$
\begin{align*}
& \Delta \Omega=-J r_{m} \sqrt[{2 \sqrt{\mu}}]{ } \cos i\left(\frac{1}{a}\right)^{3}\left(\frac{1}{a}\right)^{1 / 2} \Delta t \tag{31}\\
&=-1.14161 \times 10^{-5} \cos i\left(\frac{1}{a}\right)^{3}\left(\frac{1}{a}\right)^{1 / 2} \Delta t \\
& d=G_{0} \cdot G_{0} \tag{32}
\end{align*}
$$

$$
\begin{equation*}
r^{2}=R^{2}=G_{0}^{2} \tag{33}
\end{equation*}
$$

$$
\begin{gather*}
\mathrm{v}^{2}=\dot{R}^{2}=\dot{G}_{0}{ }^{2} \tag{34}\\
\mathrm{~N}=\left[\begin{array}{c}
\cos \Omega \cos \Delta \Omega-\sin \Omega \sin \Delta \Omega \\
\sin \Omega \cos \Delta \Omega+\cos \Omega \sin \Delta \Omega \\
0
\end{array}\right] \tag{35}\\
M=\left[\begin{array}{c}
-\cos i(\sin \Omega \cos \Delta \Omega+\cos \Omega \sin \Delta \Omega \\
\cos i(\cos \Omega \cos \Delta \Omega-\sin \Omega \sin \Delta \Omega \\
\sin i
\end{array}\right] \tag{36}\\
G=\frac{\dot{z r} r^{2}-z d}{n} N+\frac{z\left|G_{0} \times \dot{G}_{0}\right|}{n} M \tag{37}\\
\dot{G}=\frac{\dot{z d}-z v^{2}}{n} N+\frac{\dot{z}_{0} \times \dot{G}_{0} \mid}{n} M \tag{38}
\end{gather*}
$$

With the same time t_{f}, rotate G, \dot{G} back into selenocentric coordinates R_{p}, \dot{R}_{p}.

3.3 Subroutine DGAMMA

3.3.1 Function. - Subroutine DGAMMA determines the value of the universal variable necessary to obtain a state vector at a desired flightpath angle, with a specific initial position magnitude and the reciprocal of the semimajor axis.

3.3.2 Nomenclature.-

Symbol
Input (I),
output (0)
Definition

r_{0}	I	magnitude of position vector at periapsis
1/a	I	reciprocal of semimajor axis
Y	I	flight-path angle
H	0	hyperbolic eccentric anomaly
E	0	elliptic eccentric anomaly
B	0	universal variable
e	0	eccentricity

3.3.3 Method. - Because the given state vector is computed at periapsis, equations (39) and (40) are satisfied.

$$
\begin{gather*}
e=1-\frac{r_{0}}{a} \tag{39}\\
c=\sqrt{\left|\frac{2 r_{0}}{a}-\frac{r_{0}^{2}}{a^{2}}\right|} \tag{40}
\end{gather*}
$$

If $\frac{l}{a}<0$, the orbit is hyperbolic.

$$
\begin{gathered}
H-\ln \left[\frac{c}{e} \tan \gamma+\sqrt{1+\left(\frac{c \tan \gamma}{e}\right)^{2}}\right] \\
B=H \sqrt{|a|}
\end{gathered}
$$

If $\frac{1}{a}>0$, the orbit is elliptic.

$$
\begin{array}{r}
\sin E=\frac{c \tan y}{e} \\
E=\tan ^{-1}\left(\frac{\sin E}{\sqrt{1-\sin ^{2} E}}\right)
\end{array}
$$

(where $-\frac{\pi}{2}<E<\frac{\pi}{2}$)

$$
B=E \sqrt{a}
$$

If $\frac{1}{a}=0$, the orbit is parabolic.

$$
\beta=(\sin \gamma / \cos \gamma) \sqrt{2 r_{0}}
$$

3.3.4 Remarks.- On an ellipse, the eccentric anomaly is double-valued with respect to the flight-path angle. It is apparent from the equation for E that the algorithm always given the solution nearer periapsis.

This formulation does not provide for optimization of the same trajectory arc from a hyperbolic energy through parabolic to an elliptical energy.

For the elliptic case, γ may be such that $|\sin E|>1$. In this instance, y cannot be achieved, and there is an error.

3.4 Subroutine EBETA

3.4.1 Function.- Subroutine EBETA determines the universal variable necessary to obtain the state vector at periapsis.

3.4.2 Nomenclature.-

Symbol
Input (I), output (0)

Definition

1/a	0	reciprocal of the semimajor axis
R_{0}	I	initial position vector
\dot{R}°	I	initial velocity vector
ro		magnitude of initial position vector
v°		magnitude of initial velocity vector
β	0	universal variable
μ	I	gravitational constant
E		elliptical eccentric anomaly
H		```hyperbolic eccentric anomaly eccentricity```

3.4.3 Method.- The universal variable and the state vector at periapsis are determined by equations (41) and (42).

$$
\begin{gather*}
D_{0}=R_{0} \cdot \dot{R}_{0} \tag{41}\\
1 / a=2 / r_{0}-v_{0}^{2 / \mu} \tag{42}
\end{gather*}
$$

If $a>0$, the orbit is elliptic.

$$
\begin{aligned}
& e \cos E=1-\frac{r_{0}}{a} \\
& e \sin E=D_{0} / \sqrt{\mu a}
\end{aligned}
$$

$$
\begin{gathered}
E=\tan ^{-1}(e \sin E / e \cos E) \\
\beta=-E \sqrt{a}
\end{gathered}
$$

If $1 / a=0$, the orbit is parabolic.

$$
\beta=-\frac{D_{0}}{\sqrt{\mu}}
$$

If $a<0$, the orbit is hyperbolic.

$$
\begin{gathered}
e \cosh H=1-r_{0} / a \\
e \sinh H=D_{0} \sqrt{\mu|a|} \\
H=\ln \left[\frac{e \cosh H+e \sinh H}{\left|(e \cosh H)^{2}-(e \sinh H)^{2}\right|^{1 / 2}}\right. \\
B=-H \sqrt{|a|}
\end{gathered}
$$

This formulation does not provide for optimization of the same trajectory arc from a hyperbolic energy through parabolic to an elliptic energy.

3. 5 Subroutine EPHM

3.5.1 Function. - Ephemeris subroutines locate, transmit into core, and interpolate data from an ephemeris tape. From these data, earth and moon state vectors relative to each other, solar position, and a precession-nutation-libration direction cosine matrix are obtained.
3.5.2 Remarks.- The ephemeris subroutines used in the RTCC will be system subroutines.

3.6 Subroutine ELEMT

3.6.1 Function.- Subroutine ELBMT calculates a set of orbital elements from a given state vector, time, and central body constant.
3.6.2 Nomenclature.-

Symbol

R	I	position vector
\dot{R}	I	velocity vector
H	0	angular momentum vec mass
μ	I	gravity constant
a	0	semimajor axis
e	0	eccentricity
i	0	inclination of conic
n	0	mean motion
P	I	period
n	0	true anomaly

Definition
Input (I), output (0)
anomaly
3.6.3 Method.- With R, \dot{R}, t, μ specified, the following seven quantities are calculated.

$$
\begin{gather*}
\frac{1}{a}=\left(\frac{2}{|R|}-\frac{|\dot{R}|^{2}}{\mu}\right) \tag{43}\\
e=\sqrt{\left(1-\frac{|R|}{a}\right)^{2}+\frac{(R \cdot \dot{R})^{2}}{\mu a}} \tag{44}\\
H=R \times \dot{R} \tag{45}\\
i=\cos ^{-1}\left(\frac{h_{z}}{|H|}\right) \tag{46}\\
n=-\frac{\mu^{1 / 2}}{|a|^{3} /^{2}} \tag{47}
\end{gather*}
$$

$$
\begin{gather*}
\eta=\tan ^{-1}\left(\frac{|H|(R \cdot \dot{R})}{|H|^{2}-\mu|R|}\right) \tag{48}\\
p=\frac{2 \pi a \sqrt{a}}{n} \tag{49}
\end{gather*}
$$

Equations (43) through (47) apply for all conics; equation (48) does not apply to circular orbits, and equation (49) does not apply to parabolas and hyperbolas.

3.7 Subroutine FCOMP

3.7.1 Function.- Subroutine FCOMP determines the functions of the universal variable necessary to express two-body state vector quantities with a specific epoch state vector. The functions are well defined by circular and hyperbolic functions except as the universal variable approaches zero. To avoid numerical difficulty, the same series expansion is always used. FCOMP is used by XBETA and CTBODY to evaluate the functions of the universal constant.
3.7.2 Nomenclature.-

Symbol
F_{i}
α
3.7.3 Method.-

$$
\begin{equation*}
F_{j}=\sum_{i=0}^{\infty} \frac{\alpha^{i}}{(2 i+4-j)!} j=1,2 \tag{50}
\end{equation*}
$$

Equation (50) is used to compute F_{1} and $F_{2} ; F_{3}$ and F_{4} are computed from equations (51) and (52).

Input (I), output (0)

I

0 functions of the universal variable

Definition

$$
\text { parameter needed to obtain } F
$$

$$
\begin{align*}
& F_{3}=\alpha F_{1}+1 \tag{51}\\
& F_{4}=\alpha F_{2}+1 \tag{52}
\end{align*}
$$

Determine n (the number of terms to be used in the series) as follows: For $|\alpha|<x, n=y$.

x	y
2^{-7}	5
2^{-5}	6
2^{-3}	7
2^{-2}	8
2^{-1}	9
1	10
2	11
4	13
16	15
32	18
64	21
128	25
256	30
512	38

3.8 Subroutine LIBRAT

3.8.1 Function.- Subroutine LIBRAT obtains an appropriate transformation matrix and transforms input state vectors from selenographic coordinates to other coordinate systems.
3.8.2 Nomenclature. -

Symbol
R
R
t

K
Input (I), output (0)

Definition

I and 0
position vector
I and 0 velocity vector
I time of state vector
I
indicator
ME
moon with respect to earth
3.8.3 Method.- Six options exist fron conversion of state vectors to different coordinate systems.

$$
\begin{aligned}
& K=1-\text { Earth-moon plane to selenographic } \\
& K=2-\text { Selenographic to earth-moon plane } \\
& K=3-\text { Earth-moon plane to selenocentric } \\
& K=4-\text { Selenocentric to earth-moon plane } \\
& K=5-\text { Selenocentric to selenographic } \\
& K=6 \text { - Selenographic to selenocentric }
\end{aligned}
$$

When the earth-moon plane is involved, a matrix is used to convert either to or from this coordinate system. This matrix is formed as follows.

With the specified position $R_{\text {ME }}$ and velocity $V_{\text {ME }}$ of the moon with respect to the earth at each given time, \vec{i}, \vec{j}, and \vec{k} can be determined from equations (53), (54), and (55).

$$
\begin{equation*}
\vec{i}=-\frac{R_{M E}}{\left|R_{M E}\right|} \tag{53}
\end{equation*}
$$

$$
\begin{equation*}
\vec{k}=\frac{R_{M E} \times \dot{R}_{M E}}{\left|R_{M E} \times \dot{R}_{M E}\right|} \tag{54}
\end{equation*}
$$

$$
\begin{equation*}
\vec{j}=\vec{k} \times \vec{i} \tag{55}
\end{equation*}
$$

Set $A=(\vec{i}, \vec{j}, \vec{k})$ and note that $\vec{i}, \vec{j}, \vec{k}$ are taken as column vectors. Let A^{T} denote the transpose of A. Then if the selenocentric coordinates in the equatorial system are R, R, EMP coordinates are defined by equations (56a) and (56b).

$$
\begin{align*}
& R^{\prime}=A^{T} R \tag{56a}\\
& R^{\prime}=A^{T} R \tag{56b}
\end{align*}
$$

or, equivalently,

$$
\begin{equation*}
R=A R^{\prime} \tag{57a}
\end{equation*}
$$

$$
\begin{equation*}
\dot{R}=\dot{A R} \tag{57b}
\end{equation*}
$$

When a conversion is made from the selenocentric coordinate system to the selenographic (moon-fixed) coordinate system, the libration matrix is used.

With the precession-nutation-libration matrix, B at each given time and the selenocentric coordinates R, \dot{R}, transform to the selenographic coordinates $R^{\prime}, R^{\prime \prime}$ by equations (58a) and (58b).

$$
\begin{equation*}
\mathrm{R}^{\prime \prime}=\mathrm{BR} \tag{58a}
\end{equation*}
$$

$$
\begin{equation*}
\dot{\mathrm{R}}^{\prime \prime}=\dot{\mathrm{BR}} \tag{58b}
\end{equation*}
$$

conversely,

$$
\begin{equation*}
R=B^{T} R^{\prime \prime} \tag{59a}
\end{equation*}
$$

$$
\begin{equation*}
\dot{\mathrm{R}}=\mathrm{B}^{\mathrm{T}} \mathrm{R}^{\prime \prime} \tag{59b}
\end{equation*}
$$

A combination of the two preceding techniques can be used to transform vectors from moon orbit plane to selenographic coordinates and the reverse.

3.9 Subroutine LOPC

3.9.1 Function.- Subroutine LOPC determines the size and effect of the lunar orbit plane change maneuver (CSM2).

Symbol	$\begin{aligned} & \text { Input (I), } \\ & \text { output (0) } \end{aligned}$	Definition
m	I	number of revolutions from first pass over lunar landing site (LLS) to (CSM2+ 1/4)
n	I	number of revolutions from (CSM2 $+1 / 4$) to second pass over LLS
P	I	period of orbit adjusted by the rotational rate of the moon
S_{0}	I	state vector at lunar landing
$t_{\text {o }}$	I	time at lunar landing

Symbol	$\begin{aligned} & \text { Input (I), } \\ & \text { output (0) } \end{aligned}$	Definition
Δt_{1}		time from first pass over LLS to CSM2
S_{1}		state vector before CSM2
Δt_{2}		time from first pass over LLS to second pass over LLS
S_{2}		predicted state vector at second pass over LLS
${ }^{\text {L }}$		time of second pass over LLS if no CSM2
S_{3}	0	state vector after CSM2
$\frac{m_{f}}{m_{0}}$	0	mass ratio of CSM2 maneuver
R_{2}		position vector at second pass over LLS in selenographic coordinates
\dot{R}_{2}		velocity vector at second pass over LLS in selenographic coordinates
L	I	selenographic components of unit vector pointing to the LLS
3.9.3 Method.- Compute equation (60).		
	$\Delta t_{1}=(m$	P (60)
BODY (regressed) to propagate S_{o} from t_{0} to $\left(t_{0}+\Delta t_{l}\right)$ to S_{1}. Then compute equation (61).		

Use CTBODY (regressed) to propagate S_{0} to t_{L} to obtain S_{2}.
Call. LIBRAT at time t_{L} to transform S_{2} to selenographic coordinates R_{2}, R_{2}.

$$
\Delta \psi=-\sin ^{-1}\left(\frac{R_{2} \times \dot{R}_{2}}{\left|R_{2} \times \dot{R}_{2}\right|} \cdot L\right)
$$

Call BURN to obtain S_{3} and $\frac{m_{f}}{m_{0}}$, using $S_{1}, \Delta \psi$, and $I_{s p}$.

3.10 Subroutine PATCH

3.10.1 Function.- Subroutine PATCH finds a point at which there is a specific ratio between the spacecraft and the earth and the moon, and the spacecraft changes reference bodies at that point.

3.10.2 Nomenclature.-

Symbol

R
R
t
r
i

Q

ERROR
μ
a
β

Input (I), output (0)

I and 0 position vector
I and 0 velocity vector
I and 0 time of vector
magnitude of position vector
reference body subscript:
$i=1$, primary body
$i=2$, secondary body
direction of patch in time
error return
gravitational constant
acceleration with respect to body 1
universal variable

Symbol

KREF	primary reference indicator
R_{21}	position of the secondary body with respect to the primary body
r_{21}	magnitude of R_{21}

3.10.3 Method.- In the following, if $\mathrm{KREF}=1$ (earth reference input), the earth is referred to as the primary body and the moon as the secondary body. If $K R E F=2$ (moon reference input), the moon is primary and the earth is secondary.

Subscripts 1 and 2 indicate primary and secondary bodies, respectively. The ratio is defined as follows.

$$
\text { Ratio }=\frac{r_{2}}{r_{1}}=\frac{\text { distance of spacecraft from secondary body }}{\text { distance of spacecraft from primary body }}
$$

Therefore, for a specific two-body orbit, Ratio is a function of the orbital parameters, the universal variable β, and the moon-earth ephemeris data. The procedure is to calculate a second order Taylor's expansion giving Ratio in terms of the following first and second partial derivatives.

$$
\frac{d \text { Ratio }}{d \beta} \text { and } \frac{d^{2} \text { Ratio }}{d \beta^{2}}
$$

Begin with an initial value of β, a corresponding initial value of Ratio, and an increment, $\Delta \beta$ to β. Set Ratio $(\beta+\Delta \beta)$ equal to the desired value of Ratio, and solve the resulting quadratic equation for ΔB. If the discriminant is less than zero, set d^{2} Ratio/ $d \beta^{2}=0$ and solve the linear equation instead. With an initial guessed value of B, propagate the initial state vector (by XBETA) to a final state vector at the patch with respect to the primary reference body. The position of the secondary body with respect to the primary body is obtained from EPHM. A reference change is made, and r_{2} and d_{2} are calculated.

$$
\begin{equation*}
\Delta \text { Ratio }=R-\text { Ratio } \tag{62}
\end{equation*}
$$

where $R= \begin{cases}\frac{1}{0.275} & \text { if the moon is the primary body } \\ 0.275 & \text { if the earth is the primary body }\end{cases}$

$$
\begin{equation*}
\frac{d \text { Ratio }}{d \beta}=\frac{1}{r_{2} \sqrt{\mu_{1}}}\left(d_{2}-\frac{r_{2}^{2} d_{1}}{r_{1}^{2}}\right) \tag{63}
\end{equation*}
$$

where $d_{i}=R_{i} \cdot \dot{R}_{i}, i=1,2$

$$
\begin{align*}
\frac{d^{2} \text { Ratio }}{d \beta^{2}}= & \frac{r_{1}}{\mu_{1}} \cdot \frac{v_{2}{ }^{2}+R_{2} \cdot A_{2}}{r_{2}}-\frac{d_{1} d_{2}}{\mu_{1} r_{1} r_{2}} \\
& -\frac{d_{2}{ }^{2} r_{1}}{\mu_{1} r_{2}}-\frac{r_{2} v_{1}{ }^{2}}{r_{1}{ }_{1}{ }_{1}}+\frac{r_{2}}{r_{1}{ }^{2}}+\frac{2 d_{1}{ }^{2} r_{2}}{\mu_{1} r_{1}{ }^{3}} \tag{64}
\end{align*}
$$

where $v_{i}{ }^{2}=\dot{R}_{i} \cdot \dot{R}_{i^{\prime}}, i=1,2$ and $A_{2}=-\frac{\mu_{1} R_{1}}{r_{1}{ }^{3}}+\frac{\left(\mu_{1}+\mu_{2}\right)}{r_{21}{ }^{3}} R_{21}$.

$$
\Delta \beta=\frac{2 \Delta \text { Ratio }}{\frac{d \text { Ratio }}{d \beta}+\operatorname{sign} \frac{(d \text { Ratio })}{d \beta} \sqrt{\frac{(d \text { Ratio })^{2}}{d \beta}+2 \Delta \text { Ratio } \frac{\left(d^{2} \text { Ratio }\right)}{d \beta^{2}}}}
$$

Replace β by $\beta+\Delta \beta$ and repeat the process until Δ Ratio is less than 1×10^{-12}. The last state vector and time with respect to the secondary body are the output state and time.

The initial first guesses for the earth and moon as primary bodies are the values of β needed to propagate to 40 e.r. and 10 e.r., respectively.

Upon further reference to the routine using a given primary body, the last value of distance in that particular primary body is used to derive a first guess for B. This method implies that two distances are saved, one for each primary body; the maximum distance will be 60 e.r. if the earth is the primary body, and the maximum distance will be 15 e.r. if the moon is the primary body.
3.10.4 Remarks.- The last variable in the calling sequence is an error indicator which is a logical variable and which will return a value of .TRUE. when an error has occurred in the routine. There are four situations in which. TRUE. will be set up on the error indicator.
a. If the patch iterative procedure fails to converge within 10 iterations.
b. If the ephemeris data table has not been initialized or the time calculated within the routine is outside the range of the ephemeris data.
c. If the magnitude of the input position vector is greater than 40 e.r. When the earth is the primary body or 10 e.r. When the moon is the primary body and if the conic defined by the input state vector is such that the radius of periapsis is greater than 40 e.r. when the earth is the primary body or 10 e.r. When the moon is the primary body.
d. Any error indicator from subroutine RBETA.

3.11 Subroutine RBETA

3.11.1 Function.- Subroutine RBETA determines the universal variable necessary to obtain a state vector at a desired radial magnitude, given an initial state vector.

Definition

> initial position state vector
> initial velocity state vector
> magnitude of initial position vector
> magnitude of initial velocity vector
direction indicator
universal variable
elliptic eccentric anomaly
hyperbolic eccentric anomaly
indicator of error return
gravity constant of reference body
desired radius magnitude
semimajor axis
eccentricity
3.11.3 Method.- Subroutine RBETA is restricted to cases in which the desired radius magnitude is greater than the initial magnitude. If an orbit is circular, the subroutine gives a return with the error indicator set.TRUE. because any B would suffice if the desired distance is the radius of the circle, and no β exists if the desired radius is not the circular radius. In general, the solution for a desired radius is double-valued; therefore on indicator Q is provided to select the desired solution. If $Q=+1$, the solution will be ahead of the initial position with respect to the direction of motion; if $Q=-1$, the solution will be behind the initial position.

Determine the dot produce of R_{0} and \dot{R}_{0}, the semimajor axis, and the eccentricity with equations (65) through (67).

$$
\begin{gather*}
D_{0}=R_{0} \cdot \dot{R}_{0} \tag{65}\\
\frac{1}{a}=\frac{2}{r_{0}}-\frac{v_{0}^{2}}{\mu} \tag{66}\\
e=\sqrt{\left(1-\frac{r_{0}}{a}\right)^{2}+\frac{D_{0}^{2}}{\mu a}} \tag{67}
\end{gather*}
$$

If $1 / a<0$, the orbit is hyperbolic.

$$
\begin{gathered}
\cosh H_{0}=\frac{1}{e}\left(1-\frac{r_{0}}{a}\right) \\
\cosh H=\frac{1}{e}\left(1-\frac{r}{a}\right) \\
H_{0}= \pm \ln \left(\cosh H_{0}+\sqrt{\cosh ^{2} H_{0}-1}\right)
\end{gathered}
$$

where the sign is chosen to be the sign of D_{0}.

$$
\begin{gathered}
H=\ln \left(\cosh H+\sqrt{\cosh ^{2} H-1}\right) \\
\theta=H_{0}-Q H \\
B=Q|\theta| \sqrt{|a|}
\end{gathered}
$$

If $1 / a>0$, the orbit is elliptic.

$$
\begin{gathered}
\cos E_{0}=\frac{1}{e}\left(1-\frac{r_{0}}{a}\right) \\
\cos E=\frac{1}{e}\left(1-\frac{r}{a}\right) \\
E_{0}= \pm \tan ^{-1} \frac{\sqrt{1-\cos E_{0}}}{\cos E_{0}}
\end{gathered}
$$

where the sign is chosen to be ths sign of D_{0}.

$$
\begin{gathered}
E=\tan ^{-1} \frac{\sqrt{1-\cos ^{2} E}}{\cos E} \\
\theta=E_{0}-Q E \\
\beta=Q|\theta| \sqrt{a}
\end{gathered}
$$

If $1 / a=0$, the orbit is parabolic.

$$
\beta=\frac{D_{0}}{\sqrt{\mu}}+Q \sqrt{\frac{D_{0}^{2}}{\mu}+2\left(r-r_{0}\right)}
$$

3.11.4 Remarks.- If any of the radicands involving r is less than zero, the distance r is impossible, and the calculation is suspended with error indicator set.TRUE.

3.12 Subroutine RNMSIM

3.12.1 Function.- Subroutine RNTSIM determines the landing conditions, conditions of delta time from entry to landing and longitude of landing.

3.12.2 Nomenclature.-

Symbol
λ
λ_{L}
$\Delta \lambda \quad 0$
$R \quad I$
R
r
v
t
RR
Δt
${ }^{\phi}{ }_{L}$
${ }^{\alpha} L$
α_{G}
γ
θ
0I

$$
\begin{aligned}
& \text { Input }(I), \quad \text { Definition } \\
& \text { output }(0)
\end{aligned}
$$

computed longitude of landing
longitude of landing
error in longitude of landing
position vector at reentry
velocity vector at reentry
magnitude of position vector
at reentry
magnitude of velocity vector
at reentry
time of entry
entry range, n. mi.
time from reentry to landing
latitude at landing
right ascension at landing
Greenwich right ascension at
time of landing
flight-path angle at reentry
central angle between reentry
and landing
3.12.3 Method.-With R, R, and $R R$ specified, the values of p, θ, S, ϕ_{L}, and α_{L} can be determined with equation (68) through (72).

$$
\begin{align*}
& P=\frac{\dot{R}}{V} \frac{1}{\cos \gamma}-\frac{R}{r} \tan \gamma \tag{68}\\
& \theta=R R / 3443.933585 \tag{69}\\
& S=\frac{R}{r} \cos \theta+P \sin \theta \tag{70}
\end{align*}
$$

where S is the position at landing.

$$
\begin{equation*}
\phi_{L}=\tan ^{-1} \frac{S_{z}}{\sqrt{S_{x}^{2}+S_{y}^{2}}} \tag{71}
\end{equation*}
$$

$$
\begin{equation*}
\alpha_{L}=\tan ^{-1} \frac{S^{S}}{S_{x}} \tag{72}
\end{equation*}
$$

Call RTASC at time $t+\Delta t$ to obtain α_{G}. Then

$$
\begin{aligned}
& \Delta \lambda=\alpha_{L}-\alpha_{G}-\lambda_{L} \\
& \lambda=\alpha_{L}-\alpha_{G}
\end{aligned}
$$

Reduce $\Delta \lambda$ by any excess multiples of 2π. If the result is greater than π, subtract 2π; if the result is less than or equal to $-\pi$, add 2π. Thus, $-\pi<\Delta \lambda \geq \pi$.

To allow partial derivatives to be obtained correctly despite the discontinuities inherent in this scheme, the following procedure is used when computing the trajectories involved in partial derivative calculations. After each nominal trajectory computation, the value of $\Delta \lambda$ is retained. During the perturbed trajectory computations, this value, called $\Delta \lambda_{0}$, is compared with the current value of $\Delta \lambda$. If $\left(\Delta \lambda-\Delta \lambda_{0}\right)<-\pi$, then $\Delta \lambda$ is replaced by $\Delta \lambda+2 \pi$; if $\left(\Delta \lambda-\Delta \lambda_{0}\right)>\pi, \Delta \lambda$ is replaced by $\Delta \lambda-2 \pi$.

3.13 Subroutine RTASC

3.13.1 Function.- Subroutine RTASC determines the right ascension of the Greenwich meridian. The computation for the right ascension is specified in reference 7 .
3.14 Subroutine RVIO
3.14.1 Function.- Subroutine RVIO transforms a given set of coordinates in Cartesian or spherical form to the other form.
3.14.2 Nomenclature.-

Symbol	Input (I), output (0)	Definition
R	I and 0	position vector
\dot{R}	I and 0	velocity vector
r	I and 0	position magnitude
v	I and 0	velocity magnitude
x	I and 0	x component of position vector
y	I and 0	y component of position vector
z	I and 0	z component of position vector
x	I and 0	\dot{x} component of position vector
y	I and 0	
.		y component of position vector
2	I and 0	i component of position vector

	36	
Symbol	Input (I), output (0)	Definition
θ	I and 0	latitude
ϕ	I and 0	right ascension angle
γ	I and 0	flight-path angle
ψ	I and 0	azimuth angle

3.14.3 Method.- To transform spherical coordinates to Cartesian coordinates, use equations (73) through (76)

$$
\begin{gather*}
x=r \cos \phi \cos \theta \tag{73}\\
y=r \cos \phi \sin \theta \tag{74}\\
z=r \sin \phi \tag{75}\\
{\left[\begin{array}{c}
x \\
\cdot \\
y \\
z
\end{array}\right]=\left[\begin{array}{ccc}
\cos \phi \cos \theta & -\sin \theta & -\sin \phi \cos \theta \\
\cos \phi \sin \theta & \cos \theta & -\sin \phi \sin \theta \\
\sin \phi & 0 & \cos \phi
\end{array}\right]\left[\begin{array}{l}
v \sin \gamma \\
v \cos \gamma \sin \psi \\
v \cos \gamma \cos \psi
\end{array}\right]} \tag{76}
\end{gather*}
$$

To transform Cartesian coordinates to spherical coordinates, use equations (77) through (82).

$$
\begin{align*}
& r=\sqrt{x^{2}+y^{2}+z^{2}} \tag{77}\\
& \phi=\sin ^{-1} \frac{z}{r} \tag{78}\\
& \theta=\tan ^{-1} \frac{y}{x} \tag{79}
\end{align*}
$$

$$
\begin{gather*}
v=\sqrt{x^{2}+\dot{y}^{2}+\dot{z}^{2}} \tag{80}\\
\gamma=\sin ^{-1} \frac{R \cdot \dot{R}}{r v} \tag{81}\\
\psi=\tan ^{-1}\left(\frac{h_{z}}{z r-z v}\right)=\tan ^{-1}\left(\frac{x y-y x}{\dot{z r}-z \frac{R \cdot \dot{R}}{r}}\right) \tag{82}
\end{gather*}
$$

3.15 Subroutine TLIBRN

3.15.1 Function.- Subroutine TLIBRN simulates the translunar injection thrusting maneuver by use of a precomputed polynominal.
3.15.2 $\frac{\text { Remarks. - The method of this subroutine is contained in }}{}$ references 7 and 8 .

3.16 Subroutine TLMC

3.16.1 Function.- Subroutine TLMC determines the first guesses for delta azimuth, delta velocity, and delta flight-path angle for a translunar state at abort or midcourse.

Symbol	$\begin{aligned} & \text { Input (I), } \\ & \text { output (0) } \end{aligned}$	Definition
S	I and 0	state vector
t	I	time of state vector S
${ }^{t} p$	I	nominal time of node
x	I	x component of position vector
y	I	y component of position vector
z	I	z component of position vector

Symbol	$\begin{aligned} & \text { Input (I), } \\ & \text { output }(0) \end{aligned}$	Definition
r	I	desired radius at the perilune
λ		longitude of perilune in earthmoon plane system
v		velocity magnitude at perilune
γ		flight-path angle at perilune
ϕ	I	latitude of perilune in earthmoon plane system
ψ		azimuth of perilune in earthmoon system
Δt	I	amount of change in t_{n} (for non-free-return)
t_{n}		adjusted time of node
ERROR	0	flight indicating an error in TLMC
$\Delta \mathrm{V}$	0	change in scalar velocity for MCC
$\Delta \gamma$	0	change in flight-path angle for MCC
$\Delta \psi$	0	change in azimuth for MCC

3.16.3 Method.- Compute the adjusted time of node: $t_{n}=t_{p}+\Delta t$. The earth-moon plane (EMP) matrix is obtained by subroutine LIBRAT at the time t_{n} for use in transforming the EMP coordinates at the node to the selenocentric system.

The next step sets the dependent variable limits, weights, and weight cuts. Three dependent variables, x, y, z, are defined as the components of the position vector at abort or midcourse. They are designated class 1 variables. The minimum and maximum required values of the
position components are found by addition and subtraction of a small tolerance (10^{-5} e.r.) to the abort position components. Flight-path angle at time of abort is a class two dependent variable with limits of $90-182^{\circ}$.

After the dependent variables have been described, the independent variables are set up and given a first guess. The first independent variable is the longitude of perilune, and the second independent variable is the velocity of perilune. First guesses for these two variables are obtained from the empirical equations given in reference 3. The third independent variable is the azimuth at the perilune, and the first guess is $-\frac{\pi}{2}$ to obtain a retrograde lunar approach hyperbola.

With the perilune forced to lie at the required EMP latitude and to have the required height and flight-path angle, the above independent variables determine the state vector at perilune in the EMP. This trajectory is propagated backward to the initial time, t. The generalized iterator then finds the set of independent variables necessary to obtain the dependent variables at abort; that is, the abort position components. Once converged, the differences between the azimuth, flight-path angle, and velocity before abort, and the values after abort necessary to obtain the above node conditions are determined. These values become first guesses for the MCC maneuver.

3.17 Subroutine XBETA

3.17.1 Function.- Subroutine XBETA determines the state vector relative to the initial state vector for a desired value of the universal variable.
3.17.2 Nomenclature.-

Symbols
Input (I) output (0)

Definition

B
K
F_{i}
μ

I
I
-
universal variable
central body indicator
functions of the universal variable
gravity constant

Symbols

R_{0}	I	initial position vector
\dot{R}_{0}	I	initial velocity vector
r_{0}	I	magnitude of initial position vector
v_{0}	I	magnitude of initial velocity vector
t_{0}	I	initial time
R	0	fixed position vector
R_{R}	0	fixed velocity vector
t	0	final time

Input (I), output (0)

I
agnitude of initial position vector
magnitude of initial velocity vector
final time
3.17.3 Method.- From the initial state vector, the final state vector is determined as a function of β with equation (83) through (85).

$$
\begin{align*}
& D_{0}=R_{0} \cdot \dot{R}_{0} \tag{83}\\
& 1 / a=2 / r-v_{0}^{2 / \mu} \tag{84}\\
& a=-B^{2} / a \tag{85}
\end{align*}
$$

Call subroutine FCOMP and determine the functions of the universal variable. Use equations (86) through (94).

$$
\begin{equation*}
t=\left(\beta^{2} F_{1}+\frac{D_{0} \beta F_{2}}{\sqrt{\mu}}+r_{0} F_{3}\right) B / \sqrt{\mu} \tag{86}
\end{equation*}
$$

$$
\begin{gather*}
t_{f}=t_{0}+t \tag{87}\\
r=\left(\frac{D_{0} F_{3}}{\sqrt{\mu}}+B F_{2}\right) B+r_{0} F_{4} \tag{88}\\
f=1-\frac{B^{2} F_{2}}{r_{0}} \tag{89}\\
g=t-B^{3} F_{1} \mu \tag{90}\\
\dot{f}=-\sqrt{\mu} B F_{3} / r_{o} r \tag{91}\\
\dot{g}=1-\beta^{2} F_{d / r} \tag{92}\\
R=f R_{0}+\dot{g R} R_{0} \tag{93}\\
\dot{R}=\dot{f R}+\ddot{g R}_{0} \tag{94}
\end{gather*}
$$

3.18 Subroutine PRCOMP

3.18.1 Function.- Subroutine PRCOMP constructs state vectors at LOI and DOI based upon the coordinates of the lunar landing site and the orientation and shapes of the LOI and DOI ellipses. This routine is called only twice during a real-time BAP computation: at the start of the first select mode and again at the beginning of the optimize mode.
3.18.2 Nomenclature.-

Symbol
$\psi L L S$

фLLS

$$
\begin{array}{ll}
\text { Input }(I), & \text { Definition } \\
\text { output }(0) &
\end{array}
$$

> selenographic approach azimuth to the lunar landing site
selenographic latitude of the lunar landing site

Symbol	$\begin{aligned} & \text { Input (I), } \\ & \text { output (0) } \end{aligned}$	Definition
$\lambda L L S$		selenographic longitude of the lunar landing site
$\mathrm{r}_{11 \mathrm{~s}}$		radius of the lunar landing site
$h_{\text {alls }}$	I	apolune altitude of DOI ellipse during landing rev
$h_{\text {plls }}$	I	perilune altitude of DOI ellipse during landing rev
$\Delta \omega_{1}$	I	central angle between perilune of DOI ellipse and lunar landing site during the landing rev
η_{1}	I	estimate of true anomaly of LOI (on ellipse)
$H_{L P O 1}$	I	apolune altitude of LOI ellipse
$\mathrm{HP}_{\text {LPOI }}$	I	perilune altitude of LOI ellipse
RVS2	I	number of complete revs spent in the DOI ellipse
RVSI	I	total number of revs spent in the LOI ellipse (a non-integer)
R1		integer part of RVSl
DRI		decimal part of RVSI converted to radiams
$\mathrm{RA}_{\text {LPO1 }}$	0	radius of apolune on the LOI ellipse
$\mathrm{RP}_{\text {LP01 }}$		radius of perilune on the LOI ellipse
$\mathrm{a}_{11 \mathrm{~s}}$		semimajor axis on the DOI ellipse
$\mathrm{T}_{\text {nd }}$		time of the nodal state on the approach hyperbola

Symbol	Input (I), output (0)	Definition
$T_{\text {LLS }}$		estimated time of first pass over the landing site
Δt_{2}		increment of time required for a conic trajectory to propagate from a true anomaly of nl forward through DRI radians along the LOI ellipse
n2		true anomaly on the LOI ellipse at the position of DOI
$\mathrm{u}_{11 \mathrm{~s}}$		selenocentric unit position vector of the landing site
$\hat{u} p c$		selenocentric unit position vector to the hyperbolic perilune
DA		fraction of a rev (in radians) traveled in the DOI ellipse
$\left\{\begin{array}{l} \phi 2, \lambda 2, R 2 \\ \mathrm{~V} 2, \gamma_{2}, \psi 2 \end{array}\right\}$		polar components of a selenographic state vector over the lunar landing site at time $\mathrm{T}_{\text {LLS }}$
$\mathrm{T}_{\text {L }}$		approximate time of DOI obtained by backward integration
A_{L}	0	semimajor axis of the DOI ellipse at time T_{L}
E_{L}	0	eccentricity of the DOI ellipse at time T_{L}
u_{pl}	0	unit selenocentric perilune position vector of the LOI ellipse at time T_{L}
RA2		apolune radius associated with the DOI ellipse at time T_{L}

Symbol

RP2
$\left\{\begin{array}{c}\phi, \lambda, R \\ \mathrm{~V}, \gamma, \psi\end{array}\right\}$

RIII

VIII $\hat{u}_{\mathrm{p} 1}^{1}$

RAI

RPI
$\Delta \omega_{p}$
Δh_{a}
Δh_{p}
ΔT
SGSLOI
\hat{u}_{L}

Input (I), output (0)

Perilune radius associated with the DOI ellipse at time T_{L}
polar components of a selen ocentric state at the start of DOI
position vector on the LOI ellipse obtained by backward integration to time $T_{\text {nd }}$
velocity vector on the LOI ellipse obtained by backward integration to time $T_{n d}$
unit perilune position vector associated with RII, V1I
radius of apolune associated with Tll , VII
radius of perilune associated with RII, VII
change in perilune position of the LOI ellipse because of propagation
change in apolune altitude of the LOI ellipse because of propagation
change in perilune altitude of the LOI ellipse because of propagation
time increment from LOI to DOI
selenographic state vector at the end of LOI
selenographic unit position vector of perilune on the DOI ellipse at time T_{L}
3.18.3 Method.- Input provides a nodal state on the approach hyperbola from the trajectory computer; the lunar landing site coordinates and the selenographic approach azimuth are taken from preflight data, while the size, orientation, and duration of the LOI and DOI ellipses are specified by MED quantities $h_{\text {alls }}, h_{p l l s}, ~ n l$, HA ${ }_{\text {LPOl }} H P_{\text {LPOI }}$, RVSl, and RVS2, and $\Delta \omega_{1}$.
\quad Set $R A_{L P O 1}=H A_{L P O 1}+r_{11 s}, \quad R P_{L P O 1}=H P_{L P O 1}+r_{11 s}$, and
$a_{1 l s}=r_{l 1 s}+\left(h_{\text {alls }}+h_{p l l s}\right) / 2.0$; then use equation (95) to compute
an estimate of the time of first pass over the lunar landing site.

$$
\begin{equation*}
T_{L L S}=T_{n d}+\frac{2 \pi}{\sqrt{\mu}}\left\{R 1\left[\frac{R A_{L P O 1}+R P_{L P O 1}}{2.0}\right]^{3 / 2}+R V S 2\left[a_{11 s}\right]^{3 / 2}\right\}+\Delta t_{2} \tag{95}
\end{equation*}
$$

where Δt_{2} is the time increment required for a conic to propagate from a true anomaly of $n l$ on the LOI ellipse forward through DRI radians. (The true anomaly at the end of this conic prapogation is saved as $\eta 2$).

Next, form a unit position vector to the landing site, transform it to selenocentric coordinates at time $T_{\text {LLS }}$, and call it $\hat{u}_{11 s}$. Let $\Delta \alpha^{\prime}=\arccos \left(\hat{u}_{11 s} \cdot \hat{u}_{p c}\right)$ and assume $\Delta \alpha$ to be $\Delta \alpha^{\prime}$ or $2 \pi-\Delta \alpha^{\prime}$ according to whether landing site passage occurs after or prior to $-\hat{u}_{p c}$ on the DOI ellipse, that is, if $\left(\hat{u}_{11 s} \times u_{p c}\right) \cdot R X V$ of hyperbola >0, $\Delta \alpha=2 \pi-D A^{\prime}$. Form $D^{\prime}=\Delta \alpha=D R 1$ and then use $D A$ equal to $D A^{\prime}$ or $2 \pi+D A^{\prime}$ according to whether $D A^{\prime}$ is positive or negative. Increment $\mathrm{T}_{\text {LLS }}$ by the conic time required to travel DA radians from the landing site back along the DOI ellipse. Recompute a selenocentric unit position vector to the landing site with this updated time, and redetermine DA.

A selenographic state vector over the lunar landing site can be constructed in polar form according to $\phi 2=\phi_{\text {LLS }}, \quad \lambda 2=\lambda_{\text {LLS }}, \quad \psi 2=\psi_{\text {LLS }}$ with equations (96) through (98).

$$
\begin{equation*}
R 2=a_{11 s}\left(1-e^{2}\right) /\left[1+e \cos \left(\Delta \omega_{1}\right)\right] \tag{96}
\end{equation*}
$$

$$
\left.\begin{array}{c}
\mathrm{V} 2=\left\{u\left(\frac{2}{\mathrm{R} Q}-\frac{1}{a_{11 \mathrm{~s}}}\right)\right\}^{1 / 2} \\
\gamma^{2}=-\operatorname{sign}\left(\Delta \omega_{1}\right) \operatorname{arc} \cos \left(\frac{\sqrt{\mu a_{11 \mathrm{~s}}\left(1-\mathrm{e}^{2}\right)}}{(\mathrm{R} 2)(\mathrm{V} 2)}\right. \tag{98}
\end{array}\right) .
$$

where $e=-1+\left(h_{a l l s}+r_{11 s}\right) / a_{11 s}$. Convert this state vector to Cartesian form, then transform to selenocentric form at time $T_{\text {LLS }}$ and integrate backward through 2π. RVS $2+$ DA radians. The time of resultant state vector will be used as T_{L}, the approximate time of DOI. Calculate the associated semimajor axis, A_{L}, eccentricity E_{L}, and unit perilune position vector \hat{u}_{L}. Compute the radius at apolune RA 2 , and the radius at perilune RP2.

A state vector at the end of the LOI ellipse can be constructed in polar form by noting that no plane change occurs during the DOI maneuver. With the abbreviations $A=\frac{1}{2}\left(\mathrm{RA}_{\text {LPOI }}+\mathrm{RP}_{\text {LPO1 }}\right)$ and $E=-1+\frac{1}{a}\left(R A_{\text {LPOI }}\right)$ equations (99) through (101) can be evaluated.

$$
\begin{align*}
& R=A\left(1-E^{2}\right) /[1+E \cos (n 2)] \tag{99}\\
& V=\mu\left(\frac{2}{R}-\frac{1}{A}\right)^{1} /^{2} \tag{100}\\
& \gamma=\operatorname{sign}(n 2) \operatorname{arc} \cos \left[\frac{\sqrt{\mu A\left(1-E^{2}\right)}}{(R)(V)}\right] \tag{101}
\end{align*}
$$

with ϕ, λ, ψ, and time equal to their values at the start of the DOI ellipse (i.e., at the end of the backward propagation). Integrate this state vector backward in time to $T_{\text {nd }}$ to obtain R RII, VİI. Compute the associated unit perilune position vector, $\hat{u}_{p l}$, radius at apolune, RAl,
and radius at perilune RPl.

Evaluate $\Delta \omega_{p}=\arccos \left(\hat{u}_{p l} \cdot \hat{u}_{p l}^{\prime}\right) \operatorname{sign}\left[\hat{u}_{p l}^{\prime} \times \hat{u}_{p L} \cdot(R I I \times V I I)\right]$ and form the differences $\Delta h_{a}=R A 2-R A L, \Delta h_{p}=R P 2-R P 1$. Form $\Delta T=T_{L}-T_{n d} ;$ set the independent variable $\Delta T_{\text {lst pass }}=T_{L L S}-T_{n d}$; and return to the main program.

3.19 Subroutine MCOMP

3.19.1 Function.- Subroutine MCOMP computes the mass of the spacecraft after each maneuver. The maneuver may be performed with either the SPS or the DPS. After the LM is undocked from the CSM, only SPS maneuvers are performed. An error message is returned if the LM fuel has been completely expended.
3.19.2 Method.- The subroutine is called with the maneuver $\Delta \mathrm{V}$, a docked or undocked indicator, a DPS or SPS indicator, the present spacecraft mass, the available LM fuel, the LM fuel spent in previous maneuvers, and the specific impulses of the SPS and DPS full throttle; and returns the mass after the maneuver.

An initial test is made to see whether the IM is still docked. If it is not docked, the final mass is computed as $m_{0} e^{-\Delta V / g_{0}} I_{s p}$ of SPS. If it is still docked, a test is made to see whether the maneuver is to be performed with the DPS. If it is not to be performed with the DPS, the final mass is computed as $m_{0} e^{-\Delta V / g_{0}} I_{s p}$ of $S P S$. If it is to be performed with the DPS, the mass expended on the maneuver is computed as
 LM mass expended is greater than the LM fuel available for a maneuver, an error message is to be displayed which will indicate that this plan of maneuvers cannot be performed. If the sum of this delta mass and any previous expended LM fuel is less than the LM fuel available for maneuvers, a test is made to see whether the LM is to be dropped after this maneuver. If it is to be dropped, the final mass is computed as $m_{0}-\left(m_{L M}-\Delta m_{t o t a l}\right)$. If it is not to be dropped, the final mass is computed as $m_{0}-\Delta m$ of
the maneuver.

3.20 Subroutine PPC

3.20.1 Function.- Subroutine PPC accepts a selenocentric LPO state vector and computes the delta V required to make a plane change which will place the spacecraft over a given photographic site $R_{T i}$ revs later. The selenographic state vector at passage over the photographic site is output. Several plane changes can be handled sequentially.

3.20.2 Nomenclature.-

Symbol

Definition

D time from SMA to $\hat{N D 1}$
D1 angle between $\hat{N D} 1$ and \hat{S} used for first guess computation
DL angle between SLLG and SG used for first guess computation
DT time from NDI and SMB
DV total accumulated velocity required

DVS
GMT
\hat{H}
\hat{H},
HSMA
i
INTL

IMAX
K
NDI
PP
PSMB
R_{TI}
\hat{S}^{a}

SIN
stored total velocity required (use for INTL $\neq 0$)
stored time from base time of original input state vector (used for INTL $\neq 0$)
unit angular momentum vector associated with SMB
unit angular momentum vector associated with SMA negative angular momentum associated with SMA
counter for lunar photographic sites
initialization flag (INTL $=0$ Iterate, INTL $\neq 0$ transform previous iterated result)
maximum number of photographic sites
iteration counter
unit nodal vector of parking orbits defined by SMA and SMB period of LPO
unit projection of SMB into plane defined by SMA number of passages over each photographic site
current selenocentric base state vector (input state vector or previous site)
input selenocentric LPO state vector
${ }^{a}$ All state vectors are of dimension 13 and contain X, Y, Z, r, r^{2}, r^{3}. $\dot{X}, \dot{Y}, \dot{Z}, v, v^{2}, v^{3}$, and time from base time. Thus, $\hat{S}(7)$ represents the velocity vector associated with the state vector S, and so on.

SG SLLG
selenographic state corresponding to \hat{S}
selenographic state vector associated with current $\lambda_{i}, \phi_{i}, \psi_{i}$ (This state vector is saved for INTL $=0$ execution.)
selenocentric state vector after the current maneuver selenocentric state vector before the current maneuver HSMA $\times \hat{S M B}$ required plane change
selenographic longitude of photographic sites selenocentric longitude associated with SLES selenocentric longitude associated with NDI gravitational constant of the moon selenographic latitude of photographic sites selenographic approach azimuth of photographic sites

51

Flow Chiar 1.- Subroutine PPC - Continued.

TABLE I.- INDEPENDENT VARIABLES FOR
THE TRAJECTORY COMPUTERS

Variable	Reference frame	Use		
		Analytic MCC first guess	Analytic trajectory computer	Integrating trajectory computer
V_{pl}		\checkmark		
$\lambda_{p 1}$	EMP	\checkmark		.
${ }^{\text {p }} 1$	EMP	\checkmark		
C_{3}			\checkmark	\checkmark
$\triangle \mathrm{T}_{\text {EPO }}$			\checkmark	\checkmark
δ			\checkmark	\checkmark
σ			\checkmark	
$\triangle V_{\text {MCC }}$			\checkmark	\checkmark
$\Delta \gamma_{\text {MCC }}$			\checkmark	\checkmark
$\Delta \psi_{\text {MCC }}$			\checkmark	\checkmark
${ }^{\Delta} \psi_{\text {LOI }}$			\checkmark	
$\gamma_{\text {LOI }}$			\checkmark	
$\Delta t_{\text {lst pass }} \text { LLS }$			\checkmark	
T in lunar orbit			\checkmark	
$\Delta \psi_{\text {TEI }}$			\checkmark	
$\Delta \mathrm{V}_{\text {TEI }}$			\checkmark	

TABLE II.- DEPENDENT VARIABLES FOR
THE TRAJECTORY COMPUTERS

Variable	Referenceframe	Use		
		$\begin{gathered} \hline \text { Analytic } \\ \text { MCC } \\ \text { first guess } \\ \hline \end{gathered}$	Analytic trajectory computer	$\begin{gathered} \text { Integrating } \\ \text { trajectory } \\ \text { computer } \end{gathered}$
$\mathrm{x}_{\text {mept }}$	GC or SC	\checkmark		
$\mathrm{y}_{\text {mept }}$	GC or SC	\checkmark		
$z_{\text {mept }}$	GC or SC	\checkmark		
MASS $_{\text {TII }}$			\checkmark	\checkmark
$\Delta \mathrm{t}_{\text {TL }}$ Coast			\checkmark	\checkmark
H_{ap}			\checkmark	\checkmark
H_{pc}			\checkmark	\checkmark
I_{pc}	EMP		\checkmark	\checkmark
${ }^{\text {pp }}$	EMP		\checkmark	\checkmark
$\mathrm{H}_{\text {fr-rtny }}$			\checkmark	\checkmark
I_{fr}	EEP		\checkmark	\checkmark
H_{nd}			\checkmark	\checkmark
$\phi_{\text {nd }}$	EMP		\checkmark	\checkmark
$\lambda_{\text {nd }}$	EMP		\checkmark	\checkmark
$\mathrm{H}_{\text {LPO }}$			\checkmark	
Δh_{n}			\checkmark	
θ			\checkmark	
$\Delta V_{\text {LOI }}$			\checkmark	
$\Delta \mathrm{V}_{\text {DOI }}$			\checkmark	

TABLE II.- DEPENDENT VARIABLES FOR
THE TRAJECTORY COMPUTERS - Concluded

Variable	Reference frame	Analytic MCC first guess	Analytic trajectory computer	Integrating trajectory computer
	SG		\checkmark	
$\lambda_{\text {LLS }}$	SG		\checkmark	
$\psi_{\text {LLS }}$	SG		\checkmark	
MASS $_{\text {TEI }}$			\checkmark	

TABLE III.- BASIC MODULES USED IN TRAJECTORY COMPUTERS

MCC first guess trajectory computer	TLI/MCC analytic trajectory computer	TLI/MCC integrated trajectory
EPHM (ephemeris)	DGAMMA	Integrator
RVIO (Cartesian to spherical, etc.)	XBETA (BETA series summation)	Forcing function
PATCH (both ways)	BURN-impulsive	Runge Kutta
EBETA	PATCH (both ways)	Predictor-corrector
RBETA	EBETA	Editor
XBETA (BETA series summation)	XBETA (BETA series summation)	EPHM
EPHM	RBETA	BETA series summation
$\begin{aligned} & \text { CTBODY (BETA series } \\ & \text { summation) } \end{aligned}$	EPHM (ephemeris)	RTASC
LIBRAT	CTBODY	TLIBRN
FCOMP	LIBRAT	
	EPHM	
	TLIBRN (calibrated)	LIBRAT
	ELEMT (orbital)	ELEMT (orbital)
	CTBODY (BETA series summation)	RVIO (Cartesian to spherical, etc.)
	EBETA	
	RTASC	
	RVIO (Cartesian to spherical, etc.)	
	FCOMP	

Page 2 of 9

Flow chant 4, - Funcuonal flow of analyucal trajectory conputer for conic mission.

Flow chart 4. - Functional flow of analytical trajectory for conic aission- Comtinued.

Page 4 of 9
Flow chart 4;-Functional flow of analytical tragectory for conic mission - Continued,

A) LI MASS RATIO: WHERE M IS MASS BEFORE MANEUVER, WHERE M, IS MASS AFTER $M_{1} / M_{0}=\operatorname{EXP}\left[-\left(\Delta v_{c} \rho_{0} \prime_{s p}\right)\right]$
B) MASS OF SC BEFORE LM SEPARATION
$M_{S C}=M_{\text {before }} \mathrm{LOI}^{(\mathrm{Gf} / \mathrm{mo})}$
C) ALTITUDE AT START OF LPO; $h_{L O}=R_{0}=R_{\text {LL }}$

1

A) SCALE TO ACTUAL VELOCITY ANO POSITION VECTORS SPECIFIEO PARKING ORBIT VALUES STATE AT START OF LPO IS OBTAINEO BY SCALING STATE AFTER LOU
B) TIME OF SIMULATE LM LUNAR LANOINGI
$T_{L L}=T_{\text {MMMEOIATELY AF TER LOU }}{ }^{-\Delta \Delta T_{\text {FIRST PASS }}}$ OVER LIS

CALL CTBOOY CREGRE SSEOS WITH STATE AT START OF IPO AND TIME OF LUNAR LANOING TO OBTAM ISM STATE AT LANONG. ENTER FCOMP TO EVALUATE β FUNCTIONS.

1

CALL LIERAT, WITH K = 5, ANO USE THE PNL MATRIX TO ROTATE THE CSH POSITION VECTOR AT FIRST PASS OVER THE LUNAR LANOHNG SITE FROM SELENOCENTRIC INTO THE SELENOGRAPHIC, R_{s} * THE SELENOGRAPHIC LATITUOE ANO LONGITUOE OF THE CSM AT LA LANOING TIME:

$$
\begin{equation*}
\phi_{s}=\operatorname{TAN}^{-1}\left(z_{s} / \sqrt{X_{s}^{2}+Y_{s}^{2}}\right) \tag{s}
\end{equation*}
$$

$$
\lambda_{5}=\operatorname{TAN}^{-1}\left(\mathrm{Y}_{5} / X_{5}^{5}\right)
$$

CALL RIO WITH R R_{S} ANON V_{S} TO
OBTAIN ${ }^{\text {s }}$

Page 9 of 9

Fion clart 4. - Funchonal flow of analytical trajectory lor conic mission - Concladed.

REFERENCES

1. Moore, William E.: AS-503/504 Requirements for the RTCC: The Generalized Iterator. MSC IN 66-FM-131, Nov. 4, 1966.
2. Scheffman, David S.; Yencharis, Jerome D.; Zeiler, Kenneth T.: RTCC Requirements for Apollo 12 (Mission H-1): Translunar Injection Processor. MSC IN 69-FM-250, Sept. 25, 1969.
3. Holmes, Quentin A.; and Zeiler: RTCC Requirements for Apollo 14: XYZT and Free-Return Modes of the Translunar Midcourse Correction Processor. MSC IN 70-FM-15,
4. Holmés, Quentin A.; and Zeiler, Kenneth T. Zeiler: RTCC Requirements for Apollo 14: Non-Free-Return Modes of the Translunar Midcourse Correction Processor. MSC IN 70-FM-14, Feb. 16, 1970.
5. Zeiler, Kenneth T.; Holmes, Quentin A.: RTCC Requirements for Apollo 14: Flyby Modes of the Translunar Midcourse Correction Processor. MSC IN 70-FM-11, Feb. 6, 1970.
6. Moore, William E.: The Generalized Forward Iterator. MSC IN 66-FM-55, June 15, 1966.
7. Martin, D. T.; and Redwine, W. J.: Empirical Simulation of the Nominal and Alternate Mission Translunar Injection Burn Fit for an Extended Range of Independent Variables. TRW Note No. 67-FMT-506 (A-77), April 14, 1967.
8. Yencharis, J. D.: RTCC Requirements for Missions F and G: Empirical Equations for Simulating the Translunar Injection. MSC IN 68-FM-53, Feb. 26, 1968.
9. Flanagan, P. F: RTCC Requirements for Missions E, F, and G: Greenwich Hour Angle Formulation for the Predictor. MSC IN 68-FM-53, Feb. 26, 1968.

CHANGE SHEET

FOR
MSC INTERNAL NOTE 70-FM-26 (MSC-01594) DATED February 26, 1970 RTCC REQUIREMENTS FOR APOLLO 14: TRAJECTORY COMPUTERS FOR TLI AND NC PROCESSORS

By Brady 0. McCaffety, William E. Moore, and Quentin A. Holmes
Change 2

Planetary Mission Analysis Branch

John P. Mayer, Chief
Mission Planning and Analysis Division

NOTE: A black bar in the margin indicates the area of change.
After the attached enclosures, which are replacement pages, have been inserted and the pen-and-ink changes have been made, place this CHANGE SHEET between the cover and title page and write on the cover, "CHANGE 2 inserted."

Replace pages $43-44,45-46,65-66$, and $67-68$.

Symbol	$\begin{aligned} & \text { Input (I), } \\ & \text { output (0) } \end{aligned}$	Definition
${ }^{\text {LLLS }}$		estimated time of first pass over the landing site
Δt_{2}		increment of time required for a conic trajectory to propagate from a true anomaly of $n l$ forward through DRI radians along the LOI ellipse
n2		true anomaly on the LOI ellipse at the position of DOI
$\hat{u}_{11 s}$		selenocentric unit position vector of the landing site
$\hat{u}_{p c}$		selenocentric unit position vector to the node on the approach hyperbola
DA		fraction of a rev (in radians) traveled in the DOI ellipse
$\left\{\begin{array}{l} \phi 2, \lambda 2, \mathrm{R} 2 \\ \mathrm{~V} 2, \gamma 2, \psi 2 \end{array}\right\}$		polar components of a seleno graphic state vector over the lunar landing site at time $T_{\text {LLS }}$
T_{L}		approximate time of DOI obtained by backward integration
A_{L}	0	semimajor axis of the DOI ellipse at time T_{L}
E_{L}	0	eccentricity of the DOI ellipse at time T_{L}.
$\hat{u}_{p l}$	0	unit selenocentric perilune position vector of the LOI ellipse at time T_{L}
RA2		apolune radius associated with the DOI ellipse at time T_{L} Change 2, November 12, 1971

Symbol
Input (I), output (0)

RP2
$\left\{\begin{array}{l}\phi, \lambda, R \\ \mathrm{~V}, \gamma, \psi\end{array}\right\}$ RII VII $\hat{u}_{p l}^{\prime}$

RAI

RP1
${ }^{\Delta \omega_{p}}$
Δh_{a}
Δh_{p}
ΔT

SGSLOI
\hat{u}_{L}
$\hat{u}_{\mathrm{pl}}^{\prime}$

L

Symbol | 44 |
| :--- |
| Input (I), |
| output (0) |

Definition

> Perilune radius associated with the DOI ellipse at time T_{L}
polar components of a selen- --'i ocentric state at the start of DOI
position vector on the LOI ellipse obtained by backward integration to time $T_{\text {nd }}$
velocity vector on the LOI ellipse obtained by backward integration to time $T_{n d}$
unit perilune position vector associated with RII, VII
radius of apolune associated with TlI, V1I
radius of perilune associated with RII, VII
change in perilune position of the LOI ellipse because of propagation
change in apolune altitude of the LOI ellipse because of propagation
change in perilune altitude of the LOI ellipse because of propagation
time increment from LOI to DOI
selenographic state vector at the end of LOI
selenographic unit position vector of perilune on the DOI ellipse at time T_{L}

Change 2, November 12, 1971
3.18.3 Method.- Input provides a nodal state on the approach hyperbola from the trajectory computer; the lunar landing site coordinates and the selenographic approach azimuth are taken from preflight data, while the size, orientation, and duration of the LOI and DOI ellipses are specified by MED quantities $h_{\text {alls }}, h_{p l l s}, \eta 1, H A_{L P O 1} H_{L P O 1}, R V S 1$, and RVS2, and $\Delta \omega_{1}$.

$$
\text { Set } R A_{I P O 1}=H A_{I P O 1}+r_{11 s}, \quad R P_{L P O 1}=H P_{I P O 1}+r_{11 s} \text {, and }
$$ $a_{11 s}=r_{11 s}+\left(h_{a l l s}+h_{p l l s}\right) / 2.0$; then use equation (95) to compute an estimate of the time of first pass over the lunar landing site.

$$
\begin{equation*}
T_{L L S}=T_{n d}+\frac{2 \pi}{\sqrt{\mu}}\left\{R 1\left[\frac{R A_{I P O 1}+R P_{L P O 1}}{2.0}\right]^{3 / 2}+R V S 2\left[a_{11 s}\right]^{3 / 2}\right\}+\Delta t_{2} \tag{95}
\end{equation*}
$$

where Δt_{2} is the time increment required for a conic to propagate from a true anomaly of ηl on the LOI ellipse forward through DRI radians. (The true anomaly at the end of this conic prapogation is saved as $n 2$).

Next, form a unit position vector to the landing site, transform it to selenocentric coordinates at time $T_{\text {LLS }}$, and call it $\hat{u}_{11 s^{\prime}}$. Let $\Delta \alpha^{\prime}=\operatorname{arc} \cos \left(\hat{u}_{11 s} \cdot \hat{u}_{p c}\right)$ and assume $\Delta \alpha$ to be $\Delta \alpha^{\prime}$ or $2 \pi-\Delta \alpha^{\prime}$ according to whether landing site passage occurs after or prior to $-\hat{u}_{p c}$ on the DOI ellipse, that is, if $\left(\hat{u}_{11 s} \times u_{p c}\right) \cdot R X V$ of hyperbola >0, $\Delta \alpha=2 \pi-D A^{\prime}$. Form $D^{\prime}=\Delta \alpha=D R I$ and then use $D A$ squal to $D A^{\prime}$ or $2 \pi+D A^{\prime}$ according to whether $D A^{\prime}$ is positive or negative. Increment $T_{L L S}$ by the conic time required to travel DA radians from the landing site back along the DOI ellipse. Recompute a selenocentric unit position vector to the landing site with this updated time, and redetermine DA.

A selenographic state vector over the lunar landing site can be constructed in polar form according to $\phi 2=\phi_{\text {LLS }}, \quad \lambda 2=\lambda_{\text {LLS }}, \psi \psi 2=\psi_{L L S}$ with equations (96) through (98).

$$
\begin{equation*}
R 2=a_{11 s}\left(1-e^{2}\right) /\left[1+e \cos \left(\Delta \omega_{1}\right)\right] \tag{96}
\end{equation*}
$$

Change 2, November 12, 1971

$$
\left.\begin{array}{c}
\mathrm{V} 2=\left\{\mu\left(\frac{2}{\mathrm{R} 2}-\frac{1}{a_{11 \mathrm{~s}}}\right)\right\}^{1 / 2} \\
\gamma 2=-\operatorname{sign}\left(\Delta \omega_{1}\right) \text { arc } \cos \left(\frac{\sqrt{\mu a_{11 \mathrm{~s}}\left(1-\mathrm{e}^{2}\right)}}{(\mathrm{R} 2)(\mathrm{V} 2)}\right. \tag{98}
\end{array}\right)
$$

where $e=-1+\left(h_{\text {alls }}+r_{11 s}\right) / a_{11 s}$. Convert this state vector to Cartesian form, then transform to selenocentric coordinates at time $T_{\text {LLS }}$ and integrate backward in time through 2_{n}. RVS2 + DA radians. The time of the resulting state vector will be used as T_{L}, the approximate time of DOI. Calculate the associated semimajor axis, A_{L}, eccentricity E_{L}, and radius R_{L}. Compute the radius at apolune, RA2, the radius at perilune, RP2, flight-path angle γ_{L}, and velocity V_{L}.

A state vector at the start of DOI can be constructed in polar form by noting that no plane change occurs during the DOI maneuver, that the true anomaly on LPOI is n2 at the impulsive position of DOI and that the altitude on LPOL and LPO2 differ by $\delta(\Delta h)$. We have

$$
\begin{gather*}
E=\left\{R A_{L P O 1}-\left[R_{L}-\delta(\Delta h)\right]\right\} /\left\{R A_{L P O 1}+\left[R_{L}-\delta(\Delta h)\right] \cos (n 2)\right\} \tag{99a}\\
A=R A_{L P O 1} /(1+E) \tag{99b}\\
V 1=\mu\left\{\frac{2}{[R-\delta(\Delta h)]}-\frac{1}{2}\right\}^{1 / 2} \tag{100}\\
\gamma 1=\operatorname{sign}(n 2) \text { arc } \cos \left|\frac{\sqrt{\mu A\left(1-E^{2}\right)}}{\left[R_{1}-\delta(\Delta h)\right] V 1}\right| \tag{101}
\end{gather*}
$$

with ϕ, λ, ψ, and time equal to their values at the start of the DOI ellipse (i.e., at the end of the backward integration). Integrate this new state vector backward in time to $T_{n d}$ to obtain RII, and V $\overline{1 I}$. Store RII, VIII in selenographic coordinates and compute the associated true anomaly η, unit perilune position vector $\hat{u}_{p l}$, radius at apolune RAl, radius at perilune RPl, semimajor axis Al, and eccentricity El. Project $\hat{u}_{p c}$ onto the LPOI plane and compute the angle Δn^{\prime} between it and RII. Use subroutine DELTAT to compute the time increment, DTCORK, required to travel from n to $\eta+\Delta \eta^{\prime}$ on the LOI ellipse. Transform $\hat{u}_{11 s}$ to selenographic coordinates update $T_{\text {LLS }}$ by DTCORR and repeat the backward integration of LPO2 and LPO1 Just once.

Change 2, November 12, 1971

Page 4 of 9
Flow chart 4. - Functional flow of aralytical trajectory for conle mission - Consinaed.
 COMPUTE $V 1=\left\langle\left(\frac{2}{R_{N}} \cdot \frac{2.0}{R_{N}+R A_{\text {LPO1 }}}\right)\right)^{1 / 2}$ AND SET THE DEPENOENT Variable $\Delta V_{\text {LOI }}$ ACCORDING TO

$$
\Delta \mathrm{v}_{\mathrm{LOI}}=\left\{v_{H}{ }^{2}+\mathrm{VI}^{2}-2 \mathrm{v}_{\mathrm{H}} \mathrm{v2}\left[\cos \left(\gamma_{H}\right) \hat{u}_{\left.O S^{*} \hat{u}_{H}\right]}\right]\right\}^{1 / 2}+8\left(\Delta \mathrm{v}_{\mathrm{LOL}}\right)
$$

CALL MCOMP FDR MASS AFTER LOI

Page 6 of 9

Flow chart 4.- Functional flow of analycleal trajectory for conic mission - Continued.

A) SCALE TD ACTUAL VELDCITY AND POSITION VECTORS SPECIFIED PARKING DREIT VALUES STATE AT START OF LPO IS OBTAINEO BY SCALING STATE AFTER LOI
8) TIME OF SIMULATED LM LUNAR LANDING:
$T_{\text {LL }}=T_{\text {IMMEDIATELY AF TER LOI }}{ }^{+\Delta T_{\text {FIRST PASS }}}$ OVER LLS

CALL CTBODY (REGRESSED) WITH STATE AT START OF LPD AND TIME OF LUNAR LANOING TD OBTAIN CSM STATE AT LANDING. ENTER FCDMP TO EVALUATE $\boldsymbol{\beta}$ FUNCTIONS.

CALL LIBRAT, WITH $K=5$, AND USE THE PNL MATRIX TO ROTATE THE CSM PDSITIDN VECTDR AT FIRST PASS OVER THE LUNAR LANDIHG SITE FROM SELENOCENTRIC INTD THE SELENOGRAPHIC, R s_{5}. THE SELENOGRAPHIC LATITUOE AND LONGITUDE OF THE CSMAT LM LANDING TIME:
$\phi_{5}=\operatorname{TAN}^{-1}\left(z_{s} / \sqrt{x_{s}^{2}+y_{s}^{2}}\right)$
$\lambda_{5}=\operatorname{TAN}^{-1}\left(Y_{5} / x_{5}\right)$
CALL RVIO WITH R ${ }_{S}$ AND V V_{S} TO OBTAIN ${ }^{S} \mathrm{~S}$

CALL LOPC COMPUTE STATE VECTOR AFTER LOPC, AND DBTAIN $\triangle \nmid$ OF LOPC

Mission Planning and Analysis Division NATIONAL AERONAUTICS AND SPACE ADMINISTRATION MANNED SPACECRAFT CENTER

Houston, Texas 77058

IN REPLY REFER TO: $\quad 70-$ FM 54-123

MRMMORANDUM TO: See attached list

FROM : FM5/Chief, Lunar Mission Analysis Branch

SUBJECT : RTCC requirements for Apollo 14 (H-3): Trajectory computers for TLI and MCC processors - Change 1

Enclosed is Change 1 to MSC Internal Note No. $70-\mathrm{FM}-26$. This change reflects elimination of some redundant paths in the trajectory computers and some minor corrections to the original logic.

APPROVED BY:

The Flight Software Branch concurs with the above recommendations.

James C. Stokes, Jr., Chief
. Flight Software Branch
Enclosure

CHANGE HISTORY FOR 70-FN-26
Change no.

Description
1
5/25/70

Page 64: Pen-and-ink change to correct typographical error.

Page 66: Pen-and-ink changes to eliminate redundant computation.

Page 67: Deleted page because computation is no longer needed.

Page 68: Pen-and-ink changes to eliminate redundant computation of mass ratios.

Replace page 72: Added a call to MCOMP for computation of mass ratios.

FOR
MSC INTERNAL NOTE 70-FM-26 DATED FEBRUARY 26, 1970 RTCC REQUIREMENTS FOR APOLLO 14: TRAJECTORY COMPUTERS

FOR TI AND NC PROCESSORS
By Brody O. McCaffety, William E. Moore, and Quentin A. Holmes
Change 1
May 25, 1970

Ronald L. Berry, Chief Lunar Mission Analysis Branch

Page 1 of 3
(with enclosures)

NOTE: A black bar in the margin indicates the area of change.
After the attached enclosures, which are replacement pages, have been inserted and after the following pen-and-ink changes have been made, place this CHANGE SHEEP between the cover and title page and write on the cover, "CHANGE 1 inserted".

1. Page 64: reverse the direction of the arrow to $\frac{1}{A}$ so that it points toward $\frac{1}{A}$.
2. Page 66: delete the block which reads "Compute the mass ratio using either SPS thrust parameters or DPS thrust parameters for the combine ΔV of LOI and DOI".
3. Page 66: replace (3/C) with (F/5).
4. Page 68: delete the topmost block on page 68 which begins with "A) LOI MASS RATIO: WHERE M_{0} IS MASS BEFORE...".

71

Page 2 of 5

Flow chart 5. - Integrating trajectory computer - Continued.

