APPENDIX A

AS-503 C' GUIDANCE PRESETTINGS FOR LAUNCH WINDOWS
20 THROUGH 27 DECEMBER 1968

This appendix gives the guidance presettings for December 1968. Table A-1 presents the launch date independent presettings. Tables A-2 through A-9 contain the launch date dependent presettings.

Accelerometer Processing Parameters

1
F_{2}
F_{4}
F_{4}
F_{4}^{\prime}
F_{5}^{\prime}

MDOT4A

MDOT4P

MDOT5
$\dot{M}_{6} \quad$ MDOT6
Program Symbol
F_{1}
$\mathrm{~F}_{2}$
$\mathrm{~F}_{3}$
$\mathrm{~F}_{4}$
$\mathrm{~F}_{4 \mathrm{~A}}$
$\mathrm{~F}_{4} \mathrm{AP}$
F_{5}
$\mathrm{~F}_{6}$

FR

MDOT1
MDOT2
MDOT3
MDOT4
$\dot{\mathrm{M}}_{4}^{\prime} \quad$ MDOT4P

Comments

Presetting

$35,148,897$.
5, 052, 268.5
457.5

873,480.1
873,480.1

$$
873,480.1
$$

S-IVB abort thrust after EMR
S-IVB second burn thrust before $900,495.03$ ER

S-IVB second burn thrust after 900, 495.03 EAR

911,663.02
Nominal S-IVB thrust at reignition

14,316. 19
S-II mass flow rates before EMR $1,221.1489$
S-II mass flow rate after EMR 950.4154
S-IVB first burn mass flow 208.7674 rates
S-IVB abort mass flow rate 215.037 before EMR
215.037

S-IVB abort mass flow rate 215.2241

S-IVB second burn mass flow rates before EMR
215.2241

$\dot{M}_{N R}$	MDOTNR	Nominal mass flow rate at reignition	2,781,733.
	MASS 1	Mass at lift-off	
			634,858.1
	MASS 2	Mass at start of S-	
	MASS3	Mass at start of S-IVB first burn	159,401.
$M_{\text {NR }}$	MNR	Nominal mass of $\mathrm{S}-\mathrm{IVB}$ at reignition	128,457.36
TS2S	AP1	Time from TB3 for first pass through S -II (M / F) smoothing filter. (Time from TB3 to $\mathrm{S}-\mathrm{II}$ 90\% thrust)	4.4
DELTIG	TS4BS 1	Time from TB4 for first pass through $\mathrm{S}-\mathrm{IVB}$ (M/F) smoothing filter	6.5
TSB4S*	TS4BS	Time from TB4A for first pass through $\mathrm{S}-\mathrm{IVB}$ (M/F) smoothing filter	15.1
TS2AP	GS3	Time from TB3 to change reasonableness test constants (RTCS)	4.4
T4BAP	S4IGNA	Time from TB4 to change RTCS	12.0
T4BRAP	S4IGTR	Time from TB4A to change RTCS	584.

| Boeing
 Symbol | Program
 Symbol | Comment | | Presetting |
| :--- | :--- | :--- | :--- | :--- |\quad Units

oeing ymbol	Program Symbol	Comment	Presetting
5_{3}	B0	Constant freeze time for engine out prior to t_{2}	60.0
${ }^{3} 11$	B11	Coefficients of polynomial to calculate delta freeze time in	$\begin{array}{r} -1.2 \\ 67.2 \end{array}$
B_{12}	B12	interval t_{2} to t_{4}	
B_{21}	B21	Coefficients of polynomial to calculate delta freeze time in	0.0 0.0
B_{22}	B22	interval of t_{4} to t_{5}	0.0
	TFAIL1	Times to partition S-IC engine	6.0
t		out freeze schedule	56.0
t_{4}	TFAIL2		-1.0
t_{5}	TFAIL 3		
t_{2}^{+}	TT2	Earliest time for CHIY freeze initiation for S-IC engine out	38.0
${ }^{1} 1$	TT1	Time from TB1 to start pre-IGM guidance	13.0
$\triangle \mathrm{XNO}$	GANTRY	Tower clearance altitude	138.0
F	TTC10	Coefficients for first segment	-7.1630411×100
F	TTC11	time tilt polynomial	1.7253733×10^{0}
F	TTC12		-1.5609715 $\times 10^{-1}$
F_{13}	TTC13		6.7969903×10^{-3}
F_{14}	TTC14		-9.8395575x10-5
F_{20}	TTC20	Coefficients for second segment	1.8767424×10^{1}
F_{21}	TTC21	time tilt polynomial	-1.7854092×100
F_{22}	TTC22		7.2670840×10^{-2}
F_{23}	TTC23		-9.6384562×10-4
F_{24}	TTC24		4.6459679×10^{-6}
F30	TTC30	Coefficients for third	9.6837640×10^{2}
F31	TTC31	segment time tilt polynomial	-4.4114144×10^{1}
F32	TTC32		7.5386128×10^{-1}
F_{33}	TTC33		-5.5607764×10-3
F34	TTC34		1.5154014×10^{-5}

	TTC40	Coefficients for fourth segment	9.3999818×10^{1}
810	TTC41	time tilt polynomial	-3.1154338×10^{0}
811	TTC42		5.1115549×10^{-2}
812	TTC43		$\begin{array}{r} -3.0934483 \times 10^{-4} \\ 6.5909332 \times 10^{-7} \end{array}$
113 814	TTC44		
$\mathbb{P l}$	TTSEG2	Time to use second time tilt segment coefficients	26.55
TP2	TTSEG3	Time to use third time tilt segment coefficients	70.55
TP3	TTSEG4	Time to use fourth time tilt segment coefficients	101.55
TAR	TAR	Nominal time tilt guidance arrest time	145.7

Referenced from Time base 1

Boeing Symbol	Program Symbol	Comment	Presetting
$\triangle \mathrm{T}_{\text {IGM }}$	GS4	Time	5.0
ART	ART	which guidance is arrested	
C_{0}^{\prime}	C0	Time to remain in artificial tau mode at $\mathrm{S}-\mathrm{II} / \mathrm{S}-\mathrm{IVB}$ staging	10.0
$\theta_{\text {T }}$		Desired terminal flight-path angle for first $S-$ IVB burn	0.0
$\Delta \mathrm{V}_{\text {DTI }}$	DVB	Thrust decay velocity bias for first $\mathrm{S}-\mathrm{IVB}$ burn	1.98215
ϵ_{2}	EPLN2	Time-to-go for CHI bar steering for first S-IVB burn	35.0
B IAS 1	IGB 1A1	Thrust change detection bias for S-II stage	1000.0
${ }^{\text {B }}$ 1	TB1	Time to remain in artificial tau mode calculations during S-II EMR shift	40.0
TSMC 1	TSMC	Time in TB3 to begin SMC	60.6
TSMC2	TSMC2	Time in TB4 to begin SMC	15.0
T_{1}	T1I	IGM phase 1 time-to-go	246.5
T_{2}	T2I	IGM phase 2 time-to-go	81.5
T_{3}^{\prime}	T3P	IGM phase 3 time-to-go	144.4419
T2	TAU2	Estimated time to deplete vehicle from S-II EMR	321.95309
T3	TAU3	Estimated time to deplete S-IVB mass	661.53577
${ }^{T} 3 \mathrm{~N}$	TAUN	Nominal T3 used in the S-TVB first-burn artificial tau mode	661.53577
${ }^{T}$ C	TCI	S-IVB first burn coast time	6.5

VT

XVI
IG2

MDOT2G

MDOT3G

Nominal time from GRR to start
 536.44

Nominal first S-IVB burn time
$\begin{array}{l}\text { Nominal time from GRR to start } \\ \text { of T4 }\end{array}$

Nominal first S-IVB burn time
$\begin{array}{l}\text { Nominal time from GRR to start } \\ \text { of T4 }\end{array}$

$\begin{array}{lll}\text { THSLPL } & \begin{array}{l}\text { Time-to-go at start of high } \\ \text { speed loop in firgt selig }\end{array} & 8.0\end{array}$ speed loop in first S-IVB burn

Velocity guard for first burn 300.0
high speed loop high speed loop 4169.1205 IGM

Exhaust velocity for phase $2 \quad 4237.6003$ IGM

Exhaust velocity for phase $3 \quad 4163.7846$ IGM

Time to force S-II EMR after 0.0 nominal

Terminal velocity for first 7793.0429 burn

Terminal radius for first burn 6563366.0
Time before nominal S-II EMR 0.0 to search for EMR shift

Average mass flow rate during 1218.3948 first stage of IGM
Average mass flow rate during 990.40009 second stage of IGM

Bias constant for terminal range 1.5 angle for S -IVB first burn

SMC gain for first boost

Program Symbol	Comment	Presetting
GS 1	Time to start IGM in TB6	584.0
EPLN2R	Time-to-go for CHI bar steering	30.0
IGBIA2	Thrust change detection bias	1000.0
T2IR	IGM phase 4 time-to-go	0.0
TAU2R	Time to deplete $\mathrm{S}-\mathrm{IVB}$ mass from S-IVB reignition	684.5038
TB2	Time to remain in artificial tau mode during $S-$ IVB EMR	1.0
THSLP2	Time-to-go at start of high speed loop	3.0
VGRD 1	Velocity guard for high speed loop	300.
VEX2R	Exhaust velocity for phase 4 IGM	4183.5690
VEX3R	Exhaust velocity for phase 5 IGM	4183.5690
PCOR	Time to force S-IVB EMR after nominal	0.0
EPLN3R	Constant time for selection of guidance option which freezes the terminal conditions	30.0
IG7	Time to search for $\mathrm{S}-$ IVB EMR shift	0.0
MDOT5G	Average mass flow rate during fourth stage of IGM	217.6286
MDOT6G	Average mass flow rate during fifth stage of IGM	217.6286
RovR	Bias constant for terminal range ang le	-0.4
SMCG3	SMC gain	0.05

S-II Early Staging IGM Presettings

Program Symbol

Comment
Conversion factor used in calculation of $T_{3 I}$

Guidance coast time
11.2
35.0 steering

Thrust change detection bias -0.001

Time to remain in artificial 1.0 tau

Nominal time from TBa at $\mathrm{S}-\mathrm{IVB}$ EMR

T3MIN	Minimum $\mathrm{T}_{3: \mathrm{I}}$	45.0
VEX3A	Exhaust velocity of S-IVB before EMR	4188.624
VEX3B	Exhaust velocity of S-IVB after EMR	4188.624
PCOA	Time after nominal S-IVB EMR to force staging of guidance equations	2.0
ROVS	Bias constant for terminal range angle	. 75
SMCG2	SMC gain	. 05
S2COV	Nominal S-II velocity at cutoff	6816.467
FIO	Coefficients of the parking oedt inclination polynomial	$\begin{array}{r} 32.55754 \\ -15.84615 \end{array}$
FI1	orbit inclination	11.64780 9.89097
FI3		-5.11143
FI4		0.0
FI5		0.0

		123.19350
GL0	Coefficients of the parking	$\mathbf{- 5 5 . 0 6 4 8 5}$
GL1	orbit descending node poly-	-35.26208
GL2	nomia1	26.01324
GL3		-1.47591
GL4		0.0
GL5		0.0

Miscellaneous Presettings

CKLAT
KSCLNG
KD
Cape Kennedy Latitude
28.608422
80.604133
$.1317642 \times 10^{-3}$

Orbital Navigation Vent Model

VTIM1	Segment constants for vent mode1	1800
VTIM2	4300.0	
VENT1A	Acceleration. constants for	.00129
VENT2A	vent mode1	.00062
VENT3A		.00043

H 20 Coefficients of the second segment of the launch azimuth polynomial
90.00694
17.56239
$-.23654$
$-.65216$
1.31788
0.0
0.0
0.0
0.0

$$
0.0
$$

H34

TLO

AZO

DVBRA

DVBRB

AZS

TPAO
TPA1
TPA2
TPA3
TPA4
TPA5
TPA6
TPA7
TPA8
TPA9
Not Applicable.

GMT at the opening of the launch window

Azimuth at the opening of the launch window

Thrust decay velocity bias (1st opportunity)

Thrust decay velocity bias (2nd opportunity)

Change in azimuth over launch window segment

Time since launch window

 opening (lst opportunity)46222.43
72.0
4.22
4.22
36.0
0.0
3360.905
7655.044
12404.73
16877.42
N/A*
\mid

DECEMBER 21, 1968

```
TPN10
TPA11'
TPA12
TPA13
TPA14
```

TPB0
TPB1
TPB2
TPB3
TPB4
TPB5
TPB6
TPB7
TPB8
TPB9
TPB10
TPB11
TPB12
TPB1 3
TPB14
C3M0
C3A1
C3A2
C3A 3
C3A 4
C3A5
C3A6
C3A7
C3A 8
C3A9
C3A10
C3A11
C3A12
C3A13
C3A14

0.0
sec
opening (2nd opportunity)
3360.905
7655.044
12404.73 16877.42 N/A

$-1.418676 \times 10^{6} \mathrm{~m}^{2} / \mathrm{sec}^{2}$
-1.407036×10^{6}
-1.401780×10^{6}
-1.403856×10^{6}
-1.412868×10^{6}
N/A

с380 C3 31 ctina C313 C384 C385 езт C3187 C3188 C318 C 3 HIO C7B11 C 31312 C3B13 C3184
cossal
cossal
cossa 2
cossa3 cossa4 coss 5
coss. 6 COSSA7 cossa 8 cossal cossilo cossall cossal2 COSSA 13 cossila

Twice the orbital energy $-1,426555 \times 10^{\circ}$ of the target ellipse (2nd opportunity)

$$
=1.414405 \times 106
$$

$$
\begin{aligned}
& -1,414405 \\
& -1,409265 \times 10^{0}
\end{aligned}
$$

$$
\begin{aligned}
& -1.409203 \times 10^{0} \\
& -1,412021 \times 10
\end{aligned}
$$

$$
\begin{aligned}
& =1.412021 \times 10 \\
& -1.421996 \times 10^{6}
\end{aligned}
$$ N/A

.9905273
.9900422
. 9899306
. 9901525
. 9907386 N/A
1
. 9857117
.9863396
.9864880
. 9862899
N/A
.9856995

Cosine of the true anomaly of the target vector (1st opportunity)
cossB6
cossB 7
COSSB8
C0ssB9
cossblo
cossb11
cossbla
cossbl 3
cossbla

C0ssb0
cossB1
cossb2
cossib 3
cossp4
cossib

Cosine of the true anomaly of the target vector (2nd opportunity)

343
RASBO
RASB1
RASB2
RASB3
RASB4
RASB5
RASB6
RASB7
RASB8
RASB9
RASB10
RASB11
RASB12
RASB13
RASB14
decao
DECA1
DECA2
DECA 3
DECA4
DECA5
decas
DECA7
DECA8
DECA9
decalo
DECAl1
DECA12
DECA13
DECA14

DECB0	Declination of the
DECB1	target vector (2nd
DECB2	opportunity)
DECB3	
DECB4	
DECB5	
DECB6	
DECB7	
DECB8	
DECB9	
DECB10	
DECB11	
DECB12.	
DECB13	
DECB14	

Right ascension of the target vector (2nd opportunity)
160.159
160.718
161.351
162.021
162.618
N/A
|
160.159
160.718
161.351
162.021
162.618 N/A

10.8942
10.6265
10.3197
9.98609
9.7042

N/A

9.4362
9.4625
9.2217
8.7744
8.1619

N/A

344

Comments

Angle between vernal equinox and launch meridian at the time of launch window opening (used for both opportunities)

β_{A}	BETAA	Angle between \underline{S} and the radius vector at chilldown initiation (1st opportunity)	56.497	deg
β_{B}	BETAB	Angle between S and the radius vector at chil1down initiation (2nd opportunity)	56.808	deg
$\alpha_{T S}^{*}$	ALFTSA	Nominal angle between S and TP vectors at chil1down initiation (1st opportunity)	15.015	deg
α_{TS}^{*}	ALFTSB	Nominal angle between \underline{S} and TP vectors at chil1down initiation (2nd opportunity)	15.997	deg
$\mathrm{FT}\left(\mathrm{A}_{2}\right)$	TSTA	Time from T 5 to begin SDOT•TP test (lst opportunity)	8002.341	sec
$\mathrm{FT}\left(\mathrm{A}_{\mathrm{Z}}\right)$	TSTB	Time from T 5 to begin SDOT.TP test (2nd opportunity)	13279.21	sec
γ	FA	True anomaly at target orbit injection (1st opportunity)	14.622	deg
γ	FB	True anomaly at target orbit injection (2nd opportunity)	13.706	eg

TAUJRA Time to deplete S-TVB mass TAUJRB Time to deplete S-IVB mass
from S-IVB BMR (2nd opportunfty)

RNA
Radfus at nomfnal S-IVB refgnition (lst opportunity)

${ }^{12} \mathrm{~N}$	RNB	Radius at nominal S-IVB refgnition (2nd opportunity)		
T ${ }^{\prime}$	TJPRA	IGM phase 5 time-to-go (1st opportunity)	310.8243	sec
T_{3}	T3PRB	TGM phase 5 time-to-go (2nd opportunity)	308.6854	sec

