NATIONAL AERONAUTICS AND SPACE ADMINISTRATION ALSEP CONSOLE HANDBOOK APOLLO 12, ALSEP 1 THROUGH APOLLO 17, ALSEP ARRAY E 1 GENERAL 2 MISSION SPECIFICS MAY 15, 1971 3 OPERATIONAL PROCEDURES PREPARED BY FLIGHT CONTROL DIVISION MANNED SPACECRAFT CENTER HOUSTON, TEXAS FC035 ALSEP 7/29/71 #### APOLLO #### ALSEP CONSOLE HANDBOOK APOLLO 12 ALSEP 1 THROUGH APOLLO 17 ALSEP ARRAY E PCN-1 #### PREFACE This page change notice (PCN) is a partial revision and should be incorporated into the basic document, dated May 15, 1971, according to the page change instruction sheet which follows this page. Incorporation of PCN-1 will make this handbook current as of July 29, 1971. This document has been prepared by the Lunar/Earth Experiments Branch, Flight Control Division, to detail the operational responsibilities and procedures of the Lunar/Earth Experiments Branch personnel assigned to the flight control of Apollo lunar surface experiments package (ALSEP) missions. This shall be the governing document defining specific conduct of ALSEP operations and missions. This shall be the governing document defining specific conduct of ALSEP operations and pertains to all activities to be conducted in Room 314B of the Mission Control Center (the ALSEP control area) for the operational duration of ALSEP control. Procedures and positions which interface with these described herein shall be as specified in the applicable Flight Control Operations Handbook. Information contained within this document is effective as of July 29, 1971. Questions and comments concerning the contents of this document should be directed to FC9/Mr. Paul D. Nering, Jr., Lunar/Earth Experiments Branch, extension 3786. This document is not to be reproduced without the written approval of the Chief, Lunar/Earth Experiments Branch, Flight Control Division, Manned Spacecraft Center, Houston, Texas. Approved by: James E. Saultz, Sr. ## APOLLO # ALSEP CONSOLE HANDBOOK # APOLLO 12 ALSEP 1 THROUGH APOLLO 17 ALSEP ARRAY E ## PCN-1 # PAGE CHANGE INSTRUCTION SHEET Update this document in accordance with the following instructions: Remove and replace the following pages: /ii **√**vii **/1-**36 1-37 Add the following new pages: /iia /iib Remove and replace the following SOP: **/**2**-**15 Add the following new SOP's: /2-15A /2-15B 9-1-11 # APOLLO # ALSEP CONSOLE HANDBOOK # APOLLO 12 ALSEP 1 THROUGH APOLLO 17 ALSEP ARRAY E # CHRONOLOGICAL PUBLICATION HISTORY | Issue | | Publication date | |-------|---|------------------| | Basic | 1 | May 15, 1971 | | PCN-1 | | July 29, 1971 | # CONTENTS | Sec | tion | | | Page | |-----|------|--------------------|---|------| | 1 | CENE | DAT | | 1-1 | | Τ | GENE | | | 1-1 | | | 1.1 | INTRODUCTION | | 1-1 | | | | 1.1.1 Purpo | | 1-1 | | | 7 0 | 1.1.2 Updat | | 1-1 | | | 1.2 | | SSION OPERATIONAL DOCUMENTATION | | | | | | Systems Handbook | 1-1 | | | | | P Mission Rules | 1-1 | | | | | Work Schedule | 1-1 | | | | | ole Handbook | 1-1 | | | 1.3 | | ON OPERATIONAL DOCUMENTATION | 1-2 | | | | | vity Planning Guide | 1-2 | | | | 1.3.2 <u>ALSE</u> | Operations Report | 1-2 | | | | 1.3.3 <u>Data</u> | Book | 1-2 | | | | 1.3.4 <u>Cons</u> | ole Log | 1-2 | | | | 1.3.5 <u>Deplo</u> | byment Log | 1-2 | | | | 1.3.6 <u>SPAN</u> | Mission Evaluation Action Request (SMEAR) | 1-3 | | | 1.4 | DATA | | 1-3 | | | 1.5 | OPERATIONS 1 | PLANNING MEETINGS | 1-3 | | | 1.6 | REFERENCE F | ILE | 1-3 | | | 1.7 | ALSEP SYSTEM | MS FLIGHT CONTROLLERS | 1-4 | | | | 1.7.1 Gene | ral | 1-4 | | | | 1.7.2 ALSE | P Senior Engineer | 1-4 | | | | 1.7.3 <u>ALSE</u> | Systems Engineer | 1-5 | | | | 1.7.4 ALSE | P Data Engineer | 1-5 | | | | 1.7.5 ALSE | P Flight Controller Certification | 1-5 | | | 1.8 | CONSOLE ARE | A | 1-6 | | | | 1.8.1 <u>Comm</u> | unications Positions | 1-6 | | | | 1.8.2 ALSE | P Command System | 1-8 | | | | 1.8.3 High | -Speed Printer Control Panels | 1-10 | | * | | | ALSEPCH
BASIC | |---------|----------|--|------------------| | Section | | | Page | | | 1.8.4 | Analog Recorders | 1-12 | | | 1.8.5 | Drum Recorders | 1-13 | | | 1.8.6 | D/TV | 1-13 | | | 1.8.7 | Limit Sensing | 1-14 | | | 1.8.8 | Event Indicator Panels | 1-14 | | | 1.8.9 | ALSEP Identification Panel (Module 30) | 1-14 | | 1.9 | GENERA | L OPERATING PROCEDURES (GOP) | 1-25 | | | 1.9.1 | GOP 1 REAL-TIME COMMANDING | 1-25 | | | 1.9.2 | GOP 2 HIGH-SPEED PRINTER FORMAT SELECTION | 1-27 | | | 1.9.3 | GOP 3 ANALOG RECORDER FORMAT SELECTION | 1-29 | | | 1.9.4 | GOP 4 DRUM RECORDER FORMAT SELECTION | 1-30 | | | 1.9.5 | GOP 5 ALSEP DATA AND DISPLAY PROBLEMS | 1-31 | | | 1.9.6 | GOP 6 P-TUBE ROUTING | 1-33 | | | 1.9.7 | GOP 7 DIGITAL HISTORY DELOG REQUEST | 1-34 | | | 1.9.8 | GOP 8 CALIBRATION CURVE CHANGES IN REAL TIME | 1-36 | | | 1.9.9 | GOP 9 SHIFT CHANGE | 1-38 | | | 1.9.10 | GOP 10 PRESUPPORT | 1-39 | | | 1.9.11 | GOP 11 CLEAN DOWN PROCEDURE FOR TERMINATION OF SUPPORT | 1-40 | | | 1.9.12 | GOP 12 CONTINGENCY SUPPORT | 1-41 | | 2 MISS | SION SPE | CIFIC | 2-1 | | 2.1 | APOLLO | 12 ALSEP 1 | 2-1 | | | 2.1.1 | EVENT LIGHT PANEL | 2-1 | | | 2.1.2 | HIGH SPEED PRINTER FORMATS | 2-4 | | | 2.1.3 | ANALOG RECORD FORMATS | 2-4 | | | 2.1.4 | LIMIT SENSING EVENT LIGHTS | 2-6 | | | 2.1.5 | DRUM RECORDERS | 2-9 | | 2.2 | APOLLO | 14 ALSEP 4 | 2-10 | | | 2.2.1 | EVENT LIGHT PANEL | 2-10 | | | 2.2.2 | HIGH SPEED PRINTER FORMATS | 2-13 | | * | | | | ALSEPCH
BASIC | |---------|--------|----------------------------|---|------------------| | Section | | | | Page | | | 2.2.3 | ANALOG RECORDER FORMATS | 9 | 2-13 | | | 2.2.4 | LIMIT SENSING EVENT LIGHTS | | 2-15 | | | 2.2.5 | DRUM RECORDERS | | 2-18 | | 2.3 | APOLLO | 15 ALSEP A2 | | 2 - 19 | | | 2.3.1 | EVENT LIGHT PANEL | | 2 - 19 | | | 2.3.2 | HIGH SPEED PRINTER FORMATS | | 2-22 | | | 2.3.3 | ANALOG RECORDER FORMATS | | 2-22 | | | 2.3.4 | LIMIT SENSING EVENT LIGHTS | | 2-24 | | | 2.3.5 | DRUM RECORDERS | | 2-28 | | 2.4 | | 16 ALSEP ARRAY D | | 2-29 | | 2.5 | | 17 ALSEP ARRAY E | | 2-30 | | 2.6 | | NT TICHT PANEL | | 2-31 | # 3 STANDARD OPERATING PROCEDURES | SOP No | Title | |--------|------------------------------------| | 1-1X | 2-HOUR SUPPORT | | 1-2X | SUNRISE SUPPORT | | 1-3X | SUNSET SUPPORT | | 1-4X | PSE AUTO LEVELING | | 1-5X | PSE FORCED LEVELING | | 1-6X | SOLAR WIND HI GAIN CHANGE | | 1-7X | SOLAR WIND LO GAIN CHANGE | | 4-1X | 2-HOUR SUPPORT | | 4-2X | SUNRISE SUPPORT | | 4-3X | PSE AUTO LEVELING | | 4-14X | PSE FORCED LEVELING | | 4-5X | ASE PASSIVE LISTENING MODE | | 4-6X | ASE MORTOR MODE | | 4-7X | CPLEE THERMAL CONTROL MODE CHANGE | | 4-8X | CPLEE PLATE VOLTAGE SELECTION | | 2-1 | MCC AND MSFN PRESUPPORT CHECKOUT | | 2-2 | ALSEP A-2 DEPLOYMENT | | 2-3 | PSE ACTIVATION | | 2-4 | PSE INITIAL AUTOMATIC LEVELING | | 2-5 | PSE AUTOMATIC RELEVELING | | 2-6 | PSE INITIAL FORCED LEVELING | | 2-7 | PSE FORCED RELEVELING TO BAND EDGE | | 2-8 | PSE GAIN CHANGE | | 2-9 | PSE SP OR LP CALIBRATION | | 2-10 | LSM ACTIVATION | | 2-11 | LSM SITE SURVEY | | 2-12 | SWS ACTIVATION | | 2-13 | SWS HI GAIN CHANGE | | | SWS LO GAIN CHANGE | | 2-15 | SIDE/CCGE ACTIVATION | | SOP No | Title | |----------------|-----------------------------------| | 2-15A | CCGE SEAL REMOVAL | | 2 - 15B | SIDE DUST COVER REMOVAL | | 2-16 | HFE ACTIVATION | | 2-17 | HFE HEATER STEPPING | | 2-18 | CHANGE OF OPERATING STATUS OF HFE | P-1 1 GENERAL # SECTION 1 GENERAL ## 1.1 INTRODUCTION ### 1.1.1 Purpose This document comprises a set of operational philosophies, ground rules, procedures, and pertinent facility and equipment descriptions formulated by the Lunar/Earth Experiments Branch, Flight Control Division, to govern conduct of operations in the ALSEP control area, Mission Control Center Room 314B. It shall be used by ALSEP system flight controllers, in conjunction with other documentation defined herein, for real-time and near-real-time support of the ALSEP's for their operational duration. # 1.1.2 Updates This document shall be updated as deemed necessary by LEEB. However, it is not planned to update the general section on a mission basis. 1.2 ALSEP PREMISSION OPERATIONAL DOCUMENTATION These documents will be originated by ALSEP flight controllers to present requisite plans, procedures, and contingency problem solutions. # 1.2.1 ALSEP Systems Handbook The ALSEP Systems Handbook is a functional representation of ALSEP systems prepared in a format for real-time use by flight controllers. Depth of detail will show telemetry and command interfaces and operational functions such that most contingencies can be determined and solved in real time. # 1.2.2 ALSEP Mission Rules Mission rules will be preplanned solutions to single-point failures. The ALSEP Senior Engineer (ASE) will govern when and if to apply a mission rule. Deviation from a mission rule will be documented in the mission log and, if justified, the specific rule will be updated. Mission rules are published by the Flight Operations Directorate with appropriate concurrence and approval of other center elements. # 1.2.3 ALSEP Work Schedule The work schedule is a detailed operations plan for deployment, activation, and planned experiment operations. The schedule will include support periods for previously deployed ALSEP's. The work schedule will terminate at LM ascent stage impact. # 1.2.4 Console Handbook The console handbook will contain information deemed necessary by ALSEP flight controllers for real-time support of the ALSEP. #### 1.3 ALSEP MISSION OPERATIONAL DOCUMENTATION These documents and data will be collected during the mission for ALSEP analysis and historical purposes. #### 1.3.1 Activity Planning Guide The planning guide will begin at LM ascent stage impact and be a real-time support schedule and activity guide for all deployed ALSEP's. ## 1.3.2 ALSEP Operations Report The operations report is in two parts, a summary support plan and a parameter listing. The support plan is a weekly guide to the planned
activities during real-time support. The parameter listing is to be completed with the last data slice before termination of support. ## 1.3.3 Data Book Two identical data books will be kept for each ALSEP, one for the ALSEP ops room and one for the ALSEP office. A new data book will be started for an ALSEP at sunrise (sun angle of zero). High-speed printer formats will be placed in the data book in the following order: Central Station, Experiment 1, Experiment 2, Experiment 3, Experiment 4, and Experiment 5. The central station format will have a tab placed on it with the following information written in black: day of year, date, and GMT. The formats will be obtained at the beginning and end of each support period and at even GMT hours. A PSE format of "before" and "after" a leveling sequence will be placed in each book. A tab written in black will state axis leveled and if "forced" or "auto" mode. "Before" and "after" will be written on the appropriate sheet. In the case of a contingency problem, a format of the contingency will be placed in each book and a tab written in red will state the problem and experiment affected. #### 1.3.4 Console Log The console log will be a history of everything that occurred during a support period. It will reflect all commanding and anomalies. It will detail what has been accomplished and what inputs are to be done. All ASE's will be knowledgeable of all inputs and all ASE's will use the console log to pass information on to other ASE's. Important information will be written in red. Routine information in black. ### 1.3.5 Deployment Log A deployment log will be originated and followed by the "Deployment ASE". It will be a detailed log of all operations accomplished from the time of initial deployment to the beginning of normal ALSEP operation. # 1.3.6 SPAN/Mission Evaluation Action Request (SMEAR) A SMEAR is generated for two reasons: 1) to determine the cause of ALSEP problems and 2) to request an action of an organization. SMEAR's are sent to S&AD concerning science priority, to MER for engineering problems, and to FOD for operational procedures. #### 1.4 DATA Data is defined as all high-speed printer copy, teletype copy, analog chart and drum recorder charts, and miscellaneous text generated during or as a result of real-time operations. Data shall be collected for two purposes: operational and scientific. Operational data shall be used to assess operation of ALSEP systems and provide a baseline for future operations. Scientific data shall be distributed to the appropriate principal investigator (PI) for his use. No hardcopy format distinction is made between operational and scientific data — the difference is only in how the data will be used. It must be stressed that any hardcopy data from ALSEP with any scientific content is privileged information to the responsible PI for a period of one year from acquisition and shall not be indiscriminately distributed even within the control center. In no case shall distribution of scientific data be made by flight control personnel to any parties not directly concerned with the actual operation of the particular instrument. #### 1.5 OPERATIONS PLANNING MEETINGS Operations planning meetings shall be held periodically to discuss ALSEP status and decide the nature of and schedule for future operations. Meetings shall be chaired by an appropriate representative of the flight director, and shall have representation from S&AD, LSPO, PI's, ALSEP flight controllers, and any other personnel concerned with conduct of the mission. #### 1.6 REFERENCE FILE A reference file shall be maintained in the control area and shall contain current information of three types: - A. MSC operational documentation (e.g., ALSEP Systems Handbook, FCOH, SODB, Mission Rules, and any other such documents generated on site which apply to ALSEP operations). - B. Appropriate vendor and contractor file material such as Bendix specifications, ATM's containing pertinent information not included in operational documents, such as calibration curves and the like. (It may be appropriate to secure the ALSEP flight systems logs from the Cape postlaunch.) - C. Data generated during ALSEP test and support periods. This category shall include but not be limited to fulfilled work schedules, high-speed printer hardcopy, teletype messages, plots, selected analog recorder charts, and selected operations log and support summary information which may be needed for future reference. It is intended that the bulk of the above mentioned items shall be controlled by console handbook procedures so that old, no-longer-useful data shall be periodically discarded in the interests of good housekeeping and efficient access to data which are pertinent. (This minimizing of the volume of stored paper shall be the responsibility of the ALSEP Data Engineer.) Inasmuch as is practicable, the reference file shall be limited to one of each type of document, and the documents in the file shall be the latest issues available. Marked-up documents in the file, based on real-time information, shall be the basic for any required future revisions to those documents. #### 1.7 ALSEP SYSTEMS FLIGHT CONTROLLERS #### 1.7.1 General There shall be three ALSEP systems flight controller positions, designated: - A. ALSEP Senior Engineer call sign "ASE" - B. ALSEP Systems Engineer call sign "SYSTEMS" - C. ALSEP Data Engineer call sign "DATA" In all cases the ASE shall be charged with the responsibility for directing the conduct of all activity in the ALSEP control area, Room 314B of the MCC. The ASE position shall be manned during all operational periods. #### 1.7.2 ALSEP Senior Engineer #### 1.7.2.1 Duties of the ALSEP Senior Engineer.- The ASE shall perform the following: - A. Act as officer-in-charge of ALSEP control area - B. Act as prime voice contact with MOCR positions during Apollo missions - C. Act as prime systems voice contact with remote sites - D. Be responsible for initiating all ALSEP commands - E. Act as prime voice contact with LSPO/PI's for conversations pertinent to real-time operations - F. Conduct operations in accordance with ALSEP work schedule and applicable console handbook procedures - G. Certify by signature the operations log and activity summary for the support period - H. Participate in monitoring systems health and scientific data validity - I. Perform selected duties assigned SYSTEMS and DATA in the event these positions are not manned # 1.7.3 ALSEP Systems Engineer #### 1.7.3.1 Duties of the ALSEP Systems Engineer. The SYSTEMS shall perform the following: - A. Be responsible for configuring data display devices in accordance with work schedule - B. Act as prime voice contact with the ALSEP Computer Controller (ACC) - C. Act as prime voice contact with the M&O - D. Act as prime monitor and analyst of ALSEP systems health and scientific data validity - E. Participate in analyzing systems data and troubleshooting in case of non-nominal indications and recommend corrective action to the ASE - F. Contribute to maintenance of the operations log - G. Make required systems checks associated with command sequences, advising ASE of status at all times - H. Perform selected duties assigned to DATA in the event this position is not manned ### 1.7.4 ALSEP Data Engineer #### 1.7.4.1 Duties of the ALSEP Data Engineer. - The DATA shall perform the following: - A. Be responsible for the maintenance of hardcopy data files (analog recorder charts and printouts) in accordance with applicable procedures - B. Maintain group display status boards in a current configuration - C. Verify data to be logged is acquired, per applicable procedures - D. Plot selected data in concise analog form for logging - E. Act as prime interface with LSPO/PI's for non-real-time status briefings and for data retrieval, discussion, explanation, and interpretation - F. Annotate recorder chart paper and printer formats as required - G. Operate P-tube system and opaque televiewer as required. - H. Assist in area housekeeping by collating, filing, and selectively discarding data, per procedures, in a timely fashion - Review recorded data for significant long-term trends and characteristics and advise ASE if these are detected - J. Assist in maintaining operations log #### 1.7.5 ALSEP Flight Controller Certification Certification of an individual as an ALSEP system flight controller will be accomplished by the Experiments Section Head of the LEEB. The actual certification criteria are based on various degrees of individual accomplishments in areas pertaining to the operations position in the staff support room (SSR). The assignment of individuals to operational positions will be accomplished by the Lunar/Earth Experiments Branch Chief based on the recommendations from the Experiments Section Head. These appointments are subject to approval by the FCD Chief and the mission flight director. In order to become certified in the various ALSEP operational positions the ALSEP flight controller should - A. Be familiar with the MSFN operations or have completed the "Introduction to Flight Control" course taught by the FCD training section - B. Have completed the ALSEP familiarization course and other courses and briefings by Bendix - C. Be familiar with the contents of the following documents: - 1. SR-502, Rev 1 (ALSEP Generic Requirements) - 2. SR-502, Addendum 1 (ALSEP MCC Detailed Command Requirements) - 3. ALSEP Data Book, Volume V of the CSM/IM Spacecraft Operational Data Book - 4. Flight System Familiarization Manual, Revision A - 5. SR's 1070 1071 (ALSEP Remoted Site Telemetry and Command Programs) - 6. Interface Control Specification for MSFN/MCC/ALSEP Operation - 7. Network Operations Procedures - 8. ALSEP Data Pack - D. Have participated in simulations or have performed on-the-job training under the supervision of a qualified ALSEP flight controller during an actual mission. The above is included in this console handbook as a guide for
ALSEP systems flight controller certification. #### 1.8 CONSOLE AREA Figure 1-1 is a layout of ALSEP operations rooms. Figure 1-2 is Console 88 which is the ALSEP/P&FS operations console. Note: Only ALSEP peculiar items will be explained in this handbook. # 1.8.1 <u>Communications Positions</u> The following communications loops are provided from two comm positions, 4140 and 4141, to support ALSEP (figure 1-3): | | LOOP NAME | TALK/MONITOR CAPABILITY | |-----|----------------------------------|-------------------------| | 1. | ALSEP SYS | T/M | | 2. | ALCS CMD/NWK | T/M | | 3. | PI COORD | T/M | | 4. | ALSEP GOSS | T/M | | 5. | FD (3RD FLOOR) | T/M | | 6. | FD (2ND FLOOR) | T | | 7. | SSR CONF (3RD FLOOR) | T/M | | 8. | SSR CONF (2ND FLOOR) | T/M | | 9. | SSR VEHICLE SYSTEM 3 (3RD FLOOR) | T/M | | 10. | SSR VEHICLE SYSTEM 3 (2ND FLOOR) | T/M | | 11. | GOSS CONF (3RD FLOOR) | М | | 12. | GOSS CONF (2ND FLOOR) | M | | | | | #### ALSEPCH BASIC TALK/MONITOR CAPABILITY | 13. | ALSEP DISPLAY | T | | |-----|------------------|-----|--| | 14. | GCC | T | | | 15. | COMM CALL | T | | | 16. | DISPLAY | T | | | 17. | AFD CONF | T/M | | | 18. | APOLLO CHIEF ENG | M | | | 19. | EO CONF | M/T | | | 20. | SCIENCE COORD | M/T | | | 21. | GOSS 2 | М | | LOOP NAME #### The use of each loop is as follows: - A. ALSEP system This loop is to be used for flight controller coordination with the Program Office, PI's, and EXPO. - B. ALCS COMMAND/NETWORK This loop is to be used for flight controller coordination with ALCS operator and ALSEP network. - C. PI coordination This loop is to be used by principal investigators for coordination with their support personnel. - D. ALSEP GOSS CONFERENCE This loop is to be used by flight controllers and network controller for MSFN coordination. - E. FLIGHT DIRECTOR (2ND & 3RD FLOOR) This loop is to be used by flight controllers to brief flight director on status of ALSEP. - F. SSR CONFERENCE & SSR VEHICLE SYSTEMS 3 (2ND & 3RD FLOOR) Used for coordination between ALSEP flight controllers and EMU system engineer and PLSS support personnel. - G. GOSS CONFERENCE (2ND & 3 RD FLOOR) To monitor the mission (primarily during ALSEP deployment). - H. ALSEP DISPLAY This loop is to be used for flight controller coordination with M&O. - I. GCC This loop is to be used by flight controllers to coordinate TTY messages and problems with GCC. - J. COMM CALL This loop is to be used by flight controllers for coordination of problems with VOICE and GCC. - K. DISPLAY Prime loops for TECH OPS. Used for flight controllers to report display problems. - L. GOSS 2 Backup to GOSS CONF. - M. AFD CONF Coordinate with MOCR AFD. - N. APOLLO CHIEF ENG SPAN ROOM coordination. - O. EO CONF EO conf with MOCR except FD. - P. SCIENCE COORD S&AD coord with SPAN ROOM. ## 1.8.2 ALSEP Command System A modified universal command system will be utilized for real-time commands. The system is comprised of two panels: the command control module and the digital select module. # 1.8.2.1 Digital select module (figure 1-4).- - A. FUNCTION CODE A three-digit thumbwheel device is used to dial in the octal number of the command to be executed. (Example: Octal Command 123 dial in 1 using the left thumbwheel, 2 using the middle thumbwheel, and 3 using the right thumbwheel.) - B. COMMAND REQUEST windows A four-place readout device will display the following information: Left window is to display the ALSEP number and decoder section that has been selected using the command control module, and the next three windows will display the three octal digits that have been selected by the thumbwheels. - C. ENTER/INVAL REQUEST PBI Upon depression of this PBI the information as seen in the COMMAND REQUEST windows will appear in the COMMAND EXECUTE windows, and the top half (ENTER) of the PBI will illuminate. (Note that the same information now appears in both the COMMAND REQUEST windows and the COMMAND EXECUTE windows.) The lower half (INVAL REQUEST) will illuminate if the PBI has been depressed (to perform an enter function) if one or more of the following conditions exist: - 1. Console is not site selected. - 2. A RTC is selected without selecting a decoder address. - 3. FC/M&O indicator indicates M&O mode. - 4. Any octal number selected by FUNCTION CODE thumbwheels not identified by the ALCS as a valid ALSEP command. The INVAL REQUEST will also be illuminated if a discrepancy exists between the enter function request and the execute function request. In any event the ALCS will not output an execute request to MSFN if the INVAL REQUEST PBI is illuminated. The top half (ENTER) will be extinguished upon depression of the EXECUTE PBI at which time the ALCS outputs the request to the MSFN. The lower half (INVAL REQUEST) can be extinguished by correcting the condition which caused the INVAL REQUEST to illuminate and redepressing the ENTER PBI. D. ENABLE/DISABLE PBI - The ENABLE/DISABLE PBI is an alternate action PBI which will activate or deactivate command execute capability from the DSM. The top half of the PBI (ENABLE) is illuminated when command capability is available. Depressing the PBI when in the enable state will deactivate the command capability and illuminate the lower half (DISABLE). In the disable mode, the enter and execute functions are deactivated. However, the light indications in the COMMAND EXECUTE readout windows, ENTER PBI, and EXECUTE/VERIFY PBI (light status for these indicators established in the enable mode) are to be retained in the disable mode. The following functions are to active in both the enable and disable modes: - 1. The FUNCTION CODE select thumbwheels - 2. COMMAND REQUEST readout - 3. All functions on the command control module - E. COMMAND EXECUTE WINDOWS The information that is contained in the COMMAND REQUEST windows will appear in the COMMAND EXECUTE windows upon depressing the ENTER PBI. #### NOTE The ENABLE/DISABLE PBI must be in the ENABLE position. The COMMAND EXECUTE windows will be extinguished upon depressing the EXECUTE PBI, at which time the ALCS outputs the request to the MSFN. F. EXECUTE/VERIFY PBI - Upon depressing the EXECUTE/VERIFY PBI the ALCS will output the execute request to the MSFN, illuminate the top half (EXECUTE) of the PBI, and extinguish the COMMAND EXECUTE readout and the enter indication. Upon receipt by the ALCS of a CAP indicating verification, the lower half (VERIFY) will illuminate and the top half (EXECUTE) will be extinguished. If illuminated, either half of this PBI can be extinguished by depressing the ENTER PBI. #### 1.8.2.2 Command control panel (figure 1-5).- - A. ALSEP select PBI's Four PBI's are required for selection of the ALSEP and decoder designated to receive a command. These PBI's will illuminate upon depression. They are to be interlocking such that selection of any ALSEP/decoder PBI when depressed will automatically deselect the previously selected one. These indicators can be extinguished by depressing the ADDRESS CLEAR PBI. The ALSEP/decoder PBI number selected for commanding will appear in the window of the COMMAND REQUEST readout on DSM. - B. ADDRESS CLEAR Depression of this PBI is to clear all logic associated with the ALSEP PBI's and extinguish any one that is illuminated. - C. MAP OVERRIDE This function is to allow RTC's to be transmitted without regard to command verification waiting period required in the normal mode. The MAP override function is an alternate action PBI. Depression of the PBI switches the command system to the MAP override mode and illuminates the PBI. Redepression is to extinguish the PBI and return command system to normal mode. - D. SITE SEL When the PBI is illuminated it indicates that the console is selected to a remoted site for commanding. The ALSEP Command Controller has control of this function. - E. FC/M&O indicator When the upper half is illuminated (FC) the flight controller has command capability. When the lower half (M&O) is illuminated the flight controller does not have command capability. The ALCS operator uses the M&O mode for checking his command program. The FC/M&O control function is located on the ALSEP Computer/Network Controller Console. - F. 1 KC/CVW Two of these indicators are furnished (one for each ALSEP being displayed). The upper half (1 KC) will be illuminated when measurement AB-1 indicates that the corresponding ALSEP receiver is receiving the 1-kHz subcarrier of the remoted site USB command system. This 1 kHz is used by the command decoder to phase lock a voltage control oscillator to assure command bit synchronization. The lower half (CVW) will be illuminated when the command verification word (10-bits) departs from an all zeros bit pattern. - G. SITE VAL/RSCC INVAL The upper half (SITE VAL) will be illuminated when the ALCS receives a CAP word which indicates that the remoted site accepted an execute and is going to act upon it. It will be extinguished upon ALCS receipt of a CAP word which indicates verification, S/C reject, or ground reject. It can also be extinguished by initiation of an execute, or by depressing the SITE VAL/RSCC INVAL PBI. The lower half (RSCC INVAL) will be illuminated when ALCS receives a CAP word which indicates that a good execute was received by the remoted site, but some onsite function in process prohibits processing the execute. The lower half can be extinguished by its depression or by initiation of an execute. - H. S/C REJ/GND REJ The upper half (S/C REJ) will illuminate when the ALCS receives a CAP word that indicates that a command was transmitted to the ALSEP in response to an execute, but a verification could not be determined. The upper half can be extinguished by its depression or by initiation of an execute. The lower half (GND REF) will be illuminated when the ALCS receives a CAP word which indicates that an execute had been received, but a problem was encountered in ground equipment and could not be executed properly. The lower half can be extinguished by its depression or by
initiation of an execute. #### 1.8.3 High-Speed Printer Control Panels (Figures 1-6, 1-7) The requirements to receive data from two ALSEP's at MCC and be able to have rapid access to hardcopy printout of either were the criteria for selecting a high-speed printer. The control panels for the high-speed printer are located on the flight controller console. The control panels with their associated software program give great flexibility in displaying data. (See figures 1-6 and 1-7). - A. The capabilities are as follows: - 1. Select the desired ALSEP - 2. Select individual data formats - 3. Stack format requests - 4. Limit sensing on key TM parameters located in central station with auto printout of central station format if out-of-limits conditions exist (two ALSEP's) - 5. Auto print on ASE when ASE mark event (DS-18) is 00100 - B. Two types of formats have been identified, they are: - 1. Hardcopy Upon selection, the formats which will be printed out one time only are PSE, C/S, and ASE. - 2. Continuous Upon selection, the other formats will be continuously printed until a stop is initiated. #### C. Format select - 1. ALSEP select PBI's FBI's ALSEP A and ALSEP B are provided for switching between ALSEP's for data monitoring. These PBI's will illuminate upon depression. They are interlocked such that selection of any ALSEP when depressed will deselect the previously selected one and the display guide. These PBI's can be extinguished by depressing the CLEAR PBI. - 2. ALSEP DISPLAY GUIDE This PBI is interlocked with the ALSEP select PBI's. Depression of this PBI will cause it to illuminate, deselect any ALSEP selected PBI, and select the display guide for printout. Like the ALSEP select PBI's it can be extinguished by depressing the CLEAR PBI. - 3. Format request PBI's The PBI's are interlocked such that selection of any format request PBI when depressed will deselect the previously selected one. These PBI's will illuminate upon depression and cause the selected format to be printed when executed. The format request PBI's can be extinguished by depressing the CLEAR PBI. - 4. EXECUTE PBI After selection of ALSEP and format (and STOP if required) depressing this PBI will enter the request into the ALCS. This is a momentary PBI. - 5. INVAL REQUEST This indicator will illuminate when the execute PBI is depressed if one of the following conditions exists: - a. ALSEP PBI not selected. #### NOTE ALSEP DISPLAY GUIDE when depressed will deselect ALSEP PBI and is a valid request. - b. ALSEP selected, but no format selected. - c. A stop request executed without having executed a printout request of a - d. A stop function executed and not cleared (by depressing the CLEAR PBI) and another format request executed. - e. More than two formats selected at one time. - f. The ALCS does not recognize the format selected as being a valid request for the ALSEP selected. The inval indicator can be extinguished by making a valid request and executing. - 6. STOP PBI When a continuous format is to be terminated the ALSEP PBI and the format PBI will have to be selected before depressing the STOP PBI. At this time the PBI will be illuminated and the CLEAR PBI must be depressed to deselect the STOP PBI. If the stop request is executed while the printer is printing, the format will be terminated at the end of that page. If the request is executed during data collection cycle, the format is terminated immediately. - CLEAR PBI Upon depressing, all PBI's selected will be deselected and extinguished. However, there is no input to ALCS. Stacking format requests can be accomplished dur to data collection time being longer than printout time and time-sharing the printer for printout. The auto printout is printed immediately if the printer is not in use or at the end of the page being printed at that time. When an out-of-limits condition exists, a dollar sign (\$) is printed to the right of the parameter out of limits. The capability to disable the auto forced printout of the central station and ASE formats by ALCS MED exists. ## 1.8.4 Analog Recorders Four (8-pen) analog recorders are provided for displaying data. The capability for the flight controller to switch between ALSEP's and data formats in real time is provided by an analog recorder control panel located on the systems console (figure 1-8). The formats that are switchable are defined premission. The DAC's that drive these recorder are 8-bit DAC's. - A. ALSEP select PBI's PBI's ALSEP A and ALSEP B are provided for switching between ALSEP's for data monitoring. These PBI's will illuminate upon depression. They are interlocked such that selection of any ALSEP when depressed will deselect the previously selected one. These PBI's can be extinguished by depressing the CLEAR PBI. - B. Recorder select PBI's Individual PBI's are provided for selection of the recorder that a format is to be displayed on. These PBI's will illuminate upon depression. They are interlocked such that selection of any recorder when depressed will deselect the previously selected one. These PBI's can be extinguished by depressing the CLEAR PBI. - C. Format select PBI's Individual PBI's are provided for selection of the format that is to be displayed on a recorder. These PBI's will illuminate upon depression. They are interlocked such that selection on any format when depressed will deselect the previously selected one. - D. EXECUTE PBI After selection of ALSEP, recorder, and format, depressing this PBI will enter the request into the ALCS. This is a momentary PBI. - E. INVAL REQUEST This indicator will illuminate when the EXECUTE PBI is depressed if one of the following conditions exists: - 1. ALSEP PBI not selected. - 2. RECORDER PBI not selected. - 3. Format not selected. - 4. The number of analog display devices that a DAC can drive (four maximum) has been exceeded. This includes meters and analog recorders. This indicator can be extinguished by making a valid request and executing. - F. CLEAR PBI Upon depressing, all PBI's selected will be deselected and extinguished. However, there is no input to ALCS. - G. To clear a recorder, select the recorder number with no format or ALSEP selected and execute. ## 1.8.5 Drum Recorders Eight drum recorders are provided with variable input filters for support of PSE. The recorders will be driven by 10-bit DAC's. The recorders are divided into two groups (Group A and Group B) and each group will contain four recorders. A group of recorders are configured at one time with a predefined format. No control panel is provided to the flight controller for configuring the drum recorders. The ALCS operator will configure the recorders by his MED device upon request from the flight controller. #### 1.8.6 D/TV Two TV monitors are provided. Provision to monitor ALSEP data by D/TV is not provided. The capability to channel-attach data being displayed in Mission Operations Control Room 1 and/or 2 is provided using a manual select keyboard (MSK). A module is provided beneath each TV monitor to indicate from which floor the data being displayed is being generated. Manual select keyboard (figure 1-9) - A. MODE PBI The capability to channel attach only requires one PBI which will be illuminated upon depressing. - B. SECOND FLOOR/THIRD FLOOR PBI's Separate PBI's are provided for selecting the desired floor that data is to be monitored from. These PBI's will illuminate upon depression. They are interlocked such that selecting one will deselect the other. - C. SELECT NUMBER A four-digit thumbwheel device is provided to dial in the TV channel that is to be monitored. The number of TV channels available only requires using the two right thumbwheels. - D. ENTER PBI's Separate PBI's are provided for selection of the TV monitor that the data are to be displayed on. These PBI's are momentary PBI's. #### 1.8.7 Limit Sensing A limit sensing routine is provided to indicate when a TM parameter exceeds predetermined limits. The limits can be changed in real time by the ALCS operator. A high-speed printer format is provided listing the TM parameters and the lower and upper limits assigned each parameter. Out-of-limits conditions are displayed several ways: - A. Separate event indicators for individual TM parameters. - B. Category (where more than one TM parameter is assigned the same event indicator). - C. Flag appears by the TM parameter on high-speed printer formats. #### 1.8.8 Event Indicator Panels - 1.8.8.1 18/36 event indicator panel. The requirement to support more than one ALSEP simultaneously using the same console makes it necessary to drive each event indicator panel with data from a different ALSEP flight article. These four individual event panels will display the following types of data: - A. ALCS sync data - B. ALSEP status data - C. ALSEP limit-sensing data - 1.8.8.2 The event indicator panel. This event indicator panel is to be used to support all ALSEP flight articles. The top two rows of indicators are to be used to support ALSEP 1. The other indicators will be configured at a later date to support the other three ALSEP's. The first two rows of indicators are used for limit sensing certain TM parameters located in the central station. The only way to extinguish any of these indicators is to change the limits by MED. # 1.8.9 ALSEP Identification Panel (Module 30) This panel will tell which ALSEP is on System A or System B. The following will be used for coordination: | ALSEF | 1 | Apollo | 12 | ALSEP | 1 | | |-------|-----|--------|----|-------|-------|---| | ALSEF | , т | Apollo | 14 | ALSEP | 4 | | | ALSEF | 2 | Apollo | 15 | ALSEP | A2 | | | ALSEF | 3 | Apollo | 16 | ALSEP | Array | D | | ALSEF | 6 | Apollo | 17 | ALSEP | Array | E | Figure 1-1. - ALSEP/P&FS Operations Rooms. | LOC | DESCRIPTION | LOC | DESCRIPTION | |--
--|--|--| | 01
02
03
04
05
06
10 | VOICE COMM POSITION-4140 EVENT INDICATOR (72) EVENT INDICATOR EVENT INDICATOR EVENT INDICATOR EVENT INDICATOR VOICE COMM POSITION-4141 COMMAND CONTROL | 17
19
20
21
23
25
26
27 | TV MONITOR 14 PRECISION TV MONITOR 14 PRECISION VOICE COMM SPEAKER EVENT INDICATOR SWITCH MODULE SWITCH MODULE SWITCH MODULE SWITCH MODULE SWITCH MODULE | | 12
13
14
15
16 | DIGITAL SELECT TV MONITOR PRECISION TV MONITOR PRECISION BLANK PANEL STOP CLOCK (4DIGIT) | 28
29
30
31
32
33 | SWITCH MODULE MANUAL: SELECT KEYBOARD EVENT INDICATOR SWITCH MODULE VOICE COMM POSITION- MANUAL SELECT KEYBOARD | Figure 1-2. - Console 88, ALSEP/P&FS. | - | | | | | | | | | | |----------|---------------------------|-------------------|---|---------------------------------|--------------------------------|----------------------------|---------------------------|--------------------------|------| | A | 4
ALSEP
ESPLAY | 4
GCC | | 14
COMM
CALL | 3
DISPLAY | | * | | PABX | | W | Т | W | Т | W I | W T | | | | W T | | 0 | 3
SOSS
CONF | 3
GOSS
CONF | | 3
FD
CONF | 3
EO
CONF | 3
GOSS 2 | 3
AFD
CONF | 3
AFD
CONF | PABX | | G | * M | Y | M | Y M | W T | Y M | Y M | W T | W T | | | 3
FD | 3
FD | | 3
FD | 3
SSR
CONF | 3
SSR
CONF | 3
SSR
VEH SYS
3 | 3
SSR
VEH SYS
3 | | | G | *M | Y | M | T W | Y M | T W | Y M | WT | | | Y | l
ALSEP
SYS
M | ALSEI
SYS | | 14
ALCS
CMD
NWK
Y M | 4
ALCS
CMD
NWK
W T | 4
ALSEP
GOSS
Y M | 4
ALSEP
GOSS
W T | | | | AI
CI | 4
POLLO
HIEF
NGR | • | • | 3
SCIENCE
COORD | 3
.SCIENCE
COORD | 14 | 4
PI
COORD | | | | | | 2
FD
W | Т | 2
SSR
CONF | 2
SSR
CONF | 2
SSR
VEH SYS
Y M | | - | | | HOLD | |-----------------| | BUZZ
CUT OFF | | RING | | REL | MONITOR VOLUME T = TALK (WHITE) M = MONITOR (YELLOW) ™ M = HIGH-LEVEL MONITOR (GREEN) Figure 1-4. - Digital select module. | B | D | |----|----| | AS | 5 | | 5 | T | | | 70 | | | Ï | | | Mission | ALSEP | | |---------|---------|-------|--| | Console | 88 | | | | | Module | 11 | | | P&FS
l | SYSTEM
A
DECODER
A | SYSTEM
B
DECODER
A | ADDRESS
CLEAR | MAP
OVERRIDE | |-----------|-----------------------------|-----------------------------|------------------|-----------------| | P&FS
2 | SYSTEM
A
DECODER
B | SYSTEM
B
DECODER
B | SITE
SEL | FC
M&O | | Ø LCK | 1 KC | l KC | SITE
VAL | s/c
REJ | | MAP | CVW | CVW | RSCC
INVAL | GND
REJ | Figure 1-5.- Command control panel. Mission ALSEP Console 88 Module 25 | PFS
1 | PFS
2 | ALSEP
A | ALSEP
B | DISPLAY
GUIDE | STOP | |--------------------|----------|------------|-----------------|--------------------------|---------| | PSE | LSM 1 | SWS | SIDE/
CCIG 1 | ALSEP
LIMITS
TABLE | CLEAR | | CENTRAL
STATION | LSM 2 | | SIDE/
CCIG 2 | INVAL
REQUEST | EXECUTE | Figure 1-6.- High-speed printer control panel 1. | B | D | |----------------|---------| | D | | | S | S | | \overline{c} | <u></u> | | - | 7 | | | 0 | | | _ | | | Mission | ALSEP | | |---------|---------|-------|-------| | Console | 88 | |
_ | | | Module | 26 | | | PFS
RT | PFS
LIMITS | | CPLEE 1 | HF 1 | |---------------------|----------------------|--|---------|------| | PFS
C1-C4
MRO | PFS
MAG #1
MRO | | CPLEE 2 | HF 2 | | PFS
TELE
MRO | PFS
MAG #2
MRO | | CCGE | ASE | Figure 1-7.- High-speed printer control panel 2. Mission ALSEP Console 88 Module 28 | FORMAT | FORMAT | RECORDER | RECORDER | RECORDER | RECORDER | |-------------|-------------|-------------|------------|------------|---------------------------| | 1 | 2 | 1 | 2 | 3 | 4 | | FORMAT
3 | FORMAT
4 | FORMAT
5 | ALSEP
A | ALSEP
B | CLEAR
INVAL
REQUEST | | FORMAT | format | FORMAT | PFS | PFS | EXECUTE | | 6 | 7 | 8 | 1 | 2 | | Figure 1-8.- Analog recorder control panel. Figure 1-9. - Manual select keyboard, modules 29 and 33. | | Mission | | |---------|---|----| | Console | *************************************** | | | | Module | 30 | | A
ALSEP 1 | B
ALSEP 1 | | | 7 | |----------------|--------------|---|-----|---| | A
ALSEP 2 | B
ALSEP 2 | · | , • | | | A
ALSEP 4 | B
ALSEP 4 | | | | | . A
ALSEP 3 | B
ALSEP 3 | | | | | A
ALSEP 5 | B
ALSEP 5 | | | | | | | | | | Figure 1-10.- ALSEP identification panel. - 1.9 GENERAL OPERATING PROCEDURES (GOP) - 1.9.1 GOP 1 REAL-TIME COMMANDING # PURPOSE To describe the normal constraints and techniques for real-time commanding # PROCEDURE A. Precommand checklist | Se | equence | Function | Indication | Action | |------------|---------|-----------------|--|---------------------| | | 1 | SITE SEL | Illuminated
Extinguished | None
Call up ACC | | | 2 | FC/M&O | FC illuminated M&O illuminated | None
Call up ACC | | | 3 | ENABLE/DISABLE | DISABLE illuminated ENABLE illuminated | None
Depress PBI | | Nom. 3 SEC | 4 | MAP OVERRIDE | Extinguished
Illuminated | None
Depress PBI | | | 5 | ALSEP 1 KC | Illuminated
Extinguished | None
Depress PBI | | | 6 | S/C REJ | Extinguished Illuminated | None
Depress PBI | | | 7 | GND REJ | Extinguished Illuminated | None
Depress PBI | | | 8 | SITE VAL | Extinguished Illuminated | None
Depress PBI | | | 9 | CVW | Extinguished
Illuminated | None
Call up ACC | | | 10 | RSCC INVAL | Extinguished Illuminated | None
Depress PBI | | | 11 | 90 FRAME SYNC | Illuminated
Extinguished | None
Call up ACC | | | 12 | MAIN FRAME SYNC | Illuminated
Extinguished | None
Call up ACC | B. The ALSEP GOSS CONF loop must be monitored so as not to command during command handover. #### ALSEPCH BASIC #### C. Command checklist - 1. Depress ALSEP address PBI. Verify that PBI illuminates. Verify that ALSEP address appears in left window of COMMAND REQUEST display. - 2. Enter octal command on thumbwheels. Verify that command appears in the three right windows of the COMMAND REQUEST display. - 3. Depress ENABLE/DISABLE PBI. Verify that ENABLE is illuminated. - 4. Depress ENTER/INVAL REQUEST PBI. Verify that ENTER is illuminated. Verify that ALSEP address and octal command displayed in the COMMAND REQUEST windows now also appears in the COMMAND EXECUTE windows. - 5. Depress EXECUTE/VERIFY PBI. Verify that EXECUTE is illuminated. - D. Command verification Verify the following sequence: SITE VAL PBI Illuminated CVW PBI Illuminated momentarily VERIFY PBI Illuminated EXECUTE PBI Extinguished SITE VAL PBI Extinguished E. Depress ENABLE/DISABLE PBI. Verify that DISABLE is illuminated. #### 1.9.2 GOP 2 HIGH-SPEED PRINTER FORMAT SELECTION #### PURPOSE To establish a procedure for using high-speed printer (and high-speed printer control panels) for monitoring ALSEP data in predetermined formats ## PROCEDURE - A. Selecting a hardcopy format - 1. Select ALSEP data to be monitored by depressing appropriate ALSEP PBI. - 2. Select data display format by depressing appropriate format PBI. - 3. Enter the request into the LACS by depressing the EXECUTE PBI. NOTE: The ALSEP display guide supports all ALSEP's and can be initiated by - 1. Depressing ALSEP DISPLAY GUIDE PBI - 2. Depressing the EXECUTE PBI. - B. Selecting continuous format - 1. Select the ALSEP that data is to be monitored from by depressing the proper ALSEP PBI. - 2. Select the format that the data is to be displayed in by depressing the proper format PBI. - 2. Enter the request into the ALCS by depressing the EXECUTE PBI. NOTE: A continuous format can be terminated by executing the stop procedure. - C. Stacking format requests - 1. Selecting the first format - a. Select the ALSEP that data is to be monitored from by depressing the proper ALSEP PBI. - b. Select the format that the data is to be displayed in by depressing the proper format PBI. - c. Enter the request into the ALCS by depressing the EXECUTE PBI. - 2. Selecting the second format - a. Select the ALSEP that data is to be monitored from by depressing the proper ALSEP PBI. - b. Select the format that the data is to be displayed in by depressing the proper format PBI. - c. Enter the request into the ALCS by depressing the EXECUTE PBI. NOTE: If one or both are continuous format they can be terminated by executing the stop procedure for each format. - $\hbox{D. INVAL REQUEST indication}$ The INVAL indicator can be extinguished by making a valid request and reexecuting.} - E. Stopping a continuous format - 1. Select the ALSEP that data is being printed from by depressing the proper ALSEP PBI. - 2. Select the format that is to be terminated by depressing the proper format PBI. - 3. Depress the STOP PBI. - 4. Depress the EXECUTE PBI. - 5. Depress the CLEAR PBI to deselect the STOP PBI. ## 1.9.3 GOP 3 ANALOG RECORDER FORMAT SELECTION ## PURPOSE To establish a procedure to configure the analog chart recorders by using the analog recorder control panel #### PROCEDURE Predefined analog formats and the recorders they can be displayed on will be selected by the following: - A. Select the ALSEP that data is to be monitored from by depressing the proper ALSEP PBI. - B. Select the recorder that the data is to be displayed on by depressing the proper recorder format PBI. - C. Select the format that the data is to be displayed in by depressing the proper format PBI. - D. Depress the EXECUTE PBI. ## NOTE INVAL REQUEST/EXECUTE indication - the INVAL REQUEST indicator can be
extinguished by making a valid request and reexecuting. ## 1.9.4 GOP 4 DRUM RECORDER FORMAT SELECTION ## PURPOSE To establish a procedure for configuring the drum recorders ## PROCEDURE Two groups of drum recorders are provided (four per group). The two groups are identified as Group A and Group B. Group A and/or Group B will be configured by the following: - A. Contact the ALCS operation on the ALCS CMD NETWORK comm loop, and identify the ALSEP format to be assigned each group. (The ALCS operator will do this by MED.) - B. Verify the input filters adjustments as per work schedule or PI request. #### 1.9.5 GOP 5 ALSEP DATA AND DISPLAY PROBLEMS #### PURPOSE To define the procedure to be followed by ALSEP flight controllers in reporting equipment malfunctions, loss of command capability, loss of data, and potential loss of data #### PARTICIPATION ASE DISPLAY SYSTEMS INTERFACE DATA VOICE NETWORK GCC ACC - A. High-speed printer (HSP) paper supply is low If DATA notices that the paper supply is one-fourth or less he will call ACC on the ALCS CMD NWK loop and report that the HSP paper supply is low and give ACC an estimated time (ET) when the HSP will require more paper. DATA will use the work schedule and the known and anticipated usage rate to arrive at the ET of paper depletion. ACC will dispatch a HSP tech to the room by the ET of paper depletion. - B. Removal of Brush recorder record is required All requests for removal of any of the analog recorder records from the recorders will be made to ASE. Upon verbal request from the PI or ALSEP flight controller for a recorder record, ASE will call INTERFACE on ALSEP DISPLAY and advise him that Brush recorder paper removal is required and give a time. INTERFACE will provide a technician in the ops room at the time estimated by ASE to remove the Brush record. ASE will advise ACC on ALCS CMD NWK that Brush no. _____paper is being changed or removed and will require recalibration at ET. After removal of the record paper, ASE will request from the INTERFACE TECH that the recorder be recalibrated. When INTERFACE TECH is ready to recalibrate the recorder, ASE will call ACC on ALCS CMD NWK and advise ACC to meet INTERFACE on the DISPLAY MAINTENANCE loop for recorder no. _____calibration. - C. Unscheduled calibration of an analog recorder is required If for some reason (i.e., flight controller or PI think that the paper has slipped or an amplifier has driften or a new test phase is to be run) an unscheduled calibration of the analog recorders is required, ASE will call INTERFACE on ALSEP DISPLAY and request a calibration or recorder no. ____at __ET. ASE will then call ACC on ALCS CMD NWK and advise him that a recalibration of recorder no. ____will be required at ___ET. INTERFACE will call ACC on DISPLAY MAINTENANCE loop to coordinate the calibration. - D. Gain change or any adjustments are required No one but the display techs are allowed to adjust or turn on or off the display equipment (this includes the Brush recorders, drum recorders, event lights, and other equipment). When a gain change or adjustment is required of any of the display equipment (other than the HSP), the flight controller will call INTERFACE on DISPLAY and tell him what is required and when. During active periods such as initial setup of an experiment, a display tech will be stationed in the room. (This is especially true for the drum recorders.) - E. High-speed printer problems Flight controllers are allowed to remove copies from the HSP paper and to advance the paper in the printer to remove copies. If any other adjustments or changes are required the flight controller will call ACC on ALCS CMD NWK and obtain the required support. The original copy of HSP will go to the flight controller for the central station format and to the PI from any experiment data. The second copy will be distributed as necessary by DATA, and the third copy will be retained as record copy. - F. Problems with key sets, headsets, or communication equipment All problems with communication equipment will be reported by the flight controller to VOICE on the COMM CALL loop. - G. Teletype problems The flight controller will call GCC on the GCC loop for any problems pertaining to teletype traffic. - H. Command problems All commanding problems will be coordinated with ALSEP NETWORK. Whenever any commanding is performed ASE will monitor the ALSEP GOSS to hear any R/S reports of failures. Anytime a command anomaly occurs the ASE will call NET-WORK on ALCS CMD NWK and advise him of the problem and request that he determine the cause. The ASE will take the best corrective action based on the cause. Normally the R/S M&O will report any anomaly on ALSEP GOSS as they occur. 1.9.6 GOP 6 P-TUBE ROUTING ## PURPOSE To establish a procedure for routing P-tube messages to ACC and ALSEP NETWORK - A. Send the message to P-Tube Station 31. - B. Notify ACC or NTWK on ALCS CMD NWK comm loop that a message is being sent. #### 1.9.7 GOP 7 DIGITAL HISTORY DELOG REQUEST #### PURPOSE To establish a procedure for requesting a digital history delog #### PROCEDURE The digital history delog form (figure 1-10) will be filled out in the following manner and sent to ALSEP Computer Controller (ACC). - A. Approved by: Signed by ASE - B. Requested by: To indicate the experiment and PI or flight controller who made the request. - C. Date/time: The data and time the request is initiated. - D. Number of copies: Number of copies required of the digital history. - E. Format name: Name of the format or formats requested. - F. ALSEP number: This is the number of the ALSEP from which the above format data is to be delogged. - G. Start time: This is the GMT in days, hours, minutes, and seconds of the data where the delog is to begin. - H. Stop time: This is the GMT in days, hours, minutes, and seconds of the data where the delog is to terminate. - I. Delog intervals: (Applicable to hardcopy formats only) if all data is to be deloged between the start and stop times or selected cycles use example on form for appropriate number. #### NOTE Central station and PSE are the only hardcopy formats available for delog. #### NOTE At the bottom of form any information can be added to help in completion and delivery of delog [i.e., person and telephone number to be called when job is complete; if more than one format is to be delogged, specify if they can be run simultaneously (which will interleave the two formats) or if they are to be run separately]. | ٠ | _ | | |---|-----|--| | | | | | | ٠. | | | ï | . 1 | | | B | T | |----|----| | AS | 5 | | 3 | בר | | • | 2 | | | Ì | | REQUESTED BY | | DATE/TIME | | NUMBER OF COPIES | | |------------------------------------|-----------------|-----------------------------------|----------------------------------|--|--| | FORMAT
NAME
EXAMPIE:
LSM1 | ALSEP
NUMBER | START TIME
CMT
DDD/HH/MM/SS | STOP TIME
GMT
DDD/HH/MM/SS | DELOG INTERVAL (01-99) - APPLICABLE TO HARDCOPY FORMATS ONLY EXAMPLES: 01 - ALL CYCLES 02 - EVERY OTHER CYCLE 05 - EVERY FIFTH CYCLE | | | | | | | • | Figure 1-10. - Digital history delog request. ## 1.9.8 GOP 8 CALIBRATION CURVE CHANGES IN REAL TIME ## PURPOSE To establish a procedure for changing calibration curves in real time ## PROCEDURE Determine from the following list the appropriate curve for each parameter. Call ACC on ALCS CMD NWK loop and have the computer controller make a manual entry for each parameter. The computer will initialize with the highest number curve for each parameter. | Measurement no. | Determining factor | Cal curve | |-----------------|--|-----------------------| | Central station | | | | AE-14 | PCU-1 ON
PCU-2 ON | 6
7 | | AE-11 | AE-7 reads 28.5 Vdc
29.0 Vdc
29.5 Vdc | 6
7
8 | | AE-12 | AE-7 reads 28.5 Vdc
29.0 Vdc
29.5 Vdc | 6
7
8 | | AE-13 | AT-7 reads -10° F
+10° F
+78° F
+100° F
+140° F | 1
2
3
4
5 | | AE-14 | AT-21 indicates OSC "A" on and AT-7 reads | | | | -10° F
+10° F
+78° F
+100° F
+140° F | 1
2
3
4
5 | | | AT-22 indicates OSC "B" on and AT-7 reads | | | | -10° F
+10° F
+78° F
+100° F
+140° F | 6
7
8
9 | | AE-15 | AT-2h reads -22° F
+14° F
+86° F
+100° F
+122° F | 1
2
3
4
5 | P-1 | Measurement no. | Determining | g factor | Cal curve | |-----------------|-------------|---|-----------------------| | AE-16 | AT-26 reads | -22° F
+14° F
+86° F
+100° F
+122° F | 1
2
3
4
5 | | AE-17 | AT-24 reads | -10° F
+10° F
+78° F
+100° F
+140° F | 1
2
3
4
5 | | AE-18 | AT—26 reads | -10° F
+10° F
+78° F
+100° F
+140° F | 1
2
3
4
5 | | CPLEE | | | | | AC-2 | AC-6 reads | -38° C
-5° C
+25° C
+48° C
+72° C | 1
2
3
4
5 | | AC-3 | AC-6 reads | -38° C
-5° C
+25° C
+48° C
+72° C | 1
2
3
4
5 | | HFE | | | | | AH-2 | AH-3 reads | +14 dc
+15 dc
+16 dc | 7
8
9 | | AH-14 | AH-3 reads | +14 dc
+15 dc
+16 dc | 7
8
9 | | CCGE | | | | | DG-12 | DG-11 reads | +12 volts
+13 volts
+14 volts
+15 volts
+16 volts | 1
2
3
4
5 | | ASE | | | | | DS-6, DS-7 | AS-3 reads | -20° C
0° C
+25° C
+55° C
+82° C | 1
2
3
4
5 | #### 1.9.9 GOP 9 SHIFT CHANGE #### PURPOSE This GOP defines the ALSEP system shift change procedures and contents of the briefing and associated documentation #### PROCEDURE - A. Reporting time - 1. Deployment T-4 hours 00 min - 2. Routine The relieving team will be at their respective consoles approximately 1 hour prior to the shift change. #### B. Documentation - 1. ALSEP log book - 2. Latest
HSP copy of display guide - 3. Latest HSP copy of limits printout - 4. Work schedule - 5. Status sheet - 6. Console handbook - 7. Systems handbook - 8. Flight Controllers Operations Handbook - 9. Flight Mission Rules - 10. Flight Plan - 11. Calibration curves - C. Retiring ALCO will summarize activities, completed and planned, and give the brief on the vehicle status and anomalies. - D. Relieving team members will review documentation. - E. Retiring team members will brief their counterparts in detail. - F. Relieving team will review together the work schedule and the anomalies before assuming responsibility of the console. ## 1.9.10 GOP 10 PRESUPPORT ## PURPOSE To establish the tasks to be performed prior to real-time support - A. Notify NETWORK and ACC that ALSEP team at the console. - B. Monitor Network and Remote Suit Interface Checkout. - C. Select analog recorder formats and speed required. - D. Verify on command panel - 1. FC mode - 2. CMD panel disabled - 3. All zeros selected in COMMAND REQUEST window - 4. ALSEP select is clear. - E. Verify RTC command inventory. - F. Verify limits table. - G. Call ALSEP DISPLAY to start analog and drum recorder. - H. Call ACC to send up ALSEP messages. - I. Annotate console log ALSEP team ready to support. ## 1.9.11 GOP 11 CLEAN DOWN PROCEDURE FOR TERMINATION OF SUPPORT ## PURPOSE Tasks to be performed prior to terminating ALSEP operations - A. Notify NETWORK and ACC of time of termination. - B. Obtain final HSP formats of ALSEP C/S and experiments data for two data books. - C. Check data for abnormal values. - D. Call GCC to hold ALSEP messages. - E. Call ALSEP DISPLAY to turn off the analog and drum recorders. - F. Notify NETWORK and ACC to terminate support. - G. Update data log. - H. Sign off in console log. - I. Police the area. ## 1.9.12 GOP 12 CONTINGENCY SUPPORT #### PURPOSE To define the action necessary to collect data when the contingency occurs during non-real-time support - A. Determine from the NETWORK CONTROLLER the GMT of the contingency. - B. Have NETWORK inform the remote site to cue the recorder to 10 minutes prior to the contingency GMT. - C. With the start of the playback data being displayed at the ALSEP operations room, start the contingency subsystem formats on both an analog recorder and high-speed printer. Continually collect the contingency data and any other pertinent data until determined sufficient by the ASE. - D. The original analog recording and high-speed printer formats will be given to the flight controller responsible for the subsystem for permanent record. 2 MISSION SPECIFICS # SECTION 2 # MISSION SPECIFIC | O Law Sections | ADOLLO | 112 | ALSEP 1 | |----------------|--------|-----|---------| | | APULLU | 16 | ALSEF | # 2.1.1 EVENT LIGHT PANEL (FIGURE 2.1) | 10 | LIGHT | COLOR | NAME | ILLUMINATE | |--|------------|--------------------|--------------------------|---| | 2L G LOW BIT RATE DA-3 = 1 DA-2 = CNT OF 2 DA-3 = 1 3U G REALTIME DATA CAP WORD 3L G XMTR A AE-15 > 2 PCM 4U G XMTR B AE-16 > 2 PCM 5U R (BLANK) 6U A (BLANK) 7U G PCU 1 RES PWR 1 RES PWR 4 6.4 W 8U A EXP 2 STBY 9U R SIDE CRITICAL CMP D(1) 9U R SIDE CRITICAL CMP D(1) 10U (BLANK) 11U A SIDE WARNING CMP C(1) 12U (BLANK) 13U G PCU 2 RES PWR 2 RES PWR < 6.4 W 131 10, 192±10 14U A SIDE WARNING CMP C(1) 15U (BLANK) 13U G PCU 2 RES PWR 2 RES PWR < 6.4 W 131±10, 192±10 14U A EXP 3 STBY 14U A EXP 3 STBY 14U A EXP 3 STBY 18±10, 19±10 15U (BLANK) 11U A SIDE WARNING CMP C(1) 12U (BLANK) 13U G PCU 2 RES PWR < 6.4 W 131±10, 19±10 141 A EXP 3 STBY 141 A EXP 3 STBY 142 A EXP 3 STBY 144 A EXP 3 STBY 155 AE-6 > 2 PCM RES PWR < 6.4 W 155 AE-6 > 2 PCM RES PWR < 6.4 W 155 AE-6 > 2 PCM RES PWR < 6.4 W 155 AE-6 > 2 PCM RES PWR < 6.4 W 155 AE-6 > 2 PCM RES PWR < 6.4 W 155 AE-6 > 2 PCM RES PWR < 6.4 W 155 AE-6 > 2 PCM RES PWR < 6.4 W 155 AE-6 > 2 PCM RES PWR < 6.4 W 155 AE-6 > 2 PCM RES PWR < 6.4 W 155 AE-6 > 2 PCM RES PWR < 6.4 W 155 AE-6 > 2 PCM RES PWR < 6.4 W 155 AE-6 > 2 PCM RES PWR < 6.4 W 155 AE-6 > 2 PCM RES PWR < 6.4 W 155 AE-6 > 2 PCM RES PWR < 6.4 W 155 AE-6 > 2 PCM RES PWR < 6.4 W 155 AE-6 > 2 PCM RES PWR < 6.4 W 155 AE-6 > 2 PCM RES PWR < 6.4 W 156 AE-6 > 2 PCM RES PWR < 6.4 W 157 AE-6 > 2 PCM RES PWR < 6.4 W 158 AE-6 > 2 PCM RES PWR < 6.4 W 150 AE-6 > 2 PCM RES PWR < 6.4 W 150 AE-6 > 2 PCM RES PWR < 6.4 W 150 AE-6 > 2 PCM RES PWR < 6.4 W 150 AE-6 > 2 PCM RES PWR < 6.4 W 160 AE-6 > 2 PCM RES PWR < 6.4 W 170 AE-6 > 2 PCM RES PWR < 6.4 W 171 AE-6 > 2 PCM RES PWR < 6.4 W 172 AE-6 > 2 PCM RES PWR < 6.4 W 173 AE-6 > 2 PCM RES PWR RES PWR < 6.4 W 174 AE-6 > 2 PCM RES PWR | | | | DA-2 TWO CONSECUTIVE | | 2L G LOW BIT RATE DA-2 = CNT OF 2 DA-3 = 1 3U G REALTIME DATA CAP WORD 3L G PLAYBACK DATA CAP WORD 4U G XMTR A AE-15 > 2 PCM AE-16 > 2 PCM 4L G XMTR B AE-16 > 2 PCM 5U R C/S CRITICAL CMPB(1) 5U R C/S WARNING CMPA(1) 6U A (BLANK) 6U A R RES PWR 1 RES PWR < 6.4 W 8U A EXP 1 STBY AE PWR < 6.4 W 8U A EXP 2 STBY AB-4 (72±10, 192±10) 9U R SIDE CRITICAL CMP D(1) 10U (BLANK) 11U A SIDE WARNING CMP C(1) 11U A SIDE WARNING CMP C(1) 12U (BLANK) 13U G PSE WARNING CMP C(1) 12U (BLANK) 13U G PSE WARNING CMP C(1) 13U G PSE WARNING CMP C(1) 14U A EXP 3 STBY 14U A EXP 3 STBY 15U R RES PWR 2 RES PWR < 6.4 W 15U CMP G(1) | 2U | G | NORM BIT RATE | | | 3L G PLAYBACK DATA CAP MORD 4U G XMTR A AE-15 > 2 PCM 4L G XMTR B AE-16 > 2 PCM 5U R (BLANK) 6U A (BLANK) 7U G R PCU 1 RES PWR 1 RES PWR < 6.4 W 8U A EXP 2 STBY 9U R SIDE CRITICAL CMP D(1) 10U (BLANK) 11U A SIDE WARNING CMP C(1) 12U (BLANK) 13U G R PCU 2 RES PWR < 6.4 W 14U A EXP 3 STBY 13U G R PCU 2 RES PWR < 6.4 W 14U A EXP 3 STBY 15U CMP G(1) | 2L | G | LOW BIT RATE | DA-2 = CNT OF 2 | | 4L G XMTR B AE-16 > 2 PCM 5U R (BLANK) 6U A (C/S WARNING CMPA ⁽¹⁾ 7U G PCU 1 AE-5 > 2 PCM 7L R RES PWR 1 AE-5 > 2 PCM 7L R RES PWR 1 AE-5 > 2 PCM 8U A EXP 1 STBY 8L A EXP 2 STBY 9U R SIDE CRITICAL CMP D ⁽¹⁾ 9L R PSE CRITICAL CMP D ⁽¹⁾ 10U (BLANK) 11U A SIDE WARNING CMP E ⁽¹⁾ 11U A PSE WARNING CMP E ⁽¹⁾ 12U (BLANK) 12L (BLANK) 13U G R PCU 2 AE-6 > 2 PCM RES PWR 2 AE-6 > 2 PCM RES PWR 6.4 W AB-4 (72±10, 192±10 CMP D ⁽¹⁾ CMP F ⁽¹⁾ 12U (BLANK) 13U A SIDE WARNING CMP E ⁽¹⁾ 14U A EXP 3 STBY 14U A EXP 3 STBY 14U A EXP 3 STBY 14U A EXP 4 STBY 15U R LSM CRITICAL CMP G ⁽¹⁾ 15U R LSM CRITICAL CMP G ⁽¹⁾ 15U CMP G ⁽¹⁾ 15U R CMP G ⁽¹⁾ 15U R CMP G ⁽¹⁾ | | | | | | 5L (BLANK) 6U A (BLANK) 6U C/S WARNING CMPA ⁽¹⁾ 7U G R PCU 1 AE-5 > 2 PCM RES PWR 1 RES PWR < 6.4 W 8U A EXP 1 STBY AB-4 \(\frac{72 \times 10}{131 \times 10}, \frac{192 \times 10}{192 \times 10} \) 9U R SIDE CRITICAL CMP D ⁽¹⁾ 9L R PSE CRITICAL CMP F ⁽¹⁾ 10U (BLANK) 11U A SIDE WARNING CMP C ⁽¹⁾ 11L A PSE WARNING CMP E ⁽¹⁾ 12U (BLANK) 12L (BLANK) 13U G PCU 2 RES PWR 2 AE-6 > 2 PCM RES PWR < 6.4 W 14U A EXP 3 STBY 14U A EXP 3 STBY 14U A EXP 3 STBY 15U R LSM CRITICAL CMP G ⁽¹⁾ 15U R LSM CRITICAL CMP G ⁽¹⁾ | | | | AE-15 > 2 PCM
AE-16 > 2 PCM | | 6L (BLANK) 7U G R PCU 1 RES PWR 1 RES PWR < 6.4 W 8U A EXP 1 STBY EXP 2 STBY 9U R SIDE CRITICAL CMP D(1) 10U (BLANK) 11U A SIDE WARNING CMP E(1) 11L A PSE WARNING CMP E(1) 12U (BLANK) 12L (BLANK) 13L R RES PWR 2 RES PWR < 6.4 W 14U A EXP 3 STBY 14U A EXP 3 STBY 15U R LSM CRITICAL CMP G(1) 15U R RESPER 2 RESPER < 6.4 W 15U CMP G(1) 160±10, 160±10, 188±10, 214±10 15U R LSM CRITICAL CMP G(1) | | | C/S CRITICAL | CMPB ⁽¹⁾ | | 7L R RES PWR 1 RES PWR < 6.4 W | | A
(BLANK) | C/S WARNING | CMPA ⁽¹⁾ | | 8L A EXP 2 STBY 9U R SIDE CRITICAL CMP D(1) 9L R PSE CRITICAL CMP F(1) 10U (BLANK) 10L (BLANK) 11U A SIDE WARNING CMP E(1) 11L A PSE WARNING CMP E(1) 12U (BLANK) 13U G PCU 2 AE-6 > 2 PCM RES PWR 2 RES PWR < 6.4 W 14U A EXP 3 STBY 14U A EXP 3 STBY 14U A EXP 3 STBY 15U R LSM CRITICAL CMP G(1) | | | | | | 9L R PSE CRITICAL CMP F ⁽¹⁾ 10U (BLANK) 10L (BLANK) 11U A SIDE WARNING CMP C ⁽¹⁾ 11L A PSE WARNING CMP E ⁽¹⁾ 12U (BLANK) 12L (BLANK) 13U G PCU 2 AE-6 > 2 PCM RES PWR 2 RES PWR < 6.4 W 14U A EXP 3 STBY 14L A EXP 4 STBY 15U R LSM
CRITICAL CMP G ⁽¹⁾ | | | EXP 1 STBY
EXP 2 STBY | AB-4 (72±10, 192±10
131±10, 192±10 | | 10U (BLANK) 11U A SIDE WARNING CMP C ⁽¹⁾ 11L A PSE WARNING CMP E ⁽¹⁾ 12U (BLANK) 12L (BLANK) 13U G PCU 2 AE-6 > 2 PCM RES PWR < 6.4 W 14U A EXP 3 STBY 14L A EXP 4 STBY 15U R LSM CRITICAL CMP G ⁽¹⁾ | 90 | R | SIDE CRITICAL | | | 10L (BLANK) 11U A SIDE WARNING CMP C ⁽¹⁾ 11L A PSE WARNING CMP E ⁽¹⁾ 12U (BLANK) 13U G PCU 2 AE-6 > 2 PCM RES PWR 2 RES PWR < 6.4 W 14U A EXP 3 STBY 14L A EXP 4 STBY 15U R LSM CRITICAL CMP G ⁽¹⁾ | 9L | R | PSE CRITICAL | CMP F ⁽¹⁾ | | 11L A PSE WARNING CMP E (1) | 10U
10L | (BLANK)
(BLANK) | | | | 12U (BLANK) 12L (BLANK) 13U G PCU 2 AE-6 > 2 PCM RES PWR 2 RES PWR < 6.4 W 14U A EXP 3 STBY 14L A EXP 4 STBY 15U R LSM CRITICAL CMP G(1) | 110 | Α | SIDE WARNING | CMP C(1) | | 12L (BLANK) 13U G PCU 2 AE-6 > 2 PCM RES PWR 2 14U A EXP 3 STBY 14L A EXP 4 STBY 15U R LSM CRITICAL CMP $G^{(1)}$ | 11L | A | PSE WARNING | CMP E(1) | | 13L R RES PWR 2 RES PWR < 6.4 W 14U A EXP 3 STBY $ \begin{vmatrix} $ | 12U
12L | (BLANK)
(BLANK) | • | | | 15U R LSM CRITICAL CMP G ⁽¹⁾ | | | | AE-6 > 2 PCM
RES PWR < 6.4 W | | 15U R LSM CRITICAL CMP G ⁽¹⁾ | 140 | Α | EXP 3 STBY | $/131\pm10$, 160 ± 10 , | | 15U R LSM CRITICAL CMP G ⁽¹⁾ 15L R SWS CRITICAL CMP J ⁽¹⁾ | 14L | A | EXP 4 STBY | AB-5 (188±10, 214±10)
69±10, 100±10,
188±10, 214±10 | | 15L R SWS CRITICAL CMP J ⁽¹⁾ | 150 | R | LSM CRITICAL | CMP G(1) | | | 15L | R | SWS CRITICAL | CMP J ⁽¹⁾ | | LIGHT | COLOR | NAME | ILLUMINATE | |------------|--------------------|-------------|------------| | 16U
16L | (BLANK)
(BLANK) | | | | 17U | Α | LSM WARNING | CMP H(1) | | 17L | A | SWS WARNING | CMP I (1) | | 18U
18L | (BLANK)
(BLANK) | | | | | ı | | |---|---|---| | (| W | ١ | | | | | | | | | Mission Apollo 12 ALSEP 1 Console 88 Module ___6 | G | MAIN FRME
SYNC
DA-1 | NORMAL BIT
RATE
G CW-1 | REAL TIME
DATA
G ST-3 | XMTR A
G CS-10 | CS
CRITICAL
R CMP-B | CS
WARNING
G CMP-A | |---|----------------------------------|---------------------------------|-----------------------------------|-------------------|----------------------------------|--------------------------| | G | 90 FRAME
SYNC
D A-2 | LOW BIT
RATE | PLAYBACK
DATA | XMTR B | II - CIII - B | CMF-A | | G | PCU 1
CS-8 | EXP 1 STBY
STATUS
A CS-13 | SIDE LIMS CRITICAL 1 R CMP-D | | SIDE LIMS WARNING 2 A CMP-C | | | R | RES PWR 1 | EXP 2 STBY STATUS A CS-1 | PSE LIMS
CRITICAL 3
R CMP-F | | PSE LIMS WARNING 4 A CMP-D | | | G | PCU 2
CS-9 | EXP 3 STBY STATUS A CS-15 | LSM LIMS
CRITICAL 5
R CMP-G | | LSM LIMS WARNING 6 A CMP-H | | | R | RES PWR 2
CS-7 | EXP 4 STBY STATUS A CS-16 | SWS LIMS
CRITICAL 7
R CMP-J | | SWS LIMS
WARNING 8
A CMP-I | 4 | Figure 2-1.- Apollo 12 ALSEP 1 event light panel. ## 2.1.2 HIGH SPEED PRINTER FORMATS - 1. CENTRAL STATION - 2. PASSIVE SEISMIC EXPERIMENT - 3. SOLAR WIND SPECTROMETER EXPERIMENT - 4. SIDE/CCIG FMT 1 - 5. SIDE/CCIG FMT 2 - 6. LSM FMT 1 - 7. LSM FMT 2 - 8. LIMITS TABLE - 9. DISPLAY GUIDE ## 2.1.3 ANALOG RECORDER FORMATS | PEN | PARAMETER | NUMBER | COMMENT | |--------------------------------------|--|--|--| | FORMAT 1 (PSE) | | | | | 1
2
3
4
5
6
7
8 | LONG PERIOD X SEISMIC LONG PERIOD Y SEISMIC LONG PERIOD Z SEISMIC SHORT PERIOD Z SEISMIC LONG PERIOD X TIDAL LONG PERIOD Y TIDAL LONG PERIOD Z TIDAL PSE INST TEMP | DL-1
DL-2
DL-3
DL-8
DL-4
DL-5
DL-6
DL-7 | 8MSB
8MSB
8MSB
8MSB
8MSB
8MSB
8MSB
8MSB | | FORMAT 2 (PSE) | | | | | 1
2
3
4
5
6
7
8 | LONG PERIOD X SEISMIC LONG PERIOD Y SEISMIC LONG PERIOD Z SEISMIC SHORT PERIOD Z SEISMIC LONG PERIOD X TIDAL LONG PERIOD Y TIDAL LONG PERIOD L TIDAL PSE INST TEMP | DL-1
DL-2
DL-3
DL-8
DL-4
DL-5
DL-6
DL-7 | 8LSB
8LSB
8LSB
8LSB
8LSB
8LSB
8LSB
8LSB | | FORMAT 3 (SIDE/CCIG |) | | | | 1
2
3
4
5
6
7
8 | HECPA STEPPER VOLTAGE HE DATA (MSD) HE DATA (LSD) CCIG VELOCITY FILTER VOLTAGE LECPA STEPPER VOLTAGE | WD47 ENVFR
DI-61
DI-62
DI-3
WD31 ODDFR
WD47 ODDFR | 8LSB
8MSB | | 7
8 | LE DATA (MSD)
LE DATA (LSD) | DF-5
DF-6 | 8LSB
8MSB | | PEN | PARAMETER | NUMBER | COMMENT | |--------------------------------------|--|---|------------------------------| | FORMAT 4 (SIDE/CCIG |) | | | | 1
2
3
4
5
6
7
8 | HE DATA (MSD) HE DATA (LSD) LE DATA (MSD) LE DATA (LSD) CCIG RANGE 4.5 KV TEMP NO. 1 CCIG | DI-61
DI-62
DF-5
DF-6
DI-8
DI-7
DI-4
DI-3 | 8LSB
8MSB
8LSB
8MSB | | FORMAT 5 (LSM) | | | | | 1
2
3
4
5
6
7
8 | X AXIS SCI Y AXIS SCI Z AXIS SCI X SNSR TEMP Y SNSR TEMP Z SNSR TEMP LSM INSTR TEMP SPECIAL PROCESSING | LM-35
LM-36
LM-37
DM-1
DM-2
DM-3
DM-5 | | | FORMAT 6 (LSM) | | | | | 1
2
3
4
5
6
7
8 | X AXIS SCI Y AXIS SCI Z AXIS SCI BASE TEMP C 5 V SUPPLY LVL 1 DEG LVL 2 DEG SPECIAL PROCESSING | LM-35
LM-36
LM-37
DM-5
DM-8
DM-6
DM-7 | | | FORMAT 7 (CENTRAL S | STATION PCU 1) | | | | 1
2
3
4
5
6
7
8 | RES PWR 1 INPUT WATTS +12 VDC +5 VDC THERM PLT 1 TEMP THERM PLT 2 TEMP PCU 1 REG TEMP PCU 1 OSC TEMP | CS-2
CS-1
AE-9
AE-10
AT-3
AT-4
AT-38
AT-36 | (AE-3)(AE-5)
(AE-3)(AE-4) | | FORMAT 8 (CENTRAL S | STATION PCU 2) | | | | 1
2
3
4
5
6
7
8 | RES PWR 2 INPUT WATTS +12 VDC +5 VDC THERM PLT 1 TEMP THERM PLT 2 TEMP PCU 2 REG TEMP PCU 2 OSC TEMP | CS-4
CS-1
AE-9
AE-10
AT-3
AT-4
AT-39
AT-37 | (AE-3)(AE-6)
(AE-3)(AE-4) | ## 2.1.4 LIMIT SENSING EVENT LIGHTS PARAMETER NUMBER CENTRAL STATION CRITICAL PCU +29V AE-7 PCU +12V AE-9 PCU +5V AE-10 XMTR A AGC V AE-15 XMTR B AGC V AE-16 THERM PLT 5 TEMP AT-7 PCU 1 REG TEMP AT-38 PCU 2 REG TEMP AT-39 RTG OUTPUT WATTS CS-1 RES PWR 1 CS-2 RES PWR 2 CS-4 ## CENTRAL STATION WARNING 0.25 CAL VOLT AE-1 4.75 CAL VOLT AE-2 PCU VOLTS AE-3 PCU AMPS AE-4 PCU 1 SHUNT AMPS AE-5 PCU 2 SHUNT AMPS AE-6 PCU +15V AE-8 PCU -12V AE-11 PCU -6V AE-12 AE-13 RCVR DBM AE-14 RCVR L/O DBM HOT FRAME 1 T AR-1 HOT FRAME 2 T AR-2 HOT FRAME 3 T AR-3 CLD FRAME 1 T AR-4 | PARAMETER | NUMBER | |---------------------|--------| | CLD FRAME 2 T | AR-5 | | CLD FRAME 3 T | AR-6 | | SUNSHIELD 1 T | AT-1 | | SUNSHIELD 2 T | AT-2 | | THERM PLT 3 T | AT-5 | | THERM PLT 4 T | AT-6 | | PRI/ST W1 T | AT-8 | | PRI/ST W2 T | AT-9 | | PRI/ST B1 T | AT-10 | | RCVR XTAL A T | AT-21 | | RCVR XTAL B T | AT-22 | | DSS/A BASE T | AT-27 | | DSS/D BASE T | AT-29 | | CMD DEC BASE T | AT-31 | | PDU BASE T | AT-34 | | DUST CELL 1T | AX-1 | | DUST CELL 2T | AX-2 | | DUST CELL 3T | AX-3 | | INT REG DISIP WATTS | CS-3 | | INT REG DISIP WATTS | CS-5 | | PSE CRITICAL | | | PSE INT T | DL-7 | | DOE HARNING | | | PSE WARNING | DI A | | TIDAL X | DL-4 | | TIDAL Y | DL-5 | | TIDAL Z | DL-6 | | LSM CRITICAL | | | SNSR X TEMP | DM-1 | | SNSR Y TEMP | DM-2 | | SNSR Z TEMP | DM-3 | | PARAMETER | NUMBER | | |---------------------|---|------------------------------| | SIDE WARNING | | | | +5 V ANALOG | DI-2 | | | CCIG TEMP | DI-4 | | | +60 VOLT | DI-13 | | | +30 VOLT | DI-14 | | | +5 V DIGITAL | DI-15 | | | GND VOLTS | DI-16 | | | -5 VOLTS | DI-17 | | | -30 VOLTS | DI-18 | | | +1 VOLT CAL | DI-21 | | | +30 MV CAL | DI-22 | | | ADC POS REF | DI-23 | | | ADC NEG REF | DI-25 | | | -1 VOLT CAL | DI-26 | • | | -12 VOLT CAL | DI-27 | | | +12 VOLT CAL | DI-28 | | | PRE/REG PCT | DI-29 | | | -30 MV CAL | DI-30 | | | 2.1.5 DRUM RECORDER | es . | | | PEN | PARAMETER | NUMBER | | 1
2
3
4 | LONG PERIOD X SEISMIC
LONG PERIOD Y SEISMIC
LONG PERIOD Z SEISMIC
SHORT PERIOD Z SEISMIC | DL-1
DL-2
DL-3
DL-8 | # 2.2 APOLLO 14 ALSEP 4 # 2.2.1 EVENT LIGHT PANEL (FIGURE 2.2) | LIGH | T COLOR | NAME | ILLUMINATE | |------------|-----------------------------------|----------------------------------|--| | 1U
1L | G
G | MAIN FRAME SYNC
90 FRAME SYNC | DA-1 SYNC PATTERN
DA-2 TWO CONSECUTIVE
FRAME COUNTS | | 2U | G | NORM BIT RATE | DA-2 = CNT OF 1
DA-3 = 1 | | 2L | G | LOW BIT RATE | DA-2 - CNT OF 2
DA-3 = 1 | | 3U
3L | G
G | REALTIME DATA
PLAYBACK DATA | CAP WORD | | 4U
4L | G
G | XMTR A
XMTR B | AE-15 > 2 PCM
AE-16 > 2 PCM | | 5U
5L | R
R | CS CRITICAL
ARM THUMPER | CMP B ⁽¹⁾
DS-13 = 2 PCM | | 6U
6L | A
R | CS WARNING
ARM GRENADE | CMP A (1) DS-13 = 1 PCM | | 7U
7L | G
R | PCU 1
RES PWR 1 | AE-5 > 2 PCM
RES PWR < 6.4 W | | 8U
8L | A
A | EXP 1 STBY
EXP 2 STBY | \Rightarrow AB-4 $\left\langle \begin{array}{l} 72\pm10 & 192\pm10 \\ 131\pm10 & 192\pm10 \end{array} \right.$ | | 9U | R | SIDE CRITICAL | CMP D(1) | | 9L | R | PSE CRITICAL | CMP F(1) | | 10U
10L | (BLANK)
(BLANK) | | | | 110 | Α | SIDE WARNING | CMP $C_{(1)}^{(1)}$ | | 11L | Α | PSE WARNING | CMP E ⁽¹⁾ | | 12U
12L | (BLANK)
(BLANK) | • | | | 13U
13L | G
R | PCU 2
RES PWR 2 | AE-6 > 2 PCM
RES PWR < 6.4 W | | 140 | A | EXP 3 STBY | /131±10, 160±10, | | 14L | А | EXP 4 STBY | $AB-5 \begin{pmatrix} 131\pm10, & 160\pm10, \\ 188\pm10, & 214\pm10 \\ 69\pm10, & 100\pm10, \\ 188\pm10, & 214\pm10 \end{pmatrix}$ | | 15U
15L | R
(BLANK) | CPLEE CRITICAL | CMP J(1) | | 16U
16L |
(BLANK)
G | HBR SYNC | CAP WORD | | 170 | Α | CPLEE WARNING | CMP I (1) | | 17L | A | HBR LIM | CMP G ⁽¹⁾ | | (1) | SEE PARAGRAPH 2.2.4 LIMIT SENSING | | | LIGHT COLOR NAME ILLUMINATE 18U (BLANK) 18L (BLANK) Mission Apollo 14 ALSEP 4 Console 88 Module 3 | G | MAIN FRME
SYNC
DA-1 | NORM BIT
RATE
G CW-1 | REAL-TIME
DATA
G ST-3 | XMTR A G CS-10 | CS
CRITICAL
R CMP-B | CS
WARNING
A CMP-A | |---|---------------------------|---------------------------------|----------------------------------|------------------------|---------------------------------|---------------------------| | G | 90 FRAME
SYNC
DA-2 | LOW BIT RATE G CW-2 | PLAYBACK
DATA
G ST-3 | XMTR B G CS-11 | ARM THUMPER R DS-13 | ARM
GRENADE
R DS-13 | | G | PCU 1
CS-8 | EXP 1 STBY STATUS A CS-13 | SIDE LIMS
CRITICAL
R CMP-D | | SIDE LIMS
WARNING
A CMP-C | | | R | RES PWR 1
CS-6 | EXP 2 STBY STATUS A CS-14 | PSE LIMS
CRITICAL
R CMP-F | | PSE LIMS WARNING A CMP-C | | | G | PCU 2
CS-9 | EXP 3 STBY
STATUS
A CS-15 | CPLEE LIMS CRITICAL R CMP-J | | CPLEE LIMS WARNING A CMP-T | | | R | RES PWR 2
CS-7 | EXP 4 STBY STATUS A CS-16 | | HBR
SYNC
G AS-39 | HBR LIMS A CMP-G | | Figure 2-2.- Apollo 14 ALSEP 4 event light panel. ## 2.2.2 HIGH SPEED PRINTER FORMATS - 1. CENTRAL STATION - 2. PSE - 3. CPLEE FMT 1 - 4. CPLEE FMT 2 - 5. SIDE/CCIG FMT 1 - 6. SIDE/CCIG FMT 2 - 7. ACTIVE SEISMIC - 8. LIMITS TABLE - 9. DISPLAY GUIDE ## 2.2.3 ANALOG RECORDER FORMATS | PEN | PARAMETEŔ | NUMBER | COMMENT | |--------------------------------------|---|--|--| | FORMAT 1 (PSE) | | | | | 1
2
3
4
5
6
7
8 | LONG PERIOD X SEISMIC LONG PERIOD Y SEISMIC LONG PERIOD Z SEISMIC SHORT PERIOD Z SEISMIC LONG PERIOD X TIDAL LONG PERIOD Y TIDAL LONG PERIOD Z TIDAL INSTR TEMP | DL-1 DL-2 DL-3 DL-8 DL-4 DL-5 DL-6 DL-7 | 8MSD
8MSD
8MSD
8MSD
8MSD
8MSD
8MSD
8MSD | | FORMAT 2 (PSE) | | | | | 1
2
3
4
5
6
7 | LONG PERIOD X SEISMIC LONG PERIOD Y SEISMIC LONG PERIOD Z SEISMIC SHORT PERIOD Z SEISMIC LONG PERIOD X TIDAL LONG PERIOD Y TIDAL LONG PERIOD Z TIDAL INSTR TEMP | DL-1
DL-2
DL-3
DL-8
DL-4
DL-5
DL-6
DL-7 | 8LSB
8LSB
8LSB
8LSB
8LSB
8LSB
8LSB
8LSB | | FORMAT 3 (SIDE/CCIG |) | | | | 1
2
3
4
5
6
7 | HECPA STEPPER VOLTAGE HE DATA (MSD) HE DATA (LSD) CCIG VELOCITY FILTER VOLTAGE LECPA STEPPER VOLTAGE LE DATA (MSD) LE DATA (LSD) | WD47 EVNFR
DI-61
DI-62
DI-3
WD31 ODDFR
WD47 ODDFR
DF-5
DF-6 | 8LSB
8MSB
8LSB
8MSB | | PEN | PARAMETER | NUMBER | COMMENT | |--------------------------------------|--|--|------------------------------| | FORMAT 4 (SIDE/CCIO | (a) | | | | 1
2
3
4
5
6
7
8 | HE DATA (MSD) HE DATA (LSD) LE DATA (MSD) LE DATA (LSD) CCIG RANGE 4.5 KV TEMP NO. 1 CCIG | DI-61
DI-62
DF-5
DF-6
DI-8
DI-7
DI-4 | 8LSB
8MSB
8LSB
8MSB | | FORMAT 5 (ASE) | | •
n | | | 1
2
3
4
5
6
7
8 | GEOPHONE 1 GEOPHONE 2 GEOPHONE 3 MODE ID MARK EVENT WORD COUNT EVEN BIT COUNT CAL SIG V | DS-1
DS-2
DS-3
DS-13
DS-18
DS-19
DS-20
DS-8 | | | FORMAT 6 (ASE) | | | | | 1
2
3
4
5
6
7 | PITCH ANGLE ROLL ANGLE GLA TEMP INT PKG TEMP HOT FRAME 1 TEMP CLD FRAME 1 TEMP RTG VOLTAGE RTG CURRENT | DS-7
DS-6
AS-3
AS-1
AR-1
AR-4
AE-3
AE-4 | | | FORMAT 7 (CENTRAL | STATION PCU 1) | 8 | | | 1
2
3
4
5
6
7 | RES PWR 1 INPUT WATTS +12 VDC +5 VDC THERM PLT 1 TEMP THERM PLT 2 TEMP PCU 1 REG TEMP PCU 1 OSC TEMP | CS-2
CS-1
AE-9
AE-10
AT-3
AT-4
AT-38
AT-36 | (AE-3)(AE-5)
(AE-3)(AE-4) | | FORMAT 8 (CENTRAL | STATION PCU 2) | • | | | 1
2
3
4
5
6
7 | RES PWR 2 INPUT WATTS +12 VDC +5 VDC THERM PLT 1 TEMP THERM PLT 2 TEMP PCU 2 REG TEMP PCU 2 OSC TEMP | CS-4
CS-1
AE-9
AE-10
AT-3
AT-4
AT-39
AT-37 | (AE-3)(AE-6)
(AE-3)(AE-4) | # 2.2.4 LIMIT SENSING EVENT LIGHTS | PARAMETER | NUMBER | |-------------------------|--------| | CENTRAL STATION CRITICA | L | | PCU +29V | AE-7 | | PCU +12V | AE-9 | | PCU +5V | AE-10 | | XMTR A AGC V | AE-15 | | XMTR B AGC V | AE-16 | | THERM PLT 5 TEMP | AT-7 | | PCU 1 REG TEMP | AT-38 | | PCU 2 REG TEMP | AT-39 | | RTG OUTPUT WATTS | CS-1 | | RESERVE POWER 1 | CS-2 | | RESERVE POWER 2 | CS-4 | | CENTRAL STATION WARNING | | | .25 VOLT CAL | AE-1 | | 4.75 VOLT CAL | AE-2 | | PCU IN VOLTS | AE-3 | | PCU IN AMPS | AE-4 | | PCU 1 SHUNT AMPS | AE-5 | | PCU 2 SHUNT AMPS | AE-6 | | PCU +15V | AE-8 | | PCU -12V | AE-11 | | PCU -6V | AE-12 | | RCVR DBM | AE-13 | | RCVR L/O DBM | AE-14 | | HOT FRAME 1 T | AR-1 | | HOT FRAME 2 T | AR-2 | | HOT FRAME 3 T | AR-3 | | CLD FRAME 1 T | AR-4 | | CLD FRAME 2 T | AR-5 | | PARAMETER | NUMBER | |---------------------|--------| | CLD FRAME 3 T | AR-6 | | ASE INT TEMP | AS-1 | | MOTOR BOX T | AS-2 | | GLA TEMP | AS-3 | | GEOPHONE T | AS-4 | | SUNSHIELD 1 T | AT-1 | | SUNSHIELD 2 T | AT-2 | | THERM PLT 3 T | AT-5 | | THERM PLT 4 T | AT-6 | | PRI/ST W1 T | AT-8 | | PRI/ST W2 T | AT-9 | | PRI/ST B1 T | AT-10 | | RCVR XTAL A T | AT-21 | | RCVR XTAL B T | AT-22 | | DSS/A BASE T | AT-27 | | DSS/D BASE T | AT-29 | | CMD DEC BASE T | AT-31 | | PDU BASE T | AT-34 | | DUST CELL 1 T | AX-1 | | DUST CELL 2 T | AX-2 | | DUST CELL 3 T | AX-3 | | INT REG DISIP WATTS | CS-3 | | INT REG DISIP WATTS | CS-5 | | PSE CRITICAL | | | PSE INT T | DL-7 | | PSE WARNING | | | TIDAL X | DL-4 | | TIDAL Y | | | | DL-5 | | PARAMETER | NUMBER | |---------------|--------| | SIDE CRITICAL | | | TEMP 2 | DI-5 | | TEMP 3 | DI-6 | | CCIG 4.5 KV | DI-7 | | TEMP 4 | DI-9 | | TEMP 5 | DI-10 | | TEMP 6 | DI-19 | | -3.5 KV | DI-20 | | SIDE WARNING | | | +5V ANALOG | DI-2 | | CCIG T | DI-4 | | +60V | DI-13 | | +30V | DI-14 | | +5V DIGITAL | DI-15 | | GND VOLTS | DI-16 | | -5 V | DI-17 | | -30 V | DI-18 | | +1.0 VOLT CAL | DI-21 | | +30 MV CAL | DI-22 | | ADC POS REF | DI-23 | | ADC NEG REF | DI-25 | | -1.0 V CAL | DI-26 | | -12 V CAL | DI-27 | | +12 V CAL | DI-28 | | PRE/REG PCT | DI-29 | | -30 MV CAL | DI-30 | | ASE (HBR LIM) | | | PCU IN VOLTS | AE-3 | | PCU IN AMPS | AE-4 | | HOT FR 1 T | AR-1 | | PARAMETER | NUMBER | | |---------------------|---|------------------------------| | CLD FR 1 T | AR-4 | | | INT PKG T | AS-1 | | | GLA T | AS-3 | | | RTG OUTPUT WATTS | CS-1 | | | MOTOR BOX GND | DS-5 | | | ROLL ANGLE | DS-6 | | | PITCH ANGLE | DS-7 | | | ADC 1.25 V | DS-10 | | | ADC 3.75 V | DS-11 | | | CPE CHAN/2 VOLTS | AC-2
AC-3
AC-4 | | | CPLEE WARNING | | | | PHY/AN | AC-5 | * | | DEF P/S | AC-6 | | | 2.2.5 DRUM RECORDER | S | | | PEN | PARAMETER | NUMBER | | 1
2
3
4 | LONG PERIOD X SEISMIC
LONG PERIOD Y SEISMIC
LONG PERIOD Z SEISMIC
SHORT PERIOD Z SEISMIC | DL-1
DL-2
DL-3
DL-8 | | 2.3.1 | EVENT LIGHT PANEL (FIGURE 2.3) | | | |------------|-----------------------------------|----------------------------------|--| | LIGHT | COLOR | NAME | ILLUMINATE | | 10
1L | G
G | MAIN FRAME SYNC
90 FRAME SYNC | DA-1 SYNC PATTERN
DA-2 TWO CONSECUTIVE
FRAME COUNTS | | 2U | G | NORM BIT RATE | DA-2 = CNT OF 1
DA-3 = 1
DA-2 = CNT OF 2 | | 2L | G | LOW BIT RATE | DA-3 = 1 | | 3U
3L | G
G | REALTIME DATA
PLAYBACK DATA | CAP WORD
CAP WORD | | 4U
4L | G
G | XMTR A | AE-15 > 2 PCM
AE-16 > 2 PCM | | 5U
5L | G
G | PROCESSOR X
PROCESSOR Y | AB-6 > 112 PCM
AB-6 < 112 PCM | | 6U
6L | R
A | CS CRITICAL CS WARNING | CMP B ⁽¹⁾ | | 7U
7L | G
R | PCU 1
RES PWR 1 | AE-5 > 2 PCM
RES PWR < 6.4 W | | 8U
8L | A
A | EXP 1 STBY
EXP 2 STBY | $AB-4$ 72 ± 10 , 192±10 131±10, 192±10 | | 90 | R | PSE CRITICAL | CMP F ⁽¹⁾ | | 9L | R | LSM CRITICAL | CMP G ⁽¹⁾ | | 100 | A | PSE WARNING | CMP E ⁽¹⁾ CMP H ⁽¹⁾ | | 10L | A | LSM WARNING | | | 110 | Α | EXP 5 STBY | $AB-5 \left(\begin{array}{c} 35\pm10, 100\pm10 \\ 160\pm10, 214\pm10 \end{array} \right)$ | | 11L | (BLANK) | • | (1) | | 12U
12L | R
(BLANK) | HFE LIMITS | CMP K ⁽¹⁾ | | 13U
13L | G
R | PCU 2
RES PWR 2 | AE-6 > 2 PCM
RES PWR < 6.4 W | | 140 | Α | EXP 3 STBY | $\sqrt{131\pm10, 160\pm10,}$ | | 14L | А | EXP 4 STBY | $AB-5 \begin{cases} 131\pm10, 160\pm10, \\ 188\pm10, 214\pm10 \\ 69\pm10, 100\pm10, \\ 188\pm10, 214\pm10 \end{cases}$ | | 150 | R | SWS CRITICAL | CMP J(1) | | 15L | R | SIDE CRITICAL | CMP D(1) | | 16U | Α | SWS WARNING | CMP I ⁽¹⁾ | | 16L | A | SIDE WARNING | CMP C(1) | | (1) | SEE PARAGRAPH 2.3.4 LIMIT SENSING | * | | | LIGHT | COLOR | NAME | ILLUMINATE | |------------|--------------|--------------|-----------------| | 17U
17L | (BLANK)
R | TIMER CNTR 1 | AZ-2 = >120 PCM | | 18U
18L | (BLANK)
R | TIMER CNTR 2 | AZ-3 = >120 PCM | | Mission | Apollo | 15 | ALSEP | A2 | |------------|--------|----|-------|----| | IVITABIUII | | | | | Console 88 Module — 4 | G | MAIN FRME
SYNC
DA-1 | NORM BIT
RATE
G | REAL-TIME
DATA
G | XMTR A | PROCESSOR
X
G | CS
CRITICAL
R | |---|---------------------------|---------------------------|----------------------------|---------------------------|---------------------------|-------------------------| | G | 90 FRAME
SYNC
DA-2 | LOW BIT
RATE
G | PLAYBACK
DATA
G | XMTR B | PROCESSOR
Y
G |
CS
WARNING
A | | G | PCU 1 | EXP 1 STBY
STATUS
A | PSE LIMS
CRITICAL
R | PSE LIMS
WARNING
A | EXP 5 STBY
STATUS
A | HFE
LIMITS
R | | R | RES PWR 1 | EXP 2 STBY
STATUS
A | LSM LIMS
CRITICAL
R | LSM LIMS
WARNING
A | | | | G | PCU 2 | EXP 3 STBY
STATUS
A | SWS LIMS
CRITICAL
R | SWS LIMS
WARNING
A | | | | R | RES PWR 2 | EXP 4 STBY
STATUS
A | SIDE LIMS
CRITICAL
R | SIDE LIMS
WARNING
A | TIMER
COUNTER 1
R | TIMER
COUNTER 2
R | Figure 2-3.- Apollo 15 ALSEP A2 event light panel. ## ALSEPCH BASIC ## 2.3.2 HIGH SPEED PRINTER FORMATS - CENTRAL STATION - 2. PASSIVE SEISMIC EXPERIMENT - 3. SOLAR WIND EXPERIMENT - 4. SIDE/CCGE FMT 1 - 5. SIDE/CCGE FMT 2 - 6. LSM FMT 1 - 7. LSM FMT 2 - 8. HEAT FLOW FMT 1 - 9. HEAT FLOW FMT 2 - 10. LIMITS TABLE - 11. DISPLAY GUIDE # 2.3.3 ANALOG RECORDER FORMATS | PEN | PARAMETER | NUMBER | COMMENT | |--------------------------------------|--|--|--| | FORMAT 1 (PSE) | | | | | 1
2
3
4
5
6
7
8 | LONG PERIOD X SEISMIC LONG PERIOD Y SEISMIC LONG PERIOD Z SEISMIC SHORT PERIOD Z SEISMIC LONG PERIOD X TIDAL LONG PERIOD Y TIDAL LONG PERIOD Z TIDAL PSE INST TEMP | DL-1
DL-2
DL-3
DL-8
DL-4
DL-5
DL-6
DL-7 | 8MSB
8MSB
8MSB
8MSB
8MSB
8MSB
8MSB
8MSB | | FORMAT 2 (PSE) | | | | | 1
2
3
4
5
6
7
8 | LONG PERIOD X SEISMIC LONG PERIOD Y SEISMIC LONG PERIOD Z SEISMIC SHORT PERIOD Z SEISMIC LONG PERIOD X TIDAL LONG PERIOD Y TIDAL LONG PERIOD Z TIDAL PSE INST TEMP | DL-1
DL-2
DL-3
DL-8
DL-4
DL-5
DL-6
DL-7 | 8LSB
8LSB
8LSB
8LSB
8LSB
8LSB
8LSB
8LSB | | FORMAT 3 (SIDE/CCGE | Ξ) | | | | 1
2
3
4 | HECPA STEPPER VOLTAGE
HE DATA (MSD)
HE DATA (LSD)
CCGE | WD47 EVNFR
DI-61
DI-62
DI-3 | 8LSB
8MSB | | PEN | PARAMETER | NUMBER | COMMENT | |--------------------------------------|--|---|------------------------------| | 5
6
7
8 | VELOCITY FILTER VOLTAGE
LECPA STEPPER VOLTAGE
LE DATA (MSD)
LE DATA (LSD) | WD31 ODDFR
WD47 ODDFR
DF-5
DF-6 | 8LSB
8MSB | | FORMAT 4 (SIDE/CCG | Ε) | | | | 1
2
3
4
5
6
7
8 | HE DATA (MSD) HE DATA (LSD) LE DATA (MSD) LE DATA (LSD) CCGE RANGE 4.5 KV TEMP NO. 1 CCGE | DI-61
DI-62
DF-5
DF-6
DI-8
DI-7
DI-4
DI-3 | 8LSB
8MSB
8LSB
8MSB | | FORMAT 5 (LSM) | | | | | 1
2
3
4
5
6
7
8 | X AXIS SCI Y AXIS SCI Z AXIS SCI X SNSR TEMP Y SNSR TEMP Z SNSR TEMP LSM INST TEMP SPECIAL PROCESSING | LM-35
LM-36
LM-37
DM-1
DM-2
DM-3
DM-5 | | | FORMAT 6 (LSM) | | | | | 1
2
3
4
5
6
7
8 | X AXIS SCI Y AXIS SCI Z AXIS SCI Z AXIS SCI BASE TEMP 5V SUPPLY LVL 1 DEG LVL 2 DEG SPECIAL PROCESSING | LM-35
LM-36
LM-37
DM-5
DM-8
DM-6
DM-7 | | | FORMAT 7 (CENTRAL | STATION PCU 1) | | | | 1
2
3
4
5
6
7
8 | RES PWR 1 INPUT WATTS +12 VDC +5 VDC THERM PLT 1 TEMP THERM PLT 2 TEMP PCU 1 REG PCU 1 OSC | CS-2
CS-1
AE-9
AE-10
AT-3
AT-4
AT-38
AT-36 | (AE-3)(AE-5)
(AE-3)(AE-4) | | FORMAT 8 (CENTRAL | STATION PCU 2) | | | | 1
2
3
4
5 | RES PWR 2
INPUT WATTS
+12 VDC
+5 VDC
THERM PLT 1 TEMP | CS-4
CS-1
AE-9
AE-10
AT-3 | (AE-3)(AE-6)
(AE-3)(AE-4) | # ALSEPCH BASIC | | | as a grant of | | |---------------------|--|------------------------|---------| | PEN | PARAMETER | NUMBER | COMMENT | | 6
7
8 | THERM PLT 2 TEMP
PCU 2 REG
PCU 2 OSC | AT-4
AT-39
AT-37 | | | 2.3.4 LIMIT SEN | SING EVENT LIGHTS | | | | PARAMETER | NUMBER | | | | CENTRAL STATION CRI | TICAL | • | | | PCU +29V | AE-7 | | | | PCU +12V | AE-9 | | | | PCU +5V | AE-10 | | | | XMTR A AGC V | AE-15 | | | | XMTR B AGC V | AE-16 | | | | THERM PLT 5 T | AT-7 | | | | PCU 1 REG T | AT-38 | | | | PCU 2 REG T | AT-39 | · | | | RTG OUTPUT WATTS | CS1 | | | | RES PWR 1 | CS2 | | | | RES PWR 2 | CS4 | | | | CENTRAL STATION WA | RNING | | | | .25 VOLT CAL | AE-1 | | | | 4.75 VOLT CAL | AE-2 | E = 2.1 | | | PCU IN VOLTS | AE-3 | | | | PCU IN AMPS | AE-4 | | | | PCU 1 SHUNT AMPS | AE-5 | | | | PCU 2 SHUNT AMPS | AE-6 | | | | PCU +15V | AE-8 | | | | PCU -12V | AE-11 | | | | PCU -6V | AE-12 | | | | RCVR DBM | AE-13 | * | | | RCVR L/O DBM | AE-14 | | | | | | | | AR-1 HOT FRAME 1 T | PARAMETER | NUMBER | |-------------------|--------| | HOT FRAME 2 T | AR-2 | | HOT FRAME 3 T | AR-3 | | CLD FRAME 1 T | AR-4 | | CLD FRAME 2 T | AR-5 | | CLD FRAME 3 T | AR-6 | | SUNSHIELD 1 T | AT-1 | | SUNSHIELD 2 T | AT-2 | | THERM PLT 3 T | AT-5 | | THERM PLT 4 T | AT-6 | | PRI/ST W1 | AT-8 | | PRI/ST W2 | AT-9 | | PRI/ST B1 | AT-10 | | RCVR XTAL A T | AT-21 | | RCVR XTAL B T | AT-22 | | DSS/A BASE T | AT-27 | | DSS/D BASE T | AT-29 | | CMD DEC BASE T | AT-31 | | PDU BASE T | AT-34 | | DUST CELL 1 T | AX-1 | | DUST CELL 2 T | AX-2 | | DUST CELL 3 T | AX-3 | | INT REG DIS WATTS | CS-3 | | INT REG DIS WATTS | CS-5 | | PSE CRITICAL | | | PSE INT T | DL-7 | | 102 111 | | | PSE WARNING | | | TIDAL X | DL-4 | | TIDAL Y | DL-5 | | TIDAL Z | DL-6 | # ALSEPCH . BASIC | PARAMETER | NUMBER | |----------------|--------| | LSM CRITICAL | | | SENSOR X TEMP | DM-1 | | SENSOR Y TEMP | DM-2 | | SENSOR Z TEMP | DM-3 | | BASE TEMP | DM-4 | | INT TEMP | DM-5 | | LSM WARNING | | | LVL 1 TILT | DM-6 | | LVL 2 TILT | DM-7 | | +5 VOLT SUPPLY | DM-8 | | SWS CRITICAL | | | MOD 100 TEMP | DW-11 | | MOD 200 TEMP | DW-12 | | MOD 300 TEMP | DW-13 | | SNSR TEMP | DW-14 | | PROG VOLTS | DW-16 | | STEP GEN VOLTS | DW-17 | | MOD OK/NOK PCM | DW-18 | | SWS WARNING | | | ADC MV | DW-3 | | ADC 90 MV | DW-4 | | ADC 900 MV | DW-5 | | ADC 3000 MV | DW-6 | | ADC 9000 MV | DW-7 | | SUN REF VOLTS | DW-15 | | SIDE CRITICAL | | | TEMP 2 | DI-5 | | TEMP 3 | DI-6 | | CCGE 4.5 KV | DI-7 | | PARAMETER | NUMBER | |--------------|--------| | TEMP 4 | DI-9 | | TEMP 5 | DI-10 | | TEMP 6 | DI-19 | | -3.5 KV | DI-20 | | SIDE WARNING | | | +5V ANALOG | DI-2 | | CCIG T | DI-4 | | +60 VOLTS | DI-13 | | +30 VOLTS | DI-14 | | +5V DIGITAL | DI-15 | | GND VOLTS | DI-16 | | -5 VOLTS | DI-17 | | -30 VOLTS | DI-18 | | +1 VOLT CAL | DI-21 | | +30 MV CAL | DI-22 | | ADC POS REF | DI-23 | | ADC NEG REF | DI-25 | | -1 VOLT CAL | DI-26 | | -12 VOLT CAL | DI-27 | | +12 VOLT CAL | DI-28 | | PRE/REG PCT | DI-29 | | -30 MV CAL | DI-30 | | HFE LIMITS | | | +5V SUPPLY | AH-1 | | -5V SUPPLY | AH-2 | | +15V SUPPLY | AH-3 | | -15V SUPPLY | AH-4 | | | | # 2.3.5 DRUM RECORDERS | PEN | PARAMETER | NUMBER | |-----|------------------------|--------| | 1 | LONG PERIOD X SEISMIC | DL-1 | | 2 | LONG PERIOD Y SEISMIC | DL-2 | | 3 | LONG PERIOD Z SEISMIC | DL-3 | | 4 | SHORT PERIOD Z SEISMIC | DL-8 | 2.4 APOLLO 16 ALSEP ARRAY D TO BE SUPPLIED # 2.5 APOLLO 17 ALSEP ARRAY E TO BE SUPPLIED #### 2.6 72 EVENT LIGHT PANEL | LIGHT NO. | TITLE | MEAS NO. | E.U. VALUE
TO ILLUMINATE | |---------------------|---------------------|----------|-----------------------------| | 1*,19,37,55 | PCU 1 OSC T | AT-36 | <-20/<+160 | | 2,20,38,56 | XMTR A XTAL T | AT-23 | <-15/>+160 | | 3,21,39,57 | XMTR A HT/ST | AT-24 | <-15/>+160 | | 4,22,40,58 | XMTR A DBLR MA | AE-17 | <158/>190 | | 5,23,41,59 | PDU INT T | AT-35 | <0/>+160 | | 6,24,42,60 | CMD DEC VCO T | AT-33 | <-20/>+140 | | 7,25,43,61 | CMD DEC INT T | AT-32 | <-20/>+140 | | 8,26,44,62 | DSS/A INT T | AT-28 | <-20/>+140 | | 9,27,45,63 | DSS/D INT T | AT-30 | <-20/>+140 | | 10,28,46,64 | PCU 2 OSC T | AT-37 | <-20/>+160 | | 11,29,47,65 | XMTR B XTAL T | AT-25 | <-15/>+160 | | 12,30,48,66 | XMTR B HT/ST | AT-26 | <-15/>+160 | | 13,31,49,67 | XMTR B DBLR MA | AE-18 | <158/>190 | | 14,32,50,68 | THRM PLT ONE T | AT-3 | <-20/>+140 | | 15,33,51,69 | THRM PLT TWO T | AT-4 | <-20/>+140 | | 16,34,52,70 | INSUL EXT T | AT-13 | <-135/>+210 | | 17,35,53,71 | INSUL INT T | AT-12 | <-20/>+157 | | 18,36,54,72 | PRI/ST WALL T 3 | AT-11 | <-210/>+236 | | * NO. 1 TO 18 | APOLLO 12 ALSEP 1 | | | | NO. 19 TO 36 | APOLLO 15 ALSEP A-2 | • | | NO. 37 TO 54 APOLLO 16 ALSEP ARRAY D (ALSEP 5) NO. 55 TO 72 APOLLO 14 ALSEP 4 NOTES: 1. Sync Pulse (double pulse) All pulses in excess of the double pulse indicate Tens of Hours. Sync pulse marks the beginning of time word. Exclude the double pulse from the count. 2. Tens of seconds - This point also represents the 4 unit of Seconds point. SERIAL DECIMAL TIME DISPLAY 3. Day Count - Starting at 1 January. 3 OPERATIONAL PROCEDURES # SECTION 3 # STANDARD OPERATING PROCEDURES Due to the individuality of each ALSEP, it is necessary to have two sets of SOP's for each ALSEP. The first set of SOP's will be distributed prior to each mission. These will, in the main, concern deployment, activation, and normal operations. The second set of SOP's will be distributed after the 45-day support and will replace the first set in their entirety. These will be the standard procedures that have <u>evolved</u> due to non-normal operation of the ALSEP package. Bluntly, the first set is written about what is hoped will happen and the second set is written about what really happened. The operational sequence numbering is as follows: | ALSEP | <u>Apollo</u> | First Set | Second Set | |---------|---------------|-----------|------------| | 1 | 12 | Discard | 1-NX | | 4 | 14 | 3-N* | 4-NX | | A2 | 15 | 2-N | 2-NX | | Array D | 16 | 3-N | 3-NX | | Array E | 17 | 6-N | 6-NX | ^{*}N is SOP number. | | | | 25 | |----|----------|--|--------------------| | | | | | | | | | | | | | | TURN DRUM
RECORDER | | | <u>/</u> | | GAIN TO INFINITY | | | | | | |)) | , | | NASA — M | | Step
No. | ASE | SYSTEMS | DATA | Comments | |-------------|---|---|----------------------------|---| | 1 | PICK UP DATA BOOK
FROM OFFICE | | | | | 2 | CALL GCC TO SEND
ALSEP MESSAGES | | | | | 3 | READ MESSAGES AND
LOG SPURIOUS CVW'S
WITH MAP BIT SET | , · | Redr Emī | speed +100 | | 4 | HAVE REAL-TIME DATA
DURING CMD INTERFACE | SELECT ANALOG
RECORDERS AS RE-
QUIRED. ANNOTATE
RECORDERS. | 1 3
2 1
3 7
4 506 | 1,0 (100 N.50)
0.05 5
0.025 2.5
0.5 50 | | 5 | CALL DISPLAY TO
START DRUM RECORDERS
AND MULTIPEN | SELECT FOLLOWING HSP
FORMATS FOR BOTH
DATA BOOKS
4 C/S (1 FOR BXA) | | | | | | 3 PSE
3 LSM NO. 2
3 SWS
3 SIDE NO. 1
(IF SIDE IS ON) | | | | 6 | COMPARE DATA WITH
PREVIOUS DAY | CHECK SETTINGS ON DRUM RECORDERS. ANNOTATE MULTIPEN. | | | | 7 | CMD SIDE ON IF SIDE
IS OFF CMD 052 | OBTAIN HSP FORMATS
SIDE NO. 1 FOR DATA
BOOKS AND SIDE NO. 2
FOR PI | | | | 8 | | FILL IN DATA LOG | ż | , | | 9 | LEVEL PSE AXIS AS
REQUIRED | OBTAIN PSE HSP FORMATS
FOR DATA BOOKS BEFORE
AND AFTER LEVELING
SEQUENCE | , | TURN DRUM RECORDER
GAIN TO INFINITY | | 10 | CMD PSE LP CAL ON
AND OFF PER SUMMARY
SUPPORT SCHEDULE.
CMD 066. | ANNOTATE DRUM
RECORDERS | | | | 11 | CMD LSM FLIP CAL PER
SUMMARY SUPPORT
SCHEDULE. CMD 131.
NOTE: TWO FLIP CALS
MUST BE CMDED
TO MAINTAIN
HEADS AT 180° | , | | | | Step
No. | ASE | SYSTEMS | DATA | Comments | |-------------|--|---|-------------------------|--| | 12 | IF SIDE IS TO BE
CMDED OFF (SEE
SUMMARY SUPPORT
SCHEDULE)
SEND CMD 053
THEN CMD 054 | OBTAIN HSP FORMAT
SIDE NO. 1 PRIOR
TO CMD 053 | · | | | 13 | IF REQUIRED, CMD
DSS NO. 1 HEATER ON
CMD 055 | VERIFY 10 W DECREASE
IN RESERVE POWER | | DSS NO. 1 HEATER WILL BE CMDED "ON" DURING 2-HOUR SUPPORT PERIOD PRIOR TO SUNSET | | 14 🖣 | 0.00 | GET FINAL HSP FORMATS
FOR DATA BOOKS (SEE
STEP NO. 5). COMPARE
DATA WITH FIRST CUT
OF DATA. | · | | | 15 | NOTIFY NETWORK TO
TERMINATE REAL-TIME
SUPPORT AND OF PLAY-
BACK REQUIREMENTS | CALL DISPLAY TO TURN
DRUM RECORDERS AND
MULTIPEN OFF. TURN
OFF ANALOG RECORDERS
AND ANNOTATE. | | | | 16 | CALL GCC TO HOLD
ALSEP MESSAGES | ANNOTATE MULTIPEN | | | | 17 | WRITE DAILY
REPORT AND SMEARS
AS REQUIRED | FILL IN DATA LOG | | | | 18 | VERIFY ALL TASKS
COMPLETED | PLACE CONSOLE LOG IN CABINET AND LOCK | | | | 19 | RETURN DATA BOOK TO
OFFICE | | | | | | NOTE: REMOVE MULTIPE
SUN ANGLE OF 2 | N RECORDING FOR PI DURI
70° | NG SUPPORT PERIOD CLOSE | ST TO | | | | | | | | | | | | | | | | | | - | | Step
No. | ASE | SYSTEMS | DATA | Comments | |-------------|---|--|------|--| | 1 | START NEW ALSEP 1
DATA BOOKS | | | | | 2 | CALL GCC TO SEND
ALSEP MESSAGES | | | | | 3 | READ MESSAGES AND LOG
SPURIOUS CVW'S WITH
MAP BIT SET | | 6 | | | 4 | HAVE REAL-TIME DATA
DURING CMD INTERFACE | SELECT THE ANALOG
RECORDERS AS REQUIRED.
ANNOTATE RECORDERS. | | | | 5 | CALL DISPLAY TO START
DRUM RECORDERS AND
MULTIPEN | SELECT FOLLOWING HSP
FORMATS FOR BOTH DATA
BOOKS 4 C/S (1 FOR BXA) 3 PSE 3 LSM NO. 2 3 SWS 3 SIDE NO. 1 (IF SIDE IS ON) | | THESE FORMATS WILL BE
OBTAINED EVERY EVEN
GMT HOUR FOR BOTH
DATA BOOKS AND UPDATE
DATA LOG | | 6 | COMPARE DATA WITH PREVIOUS DAY | CHECK SETTINGS ON DRUM
RECORDERS. ANNOTATE
MULTIPEN | | | | 7 | v | FILL-IN DATA LOG | | ALSO EVERY EVEN GMT
HOUR (SEE COMMENT
STEP 5) | | 8 | OBTAIN SUNRISE TIME
FROM NETWORK | | • | SUNRISE IS WHEN AX-06 CHANGES FROM OFF-SCALI LOW TO SOME INITIAL VALUE. NOTE: REMOTE SITES WILL BE RE- QUESTED TO MONITOR BY AN ISI | | 9 | LEVEL PSE AS REQUIRED | OBTAIN PSE HSP FORMATS
FOR BOTH DATA BOOKS
BEFORE AND AFTER
LEVELING SEQUENCE | | TURN Z MOTOR OFF PRIOR TO LEVELING IF IT IS "ON" FOR THERMAL CONTROL. TURN DRUM RECORDER GAINS TO INFINITY. | | 10 | TURN DSS NO. 1 HEATER
OFF 8-HOURS AFTER
SUNRISE. CMD 056
THEN CMD 057. | VERIFY 10 W INCREASE
IN RESERVE POWER | | | | Step
No. | ASE | SYSTEMS | DATA | Comments | |-------------|---|---|------|--| | 11 | TURN PSE Z MOTOR OFF
12 HOURS AFTER
SUNRISE | VERIFY 3 W INCREASE IN
RESERVE POWER. GET
PSE HSP FORMAT FOR
EACH DATA BOOK | | | | 12 | CMD LSM DOUBLE FLIP
CALS EVERY 6 HOURS
BEGINNING APPROXI-
MATELY 24 HOURS
AFTER SUNRISE IF
THERE IS LSM DATA | | | USE CLOSEST 0000,
0600, 1200, OR
1800 GMT TO 24 HOURS
AFTER SUNRISE. LSM
DATA WILL RE-APPEAR
ABOUT 30 HOURS AFTER
SUNRISE. | | 13 | LEVEL PSE X AND Y
AXIS AS REQUIRED | OBTAIN PSE HSP FORMATS
BEFORE AND AFTER
LEVELING FOR DATA
BOOKS | | Z MOTOR IS ON. TURN
DRUM RECORDER GAINS
TO INFINITY. | | 14 | | GET FINAL HSP FORMATS
FOR DATA BOOKS (SEE
STEP 5) | | | | 15 | NOTIFY NETWORK TO
TERMINATE REAL-TIME
SUPPORT AND OF
PLAYBACK REQUIREMENTS | CALL DISPLAY TO TURN
DRUM RECORDERS AND
MULTIPEN OFF. TURN
OFF ANALOG RECORDERS
AND ANNOTATE. | | | | 16 | CALL GCC TO HOLD
ALSEP MESSAGES | ANNOTATE MULTIPEN | | | | 17 | WRITE DAILY REPORT
AND SMEARS AS REQUIRED | FILL-IN DATA LOG | | | | 18 | VERIFY ALL TASKS
COMPLETED | PLACE CONSOLE LOG IN CABINET AND LOCK | • | | | 19 | RETURN DATA BOOK TO
OFFICE | | | | | | | | | | | | | | * | | | Step
No. | ASE | SYSTEMS | DATA | Comments | |-------------|---|---|------|--| | 1 | PICK UP DATA BOOK
FROM OFFICE | | • | * | | 2 | CALL GCC TO SEND
ALSEP MESSAGES | | | | | 3 | READ MESSAGES AND LOG
SPURIOUS CVW'S WITH
MAP BIT SET | | | я | | 4 | | SELECT THE ANALOG
RECORDERS AS REQUIRED.
ANNOTATE RECORDERS. | | | | 5 | CALL DISPLAY TO START
DRUM RECORDERS AND
MULTIPEN | SELECT FOLLOWING HSP
FORMATS FOR BOTH
DATA BOOKS 4 C/S (1 FOR BXA) 3 PSE 3 LSM NO. 2 3 SWS 3 SIDE NO. 1
(IF SIDE IS ON) | , | THESE FORMATS WILL BE
OBTAINED EVERY EVEN
GMT HOUR FOR BOTH
DATA BOOKS AND UPDATE
DATA LOG | | 6 | COMPARE DATA WITH
PREVIOUS DAY | CHECK SETTINGS ON
DRUM RECORDERS.
ANNOTATE MULTIPEN. | | , | | 7 | | FILL IN DATA LOG | | ALSO EVERY EVEN GMT
HOUR (SEE COMMENT
STEP 5) | | 8 | LEVEL PSE AS RE-
QUIRED | OBTAIN PSE HSP FORMAT
FOR DATA BOOKS BEFORE
AND AFTER LEVELING | | TURN DRUM RECORDER GAINS TO INFINITY | | 9 | OBTAIN SUNSET TIME | | | HAVE NETWORK NOTIFY
REMOTE SITE TO
MONITOR WHEN AX-04
GOES TO OFF-SCALE LO | | 10 | CMD PSE Z MOTOR ON
CMD 072 7 HOURS AFTER
SUNSET | VERIFY 3 W DROP IN
RESERVE POWER | · | Z MOTOR LEFT ON FOR PSE THERMAL CONTROL | | 11 | | GET FINAL HSP FORMATS
FOR DATA BOOKS (SEE
STEP 5) | | | | 12 | NOTIFY NETWORK TO
TERMINATE REAL-TIME
SUPPORT AND OF PLAY-
BACK REQUIREMENTS | CALL DISPLAY TO TURN
DRUM RECORDERS AND
MULTIPEN OFF. TURN
OFF ANALOG RECORDERS
AND ANNOTATE. | | | | Step
No. | ASE | SYSTEMS | DATA | Comments | |-------------|---|--|------|----------| | 13 | CALL GCC TO HOLD
ALSEP MESSAGES | ANNOTATE MULTIPEN | , | | | 14 | WRITE DAILY REPORT
AND SMEARS AS
REQUIRED | FILL IN DATA LOG | | | | 15 | VERIFY ALL TASKS
COMPLETED | PLACE CONSOLE LOG IN
CABINET AND LOCK | 4 | | | 16 | RETURN DATA BOOK TO OFFICE | | • | - | | | | , | | | | | | | | | | | | | | | | | - | | | | | | | | | | Computing Dr. H Rates - PSE SOP 1-4X PSE AUTO LEVELING PREREQUISITES: ALSEPCH BASIC PAGE 1 OF 1 HUAROG REDR MULTIPOINT | Step
No. | ASE | SYSTEMS | DATA | Comments | |-------------|---|--|---------------|---| | 1 | | TURN DRUM RECORDER GAINS TO INFINITY | 1 | - wisik 001 | | 2 | James Dagon | OBTAIN PSE HSP FORMAT
FOR EACH DATA BOOK.
VERIFY AUTO MODE. | | paper width. | | 3 | CMD Z MOTOR OFF (CMD 072) IF REQUIRED | ANNOTATE PSE ANALOG
RECORDER | Microraelans | Z MOTOR ON DURING
LUNAR NIGHT FOR
THERMAL CONTROL | | 4 | IF REQUIRED CMD X
MOTOR ON (CMD 070) | ANNOTATE PSE ANALOG
RECORDER | 4)2 S11.0 = , | oc Millows | | 5 | WHEN X TIDAL ON PSE
ANALOG RECORDER IS
50%, TURN X
MOTOR
OFF (CMD 070) | 0 | must point | 4 passes on | | 6 | IF REQUIRED CMD Y
MOTOR ON (CMD 071) | ANNOTATE PSE ANALOG
RECORDER | | | | 7 | WHEN Y TIDAL ON PSE
ANALOG RECORDER IS
50%, TURN Y MOTOR
OFF (CMD 071) | | | | | 8 | IF REQUIRED CMD Z
MOTOR ON (CMD 072) | ANNOTATE PSE ANALOG
RECORDER | | SEE COMMENT STEP 3 | | 9 | WHEN Z TIDAL ON PSE
ANALOG RECORDER IS
50%, TURN Z MOTOR
OFF (CMD 072) | | | THIS STEP VALID ONLY
DURING LUNAR DAY FOR
LEVELING Z AXIS | | 10 | | OBTAIN PSE HSP
FORMATS FOR EACH
DATA BOOK | | | | 11 | - | TURN DRUM RECORDER
GAIN BACK TO -30 DB.
ANNOTATE MULTIPOINT
RECORDER. | | , | | 12 | RECORD ACTIVITY IN
CONSOLE LOG AND
COMMAND LOG | | | | # Computing Driff Rates - PSE MULTI POINT ANALOG REDR 100 division per paper width. = 12.5 Microradians 00 1 division = 0.125 uz 4 passes ou multipolat 4 width of paper ipass on Analog \$ 50 per (± 25 | Step
No. | ASE | SYSTEMS | DATA | Comments | |-------------|--|---|------|---| | 1 | | TURN DRUM RECORDER GAINS TO INFINITY | · | | | 2 | | OBTAIN PSE HSP
FORMATS FOR EACH
DATA BOOK. VERIFY
SPEED LO AND AUTO
MODE. | | , | | 3 | CMD Z MOTOR OFF (CMD
072) IF REQUIRED | ANNOTATE PSE ANALOG
RECORDER | | Z MOTOR ON DURING
LUNAR NIGHT FOR
THERMAL CONTROL | | 4 | DETERMINE DIRECTION
TO DRIVE X AXIS AND
SEND CMD 074 IF
REQUIRED | VERIFY DIRECTION | | | | 5 | SEND CMD 103
(FORCED MODE) | VERIFY FORCED MODE | | | | 6 | ENABLE MAP OVERRIDE | | | | | 7 | GUESSTIMATE TIME X
MOTOR TO BE ON | VERIFY GUESSTIMATE | | BAND EDGE TO BAND
EDGE IS APPROX 4 SEC | | 8 | NOTIFY NETWORK OF
MAP OVERRIDE AND
DURATION OF X MOTOR
ON | | | | | 9 | SEND CMD 070 (X MOTOR ON) | | | | | 10 | SEND CMD 070 (X MOTOR
OFF) AFTER APPROPRIATE
TIME INTERVAL | | | 1 | | 11 | INITIATE CMD 103
(AUTO MODE) IMMEDI-
ATELY AFTER CMD 070
(X MOTOR OFF). TURN
MAP OVERRIDE OFF. | ANNOTATE ANALOG
RECORDER | | , | | 12 | DETERMINE DIRECTION
TO DRIVE Y AXIS AND
SEND CMD 074 IF
REQUIRED | VERIFY DIRECTION | | | | 13 | SEND CMD 103 (FORCED MODE) | VERIFY FORCED MODE | | | | 14 | GUESSTIMATE TIME Y
MOTOR TO BE ON. TURN
MAP OVERRIDE ON. | VERIFY GUESSTIMATE | | BAND EDGE TO BAND
EDGE IS APPROX 4 SEC | | Step
No. | ASE | SYSTEMS | DATA | Comments | |-------------|---|--|------|--| | 15 | NOTIFY NETWORK OF
MAP OVERRIDE AND
DURATION OF Y MOTOR
ON | | | | | 16 | SEND CMD 071 (Y MOTOR
ON) | q | | | | 17 | SEND CMD 071 (Y MOTOR
OFF) AFTER APPROPRI-
ATE TIME INTERVAL | | | | | 18 | INITIATE CMD 103 (AUTO
MODE) IMMEDIATELY
AFTER CMD 071 (Y
MOTOR OFF) | ANNOTATE ANALOG
RECORDER | | | | 19 | DISABLE MAP OVERRIDE | VERIFY AUTO MODE | | | | 20 | CMD Z MOTOR ON (CMD
072) IF REQUIRED | | | Z AXIS WILL BE
LEVELED IN AUTO MODE
ONLY BECAUSE OF LOW
DRIFT RATES | | 21 | | OBTAIN PSE HSP FORMAT
FOR EACH DATA BOOK | | | | 22 | | RETURN DRUM RECORDER
GAINS TO -30 DB.
ANNOTATE MULTIPOINT
RECORDER. | | | | 23 | RECORD ACTIVITY IN
CONSOLE LOG AND
COMMAND LOG | | | | | | | | • | (| | | | | | | | | | | · | | | | | | , | | | | | | | | | | | | | | Manual Leveling of X axis for Sunset terminator after Z drive motor has been turned oN HSP PSE Print outs before leveling 6 Drums ATTENUATION to 00 3 072 Z Mtr OFF Note: to reduce the amount of pertibations to the data - keep time to miliamum from Z mtr OFF to ZAITON A) 103 Manual Mode Verity by SITEVAL and VERIFY G MAP OR ON © 070 X Mtr ON (4 to 5 seconds) © 070 X Mtr OFF © 103 Auto Mode Verify off Brush recorder-don't weit fertspil @ MAP OR OFF (E) 072 ZMtr ON Rotal elase time should be about I minute max. from ZMFr OFF to ZMFr ON. Drums Attenuation to 30 (2) 2 HSP PSE after liling. 111111 | Step
No. | ASE | SYSTEMS | DATA | Comments | |-------------|--|---|------|--| | 1 | | VERIFY THAT CUP 14
SUM IS EQUAL TO OR
GREATER THAN 40 FOR
ONE COMPLETE SOLAR
WIND CYCLE | | | | 2 | ENABLE MAP OVERRIDE | | | | | 3 | SEND CMD 122 THREE
TIMES WITHIN 10 SEC
(SWS HI GAIN) | | | CUP 14 SUM WILL GO 1
SOME NUMBER DIFFEREN
FROM LO GAIN | · | , | Step
No. | ASE | SYSTEMS | DATA | Comments | |-------------|----------------------------|--|------|----------| | 1 | | VERIFY THAT CUP 14
SUM IS 5 OR MORE LESS
THAN WHEN COMMANDED
TO HI GAIN | | | | 2 | SEND CMD 046 (SWS
STBY) | VERIFY EXP 3 STBY
STATUS LIGHT ON | | | | 3 | SEND CMD 045 (SWS ON) | VERIFY EXP 3 STBY
STATUS LIGHT OFF | , | z | | | | | | | | | | | | | | | | | | · | ¥ | SWS | 7, 1 | LOW | |------------------|----------------------|-----------|-----| | 9 | DW03 | | | | 90 | DW04 | | | | 900
3000 | DW05 | | | | 9000 | DW07 | | | | MOD 100 | DWII | DEGC | | | MOD 200 | | DEGC | | | MOD, 300 | | DEGC | | | SNSR | DW14 | DEGC , | | | SUN REF | DW15 | | | | PROG | DM16 | | | | STEP GEN | DW17 | VDC | | | MOD MON | DW18 | PCM | * | | | SIDE | / CCGE | | | +5 | | VDC . | | | CCGE | D104 | DEGK | | | TEMP 2 | 0105 | DEGC ' | | | TEMP 3. | DI06 | DEGC | | | CCGE 4.5 | D107 | KVDC | | | TEMP 4 | D109 | | | | TEMP 5 | D110 | DEGC | | | +60 | DI13 | VDC | | | | DII4 | VDC | | | +5 | D115 | | | | GND | DI16 | 9 4 59 50 | | | -5 | DI17
DI18 | VDC | | | -30 | DIES | DEGC | | | TEMP 6 | | | | | SIDE -3.5 | DI 21 | VDC | | | +1.0 | DISS | MADE | | | +30
C POS REF | 0123 | VDC | | | | 0125 | ADC | | | ADC NEG REF | DI25
DI26
DI27 | VDC | | | -1.0
-12 | D127 | VDC | | | +12 | D128 | VDC | | | PRE/REG | D129 | | | | -30 | D130 | | | | | , | | • | 012 HIGH # ALSEP 1 CIMITS TABLE SET 10/24/70 CIMITS TABLE | HOIB | 21.1 | | SWS | halh | v0.J | |---------|-----------|--------|---------|-----------------|---------| | | | | 775 | 0.001 | 0.(1 | | 10.00 | 00.8 | V.M. | Dw03 | 110.0 | 0.01 | | 100.001 | 00.08 | VM | 40W0 | 0.001 | 10.0 | | 1000.00 | 00.00 | VM | 0W05 | 0.001 | 0.01 | | 3300.00 | 2650.00 | VM | JOWO | 0.001 | 0.01 | | 00.0089 | 8000.00CB | VM | OwO | 0.011 | 0.05 | | 10.00 | 00.05- | DEGC | LIWU | 130.0 | 20.0 | | 70.00 | -20.00 | 0030 | | 125.0 | 0.05 | | 00.01 | 00.05- | DEGC | | 125.0 | 0.05 | | 65.00 | -138.00 | DEGC | | 180.0 | 50.0 | | 1.70 | 01.0- | VDC | | 0.081 | 0.0 | | 51.8 | 4.60 | VDC | | | | | 0010.0 | 0.8500 | VUC | TIWU | 0.005 | 0.0 | | S | 0 | PCM | | 0.005 | 0.0 | | | | | | 0.005 | 0.0 | | | | / CCGE | SIDE | | | | | | 3400 | | 74.00 | 70.00 | | 5.300 | 4.500 | VDC | 0102 | 43.00 | 04.0 | | 413.00 | 95.00 | DEGK | | 15.50 | 5.00 | | 54.00 | 00.0 | DEGC | | 35.00 | 5.40 | | 00.00 | 00.05- | DEGC | | 00.1 | 00.0 | | 75.000 | 000.0 | KVDC | | | E 77 W | | 00.00 | 00.0 | | 6010 | | | | 00.00 | 5.00 | | OIIO | | | | 00.00 | 55.00 | | 6110 | 00.08 | 00.05- | | 32.00 | 27.00 | DUV | | 20.50 | -20.50 | | 5.300 | 4.500 | JUV | | 3.200 | 005.8- | | 0.0180 | 0000.0 | JOV | | 142.50 | 00.851 | | 000 | 001.0- | Jav | | | | | -27.00 | 00.51- | JGV | 0118 | | | | 60.00 | 00.01- | | 0110 | | | | -3.370 | - 1.820 | KVDC | | 0.28 | 0.88 | | 1.040 | 0.940 | DOV | 1510 | 0.68 | 0.08 | | 26.000 | 22.000 | DOVM | | 0.28 | 0.08 | | 7.620 | 0.88.0 | VBC | | 0.25 | -40.0 | | -5.820 | -7.620 | VDC | | 105.0 | 0.04- | | 010.0- | -1.030 | JUV | | 16.00 | 00.01- | | -12.100 | -17.800 | VDC | 0127 | 15.00 | 00.01- | | 12.800 | 001.51 | VDC | | 05.4 | di . i | | 95.0 | 70.0 | PCT | | Service Service | Ser. 10 | | -21.000 | 000.85- | | 0.6.1.0 | | | | 0.00.17 | 000 | DALAH | | | | | EX0001 | | | | GMT 313/00/03 | 3/28 | ALSEP | 1 LIMITS | TABLE | | | | | |--------|------|------|--------|---------------|-------|-------|----------|--|-------|-------|---------|---------| | • | | | LOW | HIGH | | | LOW | HIGH | SWS | | LOW | HIGH | | | AE01 | VDC | 0.23 | 0.26 | AT29 | DEGF | 10.0 | 100.0 | | | | | | • | AE02 | VDC | 4.72 | 4.85 | AT30 | DEGF | 10.0 | 110.0 | DW03 | | 8.00 | 10.00 | | , | AE03 | VDC | 15.40 | 16.90 | AT31 | DEGF | 10.0 | 100.0 | DW04 | MV | 80.00 | 100.00 | | | AE04 | AMPS | 3.90 | 5.00 | AT32 | DEGF | 10.0 | 100.0 | DW05 | MV | 800.00 | 1000.00 | | • | | AMPS | 0.40 | 2.70 | AT33 | DEGF | 10.0 | 100.0 | DW06 | | 2650.00 | 3300.00 | | , | AE06 | AMPS | 0.40 | 2.70 | AT34 | DEGF | 20.0 | 110.0 | DW07 | | 8000.00 | 9800.00 | | | AE07 | VDC | 28.50 | 29.40 | | DEGF | 20.0 | 130.0 | | DEGC | -20.00 | 70.00 | | • | AE08 | VDC | 14.90 | 15.36 | | DEGF | 20.0 | 125.0 | | DEGC | -20.00 | 70.00 | | | AE09 | VDC | 11.90 | 12.15 | AT37 | DEGF | 20.0 | 125.0 | | DEGC | -20.00 | 70.00 | | | AE10 | VDC | 4.90 | 5.17 | AT38 | DEGF | 50.0 | 180.0 | | DEGC | -138.00 | 65.00 | | • | AE11 | VDC | -12.35 | -11.90 | AT39 | DEGF | 0.0 | 180.0 | DW15 | | -0.10 | 1.70 | | _ | AE12 | VDC | -6.10 | -5.88 | | | | | DW16 | VDC | 4.60 | 5.15 | | | AE13 | DBM | -450.0 | 10.0 | AX01 | | 0.0 | 200.0 | DW17 | | 0.8500 | 0.9100 | | | AE14 | | 3.0 | 7.2 | AX02
| DEGF | 0.0 | 200.0 | DW18 | PCM | 0 | 2 | | | AE15 | VDC | 0.80 | 2.50 | AX03 | DEGF | 0.0 | 200.0 | | | | | | | AE16 | | 0.80 | 2.50 | | | | | SIDE | / CCG | E | | | • | AE17 | | 143.0 | 175.0 | CS1 | WATTS | 70.00 | 74.00 | | | | | | | AE18 | MA | 128.0 | 175.0 | CS2 | WATTS | 6.40 | 43.00 | 0102 | | 4.500 | 5.300 | | | | | | | CS3 | WATTS | 5.00 | 15.50 | | DEGK | 95.00 | 413.00 | | | | DEGF | 1000 | 1150 | CS4 | WATTS | 6.40 | 35.00 | | DEGC | 0.00 | 54.00 | | | | DEGF | -2 | 2 | CS5 | WATTS | 5.00 | 14.00 | | DEGC | -20.00 | 60.00 | | | | DEGF | 1000 | 1150 | | | | | | KVDC | 0.000 | 75.000 | | | | DEGF | 405 | 500 | PSE | | | | | DEGC | 0.00 | 60.00 | | | | DEGF | 0 | 500 | | | | | | DEGC | 5.00 | 60.00 | | 1 | ARO6 | DEGF | -2 | 2 | DL 04 | | -20.50 | 20.50 | DI13 | | 55.00 | 65.00 | | | | | | | DL 05 | | -20.50 | 20.50 | DI14 | | 27.00 | 32.00 | | | | DEGF | -300 | 300 | DL06 | | -3.200 | 3.200 | DI 15 | | 4.500 | 5.300 | | _ | | DEGF | -300 | 300 | DL07 | DEGF | 125.00 | 142.50 | DI16 | | 0.0000 | 0.0180 | | | | DEGF | 10.0 | 110.0 | | | | | D117 | | -5.300 | -4.500 | | | | DEGF | 10.0 | 110.0 | LSM | | | | DI18 | | -32.00 | -27.00 | | _ | | DEGF | 10.0 | 110.0 | | | | | | DEGC | -10.00 | 60.00 | | | | DEGF | 10.0 | 110.0 | DMO1 | | 35.0 | 85.0 | | KVDC | -3.820 | -3.370 | | | | DEGF | 10.0 | 110.0 | DM02 | | 30.0 | 85.0 | DI 21 | | 0.940 | 1.040 | | _ | | DEGF | -300 | 300 | DM03 | | 30.0 | 85.0 Juning | 0122 | MVDC | 22.000 | 26.000 | | | | DEGF | -300 | 300 | DM0 4 | | -40.0 | 80.0 105.0 June 15 m | DI23 | | 5.820 | 7.620 | | | | DEGF | -300 | 300 | DM05 | | -40.0 | (80.0 105.0) due LSM | D125 | | -7.620 | -5.820 | | | | DEGF | -110 | 310 | DM06 | | -15.00 | 16.00 Broke | 0126 | | -1.030 | -0.970 | | | | DEGF | -20.0 | 157.0 | DM07 | | -15.00 | 15.00 | DIZI | | -12.800 | -12.100 | | | | DEGF | -300 | 300 | DM08 | ADC | 4.85 | 5.80 | DI 28 | | 12.100 | 12.800 | | | AT21 | | 0.0 | 125.0 | | | | | DI29 | | 70.0 | 95.0 | | | | DEGF | 10.0 | 125.0 | | | | 100 | 0130 | MVDC | -28.000 | -21.000 | | 7 | | DEGF | 10.0 | 100.0 | | | | Warmal Cimits | | | | | | _ | | DEGF | 10.0 | 100.0 | | | | Normal Cinits
used during
turn day | | | | | | 6 | | DEGF | 0.0 | 100.0 | | | | luna day | | | | | | | AT26 | | 0.0 | 100.0 | | | | / | | | | | | 5 | AT27 | | 10.0 | 110.0 | | | | | | | | | | | AT28 | UEGF | 10.0 | 115.0 | | | | | | | | | | X . | | | | | | | | | | | | | OCTAL NO. COMMAND TITLE 73 ASE HBR ON ASE HBR OFF NORM BIT RT LOW BIT RT RST LEE ı SEL JU 2 SEL (2) (2) | | OCTAL NO. | COMMAND TITLE | . • | | OCTAL NO. | COMMAND TITLE | | | |-----------|------------|--------------------|-------|-----|-----------|-----------------|--|--| | | 063
064 | PSE XY GAIN CH | | | 003 | ASE HBR ON | | | | | | PSE Z GAIN CH | | | 005 | ASE HBR OFF | | | | | 065 | PSE SP CAL | | | 006 | NORM BIT RT | | | | | 066 | PSE LP CAL | | | 007 | LOW BIT RT | | | | | 067 | PSE SP GAIN CH | | | 011 | NORM BIT RT | RST | | | | 070 | MTR X ON/OFF | | | 012 | XMTR A SEL | | | | | 071 | MTR Y ON/OFF | | | 013 | XMTR ON | | | | | 072 | MTR Z ON/OFF | | | 014 | XMTR OFF | | | | | 073 | PSE UNCAGE | PSE | | 015 | XMTR B SEL | | | | | 074 | DIR POS/NEG | | | 017 | 7W PDR ON | | | | | 075 | SPD HI/LO | | | 021 | 7W PDR OFF | | | | | 076 | THER CUTL CH | | | 022 | 14W PDR ON | | | | | 101 | PSE FLTR IN/OUT | | | 023 | 14W PDR OFF | | | | | 102 | LVL SNSR IN/OUT | | | 024 | HTR 3 ON | | | | | 103 | LVL MODE A/F | | _ | 025 | HTR 3 OFF | | | | | 104 | SIDE LOAD 1 | | | 027 . | DUST CELL ON | | | | | 105 | SIDE LOAD 2 | | | 031 | DUST CELL OFF | | | | | 106 | SIDE LOAD 3 | SIDE | | 032 | TIMER OUT ACCPT | | | | | 107 | SIDE LOAD 4 | | | 033 | TIMER OUT INHIB | (2) | | | Miles and | 110 | SIDE EXECUTE | | • | 034 | PROC X SEL | (/ | | | | 111 | CPLEE HTR ON | | | 035 | PROC Y SEL | | | | | 112 | CPLEE HTR OFF | | | 036 | PSE ON | an and an analysis of the second seco | | | | 113 | CPLEE CVR GO (1) | | | 037 | PSE STBY | PSE | | | | 114 | CPE DEF SEQ ON | | | 041 | PSE OFF | , | | | | 115 | CPE DEF STEP | CPLEE | | 042 | ASE ON | | | | | 117 | CPE DEF SEQ OFF | | | 043 | ASE STBY | ASE | | | | 120 | CPE CHAN HI | | | 044 | ASE OFF | 1 | | | | 121 | CPE CHAN LO | | | 045 | SIDE ON | | | | | 156 | GEO CAL GO | | | 046 | SIDE STBY | SIDE | | | | 162 | ASE SEQ FIRE (4) | | | 050 | SIDE OFF | 0101 | | | | 163 | GRENADE 1 FIRE (4) | | • | 052 | CPLEE ON | | | | | 164 | GRENADE 2 FIRE (4) | ASE | | 053 | CPLEE STBY | CPLEE | | | | 165 | GRENADE 3 FIRE (4) | | | 054 | CPLEE OFF | 01 111111 | | | | 166 | GRENADE 4 FIRE (4) | | , , | 055 | 10W HTR ON | | | | | 170 | GRENADE ARM (4) | | | 056 | 5W HTR ON | | | | | | va. | | | 057 | HTRS OFF | | | | | | | | | 060 | PCU 1 SEL (2) | | | | | | | | | 060 | PCU 2 SEL (2) | | | | | | | | | 002 | . LOO % DET (%) | | | CENTRAL STATION MC Donald. In deployment limits | | CENT | RAL STA | TION | | | . 0 | | 10000 | |---|------|---------|---------------|--------|---|-------------|--------|--------| | | | | LOW | HIGH | | * • | LOW | HIGH | | | AEO1 | VDC | 0.24 | 0.26 | | AT12 DEGF | 0.0 | 125.0 | | | AEO2 | VDC | 4.72 | 4.78 | | AT13 DEGF | -300. | 300. | | | AE03 | VDC | 15.60 | 16.40 | | AT21 DEGF | 0.0 | 125.0 | | | AEO4 | AMPS | 3.90 | 4.70 | | AT22 DEGF | 0.0 | 125.0 | | | AEO5 | AMPS | 0.40 | 2.70 | | AT23 DEGF | 0.0 | 125.0 | | | AE06 | AMPS | 0.40 | 2.70 | | AT24 DEGF | 0.0 | 125.0 | | | AEO7 | VDC | 28.50 | 29.50 | | AT25 DEGF | 0.0 | 125.0 | | | AE08 | VDC | 14.90 | 15.40 | | AT26 DEGF | . 0.0 | 125.0 | | | AE09 | VDC | 11.80 | 12.20 | * | AT27 DEGF | 0.0 | 125.0 | | | AE10 | VDC | 4.80 | 5.20 | | AT28 DEGF | 0.0 | 125.0 | | | AE11 | VDC | -12.40 | -11.90 | | AT29 DEGF | 0.0 | 125.0 | | | AE12 | VDC | -6.20 | -5.90 | | AT30 DEGF | 0.0 | 125.0 | | | AE13 | DBM | -450.00 | 0.0 | | AT31 DEGF | 0.0 | 125.0 | | | AE14 | DBM | 4.5 | 7.5 | | AT32 DEGF | 0.0 | 125.0 | | | AE15 | VDC · | 0.60 | 1.50 | | AT33 DEGF | 0.0 | 125.0 | | | AE16 | VDC | 0.60 | 1.50 | | AT34 DEGF | 0.0 | 125.0 | | | AE17 | MA | 140.0 | 170.0 | | AT35 DEGF | 3.0 | 140.0 | | | AE18 | MA | 140.0 | 170.0 | | AT36 DEGF | 2.0 | 140.0 | | • | ARO1 | DEGF | 1060 | 1150 | | AT37 DEGF | 2.0 | 140.0 | | | ARO2 | DEGF | 1060 | 1150 | | AT38 DEGF | 3.0 | 170.0 | | | ARO3 | DEGF | 1060 | 1150 | | AT39 DEGF | 3.0 | 170.0 | | | ARO4 | DEGF | 415 | 500 | | AXO1 DEGC | -250.0 | 200.0 | | | ARO5 | DEGF | 400 | 470 | | AXO2 DEGC | -250.0 | 200.0 | | | ARO6 | DEGF | 415 | 500 | | AXO3 DEGC | -250.0 | 200.0 | | | ATO1 | DEGF | -300. | 300. | | CS1 WATTS | 60,00 | 76.00 | | | ARO2 | DEGF | - 300. | 300. | | CS2 WATTS . | 6.40 | 43.00 | | | AT03 | DEGF | 0.0 | 125.0 | | CS3 WATTS | 5.00 | 16.00 | | | AT04 | DEGF | 0.0 | 125.0 | | CS4 WATTS | 6.40 | 43.00 | | | ATO5 | DEGF | 0.0 | 125.0 | | CS5 WATTS . | 5.00 | 16.00 | | | AT06 | DEGF | 0.0 | 125.0 | | PSE | | | | | ATO7 | DEGF | 0.0 | 125.0 | | DLO4 URAD | -20.0 | 20.00 | | | SOTA | DEGF | -300. | 300. | | DLO5 URAD | -20.0 | 20.00 | | ۴ | AT09 | DEGF | -300. | 300. | | DLO6 MGAL | -3.200 | 3.200 | | | AT10 | DEGF | -300. | 300. | | DLO7 DEGF | 125.00 | 127.00 | | | AT11 | DEGF | -300. | 300. | ` | | | | ALSEP 4 LIMITS TABLE - CONTINUED Jan. 13, 1971 # CENTRAL STATION (CONT'D) | | LOW | HIGH | | ٠ | • | LOW | HIGH | |------------|---------------|-----------|----|--------|------|---------|---------| | ASE | | | | | | | | | ASO1 DEGC | -20.0 | +60.0 | | DI19 I | DEGC | -10.00 | 55.00 | | ASO2 DEGC | -50.0 | +85.0 | | DI20 H | KVDC | -3.820 | -3.370 | | ASO3 DEGC | -66.0 | +85.0 | | DI21 1 | VDC | 0.940 | 1.040 | | ASO4 DEGC | -200.0 | +130.0 | | DI22 N | MVDC | 24.000 | 36.000 | | ASE HIGH | BIT RATE LIMI | TTS TABLE | | DI23 V | VDC | 5.800 | 7.600 | | AEO3 VDC | 15.60 | 16.40 | | DI25 1 | VDC | -7.600 | -5.800 | | AEO4 AMP | 3.90 | 4.70 | | DI26 V | VDC | -1.040 | 940 | | ARO1 DEGF | | 1150 | 4 | DI27 1 | VDC | -12.400 | -11.100 | | ARO4 DEGF | 415 | 500 | | DIS8 / | VDC | 11.100 | 12.400 | | CS1
WATTS | | 76.00 | | DI29 H | PCT | 80.0 | 95.0 | | DSO5 MV | -10.00 | 400.00 | n | DI30 N | MVDC | -36.000 | -24.000 | | DSO6 DEG | -10.00 | 10.00 | | CPLEE | | 2 × × | | | DSO7 DEG | -10.00 | 10.00 | | ACO2 V | VDC | 2700.0 | 3400.0 | | DS10 VOLTS | | 1.35 | | ACO3 \ | | 2700.0 | 3400.0 | | DS11 VOLTS | | 4.05 | | ACO4 V | | 2.80 | 3.20 | | ASO1 DEGC | -10.0- | 60.0 | | ACO5 I | | -20.00 | 40.00 | | ASO3 DEGC | -60.0 | 85.0 | | AC06 I | DEGC | -20.00 | 40.00 | | SIDE/CCGE | | | | | | | 9 | | DIO2 VDC | 4.500 | 5.300 | | | | 9 | | | DIO4 DEGK | 95.00 | 380.00 | | | | | | | DIO5 DEGC | 0.00 | 55.00 | | | | | | | DIO6 DEGC | -15.00 | 55.00 | | | | | | | DIO7 KVDC | 3.700 | 5.400 | | | | * : | | | DIO9 DEGC | 10.00 | 55.00 | | | | | | | DI10 DEGC | 0.00 | 55.00 | | | | | | | DI13 VDC | 55.00 | 65.00 | ¥. | | | | | | DI14 VDC | 27.00 | 32.00 | | | | | | | DI15 VDC | 4.500 | 5.300 | | | | | | | DI16 VDC | 0.0000 | .0.0180 | | | | | | | DI17 VDC | -5.300 | -4.500 | | | | * ** | . , | | (8) | | | | | | | | DI18 VDC 18. 3. -27.00 -32.00 | Step
No. | ASE | SYSTEMS | DATA | Comments | |-------------|---|---|------|--| | 1 | PICK UP DATA BOOK
FROM OFFICE | | | | | 2 | CALL GCC TO SEND
ALSEP MESSAGES | | | | | 3 | READ MESSAGES AND
LOG SPURIOUS CVW'S
WITH MAP BIT SET | | | | | 4 | HAVE REAL∸TIME DATA
DURING CMD INTERFACE | SELECT THE ANALOG
RECORDERS AS REQUIRED.
ANNOTATE RECORDERS. | | | | 5 | CALL DISPLAY TO START
DRUM RECORDERS AND
MULTIPEN | SELECT FOLLOWING HSP
FORMATS FOR BOTH
DATA BOOKS
4 C/S (1 FOR BXA)
3 PSE
3 CPLEE
3 SIDE NO. 1 | | | | 6 | COMPARE DATA WITH
PREVIOUS DAY | CHECK SETTINGS ON DRUM RECORDERS. ANNOTATE MULTIPEN. | | | | 7 | | FILL IN DATA LOG | | | | 8 | LEVEL PSE AXIS AS
REQUIRED | OBTAIN PSE HSP
FORMATS FOR DATA
BOOKS BEFORE AND
AFTER LEVELING
SEQUENCE | | TURN DRUM RECORDER
GAIN TO INFINITY | | 9 | CMD PSE LP CAL ON
AND OFF PER SUMMARY
SUPPORT SCHEDULE.
CMD 066. | ANNOTATE DRUM
RECORDERS | | | | 10 | IF REQUIRED, CMD DSS
NO. 1 HEATER ON.
CMD 055. | VERIFY 10 W DECREASE
IN RESERVE POWER | | DSS NO. 1 HEATER WILL
BE CMDED "ON" DURING
2-HOUR SUPPORT
PERIOD PRIOR TO
SUNSET | | 11 | | GET FINAL HSP FORMATS
FOR DATA BOOKS (SEE
STEP NO. 5).
COMPARE DATA WITH
FIRST CUT OF DATA. | | | | Step
No. | ASE | SYSTEMS | DATA | Comments | |-------------|---|--|------|----------| | 12 | NOTIFY NETWORK TO
TERMINATE REAL-TIME
SUPPORT AND OF
PLAYBACK REQUIREMENTS | CALL DISPLAY TO TURN
DRUM RECORDERS AND
MULTIPEN OFF. TURN
OFF ANALOG RECORDERS
AND ANNOTATE. | | | | 13 | CALL GCC TO HOLD
ALSEP MESSAGES | ANNOTATE MULTIPEN | | | | 14 | WRITE DAILY REPORT
AND SMEARS AS
REQUIRED | FILL IN DATA LOG | | | | 15 | VERIFY ALL TASKS
COMPLETED | PLACE CONSOLE LOG IN CABINET AND LOCK | | | | 16 | RETURN DATA BOOK TO
OFFICE | and the second s | | | | | | | | | | Step
No. | ASE | SYSTEMS | DATA | Comments | |-------------|---|--|------|--| | 1 | | START NEW DATA BOOKS | | | | 2 | CALL GCC TO SEND
ALSEP MESSAGES | | | | | 3 | READ MESSAGES AND
LOG SPURIOUS CVW'S
WITH MAP BIT SET | | | | | 4 | HAVE REAL-TIME DATA
DURING CMD INTER-
FACE | SELECT THE ANALOG
RECORDERS AS
REQUIRED. ANNOTATE
RECORDERS. | | | | 5 | CALL DISPLAY TO
START DRUM RECORDERS
AND MULTIPEN | SELECT FOLLOWING HSP FORMATS FOR BOTH DATA BOOKS 4 C/S (1 FOR BXA) 3 PSE 3 CPLEE 3 SIDE NO. 1 | | THESE FORMATS WILL
BE OBTAINED EVERY
EVEN GMT HOUR FOR
BOTH DATA BOOKS
AND UPDATE DATA LOG | | 6 | COMPARE DATA WITH
PREVIOUS DAY | CHECK SETTINGS ON
DRUM RECORDERS.
ANNOTATE MULTIPEN. | | | | 7 | | FILL IN DATA LOG | | ALSO EVERY EVEN GMT
HOUR (SEE COMMENT
STEP 5) | | 8 | OBTAIN SUNRISE TIME
DATA | | | | | 9 | TURN DSS NO. 1 HEATER OFF AT START OF SUPPORT PERIOD. CMD 056 THEN CMD 057. | VERIFY 10 W INCREASE
IN RESERVE POWER | | | | 10 | LEVEL PSE AS
REQUIRED | OBTAIN PSE HSP
FORMATS FOR BOTH
DATA BOOKS BEFORE
AND AFTER LEVELING
SEQUENCE | | | | 11 | | GET FINAL HSP
FORMATS FOR DATA
BOOKS (SEE STEP 5) | | | | Step
No. | ASE | SYSTEMS | DATA | Comments | |-------------|---|---|------|----------| | 12 | NOTIFY NETWORK TO
TERMINATE REAL-TIME
SUPPORT AND OF PLAY-
BACK REQUIREMENTS | CALL DISPLAY TO TURN
DRUM RECORDERS AND
MULTIPEN OFF. TURN
OFF ANALOG RECORDERS
AND ANNOTATE. | | | | 13 | CALL GCC TO HOLD
ALSEP MESSAGES | ANNOTATE MULTIPEN | | | | 14 | WRITE DAILY REPORT
AND SMEARS AS
REQUIRED | FILL IN DATA LOG | | | | 15 | VERIFY ALL TASKS
COMPLETED | PLACE CONSOLE LOG IN CABINET AND LOCK | | | | 16 | RETURN DATA BOOK TO OFFICE | | | | | | | | | | | Step | ASE | SYSTEMS | DATA | Comments | |------|---|--|------|--| | No. | AJL | STSTEMS | DATA | Comments | | 1 | | TURN DRUM RECORDER
GAINS TO INFINITY | | | | 2 | | OBTAIN PSE HSP FORMAT
FOR EACH DATA BOOK.
VERIFY AUTO MODE. | | | | 3 | CMD THERMAL CONTROL
MODE TO "OFF" (CMD
076) | | | | | 4 | IF REQUIRED, CMD X MOTOR ON (CMD 070) | ANNOTATE PSE ANALOG
RECORDER | | | | 5 | WHEN X TIDAL ON PSE
ANALOG RECORDER IS
50%, TURN X MOTOR
OFF (CMD 070) | | | | | 6 | IF REQUIRED, CMD Y
MOTOR ON (CMD 071) | ANNOTATE PSE ANALOG
RECORDER | | | | 7 | WHEN Y TIDAL ON PSE
ANALOG RECORDER IS
50%, TURN Y MOTOR
OFF (CMD 071) | · | | Y MOTOR SOMETIME STICKS, LEAVE MOTOR ON FOR 5 MINUTES. IF IT DOESN'T LEVEL AFTER 5 MINUTES, TURN MOTOR OFF THEN ON FOR ANOTHER 5 MINUTES. REPEAT UNTIL Y LEVELS. | | 8 | IF REQUIRED, CMD Z
MOTOR ON (CMD 072) | ANNOTATE PSE ANALOG
RECORDER | | | | 9 | WHEN Z TIDAL ON PSE
ANALOG RECORDER IS
50%, TURN Z MOTOR
OFF (CMD 072) | | | | | 10 | CMD THERMAL CONTROL
MODE TO "AUTO ON"
(CMD 076 THREE TIMES) | | | | | 11 | | OBTAIN PSE HSP
FORMATS FOR EACH
DATA BOOK | | | | 12 | | TURN DRUM RECORDER
GAIN BACK TO -30 DB.
ANNOTATE MULTIPOINT
RECORDER. | | | | 13 | RECORD ACTIVITY IN CONSOLE LOG AND COMMAND LOG | | | | | Step
No. | ASE | SYSTEMS | DAŢA | Comments | |-------------|---|---|------|--| | 1 | | TURN DRUM RECORDER
GAINS TO INFINITY | | | | 2 | | OBTAIN PSE HSP
FORMATS FOR EACH
DATA BOOK. VERIFY
SPEED LO AND AUTO
MODE. | | | | 3 | CMD THERMAL CONTROL
MODE TO "OFF" (CMD
076) | | | | | 4 | DETERMINE DIRECTION
TO DRIVE X AXIS AND
SEND CMD 074 IF
REQUIRED | VERIFY DIRECTION | | | | 5 | SEND CMD 103 (FORCED MODE) | VERIFY FORCED MODE | | | | 6 | ENABLE MAP OVERRIDE | | | | | 7 | GUESSTIMATE TIME X
MOTOR TO BE
ON | VERIFY GUESSTIMATE | | BAND EDGE TO BAND
EDGE IS APPROX 4
SEC | | 8 | NOTIFY NETWORK OF
MAP OVERRIDE AND
DURATION OF X MOTOR
ON | | | | | 9 | SEND CMD 070 (X
MOTOR ON) | | | | | 10 | SEND CMD 070 (X
MOTOR OFF) AFTER
APPROPRIATE TIME
INTERVAL | | | | | 11 | INITIATE CMD 103
(AUTO MODE) IMMEDI-
ATELY AFTER CMD 070
(X MOTOR OFF) | ANNOTATE ANALOG
RECORDER | | | | 12 | | | | Y AXIS WILL BE
LEVELED IN AUTO MODE
ONLY | | 13 | DISABLE MAP OVERRIDE | VERIFY AUTO MODE | | | | 14 | | | | Z AXIS WILL BE
LEVELED IN AUTO MODE
ONLY BECAUSE OF LOW
DRIFT RATES | | Step
No. | ASE | SYSTEMS | DATA | Comments | |-------------|--|--|------|----------| | 15 | CMD THERMAL CONTROL
MODE TO "AUTO ON"
(CMD 076 THREE
TIMES) | | | | | 16 | | OBTAIN PSE HSP
FORMAT FOR EACH DATA
BOOK | | | | 17 | , | RETURN DRUM RECORDER
GAINS TO -30 DB.
ANNOTATE MULTIPOINT
RECORDER. | | | | 18 | RECORD ACTIVITY IN
CONSOLE LOG AND
COMMAND LOG | | | | | | | | | | | | | | | | | a | | | | | | | , | April 5, 1971 ## **MEMORANDUM** TO: ALSEP Flight Controllers FROM: FC9/Chief, Lunar/Earth Experiments Branch SUBJECT: High Bit Rate Turn ON The high bit rate support periods have been tentatively scheduled for 0900 to 0930 CST on Fridays to facilitate scheduling from a Network and PI standpoint. There is nothing hard and fast about going to HBR at that time. The HBR should not be turned ON without checking to make sure that nothing unusual or of special interest is going on with the other experiments. For instance, if there is a seismic event occurring wait unit it is complete before cmding HBR ON. The ASE experiment should be turned ON approximately 10 minutes before turning the HBR ON. In general, the CMD carrier should be left ON and safed until the HBR is turned ON to preclude spurious CVWs. If there is an event occurring that precludes the HBR ON at 0900 the support period can be extended for an hour or so to get the 30 minutes of ASE HBR data. If the event looks like it may require more than an hour's extension then reschedule the ASE for the next day or some relatively quiet time (scientifically). NOTE: Always check the drums before cmding HBR ON. The other A4 experiments should also be checked. James E. Saultz, Sr. FC93/KKKundel:jcc Burt- Howe Console procedured updated to reflect this full. | Step | | T · | T | 1 | |------|--|---|------|---| | No. | ASE | SYSTEMS | DATA | Comments | | 1 | | INITIATE C/S HSP.
ASSURE THAT AS-1
IS ABOVE +35° C. | | | | 2 | INITIATE CMD 042
(ASE OPER SEL) | ANNOTATE CMD ACTION
ON C/S ANALOG
RECORDER | | | | 3 | NOTIFY NETWORK TIME
OF INTENDED HBR CMD | VERIFY NOTHING UNUSUAL OR OF SPECIAL INTEREST IS GOING ON WITH THE OTHER EXPERI- MENTS | | ALLOW 15 MINUTES
MINIMUM BETWEEN ASE
OPER SEL AND HBR ON
CMD TO ALLOW GEO-
PHONE AMPS TO
WARM UP | | 4 | INITIATE CMD 003
(HBR ON) AFTER 15
MIN WARM-UP AND
LOW ACTIVITY ON
OTHER EXP | SELECT ASE FORMAT 5 ON RECORDER NO. 2 AND FORMAT 6 ON RECORDER NO. 3 AT HBR SYNC LOCK-UP. CONFIRM "ARM GRENADE" EVENT LIGHT EXTINGUISHED. | | RECORDER SPEED IS
10 MM/SEC | | 5 | INITIATE CMD 156
(GEO CAL GO) | ANNOTATE CMD ACTION
OF RECORDER NO. 2 | | DO NOT SEND GEO CAL
IF AS-4 (GEO TEMP)
IS LESS THAN -20° C | | 6 | NOTIFY NETWORK TIME
OF INTENDED NBR
CMD | | | HBR ON TIME WILL BE
APPROXIMATELY 30
MINUTES | | 7 | INITIATE CMD 005
(HBR OFF) | ANNOTATE CMD ACTION
OF RECORDERS 2 AND
3 | | | | 8 | | VERIFY NBR LOCK-UP
AND ALL RECORDERS
AND DRUMS TO PRE-
HBR FORMATS | | , | | 9 | INITIATE CMD 043
(ASE STAY) | ANNOTATE ACTION ON C/S ANALOG RECORDER | | | | 10 | CHECK TEST COMPLETE
ON WORK SCHEDULE
AND LOG ANOMOLIES | | | | | | | | | | - PREREQUISITES: 1. VERIFY COMMAND GROUP 4 ENABLED 2. VERIFY THAT ALL ANALOG RECORDERS HAVE NEW ROLL OF PAPER AND INK 3. AS-1, AS-2, AND AS-3 ABOVE -20°C | Step
No. | ASE | SYSTEMS | DATA | Comments | |-------------|--|--|---|--| | 1 | | INITIATE C/S HSP,
ASSURE THAT AS-2 AND
AS-3 ARE ABOVE -20°C | READ AS-2 AND AS-3
TEMPS | | | 2 | INITIATE CMD 042
(EXP #2 OPER SEL) | CALCULATE THE NECES-
SARY TIME FOR WARMUP | ANNOTATE CMD ACTION
ANALOG RECORDER | | | 3 | NOTIFY NTWK TIME OF
INTENDED HBR COMMAND
AND GIVE TIME AND GET
GO FROM NTWK | SELECT ASE FORMAT ON
THE ANALOG RECORDERS | ANNOTATE FORMAT
CHANGE ON ANALOG
RECORDER | RECORDER 2 - FORMAT 5
RECORDER 3 - FORMAT 6 | | 4 | AFTER WARMUP TIME,
INITIATE CMD 003
(HBR ON) | WATCH FOR REMOTE
SITE LOCK UP ON HBR
SIGNAL AND MARK TIME | ANNOTATE CMD ON ALL
ANALOG AND DRUM
RECORDERS | DBTAIN HSP EVERY 2 MIN
DURING PASSIVE LISTEN-
ING MODE | | 5 | INITIATE CMD 156
(GEO CAL GO) | SELECT SPEED ON
ANALOG RECORDERS | ANNOTATE CMD ACTION
ON ASE ANALOG
RECORDER | | | 6 | INITIATE CMD 170
(GRENADES ARM) | ASSURE THAT AT LEAST
A 60 SEC INTERVAL
EXISTS BETWEEN ARM
AND FIRE COMMANDS | ANNOTATE CMD ACTION
ON ASE ANALOG
RECORDER | | | 7 | | GIVE "GO" FOR GRENADE
FIRE | GIVE "GO" FOR GRENADE
FIRE | | | 8 | INITIATE CMD 164
(GRENADE #2) | | ANNOTATE CMD ACTION
ON ASE ANALOG
RECORDER | | | 9 | H | GIVE "GO" FOR GRENADE
FIRE | GIVE "GO" FOR GRENADE
FIRE | | | 10 | INITIATE CMD 170
(GRENADES ARM) | ASSURE THAT AT LEAST
A 60 SEC INTERVAL
EXISTS BETWEEN ARM
AND FIRE COMMANDS | ANNOTATE CMD ACTION
ON ASE ANALOG
RECORDER | | | 11 | INITIATE CMD 166
(GRENADE #4) | | ANNOTATE CMD ACTION
ON ASE ANALOG
RECORDER | | | 12 | | GIVE "GO" FOR GRENADE
FIRE | GIVE "GO" FOR GRENADE | | | 13 | | ASSURE THAT AT LEAST
A 60 SEC INTERVAL
EXISTS BETWEEN ARM
AND FIRE COMMANDS | ANNOTATE CMD ACTION
ON ASE ANALOG
RECORDER | | | | | | | | | Step
No. | ASE | SYSTEMS | DATA | Comments | |-------------|--|--|---|----------| | 14 | INITIATE CMD 165
(GRENADE #3) | | ANNOTATE CMD ACTION
ON ASE ANALOG
RECORDER | | | 15 | | GIVE "GO" FOR GRENADE
FIRE | GIVE "GO" FOR GRENADE
FIRE | | | 16 | INITIATE CMD 170
(GRENADES ARM) | ASSURE THAT AT LEAST
A 60 SEC INTERVAL
EXISTS BETWEEN ARM
AND FIRE COMMANDS | ANNOTATE CMD ACTION
ON ASE ANALOG
RECORDER | | | 17 | INITIATE CMD 163
(GRENADE #1) | | ANNOTATE CMD ACTION
ON ASE ANALOG
RECORDER | | | | AFTER SUFFICIENT DATA HAS BEEN GATHERED, NOTIFY NTWK OF TIME TO RETURN TO NORMAL BIT RATE AND GET GO FROM NTWK | | | | | 19 | (HBR OFF) | RESELECT ANALOG FOR-
MATS, AND WATCH FOR
REMOTE SITE LOCK UP
ON THE NORMAL BIT
RATE DATA | ANNOTATE CMD ACTION
ON ALL ANALOG
RECORDERS | | | | INITIATE CMD 043
(EXP #2 STBY SEL) | | ANNOTATE CMD ACTION
ON C/S ANALOG
RECORDER | | | 1 | CHECK TASK COMPLETE
ON WORK SCHEDULE AND
LOG ANOMALIES | | | | | | | | | | | | | | | 2 | | | | , | | , | | | | | | | | | | | | , | | Step
No. | ASE | SYSTEMS | DATA | Comments | |-------------|---|--------------------|--------------------|---| | 1 | CMD 111 (CPE OPR HTR
ON) TO TURN THERMAL
CONTROL MODE TO MANUAL
ON | VERIFY 5 W RES PWR | | | | 2 | CMD 112 (CPE OPR HTR
OFF) TO TURN THERMAL
CONTROL MODE TO MAN-
UAL OFF | | | | | 3 | TO TURN THERMAL CON-
TROL MODE TO AUTO CMD | VERIFY 4 W RES PWR | | NOTE 1: THIS LEAVES
THE EXPERI-
MENT IN
STANBY | | 4 | INITIATE CMD 052 (EXP
4 OPER SEL) TO TURN
EXPERIMENT TO OPERATE
(NOTE 2) | VERIFY 5 W RES PWR | | NOTE 2: WHEN THE CPLEE
GOES TO OPER-
ATE THE THER-
MAL CONTROL
INITIALIZES
IN THE AUTO
MODE | | 5 | | INITIATE CPLEE HSP | CHECK CPLEE STATUS | | | 6 | RECORD ACTION AND
ANOMALIES IN CONSOLE
LOG | | , | | | | | | | | | Step
No. | ASE | SYSTEMS | DATA | Comments | |-------------|---|------------------------------|---|---| | 1 | INITIATE CMD 117
(CPE DEF SEQ OFF)
TO STOP AUTOMATIC
SEQUENCE | INITIATE CPLEE HSP
FORMAT | OBTAIN CPLEE HSP
FORMAT AND DETERMINE
WHERE THE SEQUENCE
STOPPED (USE CPLEE
HSP FORMAT 2) | | | 2 | INITIATE CMD 115
(CPE DEF STEP) TO
ADVANCE THE VOLTAGE
ONE STEP (NOTE 1) | VERIFY ADVANCE OF
VOLTAGE | | NOTE 1: REPEAT THE
STEP AS MANY
TIMES AS IS
NECESSARY TO
REACH THE
DESIRED
DEFLECTION
VOLTAGES | | 3 | INITIATE CMD 114
(CPE DEF SEQ ON) TO
AUTOMATIC SEQUENCE | INITIATE CPLEE HSP
FORMAT | OBTAIN CPLEE HSP
FORMAT AND DETERMINE
CPLEE
STATUS | | | 4 | RECORD ACTION AND
ANOMALIES IN CONSOLE
LOG | | | | | | | | | | 1 2 et = addelive ## SIDE/CCIG COMMANDS | FUNCTION | 1
SIDE
104 | 2
COMMAND
105 | REGIS | 8
STER EN
107 | The second second second second | |---|------------------|---------------------|-------------|---------------------|---------------------------------| | One BREAK CCIG SEAL Time Commands REMOVE DUST COVER | · · | X | 100 | | 110
X | | 1. GND PLANE STEP PROGRAMER ON/OFF | F X | Х | | X | X
X | | 3. RST FRAME CNTR AT 39 4. RST VELOCITY FILT AT 9 5. RST FRAME CNTR AT 79 | X | X. | Х | | X
X | | 6. RST FRAME CNTR AT 79 & AT 9 7. X10 ACCUMULATION INTERVAL ON/OF 8. MASTER RESET | | X
X | X
X
X | | X
X | | 9. VEL FILT VOLTAGE ON/OFF 10. LECPA HIVOLTAGE ON/OFF | X | X | | X | X
X | | 11. HECPA HIVOLTAGE ON/OFF 12. FORCE CONTINUOUS CAL (RST TO 12) | X
O) | X | X | X
X
X | X
X
X | | 13. CCIG HIVOLTAGE CN/OFF 14. CHANNELTRON HIVOLTAGE ON/OFF 15. RST COMMAND REGISTER | X | X | X | X
X | X | | | - A | v | X | X | X | Apollo 15 Alseo / Obra New Jan | Step | | | T | | |------|--|--|--|--| | No. | ASE | SYSTEMS | DATA | Comments | | 1 | ALSEP BRIEFING ON
WORK SCHEDULE IN SSR | | • | | | 2 | CHECK COMM LOOPS | CHECK COMM LOOPS | CHECK COMM LOOPS . | | | 3 | VERIFY WITH NETWORK
CONTROLLER R/S CMD
AND TM PROGRAMS
LOADED AND READY FOR
R/T SUPPORT | VERIFY WITH ALCS
OPERATOR CAPABILITY
OF R/T SUPPORT | | | | 4 | VERIFY WITH NETWORK
CONTROLLER THAT ALL
CRITICAL CMD GROUPS
ARE DISABLED | INITIATE HSP LIMIT
SENSE TABLE FORMAT | OBTAIN HSP LIMITS TABLE PRINTOUT AND COMPARE WITH PRE- DEFINED LIMITS TABLE | | | 5 | REQUEST RTC INVENTORY
FROM ALSEP NETWORK
CONTROLLER | IF NECESSARY, UPDATE
THE LIMITS | OBTAIN RTC INVENTORY
FROM TTY PRINTER AND
VERIFY ALL CRITICAL
CMD DISABLED | | | 6 | | | COORDINATE DISPLAY EQUIPMENT CALIBRATION WITH ALCS OPERATOR AND DISPLAY PERSONNEL 1. CAL DRUM RECORDER 2. CAL ANALOG METERS 3. CAL ANALOG RECORDER | | | 7 | | | START DRUM AND ANALOG
RECORDERS AS DEFINED
IN WORK SCHEDULE | | | 8 | - | CONTACT ALCS OPERATOR
TO CONFIGURE DRUM
RECORDERS AS DEFINED
IN WORK SCHEDULE | | | | 9 | CHECK STATUS OF RE-
MOTE ANALOG RECORDERS
AND TV | CONFIGURE ANALOG
CHART RECORDERS AS
DEFINED IN WORK
SCHEDULE | THE ANALOG RECORDER EVENT INDICATOR SELECT SWITCHES SHOULD BE SET AS DEFINED IN WORK SCHEDULE | | | 10 | | INITIATE HSP DISPLAY
GUIDE FORMAT | | | | 11 | VERIFY ON CMD PANEL 1. FC MODE (NOTE 1) 2. CMD PANEL DISABLE 3. ALL ZEROS SELECTED IN THE CMD REQUEST WINDOW 4. ALSEP SELECT CLEAR | | OBTAIN HSP DISPLAY
GUIDE AND VERIFY
EQUIPMENT CONFIGURED
AS PER WORK SCHEDULE | NOTE 1: IF IN M&O MODE RE- QUEST NETWORK OPERATOR TO GO TO FC MODE | | Step
No. | ASE | SYSTEMS | DATA | Comments | |-------------|---|---|--|----------| | 1 | REQUEST ALSEP NET-
WORK OPERATOR TO
SITE SELECT THE
CONSOLE | | | | | | LOG: 1. TIME OF RTG FUEL INSERTION. 2. TIME OF RTG PLUGIN. 3. AMP METER READING. 4. SIDE LEVEL AND ORIENTATION COMMENT. 5. LSM ORIENTATION. 6. PSE GNOMON READING. 7. PSE ORIENTATION COMMENT. 8. SWS ORIENTATION. 9. TIME OF RTG SHORT REMOVAL. 10. HFE ORIENTATION. | VERIFY ON EVENT
INDICATOR. | | | | 3 | LOG CLOSURE OF SWITCH | CHECK STATUS OF C/S
AND VERIFY RESERVE
POWER EQUAL TO OR
GREATER THAN 38 W | OBTAIN C/S HSP FORMAT AND VERIFY THE FOLLOWING: CS-2 RES PWR EQUAL TO OR GREATER THAN 38 W. AE-9 +12 VDC AE-7 +29 VDC AE-8 +15 VDC AE-10 +5 VDC AE-10 +5 VDC AE-11 -12 VDC AE-12 -6 VDC AE-12 -6 VDC AE-1 0.25 CAL AE-2 4.75 CAL | | | | | | | , | | Step
No. | ASE | SYSTEMS | DATA | Comments | |-------------|---|--|--|----------| | 1 | REQUEST ALSEP NETWORK
OPERATOR TO SITE SE-
LECT CONSOLE | | | | | 2 | | CHECK FOR RES PWR ON
C/S ANALOG RECORDER
INITIATE C/S HSP | OBTAIN C/S HSP FOR- MAT AND CHECK THE FOLLOWING: CS-2 RES PWR EQUAL TO OR GREATER THAN 7.0 W AE-9 BUS VOLT +12 VDC AE-7 BUS VOLT +29 VDC AE-8 BUS VOLT +15 VDC AE-10 BUS VOLT +5 VDC AE-11 BUS VOLT -12 VDC AE-12 BUS VOLT -6 VDC AE-12 BUS VOLT -6 AE-1 DSS ADC 0.25 V AE-2 DSS ADC 4.75 V | | | 3 | | GIVE GO/NO-GO FOR PSE
TURN-ON | GIVE GO/NO-GO FOR
PSE TURN-ON | | | 4 | | INITIATE PSE HSP FOR-
MAT | ANNOTATE CMD ACTION
ON PSE & C/S ANALOG
RECORDER | | | 5 | | VERIFY EXP 1 STBY STATUS EVENT INDICA- TOR IS EXTINGUISHED CHECK RES PWR ON C/S ANALOG RECORDER FOR A DECREASE OF APPROX 5 W | OBTAIN PSE HSP FORMAT AND READ STATUS OF THE FOLLOWING: AL-1 -30 DB AL-2 -30 DB AL-3 POS AL-3 LO AL-4 -30 DB AL-5 AUTO AL-5 COARSE LVL OUT AL-6 AUTO ON AL-7 BOTH OFF AL-8 CAGED AT-5 -20 DEG F TO +40 DEG F CS-2 RESERVE PWR DL-7 SNSR TEMP | | | Step
No. | ASE | SYSTEMS | DATA | Comments | |-------------|---|--|--|--| | 6 | | NOTIFY ASE THAT PSE
IS OPERATING AND IS
READY FOR UNCAGING | | | | 7 | INITIATE CMD 073 (PSE
UNCAGE ARM/FIRE) TO
ARM THE PSE UNCAGING
MECHANISM | ASSURE THAT THE UNCAGE
ARM IS ALLOWED 30
SECONDS TO CHARGE UP,
PRIOR TO FIRING CMD | ANNOTATE CMD ACTION
ON PSE ANALOG
RECORDER | | | 8 | INITIATE CMD 073 (PSE
UNCAGE ARM/FIRE) TO
FIRE THE PSE UNCAGING
MECHANISM | INITIATE PSE HSP FOR-
MAT | ANNOTATE CMD ACTION
ON PSE ANALOG
RECORDER | | | 9 | | ON LATEST C/S HSP FOR-
MAT CHECK THE FOLLOW-
ING C/S PARAMETERS:
CAL VOLTAGES CHECK .
AE-01 0.25 CAL
AE-02 4.75 CAL
RTG OUTPUT CHECK
AE-03 VDC
AE-04 AMPS
CS-01 WATTS | OBTAIN PSE HSP FORMAT
AND READ AL-8
INDICATIONS | | | 10 | IF NECESSARY, INI-
TIATE CMD 067 (SP Z
GAIN CHANGE) TO
OBTAIN DESIRED GAIN | PCU VDC OUTPUT CHECK AE-09 +12 VDC AE-07 +29 VDC AE-08 +15 VDC AE-10 +5 VDC AE-11 -12 VDC AE-12 -6 VDC | ANNOTATE CMD ACTION
ON PSE ANALOG | | | 11 | MONITOR PSE ANALOG
RECORDER FOR GAIN
CHANGE ON SP Z CHAN-
NEL | INTERNAL TEMPS CHECK AT-03 TEMP 1 F AT-04 TEMP 2 F AT-05 TEMP 3 F AT-06 TEMP 4 F AT-07 TEMP 5 F AT-12 INSUL F | MONITOR PSE ANALOG
RECORDER FOR GAIN
CHANGE ON SP Z
CHANNEL | | | 12 | SPEED UP RECORDER TO
50 MM/SEC FOR SP CAL | | | NOTE 1: PCU 2 CHECK
CS-04 RES PWR 2
CS-05 INT REG DISSIP
AE-06 SHUNT 2 AMPS
AT-37 OSC TEMP F
AT-39 REG TEMP F | | 13 | INITIATE CMD 065 (SP
CAL) TO TURN CAL
PULSE ON | DISCRETES CHECK AB-04 EXP 1 STBY STA AB-05 DSS HTR 2 | ANNOTATE CMD ACTION
ON PSE ANALOG
RECORDER | | | Step | ASE | SYSTEMS | DATA | Comments | |-----------|--|---|--|---| | No.
14 | MONITOR PSE ANALOG
RECORDER FOR INDICA-
TION OF CAL PULSE | STRUCTURAL TEMP CHECK AT-11 PRI/ST W3 F AT-01 PNL LEFT 1 F AT-02 PNL RIGHT 2 F | MONITOR PSE ANALOG
RECORDER FOR INDI-
CATION OF CAL PULSE. | | | 15 | INITIATE CMD 065 (SP
CAL) TO TURN CAL
PULSE OFF | | ANNOTATE CMD ACTION
ON PSE ANALOG
RECORDER | | | 16 | MONITOR PSE ANALOG RE-
CORDER FOR INDICATION
OF CAL PULSE IN OP-
POSITE DIRECTION FROM
FIRST | PDU CHECK
AT-34 BASE F
AT-35 INT F | MONITOR PSE ANALOG
RECORDER FOR INDI-
CATION OF CAL PULSE
IN OPPOSITE DIRECTION
FROM FIRST | | | 17 | RETURN ANALOG RECORDER
TO 0.5 MM/SEC | RECEIVER CHECK AB-01 RCVR 1 KHZ PCM AE-13 PRE/LIM DEM AE-14 L/O LVL DEM AT-21 XTAL A F AT-22 XTAL B F AT-07 TEMP 5 F | READ SP CAL STATUS
FROM PSE HSP | | | 13 | | DECODER CHECK AT-31 BASE F AT-32 INT F AT-33 VCO F | | | | 19 | | ANALOG MUX CHECK
AT-27 BASE F
AT-28 INT F | | | | 20 | | DIGITAL PROCESSOR
CHECK
AT-29 BASE F
AT-30 INT F | | | | 21 | | XMTR A CHECK (NOTE 2) AT-23 XTAL F AT-24 HT/S F AE-15
AGC VDC AE-17 DOUBLER MA | | NOTE 2: XMTR B CHECK
AT-25 XTAL F
AT-26 HT/S F
AE-16 AGC VDC
AE-18 DOUBLER MA | | Step
No. | | ASE | | SYSTEMS | DATA | Comments | |-------------|--------------------|--|---------------------|---|---|---| | 1 | | | | INITIATE PSE HSP FOR- | READ PSE STATUS | | | 2 | TURN T | TE CMD (
THERMAL (
TO AUT) | CNTL | INITIATE PSE HSP FOR-
MAT | OBTAIN PSE HSP FORMAT
AND GIVE COPY TO ASE | | | 3 | FOLLOW | TION REC | DETERMINE
QUIRED | MONITOR X, Y, & Z
TIDAL DATA OF PSE
ANALOG RECORDER | VERIFY SPEED OF PSE
ANALOG RECORDER AT
0.5 MM/SEC OR
GREATER | NOTE 1: THERE ARE NO
STATUS PAPAM
ETERS FOR TH
PSE FILTER O
THE THREE
AXIS LEVELIN
MOTORS. AT | | | SYMBOL | NAME | STATUS
REQ FOR | | | PSE TURN ON- | | | AL-1 | X&Y
GAIN | AS REQD | | | PSE FILTER INITIALIZE
TO OUT | | | AL-2 | Z GAIN | AS REQD | - | | LVL X MTR INITIALIZES | | | AL-3 | LVL
DIR | N/A | ě | | LVL Y MTR INITIALIZES | | | AL-3 | LVL
SPEED | N/A | | | LVL Z MTR INITIALIZES | | | AL-4 | SP
GAIN | AS REQD | | | | | | AL-5 | LVL
MDE | AUT0 | | | | | | AL-5 | LVL
SNSR | IN | | | | | | AL-6 | T CTL | AUTO
OFF | | | | | | AL-7 | LP/SP
CAL | BOTH
OFF | | | | | | AL-8 | UNCAGE | UNCAGED | | | v | | | CMD 067
TO OBTA | SSARY I
7 (SP GA
AIN GAIN
FOR LEVE | IN CH)
DESIRED | | ANNOTATE CMD ACTION
DN PSE ANALOG
RECORDER | | | | CMD 103 | ESSARY II
B (LVL M
DE PSE II
/L MDE | DE A/F) | | ANNOTATE CMD ACTION
ON PSE ANALOG
RECORDER | | | | | E CMD 10
I/OUT) TO
SR IN | | | ANNOTATE CMD ACTION
ON PSE ANALOG RECORDER,
VERIFY ON HSP | | | | | | | | | | | Step | T | T | T | | |------|--|---|---|---| | No. | ASE | SYSTEMS | DATA | Comments | | 7 | | INITIATE PSE HSP
FORMAT | OBTAIN PSE HSP FORMAT
AND GIVE COPY TO ASE | | | 8 | VERIFY STATUS OF THE FOLLOWING: SYMBOL NAME STATUS | VERIFY RESERVE POWER
FROM C/S ANALOG
RECORDER GREATER
THAN 5.0 W | TURN DRUM RECORDER
ATTENTUATION TO
INFINITY | | | | AL-1 XY GAIN AS REQD AL-2 Z GAIN AS REQD AL-3 LVL DIR N/A AL-3 LVL N/A SPEED AL-4 SP AS REQD GAIN AL-5 LVL MDE AUTO AL-5 LVL IN SNSR AL-6 T CTL AUTO | | | | | | STA OFF AL-7 LP/SP BOTH CAL OFF AL-8 UNCAGE UNCAGED STA | | | | | 9 | INITIATE CMD 070 (LVL
MTR X ON/OFF) TO TURN
X LVL MTR ON | | ANNOTATE CMD ACTION
ON PSE ANALOG
RECORDER | | | 10 | IS DRIVING VIA
COARSE SENSOR BY
NOTING HIGH PULSE | VERIFY ON C/S ANALOG
RECORDER AND ON THE
HSP A DECREASE IN
RES PWR OF APPROX
3 W. LOG CHANGE. | · | NOTE 2: NOTE THAT COARSE SENSOR HAS AUTOMAT- ICALLY CUT OUT BY NOTING CHANGE OF MOTOR DRIVE RATE FROM APPROX 40 PPS TO APPROX 1 PPS | | | | | | | | Step
No. | ASE | SYSTEMS | DATA | Co | omments | |-------------|--|---|--|---------|--| | 11 | MONITOR X AXIS TIDAL DATA ON PSE ANALOG RECORDER. IF X TIDAL DATA DOESN'T REACH APPROX +/- 12 URAD WITHIN 7.5 MIN INITIATE CMD 102 (LVL SNSR IN/OUT) TO COMMAND COARSE SENSOR OUT. WHEN X TIDAL DATA INDICATES WITHIN APPROX +/- 12 URAD, OR WHEN THE MOTOR HAS DRIVEN FOR 35 MIN, INITIATE CMD 070 (LVL MTR X ON/OFF) TO TURN X MTR OFF. (NOTES 3 AND 4). | VERIFY ON C/S ANALOG
RECORDER THAT RES PWR
INCREASES APPROX 3 W | ANNOTATE ALL CMD ACTION ON PSE ANALOG RECORDER | NOTE 4: | TIME REQD TO COARSE LEVEL X AXIS IS APPROX 20-25 MINUTES. DO NOT RUN X MOTOR ANY LONGER THAN NECESSARY. TIDAL DATA IS TEMPERATURE SENSITIVE. IF THE X MOTOR IS COMMANDED OFF WITHOUT BEING LEVELEI COMPLETE LEVELING THE OTHER AXES AND REFER TO MISSION RULES FOR ACTION TO BE TAKEN ON X AXIS. | | 12 | IF NECESSARY, INITI-
ATE CMD 102 (LVL SNSR
IN/OUT) TO PUT LEVEL
SENSOR IN | INITIATE PSE HSP | ANNOTATE CMD ACTION
ON PSE ANALOG
RECORDER AND READ
SENSOR STATUS FROM
PSE HSP | | | | 13 | INITIATE CMD 071 (LVL
MTR Y ON/OFF) TO TURN
Y MTR ON | | ANNOTATE CMD ACTION
ON PSE ANALOG
RECORDER | :
: | | | 14 | VERIFY THAT Y MOTOR IS DRIVING VIA COARSE SENSOR BY MONITORING HIGH PULSE RATE ON SP Z CHANNEL (NOTE 5) | VERIFY C/S ANALOG
RECORDER AND THE HSP
THAT THE RES PWR
DECREASE APPROX 3 W.
LOG CHANGE IN RES
POWER | | NOTE 5: | NOTE THAT COARSE SEN- SOR HAS AUTOMATIC- ALLY CUT OUT BY NOTING CHANGE OF MOTOR RATE FROM APPROX 40 PPS TO APPROX 1 PPS | | Step
No. | ASE | SYSTEMS | DATA | | Comments | |-------------|---|--|---|---------|---| | 15 | MONITOR Y AXIS TIDAL DATA ON PSE ANALOG RECORDER. IF THE Y TIDAL DATA DOES NOT REACH APPROX +/- 12 URAD WITHIN 7.5 MIN, INITIATE CMD 102 (LVL SENSOR IN/OUT) TO COMMAND COURSE SENSOR OUT. WHEN Y TIDAL DATA INDICATES +/- 12 URAD, OR WHEN THE MOTOR HAS DRIVEN FOR 35 MIN, INITIATE CMD 071 (LVL MTR ON/OFF) TO TURN Y MTR OFF. (NOTE 6 AND 7). | | ANNOTATE ALL CMD
ACTIONS ON PSE
ANALOG RECORDER | NOTE 6: | TIME REQD TO COARSE LEVEL Y AXIS IS APPROX 20-25 MINUTES. DO NOT RUN Y MOTOR ANY LONGER THAN NECESSARY. TIDAL DATA IS TEMPERATURE SENSITIVE. IF THE Y MTR IS COMMANDED OFF WITHOUT BEING LEVELED COMPLETE LEVELING OF OTHER AXES AND REFER TO MISSION RULES FOR ACTION TO BE TAKEN ON Y AXIS. | | 16 | INITIATE CMD 102 (LVL
SENSOR IN/OUT) TO PUT
LVL SENSOR OUT | INITIATE PSE HSP
FORMAT | ANNOTATE CMD ACTION
ON PSE ANALOG
RECORDER | | | | 17 | MONITOR X AND Y TIDAL DATA ON PSE ANALOG RECORDER. IF NO ADDITIONAL LEVELING IS REQUIRED, GO TO STEP 24. | | VERIFY ON PSE HSP
FORMAT THAT THE
LVL SENSOR IS OUT | | | | 18 | IF NECESSARY INITIATE
CMD 070 (LVL MTR X
ON/OFF) TO TURN X LVL
MTR ON | | ANNOTATE CMD ACTION ON
PSE ANALOG RECORDER | | | | 19 | RECORDER SP Z CHANNEL
THAT X LEVELING MOTOR | VERIFY ON C/S ANALOG
RECORDER AND THE HSP
THAT THE RES PWR
DECREASES APPROX 3 W
(NOTE 8) | | NOTE 8: | IF THE CMDS FOR ON AND OFF ARE CLOSE, THE C/S ANALOG MAY NOT CATCH THE CHANGE IN RES PWR | | | m 101 (Amii 70) | | | | | | Step | | T | T | T | |------|--|--|---|--| | No. | ASE | SYSTEMS | DATA | Comments | | 20 | MONITOR X AXIS TIDAL DATA ON PSE ANALOG RECORDER. WHEN X TIDAL DATA INDICATES LESS THAN +/- 5 URAD, INITIATE CMD 070 (LVL MTR X ON/OFF) TO TURN X MTR OFF | | ANNOTATE CMD ACTION
ON PSE ANALOG
RECORDER | | | 21 | IF NECESSARY, INITIAT CMD 071 (LVL MTR Y ON/OFF) TO TURN Y MTR ON | | ANNOTATE CMD ACTION
TO PSE ANALOG
RECORDER | | | 22 | VERIFY ON PSE ANALOG
RECORDER SP Z CHANNEL
THAT Y LEVELING MOTOR
IS DRIVING AT LOW
RATE (APPROX 1 PPS)
CAUSED BY Y TIDAL
SIGNAL DRIVE | VERIFY ON C/S ANALOG
RECORDER AND THE HSP
THAT THE RES PWR DE-
CREASES APPROX 3 W
(NOTE 9) | | NOTE 9: IF THE CMDS FOR ON AND OFF ARE CLOSE, THE C/S ANALOG MAY NOT CATCH THE CHANGE IN RES PWR | | 23 | MONITOR Y AXIS TIDAL DATA ON PSE ANALOG RECORDER. WHEN Y TIDAL DATA INDICATES LESS THAN +/- 5 MURAD INITIATE CMD 071 (LVL MTR Y ON/OFF) TO TURN Y MTR OFF. | VERIFY ON C/S ANALOG
RECORDER THAT THE RES
PWR INCREASES APPROX
3 W | ANNOTATE CMD ACTION
ON PSE ANALOG
RECORDER | | | 24 | INITIATE CMD 103 (LVL
MDE A/F) TO PLACE THE
PSE IN THE FORCE LVL
MDE | INITIATE PSE HSP
FORMAT | ANNOTATE CMD ACTION
ON PSE ANALOG
RECORDER | | | 25 | | | VERIFY ON PSE HSP
FORMAT THE STATUS OF
THE LVL SPEED AND LVL
DIR | | | | IF NECESSARY,
INITIATE
CMD 075 (LVL SPEED
HI/LO) TO PLACE PSE
IN HI LVL SPEED | | ANNOTATE CMD ACTION
ON PSE ANALOG
RECORDER | | | | INITIATE CMD 074 (LVL
DIR POS/NEG) TO POS | INITIATE PSE HSP
FORMAT | ANNOTATE CMD ACTION
ON PSE ANALOG
RECORDER | | | 28 | m 101 (Anni 70) | | OBTAIN PSE HSP FOR-
MAT AND GIVE COPY TO
ASE | | | Step
No. | ASE | SYSTEMS | DATA | Comments | |-------------|---|--|--|----------| | 29 | VERIFY THE FOLLOWING STATUS- SYMBOL NAME STATUS AL-1 X&Y AS REQD GAIN AL-2 Z AS REQD GAIN AL-3 LVL POS DIR AL-3 LVL HI SPEED AL-4 SP AS REQD GAIN AL-5 LVL FORCED MDE AL-5 LVL OUT SNSR AL-6 T CTL AUTO OFF AL-7 LP/SP BOTH OFF CAL AL-8 UNCAGE UNCAGED | | | | | 30 | INITIATE CMD 072 (LVL
MTR Z ON/OFF) TO TURN
Z MTR ON | | ANNOTATE CMD ACTION
ON PSE ANALOG
RECORDER | | | 31 | VERIFY Z MTR HI SPEED
OPERATION BY NOTING
HIGH PULSE RATE ON SP
Z CHANNEL | VERIFY ON C/S ANALOG
RECORDER AND HSP A
DECREASE IN RES PWR
OF APPROX 3 W | | | | 32 | MONITOR Z AXIS TIDAL DATA ON PSE ANALOG RECORDER. WHEN Z TIDAL DATA GOES THRU ZERO, INITIATE CMD 103 (LVL MDE A/F) TO PLACE PSE IN AUTO LVL MODE | | ANNOTATE CMD ACTION
ON PSE ANALOG
RECORDER | | | 33 | MONITOR Z AXIS TIDAL DATA ON PSE ANALOG RECORDER. WHEN Z TIDAL DATA INDICATES +/- 1 MGAL, INITIATE CMD 072 (LVL MTR Z ON/OFF) TO TURN Z MTR OFF | RECORDER THAT THE RES | ANNOTATE CMD ACTION
ON PSE ANALOG
RECORDER | | | | INITIATE CMD 101 (PSE
FILTER IN/OUT) TO PUT
THE PSE FILTER IN | | ANNOTATE CMD ACTION
DN PSE ANALOG
RECORDER | | | Step
No. | ASE | SYSTEMS | DATA | Comments | |-------------|--|---|---|----------| | 35 | MONITOR CHANGE IN LP
DATA ON PSE ANALOG
RECORDER TO VERIFY THE
PSE FILTER IS IN | INITIATE PSE HSP
FORMAT | READ RES PWR. RE-
TURN DRUM RECORDER
ATTENUATION TO NORMAL
SETTINGS | | | 36 | INITIATE CMD 076 THREE TIMES (PSE TCTL CH) TO RETURN TO THERMAL CONTROL MODE AUTO ON | INITIATE PSE HSP
FORMAT AFTER EACH
076 STEP | ANNOTATE CMD ACTION
ON PSE ANALOG RE-
CORDER. READ RES
PWR AFTER EACH 076
STEP | | | 37 | INITIATE CMD 075 (LVL
SPEED HI/LO) TO TURN
THE LVL SPEED TO LO | | ANNOTATE CMD ACTION
ON PSE ANALOG
RECORDER | | | 38 | | INITIATE HSP FORMAT | OBTAIN PSE HSP FORMAT AND VERIFY STATUS OF THE FOLLOWING- SYMBOL NAME STATUS AL-1 X&Y AS REQD GAIN AL-2 Z AS REQD DIR AL-3 LVL AS REQD DIR AL-4 SP AS REQD GAIN AL-5 LVL AUTO MUE AL-5 LVL AUTO MUE AL-5 LVL OUT SNSR AL-6 T CTL AUTO ON AL-7 LP/SP BOTH OFF CAL AL-8 UN- CAGE CAGED | | | 39 | CHECK TASK COMPLETE
ON WORK SCHEDULE AND
LOG ANY ANOMALIES IN
CONSOLE LOG BOOK | | | | | Step
No. | ASE | SYSTEMS | DATA | Comments | |-------------|--|---|--|---| | 1 | INITIATE 076 THERMAL
CNTL AUTO OFF | INITIATE PSE HSP FOR-
MAT | OBTAIN PSE HSP
FORMAT AND GIVE
COPY TO ASE | | | 2 | NOTE STATUS OF THE FOLLOWING TO DETER- MINE CMD ACTION RE- QUIRED (NOTE 1) STATUS REQ FOR SYMBOL NAME RELVL AL-1 X&Y AS REQUE GAIN AL-2 Z AS REQUE GAIN AL-3 LVL N/A DIR AL-3 LVL N/A DIR AL-4 SP AS REQUE GAIN AL-5 LVL AUTO MDE AL-5 LVL OUT SNSR AL-6 T CTL AUTO OFF AL-7 LP/SP BOTH CAL OFF AL-8 UN- CAGE CAGED | - | VERIFY SPEED OF PSE ANALOG RECORDER AT 0.5 MM/SEC OR GREATER | NOTE 1: THERE ARE NO STATUS PA- RAMETERS FOR THE PSE FIL- TER OR THE THREE AXIS LEVELING MO- TORS. AT PSE TURN ON- PSE FILTER INITIALIZES TO OUT LVL X MTR INITIALIZES TO OFF LVL Y MTR INITIALIZES TO OFF LVL Z MTR INITIALIZES TO OFF | | 3 | IF NECESSARY, INITIATE
CMD 067 (SP GAIN CH)
TO OBTAIN GAIN DESIRED
FOR RELEVELING | | ANNOTATE CMD ACTION
ON PSE ANALOG
RECORDER | | | 4 | IF NECESSARY, INITIATE
CMD 101 (PSE FILTER
IN/OUT) TO PUT THE
PSE FILTER OUT | | ANNOTATE CMD ACTION
ON PSE ANALOG
RECORDER | | | 5 | OBTAIN PSE HSP FORMAT
AND VERIFY STATUS OF
THE FOLLOWING: | VERIFY 5 W RES RWR
FROM C/S ANALOG
RECORDER | | | | Step
No. | ASE | SYSTEMS | DATA | Comments | |-------------|--|--|--|----------| | | SYMBOL NAME STATUS AL-1 X&Y AS REQD GAIN AL-2 Z GAIN AS REQD AL-3 LVL DIR N/A AL-3 LVL DIR N/A AL-4 SP AS REQD GAIN AL-5 LVL AUTO MDE AL-5 LVL OUT SNSR AL-6 T CTL AUTO STA OFF AL-7 LP/SP BOTH CAL OFF AL-8 UN- UN- CAGE CAGED STA | | | | | 6 | INITIATE CMD 070 (LVL
MTR X ON/OFF) TO TURN
X LVL MTR ON | | ANNOTATE CMD ACTION
ON PSE ANALOG RE-
CORDER | | | 7 | VERIFY THAT X MOT OR
IS DRIVING | VERIFY ON C/S ANALOG
RECORDER A DECREASE
IN RES PWR OF APPROX
3 W | | | | 8 | MONITOR X AXIS TIDAL DATA ON PSE ANALOG RECORDER. WHEN X TIDAL DATA INDICATES WITHIN APPROX +/- 5 URAD, INITIATE CMD 070 (LVL MTR X ON/OFF) TO TURN X MTR OFF | | ANNOTATE CMD ACTION
ON PSE ANALOG RECORDER | | | 9 | | VERIFY ON C/S ANALOG
RECORDER THAT THE RES
PWR INCREASES APPROX
3 W | | | | 10 | INITIATE CMD 071 (LVL
MTR Y ON/OFF) TO TURN
Y MTR ON | | ANNOTATE CMD ACTION
ON PSE ANALOG RE-
CORDER | | | 11 | VERIFY THAT Y MOTOR
IS DRIVING | VERIFY ON C/S ANALOG
RECORDER THAT THE RES
PWR DECREASES APPROX
3 W | | | | Step
No. | ASE | SYSTEMS | DATA | Comments | |-------------|--|--|---|----------| | | HONITOR Y AXIS TIDAL DATA ON PSE ANALOG RECORDER. WHEN Y TIDAL DATA INDICATES +/- 5 MURAD, INITIATE CMD 071 (LVL MTR Y ON/OFF) TO TURN Y MTR OFF | | ANNOTATE CMD ACTION
ON PSE ANALOG RECORDER | | | 13 | | VERIFY ON C/S ANALOG
RECORDER THAT THE RES
PWR INCREASES APPROX
3 W | | | | 14 | INITIATE CMD 072 (LVL
MTR Z ON/OFF) TO TURN
Z MTR ON | | ANNOTATE CMD ACTION
ON PSE ANALOG RECORDER | | | 15 | MONITOR Z AXIS TIDAL DATA ON PSE ANALOG RECORDER. WHEN Z TIDAL DATA INDICATES LESS THAN 0.67 MGAL, INITIATE CMD 072 (LVL MTR Z ON/OFF) TO TURN Z MTR OFF | VERIFY ON C/S ANALOG
RECORDER THAT THE RES
PWR DECREASES APPROX
3 W | ANNOTATE CMD ACTION
ON PSE ANALOG RECORDER | | | 16 | | VERIFY ON C/S ANALOG
RECORDER THAT THE RES
PWR INCREASES APPROX
3 W | | | | 17 | INITIATE CMD 101 (PSE
FILTER IN/OUT) TO PUT
THE PSE FILTER IN | | ANNOTATE CMD ACTION
ON PSE ANALOG RECORDER | | | 18 | MONITOR CHANGE IN LP
DATA ON PSE ANALOG
RECORDER TO VERIFY
THE PSE FILTER IS IN | | RETURN DRUM RECORDER
ATTENUATION TO NORMAL
SETTING | | | 19 | INITIATE CMD 076
THREE TIMES TO OBTAIN
THERMAL CNTL MODE TO
AUTO ON | | | | | 20 | | INITIATE PSE HSP
FORMAT | OBTAIN PSE HSP FORMAT
AND VERIFY STATUS OF
THE FOLLOWING: | | | Step
No. | ASE | SYSTEMS | DATA | Comments | |-------------|--|---------|--|----------| | | | | SYMBOL NAME STATUS AL-1 X&Y AS GAIN REQD AL-2 Z AS GAIN REQD AL-3 LVL AS DIR REQD AL-3 LVL LO SPEED AL-4 SP AS GAIN REOD AL-5 LVL AUTO MDE AL-5 LVL OUT SNSR AL-6 T CTL AUTO ON AL-7 LP/SP BOTH CAL OFF AL-8 UN- CAGE CAGED | | | 21 | CHECK TASK COMPLETE ON WORK SCHEDULE AND LOG ANY ANOTALIES IN CONSULE LOG BOOK | | | | | Cton | T | | | | |-------------|--|---|--
---| | Step
No. | ASE | SYSTEMS | DATA | Comments | | 1 | INITIATE CMD 076 TO
THERMAL CNTL MODE
AUTO OFF | INITIATE PSE HSP | OBTAIN PSE HSP
FORMAT AND GIVE
COPY TO ASE | | | - | NOTE STATUS OF THE FOLLOWING TO DETER- MINE CMD ACTION REQUIRED (NOTE 1) STATUS REQ FOR SYMBOL NAME LVL AL-1 X&Y GAIN AL-1 X&Y GAIN AL-1 X&Y GAIN AL-2 Z AS REQD GAIN AL-3 LVL NOTE 2 DIR AL-3 LVL LO SPEED AL-4 SP AS REQD GAIN AL-5 LVL AUTO MDE AL-5 LVL OUT SNSR AL-6 T CTL AUTO OFF AL-7 LP/SP BOTH CAL OFF AL-8 UN- UN- CAGE CAGED | MONITOR X, Y, & Z
TIDAL DATA ON PSE
ANALOG RECORDER | VERIFY SPEED OF
PSE ANALOG
RECORDER AT 0.5 | NOTE 1: THERE ARE NO STATUS PA- RAMETERS FOR THE PSE FIL- TER OR THE THREE AXIS LEVELING MO- TORS. AT PSE TURN ON: PSE FILTER INITIALIZES TO OUT LVL X MTR INITIALIZES TO OFF LVL Y MOTOR INI- TIALIZES TO OFF LVL Z MTR INITIALIZES TO OFF NOTE 2: MONITOR X TIDAL DATA ON PSE ANALOG RECORDER TO DETERMINE LEVELING DI- RECTION. IF X TIDAL IS POS, NEG DI- RECTION RE- QUIRED. IF X TIDAL IS NEG, POS DI- RECTION RE- QUIRED | | | IF NECESSARY,
INITIATE CMD 067 (SP
GAIN CH) TO OBTAIN
GAIN DESIRED | POWER FROM CS ANALOG | ANNOTATE CMD
ACTION ON PSE
ANALOG RECORDER | | | Step
No. | ASE | SYSTEMS | DATA | Comments | |-------------|---|----------------------------|--|----------| | 4 | | | TURN DRUM RECORDER
ATTENUATION TO
INFINITY | | | 5 | INITIATE CMD 101
(PSE FILTER IN/OUT)
TO PUT THE PSE
FILTER OUT | | ANNOTATE CMD
ACTION ON PSE
ANALOG RECORDER | | | 6 | MONITOR X AXIS TIDAL DATA ON PSE ANALOG RECORDER. DETERMINE DIRECTION FOR LEVELING. IF X TIDAL DATA IS POS, USE NEG DIR. IF X TIDAL DATA IS NEG, USE POS DIR. | | | | | 7 | INITIATE CMD 074
(LVL DIR POS/NEG)
TO PLACE LVL DIR AS
REQUIRED | | ANNOTATE CMD
ACTION ON PSE
ANALOG RECORDER | | | 8 | INITIATE CMD 075
(LVL SPEED HI/LO)
TO PLACE PSE IN HI
LVL SPEED | | ANNOTATE CMD
ACTION ON PSE
ANALOG RECORDER | | | 9 | INITIATE CMD 103
(LVL MDE A/F) TO
PLACE PSE IN THE
FORCED LVL MDE | | ANNOTATE CMD
ACTION ON PSE
ANALOG RECORDER | | | 10 | | INITIATE PSE HSP
FORMAT | OBTAIN PSE HSP
FORMAT AND GIVE
COPY TO ASE | | | Step
No. | ASE | SYSTEMS | DATA | Comments | |-------------|--|---|--|----------| | 11 | VERIFY STATUS OF THE FOLLOWING: SYMBOL NAME STATUS AL-1 XY AS REQUE GAIN AL-2 Z AS REQUE GAIN AL-3 LVL NOTE DIR 4 AL-3 LVL HI SPEED AL-4 SP AS REQUE GAIN AL-5 LVL FORCED MDE AL-5 LVL OUT SNSR AL-6 T CTL AUTO STA OFF AL-7 LP/SP BOTH CAL OFF AL-8 UN-CAGE CAGED STA | | | | | 12 | ENTER MAP OVERRIDE
ON | | | | | 13 | INITIATE CMD 070
(LVL MTR X ON/OFF)
TO TURN X LVL MTR
ON | / | ANNOTATE CMD
ACTION ON PSE
ANALOG RECORDER | | | 14 | | VERIFY ON CS ANALOG
RECORDER A DECREASE
IN RES PWR OF APPROX
3 W | | | | Step
No. | ASE | SYSTEMS | DATA | Comments | |-------------|--|---|---|----------| | 15 | MONITOR X AXIS TIDAL DATA ON PSE ANALOG RECORDER. WHEN X TIDAL DATA GOES THRU ZERO, INITIATE CMD 075 (LVL SPEED HI/LO) TO PLACE PSE IN LO LVL SPEED AND CMD 074 (LVL DIR POS/NEG) TO RE- VERSE LVL DIR | | ANNOTATE ALL CMD ACTION ON PSE ANALOG RECORDER | | | 16 | INITIATE PSE HSP | VERIFY SPEED LO
AND LEVEL DIRECTION | | | | 17 | MONITOR X AXIS TIDAL DATA ON PSE ANALOG RECORDER. WHEN X TIDAL DATA GOES THRU +/- 15 MURAD, INITIATE CMD 103 (PSE AUTO MODE) | | ANNOTATE CMD
ACTION ON PSE
ANALOG RECORDER | | | 18 | TURN MAP OVERRIDE | | | | | 19 | INITIATE CMD 070
X MOTOR OFF WHEN
TIDAL DATA ± 5
MRAD | VERIFY ON CS ANALOG
RECORDER THAT THE RES
PWR INCREASES APPROX
3 W | ANNOTATE CMD
ACTION ON PSE
ANALOG RECORDER | | | 20 | MONITOR Y AXIS TIDAL DATA ON PSE ANALOG RECORDER. DETERMINE DIRECTION FOR LEVELING IF Y TIDAL DATA IS POS USE NEG DIR. IF Y TIDAL DATA IS NEG, USE POS DIR. | | | | | 21 | IF NECESSARY,
INITIATE CMD 074 (LVL
DIR POS/NEG) TO PLACE
LVL DIR AS REQUIRED | | ANNOTATE CMD
ACTION ON PSE
ANALOG RECORDER | | | 22 | INITIATE CMD 075
(LVL SPEED HI/LO)
TO PLACE PSE IN HI
LVL SPEED | | ANNOTATE CMD ACTION
ACTION ON PSE ANALOG
RECORDER | | | Step | ASE | SYSTEMS | DATA | Comments | |------|--|---|--|----------| | No. | | SYSTEMS | DATA | Comments | | 23 | INITIATE CMD 103
(LVL MDE A/F) TO
PLACE PSE IN FORCED
LVL MODE | | ANNOTATE CMD
ACTION ON PSE
ANALOG RECORDER | | | 24 | INITIATE MAP
OVERRIDE | | | | | 25 | INITIATE CMD 071
(LVL MTR Y ON/OFF)
TO TURN Y MTR ON | | ANNOTATE CMD ACTION
ON PSE ANALOG
RECORDER | | | 26 | | VERIFY ON CS ANALOG
RECORDER THAT THE
RES PWR DECREASES
APPROX 3 W | | | | 27 | MONITOR Y AXIS TIDAL DATA ON PSE ANALOG RECORDER. WHEN Y TIDAL DATA GOES THRU ZERO, INITIATE CMD 075 (LVL SPEED HI/LO) TO PLACE PSE IN LO LVL SPEED AND CMD 074 (LVL DIR POS/NEG) TO PLACE LVL DIR AS REQUIRED | | ANNOTATE ALL CMD
ACTION ON PSE
ANALOG RECORDER | | | 28 | INITIATE PSE HSP | VERIFY SPEED LO
AND DIR AS REQUIRED | | | | 29 | MONITOR Y AXIS TIDAL DATA ON PSE ANALOG RECORDER. WHEN Y TIDAL DATA GOES THRU +/- 15 MURAD, INITIATE CMD 103 (AUTO MODE) | | ANNOTATE CMD ACTION
ON PSE ANALOG RECORDER | | | 30 | RELEASE MAP OVERRIDE | | | | | 31 | INITIATE CMD 071
WHEN TIDAL <u>+</u> 5
MRAD | VERIFY ON CS ANALOG
RECORDER THAT THE
RES PWR INCREASES
APPROX 3 W | ANNOTATE CMD
ACTION ON PSE
ANALOG RECORDER | | | 32 | INITIATE CMD 074
(LVL DIR POS/NEG)
TO PLACE LVL DIR
POS | | ANNOTATE CMD
ACTION ON PSE
ANALOG RECORDER | | | Step
No. | ASE | SYSTEMS | DATA | Comments | |-------------|--|---|--|----------| | 33 | INITIATE CMD 075
(LVL SPEED HI/LO)
TO PLACE PSE IN HI
LVL SPEED | | ANNOTATE CMD
ACTION ON PSE
ANALOG RECORDER | | | 34 | INITIATE CMD 103
(LVL MDE A/F) TO
PLACE PSE IN FORCED
LVL MODE | | ANNOTATE CMD
ACTION ON PSE ANALOG
RECORDER | | | 35 | INITIATE CMD 072
(LVL MTR 2 ON/OFF)
TO TURN Z MTR ON | | ANNOTATE CMD
ACTION ON PSE ANALOG
RECORDER | | | 36 | INITIATE MAP
OVERRIDE | VERIFY ON CS ANALOG
RECORDER A DECREASE
IN RES PWR OF APPROX
3 W | | | | 37 | MONITOR Z AXIS TIDAL DATA ON PSE ANALOG RECORDER. WHEN Z TIDAL DATA GOES THRU ZERO, INITIATE CMD 075 (LVL SPEED HI-LO) TO PLACE PSE IN LO LVL SPEED AND CMD 074 (LVL DIR POS/NEG) TO PLACE LVL DIR NEG | | ANNOTATE ALL CMD
ACTION ON PSE ANALOG
RECORDER | | | 38 | INITIATE PSE HSP | | VERIFY SPEED LO
DIRECTION NEG | | | 39 | MONITOR Z AXIS TIDAL DATA ON PSE ANALOG RECORDER. WHEN Z TIDAL DATA GOES THRU +/- 2 MGAL, INITIATE CMD 103 (PSE AUTO MODE) | | ANNOTATE CMD
ACTION ON PSE ANALOG
RECORDER | | | Step | I | 1 | Ţ | T | |------|---|----------------------------|--|----------| | No. | ASE | SYSTEMS | DATA | Comments | | 40 | RELEASE MAP OVERRIDE | | | | | 41 | INITIATE CMD 072 (Z
MOTOR OFF) WHEN TIDAL
DATA ± 0.67 MGAL | | | | | 42 | INITIATE 076 THREE
TIMES FOR THERM
MODE AUTO ON | | | | | 43 | INITIATE CMD 101 (PSE
FILTER IN/OUT) TO PUT
THE PSE FILTER IN | | ANNOTATE CMD ACTION
ON PSE ANALOG RECORDER | | | 44 | | INITIATE PSE HSP
FORMAT | RETURN DRUM RECORDER
ATTENUATION TO NORMAL
SETTINGS | | | 45 | | | OBTAIN PSE HSP FORMAT AND VERIFY STATUS OF THE FOLLOWING- SYMBOL NAME STATUS AL-1 X&Y AS REQD GAIN AS REQD DIR AL-2 Z GAIN AS REQD DIR AL-3 LVL LO SPEED AL-4 SP AS REQD GAIN AL-5 LVL AUTO MDE AL-5 LVL OUT SNSR AL-6 T CTL AUTO ON AL-7 LP/SP BOTH CAL OFF AL-8 UN- CAGE CAGED | | | | CHECK TASK COMPLETE
ON WORK SCHEDULE AND
LOG ANY ANOMALIES IN
CONSOLE LOG BOOK | | | | ALSEPCH BASIC PAGE 1 OF 5 | Step
No. | ASE | SYSTEMS | DATA | Comments | |-------------
---|-----------------------------|--|---| | 1 | INITIATE CMD 101 PSE
FILTER OUT | | · | | | 2 | INITIATE CMD 076
THERM CNTL AUTO OFF | INITIATE PSE HSP
FORMAT | OBTAIN PSE HSP FORMAT
AND GIVE COPY TO ASE | | | 3 | NOTE STATUS OF THE FOLLOWING TO DETER- MINE CMD ACTION REQUIRED (NOTE 1) SYMBOL NAME STATUS REQ FOR LVL AL-1 X&Y AS GAIN REQD AL-2 Z AS GAIN REQD AL-3 LVL NOTE 2 DIR AL-3 LVL LO SPEED AL-4 SP AS GAIN REQD AL-5 LVL FORCED MODF AL-5 LVL OUT SNSR AL-6 T CTL AUTO OFF AL-7 LP/SP BOTH CAL OFF AL-8 UN- UN- CAGE CAGED | VERIFY 5 W RESERVE
POWER | | NOTE 1: THERE ARE NO STATUS PARA-METERS FOR THE PSE FILTER OR THE THREE AXIS LEVELING MOTORS. AT PSE TURN ON: PSE FILTER INITIALIZES TO OUT LVL X MTR INITIALIZES TO OFF LVL Y MTR INITIALIZES TO OFF LVL Z MTR INITIALIZES TO OFF LVL Z MTR INITIALIZES TO OFF NOTE 2: MONITOR X TIDAL DATA ON PSE ANA-LOG RECORDER TO DETERMINE LEVELING DIRECTION. IF X TIDAL IS POS, NEG DIRECTIONS REQUIRED. IF X TIDAL IS POS OIRECTION REQUIRED. | | 4 | IF NECESSARY,
CMD 067 (SP GAIN CH)
TO OBTAIN GAIN DE-
SIRED | | ANNOTATE CMD ACTION
ON PSE ANALOG RE-
CORDER | | | 5 | MONITOR X AXIS TIDAL DATA ON PSE ANALOG RECORDER. DETERMINE DIRECTION FOR LEVELING. IF X TIDAL DATA IS POS, USE NEG DIR. IF Z TIDAL DATA IS NEG, USE POS DIR. | | | | | Step
No. | ASE | SYSTEMS | DATA | Comments | |-------------|---|------------------------------|--|----------| | 6 | INITIATE CMD 074 (LVL
DIR POS/NEG) TO PLACE
LVL DIR AS REQUIRED | | ANNOTATE CMD ACTION
ON PSE ANALOG RE-
CORDER | | | 7 | INITIATE CMD 102 (LVL
SNSR IN/OUT) TO PUT
LVL SNSR OUT.
ANNOTATE CMD. | | ANNOTATE CMD ACTION
ON PSE ANALOG RE-
CORDER | | | 8 | INITIATE CMD 103 (LVL
MODE A/F) TO PLACE
PSE IN THE FORCED
LVL MODE | | ANNOTATE CMD ACTION
ON PSE ANALOG RE-
CORDER | | | 9 | | | TURN DRUM RECORDER
ATTENTUATION TO
INFINITY | | | 10 | | INITIATE PSE HSP FOR-
MAT | OBTAIN PSE HSP FORMAT
AND GIVE COPY TO ASE | | | 11 | VERIFY STATUS OF THE FOLLOWING - SYMBOL NAME STATUS AL-1 X&Y AS GAIN REQD AL-2 Z AS GAIN REQD AL-3 LVL NOTE 2 DIR AL-3 LVL LO SPEED AL-4 SP AS GAIN REQD AL-5 LVL FORCED MODE AL-5 LVL FORCED MODE AL-5 LVL OUT SNSR AL-6 T CTL AUTO STA OFF AL-7 LP/SP BOTH CAL OFF AL-8 UN- CAGE CAGED STA | | | î | | 12 | ADVISE NETWORK THAT X
AXIS WILL BE LEVELED
FOR 4 SECONDS | | | | | 13 | INITIATE MAP OVERRIDE | | | | | 14 | INITIATE CMD 070 (LVL
MTR X ON/OFF) TO TURN
X LVL MTR ON | | ANNOTATE CMD ACTION
ON PSE ANALOG RECORDER | | | Step
No. | ASE | SYSTEMS | DATA | Comments | |-------------|---|---------|--|----------| | 15 | LET MOTOR RUN FOR
ONLY 4 SECONDS, INI-
TIATE CMD 070 (LVL
MTR X ON/OFF) TO TURN
X LVL MTR OFF | | ANNOTATE CMD ACTION
ON PSE ANALOG
RECORDER | | | 16 | INITIATE CMD 103 (LVL
MODE A/F) TO TURN LVL
MODE TO AUTO IMMED-
IATELY | | ANNOTATE CMD ACTION
ON PSE ANALOG RE-
CORDER | | | 17 | RELEASE MAP OVERRIDE | | | | | 18 | MONITOR Y AXIS TIDAL DATA ON PSE ANALOG RECORDER. DETERMINE DIRECTION FOR LEVELING. IF Y TIDAL DATA IS POS, USE NEG DIR. IF Y TIDAL DATA IS NEG, USE POS DIR. | | | | | 19 | IF NECESSARY, INI-
TIATE CMD 074 (LVL
DIR POS/NEG) TO PLACE
LVL DIR AS REQUIRED | | ANNOTATE CMD ACTION
ON PSE ANALOG RE-
CORDER | , | | 20 | ADVISE NETWORK THAT Y
AXIS WILL BE LEVELED
FOR 4 SEC | _ | | | | 21 | INITIATE CMD 103
(FORCED MODE) | | | | | 22 | INITIATE MAP OVERRIDE | | | | | 23 | INITIATE CMD 071 (LVL
MTR Y ON/OFF) TO TURN
Y MTR ON | | ANNOTATE CMD ACTION
ON PSE ANALOG RE-
CORDER | | | 24 | LET MOTOR RUN FOR
ONLY 4 SECS, INITIATE
CMD 071 (LVL MTR Y
ON/OFF) TO TURN Y
MOTOR OFF | | ANNOTATE CMD ACTION
ON PSE ANALOG RE-
CORDER | | | 25 | INITIATE CMD 103 (LVL
MODE A/F) TO TURN LVL
MODE TO AUTO
IMMEDIATELY | | ANNOTATE CMD ACTION
ON PSE ANALOG RE-
CORDER | | | 26 | RELEASE MAP OVERRIDE | | | | | Step
No. | ASE | SYSTEMS | DATA | Comments | |-------------|---|----------------------------|---|--| | 27 | MONITOR Z AXIS TIDAL DATA ON PSE ANALOG RECORDER. DETERMINE DIRECTION FOR LEVELING. IF Z TIDAL DATA IS POS, USE NEG DIR. IF Z TIDAL DATA IS NEG, USE POS DIR. | A | | | | 28 | IF NECESSARY, INITIA
CMD 074 (LVL DIR POS,
NEG) TO PLACE LVL DIP
AS REQUIRED | / | ANNOTATE ACTION ON PSE ANALOG RECORDER | | | 29 | ADVISE NETWORK THAT Z
AXIS WILL BE LEVELED
FOR 4 SECONDS | 7 | | | | 30 | INITIATE CMD 103
(FORCED MODE) | | | | | 31 | INITIATE MAP OVERRIDE | | | | | 32 | INITIATE CMD 072 (LVL
MTR Z ON/OFF) TO TURN
Z MTR ON | | ANNOTATE CMD ACTION
ON PSE ANALOG RECORDER | | | 33 | LET THE MOTOR RUN FOR
ONLY 4 SECONDS.
INITIATE CMD 072 (LVL
MTR Z ON/OFF) TO TURN
Z MTR OFF. | | ANNOTATE CMD ACTION
ON PSE ANALOG RECORDER | | | 34 | INITIATE CMD 103 (LVL
MODE A/F) TO TURN LVL
MODE TO AUTO IMMEDI-
ATELY | | ANNOTATE CMD ACTION
ON PSE ANALOG RECORDER | | | 35 | RELEASE MAP OVERRIDE | | | | | 36 | INITIATE CMD 076
THREE TIMES FOR THERM
CNTL AUTO ON | | | | | 37 | INITIATE CMD 101 (PSE
FILTER IN/OUT) TO PUT
THE PSE FILTER IN | | ANNOTATE CMD ACTION
ON PSE ANALOG RECORDER | The second secon | | 38 | 5 | | RETURN DRUM RECORDER
ATTENTUATION TO
NORMAL SETTING | | | 39 | | INITIATE PSE HSP
FORMAT | | | | Step
No. | ASE | SYSTEMS | DATA | Comments | |-------------|--|---------|---|----------| | 40 | | | OBTAIN PSE HSP FORMAT AND VERIFY STATUS OF THE FOLLOWING - SYMBOL NAME STATUS AL-1 X&Y AS GAIN REQD AL-2 Z AS GAIN REQD AL-3 LVL AS DIR REQD AL-3 LVL AS DIR REQD AL-4 SP AS GAIN REQD AL-5 LVL AUTO MODE AL-5 LVL AUTO MODE AL-5 LVL OUT SNSR AL-6 T AUTO CTL ON AL-7 LP/SP BOTH CAL OFF AL-8 UN- UN- CAGE CAGED | | | 41 | LOG TASK AND
ANOMALIES IN THE
CONSOLE HANDBOOK | | | | | | | | | | PSE GAIN CHANGE (LP X, Y, OR Z AND SP Z) PREREQUISITES: 1. PSE MUST BE IN OPERATE MODE 2. PSE MUST BE IN A NORMAL REFERENCE MODE (T F.. NOT LEVELING OR CAL) (I.E., NOT LEVELING OR CAL) 3. PSE ANALOG
RECORDERS AND DRUM RECORDERS CONFIGURED FOR PSE AS PER WORK SCHEDULE **ALSEPCH** BASIC PAGE 1 OF 1 | Step
No. | ASE | SYSTEMS | DATA | Comments | |-------------|---|----------------------------|---|---| | 1 | INITIATE CMD 062 (XY
GAIN) AS NECESSARY TO
OBTAIN GAIN REQUIRED
(NOTE 1) | | ANNOTATE CMD ACTION
ON PSE ANALOG RE-
CORDER | NOTE 1: GAIN STEPS
THROUGH THE
FOLLOWING
STEPS ONCE
PER CMD | | | | | , | 0 DB
-10
-20
-30 AND
REPEAT | | 2 | INITIATE CMD 064 (Z
GAIN) AS NECESSARY TO
OBTAIN GAIN REQUIRED
(NOTE 1) | | ANNOTATE CMD ACTION
ON PSE ANALOG RE-
CORDER | | | 3 | INITIATE CMD 067 (SP
GAIN) AS NECESSARY TO
OBTAIN GAIN REQUIRED
(NOTE 1) | INITIATE PSE HSP
FORMAT | ANNOTATE CMD ACTION
ON PSE ANALOG RE-
CORDER | | | 4 | | , | VERIFY ON PSE HSP
FORMAT THAT PSE GAIN
HAS CHANGES AS RE-
QUIRED | | | × | i. | | | | | | | | | | | | | SOP 2-9 PSE SP OR LP CALIBRATION PREREQUISITES: 1. PSE 1 MUST BE IN OPERATE MODE. 2. PSE MUST BE IN A NORMAL SCIENCE MODE (I.E., NOT LEVELING). LEVELING). 3. PSE ANALOG RECORDERS AND DRUM RECORDERS CONFIGURED FOR PSE AS PER WORK SCHEDULE. | Step
No. | ASE | SYSTEMS | DATA | Comments | |-------------|--|---|--|----------| | 1 | INITIATE CMD 066 (LP
CAL ON/OFF) TO TURN
THE PSE LP CAL PULSE
ON | | ANNOTATE CMD ACTION
ON PSE ANALOG RE-
CORDER | | | 2 | | MONITOR PSE ANALOG
RECORDER FOR INDICATIO
OF CAL PULSE ON | N | | | 3 | INITIATE CMD 066 (LP
CAL ON/OFF) TO TURN
THE PSE LP CAL PULSE
OFF | | ANNOTATE CMD ACTION ON
PSE ANALOG RECORDER | | | 4 | | MONITOR PSE ANALOG
RECORDER LP CHANNEL
FOR INDICATION OF CAL
PULSE IN OPPOSITE
DIRECTION FROM FIRST | | | | 5 | INITIATE CMD 065 (SP
CAL ON/OFF) TO TURN
THE PSE SP CAL PULSE
ON | | SPEED UP ANALOG RE-
CORDER TO 25.0 MM/SEC
FOR SP CAL PULSE AND
ANNOTATE CMD ACTION
ON PSE ANALOG
RECORDER | | | - 6 | | MONITOR PSE ANALOG
RECORDER SP CHANNEL
FOR INDICATION OF
CAL PULSE ON | | | | 7 | INITIATE CMD 065 (SP
CAL ON/OFF) TO TURN
PSE SP CAL PULSE OFF | | ANNOTATE CMD ACTION
ON PSE ANALOG
RECORDER | | | 8 | | MONITOR PSE ANALOG
RECORDER SP CHANNEL
FOR INDICATION OF
CAL PULSE IN OPPOSITE
DIRECTION FROM FIRST | | | | 9 | | INITIATE PSE HSP
FORMAT | RETURN PSE ANALOG
RECORDER TO 0.05
MM/SEC SPEED | | | 10 | | | OBTAIN PSE HSP FORMAT
AND CHECK PSE CAL
STATUS.
SYMBOL NAME STATUS
AL-7 LP/SP BOTH
CAL OFF | | | Step
No. | ASE | SYSTEMS | DATA | Comments | |-------------|--|---|---|--| | 1 | LOG CREW COMMENT OF LSM LEVELING | | | | | 2 | 3 | START LSM NO. 1 AND
NO. 2 HSP FORMATS
SELECT FORMAT 5 ON
ANALOG RECORDER NO. 4 | VERIFY RESERVE POWER
>8 WATTS | | | 3 | SEND CMD 042 (OPER
SEL) | ANNOTATE C/S AND LSM
ANALOG RECORDERS | | | | 4 | | DETERMINE FROM LSM ANALOG RECORDER AND PARAMETERS DM-12 X GIM POS DM-13 Y GIM POS DM-14 Z GIM POS THE MINIMUM SENSOR RANGE SO THAT ALL THREE PARAMETERS ARE NOT OFF SCALE | VERIFY ON LSM HSP
FORMAT NO. 2:
RANGE STEP - 200
GAMMA
FLD O/S - 0%
O/S ADD - OFF
FLIP/CAL INHIB -
INHIBITED
FILTER - IN
T CTL XYO - X | PRESET CONDITIONS STEP RANGES ARE ±50, ±100, ±200 GAMMA | | 5 | IF NECESSARY, SEND
CMD 123 (RANGE STEP)
TO PLACE SENSORS IN
DESIRED RANGE | | | FIRST CMD 123 ±50
GAMMA
SECOND CMD 123 ±100
GAMMA | | 6 | | DETERMINE FROM THE
LSM ANALOG RECORDER,
THE AMOUNT OF OFF-SET
IN EACH AXIS REQUIRED
TO PRODUCE 50% PFS | | OFF-SETS ARE 0, ±25%
±50%, ±75% OF THE
GAMMA RANGE | | 7 | IF NECESSARY, SEND
CMD 125 (O/S ADD CH)
TO ADDRESS THE X AXIS | | | CMD 125 IS A FOUR
STATE COMMAND; X, Y,
Z, NEUTRAL | | 8 | IF NECESSARY, SEND
CMD 124 (FLD O/S CH)
THE REQUIRED TIMES
TO PRODUCE A 50% PFS
OF DM-12 (X GIM POS) | | | CMD 124 IS A SEVEN
STATE COMMAND; 0,
+25%, +50%, +75%,
-75%, -50%, -25% | | 9 | IF NECESSARY, REPEAT
STEPS 8 AND 9 FOR
DM-13 (Y GIM POS) AND
DM-14 (Z GIM POS) | | | | | 10 | SEND CMD 127 (FLIP/
CAL ENABLE) | | VERIFY FLIP/CAL
ENABLE | | | Step
No. | ASE | SYSTEMS | DATA | Comments | |-------------|----------------------------------|----------------------------------|----------------------------|---| | 11 | SEND CMD 131 (FLIP/
CAL GO) | VERIFY ON LSM
ANALOG RECORDER | | REQUIRES 5 MIN OF
LSM HSP FORMAT NO. 1
BEFORE AND AFTER THE
FLIP/CAL | | 12 | SEND CMD 127 FLIP/CAL
INHIBIT | | VERIFY FLIP/CAL
INHIBIT | | | | - | v | u. | SOP 2-11 LSM SITE SURVEY PREREQUISITES: FOUR LSM FLIP/CALS | Step
No. | ASE | SYSTEMS | DATA | Comments | |-------------|--|---|--|---| | 1 | NOTIFY NETWORK TO
ENABLE CRITICAL RTC
LOAD NO. 3 (CMD 133) | START LSM HSP FORMAT
NO. 1 AND NO. 2
5 MIN PRIOR TO CMD 133 | | | | 2 | SEND CMD 133 (X AXIS
SURVEY) | , | | CMD 133 ACTIVATES THE
SITE SURVEY GENERATOR
FIRST APPLICATION
SURVEYS THE X AXIS.
SECOND AND THIRD
SURVEY Y AND Z. | | 3 | | | NOTIFY ASE WHEN LSM
HAS RETURNED TO
SCIENCE MODE | | | 4 | REPEAT STEPS 2 AND 3
FOR Y AXIS SURVEY
AND Z AXIS SURVEY | | REPEAT STEPS 2 AND 3
FOR Y AXIS SURVEY AND
Z AXIS SURVEY | | | | | | | | | Step
No. | ASE | SYSTEMS | DATA | Comments | |-------------|---|----------------------|--|---| | 1 | | START SWS HSP FORMAT | VERIFY RES PWR >8.2 W | | | 2 | SEND CMD 045 (SWS
OPER SEL) | | VERIFY SWS DATA IS
CYCLING PROPERLY | SWS WILL BE TURNED ON
DURING THE EVA IN
CASE GND CMD DOESN'T
FUNCATION AND CREW
MUST ACTIVATE SW
NO. 3 | | 3 | | STOP SWS HSP FORMAT | | | | 4 | | START SWS HSP FORMAT | | STEPS 4, 5, AND 6
WILL BE INITIATED
AFTER LM ASCENT | | 5 | NOTIFY NETWORK LOAD
CRITICAL GROUP 1 | | | | | 6 | SEND CMD 122 (CVR GO) | | VERIFY DATA | | | | | | | | | Step
No. | ASE | SYSTEMS | DATA | Comments | |-------------|--|---|------|--| | 1 | | VERIFY THAT CUP 14
SUM IS EQUAL TO OR
GREATER THAN 40 FOR
ONE COMPLETE SOLAR
WIND CYCLE | | | | 2 | ENABLE MAP OVERRIDE | | | | | 3 | SEND CMD 122 THREE
TIMES WITHIN 10 SEC
(SWS HI GAIN) | | | CUP 14 SUM WILL GO TO
SOME NUMBER DIFFERENT
FROM LO GAIN | | | | | | | | Step
No. | ASE | SYSTEMS | DATA | Comments | |-------------|----------------------------|--|------|----------| | 1 | | VERIFY THAT CUP 14
SUM IS 5 OR MORE LESS
THAN WHEN COMMANDED
TO HI GAIN | | | | 2 | SEND CMD 046 (SWS
STBY) | VERIFY EXP 3 STBY
STATUS LIGHT ON | | | | 3 | SEND CMD 045 (SWS ON) | VERIFY EXP 3 STBY
STATUS LIGHT OFF | · | - | | | | | | | à. | | | | | | | | | , | | | | | | | | | | SOP 2-15 SIDE/CCGE ACTIVATION PREREQUISITES: RES PWR GREATER THAN 15 W | Step
No. | ASE | SYSTEMS | DATA | Comments | |-------------|------------------------------------|--------------------------------------|---|----------| | 1 | | INITIATE C/S HSP | OBTAIN C/S HSP FORMAT
AND VERIFY THE
FOLLOWING - | | | | | | CS-2 RES PWR GREATER THAN 15 W AE-9 BUS VOLT +12 VDC AE-7 BUS VOLT +29 VDC AE-8 BUS VOLT +15 VDC AE-10 BUS VOLT +5 VDC AE-11 BUS VOLT -12 VDC AE-12 BUS VOLT -6 VDC AE-1 DSS ADC 0.25 V AE-2 DSS ADC 4.75 V | | | 2 | | GIVE GO/NO-GO FOR SIDE
TURN ON | GIVE GO/NO-GO FOR
SIDE TURN ON | | | 3 | INITIATE CMD 153 EXP
4 OPER SEL | INITIATE SIDE HSP
FORMATS 1 AND 2 | ANNOTATE CMD ACTION
ON C/S AND SIDE
RCDRS | | P-1 | SELECT SIDE FORMAT A ON ANALOG RECORDER INITIATE SIDE
HSP | C. | T | r | | | |---|-------------|-----------------|---|---|----------| | 4 ON ANALOG RECORDER. INITIATE SIDE HSP FORMAT 1. VERIFY CMD REGISTER READS "RSF10" ON HSP AFTER CMD 105. VERIFY MODE REGISTER READS "RSF10" AND CMD REGISTER READS | Step
No. | ASE | SYSTEMS | DATA | Comments | | READS "RSF10" ON HSP AFTER CMD 105. VERIFY MODE REGISTER READS "RSF10" AND CMD REGISTER READS | 1 | | 4 ON ANALOG RECORDER. INITIATE SIDE HSP | | | | | 2 | 105 THEN 110 TO | | READS "RSF10" ON
HSP AFTER CMD 105.
VERIFY MODE REGISTER
READS "RSF10" AND
CMD REGISTER READS | | | | | | | | | SOP 2-15B SIDE DUST COVER REMOVAL PREREQUISITES: RESERVE PWR GREATER THAN 8W. SIDE ON. ALSEPCH BASIC, PCN-1 PAGE 1 OF 1 | Step
No. | ASE | SYSTEMS | DATA | Comments | |-------------|---|--------------------------------------|---|-----------| | 1 | | INITIATE C/S HSP | OBTAIN C/S HSP FORMAT
AND VERIFY RES PWR
>8W. | | | 2 | | GIVE GO/NO-GO FOR
COVER REMOVAL. | GIVE GO/NO-GO FOR
COVER REMOVAL. | | | 3 | | INITIATE SIDE HSP
FORMAT 1 AND 2. | | | | 4 | DUST COVER REMOVAL CMD 107 THEN 110 TO EXECUTE. | | VERIFY CMD
REGISTER READS "MSTR"
ON HSP FORMAT 1
AFTER CMD 107. | | | | | | VERIFY MODE REGISTER READS "MSTR" AND CMD REGISTER READS "CLR" AFTER CMD 110. | | | | | | CHECK DI-12, SOLAR CELL OUTPUT, ON HSP. | | | | | | | | | | | | | 6 | | | | | | | | | | ь | | | | | | | | | | | | | | | | | * * | | | | | | | | | | | | | | | f
è va | | | | | | | | | | | | | | | | | | | P-1 | Step | ASE | SYSTEMS | DATA Comments | | | |------|--|--|--|---|--| | No. | | | | | | | 1 | | ENABLE HFE LIMIT
SENSING CATEGORY 5
AND CHECK C/S RES
PWR ON THE ANALOG
RECORDER | OBTAIN C/S HSP FORMAT AND CHECK THE FOLLOWING: CS-2 RES PWR GREATER THAN OR EQUAL TO 8 W AE-9 BUS VOLT +12 VDC AE-7 BUS VOLT +29 | NOTE 1: LIMITS AS
IN SODB | | | | ¥ , | | AE-8 BUS VOLT +15
VDC
AE-10 BUS VOLT +5
VDC | <u>.</u> | | | | | **
* | AE-11 BUS VOLT -12
VDC
AE-12 BUS VOLT -6 | | | | | N. | | AE-1 DSS ADC 0.25 V
AE-2 DSS ADC 4.75 V
(NOTE 1) | | | | 2 | | GIVE GO/NO-GO FOR HFE TURN-ON | GIVE GO/NO-GO FOR HFE
TURN-ON | | | | . 3 | INITIATE CMD 036 (EXP
5 OPER SEL) TO TURN
THE HEE ON | VERIFY CHANGE IN RES
PWR | ANNOTATE CMD ACTION
ON THE C/S ANALOG
RECORDER | | | | 4 | | INITIATE HFE HSP
FORMAT 2 | VERIFY STATUS OF HFE
HOUSEKEEPING
AHO1 +5 VDC
AHO2 -5 VDC
AHO3 15 VDC
AHO4 -15 VDC
AHO6 HTR LK
AHO7 HTR HK | NOTE 2: AHO6 AND
AHO7 SHOULD
READ OFF | | | 5 | | | VERIFY THAT EXPERI-
MENT IS IN MODE 2 AND
IN FULL SEQ | | | | | | | , je | | | | | | | | | | | Step
No. | ASE | SYSTEMS | DATA | Comments | |-------------|---|---|---|--| | 1 | | INITIATE HFE HSP
FORMAT 2 | | | | 2 | | | VERIFY MODE OF
EXPERIMENT AND HEATER
STEP | | | 3 | | DETERMINE THE NUMBER
OF TIMES CMD 152 WILL
HAVE TO BE SENT TO
OBTAIN THE PROPER
STEP (NOTE 1) | | | | 4 | INITIATE CMD 152 (HFE
HTR STEPS) AS MANY
TIMES AS REQUIRED TO
REACH THE DESIRED
STEP (NOTE 1) | VERIFY THE FIRST
COMMAND OF 152, THE
NEXT TO THE LAST
COMMAND OF 152, AND
THE LAST COMMAND OF
152 ON THE HSP | | NOTE 1: THE ORDER OF HEATER STEPS IS: 12 OFF 12 ON 14 OFF 14 ON 11 OFF 11 ON 13 OFF 13 ON 22 OFF 22 ON 24 OFF 24 ON 21 OFF 21 ON 23 OFF 23 ON 12 OFF 13 ON 12 OFF | | 5 | RETURN TO DESIRED
OPERATING MODE | VERIFY MODE CHANGE ON
HSP | VERIFY THE CHANGE IN
DATA INDICATING THAT
THE PROPER HEATER IS
FUNCTIONING | | | | | | | | | Step
No. | ASE | SYSTEMS | DATA | Comments | |-------------|---|---|--|----------| | 1 | | INITIATE HFE HSP
FORMAT | VERIFY OPERATING
STATE OF EXPERIMENT
AND REPORT TO ASE | | | 2 | INITIATE THE NECES-
SARY COMMANDS TO
REACH DESIRED
OPERATING STATE
(NOTE 1) | , | | | | 3 | | VERIFY THAT EXPERI-
MENT IS IN THE
PROPER OPERATING
STATE FROM HFE HSP
FORMAT | | · | ## NOTE 1 I. TO CHANGE MODES: MODE I - 135 MODE II - 136 MODE III - 140 AND 144 II. TO CHANGE PROBES: BOTH PROBES - 141 (FUL SEQ) PROBE I ONLY - 142 PROBE II ONLY - 143 III. TO CHANGE SUB-SEQUENCES IN MODE I AND MODE II: | FROM TO | АТН | ATL | тс | Т | |---------|-----|------------|------------|------------| | ATH | | 145 | 145 | 146 | | ATL | 144 | | 146
146 | 144
146 | | тс | 144 | 144
145 | | 144
146 | | Т | 144 | 144
145 | 145 | | ACH ALSEP CONSOLE HANDBOOK APOLLO 12, ALSEP 1 THROUGH APOLLO 17, ALSEP E MAY 15, 1971 FCD MSC NASA