

MOON SURFACE TEMMPRATURE $-72^{\circ} \mathrm{F}$ to $+214^{\circ} \mathrm{F}$ (sun side), $-238^{\circ} \mathrm{F}$ (dark side)
$\mu_{\text {SUN }}=0.132715445 \times 10^{21} \mathrm{~m}^{3} / \mathrm{sec}^{2}$

1 meter	$=3.2808 \mathrm{ft}$	1 meru	$=7.292115 \times 10^{-8} \mathrm{rad} / \mathrm{sec}$
	$=5.3961 \times 10^{-4} \mathrm{nmi}$		$=4.178 \times 10^{-6} \mathrm{deg} / \mathrm{sec}$
	$=6.2137 \times 10^{-4} \mathrm{~s} \mathrm{mi}$		$=2.507 \times 10^{-4} \mathrm{arc}-\mathrm{min} / \mathrm{sec}$
1 arc-second	$=4.8481 \times 10^{-6} \mathrm{rad}$		$=0.01504 \mathrm{arc}-\mathrm{sec} / \mathrm{sec}$
	$=2.7778 \times 10^{-4} \mathrm{deg}$	$1 \mathrm{~cm} / \mathrm{sec}^{2}$	$=3.281 \times 10^{-2} \mathrm{ft} / \mathrm{sec}^{2}$
			$1.0197 \times 10^{-3} \mathrm{~g}$

GUIDANCE AND NAVIGATION SUMMARY

CM SOFTWARE
LM SOFTWARE
ASPO 45 CRT DISPLAYS
LAUNCH AND BURN SCHEDULE BURN PERTURBATIONS PIPA
COARSE ALIGN - FINE ALIGN OPTICS
DIGITAL AUTOPILOT

LM CONFIGURATION

CM SOFTWARE

COLOSSUS 2A
(REV 055 OF COMANCHE)
CM DSKY
COMPUTER PROGRAMS COMPUTER ROUTINES

VERB CODES
NOUN CODES
ALARM CODES OPTION CODES
CHECKLIST CODES
FLAGWORD BIT ASSIGNMENTS IMODES30 AND IMODES33 OPTMODES RCSFLAGS DAPDATR1 AND DAPDATR2
CHANNEL BIT ASSIGNMENTS COMPUTER PROGRAM DESCRIPTION

UPLINK ACTY Light

1. Is energized by the first character of a digital UPLINK message received by the AGC.
2. Is energized during the Rendezvous Navigation program (P20) when the Tracking Attitude routine (R61) detects that a gimbal angle change of greater than 10 degrees is required to align the CSM to the desired attitude and that the astronaut has disabled automatic tracking of the LM by taking the rotational hand controller out of detent while the SC control switch is at CMC and the thrust controller is not fully clockwise.
NO ATT Light - is energized when the AGC is in the Operate mode and there is no inertial reference; that is, the ISS is off, caged, or in the Coarse Align mode.
STBY Light - is energized when the AGC is in the Standby mode and deenergized when the AGC is in the Operate mode.
KEY REL Light
3. Energized when:
a. An internal display comes up while astronaut has the DSKY.
b. An astronaut keystroke is made when an internal flashing display is currently on the DSKY.
c. The astronaut makes a keystroke on top of (his own) Monitor Verb Display.
4. Deenergized when:
a. Astronaut relinquishes DSKY by hitting KEY REL button.
b. Astronaut terminates his current sequence normally, for example,
(1) With final ENTR of a load sequence.
(2) The ENTR of a response to a flashing display.
(3) The ENTR of an extended verb request.

OPR ERR Light - is energized when the DSKY operator performs an improper sequence of key depressions.
TEMP Light - The AGC receives a signal from the IMU when the stable member temperature is in the range $126.3^{\circ} \mathrm{F}$ to $134.3^{\circ} \mathrm{F}$. In the absence of this signal, the TEMP light on the DSKY is actuated.
GIMBAL LOCK Light - is energized when the middle gimbal angle exceeds ± 70 degrees from its zero position. When the middle gimbal angle exceeds ± 85 degrees from its zero position, the AGC automatically commands the Coarse Align mode in the ISS to prevent gimbal oscillation. The NO ATT light will then be energized.
PROG Light - The program alarm actuates the PROG light on the DSKY. A program alarm is generated under a variety of situations.
RESTART Light - In the event of a RESTART during operation of a program, a latch is set in the AGC which maintains the RESTART light on the DSKY until the latch is manually reset by pressing RSET.

TRACKER Light

1. The presence of an Optics CDU Fail signal will cause the TRACKER light to be energized.
2. In addition, the TRACKER light is energized during the Rendezvous Navigation program (P20) when the Rendezvous Data Processing routine (R22) reads VHF range data via the VHF DATA link but the DATA GOOD discrete is missing, or the UPDATE flag becomes reset.
3. It is deenergized if the DATA GOOD discrete is present after reading VHF range data and by keying in V88E (shuts off the VHF range data processing section of R22).
COMP ACTY Light - is energized when the AGC is occupied with an internal sequence.
Display Panel - consists of 24 electroluminescent sections. Each section is capable of displaying any decimal character or remaining blank, except the three sign sections. These display a plus sign, a minus sign, or a blank. The numerical sections are grouped to form three data display registers, each of five numerical characters; and three control display registers, each of two numerical characters. The data display registers are referred to as R1, R2, R3. The control display registers are known as VERB, NOUN, and PROGRAM.

Keyboard -contains the following buttons:

1. VERB - pushing this button indicates that the next two numerical characters keyed in are to be interpreted as the Verb Code.
2. NOUN - pushing this button indicates that the next two numerical characters keyed in are to be interpreted as the Noun Code.
3. + and - -are sign keys used for sign convention and to identify decimal data.
4. 0-9-are numerical keys.
5. CLR - Used during a data loading sequence to clear or blank the data display register (R1, R2, R3) being used. It allows the operator to reload the data word.
6. PRO - This pushbutton performs two functions:
a. When the AGC is in a Standby mode, pressing this button will put the AGC in the Operate mode, turn off the STBY light, and automatically select Routine 00 in the AGC.
b1. When the AGC is in the Operate mode but Program 06 is not selected, pressing the button will provide the "Proceed" function.
b2. When the AGC is in the Operate mode and Program 06 is selected, pressing the button will put the AGC in the Standby mode and turn on the STBY light.
7. ENTR - is used in three ways:
a. To direct the AGC to execute the Verb/Noun code now appearing on the Verb/Noun lights.
b. To direct the AGC to accept a data word just loaded.
c. In response to a "please perform" request.
8. RSET - turns off alarm conditions on the DSKY providing the alarm condition has been corrected.

LIST OF PROGRAMS FOR PROGRAM COLOSSUS 2A

PHASE	PROGRAM	PROGRAM TITLE
Pre-	00	CMC Idling
launch	01	Prelaunch or Service-Initialization
and	02	Prelaunch or Service-Gyrocompassing
Service	03 06	Prelaunch or Service-Optical Verification of Gyrocompassing CMC Power Down
	07	System Test
Boost	11	Earth Orbit Insertion Monitor
	17	TPI Search
Coast	20	Rendezvous Navigation
	21	Ground Track Determination
	22	Orbital Navigation
	23	Cislunar Midcourse Navigation
	27	CMC Update
Pre-	30	External Delta V
thrusting	31	Lambert Aim Point Guidance
	32	CSM Coelliptic Sequence Initiation (CSI)
	33	CSM Constant Delta Altitude (CDH)
	34	CSM Transfer Phase Initiation (TP) Targeting
	35	CSM Transfer Phase Midcourse (TPM) Targeting
	37	Return to Earth
	38	CSM Stable Orbit Rendezvous (SOR) Targeting CSM Stable Orbit Midcourse (SOM) Targeting
Thrusting	40	SPS
	41	RCS
	47	Thrust Monitor
Align-	51	IMU Orientation Determination
ment	52	IMU Realign
	$\begin{aligned} & 53 \\ & 54 \end{aligned}$	Backup IMU Orientation Determination Backup IMU Realign
Entry	61	Entry-Preparation
	62	Entry-CM/SM Separation and Preentry Maneuver
	63	Entry-Initialization
	64	Entry-Post 0.05G
	65	Entry-Upcontrol
	66	Entry-Ballistic
67	67	Entry-Final Phase
		LM Coelliptic Sequence Initiation (CSI)
thrusting	73	LM Constant Delta Altitude (CDH)
Other	74	LM Transfer Phase Initiation (TPI) Targeting
Vehicle	75	LM Transfer Phase (Midcourse) Targeting
	76	Target Delta V V
	77	LM TPI Search
	78	LM Stable Orbit Rendezvous (SOR) Targeting
	79	LM Stable Orbit Midcourse (SOM) Targeting

ROUTINE TITLE

Final Automatic Request Terminate IMU Status Check
Digital Autopilot Data Load
S-Band Antenna
Rendezvous Tracking Sighting Mark
Rendezvous Tracking Data Processing
Backup Rendezvous Tracking Sighting Mark
Orbit Parameter Display
Rendezvous Parameter Display Routine No. 1
CMC/LGC Clock Synchronization
Rendezvous Parameter Display Routine No. 2
Rendezvous Out-of-Plane Display Routine
SPS Thrust Fail
State Vector Integration (MID to AVE)
Coarse Align
Automatic Optics Positioning
Sighting Mark
Sighting Mark Display
Gyro Torquing
Alternate LOS Sighting Mark
Optics Calibration
Optics Calibration
Attitude Maneuver
Attitude Maneuver
Tracking Attitude
Crew-Defined Maneuver
Rendezvous Final Attitude

00	Not in use
01	Display Octal Component 1 in R1
02	Display Octal Component 2 in R1
03	Display Octal Component 3 in R1
04	Display Octal Components 1, 2 in R1, R2
05	Display Octal Components 1, 2, 3 in R1, R2, R3
06	Display decimal in R1 or R1, R2 or R1, R2, R3
07	Display DP decimal in R1, R2 (test only)
08	Spare
09	Spare
10	Spare
11	Monitor Octal Component 1 in R1
12	Monitor Octal Component 2 in R1
13	Monitor Octal Component 3 in R1
14	Monitor Octal Components 1, 2 in R1, R2
15	Monitor Octal Components 1, 2, 3 in R1, R2, R3
16	Monitor decimal in R1 or R1, R2 or R1, R2, R3
17	Monitor DP decimal in R1, R2 (test only)
18	Spare
19	Spare
20	Spare
21	Load Component 1 into R1
22	Load Component 2 into R2
23	Load Component 3 into R3
24	Load Components 1, 2 into R1, R2
25	Load Components 1, 2, 3 into R1, R2, R3
26	Spare
27	Display Fixed Memory
28	Spare
29	Spare
30	Request EXECUTIVE
31	Request WAITLIST

EXTENDED VERBS

```
Zero CDU's (N20 only)
41 Coarse align CDU's (specify N20 or N91)
Display DAP following attitude errors
Recycle program
Proceed without DSKY inputs
Terminate function
Test lights
Request FRESH START
Change program (major mode)
Spare
Spare
Fine align IMU
Load IMU attitude error needles
Set Surface flag
Reset Surface flag
Establish G \& N autopilot control
Move LM state vector into CM state vector
Request DAP Data Load routine (R03)
Start automatic attitude maneuver
Please perform
Please mark
Mark on offset landing site
Please perform COAS mark
Request Rendezvous Backup Sighting Mark routine (R23)
Increment CGC time (decimal)
Terminate tracking (P20 and P25)
Request Rendezvous Sighting Mark routine (R21)
Reset Stick flag
Please calibrate
Display total attitude errors with respect to Noun 22
```

63 Display total astronaut attitude error with respect to Noun 22Request S-Band Antenna routine (R05)65Optical verification of prelaunch alignment66Vehicles are attached. Move this vehicle state vector to other vehicle.67
SpareCSM stroke test on69Cause RESTART70Update liftoff time (P27)71
Start CGC update; block address (P27)Start CGC update; single address (P27)
Start CGC update; CGC time (P27)
Initialize erasable dump via DOWNLINKBackup liftoffSet Preferred Attitude flagReset Preferred Attitude flag
Update prelaunch azimuthSpareEnable LM state vector update
Enable CSM state vector updat
Request Orbit Parameter display (R30)
Request Rendezvous Parameter display (R31)
Spare
Request Rendezvous Parameter Display No. 2 (R34)
Reject Rendezvous Backup Sighting MarkSet VHF Range flag
Reset VHF Range flag
Request Rendezvous Final Attitude maneuver (R63)
Request Out of Plane Rendezvous display (R36)Display BANKSUM
Start IMU performance tests (ground use)
Enable W matrix initializationPerform Cislunar Attitude maneuverSpare
96 Interrupt integration and go to P00

Please perform engine-fail procedure (R40)

98 Spare99 Please Enable Engine Ignition

00 Not in use
01 Specify address (fractional)

02 Specify address (whole)

03 Specify address (degree)

04 Spare
05 Angular error/difference
06 Option code ID
Option code
.$X X X X X$ fractional
. $X X X X X$ fractional . XXXXX fractional
$X X X X X$. integer
$X X X X X$. integer $X X X X X$. integer
$X X X . X X$ deg
$X \times X . \times \times$ deg
XXX.XX deg
XXX.XXdeg

07 FLAGWORD operator

ECADR	Octal
BITID	Octal
Action	Octal

08 Alarm data

ADRES	Octal
BBANK	Octal
ERCOUNT	Octal

09 Alarm codes

First	Octal
Second	Octal
Last	Octal

10 Channel to be specified
Octal
11 TIG of CSI

Option code (extended verbs only) $000 \times X . \min$ OXX.XX s

13 TIG of CDH

14 Spare
15 Increment address
Time of event (used by extended verbs only)
Octal
Octal
$00 \times \times \times \mathrm{h}$ $000 \times \times . \min$ $0 \times X . \times X$ s

Octal
$00 \times \times \times$. h $000 \times X$. min OXX.XX s

17 Astronaut total attitude

LIST OF NOUNS USED IN PROGRAM COLOSSUS 2A

Desired automaneuver FDAI ball angles

Bypass Attitude Trim maneuver

Present ICDU angles

PIPA's

Desired ICDU angles

Spare
Delta time for LGC clock

CHECKLIST (used with V50)
PRIO/DELAY, ADRES, BBCON

Self-test on/off switch
Spare
XSM launch azimuth
Target codes

Time of landing site

Time from perigee

Time of ignition

Time of event

Time from event

Time of CGC clock

R	XXX.XX deg
P	XXX.XX deg
Y	XXX.XX deg
R	XXX. XX deg
P	XXX.XX deg
Y	XXX. XX deg
OG	XXX.XX deg
IG	XXX.XX deg
MG	XXX.XX deg
X	XXXXX. pulses
Y	XXXXX. pulses
Z	XXXXX. pulses
OG	XXX.XX deg
IG	XXX.XX deg
MG	XXX.XX deg

00xxX. h 000XX. min 0XX.XX s

XXXXX.
Octal
Octal
Octal
$X X X X X$.
XXX.XX deg

XXXXX.
$x \times x \times x$.
XXXXX .
$00 \times x \times$. $000 \times X$. min 0XX.XX s

00XXX. h 000XX. min OXX.XX s

00XXX. h $000 \times \mathrm{X}$. min 0XX.XX s

00XXX. h
000XX. ${ }^{\text {min }}$
OXX.XX s
00XXX.h $000 \times \times$. min 0XX.XX s

00XXX. h $000 \times x$. min 0XX.XX s

37	Time of ignition (TPI)	$\begin{aligned} & 00 \times x \times . \mathrm{h} \\ & 000 \times \mathrm{x} . \min \\ & 0 \times X . \mathrm{XX} \mathrm{~s} \end{aligned}$
38	Time of state being integrated	$\begin{aligned} & 00 \times X X . \mathrm{h} \\ & 000 \times X \cdot \min \\ & 0 X X . X X \mathrm{~s} \end{aligned}$
39	Delta time for transfer	$\begin{aligned} & 00 \times \times X \cdot \mathrm{~h} \\ & 000 \times X \cdot \min \\ & 0 \times X . X X \mathrm{~s} \end{aligned}$
40	Time from ignition/cutoff VG Delta V (accumulated)	$\begin{aligned} & \times \times b \times \times \mathrm{min} / \mathrm{s} \\ & \times \times \times \times . \times \mathrm{ft} / \mathrm{s} \\ & \times \times \times \times . \times \mathrm{ft} / \mathrm{s} \end{aligned}$
41	Target	
	Azimuth Elevation	$\begin{aligned} & X X X . X X \operatorname{deg} \\ & X X . X X X \operatorname{deg} \end{aligned}$
42	Apocenter altitude Pericenter altitude Delta V (required)	$\begin{aligned} & X \times X X . X \mathrm{nmi} \\ & X \times X X . X \mathrm{nmi} \\ & X X X X . X \mathrm{ft} / \mathrm{s} \end{aligned}$
43	Latitude Longitude Altitude	$\begin{aligned} & X X X . X X \operatorname{deg} \text { (+ north } \\ & \times \times X . \times \times \operatorname{deg} \text { (+ east) } \\ & \text { XXXX.X nmi } \end{aligned}$
44	Apocenter altitude Pericenter altitude TFF	XXXX.X nmi XXXX. Xnmi $X X b \times X \mathrm{~min} / \mathrm{s}$
45	Marks (VHF/optics) Time from ignition of next burn Middle gimbal angle	$X \times \mathrm{b} \times \mathrm{X}$ marks $X \times b \times \times \mathrm{min} / \mathrm{s}$ XXX.XX deg
46	DAP configuration	Octal Octal
47	CSM weight LM weight	$\begin{aligned} & X \times X \times X . \text { Ibs } \\ & \times X X \times X . \mathrm{lbs} \end{aligned}$
48	Gimbal pitch trim Gimbal roll trim	$\begin{aligned} & X X X . X X \operatorname{deg} \\ & X X X . X X \operatorname{deg} \end{aligned}$
49	Delta R Delta V VHF or optics code	$\begin{aligned} & \text { XXXX.X } \mathrm{nmi} \\ & \times X X X \times X \mathrm{ft} / \mathrm{s} \\ & \text { XXXXX. } \end{aligned}$
50	Splash error Perigee TFF	$X X X X . X n m i$ XXXX.X nmi $X X b \times X \mathrm{~min} / \mathrm{s}$
51	S-band antenna angles	
	Pitch (Alpha) Yaw (Beta)	$\begin{aligned} & X X X . X X \operatorname{deg} \\ & X X X . X X \operatorname{deg} \end{aligned}$
52	Central angle of active vehicle	XXX. XX deg
53	Range Range rate Phi	$\begin{aligned} & \times \times \times \times \times \mathrm{nmi} \\ & \times \times \times \times \times \mathrm{ft} / \mathrm{s} \\ & \times \times X . \times \times \mathrm{deg} \end{aligned}$

55 Number of apsidal crossings (N)
Elevation angle (E)
Central angle of passive vehicle
Reentry angle
Delta V
Delta R
58
Delta V TPI
Delta V TPF

60 GMAX
VPRED
GAMMA EI

Longitude
Heads up/down
62 Inertial velocity magnitude Altitude rate
Altitude above pad radius
63 Range from EMS altitude to splash Predicted inertial velocity Time from EMS altitude

Drag acceleration
Inertial velocity Range to splash
led CGC time
(fetched in interrupt)

66 Commanded bank angle
Crossrange error
Downrange error
67 Range to target
Present latitude
Present longitude
68 Commanded bank angle
Inertial velocity
Altitude rate
69 Commanded bank angle
Drag level
Exit velocity
$X X X . X X n m i$
$X X X X . X \mathrm{ft} / \mathrm{s}$
XXX.XX deg

0000x.

XXX. $\times \times$ deg
XXX.XX deg
XXX.XX deg XXXXX.ft/s

XXXX.X nmi
XXXX.X nmi
XXXX. Xft /s XXXX. $\mathrm{Xft} / \mathrm{s}$
$X X X X . \times \mathrm{ft} / \mathrm{s}$
XXXX. $\times \mathrm{ft} / \mathrm{s}$
XXXX. $X \mathrm{ft} / \mathrm{s}$
XXX.XX g
$X X X X X$. ft/s
XXX.XX deg
$\times \times X . \times \times \operatorname{deg}$ (+ north)
XXX.XX deg (+ east)
$+/-00001$
$X X X X X . \mathrm{ft} / \mathrm{s}$
XXXXX.ft/s
XXXX.X nmi
XXXX.X nmi
$X X X X X . \mathrm{ft} / \mathrm{s}$ $X \times b \times \times \mathrm{min} / \mathrm{s}$
XXX.XX 9

XXXXX. ft/s
XXXX.X nmi (+ is overshoot)
$00 \times X \times \mathrm{h}$
$000 \times x$. min 0XX.XX s
$X X X . X X$ deg
XXXX. \times nmi (+ south)
XXXX.X nmi (+ overshoot)
XXXX.X nmi (+ overshoot)
$X X X . X X \operatorname{deg}(+$ north $)$
XXX.XX deg (+ east)
XXX.XX deg

XXXXX. ft/s
$X X X X X . f t / s$
XXX.XX deg
XXX.XXg

XXXXX.ft/s

LIST OF NOUNS USED IN PROGRAM COLOSSUS 2A

Landmark latitude
Landmark longitude/2 Landmark altitude

Rendezvous out of plane parameters

Y
 Y dot
 PSI

Optics angles
Shaft
Trunnion
New optics angles
Shaft
Trunnion
Delta gyro angles

Mark data
Shaft angle
Trunnion angle
Preferred attitude gimbal angles
$+X$ axis attitude gimbal angles

System test inputs

System test results and input

RMS in position
RMS in velocity
RMS option
XX.XXX deg (+ north) $X X . X X X \operatorname{deg}(+$ east) XXX.XX nmi
XXX.XX nmi
$X X X X . X \mathrm{ft} / \mathrm{s}$ XXX.XX deg
XXX.XX deg XX.XXX deg
XXX.XX deg
$X X . X X X$ deg
$X \quad X X . X X X$ deg
$Y \quad X X . X X X$ deg
$Z \quad X X . X X X$ deg
XXX.XX deg
$X X . X X X$ deg
$R \quad X X X . X X$ deg
P $\quad X X X . X X \operatorname{deg}$
XXX.XX deg
$X X X . X X$ deg
$R \quad X \times X . X \times \operatorname{deg}$
$P \quad X X X . X X \operatorname{deg}$
XXX.XX deg
$x \times x \times x$
$X X X X X$
$X X X X X$.
$X X X X X$.
$X X X X X$
$X X X X X$
$X X X X X . f t$
XXXX.X ft/s
XXXXX.

LIST OF ALARM CODES USED WITH V05 N09 FOR PROGRAM COLOSSUS 2A

CODE	PURPOSE	SET BY
00110	No mark since last mark reject	SXTMARK
00112	Mark not being accepted	SXTMARK
00113	No inbits	SXTMARK
00114	Mark made but not desired	SXTMARK
00115	Optics torque request with switch not at CMC	Extended verb optics CDU
00116	Optics switch altered before 15 -second ZERO time elapsed	T4RUPT
00117	Optics torque request with optics not available	Extended verb optics CDU
00120	Optics torque request with optics not ZEROED	T4RUPT
00121	CDU's no good at time of mark	SXTMARK
00122	Marking not called for	SXTMARK
00124	P17 TPI search-no safe pericenter here	TPI search
00205	Bad PIPA reading	SERVICER
00206	Zero encode not allowed with coarse align + gimbal lock	IMU mode switch
00207	ISS turn-on request not present for 90 seconds	T4RUPT
00210	IMU not operating	IMU mode switch, IMU-2 R02, P51
00211	Coarse align error-drive >2 degrees	IMU mode switch
00212	PIPA fail but PIPA is not being used	IMU mode switch, T4RUP ${ }^{-}$
00213	IMU not operating with turn-on request	T4RUPT
00214	Program using IMU when turned off	T4RUPT
00215	Preferred orientation selected but not specified	P52, P54
00217	Bad return from Stall routines	CURTAINS
00220	IMU not aligned (no REFSMMAT)	R02, P51
00401	Desired gimbal angles yield Gimbal Lock	Fine Align, IMU-2
00404	Target out of view (trunnion angle >90 degrees)	R52
00405	Two stars not available	P52, P54
00406	Rendezvous navigation not operating	R21, R23
00407	Auto optics request (trunnion angle > 50 degrees)	R52
00421	W-Matrix overflow	INTEGRV
00430	Integration abort due to subsurface state vector	All calls to integration
00600	Imaginary roots on first interation	P32, P72

LIST OF ALARM CODES USED WITH V05 N09 FOR PROGRAM COLOSSUS 2A

CODE	PURPOSE	SET BY
00601	Perigee altitude after CSI < 84 nmi earth orbit, 35,000 feet moon orbit	P32,P72
00602	Perigee altitude after $\mathrm{CDH}<84 \mathrm{nmi}$ earth orbit, 35,000 feet moon orbit	P32, P72
00603	CSI to CDH time <10 minutes	P32, P33, P72, P73
00604	CDH to TPI time <10 minutes	P32, P72
00605	Number of iterations exceeds loop maximum	P32, P37, P72
00606	DV exceeds maximum	P32, P72
00607	P* No solution from Time-Theta or Time-Radius	TIMETHET, TIMERAD
00610	P^{*} Lambda less than unity	P37
00611	No TIG for given elevation angle	P34, P74
00612	State vector in wrong sphere of influence	P37
00613	Reentry angle out of limits	P37
00777	PIPA fail caused ISS warning	T4RUPT
01102	CMC self-test error	SELF-CHECK
01103	P* Unused CCS branch executed	ABORT
01104	B* Delay routine busy	EXECUTIVE
01105	Downlink too fast	T4RUPT
01106	Uplink too fast	T4RUPT
01107	Phase table failure; assume erasable memory is destroyed	RESTART
01201	B* Executive overflow-no VAC areas available	EXECUTIVE
01202	B^{*} Executive overflow-no core sets available	EXECUTIVE
01203	B* WAITLIST overflow-too many tasks	WAITLIST
01204	P* Negative or zero WAITLIST call	WAITLIST
01206	Second job attempts to go to sleep via Keyboard and Display program	PINBALL
01207	B^{*} No VAC area for marks	SXTMARK
01210	P* Two programs using device at same time	IMU Mode Switch
01211	B* Illegal interrupt of Extended Verb	SXTMARK
01301	ARCSIN-ARCCOS argument too large	INTERPRETER
01302	P^{*} SQRT called with negative argument	INTERPRETER
01407	VG increasing	S40.8
01426	IMU unsatisfactory	P61, P62

LIST OF ALARM CODES USED WITTH V05 N09 FOR PROGRAM COLOSSUS 2A			
CODE		PURPOSE	SET BY
01427		IMU reversed	P61, P62
01501		Keyboard and Display alarm during internal use (NVSUB)	PINBALL
01502	P*	Illegal flashing display	GOPLAY
01520		V37 request not permitted at this time	V37
01521	P*	P01, P07 illegally selected	P01, P07
01600		Overflow in Drift Test	Optical Prealignment Calibration
01601		Bad IMU torque	Optical Prealignment Calibration
01602		Bad optics during verification	Optical Alignment Calibration (CSM)
01703		Insufficient time for integration, TIG was slipped	R41
03777		ICDU fail caused the ISS warning	T4RUPT
04777		ICDU, PIPA fails caused the ISS warning	T4RUPT
07777		IMU fail caused the ISS warning	T4RUPT
10777		IMU, PIPA fails caused the ISS warning	T4RUPT
13777		IMU, ICDU fails caused the ISS warning	T4RUPT
14777		IMU, ICDU, PIPA fails caused the ISS warning	T4RUPT
*Indicates abort type. All others are nonabortive.			
BIndica	s	ilout type abort.	

Note: For V05 N09 Displays:
R1-XXXXX (first alarm to occur after last reset).
R2-XXXXX (second alarm to occur after last reset).
R3-XXXXX (most recent alarm).

LIST OF OPTION CODES USED WITH V04 N06
FOR PROGRAM COLOSSUS 2A
The specified option codes will be displayed in R1 in conjunction with Flashing V04 N06 to request the astronaut to load into R2 the option he desires.)

CODE

00001

00002

00003
00005
00007

Perform SPS gimbal trim

Notes:

PURPOSE

Specify IMU orientation

Specify vehicle

Specify tracking attitude
Specify SOR phase
Specify propulsion system

ACTION TO BE EFFECTED
Perform coarse alignment
Key in fine alignment option
Perform celestial body acquisition
Key in Terminate Mark sequence
Switch CM/SM separation to UP
Switch AGC power down
Perform GNCS automatic maneuver

INPUT FOR R2

1 = preferred, 2 = nominal, 3 = REFSMMAT, 4 = landing site
$1=$ this vehicle, 2 = other vehicle
$1=$ preferred, $2=+X$-axis
1 = first, 2 = second
1 = SPS, 2 = RCS

PROGRAM(S

P21, R30

R63
P38
P37

LIST OF CHECKLIST REFERENCE CODES USED WITH V50 N25 FOR PROGRAM COLOSSUS 2A

Switch-denotes change position of a console switch
Perform-denotes start or end of a task
Key In-denotes key-in of data through the DSKY

FLAGWORD BIT ASSIGNMENTS (ALPHABETICAL)
FOR COLOSSUS 2A

ADVTRK	FW8	B10	GAMDIFSW*	FW6	B11
AMOONFLG	FWO	B2	GLOKFAIL	FW3	B14
APSESW	FW8	B5	GLOKFBIT	FW3	B14
ASTENFLAG*	FW7	B12	GONEBY	FW7	B8
ATTCHFLG*	FW7	B2	GONEPAST	FW6	B10
AVEGBIT	FW1	B1	GRRBKBIT	FW5	B5
AVEGFLAG	FW1	B1	GRRBKFLG	FW5	B5
AVEMIDSW	FW9	B1	GUESSW	FW1	B2
AVFLAG	FW2	B5	GYMDIFSW*	FW6	B1
CALCMAN2	FW2	B2	HIND	FW6	B6
CMDAPARM*	FW6	B12	IDLEFAIL	FW1	B6
CMOONFLG	FW8	B12	IGNFLAG*	FW7	B13
CM/DSTBY	FW6	B2	IMPULSW	FW2	B9
COGAFLAG	FW8	B4	IMUSE	FWO	B8
COMPUTER	FW5	B8	IMUSEFLG	FWO	B8
CPHIFLAG	FWO	B15	INCORFLG	FW5	B11
CULTFLAG	FW3	B7	INFINFLG	FW8	B7
D6OR9FLG	FW3	B2	INRLSW	FW6	B5
DAPBIT1	FW6	B15	INTFLBIT	FW10	B14
DAPBIT2	FW6	B14	INTYPFLG	FW3	B4
DIMOFLAG	FW3	B1	ITSWICH	FW7	B14
DMENFLG	FW5	B9	JSWITCH	FW0	B14
DRIFTFLG	FW2	B15	KFLAG	FWO	B1
DSKYFLAG*	FW5	B15	KNOWNFLG	FW6	B8
EGSW	FW6	B8	LATSW	FW6	B4
ENG2FLAG	FW1	B11	LMOONFLG	FW8	B11
ENGONBIT	FW5	B7	LUNAFLAG	FW3	B12
ENTRYDSP	FW6	B13	MAXDBBIT	FW9	B12
ERADFLAG	FW1	B13	MAXDBFLG	FW9	B12
ETPIFLAG	FW2	B7	MGLVFLAG	FW5	B2
FINALFLG	FW2	B6	MID1FLAG	FW9	B3
FIRSTFLG	FW2	B7	MIDAVFLG	FW9	B2
FREEFLAG	FWO	B3	MIDFLAG	FWO	B13
F2RTE	FW0	B5	MKOVFLAG*	FW4	B3

FLAGWORD BIT ASSIGNMENTS (ALPHABETICAL)
FOR COLOSSUS 2A

MOONFLAG	FWO	B12	P22MKFLG	FW3	B11
MRKIDFLG*	FW4	B15	P39/79SW	FW8	B9
MRKNVFLG	FW4	B9	QUITFLAG	FW9	B5
MRUPTFLG*	FW4	B5	REFSMFLG	FW3	B13
MWAITFLG*	FW4	B11	REINTBIT	FW10	B7
NEEDLFLG	FWO	B9	REINTFLG	FW10	B7
NEWIFLG	FW8	B13	RELVELSW	FW6	B9
NJETSFLG	FW1	B15	RENDWFLG	FW5	B1
NODOBIT	FW2	B1	RETROFLG	FW5	B14
NODOFLAG	FW2	B1	RNDVZBIT	FW0	B7
NODOP01	FW1	B12	RNDVZFLG	FWO	B7
NOP01BIT	FW1	B12	RNGSCFLG	FW5	B10
NORFHOR	FWO	B11	RPOFLAG	FW8	B15
NORMSW	FW7	B10	RVSW	FW7	B9
NOSWITCH	FW6	B7	R21MARK	FW2	B14
NRMIDFLG*	FW4	B13	R22CAFLG*	FW9	B7
NRMNVFLG	FW4	B8	R23BIT	FW1	B9
NRUPTFLG*	FW4	B4	R23FLG	FW1	B9
NWAITFLG*	FW4	B10	R31FLAG	FW9	B4
N22ORN17	FW9	B6	R31FLBIT	FW9	B4
OPTNSW	FW2	B7	R53FLAG	FWO	B6
ORBWFLAG	FW3	B6	R57FLAG	FW6	B8
ORDERSW	FW8	B6	R60FLAG*	FW5	B4
PDSPFBIT	FW4	B12	SAVECFLG	FW9	B10
PDSPFLAG	FW4	B12	SKIPBIT	FW2	B10
PFRATFLG	FW2	B4	SKIPVHF	FW2	B10
PINBRFLG	FW4	B6	SLOPESW	FW1	B3
PRECIFLG	FW3	B8	SLOWFLG	FW5	B13
PRFTRKAT	FW5	B10	SOLNSW	FW5	B3
PRIODFLG*	FW4	B14	SOURCBIT	FW9	B8
PRONVFLG	FW4	B7	SOURCFLG	FW9	B8
P21FLAG	FW2	B12	STATEFLG	FW3	B5

FLAGWORD BIT ASSIGNMENTS (ALPHABETICAL)
FOR COLOSSUS 2A

STEERSW	FW2	B11	V82EMFLG	FW9	B13
STIKBIT	FW1	B14	V94FLAG	FW9	B11
STIKFLAG	FW1	B14	V94FLBIT	FW9	B11
STRULLSW	FW6	B13	V96ONFLG	FW8	B3
SURFFLAG	FW8	B8	XDELVFLG	FW2	B8
SWTOVER*	FW9	B15	XDSPFLAG*	FW4	B1
S32.1F1	FW11	B15	ZMEASURE	FW0	B10
S32.1F2	FW11	B14	.05GSW	FW6	B3
S32.1F3A	FW11	B13	22DSPFLG	FW2	B13
S32.1F3B	FW11	B12	360SW	FW8	B1
TARG1FLG	FW1	B10	3AXISFLG	FW5	B6

FLAGWORD BIT ASSIGNMENTS FOR COLOSSUS 2A

(FLAGWORD 0)

Bit	Name	1	0
1	KFLAG	Search sector < 180 degrees.	Search sector > 180 degrees.
2	AMOONFLG	State vector in lunar sphere at MIDTOAVE.	State vector in earth sphere at MIDTOAVE.
3	FREEFLAG	(Temporary flag used in many rou	
4	TRUNFLAG	Driving of trunnion allowed.	Driving of trunnion not allowed.
5	F2RTE	In time critical mode.	Not in time critical mode.
6	R53FLAG	V51 initiated.	V51 not initiated.
7	RNDVZBIT RNDVZFLG	P20 running.	P 20 not running.
8	IMUSE IMUSEFLG	IMU in use.	IMU not in use.
9	NEEDLFLG	Total attitude error displayed.	A/P following error displayed.
10	ZMEASURE	Measurement planet and primary planet different.	Measurement planet and primary planet same.
11	NORFHOR	Far horizon.	Near horizon.
12	MOONFLAG	Moon is sphere of influence.	Earth is sphere of influence.
13	MIDFLAG	Integration with solar perturbations.	Integration without solar perturbations.
14	JSWITCH	Integration of W matrix.	Integration of state vector.
15	CPHIFLAG	Output of CALCGA is CPHIX.	Output of CALCGA is THETAD.

(FLAGWORD 1)

Bit	Name	1	0
1	AVEGBIT AVEGFLAG	AVERAGEG (SERVICER) to continue.	AVERAGEG (SERVICER) to cease.
2	GUESSW	No starting value for iteration exists	Starting value for iteration exists.
3	SLOPESW	Iterate with bias method in iterator.	Iterate with Regula Falsi method in iterator.
4	TRM03BIT TRM03FLG	Request to terminate P03 has been entered.	No request to terminate P03 has been entered.
5	TRACKBIT TRACKFLG	Tracking allowed.	Tracking not allowed.
6	IDLEFAIL	Inhibit R40.	Enable R40 (engine fail).
7	UPDATBIT UPDATFLG	Updating by marks allowed.	Updating by marks not allowed.
8	VEHUPFLG	CSM state vector being updated.	LM state vector being updated.
9	$\begin{aligned} & \text { R23BIT } \\ & \text { R23FLG } \end{aligned}$	R23 marking.	R21 marking.
	TARG2FLG	Sighting landmark.	Sighting star.
10	TARG1FLG	Sighting LM.	Not sighting LM.
11	ENG2FLAG	RCS burn.	SPS burn.
12	NODOP01 NOP01BIT	P01 not allowed.	P01 allowed.
13	ERADFLAG	EARTH-compute Fischer ellipsoid radius. MOON-use fixed radius	EARTH-use fixed radius. MOON-use RLS for lunar radius.
14	STIKBIT STIKFLAG	RHC control.	CMC control.
15	NJETSFLG	Two-jet RCS burn.	Four-jet RCS burn.

FLAGWORD BIT ASSIGNMENTS FOR COLOSSUS 2A
(FLAGWORD 2)

Bit	Name	1	0
1	$\begin{aligned} & \text { NODOBIT } \\ & \text { NODOFLAG } \end{aligned}$	V37 not permitted.	V37 permitted.
2	CALCMAN2	Perform maneuver starting procedure.	Bypass starting procedure.
3	Not Assigned		
4	PFRATFLG	Preferred attitude computed.	Preferred attitude not computed.
5	AVFLAG	LM is active vehicle.	CSM is active vehicle.
6	FINALFLG	Last pass through rendezvous program computations.	Interim pass through rendezvous program computations.
7	OPTNSW	SOI phase of P38/P78.	SOR phase of P38/P78.
	FIRSTFLG	First pass through \$40.9.	Succeeding pass through S40.9.
	ETPIFLAG	Elevation angle supplied for P34/P74.	TPI time supplied for P34/P74.
8	XDELVFLG	External Delta V VG computation.	Lambert (AIMPOINT) VG computation
9	IMPULSW	Minimum impulse burn (cutoff time specified).	Steering burn (no cutoff time yet available).
10	SKIPVBIT SKIPVHF	Disregard radar read because of software or hardware RESTART.	Radar read to proceed normally.
11	STEERSW	Steering to be done.	Steering omitted.
12	P21FLAG	Succeeding pass through P21, use base vector for calculation.	First pass through P21, calculate base vector.
13	22DPSFLG	Display DR, DV.	Do not display DR, DV.
14	R21MARK	Option 1 for MARKRUPT.	Option 2 for MARKRUPT.
15	DRIFTFLG	T3RUPT calls gyro compensation.	T3RUPT does no gyro compensation.

FLAGWORD BIT ASSIGNMENTS FOR COLOSSUS 2A

Bit	Name	1	0
1	DIMOFLAG	W matrix is to be used.	W matrix is not to be used.
2	D60R9FLG	Dimension of W is 9 for integration.	Dimension of W is 6 for integration.
3	VINTFLAG	CSM state vector being integrated.	LM state vector being integrated.
4	INTYPFLG	Conic integration.	Encke integration.
5	STATEFLG	Permanent state vector being updated.	Permanent state vector not being updated.
6	ORBWFLAG	W matrix valid for orbital navigation.	W matrix invalid for orbital integration.
7	CULTFLAG	Star occulted.	Start not occulted.
8	PRECIFLG	CSMPREC, LEMPREC, or INTEGRVS called.	INTGRV called.
9	Not Assigned		
10	VFLAG	Less than two stars in the field of view.	Two stars in the field of view.
11	P22MKFLG	P22 downlinked mark data was just taken.	P22 downlinked mark data not just taken.
12	LUNAFLAG	Lunar latitude-longitude.	Earth latitude-longitude.
13	REFSMFLG	REFSMMAT good.	REFSMMAT no good.
14	GLOKFAIL GLOKFBIT	GIMBAL LOCK has occurred.	Not in GIMBAL LOCK.
15	Not Assigned		

(FLAGWORD 4)

Bit	Name	1
1	XDSPFLAG*	Mark display not to be interrupted.
2	Not Assigned	
3	MKOVFLAG*	Mark display over normal display.
4	NRUPTFLG*	Normal display interrupted by priority or mark display.
5	MRUPTFLG*	Mark display interrupted by priority display.
6	PINBRFLG	Astronaut has interferred with existing display.
7	PRONVFLG	Astronaut using keyboard when priority display initiated.
8	NRMNVFLG	Astronaut using keyboard when normal display initiated.
9	MRKNVFLG	Astronaut using keyboard when mark display initiated.
10	NWAITFLG*	Higher priority display operating when normal display initiated.
11	MWAITFLG*	Higher priority display operating when mark display initiated.
12	PDSPFBIT PDSPFLAG	Cannot interrupt priority display.
13	NRMIDFLG*	Normal display in ENDIDLE.
14	PRIODFLG*	Priority display in ENDIDLE.
15	MRKIDFLG*	Mark display in ENDIDLE.

*These switches are never called by name.

FLAGWORD BIT ASSIGNMENTS FOR COLOSSUS 2A

(FLAGWORD 5)

Bit	Name	1	0
1	RENDWFLG	W matrix valid for rendezvous navigation.	W matrix invalid for rendezvous navigation.
2	MGLVFLAG	Local vertical coordinates computed.	Middle gimbal angle computed.
3	SOLNSW	Lambert does not converge, or time-radius nearly circular.	Lambert converges or time-radius noncircular.
4	R60FLAG*	R61 must use R60.	Normal R61.
5	GRRBKBIT GRRBKFLG	Backup GRR received.	Backup GRR not received.
6	3AXISFLG	Maneuver specified by three axes.	Maneuver specified by one axis.
7	ENGONBIT	Engine turned on.	Engine turned off.
8	COMPUTER	Computer is CMC.	Computer is LGC.
9	DMENFLG	Dimension of W is 9 for incorporation.	Dimension of W is 6 for incorporation.
10	PRFTRKAT RNGSCFLG	Preferred tracking attitude.	+X axis tracking attitude.
11	INCORFLG	First incorporation.	Second incorporation.
12	V59FLAG	Calibrating for P23.	Normal marking for P23.
13	SLOWFLG	P37 transearth coast slowdown is desired.	Slowdown is not desired.
14	RETROFLG	P37 premaneuver orbit is retrograde.	Orbit is not retrograde.
15	DSKYFLAG*	Displays sent to DSKY.	No displays to DSKY.

(FLAGWORD 6)

Bit	Name	1			
1	GYMDIFSW*	CDU differences and body rates computed.			
2	CM/DSTBY	ENTRY DAP activated.			
3	.05GSW	Drag over 0.05 g			
4	LATSW	Downlift not inhibited.			
5	INRLSW	Initial roll V(LV) attitude not held.			
6	HIND	Iterating of HUNTEST calculation to be done after range prediction.			
7	NOSWITCH	Lateral roll maneuver inhibited in ENTRY.			
8	R57FLAG	Do not do R57, trunnion bias has been obtained.			
	KNOWNFLG	Landmark known.			
	EGSW	In final phase.			
9	RELVELSW	Targeting uses earth-relative velocity.			
10	GONEPAST	Lateral control calculations to be omitted.			
11	GAMDIFSW*	Calculate GAMDOT.			
12	CMDAPARM*	Allow ENTRY firings and calculations.			
13	ENTRYDSP	Do ENTRY display via ENTRYVN			
	STRULLSW	Do STEERULL.			
14	DAPBIT2	B14	0 1	1	1
15	DAPBIT1	B15	0 0	0	1
		A/P	None RCS	TVC	Saturn

[^0]
FLAGWORD BIT ASSIGNMENTS FOR COLOSSUS 2A

Bit	Name	1	0
1	TFFSW	Calculate TPERIGEE.	Calculate TFF.
2	ATTCHFLG*	LM, CM attached.	LM, CM not attached.
3	VERIFLAG*	Changed when V33E occurs at end of P27.	
4	UPLOCKFL*	K-K-K fail.	No K-K-K fail.
5	Not Assigned		
6	V37FLAG V37FLBIT	AVERAGEG (SERVICER) running.	AVERAGEG (SERVICER) off.
7	Not Assigned		
8	GONEBY	Passed target.	Approaching target.
9	RVSW	Do not compute final state vector in time-theta.	Compute final state vector in time-theta.
10	NORMSW	Unit normal input to Lambert.	Lambert computes its own normal.
11	TIMRFLAG	CLOKTASK operating.	CLOKTASK inoperative.
12	ASTNFLAG*	Astronaut has OKed ignition.	Astronaut has not OKed ignition.
13	IGNFLAG*	TIG has arrived.	TIG has not arrived.
14	ITSWITCH	Accept next Lambert TPI search solution.	Test Lambert answer against limits.
15	TERMIFLG	Terminate R52.	Do not terminate R52.

FLAGWORD BIT ASSIGNMENTS FOR COLOSSUS 2A

(FLAGWORD 9)

Bit	Name	1	0
1	AVEMIDSW	AVETOMID calling for W matrix integration. Do not overwrite RN, VN, PIPTIME.	No AVETOMID W matrix integration Allow setup of RN, VN, PIPTIME.
2	MIDAVFLAG	Integration entered from one of MIDTOAV portals.	Integration was not entered via MIDTOAV.
3	MID1FLAG	Integrate to TDEC.	Integrate to the then-present time.
4	R31FLAG R31FLBIT	R31 selected (V83).	R34 selected (V85).
5	QUITFLAG	Terminate and exit from integration.	Continue integration.
6	N22ORN17	Compute total attitude errors with respect to N22 (V62).	Compute total attitude errors with respect to N17 (V63).
7	R22CAFLG*	R22 calculations are going on.	R22 calculations are not going on.
8	SOURCBIT SOURCFLG	Source of input data is from VHF radar.	Source of input data is from optics mark.
9	VHFRFLAG	Allow R22 to accept range data.	Stop acceptance of range data.
10	SAVECFLG	P23 display and data storage after mark is done.	P23 display and data storage before mark is done.
11	V94FLAG V94FLBIT	V94 allowed during P23.	V94 not allowed.
12	$\begin{aligned} & \text { MAXDBBIT } \\ & \text { MAXDBFLG } \end{aligned}$	Maximum A/P deadband selected.	Minimum A/P deadband selected.
13	V82EMFLG	Moon vicinity.	Earth vicinity.
14	V67FLBIT*	Not Assigned.	
15	SWTOVER*	Switchover has occurred.	No switchover yet.

[^1]
FLAGWORD BIT ASSIGNMENTS FOR COLOSSUS 2A

(FLAGWORD 10, RASFLAG)

Bit	Name		0
1	Not Assigned		
2	Not Assigned		
3	Not Assigned		
4	Not Assigned		
5	Not Assigned		
6	Not Assigned		
7	REINTBIT	Integration routine to be	
8	REINTFLG	RESTARTED.	
9	Not Assigned		
10	Not Assigned		
11	Not Assigned		
12	Not Assigned		
13	Not Assigned		

(FLAGWORD 11)

Name
1

Not Assigned
Not Assigned
3
4
5
Not Assigned

Not Assigned
Not Assigned
10

S32.1F2
Not Assigned
Not Assigned
(Bits 12 and 13 function as an ordered pair $(13,12)$ indicating the possible occurrence of two Newton iterations for S32.1:
$(0,0)$ - First pass of second Newton iteration,
(0, 1) - First Newton iteration being done,
(1, 0) - Remainder of second Newton iteration,
$(1,1)-50 \mathrm{ft} / \mathrm{s}$ stage of second Newton iteration.)

First pass of Newton iteration.
Delta V at CSI Time 1 exceeds maximum.

Reiteration of Newton.
Delta V at CSI Time 1 less than maximum.

FLAGWORD BIT ASSIGNMENTS FOR COLOSSUS 2A

IMODES30, a flag whose individual bits are used to control the monitoring of IMU functions associated with Channel 30 (and in a few cases Channel 33).

Bit
Meaning
15 Last sampled value of Channel 30, Bit 15 (0 if IMU temperature within limits).
14 Last sampled value of Channel 30, Bit 14 (0 if ISS has been turned on or commanded to be turned on).

13 Last sampled value of Channel 30, Bit 1310 if an IMU fail indication has been produced).

12 Last sampled value of Channel 30, Bit 12 (0 if an IMU CDU fail indication has been produced).

11 Last sampled value of Channel 30, Bit 11 (0 if an IMU cage command has been produced by crew).

10 Last sampled value of Channel 33, Bit 1010 if a PIPA fail indication has been produced), having the same value as Bit 13 of IMODES33.

9 Last sampled value of Channel 30, Bit 9 (0 if IMU has been turned on and operating with no malfunctions)

8 Bit used to control the IMU turn-on sequencing
7 Bit used to control the IMU turn-on sequencing.
6 Bit is set to 1 to indicate that IMU initialization is being carried out.
$5 \quad$ Bit is set to 1 to inhibit the generation of program alarm 02128 if a PIPA fail signal (Bit 13 of Channel 33) is produced.

4 Bit is set to 1 to inhibit generation of an ISS warning based on receipt of an IMU fail signal.

3 Bit is set to 1 to inhibit generation of an ISS warning based on receipt of an IMU CDU fail signal.

2 Bit is set to 1 to indicate failure of the turn-on delay sequence for IMU turn-on (alarm 02078 is also generated).

1 Bit is set to 1 to inhibit generation of an ISS warning based on receipt of a PIPA fail signal (Bit 13 of Channel 33).

FLAGWORD BIT ASSIGNMENTS FOR COLOSSUS 2A

IMODES33, a flag whose individual bits are used to control the monitoring of functions associated with Channel 33 (and other items).

Bit
Meaning
15 Not assigned.
14 Last sampled value of Channel 32, Bit 14 (0 if a Proceed command is given using the old "standby" button).

13 Last sampled value of Channel 33, Bit 13 (0 if a PIPA fail has been produced).
12 Last sampled value of Channel 33, Bit 12 (0 if a telemetry end pulse has been rejected because the downlink rate is too fast).

11 Last sampled value of Channel 33, Bit 11 (0 if an uplink bit has been rejected because the uplink rate is too fast).

10-7 Not assigned.
6 Bit is set to 1 to indicate that IMU use for vehicle attitude information should not be attempted.

5 Bit is set to 1 in IMU Zeroing routine external to T4RUPT while zeroing is taking place (for an interval of about 10.56 seconds).

42 Not assigned.
1 Bit is set to 1 when a Verb 35 ("lamp test") is received, and reset to 0 about 5 seconds later.

OPTMODES, a flag whose individual bits are used to control the performance of optics functions within the T4RUPT package.
Bit Meaning

15- Not Assigned
11

10 Bit is set to 1 to indicate that zeroing of optics has been completed since the last FRESH START or RESTART (both of which set the bit to 0). If an attempt is made to drive the optics and this bit is found to be zero, alarm 01208 is generated (but computation proceeds).
$9 \quad$ Bit is set to 1 if optics have been switched from the Computer Control mode (while being driven; that is, "coarse aligned") to another mode. Value is used when switchback to the Computer Control mode is effected to reenable driving. Bit is set to 0 as part of FRESH START and when optics system released (at end of marking); a RESTART preserves the bit (see, however, Bit 10).

8 Not assigned.
7 Last sampled value of Channel 30, Bit 7 (0 if an optics CDU fail indication has been generated by the optics CDU hardware). If Bit 2 of this word is $0, a$ Tracker alarm (Bit 8 of DSPTAB +11) is generated if this bit has a 1 to 0 transition. Bit is set to 1 by a FRESH START or RESTART.

Not assigned.
Last sampled value of Channel 33, Bit 5 (0 if Optics Mode switch set to Computer Control).

4 Last sampled value of Channel 33, Bit 4 (0 if Optics Mode switch set to Zero Optics). If Bits 5-4 = 112, the Optics Mode switch has been set to Manual.

3 Bit is set to 1 when the Optics Mode switch is changed from Manual or Computer Control to Zero Optics to indicate that zeroing of the optics is in progress.

If bit is 1 and Bit 1 of this word is 0 , then a switch out of Zero Optics mode will cause alarm 01168 to be generated (if switched to Manual, a "grace period" of about 5.3 seconds is provided before the optics-zeroing time counter is reset, during which time a switchback to optics zeroing can be made). Bit remains 1 for about 16.2 seconds, and is then reset to 0 (at the same time that Bit 10 of this word is set to 1 , and Bits 2-1 of this word are set to 0).

2 Bit is set to 1 to inhibit generation of Tracker alarm (Bit 8 of DSPTAB + 11) if Bit 7 of this word goes from 1 to 0 . Bit is set and reset at the same time as Bit 3 .
1 Bit is set to 1 to indicate that end of optics zeroing delay will occur in 0.4 second (remains 1 for that length of time, and then is reset to 0 at the same time as Bits 3-2). If bit is 1 , generation of alarm 01168 (see Bit 3) is inhibited.

RCSFLAGS, a flag whose individual bits are used in monitoring the RCS DAP.

Meaning

15 Bit is set to 1 to indicate that a high rate ($4 \mathrm{deg} / \mathrm{s}$) automaneuver is in progress. Bit is reset to 0 to indicate that a high rate automaneuver is not in progress.

14 Bit is set to 1 if rate estimates are not good and a repeat of the rate filter initialization is required. Bit is reset to 0 if the $G \& N$ is in control and the IMU data is usable. Approximately 1 second after the bit is reset to 0 the rate filter initialization is complete.

13 Bit is set to 1 if the rate damping has not been completed on the roll axis. Bit is reset to 0 if the rate damping on the roll axis has been completed.

12 Bit is set to 1 if the damping has not been completed on the pitch axis. Bit is reset to 0 if the rate damping has been completed on the pitch axis.

11 Bit is set to 1 if the rate damping has not been completed on the yaw axis. Bit is reset to 0 if the rate damping has been completed on the yaw axis.

10,9 If either or both bits have been set to 1 , there has been a change in the RHC roll command since the last DAP cycle. If both bits are reset to 0 , it implies that no change in the RHC roll command has occurred since the last DAP cycle.

8,7 If either or both bits have been set to 1 , there has been a change in RHC yaw command since the last DAP cycle. If both bits are reset to 0 , it implies that no change in the RHC yaw command has occurred since the last DAP cycle.

6,5 If either or both bits have been set to 1, there has been a change in the RHC pitch command since the last DAP cycle. If both bits are reset to 0 , it implies that no change in the RHC pitch command has occurred since the last DAP cycle.

4 Bit is set to 1 to indicate that the $A K$ values should be updated. Bit is reset to 0 to indicate that the Needle Drive routine should be processed with the AK values which have been previously acquired.
$3,2$ If (Bit 3, Bit 2$)=(1,1)$ or $(1,0)$, it is necessary to follow the initialization path of the Needle Drive routine.

If (Bit 3, Bit 2$)=(0,1)$, it is necessary to follow Pass 2 of the Needle Drive routine.
If (Bit 3, Bit 2) $=(0,0)$, it is necessary to follow Pass 3 and greater paths of the Needle Drive routine.

1 Bit is set to 1 to indicate that the initial pass path in the T6 program should not be followed. Bit is reset to 0 if the T6 program should be initialized.

DAPDATR1, a flagword for RCS-CSM DAP interface.

Bit

15-13

$15-13$	$12-10$	$9-7$	$6-4$	$3-1$
CONFIG	XTAC	XTDB	DB	RATE
CONFIG:	Configuration			
	0	No DAP or ENTRY DAP		
	1	CSM		
	2	CSM/LM		
	3	CSM/SIVB		
	6	CSM/LM Ascent Stage Only		

12-10
XTAC:
X-translation using Quads AC
0 No AC
1 Use AC
9-7 XTBD: X-translation using Quads BD
0 No BD
1 Use BD
6-4
DB: Deadband
0 ± 0.5 degree
1 ± 5.0 degrees
3-1 RATE: Response to RHC, automatic maneuvers
$0 \quad 0.05$ degree/second
10.2 degree/second
20.5 degree/second
$3 \quad 4.0$ degrees/second

DAPDATR2, a flagword for RCS-CSM DAP interface.
$\begin{array}{llllll}\text { Bit } & 15-13 & 12-10 & 9-7 & 6-4 & 3-1\end{array}$

AC-RoII	Quad A	Quad B	Quad C	Quad D

15-13 AC-Roll: Roll jet selection
0 Use AC Roll
Use BD Roll
12-10, A, B, C, D Quad fails
9-7, 6-4,

CHANNEL BIT ASSIGNMENTS (CM)

OUTPUT CHANNEL 11
ISS Warning
Light Computer Activity Lamp
Light Uplink Activity Lamp
Light Temp Caution Lamp
Light Keyboard Release Lamp
Flash Verb and Noun Lamps
Light Operator Error Lamp
Spare
Test Connector Outbit
Caution Reset
Spare
Spare
Engine On/Off
Spare
Spare

OUTPUT CHANNEL 12
Zero Optics CDU
Enable Optics Error Counter
Not Used
Coarse Align Enable
Zero IMU CDU's
Enable IMU Error Counter
Spare
TVC Enable
Enable SIVB Takeover
Zero Optics
Disengage Optics DAC
Spare
SIVB Injection Sequence Start
SIVB Cutoff
ISS Turn-on Delay Complete

CHANNEL BIT ASSIGNMENTS (CM)

OUTPUT CHANNEL 13
Range Unit Select c
Range Unit Select b
Range Unit Select a
Range Unit Activity
Not Used
Block Inlink
Downlink Word Order
Not Used
Spare
Test Alarms
Enable Standby
Reset Trap 31-A
Reset Trap 31-B
Reset Trap 32
Enable T6RUPT NOTE:

Channel 13 Range Unit Selection: Bits 1 through 4 are assigned control functions for sampling of the VHF range link. These bits must contain 10018 in order to obtain control.

OUTPUT CHANNEL 14

BIT

1
Not Used
Spare
Spare
Spare
Spare
Gyro Enable
Gyro Select b
Gyro Select a
Gyro Sign Minus
Gyro Activity
Drive CDU S
Drive CDU T
Drive CDU Z
Drive CDU Y
Drive CDU X

Channel 14-Gyro Selection

a	b	Gyro
0	0	-
0	1	X
1	0	Y
1	1	Z

INPUT CHANNEL 15

BIT	
1	Key codes from Main DSKY
2	Key codes from Main DSKY
3	Key codes from Main DSKY
4	Key codes from Main DSKY
5	Key codes from Main DSKY
6	Spare
7	Spare
8	Spare
9	Spare
10	Spare
11	Spare
12	Spare
13	Spare
14	Spare
15	Spare

INPUT CHANNEL 16

Key codes from Navigation DSKY
Mark button
Mark reject button
Spare
Spare
Spare
Spare
Spare
Spare
Spare
Spare

CHANNEL BIT ASSIGNMENTS (CM)

INPUT CHANNEL 30

BIT

Ullage Thrust Present
SM Separate
SPS Ready
SIVB Separate, Abort
Liftoff
Guidance Reference Release
Optics CDU Fail
Spare
IMU Operate
S/C Control of Saturn
IMU Cage
IMU CDU Fail
IMU Fail
ISS Turn-On Request
Temperature in Limits
NOTE:
All of the input signals in Channel 30 are inverted; that is, a ZERO bit indicates that the discrete is ON

INPUT CHANNEL 31
BIT
+Pitch Manual Rotation
-Pitch Manual Rotation
+Yaw Manual Rotation
-Yaw Manual Rotation
+Roll Manual Rotation
-Roll Manual Rotation
+X Translation
-X Translation
$+Y$ Translation
-Y Translation
+Z Translation
-Z Translation
Hold Function
Free Function
G \& N Autopilot Control

NOTE:

All of the input signals in Channel 31 are inverted; that is, a ZERO bit indicates that the discrete is ON.

CHANNEL BIT ASSIGNMENTS (CM)

INPUT CHANNEL 32

BIT	
1	+Pitch Minimum Impulse
2	-Pitch Minimum Impulse
3	+Yaw Minimum Impulse
4	-Yaw Minimum Impulse
5	+Roll Minimum Impulse
6	-Roll Minimum Impulse
7	Spare
8	Spare
9	Spare
10	Spare
11	LM Attached
12	Spare
13	Spare
14	Proceed
15	Spare
NOTE:	
All of the input signals in Channel 32 are inverted; that is, a ZERO bit indicates that the discrete is ON.	
INPUT CHANNEL 33	
BIT	
1	Spare
2	Range Unit Data Good
3	Spare
4	Zero Optics
5	CMC Control
6	Not Used
7	Not Used
8	Spare
9	Spare
10	Block Uplink Input*
11	Uplink Too Fast
12	Downlink Too Fast
13	PIPA Fail
14	Warning
15	Oscillator Alarm
*This bit reads ONE when accept uplink signal is present at interface.	
NOTE:	
	of the input signals in Channel 33 are inverted; that is, a ZERO bit icates that the discrete is ON.

Purpose:

1. To provide a program to fulfill the following requirements:
a. Provide an indication to the crew that the CMC is engaged in no control or computational operations which might require consideration for coordination with other crew tasks in progress.
b. To maintain the GNCS in a condition where manual attitude maneuvers can be made by the crew with minimal concern for the GNCS.
c. Maintain the CMC in a condition of readiness for entry into other programs.
2. To update the CSM and LM state vectors every four-time steps.

Assumptions:

1. The IMU may or may not be on. If on, the IMU is inertially stabilized but not necessarily aligned to an orientation which is known to the CMC.
2. If non-GNCS controlled attitude maneuvers are made by the crew, care must be taken to avoid IMU gimbal lock. The IMU gimbal angles may be monitored by observing the ICDU's (V16 N20) or by monitoring the FDAI ball.
3. During this program the CMC erasable storage may be initialized by keying in V36E (FRESH START). This would be done only at initial CMC startup or when the content of the CMC erasable storage is in question. If this entry is performed, the CMC's knowledge of the present state vector and the present IMU orientation (REFSMMAT) is invalidated.
4. The program is manually selected by the astronaut by DSKY entry.
5. This program is automatically selected by V96E, which may be done during any program. State vector integration is permanently inhibited following V96E. Normal integration functions will resume after selection of any program or extended verb. P00 integration will resume when P00 is reselected. Usage of V96 can cause incorrect W-matrix and state vector synchronization.

Selected Displays:

1. V06 N38

Time of state vector being integrated
00XXX. h
000xX. min
0XX.XX s
P01-PRELAUNCH OR SERVICE-INITIALIZATION PROGRAM
Purpose:

1. To initialize the platform for the prelaunch programs.
2. To provide an initial stable member orientation for Gyrocompassing (P02).

Assumptions:

1. The program is manually selected by DSKY entry.
2. Erasable locations have been properly initialized. (Azimuth, +1; Latitude, +1; LAUNCHAZ, +1; IMU compensation parameters).
P02-PRELAUNCH OR SERVICE-GYROCOMPASSING PROGRAM

Purpose:

1. To provide the proper stable member orientation for launch

Assumptions:

1. This program may be interrupted to perform the Prelaunch or Service-Optical Verification of Gyrocompassing program (P03).
2. V75 will be keyed in and displayed during this program to permit crew backup of the liftoff discrete.

P02 (continued)

3. The program is automatically selected by the Initialization program (P01).
4. This program has the capability (via V78E) to change the launch azimuth of the stable member while gyrocompassing.

Selected Displays:

1. V06 N29

XSM launch azimuth
XXX.XX deg

P03-PRELAUNCH OR SERVICE-OPTICAL VERIFICATION OF GYROCOMPASSING

Purpose:

1. To provide an optical check for verification of alignment of the stable member during gyrocompassing prior to launch.

Assumptions:

1. The program is manually selected by the DSKY entry.
2. The astronaut has zeroed the optics just prior to program (PO3) selection.
3. A minimum of 45 minutes between V78E and P03 (V65E) assures proper damping of transients.
4. In order to prematurely terminate this program and return to P02 the astronaut may key in V34E on any flashing display.

Selected Displays:

1. V06 N41

Target azimuth	$X X X . X X$ deg
Target elevation	$X X . X X X$ deg

XX.XXX deg
2. V51 (please mark)
3. V50 N25 (terminate mark sequence)

Checklist code
00016
4. V06 N93

Gyro torque angles
$X X . X X X \operatorname{deg}$
$X X . X X X \operatorname{deg}$
$X X . X X X$ deg

P06-CMC POWER DOWN PROGRAM

Purpose:

1. To transfer the CMC from the operate to the standby condition.

Assumptions:

1. When this program is turned on the astronaut must power down the $C M C$ to stand by. However, the program is not RESTART protected.
2. The normal condition of readiness of the GNCS when not in use is standby. All the G/N circuit breakers (Panel 5) are closed, the IMU and optics G/N power switches (LEB Panel 100) are off and the CMC standby light (DSKY) is on. In this condition the IMU is in standby with only heater power on, optics power is off, and the CMC is in standby.
3. A possible condition of readiness of the GNCS when not completely on is the same as standby (2) above, except the CMC standby light on the main and LEB DSKY's is off. In this configuration the CMC is running for computational purposes that do not require the IMU or optics.

P06 (continued)

4. If the computer power is switched off it will be necessary to perform a computer FRESH START (V36E) to initialize the erasable storage. The CMC Update program (P27) would have to be done to update the state vector and computer clock time.
5. The CMC is capable of maintaining an accurate value of ground elapsed time (GET) for only 23 hours when in standby. If the CMC is not brought out of the standby condition to the running condition (see Assumption 3 above) at least once within 23 hours the CMC value of GET must be updated
6. The program is selected by the astronaut by DSKY entry.

Selected Displays:

1. V50 N25 (CMC power down)

Checklist code
00062

P11-EARTH ORBIT INSERTION MONITOR PROGRAM

Purpose

1. To indicate to the astronaut that the CMC has received the liftoff discrete.
2. To generate an attitude error indication on the FDAI error needles, scaled for the 50/15 setting; from liftoff to the beginning of pitchover/rollout the attitude error is equal to the difference between the current vehicle attitude and the attitude stored at liftoff. During pitchover/rollout the attitude error is equal to the difference between the current vehicle attitude and the CMC nominal computation of vehicle attitude based on the stored polynomials in pitch and roll.
3. To display CMC computed trajectory parameters.
4. CMC takeover of Saturn during Boost
a. Automatic Control-All Stages: should the Saturn platform fail (during any stage of earth orbit insertion) the astronaut may set the S/C Control of Saturn switch to the ON position. This stores the current attitude errors as a bias. The Attitude Error routine for each cycle thereafter will compute the attitude error, subtract the bias, and transmit the difference information to the Saturn Instrumentation Unit (IU) for steering.
b. Manual Control-SII and SIVB Stages only: The astronaut may select the Saturn stick function via V46E (DAP configuration $=3$). This will terminate the Attitude Error routine.

Assumptions:

1. The program is normally automatically selected by the Gyrocompassing program (PO2) when the CMC receives the liftoff discrete from the SIVB. In the backup case it would have been selected by keying in V75 ENTER
2. The orbit parameter display routine is available by keying in V82E.

Selected Displays:

1. V06 N62

Inertial velocity magnitude	$X X X X X . \mathrm{ft} / \mathrm{s}$
Altitude rate	$X X X X X . \mathrm{ft} / \mathrm{s}$
Altitude	$X X X X . X \mathrm{nmi}$

2. V04 N06 (results from V82E)

Option code ID
00002
Option code
$0000 \times$ (1-this vehicle, 2-other vehicle)
3. V16 N44 (results from V82E)

Apocenter altitude	XXXX. $\times \mathrm{nmi}$
Pericenter altitude	XXXX. $\times \mathrm{nmi}$
TFF	$X X \mathrm{~b} \times \mathrm{min} / \mathrm{s}$

Purpose:

1. To accept a desired time of Transfer Phase Initiation (TIG(TPI)) as a DSKY input from the astronaut, and to compute therefrom the parameters associated with a minimum energy, safe periapsis transfer maneuver at TIG(TPI) and the resultant rendezvous intercept
2. To provide the astronaut with the option of defining to the CMC the initial transfer trajectory search sector for central angles either greater or less than 180 degrees from the position of the active vehicle (CSM) at TIG(TPI)
3. To display to the astronaut the parameters associated with the transfer (TPI and intercept).

Assumptions:

1. If P20 is in operation while this program is operating, the astronaut may hold at any flashing display and turn on the Rendezvous Sighting Mark routine (either R21 or R23) and take optics marks and/or he may allow VHF ranging marks to accumulate.
2. The operation of this program utilizes the active vehicle flag which designates the vehicle which is doing the rendezvous thrusting maneuvers to the program which calculates the maneuver parameters. Set at the start of each rendezvous prethrusting program.
3. To execute the TPI maneuver select the Transfer Phase Initiation (TPI) program (P34).
4. This program is selected by DSKY entry.

Selected Displays:

1. V06 N37

Time of TPI burn
2. V06 N72

Delta angle (TPI)
Delta altitude (TPI)
Search option
3. V06 N58

Pericenter altitude (post TPI)
$\Delta \mathrm{V}$ (TPI)
ΔV (TPF)
4. V06 N55

Perigee code
Blank
Central angle of passive vehicles

00XXX. h
000XX. min
0XX.XX s
$X X X . X X$ deg (+ active vehicle ahead) XXXX.X nmi(+ passive vehicle above) 0000X (1 intercept at a central angle <180 degrees; 2 intercept at a central angle > 180 degrees)

XXXX.X nmi
XXXX.X ft/s
XXXX.X ft/s

0000× (1-perigee between TPI and TPF 2-perigee after intercept)
XXX.XX deg

P20-RENDEZVOUS NAVIGATION PROGRAM
Purpose:

1. Control CSM attitude and optics to acquire the LM in the SXT field and to point the CSM transponder at the LM or to control the CSM attitude to acquire the LM along the $+X$ axis (depends on option code).
2. Update either LM or CSM state vector via optical tracking data.

P20 (continued)

Assumptions

1. IMU on and aligned.
2. The GNCS is in control of the vehicle in the auto mode in the nominal case. If the astronaut takes over control of the vheicle with RHC the CSM will remain at the attitude it is driven to. Regardless of mode selection the GNCS will calculate the preferred tracking attitude and the +X -axis tracking attitude.
3. Routine R03 performed prior to programs selection/V46E performed prior to first maneuver.
4. LM maintaining preferred tracking attitude (optical beacon).
5. Program selected by DSKY entry.
6. Terminated by selection of P00, P06, P22, P23 or by V56E.

Selected Displays:

1. V50 N18

Desired gimbal angles
2. V06 N49
ΔR
Δv
Source code
3. V06 N94

Shaft angle
Trunnion angle
4. V51 (please mark)
5. V50 N25 (terminate mark sequence)

Checklist code
00016
6. V01 N71 (after mark)

Celestial body code
000xX
7. V06 N88

Components of celestial body $1 / 2$ unit vector
8. V06 N18

Final gimbal angles
OG $X X X . X X$ deg
IG XXX.XX deg
MG XXX.XX deg

P21-GROUND TRACK DETERMINATION PROGRAM

Purpose:

1. Provide astronaut with details of his ground track

Assumptions:

1. Program selected by DSKY entry.
2. Can be used while CSM in earth or lunar orbit to determine ground track of either LM or CSM.
3. Vehicle whose ground track parameters are calculated to remain in freefall from the present time until T Lat Long.

Selected Displays:

1. V06 N34

Time of LAT/LONG \quad| | $00 X X X . h$ |
| :--- | :--- |
| | $000 \times X$. min |
| | $0 X X . X X$ s |

2. V06 N43

Latitude	XXX.XX deg (+ north)
Longitude	XXX. ${ }^{\text {P }}$ deg (+ east)
Altitude	XXXX.X nmi
4 N06	
Option code ID	00002
Option code ID	0000× (1-this vehicle 2-other vehicle)

P22-ORBITAL NAVIGATION PROGRAM

Purpose:

1. Locate and track landmark suitable for navigation purposes.
2. Obtain sighting marks on chosen landmark.
3. Calculate parameter changes generated by landmark sightings.
4. Update state vector as result of sightings (if sightings ok).
5. Update coordinates of known landmarks.
6. Provide coordinates of unknown landmarks.
7. Track preloaded landing site.
8. Provide coordinates of new landing site.
9. Provide coordinates of an offset landing site.
10. Align optics along an advanced orbit ground track for purpose of tracking and mapping a new landing site.

Assumptions:

1. There are two types of landmark tracking methods:
a. "Known" Landmark Tracking-The tracking of an earth landmark made known to the CMC by latitude, longitude/2, and altitude, and the tracking of a lunar landmark made known to the CMC by its latitude, longitude/2, and altitude.
b. "Unknown" Landmark Tracking-The tracking of a landmark or surface feature identified to the CMC as an unknown landmark, one whose coordinates are not known (lunar only).
2. There are two types of landing site mapping methods:
a. Landing Site Designation-Track and mark on an unknown landmark. Store the resulting coordinates in Landmark Code 01. If mapping only is desired (that is, no state vector calculation or corrections), the astronaut need take only one mark.
b. Landing Site Offset-While tracking and marking on a primary landmark (known or unknown), point the optics SLOS at the chosen landing site and mark it once, (at least one mark on the primary landmark must have been made prior to this), then continue marking on the primary landmark. Store the resulting coordinates of the offset landing site in Landmark Code 01.
3. Acquisition of a landmark may be aided by the CMC by use of the Automatic Optics Positioning routine (R52).
4. Acquisition of a preloaded landing site may be aided by keying Landmark Code 01 into the V05 N70 display for use by the Automatic Optics Positioning routine (R52).
5. The Ground Track Determination program (P21) is available to aid the crew in choosing appropriate landmarks prior to selection of this program.
6. The Ground Track Determination program (P21) is available to the crew following this program to provide updated ground track information.
7. Possible attitude control methods might be as follows (in all cases care must be taken to monitor possible impending IMU gimbal lock).
a. Manual control by the pilot or navigator with the rotational hand controller.
b. Manual rate control by the navigator with the minimum impulse control in the GNC free mode.
8. The program may be performed with SIVB attached if the Launch Vehicle Guidance switch is placed in the CMC position thereby permitting SIVB attitutde control with the rotational hand controller. GNC A/P control is required in this case.
9. The IMU must be on and aligned in order to complete this program.
10. Selection of this program will terminate the Rendezvous Navigation program (P20).
11. The program is selected by the astronaut by DSKY entry.

Selected Displays:

1. V06 N45

R3: Maximum middle gimbal angle
XXX.XX deg
2. V06 N89 (landmark coordinates)

Latitude	XX. XXX deg
Longitude/2	XX. XXX deg
Altitude	XXX. XX nmi
6 N92	
Shaft angle	XXX. XX deg
Trunnion angle	XX.XXX deg

4. V05 N70 (landmark data; before mark)

R2: ABCDE
A - 1 if known landmark
2 if unknown landmark
B - index of offset designator
C - not used
DE - Landmark ID
5. V05 N71 (landmark data; after mark)

R2: ABCDE (See Item 4 above.)
6. V06 N49

ΔR	$X X X X . X \mathrm{nmi}$
ΔV	$X X X X . X \mathrm{ft} / \mathrm{s}$

7. V51 (please mark)
8. V50 N25 (terminate mark sequence)

Checklist code
00016
9. V01 N71 (after mark)

Celestial body code 000XX
10. V06 N88

Components of celestial body $1 / 2$ unit vector $X X X X X$
11. V16 N91

Shaft angle	$X X X . X X$ deg
Trunnion angle	$X X . X X X$ deg

Purpose:

1. To do midcourse navigation by incorporation of star/earth and star/moon optical measurements.

Assumptions:

1. This program does not require that the IMU be on.
2. If the IMU is not aligned the astronaut must acquire the star/LMK or star/HOR manually.
3. If the IMU is:
a. Aligned, the astronaut may acquire the LMK/HOR automatically.
b. Aligned, the astronaut may acquire the star automatically.
c. On, the astronaut must take appropriate precautions to prevent possible IMU gimbal lock.
4. Prior to each mark the program will call for an optics calibration which may be done or bypassed dependent upon the stability history of the calibration.
5. To perform the mark the astronaut should finally select minimum impulse control (either GNCS or SCS) and the optics should be in manual in order to maintain the fix.
6. The optics should be on for 15 minutes prior to marking.
7. The CMC does not check for moon/earth occultation or sun brightness in this program.
8. This program is designed for one man operation within the constraints of mode switching while in the LEB.
9. Nouns 70 and 71 are checked to assure that the codes fall within certain permissible limits. (Check to assure that R2 and R3 do not both equal zero or do not both not equal zero, $\mathrm{R} 1=0$ to 37 (octal), $\mathrm{R} 2=\mathrm{ABCDE}, \mathrm{C}=1$ or $2, \mathrm{R} 3=\mathrm{ABCDE}, \mathrm{C}$ and $\mathrm{D}=$ 1 or 2). Noun 89 is also checked to assure that the values for R1 and R2 fall within certain defined limits (-90 degrees to +90 degrees).
10. Noun 88 allows that any proportional set of components may be loaded for planet direction. However, a unit vector is recommended.
11. The program is selected by the astronaut by DSKY entry.

Selected Displays:

1. V59 (perform calibration mark)
2. V06 N87

R2: Trunnion bias angle
XX.XXX deg
3. V51 (please mark)
4. V50 N25 (terminate mark sequence)

Checklist code
00016
5. V01 N71 (after mark)

Celestial body code
000XX
6. V06 N88
7. V05 N70 (landmark data, before mark)

R1: 000DE

DE-star identification code
R2: ABCDE
$A B$-not used
$C-1=$ earth landmark
2 = moon landmark
DE-not used
R3: 00CD0
$C-1=$ earth horizon
$2=$ moon horizon
D-1 = near horizon
2 = far horizon
8. V06 N89 (landmark coordinates)
Latitude
Longitude/2
Altitude
XX.XXX deg (+ north)
XX.XXX deg (+ east)
$X X X . X X$ nmi
9. V50 N25 (perform GNCS auto maneuver)

Checklist code
00202
10. V50 N18

Desired gimbal angles
OG $X X X . X X$ deg
IG XXX.XX deg
MG $X X X . X X$ deg
11. V06 N18

Final gimbal angles
OG XXX.XX deg
IG $X X X . X X$ deg
MG $X X X . X X$ deg
12. V05 N71 (landmark data, after mark)

Display same as Item 7 above.
13. V06 N49

$\Delta \mathrm{R}$	XXXX. ${ }^{\text {nmi }}$
$\Delta \mathrm{V}$	XXXX. $\mathrm{ft}^{\text {/s }}$
6 N92	
Shaft angle	XXX.XX deg
Trunnion angle	XX.XXX deg

P27-CMC UPDATE PROGRAM

Purpose

1. To insert information into the CMC via the digital uplink by transmission from the ground or via the DSKY keyboard by crew manual input.

Assumptions:

1. The CMC must be in the operate condition. The IMU may be in standby or operate condition.
2. CMC updates are of four categories:
a. Provide an update for CMC liftoff time (V70).
b. Provide an octal increment for the CMC clock only (V73).
c. Provide load capability for a block of sequential erasable locations (1-18 inclusive locations whose address is specified) (V71).
d. Provide load capability for 1-9 inclusive individually specified erasable locations (V72).
3. Update is allowed in the CSM when the CMC is in POO or PO2, and if the DSKY is available.
4. The UPTEL Accept/Block switch must be in Accept for telemetry update.
5. The program is manually selected by the astronaut by DSKY entry or by the ground by uplink transmission.
6. The automatic mode of update is program selection and update via the ground by uplink transmission. The only difference between this and manual selection by the astronaut is that the DSKY responses are keyed in by the astronaut rather than transmitted.

P30-EXTERNAL DELTA V PROGRAM

Purpose:

1. To accept targeting parameters obtained from a source(s) external to the CMC and compute therefrom the required velocity and other initial conditions required by the CMC for execution of the desired maneuver. The targeting parameters inserted into the CMC are the time of ignition (TIG) and the impulsive $\triangle V$ along CSM local vertical axes at TIG
2. To display to the astronaut and the ground certain specific dependent variables associated with the desired maneuver for approval by the astronaut/ground.

Assumptions:

1. Target parameters (TIG and $\Delta V(L V)$) may have been loaded from the ground during a prior execution of P27.
2. External Delta V flag is set during the program to designate to the thrusting program that external Delta V steering is to be used.
3. ISS need not be on to complete this program.
4. Program is selected by DSKY entry.

Selected Displays:

1. V06 N33

Time of ignition for external $\Delta \mathrm{V}$ burn
$00 \times \times \times$. h
$000 \times X$. min
OXX.XX s
2. V06 N81

Components of ΔV (LV)
$X X X X \times \mathrm{ft} / \mathrm{s}$
3. V06 N42

Apocenter altitude
$X \times X \times . \times n m i$
Pericenter altitude
ΔV
$X \times X \times$. $\times \mathrm{nm}$
$X \times \times \times . \times \mathrm{ft} / \mathrm{s}$
4. V16 N45

Marks (VHF/optics)	$\times \times \mathrm{b} \times \times \mathrm{marks}$
Time from external ΔV ignition	$\times \times \mathrm{b} \times \times \mathrm{min} / \mathrm{s}$
Middle gimbal angle	$\times \times \times . \times \times \mathrm{deg}$

Purpose:

1. To accept targeting parameters obtained from a source(s) external to the CMC and compute therefrom the velocity and other initial conditions required by the CMC for execution of the desired maneuver. The targeting parameters inserted into the CMC are the time of ignition (TIG), ECSTEER, the target vector, and the time from TIG until the target is to be reached (Delta T Trans).
2. To display to the astronaut and the ground certain specific dependent variables associated with the desired maneuver for approval by the astronaut/ground

Assumptions:

1. The target parameters (TIG, Target Vector, ECSTEER, and Delta T Trans) have been loaded from the ground during a prior execution of P27.
2. The external Delta V flag is reset during this program to designate to the thrusting program that Lambert steering is to be used.
3. ISS need not be on to complete this program
4. This program is selected by DSKY entry.

Selected Displays:

1. V06 N33

Time of ignition for Lambert aim point burn
$00 \times \times \times . \mathrm{h}$
$000 \times X$. min
0XX.XX s
2. V06 N81

Components of ΔV (LV)
XXXX. Xft /s
3. V06 N42

Apocenter altitude	$X \times X X . X \mathrm{nmi}$
Pericenter altitude	$X \times X \times . \times \mathrm{nmi}$
ΔV	$X X X X . \times \mathrm{ft} / \mathrm{s}$

4. V16 N45

Mark (VHF/optics)	$\times \times b \times \times$ marks
Time from Lambert aim point ignition	$\times \times b \times \times \mathrm{min} / \mathrm{s}$
Middle gimbal angle	$\times \times \times . \times \times \mathrm{deg}$

P32-CSM COELLIPTIC SEQUENCE INITIATION (CSI) PROGRAM

Purpose:

1. To calculate parameters associated with the following concentric flight plan maneuvers: the Coelliptic Sequence Initiation (CSI) and the Constant Delta Altitude maneuver (CDH), for Delta V burns.
2. To calculate these parameters based upon maneuver data approved and keyed into the LGC by the astronaut.
3. To display to the astronaut and the ground dependent variables associated with the concentric flight plan maneuvers for approval by the astronaut/ground.
4. To store the CSI target parameters for use by the desired thrusting program.

Assumptions:

1. At a selected TPI time the line of sight between the LM and the CSM is selected to be a prescribed angle (E) from the horizontal plane defined at the active position.

P32 (continued)

2. The time between CSI ignition and CDH ignition must be computed to be greater than 10 minutes for successful completion of the program.
3. The time between CDH ignition and TPI ignition must be computed to be greater than 10 minutes for successful completion of the program.
4. CDH Delta V is selected to minimize the variation of the altitude difference between the orbits.
5. CSI burn is defined such that the impulsive Delta V is in the horizontal plane defined by the active vehicle position at CSI ignition.
6. The pericenter altitude of the orbit following CSI and CDH must be greater than 35,000 feet (lunar orbit) or 85 nmi (earth orbit) for successful completion of this program.
7. The CSI and CDH maneuvers are originally assumed to be parallel to the plane of the LM orbit. However, crew modification of Delta V (LV) components may result in an out-of-plane CSI maneuver.
8. The ISS need not be on to complete this program.
9. This program is selected by the astronaut by DSKY entry.
10. The external Delta V flag is set during this program to designate to the thrusting program that external Delta V steering is to be used.

Selected Displays:

1. V06 N11

Time of CSI ignition
00XXX. h
$000 \times x$. min
0XX.XX s
2. V06 N55

Number of apsidal crossings (N)
Elevation angle (E)
0000x
XXX.XX deg
XXX.XX deg
3. V06 N37

Time of TPI ignition
4. V06N75

Delta altitude (CDH)
$\Delta \mathrm{T}$ (CDH-CSI)
$\Delta \mathrm{T}$ (TPI-CDH)
5. V06 N13 (astronaut initiated display)

Time of CDH ignition
00xXX. h
$000 \times \mathrm{X}$. min
0XX.XX s
6. V06 N81

Components of $\Delta V(L V)$ for CSI
$X X X X . \times \mathrm{ft} / \mathrm{s}$
7. V06 N82

Components of $\Delta \mathrm{V}(\mathrm{LV})$ for CDH
XXXX.X ft/s
8. V16 N45

Marks (VHF/optics)	XXb bX marks
Time from CSI ignition	$\mathrm{XXb} \times \mathrm{min} / \mathrm{s}$
Middle gimbal angle	$\mathrm{XXX.XX} \mathrm{deg}$

Time from CSI ignition
X min
XXX.XX deg
9. V04 N12 (results from V90E)

Option code ID 00002
Option code
$0000 \times$ (1-this vehicle
2-other vehicle)
10. V06 N16 (results from V90E)

Time of event

00XXX. h
 000XX. min
 0XX.XX s

11. V06 N90 (results from V90E)

Y
XXX.XX nmi

YDOT
XXXX.X ft/s
PSI
XXX.XX deg

P33-CSM CONSTANT DELTA ALTITUDE (CDH) PROGRAM

Purpose:

1. To calculate parameters associated with the Constant Delta Altitude maneuver (CDH), for Delta V burns.
2. To calculate these parameters based upon maneuver data approved and keyed into the DSKY by the astronaut.
3. To display to the astronaut and the ground dependent variables associated with the CDH maneuver for approval by the astronaut/ground.
4. To store the CDH target parameters for use by the desired thrusting program.

Assumptions:

1. This program is based upon previous completion of the Coelliptic Sequence Initiation (CSI) program (P32). Therefore:
a. At a selected TPI time (now in storage) the line of sight between the LM and the CSM was selected to be a prescribed angle (E) (now in storage) from the horizontal plane defined at the active vehicle position.
b. The time between CSI ignition and CDH ignition was computed to be greater than 10 minutes.
c. The time between CDH ignition and TPI ignition was computed to be greater than 10 minutes.
d. The variation of the altitude difference between the orbits was minimized.
e. CSI burn is defined such that the impulsive Delta V is in the horizontal plane defined by the active vehicle position at CSI ignition.
f. The pericenter altitudes of the orbits following CSI and CDH were computed to be greater than 35,000 feet (lunar orbit) or 85 nmi (earth orbit).
g. The CSI and CDH maneuvers were assumed to be parallel to the plane of the LM orbit. However, crew modification of Delta $V(L V)$ components may have resulted in an out-of-plane CSI maneuver.
2. The ISS need not be on to complete this program.
3. It is normally required that the ISS be on for 15 minutes prior to a thrusting maneuver.
4. This program is selected by the astronaut by DSKY entry.
5. The external Delta V flag is set during this program to designate to the thrusting program that external Delta V steering is to be used.

Selected Displays:

1. V06 N13

Time of CDH ignition 00XXX h
000XX min 0xX.XX s
2. V06 N75

Delta altitude $(C D H)$	$X X X X . \times \mathrm{nmi}$
$\Delta T(T P I-C D H)$	$X \times b \times \times \mathrm{min} / \mathrm{s}$
ΔT (TPI-NOMTPI)	$X \times b \times \times \mathrm{min} / \mathrm{s}$

3. V06 N81

Components of $\Delta V(L V)$ for $C D H$
XXXX.X ft/s
4. V16 N45

Marks (VHF/optics)
$X \times$ b XX mark
Time from CDH ignition
Middle gimbal angle
$X \times b \times X \mathrm{~min} / \mathrm{s}$
XXX.XX deg
5. V06 N12 (results from V90E)

Option code ID
00002
0000x (1-this vehicle, -other vehicle)
6. V06 N16 (results from V90E)

Time of event
00XXX. h
000XX.min
0XX.XX s
7. V06 N90 (results from V90E)

Y
YDOT
$X X X . X X n m i$
XXXX.X ft/s
XXX.XX deg

P34-CSM TRANSFER PHASE INITIATION (TPI) TARGETING PROGRAM

Purpose:

1. To calculate the required Delta V and other initial conditions required by the $C M C$ for execution of the Transfer Phase Initiation maneuver. Given:
a. TIG (TPI) or the Elevation angle (E) of the CSM/LM LOS at TIG (TPI).
b. Central angle of transfer (CENTANG) from TIG (TPI) to intercept time (TIG(TPF)).
2. To calculate TIG (TPI) given E or E given TIG (TPI).
3. To display to the astronaut and the ground certain dependent variables associated with the maneuver for approval by the astronaut/ground.
4. To store the TPI target parameters for use by the desired thrusting program.

Assumptions:

1. The program must be done over a tracking station for real-time ground participation in CMC data input and output.
2. If P20 is in operation while this program is operating, the astronaut may hold at any flashing display and turn on the Rendezvous Sighting Mark routine (either R21 or R23) and take optics marks, and/or he may allow VHF ranging marks to accumulate.
3. Once the parameters required for computation of the maneuver have been completely specified, the value of the active vehicle central angle of transfer is computed and stored. This number will be available for display to the astronaut through the use of V06 N52.
The astronaut would call this display to verify that the central angle of transfer of the active vehicle is not within 170 to 190 degrees. If the angle is within this zone the astronaut should reassess the input targeting parameters based upon Delta V and expected maneuver time.
4. ISS need not be on to complete this program.
5. This program is selected by DSKY entry.
6. The external Delta V flag is reset during this program to designate to the thrusting program that Lambert steering is to be used.

Selected Displays:

1. V06 N37

Time of TPI ignition
2. V06 N55

R2: Elevation angle
R3: Central angle of passive vehicle
3. V16 N45

Mark (VHF/optics)
Time from TPI ignition
Middle gimbal angle
4. V06 N58

Pericenter altitude
$\Delta \mathrm{V}$ (TPI)
ΔV (TPF)
5. V06 N81

Components of $\Delta \mathrm{V}$ (LV) for TPI
6. V06 N59

Components of ΔV (LOS) for TPI
7. V06 N52

Central angle of active vehicle
8. V04 N12 (results from V90E)

Option code ID
9. V06 N16 (results from V90E)

Time of event
10. V06 N90 (results from V90E)

Y
YDOT
PSI

0002
0000X (1-this vehicle, 2 -other vehicle)
00xXX.
000XX. min
0XX.XX s
XXX.XX deg
XXX.XX deg

XX b XX marks
XXb XX min/s
XXX.XX deg

XXXX.X nmi
XXXX.X ft/s
XXXX.X ft/s

XXXX.X ft/s

XXXX.X ft/s
XXX.XX deg
$00 \times x \times$.
000XX. min
0XX.XX s
XXX.XX nmi

XXXX.Xft/s
XXX.XX deg

P35-CSM TRANSFER PHASE MIDCOURSE (TPM)
 TARGETING PROGRAM

Purpose:

1. To calculate the required Delta V and other initial conditions required by the CMC for CSM exectuion of the next midcourse correction of the transfer phase of an active CSM rendezvous.

Assumptions:

1. If P20 is in operation while this program is operating, the astronaut may hold at any flashing display and turn on the Rendezvous Sighting Mark routine (either R21 or R23) and take optics marks and/or he may allow VHF ranging marks to accumulate.
2. Once the parameters required for computation of the maneuver have been completely specified, the value of the active vehicle central angle of transfer is computed and stored. This number will be available for display to the astronaut through the use of V06 N52.

The astronaut would call this display to verify that the central angle of transfer of the active vehicle is not within 170 to 190 degrees. If the angle is within this zone the astronaut should reassess the input targeting parameters based upon Delta V and the expected maneuver time.
3. The time of intercept (T(INT)) was defined by previous completion of the Transfer Phase Initiation (TPI) program (P34) and is presently available in CMC storage.
4. ISS need not be on to complete this program.
5. The program is selected by DSKY entry.
6. The external Delta V flag is reset during this program to designate to the thrusting program that Lambert steering is to be used.

Selected Displays:

1. V16 N45

Mark (VHF/optics)	$\times \times \mathrm{b} \times \times$ marks
Time from TPM ignition	$\times \times \mathrm{b} \times \times \mathrm{min} / \mathrm{s}$
Middle gimbal angle	$\times \times \times . \times \times \mathrm{deg}$

2. V06 N81

Components of $\Delta V(L V)$ for TPM
XXXX.X ft/s
3. V06 N59

Components of ΔV (LOS) for TPM
$X X X X . X \mathrm{ft} / \mathrm{s}$
4. V06 N52

Central angle of active vehicle $\quad \mathrm{XXX}, \mathrm{XX}$ deg
5. V04 N12 (results from V90E)

Option code ID
00002
Option code
6. V06 N16 (results from V90E)

Time of event
$00 \times X \times$. h
$000 \times X$. min
$0 \times \times . \times \times$ s
7. V06 N90 (results from V90E)

Y
$X X X . X \times \mathrm{nmi}$
YDOT
$X X X X . X \mathrm{ft} / \mathrm{s}$
PSI

P37-RETURN TO EARTH

Purpose:

1. This program will compute a return-to-earth trajectory providing the CSM is outside the lunar sphere of influence at the time of ignition.
2. This program computes and displays a preliminary series of parameters based on a conic trajectory and:
a. Astronaut--specified time of ignition.
b. Astronaut-specified maximum change in velocity.
c. Astronaut-specified reentry angle.

These parameters are:
a. Time from ignition to reentry.
b. Reentry inertial velocity.
c. Reentry flight path angle.
d. Latitude of splash.
e. Longitude of splash.
f. Delta V (LV).
3. When the initial display is satisfactory to the astronaut, the program recomputes the same data, using applicable perturbations to the conic trajectory, and displays the new values.
4. Upon final acceptance by the astronaut, the program computes and stores the target parameters for return to earth for use by the SPS program (P40) or RCS program (P41).
5. Based upon the specified propulsion system the following are displayed:
a. Middle gimbal angle at ignition.
b. Time of ignition (TIG).
c. Time from ignition (TFI).

Assumptions

1. This program assumes that contact with the ground is unavailable, and is completely self-contained.
2. The ISS need not be on to complete this program.
3. If value of VPRED entered in Noun 60 is less than the minimum required to return to earth, the Delta V required vector will be computed based on a minimum value. If value entered is greater than the minimum required to return to earth, then the astronaut desired value will be used to compute the Delta V required vector. The computed Delta V required vector will be displayed in Noun 81.
4. The DAP Data Load routine (RO3) should be performed prior to completion of this program.
5. This program is selected by DSKY entry.
6. The reentry range calculation provided by the AUGE KUGEL routine may be overwritten by a PAD loaded single precision erasable.
7. The external Delta V flag is reset during this program to designate to the thrusting program that Lambert steering is to be used.

Selected Displays:

1. V06 N33
Time of return to earth ignition
00XXX. h
000XX. min
0XX.XX s

P37 (continued)

2. V06 N60

R2: Predicted velocity at 400 kft
XXXXX. ft/s
R3: Predicted flight path angle at 400 k ft
XXX.XX deg
3. V06 N61

Impact latitude
XXX.XX deg (+ north)

Impact longitude
XXX.XX deg (+ east)
4. V06 N39
ΔT for transfer
5. V06 N81

Components of ΔV (LV) for transfer
00XXX. h
$000 \times x$. min
0XX.XX s
6. V04 N06 (thrust program option)

Option code ID
XXXX.X ft/s

00007
Option code
0000X (1-SPS (P-40), 2-RCS (P-41))
7. V16 N45

Marks (VHF/optics)
$X \times b \times X$ marks
$X X b \times X \mathrm{~min} / \mathrm{s}$
XXX.XX deg

P38-CSM STABLE ORBIT RENDEZVOUS (SOR)

 TARGETING PROGRAMPurpose:

1. To calculate the required Delta V and other initial conditions required by the CMC for CSM execution of the first phase of the Stable Orbit Rendezvous maneuver. Given:
a. Time of ignition (TIG).
b. Central angle of transfer (CENTANG) from TIG to intercept time.
c. The offset of the stable orbit point specified as a distance along the passive vehicle orbit.
2. To calculate the required Delta V and other initial conditions required by the $C M C$ for CSM execution of the second phase of the Stable Orbit Rendezvous maneuver. Given:
a. A respecification of 1 (a) above.
b. An optional respecification of 1 (b) above.
3. To calculate these parameters based upon maneuver data approved and keyed into the CMC by the astronaut.
4. To display to the astronaut and the ground certain dependent variables associated with the maneuver for approval by the astronaut/ground.
5. To store the SOR Phase 1 and Phase 2 target parameters for use by the desired thrusting program.

Assumptions:

1. The stable orbit point is defined as the final position (at completion of the second phase) of the active vehicle relative to the passive vehicle.

P38 (continued)

2. If P 20 is in operation while this program is operating the astronaut may hold at any flashing display and turn on the Rendezvous Sighting Mark routine (either R21 or R23) and take optics marks and/or he may allow VHF ranging marks to accumulate.
3. Once the parameters required for computation of the maneuver have been completely specified, the value of the active vehicle central angle of transfer is computed and stored. This number will be available for display to the astronaut through the use of V06 N52.
The astronaut would call this display to verify that the central angle of transfer of the active vehicle is not within 170 to 190 degrees. If the angle is within this zone, the astronaut should reassess the input targeting parameters based upon Delta V and the expected maneuver time.
4. The second phase of this program requires the TIG input be biased as a function of TPF and any midcourse corrections performed in the Stable Orbit Midcourse (SOM) program (P39).
5. ISS need not be on to complete this program.
6. This program is selected by entry.
7. The external Delta V flag is reset during this program to designate to the thrusting program that Lambert steering is to be used.

Selected Displays:

1. V06 N33

Time of SOI ignition
2. V06 N55

R3: Central angle of passive vehicle
3. V04 N06 (specify SOR phase)

Option code ID
Option code
4. V06 N57

Offset of the stable orbit point
5. V06 N34

Time of arrival at stable orbit
6. V16 N45

Marks (VHF/optics)
Time of SOI ignition
Middle gimbal angle
7. V06 N58

Pericenter altitude (SOR)
ΔV (SOR)
ΔV (SOR-final)
8. V06 N81

Components of ΔV (LV) for SOR
9. V06 N52

Central angle of active vehicle

00XXX. h
000XX. min
0XX.XX s
XXX.XX deg

00005
0000× (1-first pass, 2-second pass)

XXXX.X nmi

00XXX. h
000XX. min
0XX.XX s
$X X b \times X$ marks
$X \times$ b XX min/s
XXX.XX deg

XXXX.X nmi
XXXX.X ft/s
XXXX.X ft/s

XXXX.X ft/s

P39-CSM STABLE ORBIT MIDCOURSE (SOM)

 TARGETING PROGRAM
Purpose:

1. To calculate the required Delta V and other initial conditions required by the $C M C$ for CSM execution of the next possible midcourse correction of the stable orbit transfer phase of an active CSM rendezvous.
2. To compute and display suitable information to enable the crew to enter the final rendezvous phase at the correct time to complete the required thrusting maneuver

Assumptions

1. ISS need not be on to complete this program.
2. If P20 is in operation while this program is operating, the astronaut may hold at any flashing display and turn on the Rendezvous Sighting Mark routine (either R21 or R23) and take optics marks, and/or he may allow VHF ranging marks to accumulate.
3. Once the parameters required for computation of the maneuver have been completely specified, the value of the active vehicle central angle of transfer is computed and stored. This number will be available for display to the astronaut through the use of V06 N52.
The astronaut would call this display to verify that the central angle of transfer of the active vehicle is not within 170 to 190 degrees. If the angle is within this zone the astronaut should reassess the input targeting parameters based upon Delta V and the expected maneuver time.
4. The time of intercept (T(INT)) was defined by previous completion of the Stable Orbit Rendezvous (SOR) program (P38) and is presently available in CMC storage.
5. This program is selected by DSKY entry.
6. The external Delta V flag is reset during this program to designate to the thrusting program that Lambert steering is to be used.

Selected Displays:

1. V06 N81

Components of $\Delta V(L V)$ for SOM
XXXX.X ft/s
2. V16 N45

Marks (VHF/optics)	$\mathrm{XXb} \times \times \mathrm{marks}$
Time from SOM ignition	$\times \times \mathrm{b} \times \mathrm{min} / \mathrm{s}$
Middle gimbal angle	$\mathrm{XXX} . \times \times \mathrm{deg}$

3. V06 N52

Central angle of active vehicle
XXX.XX deg

P40-SPS PROGRAM

Purpose:

1. To compute a preferred IMU orientation and a preferred vehicle attitude for an SPS thrusting maneuver.
2. To calculate and display the gimbal angles which would result from the present IMU orientation if the vehicle is maneuvered to the preferred vehicle attitude for an SPS thrusting maneuver. The crew is thereby given an opportunity to perform the maneuver with:
a. The present IMU orientation, if the middle gimbal angle is not greater than 45 degrees, and the IMU has been aligned within the last 3 hours.
b. A new orientation achieved by selection of P52.
3. To maneuver the vehicle to the thrusting attitude.
4. To control the GNCS during countdown, ignition, thrusting, and thrust termination of a GNCS controlled SPS maneuver.

Assumptions:

1. The target parameters have been calculated and stored in the CMC by prior execution of a prethrusting program.
2. The required steering equations are identified by the prior prethrust program, which either set or reset the external Delta V steering flag. For external Delta V steering, VG is calculated once for the specified time of ignition. Thereafter, both during thrusting and until the crew notifies the CMC trim thrusting has been completed, the CMC updates VG only as a result of accelerometer inputs.
For Lambert steering, VG is calculated and updated similarly; however, it is also updated periodically by Lambert solutions to correct for changes in the CSM state vector.
3. It is normally required that the ISS be on for 15 minutes prior to a thrusting maneuver.
4. The TTE clock is set to count to zero at TIG.
5. Engine ignition may be slipped beyond the established TIG if desired by the crew or if integration can not be completed on time.
6. The SPS thrusting program does not monitor the SC control discrete (Channel 31, Bit 15) during thrusting. This means that the CMC will continue to generate engine actuator commands, SPS Engine On discrete, and FDAI attitude erorr needle commands until the CMC solution indicates Engine Off at which time these commands and the Engine On discrete are terminated. However, this program is not written to take into account the situation where control may be taken away from the GNCS and then given back, and it is not recommended. In event control is taken away from the GNCS, the CMC will only be responsible for computation of position and velocity.
7. Routine R03 has been performed prior to selection of this program. In order for the GNCS to perform the attitude maneuver and control the thrusting maneuver the astronaut must key in V46E at some time prior to the attitude maneuver
8. The value of Delta V required will be stored in the local vertical coordinate system and is available during this program until average g turn-on by keying in V06 N81E
9. The Orbit Parameter Display routine (R30) may be called during this program by keying in V82E.
10. This program is selected by DSKY entry.
11. The CMC issues an SIVB cutoff command (Channel 12, Bit 14) for possible backup use. This signal is recognized by Saturn only if the Launch Vehicle Guidance switch is set to CMC.

Selected Displays:

1. V50 N18

Desired gimbal angle
2. V06 N18

Final gimbal angles
3. V50 N25 (gimbal drive test)

Checklist code
4. V06 N40

Time from SPS ignition/cutoff
Velocity to be gained
ΔV (accumulated)
$X \times b \times X \mathrm{~min} / \mathrm{s}$
OG $X X X . X X$ deg
IG $X X X . X \times$ deg
MG $X X X . \times X$ deg

OG XXX . XX deg
IG $X X X . X X$ deg
MG $X \times X . X \times \operatorname{deg}$

00204

XXXX.X ft/s
$X X X X . X \mathrm{ft} / \mathrm{s}$

P40 (continued)

5. V99 N40 (request engine on enable)

Display same as Item 4 above.
6. V97 N40 (perform engine fail procedure) Display same as Item 4 above.
7. V16 N85

Components of velocity to be gained (body)
XXXX. $\mathrm{Xft} / \mathrm{s}$
8. V16 N40

Display same as Item 4 above.
9. V04 N06 (results from V82E)

Option code ID	00002
Option code	$0000 \times(1-$ this vehicle
	$2-$ other vehicle)

10. V16 N44 (results from V82E)

Apocenter altitude
$X X X X . X \mathrm{nmi}$
$X X X X . X \mathrm{nmi}$
$X X b \times X \mathrm{~min} / \mathrm{s}$

P41-RCS PROGRAM

Purpose:

1. Compute a preferred IMU orientation and preferred vehicle attitude for an RCS thrusting maneuver.
2. Calculate the gimbal angles which would result from the present IMU orientation if the vehicle $+X$-axis is aligned to the thrust vector. The crew is thereby given an opportunity to perform the maneuver with:
a. The present IMU orientation (not recommended if middle gimbal angle is greater than 45 degrees). If the IMU has not been aligned within the last 3 hours, realignment is desirable
b. A new orientation achieved by selection of P52.
3. Do the vehicle maneuver to the thrusting attitude.
4. Provide suitable displays for manual execution of the thrusting maneuver.

Assumptions

1. The target parameters have been calculated and stored in the CMC by prior execution of a prethrusting program.
2. The required steering equations are identified by the prior prethrust program, which either set or reset the external Delta V steering flag. For external Delta V steering, VG is calculated once for the specified time of ignition. Thereafter, both during thrusting and until the crew notifies the CMC trim thrusting has been completed, the CMC updates VG only as a result of accelerometer inputs.
For Lambert steering, VG is calculated and updated similarly. However, it is also updated periodically by Lambert solutions to correct for changes in the CSM state vector.
3. It is normally required that the ISS be on for 15 minutes prior to a thrusting maneuver.
4. The TTE clock is set to count to zero at TIG.
5. Translation initiation may be slipped beyond the established TIG if desired by the crew or if integration cannot be completed on time.
6. This program is selected by DSKY entry.

P41 (continued)

7. Routine R03 has been performed prior to selection of this program.
8. The value of Delta V required will be stored in the local vertical coordinate system and is available during this program until Average G turn-on by keying in V06 N81E.
9. The Orbit Parameter Display routine (R30) may be called during this program by keying in V82E.

Selected Displays:

1. V50 N18

Desired gimbal angles
2. V06 N18

Final gimbal angles
3. V06 N85

> Components of velocity to be gained (body)
4. V16 N85

Display same as Item 3 above.
5. V06 N81

Components of initial velocity to be gained (LV) XXXX.X ft/s
6. V04 N06 (results from V82E)
Option code ID 00002

Option code
7. V16 N44 (results from V82E)

Apocenter altitude
Pericenter altitude
TFF

OG XXX.XX deg
IG $X X X . X X$ deg
MG XXX.XX deg

OG XXX.XX deg
IG XXX.XX deg
MG $X X X . X X$ deg

- V16

Option code ID
00002
0000X (1-this vehicle 2-other vehicle)

XXXX.X nmi
XXXX.X nmi
$X X b \times X \mathrm{~min} / \mathrm{s}$

P47-THRUST MONITOR PROGRAM

Purpose:

1. To monitor vehicle acceleration during a non-GNCS-controlled thrusting maneuver.
2. To display the Delta V applied to the vehicle by this thrusting maneuver.

Assumptions:

1. It is normally required that the IMU be on for 15 minutes prior to a thrusting maneuver.
2. The responsibility of avoiding gimbal lock during execution of this program is upon the astronaut.
3. This program is normally used during rendezvous final phase. If the crew desires to do any final phase thrusting maneuvers automatically under GNCS control, they must be accomplished via selection of the Transfer Phase Initiation (TPI) program (P34) and then the SPS Thrusting program (P40) or the RCS Thrusting program (P41).
4. Range, Range Rate, and Theta may be displayed during this program by calling the Rendezvous Parameter Display Routine No. 1 (R31) with V83E.
5. Range, Range Rate, and Phi may be displayed during this program by calling the Rendezvous Parameter Display Routine No. 2 (R34) with V85E.
6. VI, H, and H-dot may be called by keying in V16 N62E. The display of H in lunar orbit will be invalid.
7. The Orbit Parameter Display routine may be called during this program by keying in V82E.
8. This program should be turned on just prior to the planned thrusting maneuver and terminated as soon as possible following the maneuver in order to keep errors of bias and AVERAGE G at a minimum.
9. This program is selected by the astronaut by DSKY entry.

Selected Displays:

1. V16 N83

Components of ΔV (body) $\quad X X X X . X \mathrm{ft} / \mathrm{s}$
2. V16 N54 (results from V83E)

Range	$X \times \times . \times \times \mathrm{nm}$
Range rate	$\times \times \times \times . \times \mathrm{ft} / \mathrm{s}$
Theta	$X \times \times . \times \times \mathrm{deg}$

3. V16 N53 (results from V85E)

Range	$X \times \times . \times \times \mathrm{nmi}$
Range rate	$\times \times \times \times . \times \mathrm{ft} / \mathrm{s}$
Phi	$X \times \times . \times \times \mathrm{deg}$

4. V16 N62

Magnitude of inertial velocity
XXXXX.ft/s
Altitude rate
Altitude (invalid in moon orbit)
XXXXX. ft/s
XXXX.X nmi
5. V04 N06 (results from V82E)

Option code ID
00002
Option code
0000X (1-this vehicle 2-other vehicle)
6. V16 N44 (results from V82E)

Apocenter altitude
$x X X X . X$ nmi
Pericenter altitude
XXXX.X nmi $X \times b \times X \mathrm{~min} / \mathrm{s}$

P51-IMU ORIENTATION DETERMINATION PROGRAM

Purpose:

1. To determine the inertial orientation of the IMU using sightings on two celestial bodies using the scanning telescope or the sextant.

Assumptions

1. The IMU may be:
a. Off (standby)
b. On, and aligned or not aligned since turn-on.

If (a) is true, the IMU must be turned on before this program can be performed.
If (b) is true, this program can be completed.
2. There are no restraints upon the CSM attitude control modes in this program.
3. Time and RCS fuel may be saved, and subsequent IMU alignment decisions greatly simplified if this program is performed in such a way as to leave the IMU inertially stabilized at an orientation as close as possible to the optimum orientation required by future CMC programs.
4. The program is selected by DSKY entry.

P51 (continued)

Selected Displays:

1. V50 N25 (acquire celestial body)

Checklist code 00015
2. V41 N22

Gimbal angles resulting from coarse align
3. V51 (please mark)
4. V50 N25 (terminate mark sequence)

Checklist code
00016
5. V01 N71 (after mark)

Celestial body code
000xX
6. V06 N88

Components of celestial body $1 / 2$ unit vector $X X X X X$
7. V06 N05

Sighting angle difference

P52-IMU REALIGN PROGRAM

Purpose:

1. To align the IMU from a "known" orientation to one four orientations selected by the astronaut using sightings on two celestial bodies with the scanning telescope by the astrona
or the sextant:
a. Preferred Orientation (00001)

An optimum orientation for a previously calculated maneuver. This orientation must be calculated and stored by a previously selected program.
b. Landing Site Orientation (00004)
$X_{S M}=$ Unit ($R_{\text {LS }}$)
$Y_{S M}=$ Unit $\left(Z_{S M} \times X_{S M}\right)$
$Z_{S M}=$ Unit $\left(H_{C S M} \times X_{S M}\right)$
where
The origin is the center of the moon.
$R_{\text {LS }}=$ The position of the most recently defined site at time, T (align) selected by the astronaut.
$H_{C S M}=$ The angular momentum vector of the CSM $\left(R_{\text {CSM }} \times V_{\text {CSM }}\right)$ at time T (align) selected by the astronaut.
c. Nominal Orientation (00002)

$$
\begin{aligned}
& X_{S M}=\text { Unit }\left(Y_{S M} \times Z_{S M}\right) \\
& Y_{S M}=\text { Unit }(V \times R) \\
& Z_{S M}=\text { Unit }(-R)
\end{aligned}
$$

where
R = The geocentric (earth orbit) or selenocentric (lunar orbit) radius vector at time T (align) selected by the astronaut.
$\mathrm{V}=$ the inertial velocity vector at time T (align) selected by the astronaut.
d. REFSMMAT (00003)

Assumptions:

1. The docked configuration may be SIVB/CSM, LM/CSM, or CSM. The present configuration should have been entered into the CMC by completion of the DAP Data Load routine R03.
2. There are no restraints upon the CSM attitude control modes in this program.
3. This program makes no provision for an attitude maneuver to return the vehicle to a specific attitude. Such a maneuver, if desired, must be done manually. An option is provided however to point the sextant at astronaut or CMC selected stars either manually by crew input or automatically under CMC control.
4. The ISS is on and has been aligned to a known orientation which is stored in the CMC (REFSMMAT). The present IMU orientation differs from that to which it was last aligned only due to gyro drift (that is, neither gimbal lock nor IMU power interruption has occurred since the last alignment).
5. The landing site orientation is used for:
a. Aligning the CSM stable member to the same orientation as the LM stable member prior to LM/CSM separation.
b. Aligning the CSM stable member to the same orientation as the LM stable member prior to LM ascent from the lunar surface.
6. The program is selected by the astronaut by DSKY entry.

Selected Displays:

1. V04 N06

Option code ID
Option code
2. V06 N34

Time of alignment
3. V06 N89 (landing site)

Latitude
Longitude/2
Altitude
4. V06 N22

Gimbal angles which will result from selected IMU orientation
5. V50 N25 (coarse align)

Checklist code
6. V16 N20

Actual gimbal angles
7. V50 N25 (acquire celestial body)

Checklist code
8. V50 N18

Desired gimbal angles
9. V06 N18

Final gimbal angles

00001
0000× (1-preferred, 2-nominal, 3-REFSMMAT, 4-landing site)

00XXX. h
$000 \times x$. min
0XX.XX s
XX.XXX deg (+ north)
$X X . X X X \operatorname{deg}$ (+ east)
XXX.XX nmi

OG $X X X . X X$ deg
IG $X X X . X X$ deg
MG XXX.XX deg

00013

OG XXX.XX deg
IG $X X X . X X$ deg
MG $X X X . X X$ deg

00015

OG $X X X . X X$ deg
IG $x \times x . X X$ deg
MG XXX.XX deg

OG $X X X . X X$ deg
IG $X X X . X X$ deg
MG XXX.XX deg
10. V51 (please mark)
11. V50 N25 (terminate mark sequence)

Checklist code
12. V01 N70

Celestial body code (before mark) 000XX
13. V06 N88

Components of celestial body $1 / 2$ unit vector . XXXXX
14. V06 N92

Desired shaft angle	$X X X . X X$ deg
Desired trunnion angle	$X X . X X X$ deg

15. V01 N71

Celestial body code (after mark) 000XX
16. V06 N05

Sighting angle difference XXX.XX deg
17. V06 N93

Gyro torque angles $\quad \mathrm{XXX.XXX}$ deg
Y XX.XXX deg
$X X . X X X$ deg
18. V50 N25 (fine align)

Checklist code
00014

P53-BACKUP IMU ORIENTATION DETERMINATION PROGRAM

Purpose:

1. To determine the inertial orientation of the IMU using a backup optical device.

Assumptions

1. The IMU may be:
a. Off (standby).
b. On, and aligned or not aligned since turn-on.

If (a) is true, the IMU must be turned on before this program can be performed
If (b) is true, this program can be completed.
2. This program is identical to P51 except that R56 is called in place of R53.
3. The CSM attitude control mode selected is at the option of the crew.
4. Time and RCS fuel may be saved and subsequent IMU alignment decisions greatly simplified if this program is performed in such a way as to leave the IMU inertially stabilized at an orientation as close as possible to the optimum orientation required by future CMC programs.
5. The program is selected by the astronaut by DSKY entry

Selected Displays:

1. V50 N25 (acquire celestial body)

Checklist code
00015
2. V41 N22

Gimbal angles resulting from coarse align
3. V06 N92

Shaft angle	$X X X . X X$ deg
Trunnion angle	$X X . X X X$ deg

4. V53 (perform alternate LOS mark)
5. V50 N25 (terminate mark sequence)

Checklist code
00016
6. V01 N71

Celestial body (after mark)
000xx
7. V06 N88

Components of celestial body $1 / 2$ unit vector
. XXXX
8. V06 N05

Sighting angle difference \quad XXX. XX deg

P54-BACKUP IMU REALIGN PROGRAM

Purpose

1. To align the IMU from a "known" orientation to one of four orientations selected by the astronaut using sightings on two celestial bodies with a backup optical device: a. Preferred Orientation (00001)

An optimum orientation for a previously claculated maneuver. This orientation must be calculated and stored by a previously selected program.
b. Landing Site Orientation (00004)

$$
\begin{aligned}
& X_{S M}=\text { Unit }\left(R_{L S}\right) \\
& Y_{S M}=\text { Unit }\left(Z_{S M} \times X_{S M}\right) \\
& Z_{S M}=\text { Unit }\left(H_{C S M} \times X_{S M}\right)
\end{aligned}
$$

where
The origin is the center of the moon.
$R_{\text {LS }}=$ The position of the most recently defined landing site at time T (align) selected by the astronaut.
$H_{C S M}=$ The angular momentum vector of the CSM $\left(R_{C S M} \times V_{C S M}\right)$ at time T (align) selected by the astronaut.
c. Nominal Orientation (00002)

$$
\begin{aligned}
& X_{S M}=\text { Unit }\left(Y_{S M} \times Z_{S M}\right) \\
& Y_{S M}=\text { Unit }(V \times R) \\
& Z_{S M}=\text { Unit }(-R)
\end{aligned}
$$

where
$R=$ The geocentric (earth orbit) or selenocentric (lunar orbit) radius vector at time T (align) selected by the astronaut.
$\mathrm{V}=$ The inertial velocity vector at time T (align) selected by the astronaut. d. REFSMMAT (00003)

Assumptions:

1. The docked configuration may be SIVB/CSM, LM/CSM, or CSM. The present configuration should have been entered into the CMC by completion of the DAP Data Load routine (RO3).
2. There are no restraints upon the CSM attitude control modes in this program.
3. This program makes no provision for an attitude maneuver to return the vehicle to a specific attitude. Such a maneuver, if desired, must be done manually. An option is provided however to point the sextant at astronaut or CMC selected stars either manually by crew input or automatically under CMC control.
4. The ISS is on and has been aligned to a known orientation which is stored in the CMC (REFSMMAT). The present IMU orientation differs from that to which it was last aligned only due to gyro drift (that is, neither gimbal lock nor IMU power interruption has occurred since the last alignment)
5. The landing site orientation is used for:
a. Aligning the CSM stable member to the same orientation as the LM stable member prior to LM/CSM separation.
b. Aligning the CSM stable member to the same orientation as the LM stable member prior to LM ascent from the lunar surface.
6. This program is identical to P52 except that R56 is called in place of R52 and R53.
7. The program is selected by DSKY entry.

Selected Displays:

1. V04 N06

Option code ID
 Option code

2. V06 N34

Timing of alignment
3. V06 N89 (landing site)

Latitude
Longitude/2
Altitude

00001
0000× (1-preferred, 2-nominal, 3-REFSMMAT, 4-landing site)
$00 \times x \times \mathrm{h}$
$000 \times \times$ min
0XX.XX s
XX.XXX deg (+ north)
$X X . X X X \operatorname{deg}$ (+ east)
XXX.XX nmi
4. V06 N22

Gimbal angles which will result from selected
IMU orientation
5. V 50 N 25 (acquire celestial body)

Checklist code
OG $\mathrm{XXX} . \mathrm{XX}$ deg
IG $X X X . X X$ deg
MG XXX.XX deg

00015
6. V01 N70

Celestial body code (before mark)
000XX
7. V06 N88

Components of celestial body $1 / 2$ unit vector
8. V06 N94
Shaft angle $\quad \mathrm{XXX} . \mathrm{XX}$ deg

Trunnion angle
XX.XXX deg
9. V53 (perform alternate LOS mark)
10. V50 N25 (terminate mark sequence)

Checklist code
00016
11. V01 N71

Celestial body code (after mark) 000xX
12. V 06 N 05

Sighting angle difference $\quad \mathrm{XXX} . \mathrm{XX}$ deg
13. V06 N93

Gyro torquing angles $\quad \mathrm{XXX} . \times \times \mathrm{Xdeg}$
Y $X X . X X X$ deg
$Z \quad X X . X X X$ deg
14. V50 N25 (fine align)

Checklist code
00014

Purpose:

1. To start navigation, check IMU alignment, and provide entry monitor system initialization data.

Assumptions:

1. The program is entered with adequate freefall time to complete the maneuvers from a worst case starting attitude.
2. The ISS is on and precisely aligned to a satisfactory orientation.
3. The program is selected by the astronaut by DSKY entry.

Selected Displays:

1. V06 N61

Impact latitude	XXX.XX deg (+ north)
Impact longitude	XXX.XX deg (+ east)
Heads up/down	00001 (+ heads up/
	lift down)

2. V06 N60

Maximum predicted acceleration
XXX.XXg

Predicted velocity at 400 k ft
Predicted flight path angle at 400 k ft
$X X X X X . f t / s$
$X X X . X X$ deg
3. V06 N63

Range to go from EMS altitude
XXXX.X nmi
Predicted inertial velocity
Time to EMS altitude
XXXXX.ft/s
$X X b \times X \mathrm{~min} / \mathrm{s}$

P62-ENTRY-CM/SM SEPARATION AND PREENTRY MANEUVER PROGRAM

Purpose:

1. To notify crew when the GNCS is prepared for CM/SM separation.
2. To orient the CM to the correct attitude for atmospheric entry.

Assmptions:

1. The program is entered with adequate freefall time to accomplish CM/SM separation and complete the maneuver from a worst case starting attitude.
2. The IMU is satisfactorily aligned for entry.
3. The program is automatically selected by the Entry-Preparation program (P61) or it may be selected manually.

Selected Displays:

1. V50 N25 (CM/SM separation)
Checklist code
00041
2. V06 N61

Impact latitude
$X X X . X X$ deg (+ north)
Impact longitude
$X X X . X X \operatorname{deg}(+$ east)
Heads up/down
00001 (+ heads up/
3. V06 N22

Final gimbal angles at EI

Purpose:

1. To initialize the entry equations.
2. To continue to hold the CM to the correct attitude with respect to the atmosphere for the onset of entry deceleration.
3. To establish entry DSKY displays.
4. To sense 0.05 g and display this event to the crew by selecting the Entry-Post 0.05 g program (P64).

Assumptions:

1. The program is automatically selected by the Entry-CM/SM Separation and Preentry Maneuver program (P62).
2. The astronaut may monitor N64 (G, VI, RTOTARG) during this program by keying in V16 N64E. He also may monitor N68 (BETA, VI, HDOT) by keying in V16 N68E.

Selected Displays:

1. V06 N64

Drag acceleration	$X X X . X X$ g
Inertial velocity	$X X X X X . \mathrm{ft} / \mathrm{s}$
Range to splash	$X X X X . X$ nmi + is overshoot)

2. V16 N64

Displays same as Item 1 above
3. V16 N68

Commanded bank angle	$\mathrm{XXX.XXdeg}$
Inertial velocity	$\mathrm{XXXXX.ft/s}$
Altitude rate	$\mathrm{XXXXX} \mathrm{ft} / \mathrm{s}$

Purpose:

1. To start entry guidance at 0.05 g selecting roll attitude, constant drag level, and drag threshold, KA, which are keyed to the 0.05 g point.
2. Select final phase (P67) when 0.2 g occurs if $\mathrm{V}<27,000 \mathrm{ft} / \mathrm{s}$ at 0.05 g .
3. Iterate for upcontrol solution (P65) if V> $27,000 \mathrm{ft} / \mathrm{s}$ and if altitude rate and drag level conditions are satisfied.
4. Select final phase (P67) if no upcontrol solution exists with $\mathrm{VL}>18,000 \mathrm{ft} / \mathrm{s}$.
5. To establish the 0.05 g mode in SCS.
6. To continue entry DSKY displays.

Assumptions:

1. The program is automatically selected by the Entry-Initialization program (P63).
2. The astronaut may monitor N64 (G, VI, RTOTARG) during this program by keying in V16 N64E. He also may monitor N68 (BETA, VI, HDOT) by keying in V16 N68E.

Selected Displays:

1. V06 N68

Commanded bank angle	$\mathrm{XXX} . \mathrm{XX} \mathrm{deg}$
Inertial velocity	$\mathrm{XXXXX} . \mathrm{ft} / \mathrm{s}$
Altitude rate	$\mathrm{XXXXX} . \mathrm{ft} / \mathrm{s}$

2. V16 N68

Displays same as Item 1 above
3. V16 N64

Drag acceleration	$X X X . X X \mathrm{~g}$
Inertial velocity	$X X X X X . \mathrm{ft} / \mathrm{s}$
Range to splash	

P65-ENTRY-UPCONTROL PROGRAM

Purpose:

1. To execute Entry-Upcontrol guidance which steers the CM to a controlled exit (skip out) condition.
2. To establish Entry-Upcontrol displays which are used in conjunction with the EMS to determine for the astronaut if the backup procedures should be implemented.
3. To sense exit (drag acceleration less than $\mathrm{Q} 7 \mathrm{ft} / \mathrm{s}^{2}$) and thereupon to select the Entry-Ballistic Phase program (P66).
4. Where RDOT is negative and the V is sufficiently low (V-VL-C18 neg), the program will exit directly to P67 (Final Phase).

Assumptions

1. This program is automatically selected by the Entry-Post 0.05 g program (P64) when constant drag control has brought range prediction to within 25 nmi of the desired range. It is skipped in earth orbit missions.
2. The astronaut may monitor N64 (G, VI, RTOTARG) during this program by keying in V16 N64E. He may also monitor N68 (BETA, VI, HDOT) by keying in V16 N68E.
3. Manual response to N69 is not necessary to terminate P65. Selection of either P66 or P67 by entry guidance provides automatic termination.

Selected Displays:

1. V16 N69

Commanded bank angle	XXX.XX deg
Drag level	XXX.XX g
Skip out velocity	XXXXX. ft/s
6 N68	
Commanded bank angle	XXX. $\mathrm{X} \times$ deg
Inertial velocity	XXXXX. ft/s
Altitude rate	XXXXX. ft/s
6 N64	
Drag acceleration	XXX. XXg
Inertial velocity	XXXXX.ft/s
Range to splash	$\mathrm{XXXX} . \mathrm{X} \mathrm{nmi} \mathrm{(+} \mathrm{is} \mathrm{overshoot)}$

2. V06 N68

Commanded bank angle
XXX.XX deg

Inertial velocity
Altitude rate
XXX.XXg

Inertial velocity
XXXX.X nmi (+ is overshoot)
4. V16 N68

Displays same as Item 2 above

P66-ENTRY-BALLISTIC PROGRAM

Purpose:

1. To maintain CM attitude during ballistic (skip out) phase for atmospheric reentry.
2. To sense reentry (drag acceleration builds up to $\mathrm{Q} 7+0.5 \mathrm{ft} / \mathrm{s}^{2}$ or approximately 0.2 g) and thereupon to select the Entry-Final Phase program (P67).

Assumptions:

1. This program is automatically selected by the Entry-Upcontrol program (P65) when drag acceleration becomes less than $\mathrm{Q} 7 \mathrm{ft} / \mathrm{s}^{2}$.
2. The astronaut may monitor N64 (G, VI, RTOTARG) during this program by keying in V16 N64E. He may also monitor N68 (BETA, VI, HDOT) by keying in V16 N68E.

Selected Displays:

1. V06 N22

Desired gimbal angles
 OG XXX.XX deg

IG $X X X . X X$ deg
MG $X X X . X X$ deg
2. V16 N64

Drag acceleration	$X X X . X X \mathrm{~g}$
Inertial velocity	$X X X X X . \mathrm{ft} / \mathrm{s}$
Range to splash	$X X X X . X$ nmi + is overshoot $)$

3. V16 N68

Commanded bank angle
XXX.XX deg

Inertial velocity
XXXXX. ft/s
Altitude rate
XXXXX. ft/s

P67-ENTRY-FINAL PHASE PROGRAM

Purpose:

1. To continue entry guidance after $07+0.5 \mathrm{ft} / \mathrm{s}^{2}$ (or approximately 0.2 g) until termination of steering when the CM velocity WRT earth $=1,000 \mathrm{ft} / \mathrm{s}$ (altitude is approximately $65,000 \mathrm{ft}$).
2. To continue entry DSKY displays.

Assumptions:

1. The program is automatically selected by:
a. P65 when RDOT is negative and the V is sufficiently low (V-VI-C18 neg).
b. P66 when drag acceleration builds up to $07+0.5 \mathrm{ft} / \mathrm{s}^{2}$ (or approximately 0.2 g).
c. P64 if no upcontrol solution exists with VL $>18,000 \mathrm{ft} / \mathrm{s}$.
2. The astronaut may monitor N64 (G, VI, RTOTARG) during this program by keying in V16 N64E. He also may monitor N68 (BETA, VI, HDOT) by keying in V16 N68E.

Selected Displays:

1. V06 N66

Commanded bank angle
Crossrange error
Downrange error
2. V16 N67

Range to target
Present latitude
Present longitude
3. V16 N64

Drag acceleration
Inertial velocity
Range to splash
XXX.XX deg

XXXX.X nmi (+ south)
XXXX.X nmi (+ overshoot

XXXX.X nmi (+ overshoot)
XXX.XX (+ north)
XXX.XX (+ east)
XXX.XX g

XXXXX. ft/s
XXXX.X nmi (+ overshoot)
4. V16 N68

Commanded bank angle	$X X X . X X \mathrm{deg}$
Inertial velocity	$X X X X X . \mathrm{ft} / \mathrm{s}$
Altitude rate	$X X X X X . \mathrm{ft} / \mathrm{s}$

P72-LM COELLIPTIC SEQUENCE INITIATION (CSI) PROGRAM

Purpose:

1. To calculate parameters associated with the following concentric flight plan maneuvers for LM execution of the maneuvers under the control of the LGC; the Coelliptic Sequence Initiation (CSI) and the Constant Delta Altitude maneuver (CDH).
2. To calculate these parameters based upon maneuver data approved and keyed into the CMC by the astronaut.
3. To display to the astronaut and the ground dependent variables associated with the concentric flight plan maneuvers for approval by the astronaut/ground.

Assumptions:

1. At a selected TPI time the line of sight between the CSM and the LM is selected to be a prescribed angle (E) from the horizontal plane defined at the LM position
2. The time between CSI ignition and CDH ignition must be computed to be greater than 10 minutes for successful completion of the program.
3. The time between CDH ignition and TPI ignition must be computed to be greater than 10 minutes for successful completion of the program.
4. CDH Delta V is selected to minimize the variation of the altitude difference between the orbits.
5. CSI burn is defined such that the impulsive Delta V is in the horizontal plane defined by the active vehicle position at CSI ignition.
6. The pericenter altitude of the orbit following CSI and CDH must be greater than 35,000 feet (lunar orbit) or 85 nmi (earth orbit) for successful completion of this program.
7. The CSI and CDH maneuvers are assumed to be parallel to the plane of the CSM orbit. However, crew modification of Delta V(LV) components may result in an out-of-plane CSI maneuver.
8. The ISS need not be on to complete this program.
9. This program is selected by the astronaut by DSKY entry.

Selected Displays:

1. V06 N11

Time of CSI ignition
2. V06 N55

Number of apsidal crossings (N)
Elevation angle (E)
Central angle of passive vehicle
3. V06 N37

Time of TPI ignition

00XXX. h
$000 \times X$. min
0XX.XX s

0000x
XXX.XX deg
XXX.XX deg

00XXX. h
000XX. min
0XX.XX s

P72 (continued)

4. V16 N45

Marks (VHF/optics)	$\times \times b \times \times$ marks
Time from CSI ignition	$\times \times b \times \times \mathrm{min} / \mathrm{s}$
Middle gimbal angle	$\mathrm{XXX.XXdeg}$

5. V06 N75

Delta altitude (CDH)	$X X X X . \times \mathrm{nmi}$
$\Delta T(C D H-C S I)$	$X \times b \times \times \mathrm{min} / \mathrm{s}$
$\Delta T(T P I-C D H)$	$X X b \times X \mathrm{~min} / \mathrm{s}$

6. V06 N13 (astronaut initiated display)

Time of CDH ignition
00xXX. h
000XX. min
0xX.XX s
7. V06 N81

Components of $\Delta V(L V)$ for CSI
XXXX.X ft/s
8. V06 N82

Components of $\triangle \mathrm{V}(\mathrm{LV})$ for $\mathrm{CDH} \quad \mathrm{XXXX} . \mathrm{Xft} / \mathrm{s}$
9. V04 N12 (results from V90E)

Option code ID
00002
Option code
0000X (1-this vehicle, 2-other vehicle)
10. V06 N 16 (results from V90E)

Time of event
00XXX.h
000XX.min
0xX.XX s
11. V 06 N 90 (results from V90E)

Y
XXX.XX nmi

YDOT
XXXX.X ft/s
PSI

Purpose:

1. To calculate parameters associated with the concentric flight plan maneuvers with the exception of Coelliptic Sequence Initiation (CSI) for LM execution of the maneuvers under control of the LGC. The concentric flight plan maneuvers are the Coelliptic Sequence Initiation (CSI), the Constant Delta Altitude maneuver (CDH), the Transfer Phase Initiation (TPI), and the Transfer Phase Final (TPF) or braking maneuver.
2. To calculate these parameters based upon maneuver data approved and keyed into the CMC by the astronaut.
3. To display to the astronaut and the ground dependent variables associated with the concentric flight plan maneuvers for approval by the astronaut/ground.

Assumptions:

1. This program is based upon previous completion of the Coelliptic Sequence Initiation (CSI) program (P72). Therefore:
a. At a selected TPI time the line of sight between the CSM and the LM was selected to be a prescribed angle (E) from the horizontal plane defined at the active vehicle position
b. The time between CSI ignition and CDH ignition was computed to be greater than 10 minutes.
c. The time between $C D H$ ignition and TPI ignition was computed to be greater than 10 minutes.
d. The variation of the altitude difference between the orbits was minimized.
e. CSI burn was defined such that the impulsive Delta V was in the horizontal plane defined by the active vehicle position at CSI ignition.
f. The pericenter altitudes of the orbits following CSI and CDH were computed to be greater than 35,000 feet (lunar orbit) or 85 nmi (earth orbit).
g. The CSI and CDH maneuvers were assumed to be parallel to the plane of the CSM orbit, however, crew modification of Delta V(LV) components may have resulted in an out-of-plane CSI maneuver.
2. The ISS need not be on to complete this program.
3. This program is selected by the astronaut by DSKY entry.

Selected Displays:

1. V06 N13

Time of CDH ignition
2. V06 N75

Delta altitude (CDH)
ΔT (TPI-CDH)
Δ T (TPI-NOMTPI)
3. V06 N81

Components of $\Delta V(L V)$ for CDH
4. V16 N45

Marks (VHF/optics)
Time from CDH ignition
Middle gimbal angle
5. V04 N12 (results from V90E)

Option code ID
Option code
6. V06 N16 (results from V90E)

Time of event
7. V06 N90 (results from V90E)

Y
YDOT
PSI

00XXX h $000 \times X$ min 0xX.XX s

XXXX.X nmi
$X \times b \times X \min / \mathrm{s}$
$X X b \times X \mathrm{~min} / \mathrm{s}$

XXXX.X ft/s

XXb XX marks
XXb $\times \times \mathrm{min} / \mathrm{s}$
XXX.XX deg

00002
0000X (1-this vehicle, 2 -other vehicle)

00XXX. h
000XX. min
0XX.XX s
XXX.XX nmi

XXXX.X ft/s
XXX.XX deg

P74-LM TRANSFER PHASE INITIATION (TPI)

TARGETING PROGRAM

Purpose:

1. To calculate the required Delta V and other initial conditions required by the LGC for LM execution of the Transfer Phase Initiation maneuver, given
a. Time of ignition (TIG(TPI)) or the elevation angle (E) of the LM/CSM LOS at TIG(TPI).
b. Central angle of transfer (CENTANG) from TIG(TPI) to intercept time TIG(TPF).
2. To calculate TIG(TPI) given E or E given TIG(TPI).
3. To display to the astronaut and the ground certain dependent variables associated with the maneuver for approval by the astronaut/ground.

Assumptions:

1. The program must be done over a tracking station for real-time ground participation in CMC data input and output.
2. If P20 is in operation while this program is operating, the astronaut may hold at any flashing display and turn on the Rendezvous Sighting Mark routine (either R21 or R23) and take optics marks, and/or he may allow VHF ranging marks to accumulate.
3. Once the parameters required for computation of the maneuver have been completely specified, the value of the active vehicle central angle of transfer is computed and stored. This number will be available for display to the astronaut through the use of V06 N52.
The astronaut would call this display to verify that the central angle of transfer of the active vehicle is not within 170 to 190 degrees. If the angle is within this zone, the astronaut should reassess the input targeting parameters based upon Delta V and expected maneuver time.
4. The ISS need not be ON to complete the program.
5. This program is selected by DSKY entry.

Selected Displays:

1. V06 N37

Time of TPI ignition
2. V06 N55

R2: Elevation angle
R3: Central angle of passive vehicle
3. V16 N45

Marks (VHF/optics)
Time until TPI burn
Middle gimbal angle
4. V06 N58

Pericenter altitude
ΔV (TPI)
ΔV (TPF)
5. V06 N81

Components of $\Delta V(L V)$ for TPI

00XXX. h
000XX. min
0XX.XX s
XXX.XX deg
XXX.XX deg

XX b XX marks
$X X b \times X \mathrm{~min} / \mathrm{s}$
XXX.XX deg
$X X X X . X \mathrm{nmi}$
XXXX.X ft/s
XXXX.X ft/s

XXXX.X ft/s
6. V06 N59

Components of ΔV (LOS) for TPI
7. V06 N52

Central angle of active vehicle XXX.XX deg
8. V04 N12 (results from V90E)

Option code ID
Option code
9. V06 N16 (results from V90E)

Time of event
10. V06 N90 (results from V90E)

Y	$X X X . X X \mathrm{nmi}$
YDOT	$X X X X . X \mathrm{ft} / \mathrm{s}$
PSI	$X X X . X X \mathrm{deg}$

P75-LM TRANSFER PHASE MIDCOURSE (TPM)
TARGETING PROGRAM

Purpose

1. To calculate the required Delta V and other initial conditions required by the LGC for LM execution of the next midcourse correction of the transfer phase of an active LM rendezvous.

Assumptions:

1. If P20 is in operation while this program is operating the astronaut may hold at any flashing display and turn on the Rendezvous Sighting Mark routine (either R21 or R23) and take optics marks, and/or he may allow VHF ranging marks to accumulate.
2. Once the parameters required for computation of the maneuver have been completely specified, the value of the active vehicle central angle of transfer is computed and stored. This number will be available for display to the astronaut through the use of V06 N52.
The astronaut would call this display to verify that the central angle of transfer of the active vehicle is not within 170 to 190 degrees. If the angle is within this zone the astronaut should reassess the input targeting parameters based upon Delta V and expected maneuver time.
3. The time of intercept (T(INT)) was defined by previous completion of the LM Transfer Phase Initiation (TPI) program (P74) and is presently available in CMC storage.
4. There is no requirement for ISS operation during this program unless automatic state vector updating is desired by the Rendezvous Navigation program (P20).
5. The program is selected by the astronaut by DSKY entry.

Selected Displays:

1. V16 N45

Marks (VHF/optics)	$\mathrm{XXb} \times \mathrm{X}$ marks
Time until TPM ignition	$\mathrm{XXb} \mathrm{\times Xmin/s}$
Middle gimbal angle	XXX.XX deg

Time until TPM ignition
Middle gimbal angle
2. V06 N81

Components of $\Delta V(L V)$ for TPM $\quad X X X X . X f t / s$
3. V06 N59

Components of ΔV (LOS) for TPM $\quad X X X X . X \mathrm{ft} / \mathrm{s}$
4. V06 N52

Central angle of active vehicle XXX.XX deg
5. V04 N12 (results from V90E)
Option code ID 00002

Option code
$0000 \times$ (1-this vehicle, 2-other vehicle)
6. V06 N 16 (results from V 9 GE)

Time of event
00XXX. h
000XX. min
0xx.xx s
7. V06 N90 (results from V90E)

Y
XXX.XX nmi

YDOT
$X X X X . X \mathrm{ft} / \mathrm{s}$
PSI

Purpose:

1. To provide a means of notifying the CMC that the LM has changed its orbital parameters by the execution of a thrusting maneuver.
2. To provide to the CMC the Delta V applied to the $L M$ to enable an updating of the LM state vector.

Assumptions:

1. The CSM crew has the Delta V to be applied by the $L M$ in local vertical axes at a specified TIG. These values are displayed prior to TIG by the Prethrust Targeting program in the LM. No provision is made in these thrusting programs to display the results of the maneuver in a form usable by this routine. If the burn is not nominal and this Delta V is not as specified or if TIG is not as originally specified, consult backup procedures.
2. Care should be exercised to incorporate state vector changes via this program in logical order with state vector changes resulting from the Rendezvous Navigation program (P20). A suggested procedure would be to stop optics marking, verify data incorporation by reviewing Noun 45 mark counters, incorporate state vector changes via this program, but do not take optics marks or enable VHF range link until the LM maneuver has taken place.
3. In the event of an uplink failure, the astronaut can create a reasonable LM state vector for LM insertion into orbit from the lunar surface by keying in the expected LM thrusting maneuver from the lunar surface while the surface flag is set. This will cause the computer to take the position vector of the landing site and add the inputted Delta V and store the results in the LM state vector. The landing site will not be altered.
4. This program is selected by the astronaut by DSKY entry.

Selected Displays:

1. V06 N84
2. V06 N33

Time of ignition
00XXX. h
000XX. min
0XX.XX s

P77-LM TRANSFER PHASE INITIATION (TPI)

SEARCH PROGRAM

Purpose:

1. To accept a desired time of Transfer Phase Initiation (TIG(TPI)) as a DSKY input from the astronaut, and to compute therefrom the parameters associated with a minimum energy, safe periapsis transfer maneuver at TIG (TPI) and the resultant rendezvous intercept for an active LM.
2. To provide the astronaut with the option of defining to the CMC the initial transfer trajectory search sector for central angles either greater than or less than 180 degrees from the position of the active vehicle (LM) at TIG(TPI).
3. To display to the astronaut the parameters associated with the transfer (TPI and intercept).

Assumptions:

1. If P 20 is in operation while this program is operating the astronaut may hold at any flashing display and turn on the Rendezvous Sighting Mark routine (either R21 or R23) and take optics marks, and/or he may allow VHF ranging marks to accumulate.
2. To execute the TPI maneuver, select the LM Transfer Phase Initiation Targeting (TPI) program (P74) and transmit maneuver data to the LM.
3. This program is selected by the astronaut by DSKY entry.

Selected Displays:

1. V06 N37

Time of TPI ignition
2. V06 N72

Delta angle (TPI)
Delta altitude (TPI)
Search option
3. V06 N58

Pericenter altitude
ΔV (TPI)
ΔV (TPF)
4. V06 N55

R1: Perigee code
R3: Central angle of passive vehicle

00xXX. h
000XX. min
0XX.XX s
$X X X . X X$ deg (+active vehicle ahead)
XXXX. X nmi (+ passive vehicle above)
$0000 \times$ (1-central angle < 180 degrees;
2-central angle> 180 degrees)

XXXX.X nmi
XXXX.X ft/s
$X X X X, X \mathrm{ft} / \mathrm{s}$

0000× (1-perigee between TPI and TPF, . 2-perigee after intercept)
XXX.XX deg

Purpose:

1. To calculate the required Delta V and other initial conditions required by the LGC for LM execution of the first phase of the Stable Orbit Rendezvous maneuver. Given:
a. Time of ignition (TIG).
b. Central angle of transfer (CENTANG) from TIG to intercept time.
c. The offset of the stable orbit point specified as a distance along the passive vehicle orbit.
2. To calculate the required Delta V and other initial conditions required by the LGC for LM execution of the second phase of the Stable Orbit Rendezvous maneuver. Given:
a. A respecification of 1.a above,
b. An optional respecification of $1 . b$ above.
3. To calculate these parameters based upon maneuver data approved and keyed into the CMC by the astronaut.
4. To display to the astronaut and the ground certain dependent variables associated with the maneuver for approval by the astronaut/ground.

Assumptions:

1. The stable orbit point is defined as the final position (at completion of second phase) of the active vehicle relative to the passive vehicle.
2. If P20 is in operation while this program is operating the astronaut may hold at any flashing display and turn on the Rendezvous Sighting Mark routine (either R21 or R23) and take optics marks, and/or he may allow VHF ranging marks to accumulate.
3. Once the parameters required for computation of the maneuver have been completely specified, the value of the active central angle of transfer is computed and stored. This number will be available for display to the astronaut through the use of V06 N52.
The astronaut would call this display to verify that the central angle of transfer of the active vehicle is not within 170 to 190 degrees. If the angle is within this zone the astronaut should reassess the input targeting parameters based upon Delta V and expected maneuver time.
4. The second phase of this program requires the TIG input be biased as a function of TPF and any midcourse corrections performed in the LM Stable Orbit Midcourse Targeting program (P79).
5. There is no requirement for ISS operation during this program unless automatic state vector updating is desired by the Rendezvous Navigation program (P20).
6. This program is selected by the astronaut by DSKY entry.

Selected Displays:

1. V06 N33

Time of SOI ignition
2. V06 N55

R3: Central angle of passive vehicle
3. V04 N06

Option code ID
Option code

00XXX. h
000XX. min
0XX.XX s
XXX.XX deg

00005
0000X (1-first pass, 2-second pass

P78 (continued)
4. V06 N57

Stable orbit offset $\quad \mathrm{XXXX} . \times \mathrm{nmi}$
5. V06 N34

Time of arrival at stable orbit
00XXX. h
000XX. min
0xX.XX s
6. V16 N45

Marks (VHF/optics)
Time of SOI ignition
XX b XX marks

Middle gimbal angle
$X X b \times \times \mathrm{min} / \mathrm{s}$
XXX.XX deg
7. V06 N58

Pericenter altitude (SOR)
XXXX.X nmi
ΔV (SOR)
ΔV (SOR-final)
$X X X X . X \mathrm{ft} / \mathrm{s}$
XXXX.X ft/s
8. V06 N81

Components of $\Delta V(L V)$ for SOR
XXXX. $\mathrm{Xft} / \mathrm{s}$
9. V06 N52

Central angle of active vehicle
XXX.XX deg

P79-LM STABLE ORBIT MIDCOURSE (SOM) TARGETING PROGRAM

Purpose:

1. To calculate the required Delta V and other initial conditions required by the LGC for LM execution of the next possible midcourse correction of the Stable Orbit Transfer Phase of an active LM rendezvous.
2. To compute and display suitable information to enable the crew to enter the Final Rendezvous Phase at the correct time to complete the required thrusting maneuver.

Assumptions:

1. The ISS need not be on to complete this program.
2. If P 20 is in operation while this program is operating the astronaut may hold at any flashing display and turn on the Rendezvous Sighting Mark routine (either R21 or R23) and take optics marks, and/or he may allow VHF ranging marks to accumulate.
3. Once the parameters required for computation of the maneuver have been completely specified, the value of the active vehicle central angle of transfer is computed and stored. This number will be available for display to the astronaut through the use of V06 N52
The astronaut would call this display to verify that the central angle of transfer of the active vehicle is not within 170 to 190 degrees. If the angle is within this zone the astronaut should reassess the input targeting parameters based upon Delta V and expected maneuver time.
4. The time of intercept (T(INT)) was defined by previous completion of the LM Stable Orbit Rendezvous Targeting (SOR) program (P78) and is presently available in CMC storage.
5. This program is selected by the astronaut by DSKY entry.

Selected Displays:

1. V06 N81

P79 (continued)

2. V16 N45

Marks (VHF/optics)
XXb XX marks
Time from SOM ignition
Middle gimbal angle
3. V06 N52

Central angle of active vehicle
$X X b \times X \mathrm{~min} / \mathrm{s}$
XXX.XX deg
XXX.XX deg

LM SOFTWARE

LUMINARY IA
(REV 001 OF LMY99)
LM DSKY COMPUTER PROGRAMS COMPUTER ROUTINES VERB CODES NOUN CODES ALARM CODES OPTION CODES CHECKLIST CODES FLAGWORD BIT ASSIGNMENTS IMODES30 AND IMODES33 CHANNEL BIT ASSIGNMENTS COMPUTER PROGRAM DESCRIPTION

UPLINK ACTY light - is energized by the first character of a digital UPLINK message received by the LGC.
NO ATT Light - is energized when the LGC is in the Operate mode and there is no inertial reference; that is, the ISS is off, caged, or in the Coarse Align mode.
STBY Light - is energized when the LGC is in the Standby mode and deenergized when the LGC is in the Operate mode.

KEY REL Light

1. Energized when:
a. An internal display comes while the astronaut has the DSKY.
b. An astronaut keystroke is made while an internal flashing display is currently on the DSKY.
c. The astronaut makes a keystroke on top of (his own) Monitor Verb display.
2. Deenergized when:
a. Astronaut relinquishes the DSKY by operating the KEY REL button.
b. Astronaut terminates his current sequence normally, for example:
(1) With final ENTR of a load sequence.
(2) The ENTR of a response to a flashing display.
(3) The ENTR of an extended verb request.

OPR ERR Light - is energized when the DSKY operator performs an improper sequence of key depressions.
TEMP Light - The LGC receives a signal from the IMU when the stable member temperature is in the range $126.3^{\circ} \mathrm{F}$ to $134.3^{\circ} \mathrm{F}$. In the absence of this signal, the TEMP lamp on the DSKY is acutated.
GIMBAL LOCK Light - is energized when the middle gimbal angle exceeds ± 70 degrees from its zero position. When the middle gimbal angles exceeds ± 85 degrees from its zero position the LGC automatically commands the Coarse Align mode in the ISS to prevent gimbal oscillation. The NO ATT light will then be energized.
PROG Light - Under a variety of situations a program alarm is generated. The program alarm actuates the PROG lamp on the DSKY.

RESTART Light - In the event of a RESTART during operation of a program, a latch is set in the LGC which illuminates the RESTART lamp on the DSKY until the latch is manually reset by pressing RSET.
TRACKER Light - When the Rendezvous or Landing Radars are on, the light is energized when:

1. A RR CDU failed with the RR in the Auto mode and RR CDU's not being zeroed.
2. N samples of LR data could not be taken in $2 N$ tries.
3. N samples of RR data could not be taken in $2 N$ tries.

ALT Light - is energized due to the absence of the LR Range Data Good discrete when reading LR range or when improper scaling of LR range information is detected.
VEL Light - is energized due to the absence of the LR Velocity Data Good discrete when reading LR velocity.
COMP ACTY Light -is energized when the LGC is occupied with an internal sequence.
Display Panel - consists of 24 electroluminescent sections. Each section is capable of displaying a decimal character or remaining blank, except the three sign sections. These display a plus sign, a minus sign, or a blank. The numerical sections are grouped to form three data display registers, each of five numerical characters; and three control display registers, each of two numerical characters. The data display registers are referred to as R1, R2, R3. The control display registers are known as VERB, NOUN, and PROGRAM.

Keyboard -contains the following buttons:

1. VERB - Pushing this button indicates that the next two numerical characters keyed are to be interpreted as the Verb Code.
2. NOUN - Pushing this button indicates that the next two numerical characters keyed are to be interpreted as the Noun Code.
3. + and - - are sign keys used for sign convention and to identify decimal data.
4. 0-9-are numerical keys.
5. CLR - is used during a data loading sequence to blank the data display register (R1, R2, R3) being used. It allows the operator to reload the data word.
6. PRO - This pushbutton performs two functions:
a. When the LGC is in the Standby mode, pressing this button will put the LGC in the Operate mode, turn off the STBY light, and automatically select Routine 00 in the LGC, after restoring the clock.
b1. When the LGC is in the Operate mode but Program 06 is not selected, pressing the button will provide the "Proceed" function.
b2. When the LGC is in the Operate mode and Program 06 is selected, pressing the button will put the LGC in the Standby mode and turn on the STBY light.
7. ENTR - is used in three ways:
a. To direct the LGC to execute the Verb/Noun now appearing on the Verb/Noun lights.
b. To direct the LGC to accept a data word just loaded.
c. To respond to a "Please Perform" request.
8. RSET - turns off alarm indicator on the DSKY providing the alarm condition has been corrected.

PHASE	PROGRAM NUMBER	PROGRAM TITLE
Service	00	LGD Idling
	06	LGC Power Down
Ascent	12	Powered Ascent
Coast	20	Rendezvous Navigation
	21	Ground Track Determination
	22	Lunar Surface Navigation
	25	Preferred Tracking Attitude
	27	LGC Update
Prethrusting	30	External Delta V
	31	Lambert Aim Point Guidance
	32	Coelliptic Sequence Initiation (CSI)
	33	Constant Delta Altitude (CDH)
	34	Transfer Phase Initiation (TPI)
	35	Transfer Phase Midcourse (TPM)
	38	Stable Orbit Rendezvous (SOR)
	39	Stable Orbit Midcourse (SOM)
Thrusting	40	DPS
	41	RCS
	42	APS
	47	Thrust Monitor
Alignments	51	IMU Orientation Determination
	52	IMU Realign
	57	Lunar Surface Align
Descent	63	Braking Phase
	64	Approach Phase
	65	Landing Phase (Auto)
	66	Landing Phase (ROD)
	67	Landing Phase (Manual)
	68	Landing Configuration
Aborts and Backups	70	DPS Abort
	71	APS Abort
	72	CSM Coelliptic Sequence Initiation (CSI) Targeting
	73	CSM Constant Delta Altitude (CDH) Targeting
	74	CSM Transfer Phase Initiation (TPI) Targeting
	75	CSM Transfer Phase Midcourse (TPM) Targeting
	76	Target Delta V
	78	CSM Stable Orbit Rendezvous (SOR) Targeting
	79	CSM Stable Orbit Midcourse (SOM) Targeting

00	Final Automatic Request Terminate
01	Erasable Modification
02	IMU Status Check
03	DAP Data Load
04	Rendezvous Radar/Landing Radar Self-Test
05	S-Band Antenna
09	R10/R11/R12 Service
10	Landing Analog Displays
11	Abort Discretes Monitor
12	Descent State Vector Update
13	Landing Auto Modes Monitor
20	Landing Radar/Rendezvous Radar Read
21	Rendevzous Radar Designate
22	Rendezvous Radar Data Read
23	Rendezvous Radar Manual Acquisition
24	Rendezvous Radar Search
25	Rendezvous Radar Monitor
29	Powered Flight Rendezvous Radar Designate
30	Orbit Parameter Display
31	Rendezvous Parameter Display
33	LGC/CMC Clock Synchronization
36	Out-of-Plane Rendezvous Display
40	DPS/APS Thrust Fail
41	State Vector Integration (MIDTOAVE)
47	AGS Initialization
50	Coarse Align
51	In-Flight Fine Align
52	Auto Optics Positioning
53	AOT Mark
54	Sighting Data Display
55	Gyrotorquing
56	Terminate Tracking
57	MARKRUPT
58	Celestial Body Definition
59	Lunar Surface Sighting Mark
60	Attitude Maneuver
61	Preferred Tracking Attitude
62	Crew-Defined Maneuver
63	Rendezvous Final Attitude
65	Fine Preferred Tracking Attitude
76	Extended Verb Interlock
77	LR Spurious Test

REGULAR VERBS

00 Not in use
01 Display Octal Component 1 in R1
02 Display Octal Component 2 in R1

Display Octal Components 1, 2, 3 in R1, R2, R3
Display decimal in R1 or R1, R2 or R1, R2, R3
Display DP decimal in R1, R2 (test only)
08 Spare
09 Spare
10 Spare
11 Monitor Octal Component 1 in R1
12 Monitor Octal Component 2 in R1
13 Monitor Octal Component 3 in R1
14 Monitor Octal Components 1, 2 in R1, R2
15 Monitor Octal Components 1, 2, 3 in R1, R2, R3
16 Monitor decimal in R1 or R1, R2 or R1, R2, R3
17 Monitor DP decimal in R1, R2 (test only)
18 Spare
19 Spare
20 Spare
21 Load Component 1 into R1
22 Load Component 2 into R2
23 Load Component 3 into R3
24 Load Components 1, 2 into R1, R2
25 Load Components 1, 2, 3 into R1, R2, R3
26 Spare
27 Display Fixed Memory
28 Spare
29 Spare
30 Request EXECUTIVE
31 Request WAITLIST

32	Recycle program
33	Proceed without DSKY inputs
34	Terminate function
35	Test lights
36	Request FRESH START
37	Change program (major mode)
38	Spare
39	Spare
EXTENDED VERBS	
40	Zero CDU's (specify N20 or N72)
41	Coarse align CDU's (specify N20 or N72)
42	Fine align IMU
43	Load IMU attitude error needles
44	Terminate RR continuous designate (V41N72 Option 2)
45	Spare
46	Spare
47	Initialize AGS (R47)
48	Request DAP Data Load routine (R03)
49	Request Crew Defined Maneuver routine (R62)
50	Please perform
51	Spare
52	Mark X reticle
53	Mark Y reticle
54	Mark X or Y reticle
55	Increment LGC time (decimal)
56	Terminate tracking (P20 and P25)
57	Permit Landing Radar updates
58	Inhibit Landing Radar updates
59	Spare
60	Command LR to Position 2
61	Display DAP following attitude errors
62	Display total attitude errors with respect to N22
63	Sample radar once per second (R04)

LIST OF VERBS USED IN PROGRAM LUMINARY 1A

Request S-Band Antenna routine (R05)

65

Disable U and V jet firings during DPS burns
Vehicles are attached. Move this vehicle state vector to other vehicle.
Display W matrix
Spare
Cause RESTART
Start LGC update, liftoff time (P27)
Start LGC update, block address (P27)
Start LGC update, single address (P27)
Start LGC update, LGC time (P27)
Initialize erasable dump via DOWNLINK
Enable U and V jet firings during DPS burns
Minimum Impulse Command mode
Rate Command and Attitude Hold mode
Start LR spurious test (R77)
Stop LR spurious test
Enable LM state vector update
Enable CSM state vector update
Request Orbit Parameter display (R30)
Request Rendezvous Parameter display (R31)
Spare
Display Rendezvous Radar LOS azimuth and elevation
Spare
Spare
Spare
Request Rendezvous Final Attitude maneuver (R63)
Request Out of Plane Rendezvous display (R36)
Display BANKSUM
Start IMU performance tests (ground use)
Enable W matrix initialization
Spare
No update of either state vector allowed (P20 or P22)
Interrupt integration and go to P00
Perform Engine Fail procedure (R40)
Spare
Please Enable Engine Ignition

00	Not in use	
01	Specify address (fractional)	. $X X X X X$ fractional . XXXXX fractional . XXXXX fractional
02	Specify address (whole)	$X X X X X$. integer XXXXX. integer XXXXX. integer
03	Specify address (degree)	$X X X . X X$ deg XXX.XX deg XXX.XX deg
04	Angular error/difference	XXX.XX deg
05	Angular error/difference	XXX. XX deg
06	Option code ID Option code Dat code	Octal Octal Octal
07	FLAGWORD operator	
	$\begin{aligned} & \text { ECADR } \\ & \text { BITID } \\ & \text { Action } \end{aligned}$	Octal Octal Octal
08	Alarm data	
	ADRES BBANK ERCOUNT	Octal Octal Octal
09	Alarm codes	
	First Second Last	Octal Octal Octal
10	Channel to be specified	Octal
11	TIG of CSI	$\begin{aligned} & 00 \times X X . \mathrm{h} \\ & 000 \times X \cdot \min \\ & 0 X X . X X \text { s } \end{aligned}$
12	Option code (extended verbs only)	Octal Octal
13	TIG of CDH	$\begin{aligned} & 00 \times X \times . \mathrm{h} \\ & 000 \times X . \min \\ & 0 \times X . X X \mathrm{~s} \end{aligned}$
14	CHECKLIST (used internally by extended verbs only; N25 is pasted after display)	$x \times x \times x$.
15	Increment address	Octal
16	Time of event (used by extended verbs only)	$\begin{aligned} & 00 X X X . h \\ & 000 \times X \cdot \min \\ & 0 X X . X X \text { s } \end{aligned}$
17	Spare	
18	Desired automaneuver FDAI ball angles	$\begin{aligned} & \text { R XXX.XX deg } \\ & \text { P XXX.XX deg } \\ & Y \times X X . X X \operatorname{deg} \end{aligned}$

19	Spare		
20	Present ICDU angles	$\begin{aligned} & \text { OG } \\ & \text { IG } \\ & \text { MG } \end{aligned}$	$X X X . X X$ deg XXX.XX deg XXX.XX deg
21	PIPA's	$\begin{aligned} & \mathrm{X} \\ & \mathrm{Y} \\ & \mathrm{Z} \end{aligned}$	$X X X X X$. pulses XXXXX. pulses XXXXX. pulses
22	Desired ICDU angles	$\begin{aligned} & \text { OG } \\ & \text { IG } \\ & \text { MG } \end{aligned}$	$X X X . X X$ deg XXX.XX deg XXX.XX deg
23	Spare		
24	Delta time for LGC clock		$\begin{aligned} & 00 \times X \times \cdot \mathrm{h} \\ & 000 \times X \cdot \min \\ & 0 \times X . X X \mathrm{~s} \end{aligned}$
25	CHECKLIST (used with V50)		XXXXX.
26	PRIO/DELAY, ADRES, BBCON		Octal Octal Octal
27	Self-test on/off switch		XXXXX.
28	Spare		
29	Spare		
30	Spare		
31	Spare		
32	Time from perigee		$\begin{aligned} & 00 \times \times \times . \mathrm{h} \\ & 000 \times X . \min \\ & 0 \times X . \times X \mathrm{~s} \end{aligned}$
33	Time of ignition		$\begin{aligned} & 00 \times \times x . h \\ & 000 \times X \cdot \min \\ & 0 \times X . X X \mathrm{~s} \end{aligned}$
34	Time of event		$\begin{aligned} & 00 \times X \times . \mathrm{h} \\ & 000 \times X \cdot \min \\ & 0 \times X . X \times \mathrm{s} \end{aligned}$
35	Time from event		$\begin{aligned} & 00 \times X \times . \mathrm{h} \\ & 000 \times X \cdot \min \\ & 0 \times X . \times X \mathrm{~s} \end{aligned}$
36	Time of LGC clock		$\begin{aligned} & 00 \times \times X . \mathrm{h} \\ & 000 \times \mathrm{x} \cdot \min \\ & 0 \times X . X X \mathrm{~s} \end{aligned}$
37	Time of ignition (TPI)		$\begin{aligned} & 00 \times \times X . \mathrm{h} \\ & 000 \times X \cdot \min \\ & 0 X X . X X \mathrm{~s} \end{aligned}$
38	Time of state being integrated		$\begin{aligned} & 00 \times X \times . \mathrm{h} \\ & 000 \times X \cdot \min \\ & 0 X X . X X \mathrm{~s} \end{aligned}$
39	Spare		

40	Time from ignition/cutoff VG Delta V (measured)	$X \times b \times X \mathrm{~min} / \mathrm{s}$ XXXX. $\mathrm{Xft} / \mathrm{s}$ XXXX. Xf /s
41	Target	
	Azimuth Elevation	$\begin{aligned} & X X X \times X \operatorname{deg} \\ & X X . X X X \operatorname{deg} \end{aligned}$
42	Apocenter altitude Pericenter altitude Delta V (required)	XxXX.X nmi XXXX.X nmi XXXX. Xf /s
43	Latitude Longitude Altitude	$\begin{aligned} & \text { XXX. } X \times \mathrm{deg} \text { (+ north) } \\ & \text { XXX.XX deg (+ east) } \\ & \text { XXXX.X nmi } \end{aligned}$
44	Apocenter altitude Pericenter altitude TFF	XXXX.X nmi XXXX.X nmi $X X b X X \mathrm{~min} / \mathrm{s}$
45	Marks (M) Time from ignition of next burn Middle gimbal angle	$\begin{aligned} & \text { XXXXX. } \\ & \times \times b \times \times \mathrm{min} / \mathrm{s} \\ & \text { XXX.XX deg } \end{aligned}$
46	DAP configuration	Octal
47	LM weight CSM weight	$\begin{aligned} & \text { XXXXX. lb } \\ & \text { XXXXX. lb } \end{aligned}$
48	Gimbal pitch trim Gimbal roll trim	$\begin{aligned} & X \times X . X X \operatorname{deg} \\ & X X X . X X \operatorname{deg} \end{aligned}$
49	Delta R Delta V Radar data source code	$\begin{aligned} & \text { XXXX.X nmi } \\ & \text { XXXX.X ft/s } \\ & \text { XXXXX. } \end{aligned}$
50	Spare	
51	S-band antenna angles	
	Pitch (Alpha) Yaw (Beta)	$\begin{aligned} & X X X . X X \operatorname{deg} \\ & X X X . X X \operatorname{deg} \end{aligned}$
52	Central angle of active vehicle	XXX. XX deg
53	Spare	
54	Range Range rate Theta	$\begin{aligned} & X X X . X X \mathrm{nmi} \\ & X \times X X . X \mathrm{ft} / \mathrm{s} \\ & \text { XXX.XX deg } \end{aligned}$
55	Number of apsidal crossings (N) Elevation angle (E) Central angle	$\begin{aligned} & X X X X X . \\ & X X X . X X \operatorname{deg} \\ & \text { XXX.XX deg } \end{aligned}$
56	RR LOS	
	Azimuth Elevation	$\begin{aligned} & X X X . X X \operatorname{deg} \\ & X X X . X X \operatorname{deg} \end{aligned}$
57	Delta R	XXXX. X nmi
58	Pericenter altitude (post TPI or SOR) Delta V (TPI or SOR) Delta V (TPF or SOR final)	$\begin{aligned} & X X X X . X \mathrm{nmi} \\ & X X X X . X \mathrm{ft} / \mathrm{s} \\ & \text { XXXX.X ft/s } \end{aligned}$

LIST OF NOUNS USED IN PROGRAM LUMINARY 1A

59	Delta V LOS 1 Delta V LOS 2 Delta V LOS 3	XXXX. $\mathrm{Xft} / \mathrm{s}$ XXXX.X ft/s XXXX. Xt / s
60	Horizontal velocity Altitude rate Computed altitude (H)	$\begin{aligned} & \times \times \times \times . \times \mathrm{ft} / \mathrm{s} \\ & \times \times \times \times \times \mathrm{ft} / \mathrm{s} \\ & \times X \times X X . \mathrm{ft} \end{aligned}$
61	Time to go in braking phase Time from ignition Crossrange distance	$X \times b \times X \mathrm{~min} / \mathrm{s}$ $X \times b \times \times \mathrm{min} / \mathrm{s}$ XXXX. Xnmi
62	Absolute value of velocity Time from ignition Delta V (measured)	$\begin{aligned} & X \times X X \times \mathrm{ft} / \mathrm{s} \\ & \times \times \mathrm{b} \times \times \mathrm{min} / \mathrm{s} \\ & X X X X . X \mathrm{ft} / \mathrm{s} \end{aligned}$
63	Absolute value of velocity Altitude rate Computed altitude	$\begin{aligned} & X X X X . X \mathrm{ft} / \mathrm{s} \\ & \times X X X . X \mathrm{ft} / \mathrm{s} \\ & X X X X X . \mathrm{ft} \end{aligned}$
64	Time left for redesignations (TR)/LPD Altitude rate Computed altitude	$\begin{aligned} & \text { XX b } \times \times \text { seconds/deg } \\ & \times \times \times X . \times \mathrm{ft} / \mathrm{s} \\ & \text { XXXXX. } \mathrm{ft} \end{aligned}$
65	Sampled LGC time (fetched in interrupt)	$\begin{aligned} & 00 \times \times X \cdot \mathrm{~h} \\ & 000 \times X \cdot \min \\ & 0 \times X . X X \mathrm{~s} \end{aligned}$
66	LR slant range LR position	$\begin{aligned} & \times x \times x \times . \mathrm{ft} \\ & 0000 \times \text {. } \end{aligned}$
67	LR VX LR VY LR VZ	$\begin{aligned} & X X X X X . \mathrm{ft} / \mathrm{s} \\ & \times X X X X . \mathrm{ft} / \mathrm{s} \\ & X X X X X . \mathrm{ft} / \mathrm{s} \end{aligned}$
68	Slant range to landing site Time to go in braking phase LR altitude (computed altitude)	XXXX. Xnmi $\times \times b \times \times \mathrm{min} / \mathrm{s}$ XXXXX.ft
69	Spare	
70	AOT detent code/star code (before mark)	$\begin{aligned} & \text { Octal } \\ & \text { Octal } \\ & \text { Octal } \end{aligned}$
71	AOT detent code/star code (after mark)	Octal Octal Octal
72	RR trunnion angle (360 degrees - CDU trunnion angle) RR shaft angle	XXX.XX deg $\times X X \times X \operatorname{deg}$ XXX.XX deg
73	Desired RR trunnion angle (360 degrees - CDU trunnion Desired RR shaft angle	gle) $X X X . X X$ deg XXX.XX deg
74	Time from ignition Yaw after vehicle rise Pitch after vehicle rise	$\begin{aligned} & \text { XXb } \times \times \mathrm{min} / \mathrm{s} \\ & \times \times \times \times \times \operatorname{deg} \\ & \times \times X . \times \times \operatorname{deg} \end{aligned}$
75	Delta altitude (CDH) Delta time (CDH-CSI or TPI-CDH) Delta time (TPI-CDH or TPI-NOMTPI)	XXXX. Xnmi $X \times b \times X \mathrm{~min} / \mathrm{s}$ XXbXX min/s

76	Desired downrange velocity Desired radial velocity Crossrange distance		$\begin{aligned} & X X X X . X \mathrm{ft} / \mathrm{s} \\ & \times X X X . X \mathrm{ft} / \mathrm{s} \\ & \text { XXXX.X } \end{aligned}$
77	Time to engine cutoff Velocity normal to CSM plane		$x \times b \times \times \mathrm{min} / \mathrm{s}$ $X X X X . X \mathrm{ft} / \mathrm{s}$
78	RR range RR range rate		$\times x \times . \times \times \mathrm{nmi}$ $x \times \times \times X \mathrm{ft} / \mathrm{s}$ XXXXX. ft/s
79	Cursor angle Spiral angle Position code		$\begin{aligned} & X X X . X X \operatorname{deg} \\ & X X X \times X \operatorname{deg} \\ & X X X X X . \end{aligned}$
80	Data indicator Omega		$\begin{aligned} & X X X X X . \\ & X X X . X X \operatorname{deg} \end{aligned}$
81	$\begin{aligned} & \text { Delta VX (LV) } \\ & \text { Delta VY (LV) } \\ & \text { Delta VZ (LV) } \end{aligned}$		XXXX.Xft/s XXXX. $\mathrm{Xft} / \mathrm{s}$ XXXX.X ft/s
82	$\begin{aligned} & \text { Delta VX (LV) } \\ & \text { Delta VY (LV) } \\ & \text { Delta VZ (LV) } \end{aligned}$		XXXX. $\times \mathrm{ft} / \mathrm{s}$ XXXX. Xft /s XXXX. $\mathrm{Xft} / \mathrm{s}$
83	Delta VX (body) Delta VY (body) Delta VZ (body)		XXXX. $\mathrm{Xft} / \mathrm{s}$ XXXX. $\mathrm{Xft} / \mathrm{s}$ XXXX. $\mathrm{Xft} / \mathrm{s}$
84	Delta VX (LV of other vehicle) Delta VY (LV of other vehicle) Delta VZ (LV of other vehicle)		XXXX.X ft/s XXXX. $\mathrm{Xft} / \mathrm{s}$ XXXX. $\mathrm{Xft} / \mathrm{s}$
85	VGX (body) VGY (body) VGZ (body)		XXXX.X ft/s XXXX.X ft/s XXXX. $\mathrm{Xft} / \mathrm{s}$
86	$\begin{aligned} & \text { VGX (LV) } \\ & \text { VGY (LV) } \\ & \text { VGZ (LV) } \end{aligned}$		$\begin{aligned} & X X X X X X \mathrm{ft} / \mathrm{s} \\ & \times X X X . X \mathrm{ft} / \mathrm{s} \\ & X X X X . X \mathrm{ft} / \mathrm{s} \end{aligned}$
87	Backup optics LOS		
	Azimuth Elevation		$\begin{aligned} & X X X . X X \operatorname{deg} \\ & X X X . X X \operatorname{deg} \end{aligned}$
88	Components of celestial body $1 / 2$ unit vector	X Y Z	$\begin{aligned} & x \times X \times X \\ & \times \times x \times x \\ & \times X X X X \end{aligned}$
89	Landmark latitude Landmark longitude/2 Landmark altitude		$X X . X X X$ deg $X X . X X X$ deg XXX.XX nmi
90	Rendezvous out of plane parameters		
	Y Y dot PSI		XXX.XX nmi $X X X X . \times \mathrm{ft} / \mathrm{s}$ $X X X . X \times$ deg
91	Altitude Velocity Flight path angle		$\begin{aligned} & \text { XXXXXb. nmi } \\ & \times \times \times \times X . \mathrm{ft} / \mathrm{s} \\ & \text { XXX.XX deg } \end{aligned}$
92	Spare		

LIST OF NOUNS USED IN PROGRAM LUMINARY 1A

93	Delta gyro angles	$\begin{aligned} & X \\ & X X X X X X \operatorname{deg} \\ & Y \\ & \text { XX.XXX deg } \\ & Z \end{aligned} \text { XX.XXX deg }$
94	Spare	
95	Spare	
96	Spare	
97	System test inputs	$\begin{aligned} & x \times x \times x . \\ & \times \times \times \times \times . \\ & \times \times \times \times X . \end{aligned}$
98	System test results and input	$\begin{aligned} & x \times x \times x . \\ & . \times x \times x \times \\ & \times x \times x \times . \end{aligned}$
99	RMS in position RMS in velocity RMS in bias	$\begin{aligned} & X X X X X . \mathrm{ft} \\ & \times X X X . X \mathrm{ft} / \mathrm{s} \\ & \text { XXXXX. milliradians } \end{aligned}$

LIST OF ALARM CODES USED WITH VERB 05

 NOUN 09 FOR PROGRAM LUMINARY 1A| CODE | PURPOSE | SET BY |
| :---: | :---: | :---: |
| 00105 | ** AOT mark system in use | R53 |
| 00107 | More than five mark pairs in flight, five marks on lunar surface | R57 |
| 00111 | Mark missing | R53 |
| 00112 | Mark or mark reject not being accepted | R57 |
| 00113 | No inbits | R57 |
| 00114 | Mark made but not desired | R57 |
| 00115 | No marks in last pair to reject | R57 |
| 00206 | Zero Encode not allowed with Coarse Align plus Gimbal Lock | IMU mode switching |
| 00207 | ISS turn-on request not present for 90 seconds | T4RUPT |
| 00210 | IMU not operating | IMU mode switching, R02 |
| 00211 | Coarse Align error | IMU mode switching, P51, P57, R50 |
| 00212 | PIPA fail but PIPA is not being used | IMU mode switching, T4RUPT |
| 00213 | IMU not operating with turn-on request | T4RUPT |
| 00214 | Program using IMU when turned off | T4RUPT |
| 00217 | Bad return from IMUSTALL | P51, P57, R50 |
| 00220 | Bad REFSMMAT | R02, R47 |
| 00401 | Desired gimbal angles yields Gimbal Lock | In-flight alignment FINDCDUW KALCMANU |
| 00402 | FINDCDUW routine not controlling attitude because of inadequate pointing vectors | FINDCDUW |
| 00404 | M Two stars not available in any detent | R59 |
| 00405 | M Two stars not available | R51 |
| 00421 | W-matrix overflow | INTEGRV |
| 00430 | ** Acceleration overflow in integration | Orbital integration |
| 00501 | MP Radar antenna out of limits | R23 |
| 00502 | Bad radar gimbal angle input | V41N72 |
| 00503 | MP Radar antenna designate fail | R21, non-P in V41 N72 |
| 00510 | Radar auto discrete not present | R25, V40 N72 |
| 00511 | LR not in Position 2 or repositioning | R12 |
| 00514 | P RR goes out of Auto mode while in use | P20, P22 |

LIST OF ALARM CODES USED WITH VERB 05 NOUN 09 FOR PROGRAM LUMINARY 1A

CODE

RR CDU Fail discrete present Could not read radar

LR position change

MP Delta Theta greater than 3 degrees
MP Range greater than 400 nmi surface

Or vehicle maneuver required
P surface after 600 seconds
M Imaginary roots on first iteration <35,000 feet moon orbit <35,000 feet moon orbit maximum
M DV exceeds maximum
M^{M} No TIG for given E angle
M Illegal option code selected
PIPA Fail caused ISS warning
LGC self-test error
** Unused CCS branch executed

* Delay routine busy

DOWNLINK too fast UPLINK too fast

Phase table failure. Assume erasable RADARUPT not expected at this time
${ }^{P}$ LR antenna did not achieve Position 2

MP LOS not in Mode 2 coverage while on lunar

LOS not in Mode 2 coverage while on lunar
${ }^{M}$ Perigee altitude after CSI < 85 nmi earth orbit,

M perigee altitude after CDH < 85 nmi earth orbit,
M_{CSI} to CDH time less than 10 minutes
${ }^{\mathrm{M}} \mathrm{CDH}$ to TPI time less than 10 minutes
M Number of iterations exceeds P32/P72 loop
** No solution from TIME-THETA or TIME-RADIUS memory is suspect.

SET BY

R25
Radar read, P20, P22, R12
R12, R22
R12
R12, V60
(non-P in V60)
R22
P20, P22
R24

R24
R21

P32, P72
P32, P72

P32, P72

P32, P33, P72, P73
P32, P72
P32, P72

P32, P72
TIMETHET,
TIMERAD
P33, P34, P73, P74
P57
T4RUPT
SELFCHECK
ABORT
EXECUTIVE
T4RUPT
T4RUPT
RESTART

CODE	PURPOSE	SET BY
01201	* Executive overflow-no VAC areas	EXECUTIVE
01202	* Executive overflow-no core sets	EXECUTIVE
01203	* WAITLIST overflow-too many tasks	WAITLIST
01204	** WAITLIST, VARDELAY, FIXDELAY, or LONGCALL called with zero or negative delta time	WAITLIST
01206	** Second job attempts to go to sleep via Keyboard and Display program	PINBALL
01207	* No VAC area for marks	R53
01210	* Two programs using device at same time	IMU mode switching
01211	* Illegal interrupt of extended verb	R53
01301	ARCSIN-ARCCOS input angle too large	INTERPRETER
01302	** SQRT called with negative argument	INTERPRETER
01406	${ }^{1}$ Bad return from ROOTSPRS	P63, P64
01407	VG increasing (Delta V accumulated >90 degrees away from desired thrust vector)	P40, P42
01410	Unintentional overflow in guidance	P63, P64, P65, P66
01412	Descent ignition algorithm not converging	P63
01501	** Keyboard and Display alarm during internal use (NVSUB)	PINBALL
01502	** Illegal flashing display	GOPLAY
01520	V37 request not permitted at this time	ROO
01600	Overflow in drift test	Ground Test
01601	Bad IMU torque	Ground Test
01703	Too close to ignition; slip time of ignition	R41
01706	$M_{\text {Incorrect }}$ program selected for vehicle configuration	P40, P42
02000	* DAP still in progress at next T5RUPT	DAP
02001	Jet failures have disabled $\mathrm{Y}-\mathrm{Z}$ translation	DAP
02002	Jet failures have disabled X translation	DAP
02003	Jet failures have disabled P rotations	DAP
02004	Jet failures have disabled U-V rotations	DAP
03777	ICDU fail caused the ISS warning	T4RUPT
04777	ICDU, PIPA fails caused the ISS warning	T4RUPT

LIST OF ALARM CODES USED WITH VERB 05

 NOUN 09 FOR PROGRAM LUMINARY 1ACODE

PURPOSE
SET BY

IMU fail caused the ISS warning
T4RUPT
T4RUPT
T4RUPT
T4RUPT warning

For V05 N09 displays:
R1 $-0 \times X X X$ (first alarm to occur after last Reset) R2-0XXXX (second alarm to occur after last Reset) R3-XXXXX (alarm which occurred last)

R3 will be of the form $4 X X X X$ if more than three alarms occured since the last Reset or FRESH START.
*Indicates an Abort code that results in a software RESTART **Indicates a more serious Abort code that results in the program going to R00
${ }^{P}$ Indicates a priority alarm.
$\mathrm{M}_{\text {Indicates a main alarm. }}$
All others are nonabortive
${ }^{1} 01406$ is an abort during the ignition algorithm and an alarm during the actual guidance phase.

LIST OF OPTION CODES DISPLAYED IN R1 IN
CONJUNCTION WITH VERB 04 NOUN 06 TO REQUEST THE ASTRONAUT TO LOAD INTO R2 THE OPTION HE DESIRES FOR PROGRAM LUMINARY 1A

CODE	PURPOSE	INPUT FOR R2	PROGRAM
00001	Specify IMU Orientation	$\begin{aligned} & 1=\text { preferred, } 2=\text { nominal } \\ & 3=\text { REFSMMAT, } 4 \text { = landing site } \end{aligned}$	P52
00002	Specify vehicle	1 = this, $2=$ other	P21, R30
00003	Specify tracking attitude	1 = preferred, 2 = other	R63
00004	Specify radar	$1=R R, 2=L R$	R04
00005	Specify SOR phase	1 = first, 2 = second	P38
00006	Specify RR coarse align option	$\begin{aligned} & 1=\text { lockon, } 2 \text { = continuous } \\ & \text { designate } \end{aligned}$	V41N72
00010	Specify alignment mode	$0=$ anytime $1=$ REFSMMAT $+g$ 2 = two bodies, 3 = one body $+g$	P57
00012	Specify CSM orbit option	$1=$ no orbit change, 2 = change orbit to pass over LM	P22

LIST OF CHECKLIST REFERENCE CODES USED WITH
VERB 50 NQUN 25 PROGRAM LUMINARY 1 A
00013 Key in normal or gyro torque coarse align P52

R51, P63, P57
Enter: Do landing site determination (N89)

P57 Option 2
Perform star acquisition
R51, P51
Switch LGC power down
P06
Swith RR mode to automatic
P20, P22, RO4
00203 Switch guidance control to PGNS, mode to Auto, thrust control to Auto

P12, P42, P71, P40, P63, P70

00205 Perform manual acquisition of CSM with RR R23
00500 Switch LR antenna to Position 1 P63

NOTE: Switch: denotes change position of a console switch Perform: denotes start or end of a task Key In: denotes key-in of data through the DSKY

FLAGWORD BIT ASSIGNMENTS (ALPHABETICAL) FOR LUMINARY 1A

ACCSOKAY	FW13	B3	DBSELECT	FW13	B4
ACC4-2FL	FW13	B11	DESIGBIT	FW12	B10
ACC4OR2X	FW13	B11	DIDFLBIT	FW1	B14
ACMODFLG	FW2	B13	DIMOFLAG	FW3	B1
ALTSCBIT	FW12	B9	DMENFLG	FW5	B9
ANTENBIT	FW12	B12	DRFTBIT	FW2	B15
AORBSYST	FW13	B5	DRIFTBIT	FW13	B8
AORBTFLG	FW13	B10	DRIFTDFL	FW13	B8
AORBTRAN	FW13	B10	DRIFTFLG	FW2	B15
APSESW	FW8	B5	DSKYBIT	FW5	B15
APSFLAG	FW10	B13	D60R9FLG	FW3	B2
APSFLBIT	FW10	B13	ENGONBIT	FW5	B7
ASINFBIT	FW7	B12	EDRADFLAG	FW1	B13
ASTNFLAG	FW7	B12	ETPIFLAG	FW2	B7
ATTFLAG	FW6	B1	FINALFLG	FW2	B6
ATTFLBIT	FW6	B1	FLAP	FW9	B8
AUTOMODE*	FW12	B2	FLPC	FW9	B12
AUTR1FLG*	FW13	B1	FLPI	FW9	B11
AUTR2FLG*	FW13	B2	FLRCS	FW9	B10
AUXFLBIT	FW6	B2	FLRCSBIT	FW9	B10
AVEGFBIT	FW7	B5	FLUNDBIT	FW8	B10
AVEGFLAG	FW7	B5	FLUNDISP	FW8	B10
AVEMIDSW	FW9	B1	FLVR	FW9	B14
AVFLAG	FW2	B5	FREEFBIT	FWO	B3
CALCMAN2	FW2	B2	FREEFLAG	FWO	B3
CALCMAN3	FW2	B3	FSPASFLG	FWO	B10
CDESBIT	FW12	B15	GLOKFAIL	FW3	B14
CDESFLAG	FW12	B15	GMBDRBIT	FW6	B10
CMOONBIT	FW8	B12	GMBDRVSW	FW6	B10
CMOONFLG	FW8	B12	GUESSW	FW1	B2
COGAFLAG	FW8	B4	HFLSHBIT	FW11	B1
CSMDOCKD	FW13	B13	HFLSHFLG	FW11	B1
CULTFLAG	FW3	B7	IDLEFBIT	FW7	B7

*These switches are never called by name.

FLAGWORD BIT ASSIGNMENTS (ALPHABETICAL)

FOR LUMINARY 1A

IDLEFLAG	FW7	B7	MIDAVFLAG	FW9	B2
IGNFLAG	FW7	B13	MIDFLAG	FWO	B13
IGNFLBIT	FW7	B13	MID1FLAG	FW9	B3
IMPULBIT	FW2	B9	MKOVBIT	FW4	B3
IMPULSW	FW2	B9	MOONFLAG	FWO	B12
IMUSE	FW0	B8	MRKIDFLG*	FW4	B15
IMUSEBIT	FWO	B8	MRKNVBIT	FW4	B9
INFINFLG	FW8	B7	MRKNVFLG	FW4	B9
INITABIT	FW8	B2	MRUPTFLG*	FW4	B5
INITALGN	FW8	B2	MUNFLAG	FW6	B8
INTFLBIT	FW10	B14	MUNFLBIT	FW6	B8
INTYPFLG	FW3	B4	MWAITFLG*	FW4	B11
ITSWICH	FW7	B15	NEEDLBIT	FWO	B4
JSWITCH	FW0	B14	NEEDLFLG	FWO	B4
LETABBIT	FW9	B9	NEWIFLG	FW8	B13
LETABORT	FW9	B9	NJETSFLG	FW1	B15
LMOONBIT	FW8	B11	NODOBIT	FW2	B1
LMOONFLG	FW8	B11	NODOFLAG	FW2	B1
LOKONBIT	FWO	B5	NOLRRBIT	FW11	B10
LOKONSW	FW0	B5	NOLRREAD	FW11	B10
LOSCMBIT	FW2	B12	NORMSW	FW7	B10
LOSCMFLG	FW2	B12	NORRMBIT	FW5	B4
LRALTBIT	FW12	B5	NORRMON	FW5	B4
LRBYBIT	FW11	B15	NOR29FLG	FW3	B11
LRBYPASS	FW11	B15	NOTHRBIT	FWV5	B12
LRINH	FW11	B8	NOTHROTL	FW5	B12
LRINHBIT	FW11	B8	NOUPFBIT	FW1	B6
LRPOSBIT	FW12	B6	NOUPFLAG	FW1	B6
LRVELFLG*	FW12	B8	NRMNVFLAG	FW4	B8
LUNAFLAG	FW3	B12	NRMIDFLG*	FW4	B13
MANUFLAG*	FW7	B14	NRUPTFLG*	FW4	B4
MGLVFLAG	FW5	B2	NR29FBIT	FW3	B11

FLAGWORD BIT ASSIGNMENTS (ALPHABETICAL)
FOR LUMINARY 1A

NTARGFLG	FW6	B3	REDFLBIT	FW6	B6
NWAITFLG*	FW4	B10	REFSMBIT	FW3	B13
OLDESBIT	FW0	B1	REFSMFLG	FW3	B13
OPTNSW	FW2	B7	REINTBIT	FW10	B7
ORBWFLAG	FW3	B6	REINTFLG	FW10	B7
ORDERSW	FW8	B6	REMODBIT	FW12	B14
OURRCBIT	FW13	B12	RENDWBIT	FW5	B1
PDSPFBIT	FW4	B12	RENDWFLG	FW5	B1
PDSPFLAG	FW4	B12	REPOSBIT	FW12	B11
PFRATBIT	FW2	B4	RHCSCALE	FW13	B7
PFRATFLG	FW2	B4	RNDVZBIT	FW0	B7
PINBRFLG	FW4	B6	RNGEDBIT	FW11	B4
PRECIFLG	FW3	B8	RNGSCBIT	FW5	B10
PRIODBIT	FW4	B14	RNALBBIT	FW11	B3

*These switches are never called by name.

FLAGWORD BIT ASSIGNMENTS (ALPHABETICAL) FOR LUMINARY 1A

SLOPESW	FW1	B3	VERIFBIT	FW7	B3
SNUFFBIT	FW5	B13	VFLAG	FW3	B10
SNUFFER	FW5	B13	VFLSHBIT	FW11	B2
SOLNSW	FW5	B3	VFLSHFLG	FW11	B2
SRCHOBIT	FW2	B14	VINTFLAG	FW3	B3
SRCHOPTN	FW2	B14	VXINH	FW11	B12
STATEBIT	FW3	B5	VXINHBIT	FW11	B12
STATEFLG	FW3	B5	V37FLAG	FW7	B6
Steerbit	FW2	B11	V37FLBIT	FW7	B6
STEERSW	FW2	B11	V67FLAG	FW7	B8
SURFFBIT	FW8	B8	V82EMFLG	FW7	B2
SURFFLAG	FW8	B8	XDELVFLG	FW2	B8
SWANDBIT	FW7	B11	XDSPBIT	FW4	B1
SWANDISP	FW7	B11	XDSPLFAG	FW4	B1
S32.1F1	FW6	B15	XORFLBIT	FW11	B9
S32.1F2	FW6	B14	XORFLG	FW11	B9
S32.1F3A	FW6	B13	XOVINFLG	FW13	B9
S32.1F3B	FW6	B12	XOVINHIB	FW13	B9
TFFSW	FW7	B1	3AXISBIT	FW5	B6
TRACKBIT	FW1	B5	3AXISFLG	FW5	B6
TRACKFLG	FW1	B5	360SW	FW8	B1

(FLAGWORD 0)

Bit	Name	1	0
1	OLDESBIT	R29 gyro command loop requested.	R29 gyro command loop not requested.
2	R10FLAG R10FLBIT	R10 outputs data to altitude and altitude rate meters only.	Besides output when set, R10 also outputs data to forward and lateral velocity crosspointer.
3	FREEFBIT FREEFLAG	Used by P51-53 in many different routines and by lunar and solar ephemerides.	
4	NEEDLBIT NEEDLFLG	Total attitude error displayed.	A/P following error displayed.
5	LOKONBIT LOKONSW	Radar lock-on desired.	Radar lock-on not desired.
6	RRNBSW	Radar target in NB coordinates.	Radar target in SM coordinates.
7	RNDVZBIT RNDVZFLG	P20 running (radar in use).	P20 not running.
8	IMUSE IMUSEBIT	IMU in use.	IMU not in use.
9	$\begin{aligned} & \text { P25FLAG } \\ & \text { P25FLBIT } \end{aligned}$	P25 operating.	P25 not operating
10	FSPASFLG	First pass through resposition routine.	Not first pass through reposition routine.
11	P21FLAG P21FLBIT	Succeeding pass through P21; use base vectors already calculated.	First pass through P21; calculate base vectors.
12	MOONFLAG	Moon is sphere of influence.	Earth is sphere of influence.
13	MIDFLAG	Integration with secondary body and solar perturbations.	Integration without solar perturbations.
14	JSWITCH	Integration of W matrix.	Integration of state vector.
15	Not Assigned		

(FLAGWORD 1)

Bit	Name	1	0
1	Not Assigned		
2	GUESSW	No starting value for iterator.	Starting value for iteration exists.
3	SLOPESW	Iterate with bias method in iterator.	Iterate with Regula Falsi method in iterator.
4	Not Assigned		
5	TRACKBIT TRACKFLG	Tracking allowed.	Tracking not allowed.
6	NOUPFBIT NOUPFLAG	Neither CSM nor LM state vector may be updated.	Either state vector may be updated.
7	UPDATBIT UPDATFLG	Updating by marks allowed.	Updating by marks not allowed.
8	VEHUPFLG	CSM state vector being updated.	LM state vector being updated.
9	Not Assigned		
10	R61FLAG R61FLBIT	Run R61 LM.	Run R65 LM.
11	Not Assigned		
12	RODFLAG RODFLBIT	If in P66, normal operation continues.	If in P66, reinitialization is performed.
13	ERADFLAG	Compute REARTH Fischer ellipsoid.	Use constant REARTH pad radius.
14	DIDFLBIT	Inertial data is available.	Perform data display initialization functions.
15	NJETSFLG	Two-jet RCS burn.	Four-jet RCS burn.

(FLAGWORD 2)

Bit	Name	1	0
1	NODOBIT NODOFLAG	V37 not permitted.	V37 permitted.
2	CALCMAN2	Perform maneuver starting procedure.	Bypass starting procedure.
3	CALCMAN3	No final roll.	Final roll is necessary.
4	PFRATBIT PFRATFLG	Preferred attitude computed.	Preferred attitude not computed.
5	AVFLAG	LM is active vehicle.	CSM is active vehicle.
6	FINALFLG	Last pass through rendezvous program computations.	Interim pass through rendezvous program computations.
7	OPTNSW	SOI phase of P38/P78.	SOR phase of P38/P78.
	ETPIFLAG	Elevation angle supplied for P34, P74.	TPI time supplied for P34, P74 to compute elevation.
8	XDELVFLG	External Delta V VG computation.	Lambert (AIMPOINT) VG computation.
9	IMPULBIT IMPULSW	Minimum impulse burn (cutoff time specified).	Steering burn (no cutoff time yet available).
10	Not Assigned		
11	STEERBIT STEERSW	Sufficient thrust is present.	Insufficient thrust is present.
12	LOSCMBIT LOSCMFLG	Line of sight being computed (R21). In R29, RR gyro command loop running.	Line of sight not being computed (R21) In R29; RR gyro command loop off.
13	ACMODFLG	Manual acquisition by Rendezvous Radar.	Auto acquisition by Rendezvous Radar.
14	$\begin{aligned} & \text { SRCHOBIT } \\ & \text { SRCHOPTN } \end{aligned}$	Radar in automatic search option (R24).	Radar not in automatic search option.
15	DRFTBIT DRIFTFLG	T3RUPT calls gyro compensation.	T3RUPT does no gyro compensation.

(FLAGWORD 3)

Bit	Name	1	0
1	DIMOFLAG	W matrix is to be used.	W matrix is not to be used.
2	D60R9FLG	Dimension of W is 9 for integration.	Dimension of W is 6 for integration.
3	VINTFLAG	CSM state vector being integrated.	LM state vector being integrated.
4	INTYPFLG	Conic integration.	Encke integration.
5	STATEBIT STATEFLG	Permanent state vector being updated.	Permanent state vector not being updated.
6	ORBWFLAG	W matrix valid for orbital navigation.	W matrix invalid for orbital integration.
7	CULTFLAG	Star occulted.	Star not occulted.
8	PRECIFLG	Normal integration in P00.	Engages four-time step (POO) logic in integration.
9	READRBIT READRFLG	Reading RR data pursuant to R29.	Not reading RR data pursuant to R29.
	R04FLAG R04FLBIT	Alarm 521 suppressed.	Alarm 521 allowed.
10	VFLAG	Less than two stars in the field of view.	Two stars in the field of view.
11	$\begin{aligned} & \text { NOR29FLG } \\ & \text { NR29FBIT } \end{aligned}$	R29 not allowed.	R29 allowed (RR designated, powered flight).
12	LUNAFLAG	Lunar latitude-longitude.	Earth latitude-longitude.
13	REFSMBIT REFSMFLG	REFSMMAT good.	REFSMMAT no good.
14	GLOKFAIL	GIMBAL LOCK has occurred.	Not in GIMBAL LOCK.
15	Not Assigned		

FLAGWORD BIT ASSIGNMENTS FOR LUMINARY 1A

(FLAGWORD 4)

Bit

XDSPBIT XDSPFLAG

Not Assigned
MKOVBIT
NRUPTFLG*

MRUPTFLG*

PINBRFLG

PRONVFLG

NRMNVFLG

MRKNVBIT MRKNVFLG

NWAITFLG*

MWAITFLG*

PDSPFBIT PDSPFLAG

NRMIDFLG*
PRIODBIT
MRKIDFLG*

Mark display not to be interruped.

Mark display over normal.
Normal display interrupted by priority or mark display.

Mark display interrupted by priority display.

Astronaut has interferred with existing display.

Astronaut using keyboard when priority display initiated. normal display initiated

Astronaut using keyboard when mark display initiated.

Higher priority display operating when normal display initiated.

Higher priority display operating when mark display initiated

P20 sets so as to turn a normal display into a priority display in R60.

Normal display in ENDIDLE.
Priority display in ENDIDLE.
Mark display in ENDIDLE.

0

No special mark information.

No mark display over normal.
Normal display not interrupted by priority or mark display.

Mark display not interrupted by priority display.

Astronaut has not interferred with existing display.

Astronaut not using keyboard when priority display initiated.

Astronaut not using keyboard when normal display initiated.

Astronaut not using keyboard when mark display initiated.

No higher priority display operating when normal display initiated.

No higher priority display operating when mark display initiated.

Leave as normal display.

No normal display in ENDIDLE. No priority display in ENDIDLE. No mark display in ENDIDLE.

[^2]| Bit | Name | 1 | 0 |
| :---: | :---: | :---: | :---: |
| 1 | RENDWBIT RENDWFLG | W matrix valid for rendezvous navigation. | W matrix invalid for rendezvous navigation. |
| 2 | MGLVFLAG | Local vertical coordinates computed. | Middle gimbal angle computed. |
| 3 | SOLNSW | Lambert does not converge, or time-radius nearly circular. | Lambert converges or time-radius noncircular. |
| 4 | NORRMBIT NORRMON | Bypass RR gimbal monitor. | Perform RR gimbal monitor. |
| 5 | Not Assigned | | |
| 6 | $\begin{aligned} & \text { 3AXISBIT } \\ & 3 A \times I S F L G \end{aligned}$ | Maneuver specified by three axes. | Maneuver specified by one axis; R60 call VECPOINT. |
| 7 | ENGONBIT | Engine turned on. | Engine turned off. |
| 8 | Not Assigned | | |
| 9 | DMENFLG | Dimension of W is 9 for incorporation. | Dimension of W is 6 for incorporation. |
| 10 | RNGSCBIT RNGSCFLG | Scale change has occurred during RR reading. | No scale change has occurred duri RR reading. |
| 11 | R77FLAG R77FLBIT | R77 is on; suppress all radar alarms and tracker fails. | R77 is not on. |
| 12 | NOTHRBIT NOTHROTL | Inhibit full throttle. | Permit full throttle. |
| 13 | SNUFFBIT | U, V jets disabled during DPS burn (V65). | U, V jets enabled during DPS burn (V75). |
| 14 | Not Assigned | | |
| 15 | DSKYFBIT | Displays sent to DSKY. | No displays to DSKY. |

FLAGWORD BIT ASSIGNMENTS FOR LUMINARY 1A

(FLAGWORD 6)

Bit	Name	1	0
1	ATTFLAG ATTFLBIT	LM attitude exists in moon-fixed coordinates.	No LM attitude available in moonfixed coordinates.
2	AUXFLBIT	Providing IDLEFLAG is not set, SERVICER will exercise DVMON on its next pass.	SERVICER will skip DVMON on its next pass even if the IDLEFLAG is not set. It will then set AUXFLBIT.
3	NTARGFLG	Astronaut did overwrite Delta V at TPI or TPM (P34, P35).	Astronaut did not overwrite Delta V.
4	Not Assigned		
5	Not Assigned		
6	REDFLAG REDFLBIT	Landing site redesignation permitted.	Landing site redesignation not permitted.
7	Not Assigned		
8	MUNFLAG MUNFLBIT	SERVICER calls MUNRVG.	SERVICER calls CALCRVG.
9	Not Assigned		
10	GMBDRBIT GMBDRVSW	TRIMGIMB over.	TRIMGIMB not over.
11	Not Assigned		
$\begin{aligned} & 12 \\ & 13 \end{aligned}$	$\begin{aligned} & \text { S32.1F3B } \\ & \text { S32.1F3A } \end{aligned}$	(Bits 12 and 13 function as an ordered occurrence of two Newton iterations f $(0,0)$ - First pass of second Newton it (0,1) - First Newton iteration being c (1,0) - Remainder of second Newton $(1,1)-50 \mathrm{ft} / \mathrm{s}$ stage of second Newto	$(13,12)$ indicating the possible 2.1: on, tion, ation.)
14	S32.1F2	First pass of Newton iteration.	Reiteration of Newton.
15	S32.1F1	Delta V at CSI Time 1 exceeds maximum.	Delta V at CSI Time 1 less than maximum.

FLAGWORD BIT ASSIGNMENTS FOR LUMINARY 1A

Bit	Name	1	0
1	TFFSW	Calculate TPERIGEE.	Calculate TFF.
2	V82EMFLG	Moon vicinity.	Earth vicinity.
3	VERIFBIT	(Changed when V33E occurs at end	
4	UPLOCBIT	K- $\bar{K}-\mathrm{K}$ fail.	No K- $\bar{K}-\mathrm{K}$ fail.
5	AVEGFBIT AVEGFLAG	AVERAGEG (SERVICER) desired.	AVERAGEG (SERVICER) not desired.
6	$\begin{aligned} & \text { V37FLAG } \\ & \text { V37FLBIT } \end{aligned}$	AVERAGEG (SERVICER) running.	AVERAGEG (SERVICER) off.
7	IDLEFBIT IDLEFLAG	No Delta V monitor.	Connect Delta V monitor.
8	V67FLAG	Astronaut overwrites W-matrix initial values.	Astronaut does not overwrite W-matrix initial values.
9	RVSW	Do not compute final state vector in time-theta.	Compute final state vector in time-theta.
10	NORMSW	Unit normal input to Lambert.	Lambert computes its own normal.
11	SWANDBIT SWANDISP	Landing analog displays enabled.	Landing analog displays suppressed.
12	ASTNBIT ASTNFLAG	Astronaut has OKed ignition.	Astronaut has not OKed ignition.
13	$\begin{aligned} & \text { IGNFLAG } \\ & \text { IGNFLBIT } \end{aligned}$	TIG has arrived.	TIG has not arrived.
14	MANUFLAG*	Attitude maneuver going on during RR search.	No attitude maneuver during RR search.
15	ITSWICH	P34 TPI time to be computed.	TPI has been computed.

*These switches are never called by name.
(FLAGWORD 8)

Bit	Name	1	0
1	360sw	Transfer angle near 360 degrees.	Transfer angle not near 360 degrees.
2	INITABIT INITALGN	Initial pass through P57.	Second pass through P57.
3	Not Assigned		
4	COGAFLAG	No conic solution, too close to rectilinear (COGA overflows).	Conic solution exists, ICOGA does not overflow.)
5	APSESW	RDESIRED outside of PERICENTERAPOCENTER range in time-radius.	RDESIRED inside of PERICENTER APOCENTER range in time-radius.
6	ORDERSW	Iterator uses second order minimum mode.	Iterator uses first order standard mode.
7	INFINFLG	No conic solution (closure through infinity required).	Conic solution exists.
8	SURFFBIT SURFFLAG	LM on lunar surface.	LM not on lunar surface.
9	P39/79SW	P39/P79 operating.	P38/P78 operating.
10	FLUNDBIT FLUNDISP	Current guidance displays inhibited.	Current guidance displays permitted.
11	LMOONBIT LMOONFLG	Permanent LM state vector in lunar sphere.	Permanent LM state vector in earth sphere.
12	CMOONBIT CMOONFLG	Permanent CSM state vector in lunar sphere.	Permanent CSM state vector in earth sphere.
13	NEWIFLG	First pass through integration.	Succeeding iteration of integration.
14	Not Assigned		
15	RPQFLAG	RPO not computed. (RPQ = vector between secondary body and primary body.)	RPQ computed.

(FLAGWORD 9)

Bit	Name	1	0
1	AVEMIDSW	AVETOMID calling for W matrix integration. Do not overwrite RN, VN, PIPTIME.	No AVETOMID W matrix integration. Allow setup of RN, VN, PIPTIME.
2	MIDAVFLAG	Integration entered from one of MIDTOAV portals.	Integration was not entered via MIDTOAV.
3	MID1FLAG	Integrate to TDEC.	Integrated to the then-present time.
4	Not Assigned		
5	QUITFLAG	Terminate and exit from integration.	Continue integration.
6	ROTFLAG	P70 and P71 will force vehicle rotation in the preferred direction.	P70 and P71 will not force vehicle rotation in the preferred direction.
7	Not Assigned		
8	FLAP	APS continued abort after DPS staging (ascent guidance).	APS abort is not a continuation.
9	LETABBIT LETABORT	Abort programs are enabled.	Abort programs are not enabled.
10	FLRCS FLRCSBIT	RCS injection mode (ascent guidance).	Main engine mode.
11	FLPI	Preignition phase (ascent guidance).	Regular guidance.
12	FLPC	No position control (ascent guidance).	Position control.
13	Not Assigned		
14	FLVR	Vertical rise (ascent guidance).	Nonvertical rise.
15	Not Assigned		

(FLAGWORD 10, RASFLAG)

Bit	Name	1	0
1	Not Assigned		
2	Not Assigned		
3	Not Assigned		
4	Not Assigned		
5	Not Assigned		
6	Not Assigned		
7	REINTBIT REINTFLG	Integration routine to be RESTARTED.	Integration routine not to be RESTARTED.
8	Not Assigned		
9	Not Assigned		
10	Not Assigned		
11	Not Assigned		
12	Not Assigned		
13	APSFLAG APSFLBIT	Ascent stage.	Descent stage.
14	INTFLBIT	Integration in progress.	Integration not in progress.
15	Not Assigned		

(FLAGWORD 11)

Bit	Name	1	0
1	HFLSHBIT HFLSHFLG	LR altitude fail lamp should be flashing.	LR altitude fail lamp should not be flashing.
2	VFLSHBIT VFLSHFLG	LR velocity fail lamp should be flashing.	LR velocity fail lamp should not be flashing.
3	SCABBIT	LR low scale discrete not present when it should be.	LR scale discrete appears OK.
4	RNGEDBIT	LR altitude measurement made.	LR altitude measurement not made.
5	READVBIT READVEL	OK to read LR velocity data.	Do not read LR velocity data.
6	READLBIT READLR	OK to read LR range data.	Do not read LR range data.
7	VELDABIT	LR velocity measurement made.	LR velocity measurement not made.
8	LRINH LRINHBIT	LR updates permitted by astronaut.	LR updates inhibited by astronaut.
9	XORFLBIT XORFLG	Below limit inhibit; X-axis override.	Above limit; do not inhibit.
10	NOLRRBIT NOLRREAD	LR repositioning; bypass update.	LR not repositioning.
11	PSTHIBIT	Posthigate.	Prehigate.
12	VXINH VXINHBIT	If Z velocity data unreasonable, bypass X -axis velocity update on next pass.	Update X -axis velocity.
13	Not Assigned		
14	Not Assigned		
15	LRBYBIT LRBYPASS	Bypass all LR updates.	Do not bypass LR updates.

(FLAGWORD 12, RADMODES)

Bit	Name	1	0
1	TURNONBT	RR turn-on sequence in progress (zero RR CDU's; fix antenna position).	No RR turn-on sequence in progress.
2	AUTOMODE*	RR not in Auto mode. Auto mode discrete is not present.	RR in Auto mode.
3	RRRSBIT	RR range reading on the high scale.	$R \mathrm{R}$ range reading on the low scale.
4	RRDATABT	RR data fail. Data could not be read successfully.	No RR data fail.
5	LRALTBIT	LR altitude data fail. Data could not be read successfully.	No LR altitude data fail.
6	LRPOSBIT	LR in Position 2.	LR in Position 1.
7	RCDUFBIT	RR CDU fail has not occurred.	RR CDU fail has occurred.
8	LRVELFLG*	LR velocity data fail.	No LR velocity data fail.
9	ALTSCBIT	LR altitude reading is on high scale.	LR altitude reading is on low scale.
10	DESIGBIT	RR designate requested or in progress.	RR designate not requested or in progress.
11	REPOSBIT	Reposition monitor, RR reposition is taking place.	No RR resposition taking place.
12	ANTENBIT	RR antenna is in Mode 2.	RR antenna is in Mode 1.
13	RCDUOBIT	RR CDU's being zeroed.	RR CDU's not being zeroed.
14	REMODBIT	Change in antenna mode has been requested.	No remode requested or occurring.
15	$\begin{aligned} & \text { CDESBIT } \\ & \text { CDESFLAG } \end{aligned}$	Continuous designate. LGC commands RR regardless of lock-on.	LGC checks for lock-on when antenna being designated.

*These switches are never called by name.
(FLAGWORD 13, DAPBOOLS)

Bit	Name	1	0
$\begin{aligned} & 1 \\ & 2 \end{aligned}$	AUTR1FLG* AUTR2FLG*	These flags $(2,1)$ are used together KALCMANU maneuver rates: $(0,0)=0.2 \mathrm{deg} /$ second, $(0,1)=0.5 \mathrm{deg} /$ second, $(1,0)=2.0 \mathrm{deg} /$ second , $(1,1)=10.0 \mathrm{deg} /$ second .	ate astronaut-chosen
3	ACCSOKAY	Control authority values from 1/ACCS usable.	RESTART or FRESH START since last 1/ACCS; outputs suspect.
4	DBSELECT	Maximum deadband selected by crew (5 degrees).	Minimum deadband selected by crew (0.3 degree).
5	AORBSYST	P-axis couples 7, 15 and 8, 16 preferred.	P -axis couples 3,11 and 4, 12 preferred.
6	ULLAGER ULLAGFLG	Ullage request by mission program.	No internal ullage request.
7	RHCSCALE	Normal RHC scaling requested.	Fine RHC scaling requested.
8	DRIFTBIT DRIFTDFL	Assume zero offset drifting flight.	Use offset acceleration estimate.
9	XOVINFLG XOVINHIB	X-axis override locked out.	X-axis override OK.
10	AORBTFLG AORBTRAN	B system for X-translation preferred.	A system for X-translation preferred.
11	$\begin{aligned} & \text { ACC4-2FL } \\ & \text { ACC } 40 \text { R2X } \end{aligned}$	Four-jet X-axis translation requested.	Two-jet X -axis translation requested.
12	OURRCBIT	Current DAP pass is rate command.	Current DAP pass is not rate command.
13	CSMDOCKD	CSM docked; use backup DAP.	CSM not docked to LM.
14	USEQRJTS	Gimbal unusable; use jets only.	Trim gimbal may be used.
15	PULSES	Minimum impulse command mode in "attitude hold" (V76).	Not in minimum impulse command mode (V77).

*These switches are never called by name.

FLAGWORD BIT ASSIGNMENTS FOR LUMINARY 1A

IMODES30, a flag whose individual bits are used to control the monitoring of IMU functions associated with Channel 30 (and in a few cases Channel 33).

Meaning

15 Last sampled value of Channel 30, Bit 15 (0 if IMU temperature within limits).
14 Last sampled value of Channel 30, Bit 14 (0 if ISS has been turned on or commanded to be turned on).

13 Last sampled value of Channel 30, Bit 1310 if an IMU fail indication has been produced).

12 Last sampled value of Channel 30, Bit 12 (0 if an IMU CDU fail indication has been produced).

11 Last sampled value of Channel 30, Bit 11 (0 if an IMU cage command has been produced by crew).

10 Last sampled value of Channel 33, Bit 10 (0 if a PIPA fail indication has been produced), having the same value as Bit 13 of IMODES33.

9 Last sampled value of Channel 30, Bit 910 if IMU has been turned on and operating with no malfunctions).

8 Bit used to control the IMU turn-on sequencing.
7 Bit used to control the IMU turn-on sequencing.
6 Bit is set to 1 to indicate that IMU initialization is being carried out.
5 Bit is set to 1 to inhibit the generation of program alarm 02128 if a PIPA fail signal (Bit 13 of Channel 33) is produced.

4 Bit is set to 1 to inhibit generation of an ISS warning based on receipt of an IMU fail signal.
$3 \quad$ Bit is set to 1 to inhibit generation of an ISS warning based on receipt of an IMU CDU fail signal.

2 Bit is set to 1 to indicate failure of the turn-on delay sequence for IMU turn-on (alarm 02078 is also generated).

1 Bit is set to 1 to inhibit generation of an ISS warning based on receipt of a PIPA fail signal (Bit 13 of Channel 33).

FLAGWORD BIT ASSIGNMENTS FOR LUMINARY 1A

IMODES33, a flag whose individual bits are used to control the monitoring of functions associated with Channel 33 (and other items).

Meaning

15 Not assigned.
14 Last sampled value of Channel 32, Bit 14 (0 if a Proceed command is given using the old "standby" button)

13 Last sampled value of Channel 33, Bit 13 (0 if an accelerometer fail signal, or PIPA fail, has been produced by hardware).

12 Last sampled value of Channel 33, Bit 12 (0 if a telemetry end pulse has been rejected because the downlink rate is too fast).

11 Last sampled value of Channel 33, Bit 11 (0 if an uplink bit has been rejected because the uplink rate is too fast).

10-7 Not assigned.
6 Bit is set to 1 to indicate that IMU use for vehicle attitude information should not be attempted.

5 Bit is set to 1 in IMU Zeroing routine external to T4RUPT while zeroing is taking place (for an interval of about 10.56 seconds).

42 Not assigned.
1 Bit is set to 1 when a Verb 35 ("lamp test") is received, and reset to 0 about 5 seconds later

OUTPUT CHANNEL 11

BIT	
1	ISS Warning
2	Light Computer Activity Lamp
3	Light Uplink Activity Lamp
4	Light Temp Caution Lamp
5	Light Keyboard Release Lamp
6	Flash Verb and Noun Lamps
7	Light Operator Error Lamp
8	Spare
9	Test Connector Outbit
10	Caution Reset
11	Spare
12	Spare
13	Engine On
14	Engine Off
15	Spare
1	Zero Rendezvous Radar CDU
2	Enable Rendezvous Radar Error Counter
3	Not Used
4	Coarse Align Enable
5	Zero IMU CDU's
6	Enable IMU Error Counter
7	Spare
8	Display Inertial Data
10	+Pitch Vehicle Motion (-Pitch Gimbal Trim, Bell motion)
11	-Pitch Vehicle Motion (+Pitch Gimbal Trim, Bell motion)
12	+Roll Vehicle Motion (-Roll Gimbal Trim, Bell motion)
13	Landing Radar Position 2 Command
14	Rendezvous Radar Enable Auto Track
15	ISS Turn-on Delay Complete

CHANNEL BIT ASSIGNMENTS (LM)

OUTPUT CHANNEL 13

BIT

Radar Select c
Radar Select b
Radar Select a
Radar Activity
Inhibit Uplink, Enable Crosslink (should not be set to 1)
Block Inlink
Downlink Word Order
RHC Counter Enable
Start RHC Read
Test Alarms
Enable Standby
Reset Trap 31-A
Reset Trap 31-B
Reset Trap 32
Enable T6RUPT

Channel 13 Radar Selections

a	b	c	Function
0	0	0	-
0	0	1	Rendezvous Radar range
0	1	0	Rendezvous Radar range rate
0	1	1	-
1	0	0	Landing Radar X velocity
1	0	1	Landing Radar Y velocity
1	1	0	Landing Radar Z velocity
1	1	1	Landing Radar range

OUTPUT CHANNEL 14

BIT

Outlink Activity (should not be set to 1)
Altitude Rate Select
Altitude Meter Activity
Thrust Drive
Spare
Gyro Enable
Gyro Select b
Gyro Select a
Gyro Sign Minus
Gyro Activity
Drive CDU S
Drive CDU T
Drive CDU Z
Drive CDU Y
Drive CDU X

Channel 14-Gyro Selection
a
Gyro

INPUT CHANNEL 15
Key codes from Main DSKY
Spare
Spare
8 Spare
9 Spare
10 Spare
11 Spare
12 Spare
13 Spare
14 Spare
15 Spare

CHANNEL BIT ASSIGNMENTS (LM)

INPUT CHANNEL 16
Bit
1 Spare
2 Spare
3 Mark X
4 Mark Y
5
Mark reject
Descent +
Descent -
Spare
Spare
Spare
Spare
Spare
Spare
Spare
Spare

INPUT CHANNEL 30

Abort
Descent Stage Attached
Engine Armed
Abort Stage
Auto Throttle
Display Inertial Data
Rendezvous Radar CDU Fail
Spare
IMU Operate
G/N Control of S/C
IMU Cage
IMU CDU Fail
IMU Fail
ISS Turn-On Request
Temp in Limits

NOTE:
All of the input signals in Channel 30 are inverted; that is, a ZERO bit indicates that the discrete is ON.

CHANNEL BIT ASSIGNMENTS (LM)

INPUT CHANNEL 31

BIT
+EL (LPD), + PMI
-EL (LPD), - PMI

+ YMI
-YMI
+AZ (LPD), +RMI
-AZ (LPD), -RMI
$+X$ Trans
-X Trans
$+Y$ Trans
- Y Trans
+Z Trans
-Z Trans
Attitude Hold
Auto Stabilization
Attitude Control Out of Detent
NOTE:
All of the input signals in Channel 31 are inverted; that is, a ZERO bit indicates that the discrete is ON.

INPUT CHANNEL 32
BIT

Thruster 2-4 Fail
Thruster 5-8 Fail
Thruster 1 - 3 Fail
Thruster 6-7 Fail
Thruster 14-16 Fail
Thruster 13-15 Fail
7 Thruster 9-12 Fail
8 Thruster 10-11 Fail
9 Gimbal Off
10 Apparent Gimbal Fail
11 Spare
12 Spare
13 Spare
14 Proceed
15 Spare

NOTE:
All of the input signals in Channel 32 are inverted; that is, a ZERO bit indicates that the discrete is ON.

CHANNEL BIT ASSIGNMENTS (LM)

INPUT CHANNEL 33

BIT

Spare
Rendezvous Radar Auto-Power On
Rendezvous Radar Range Low Scale
Rendezvous Radar Data Good
Landing Radar Range Data Good
Landing Radar Position 1
Landing Radar Position 2
Landing Radar Velocity Data Good
Landing Radar Range Low Scale
Block Uplink Input*
Uplink Too Fast
Downlink Too Fast
PIPA Fail
Warning
Oscillator Alarm
*This bit reads ONE when accept uplink signal is present at interface.

NOTE:
All of the input signals in Channel 33 are inverted; that is, a ZERO bit indicates that the discrete is ON.

Purpose:

1. To provide a program to fulfill the following requirements:
a. Provide an indication to the crew that the LGC is engaged in no control or computational operations which might require consideration for coordination with other crew tasks in progress.
b. Maintain the LGC in a condition of readiness for entry into any other program.

Assumptions:

1. The IMU may or may not be on. If on, the IMU is inertially stabilized but not necessarily aligned to an orientation which is known to the LGC.
2. If the IMU is on, the DAP is available for manually controlled attitude maneuvers. If attitude maneuvers are made by the crew, care must be taken to avoid IMU gimbal lock by observing the ICDU's (V16 N20) or by monitoring the FDAI ball.
3. During this program the Coasting Integration routine will periodically update the LM and CSM state vectors to approximately the current time. The capability to select an LGC program (V37 XXE) is inhibited by the LGC during this integration. V37 use at this time will result in a program alarm (1520).
4. This program is automatically selected by V96E, which may be done during any program. State vector integration is permanently inhibited following V96E. Normal integration functions will resume after selection of any program. Use of V96 can cause incorrect W-matrix extrapolation since state vector synchronization is not maintained.
5. The program is selected by the astronaut by DSKY entry.

Selected Displays:

1. V06 N38

Time of state vector being integrated	$00 \times X X . \mathrm{h}$
$000 \times \mathrm{m} . \mathrm{min}$	
	$0 \times X . X X \mathrm{~s}$

P06-LGC POWER-DOWN PROGRAM

Purpose:

1. To transfer the LGC from the operate to the standby condition.

Assumptions:

1. The normal condition of readiness of the PGNCS when not in use is standby. In this condition the IMU standby circuit breaker is on, the IMU operate circuit breaker is off, the LGC/DSKY circuit breaker is on, and the standby light on the DSKY is on. In this configuration both the IMU and LGC are off, with power applied only to the IMU heat control circuitry and the LGC timing circuitry.
2. A possible condition of readiness of the PGNCS when not completely on is the same as standby (Assumption 1) except that the standby light on the DSKY is off. In this configuration the LGC is running for computational purposes that do not require the IMU.
3. If the computer power is switched off it will be necessary to perform a Computer FRESH START (V36E) to initialize the erasable storage. The LGC Update program (P27) would have to be done to update the LM and CSM state vectors and computer clock time.
4. The LGC is capable of maintaining an accurate value of ground elapsed time (GET) for only 23 hours when in the Standby mode. If the LGC is not brought out of the standby condition to the running condition at least once within 23 hours the LGC value of GET must be updated.

P06 (continued)

5. Once the program has been selected the LGC must be shut down. After P06 selection the LGC will not honor a new program request (V37EXXE), a terminate (V34E), or an enter in response to the LGC request for LGC standby.
6. The program is selected by the astronaut by DSKY entry.

Selected Displays:

1. V50 N25 (LGC power down)

Checklist code
00062

P12-POWERED ASCENT PROGRAM
Purpose:

1. To display to the crew, prior to ascent engine ignition, certain LGC-stored parameters associated with the powered ascent, for possible modification by the crew.
2. To display to the crew, prior to ascent engine ignition, certain FDAI ball readings associated with the early phases of the ascent maneuver.
3. To control the PGNCS during countdown, ignition, thrusting, and thrust termination of a PGNCS-controlled APS powered ascent maneuver from the lunar surface.

Assumptions:

1. The LGC has stored injection values which define an ascent trajectory. These values are altitude of injection, the distance at injection between the LM and the CSM orbital plane, and the LM vertical (V(R)) and horizontal (V(Y)) and (V(Z)) velocities at injection. This trajectory is designed to be coplanar with that of the CSM and to result in an apolune of 30 nmi . All altitudes are measured with respect to the magnitude of the landing site position vector which is an LGC initialization parameter.
This predefined ascent trajectory may be partially modified during this program by astronaut input.
2. The PGNCS will control the LM ascent maneuver such that the LM velocity at injection is parallel to the CSM orbital plane, either in that plane, or at a specified distance from that plane as controlled by astronaut definition of crossrange. The astronaut can also change the required injection conditions by modifying the nominal initial downrange and radial velocity display values. Crossrange should not be specified such as to cause the ascent trajectory to cross through the CSM orbital plane.
3. The initial period of the ascent trajectory will consist of two phases:
a. Vertical Rise Phase, from TIG until the radial velocity (V(R)) of the LM exceeds $40 \mathrm{ft} / \mathrm{s}$. During this phase the LM will be held by the PGNCS to an attitude such that the LM $+X$ axis is parallel to the LM position vector at TIG. At TIG the PGNCS will command the LM around its X axis (yaw) until the LM $+Z$ axis points downrange.
b. Pitchover Phase, when $V(R)$ exceeds $40 \mathrm{ft} / \mathrm{s}$ and the LM yaw attitude is within 5 degrees of the desired attitude. During this phase the PGNCS will command the LM to pitch down (about the LM Y axis) an amount defined by the guidance equations.
The LM attitude will subsequently be controlled by the guidance equations.
4. The X -axis override option provides the crew with the ability to exercise manual control about the LM X axis with the attitude controller even though the PGNCS Attitude Control mode is Auto. When the controller is returned to detent, the PGNCS damps the yaw rate, stores the yaw attitude when the yaw rate is damped, and then maintains that attitude.
The X-axis override option is always available to the crew except when the LGC is specifying a desired yaw attitude. Thus the option is inhibited by this program from TIG(AS) until 10 seconds after $V(R)$ equals $40 \mathrm{ft} / \mathrm{s}$ and the LM yaw attitude is within 5 degrees of the desired attitude for pitchover initiation.

P12 (contineud)

5. The IMU is on and must be at a known orientation before this program may be completed. Normally, the Lunar Surface Align program (P57) has been completed before selection of this program. It is normally required that the ISS be on for a minimum of 15 minutes prior to a thrusting maneuver.
6. Engine ignition may be slipped beyond TIG(AS) if desired by the crew or if state vector integration cannot be completed in time. Variation of the time of ascent ignition (TIG(AS)) either by design or inadvertent slippage will change the relative phasing with respect to the CSM of the ascent trajectory and the resultant LM orbit.
7. If a thrusting maneuver is performed with the Guidance Control switch in PGNS and the Mode Control switch in Auto, the PGNCS will control the total vehicle attitude and generate either Mode 1 or Mode 2 attitude errors for display on the FDAI. The crew may exercise control around the yaw axis only with the ACA (X -axis override) if the X -axis override capability is permitted by the program in process. This manual control will be in the Rate Command/Attitude Hold mode.

If a thrusting maneuver is preformed with the Guidance Control switch in PGNS and the Mode Control switch in Attitude Hold, the PGNCS will hold the vehicle attitude and will generate either Mode 1 or Mode 2 attitude errors for display on the FDAI. The crew may exercise manual attitude control about all vehicle axes with the ACA in either the Rate Command or Minimum Impulse mode. However, it is strongly recommended that powered flight not be attempted in the Minimum Impulse mode. During a thrusting maneuver in the PGNS/Attitude Hold mode the PGNCS will not be responsible if register overflows occur within the LGC.
8. Control of the LM RCS and APS is transferred from the PGNCS to the Abort Guidance System (AGS) by placing the Guidance Control switch from PGNS to AGS.
The AGS will be capable of taking over control of the LM during any phase of the lunar ascent, and guiding it to a safe orbit.
The AGS may be initialized by the LGC at any time by manual selection of the AGS Initialization routine (R47), which should have been performed prior to selection of P12.
In the event that the Guidance Control switch is changed from PGNS to AGS during a thrusting maneuver, the LGC will continue computation of position and velocity the desired thrust vector, and the desired attitude errors. However, the PGNCS will not be responsible if register overflows occur within the LGC.
9. The PGNCS can generate two types of attitude errors for display on the FDAI:

Mode 1 - Selected by Extended Verb 61. Autopilot following errors used as a monitor of the DAP's ability to track automatic steering commands.
Mode 2 - Selected by Extended Verb 62. Total attitude errors used to assist crew in manually maneuvering the vehicle.
10. The Rendezvous Radar (RR) was energized and checked out prior to selection of this program.
11. The Landing Analog Displays routine (R10) is enabled at TIG. However, R10 use of the RR CDU's is inhibited by this program. The Powered Flight Designate routine (R29) is enabled after pitchover. R10 and R29 are terminated upon termination of Average G.
12. Either the Load DAP Data routine (RO3) or the Landing Confirmation program (P68) has been performed prior to selection of this program.
13. For each burn an ignition total allowable time delay will be specified in the mission rules. This delay time is the total time which the thrusting maneuver may be delayed beyond the LGC calculated time of ignition. If engine restarts are involved, the accounting of this total time delay is up to the crew.
14. The DAP will be energized whenever the PGNS Control mode and the Auto Attitude or Attitude Hold Control mode have been selected. If this occurs prior to the PGNS auto check in this program, the attitude errors will be zeroed and the attitude deadband will be set to the value specified by P68 (5 degrees) or R03 (astronaut defined), whichever occurred most recently.
15. LGC and crew procedures in cases of LGC-assumed thrust failure are defined by the DPS/APS Thrust Fail routine (R40). This routine is called at APS ignition by this program.
16. This program is selected by the astronaut by DSKY entry at least 5 minutes before the estimated time of ascent ignition TIG(AS).

Selected Displays:

1. V06 N33

Time of ascent ignition

V06 N76

Desired downrange velocity	$\mathrm{XXXX} . \mathrm{Xft} / \mathrm{s}$
Desired radial velocity	$\mathrm{XXXX} . \mathrm{ft} / \mathrm{s}$
Crossrange distance	$\mathrm{XXXX} . \mathrm{Xmi}$

Crossrange distance
3. V50 N25 (change guidance mode)

Checklist code
4. V06 N74

Time from ascent ignition
Yaw after vehicle rise
Pitch after vehicle rise
XXX.XX deg
XXX.XX deg
5. V99 N74 (request engine on enable)

Display same as Item 4 above
6. V16 N63

Absolute value of velocity	XXXX. $\mathrm{fft} / \mathrm{s}$ $^{\text {d }}$
Altitude rate	XXXX.X ft/s (+ ascent)
Computed altitude	XXXXX. ft
6 N85	
Components of VG (LM body axis)	XXXX. $\mathrm{ft}^{\text {ft/s }}$
6 N77	
Time to engine cutoff	$\mathrm{X} \times \mathrm{b} \times \times \mathrm{min} / \mathrm{s}$
LM velocity normal to CSM plane	XXXX. $\mathrm{ft}^{\text {f/s }}$
6 N56	
RR LOS azimuth	XXX.XX deg
RR LOS elevation	XXX.XX deg

00xXX. h
000XX. min
0XX.XX s

XXXX.X ft/s
XXXX.X nmi

00203
$X \times b \times X \min / s$

XXXX. Xft /s
XXXX.X ft/s (+ ascent)
$X X X X X$. ft
7. V16 N85

Components of VG (LM body axis)
$X \times b \times \times \mathrm{min} / \mathrm{s}$
XXXX.X ft/s
9. V16N56

RR LOS elevation

P20-RENDEZVOUS NAVIGATION PROGRAM

Purpose:

1. To control the LM attitude and the Rendezvous Radar (RR) to acquire and track the CSM with the RR while the LM is in flight.
2. To update either the LM or CSM state vector (as specified by the astronaut by DSKY entry) on the basis of RR tracking data or to track the CSM without updating either vehicle state vector.
3. To point the LM optical beacon at the CSM.

Assumptions:

1. The ISS may be in standby or operate. The IMU would normally be on and the IMU Orientation Determination program (P51) completed before the selection of this program. No preferred orientation is specified or required for this program as the Attitude Maneuver routine (R60) can always calculate a vehicle orientation about the LM $+Z$ axis that can avoid gimbal lock for any IMU inertial orientation. The ISS thus may be:
a. Off (standby).
b. On and not aligned since turn-on.
c. On and at an inertial orientation known only inaccurately by the LGC; that is, having been aligned at least once since turn-on but having drifted from the stored alignment
d. On and at an inertial orientation known accurately by the LGC.

If a is true a program alarm will be made by this program.
If b is true a program alarm will be made by this program.
If c is true the LGC may or may not have a satisfactory inertial reference to accurately complete the program.
If d is true the LGC has a satisfactory inertial reference to accurately complete the program.
2. The CSM is maintaining a preferred tracking attitude for RR tracking by the LM This preferred attitude correctly orients the CSM radar transponder.
3. At the beginning of the program, the state vector update option is automatically set to the LM. This option may be changed at any time later by one of the following manual entries:
a. V80E-Update LM state vector,
b. V81E-Update CSM state vector,
c. V95E-No state vector update.
4. The Rendezvous Radar is on, and preliminary checkout has been completed.
5. The initialization of the W matrix is enabled by:
a. A manual DSKY entry (V93E),
b. Computer Fresh Start (V36E),
c. State vector update from the ground (P27) (Except for update of Landing Site vector when the LM is on the lunar surface).
d. The powered ascent program (P12) invalidates the W-matrix used by P22 and causes P20 to reinitialize the W-matrix when selected.
6. The RR tracking mark counter counts the number of RR marks processed by the LGC. This counter is zeroed by:
a. Manual selection of P20/22 (V37E20/22E),
b. Completion of the Target Delta V program (P76),
c. Selection of a new program from a program which had turned on Average G.
d. Initialization of the W matrix.
e. Completion of RR search routine (R24) in P20.
7. The crew may manually adjust the LGC-stored values of RR shaft and trunnion bias by a direct load of four registers to be specified. However, unless the RR has been jarred, the LGC bias estimate should be more accurate than that from another source.
8. The selection and termination of $\mathrm{P} 20, \mathrm{P} 22$, and P 25 are subject to special operating procedures different from all other programs:

a. Selection

(1) Always by V37 XXE.
(2) If any other program is running at the time of $\mathrm{P} 20 / 22 / 25$ selection the new program will replace the old. This includes P20/22/25 selection whenever either P20,22, or 25 is running.
(3) If P20 or P25 is running, selection of any program other than P00 or P22 will result in P20 or P25 continuing and the new program also operating with its number in the DSKY program lights.
(4) If P20 or P25 is running, selection of P00 or P22 will result in the termination of the old program and operation of the new.
b. Termination
(1) By selection of POO or V56E or by V34E.
(2) POO selection will terminate P20, 22, and 25 and any other program in process, and establish POO.
(3) V56E selection will select the Terminate Tracking routine (R56) which will terminate only P20 or P25 if either of these programs is running in conjunction with another program. In all other cases R56 will select R00. V56E may be performed any time during P20, 22, or 25 operation.
(4) The LGC will act upon V34E only in response to a flashing verb-noun. If this display was originated by P20, 22, or $25, V 34 \mathrm{E}$ will result in an identical LGC response to that of V56E; that is, selection of R56. If this display was not originated by P20, 22, or 25 (such as P32, while running with P20), the LGC will go to RO0; however, the program in the background will continue. The new program selected follows the selection rules above.
9. The RR Manual Acquisition routine (R23) may only be selected if P20 is not running in conjunction with another program.
10. When P20 is selected anytime prior to the landing phase in the lunar mission, this program must be operated in the No Update mode.
11. The RMS position and velocity errors computed from the W matrix are available by Extended Verb (V67E). Based upon values in this display and the details of the mission, the astronaut can elect to stop or continue the current navigation procedure or to reinitialize the W matrix and continue navigating. The capability to reinitialize the W matrix is also provided via V67E.
12. State vector integration may be permanently inhibited by V96E. This entry will terminate all present programs and select the LGC Idling program (POO) with the POO automatic state vector integration permanently inhibited until selection of another program. Use of V96 can cause incorrect W-matrix extrapolation since state vector synchronization is not maintained.

Selected Displays

1. V50 N25 (change RR mode)

Checklist code
V06 N05
Difference angle between RR LOS and state vector
3. V06 N49
$\Delta \mathrm{R}$ due to RR mark data incorporation
ΔV due to RR mark data incorporation
Source code
4. V50 N25 (manual RR acquisition of CSM)

Checklist code
5. V16 N80

Data indicator (displays 11111 when search is successful, otherwise blank)
Angle between RR LOS and $+Z$ axis
6. V50 N18

Desired automaneuver FDAI ball angles
7. V06 N18

Final FDAI ball angles

00201
$X X X . X X$ deg

XXXX.X nmi
XXXX. $\mathrm{Xft} / \mathrm{s}$
$0000 \times$ (1-RR range, 2-RR range rate, 3-RR shaft angle, 4-RR trunnion angle)

00205
$X X X X X$
XXX.XX deg

R $X X X . X X$ deg
P $X X X X X$ deg
Y $X X X . X X$ deg
$R \quad X X X . X X \operatorname{deg}$
P $\quad X X X . X X$ deg
Y XXX.XX deg
8. V50 N72

RR Trunnion angle (360 degrees - CDU trunnion angle)	XXX.XX deg
RR shaft angle	XXX.XX deg
6 N45	
Marks (M)	XXXXX. marks
Time from ignition of next burn	XX b X ${ }^{\text {min/s }}$
Middle gimbal angle	XXX.XX deg
6 N38	
Time of state being integrated	00XXX. h
	000xX. min
	0XX.XX s

P21-GROUND TRACK DETERMINATION

Purpose:

1. To provide astronaut with details of his ground track.

Assumptions:

1. Program is selected by the astronaut by DSKY entry.
2. Vehicle whose ground track parameters are calculated remains in freefall from start of program until T LAT/LONG.
3. Program may be selected while LM is either in earth or lunar orbit to define ground track of either LM or CSM.

Selected Displays:

1. V04 N06

Option code ID	00002
Option code	$0000 \times\left(\begin{array}{l}\text { (1-this vehicle, } \\ \text { 2-other vehicle) }\end{array}\right.$

2. V06 N34

Time of LAT/LONG
00XXX. h
000XX. min
0xX.XX s
3. V06 N43

Ground track latitude
XXX.XX deg (+ north)

Ground track longitude
$X X X . X X$ deg (+ east)
Altitude above ground
XXXX.X nmi
4. V06 N91

Altitude
XXXXXb.nmi
Velocity
XXXXX.ft/s
Flight path angle
$X X X . X X$ deg

P22-LUNAR SURFACE NAVIGATION PROGRAM

Purpose:

1. To control the rendezvous radar (RR) to acquire and track the CSM while the LM is on the lunar surface.
2. To update the CSM state vector on the basis of RR tracking data.
3. To track the CSM without updating either vehicle state vector.

Assumptions:

1. The ISS may be in standby or operate. The IMU would normally be on and the Lunar Surface Align program (P57) completed before the selection of this program. The ISS thus may be:
a. Off (standby).
b. On and not aligned since turn-on.
c. On and at an inertial orientation known only inaccurately by the LGC; that is, having been aligned at least once since turn-on but either having been inaccurately aligned or having drifted from the stored alignment.
d. On and at an inertial orientation known accurately by the LGC.

If a is true a program alarm will be made by this program.
If b is true a program alarm will be made by this program.
If c is true the LGC may not have a satisfactory inertial reference to accurately complete the program.
If d is true the LGC has a satisfactory inertial reference to accurately complete the program.
2. The CSM may or may not be below the lunar horizon. Although above the horizon, it may still be outside of the available RR coverage sector. Although within the available RR coverage sector, it may be outside the allowable RR coverage sector.
This program will always track the CSM with the radar in Mode 2. In Mode 2 the available coverage is always less than horizon to horizon.
3. The CSM is maintaining a preferred tracking attitude for RR tracking by the LM. This preferred attitude correctly orients the CSM radar transponder.
4. At the beginning of the program the state vector update option is automatically set to the CSM. This option may be inhibited at any time and later restored by the following manual entries:
a. V81E-Update CSM state vector.
b. V95E-No state vector update.
5. The Rendezvous Radar is on; preliminary checkout has been completed.
6. The initialization of the W matrix is enabled by:
a. A manual DSKY entry (V98E).
b. Computer FRESH START (V36E).
c. State vector update from the ground (P27).
7. The RR tracking mark counter counts the number of RR marks processed by the LGC. This counter is zeroed:
a. By manual selection of P20/P22 (V37E20/22E)
b. Completion of the Target Delta V program (P76).
c. Selection of a new program from a program which had turned on Average G.
d. Initial ization of the W matrix (Assumption 6).
8. The RMS position and velocity errors computed from the W matrix are available by Extended Verb (V67E). Based upon values in this display and the details of the mission, the astronaut can elect to stop or continue the current navigation procedure or to reinitialize the W matrix and continue navigating. The capability to reinitialize the W matrix is also provided via V67E.
9. The selection and termination of P20, P22, and P25 are subject to special operating procedures different from all other programs:
a. Selection
(1) Always by V37E XXE.

P22 (continued)

(2) If any other program is running at the time of $\mathrm{P} 20 / 22 / 25$ selection the new program will replace the old. This includes P20/22/25 selection whenever either P20, 22 , or 25 is running.
(3) If P20 or P25 is running, selection of any program other than P00 or P22 will result in P20 or P25 continuing and the new program also operating with its number in the DSKY program lights.
(4) If P20 or P25 is running, selection of P00 or P22 will result in the termination of the old program and operation of the new.
b. Termination
(1) By selection of P00, V56E, or by V34E.
(2) P00 selection will terminate P20, P22, and P25 and any other program in process and establish POO.
(3) V56E selection will select the Terminate Tracking routine (R56) which will terminate only P20 or P25 if either of these programs is running in conjunction with another program. In all other cases R56 will select ROO. V56E may be performed any time during P20, 22, or 25 operation.
(4) The LGC will act upon V34E only in response to a flashing verb-noun. If this display was originated by P20, 22, or $25, \mathrm{~V} 34 \mathrm{E}$ will result in an identical LGC response to that of V56E; that is, selection of R56.
If this display was not originated by P20, 22, or 25° (such as P32, while running with P20) the LGC will go to R00; however, the program in the background will continue. The new program selected follows the selection rules shown above.
10. State vector integration may be permanently inhibited by V96E. This entry will terminate all present programs and select the LGC Idling program (POO) with the POO automatic state vector integration permanently inhibited until selection of another program. Use of V96 can cause incorrect W-matrix extrapolation since state vector synchronization is not maintained.

Selected Displays:

1. V04 N06

Option code ID
Option code
2. V06 N33

Time of ascent ignition
3. V50 N25 (change RR mode)

Checklist code
4. V06 N05

Difference angle between RR LOS and state vector
5. V06 N49
ΔR due to RR mark data incorporation
ΔV due to RR mark data incorporation
Source code
6. V50 N25 (manual RR acquisition of CSM)

Checklist code
7. V16 N56

RR LOS azimuth
RR LOS elevation

00012
$0000 \times$ (1 -no orbit change, 2-change orbit to pass over LM)

00XXX. h
000XX. min
0XX.XX s

00201
$X X X . X X$ deg

XXXX.X nmi
XXXX.X ft/s
$0000 \times$ (1-RR range, 2-RR range rate, $3-R R$ shaft angle, $4-R R$ trunnion angle)

00205
XXX.XX deg
$X X X . X X$ deg
8. V06 N38

Time of state vector being integrated $00 \times X \times \mathrm{h}$
000XX. min
0XX.XX s
9. V16 N45

Marks (M)	$X X X X X$. marks
Time from ignition of next burn	$X X b \times X \mathrm{~min} / \mathrm{s}$
Middle gimbal angle	$X X X . X X$ deg

P25--PREFERRED TRACKING ATTITUDE PROGRAM

Purpose:

1. To compute the preferred tracking attitude of the LM which enables CSM tracking of the beacon.
2. To perform the maneuver to the preferred tracking attitude.

Assumptions:

1. During the Rendezvous Navigation program (P 20) the LM attitude control is intimately associated with the Rendezvous Radar (RR). Should RR malfunction preclude correct operation of P20, this program (P25) should be selected to provide an LM preferred tracking attitude.
2. The preferred tracking attitude is defined as follows:
a. The $L M+Z$ axis is aligned along the LOS to the CSM.
b. The roll attitude (about $\mathrm{LM}+\mathrm{Z}$ axis) is unconstrained and is defined as necessary to avoid gimbal lock.
3. The ISS may be in standby or operate. The IMU would normally be on and the IMU Orientation Determination program (P51) completed before the selection of this program. No preferred orientation is specified or required for this program as the Fine Preferred Tracking Attitude routine (R65) can always calculate a vehicle orientation about a specified LM $+Z$ vector that can avoid gimbal lock for any inertial IMU orientation. The ISS thus may be:
a. Off (standby).
b. On and not aligned since turn-on.
c. On and at an inertial orientation known only inaccurately by the LGC; that is, having been aligned at least once since turn-on but not within the last 3 hours.
d. On and at an inertial orientation known accurately by the LGC; that is, having been aligned within the last 3 hours.
If a is true a program alarm will be made by this program.
If \mathbf{b} is true a program alarm will be made by this program.
If c is true the LGC may or may not have a satisfactory inertial reference to accurately complete the program.
If d is true the LGC has a satisfactory inertial reference to accurately complete the program.
4. The LM tracking beacon field of view is a 30 -degree half-angle cone with the cone axis parallel to the $\mathrm{LM}+\mathrm{Z}$ axis.
5. The selection and termination of P20, P22, and P25 are subject to special operating procedures different from all other programs.
a. Selection
(1) Always by V37EXXE.
(2) If any other program is running at the time of $\mathrm{P} 20 / 22 / 25$ selection the new program will replace the old. This includes P20/22/25 selection whenever either P20, 22, or 25 is running.
(3) If P20 or P25 is running, selection of any program other than P00 or P22 will result in P20 or P25 continuing and the new program also operating with its number in the DSKY program lights.
(4) If P20 or P25 is running, selection of P00 or P22 will result in the termination of the old program and operation of the new.
b. Termination
(1) By selection of P00 or V56E or by V34E.
(2) P00 selection will terminate P20, 22, and 25 and any other program in process and establish P00.
(3) V56E selection will select the Terminate Tracking routine (R56) which will terminate only P20 or P25 if either of these programs is running in conjunction with another program. In all other cases R56 will select POO. V56E may be performed any time during P20, 22, or 25 operation.
(4) The LGC will act upon V34E only in response to a flashing verb-noun. If this display was originated by P20, 22, or 25, V34E will result in an identical LGC response to that of V56E; that is, selection of R56. If this display was not originated by P20, 22, or 25 (such as P32, while running with P20) the LGC will go to ROO. However, the program in the background will continue. The new program selected follows the selection rules above.

Selected Displays:

1. V50 N18

Desired automaneuver FDAI ball angles
2. V06 N18

Final FDAI ball angles
R XXX.XX deg
P XXX.XX deg
Y XXX.XX deg
R XXX.XX deg
P XXX.XX deg
Y XXX.XX deg

P27-LGC UPDATE

Purpose:

1. To enter data into the LGC via the digital uplink or by crew input via the DSKY.

Assumptions:

1. LGC must be in operate condition; IMU may be in the standby or operate condition.
2. LGC updates are of four categories:
a. Provide a decrement for the LGC clock and the orbital integration state vector time tags, and an increment for TEPHEM (V70).
b. Provide load capability for a block of sequential erasable locations (1 through 18 whose addresses are specified) (V71).
c. Provide load capability for individually specified erasable locations (1 through 9) (V72).
d. Provide an octal increment for the LGC clock only (V73).
3. The uplink may be blocked by placing the Voice/Off/Voice BU switch to Voice BU.
4. Update is allowed in the LM only when the LGC is in the LGC Idling program (POO). P27 exit is always to P00.
5. The program is manually selected by the astronaut by DSKY entry or by the ground by uplink transmission.

Purpose:

1. To accept targeting parameters obtained from a source(s) external to the LGC and compute therefrom the required velocity and other initial conditions required by the LGC for execution of the desired maneuver. The targeting parameters inserted into the LGC are the time of ignition (TIG) and the implusive Delta V along LM local vertical axes at TIG.
2. To display to the astronaut and the ground certain specific dependent variables associated with the desired maneuver for approval by the astronaut/ground.

Assumptions:

1. The target parameters (TIG and Delta V(LV)) may have been loaded from the ground during a prior execution of P27.
2. The External Delta V flag is set during this program to designate to the thrusting program that External Delta V steering is to be used.
3. The ISS need not be on.
4. The Rendezvous Radar may or may not be used to update the LM or CSM state vectors for this program. If radar use is desired, the ISS should be in operation and the radar should have been turned on and locked on the CSM by previous selection of P20. Radar sighting marks will be made automatically approximately once a minute when enabled by the Track and Update flags.
5. This program is applicable in either earth or lunar orbit
6. This program is selected by the astronaut by DSKY entry.

Selected Displays:

1. V06 N33

Time of ignition
2. V06 N82

Components of ΔV (LV)
3. V06 N42

Apocenter altitude	$X X X X . X \mathrm{nmi}$
Pericenter altitude	$X X X X . X \mathrm{nmi}$
ΔV (required)	$X X X X . X \mathrm{ft} / \mathrm{s}$

4. V16 N45

Marks (RR)
Time until next burn
Middle gimbal angle

00XXX. h
000XX. min
0XX.XX s

XXXX.X ft/s

XXXX.X nmi
$X X X X . X \mathrm{ft} / \mathrm{s}$
$X X X X X$. marks
$X X b \times X \min / \mathrm{s}$
XXX.XX deg

Purpose

1. To accept targeting parameters obtained from a source(s) external to the LGC and compute therefrom the required velocity and other initial conditions required by the LGC for execution of the desired maneuver. The targeting parameters inserted into the LGC are the time of ignition (TIG), the target vector, and the time of flight from TIG until the target is to be reached (TF).
2. To display to the astronaut and the ground certain specific dependent variables associated with the desired maneuver, for approval by the astronaut/ground.

Assumptions:

1. The target parameters (TIG, target vector, and TF) have been loaded from the ground during a prior execution of P27.
2. The External Delta V flag is reset during this program to designate to the thrusting program that "ASTEER" is to be used for steering control.
3. The ISS need not be on.
4. The Rendezvous Radar may or may not be used to update the LM or CSM state vectors for this program. If radar use is desired the ISS should be in operation and the radar should have been turned on and locked on the CSM by previous selection of P20. Radar sighting marks will be made automatically approximately once a minute when enabled
5. This program is applicable in either earth or lunar orbit.
6. This program is selected by the astronaut by DSKY entry.

Selected Displays:

1. V06 N33

Time of ignition	$00 \times X X . \mathrm{h}$
	$000 \times \mathrm{min}$
	$0 \times X . \mathrm{XX} \mathrm{s}$

2. V06 N81

Components of $\Delta V(L V) \quad X X X X . X f t / s$
3. V06 N42

Apocenter altitude	$X X X X . X \mathrm{nmi}$
Pericenter altitude	$X X X X . X \mathrm{nmi}$
ΔV required at TIG	$X X X X . X \mathrm{ft} / \mathrm{s}$

4. V16 N45

Marks (RR)
XXXXX.
Time from ignition
$X X b \times X \mathrm{~min} / \mathrm{s}$
Middle gimbal angle
XXX.XX deg

P32-LM COELLIPTIC SEQUENCE INITIATION (CSI) PROGRAM
Purpose:

1. To calculate parameters associated with the following concentric flight plan maneuvers: the Coelliptic Sequence Initiation (CSI) and the Constant Delta Altitude maneuver (CDH), for Delta V burns.
2. To calculate these parameters based upon maneuver data approved and keyed into the LGC by the astronaut.
3. To display to the astronaut and the ground dependent variables associated with the concentric flight plan maneuvers for approval by the astronaut/ground.
4. To store the CSI target parameters for used by the desired thrusting program.

Assumptions:

1. At a selected TPI time the line of sight between the LM and the CSM is selected to be a prescribed angle (E) from the horizontal plane defined at the active position.
2. The time between CSI ignition and CDH ignition must be computed to be greater than 10 minutes for successful completion of the program.
3. The time between CDH ignition and TPI ignition must be computed to be greater than 10 minutes for successful completion of the program.
4. CDH Delta V is selected to minimize the variation of the altitude difference between the orbits.
5. CSI burn is defined such that the impulsive Delta V is in the LM horizontal plane at CSI ignition.
6. The pericenter altitude of the orbit following CSI and CDH must be greater than $35,000 \mathrm{ft}$ (lunar orbit) or 85 nmi (earth orbit) for successful completion of this program.
7. The CSI and CDH maneuvers are originally assumed to be parallel to the plane of the CSM orbit. However crew modification of Delta V (LV) components may result in an out-of-plane CSI maneuver.
8. The Rendezvous Radar may or may not be used to update the LM or CSM state vectors for this program. If radar use is desired the radar was turned on and locked on the CSM by previous selection of P20. Radar sighting marks will be made automatically approximately once a minute when enabled. The rendezvous tracking mark counter is zeroed by the selection of P20 and after each thrusting maneuver.
9. The ISS need not be on to complete this program unless the Rendezvous Radar is to be used for automatic state vector updating by the Rendezvous Navigation program (P20). P20 will define the status of the ISS.
10. This program is selected by the astronaut by DSKY entry.

Selected Displays:

1. V06 N11

Time of CSI ignition
2. V06 N55

Number of apsidal crossings (N)
Elevation angle (E)
Central angle of passive vehicle
3. V06 N37

Time of TPI ignition
4. V06 N75

Delta altitude (CDH)
$\Delta \mathrm{T}$ (CSI-CDH)
$\Delta \mathrm{T}$ (CDH-TPI)
5. V06 N81

Components of $\Delta \mathrm{V}(\mathrm{LV})$ for CSI
6. V06 N82

Components of $\Delta V(L V)$ for $C D H$
7. V16 N45

Marks (RR)
Time from CSI ignitiion
Middle gimbal angle

00xXX. h
000XX. min
0XX.XX s
$X X X X X$. crossings
XXX.XX deg
XXX.XX deg

00XXX. h
000XX. min
0XX.XX s

XXXX.X nmi
$X \times b \times X \mathrm{~min} / \mathrm{s}$
$X X b \times X \mathrm{~min} / \mathrm{s}$

XXXX.X ft/s

XXXX.X ft/s

XXXXX. marks
$X \times b \times X \mathrm{~min} / \mathrm{s}$
XXX.XX deg
8. V06 N16 (results from V90E)

Time of event 00XXX. h
000XX. min
0XX.XX s
9. V06 N90 (results from V90E)

Y
YDOT
$X X X . X X n m i$
XXXX.X ft/s
PSI
XXX.XX deg

P33-LM CONSTANT DELTA ALTITUDE (CDH) PROGRAM
Purpose:

1. To calculate parameters associated with the Constant Delta Altitude maneuver (CDH), for Delta V burns.
2. To calculate these parameters based upon maneuver data approved and keyed into the LGC by the astronaut.
3. To display to the astronaut and the ground dependent variables associated with the CDH maneuver for approval by the astronaut/ground.
4. To store the CDH target parameters for use by the desired thrusting program.

Assumptions:

1. This program is based upon previous completion of the Coelliptic Sequence Initiation (CSI) program (P32). Therefore:
a. At a selected TPI time (now in storage) the line of sight between the LM and the CSM was selected to be a prescribed angle (E) (now in storage) from the horizontal plane defined at the active position.
b. The time between CSI ignition and CDH ignition was computed to be greater than 10 minutes.
c. The time between CDH ignition and TPI ignition was computed to be greater than 10 minutes.
d. The variation of the altitude difference between the orbits was minimized.
e. CSI burn was defined such that the impulsive Delta V was in the LM horizontal plane at CSI ignition.
f. The pericenter altitudes of the orbits following CSI and CDH were computed to be greater than $35,000 \mathrm{ft}$ (lunar orbit) or 85 nmi for earth orbit.
g. The CSI and CDH maneuvers were assumed to be parallel to the plane of the CSM orbit. However, crew modification of Delta V (LV) components may have resulted in an out-of-plane CSI maneuver.
2. The Rendezvous Radar may or may not be used to update the LM or CSM state vectors for this program. If radar use was desired the radar was turned on and locked on the CSM by previous selection of P20. Radar sighting marks will be made automatically approximately once a minute when enabled. The rendezvous tracking mark counter is zeroed by the selection of P20 and after each thrusting maneuver.
3. This ISS need not be on to complete this program unless automatic state vector updating is desired by the Rendezvous Navigation program (P20). If selected, P20 will define the status of the ISS.
4. This program is selected by the astronaut by DSKY entry.

Selected Displays:

1. V06 N13

Time of CDH ignition
00XXX. h
000XX. min
0XX.XX s
2. V06 N75

Delta altitude (CDH)
(CDH-TPI)
(TPI-NOMTPI)
3. V06 N81

Components of $\Delta V(L V)$ for $C D H$
4. V16 N45

Marks (RR)
Time from CDH ignition
Middle gimbal angle
5. V06 N16 (results from V90E)

Time of Event
6. V06 N90 (results from V90E)

Y
YDOT
PSI
$X X X X . X n m i$
$X \times b \times X \mathrm{~min} / \mathrm{s}$
$x \times b \times X \mathrm{~min} / \mathrm{s}$

XXXX.X ft/s

XXXXX.
$X X b \times X \min / s$
XXX.XX deg

00xXX. h
000XX. min
0XX.XX s
$X X X . X X n m i$
XXXX.X ft/s
$X X X . X X$ deg

P34-LM TRANSFER PHASE INITIATION (TPI) PROGRAM

Purpose:

1. To calculate the required Delta V and other initial conditions required by the LGC for LM execution of the transfer phase initiation (TPI) maneuver. Given:
a. Time of ignition (TIG(TPI)) or the elevation angle (E) of the LM/CSM LOS at TIG(TPI).
b. Central angle of transfer (CENTANG) from TIG(TPI) to intercept time (TIG(TPF)).
2. To calculate $\operatorname{TIG}(T P I)$ given E or E given TIG(TPI)
3. To calculate these parameters based upon maneuver data approved and keyed into the LGC by the astronaut.
4. To display to the astronaut and the ground certain dependent variables associated with the maneuver for approval by the astronaut/ground.
5. To store the TPI target parameters for use by the desired thrusting program.

Assumptions:

1. This program is based upon previous completion of the Constant Delta Altitude (CDH) program (P33). Therefore:
a. At a selected TPI time (now in storage) the line of sight between the LM and the CSM was selected to be a prescribed angle (E) (now in storage) from the horizontal plane defined at the LM position.
b. The time between CDH ignition and TPI ignition was computed to be greater than 10 minutes.
c. The variation of the altitude difference between the orbits was minimized.
d. The pericenter altitudes of the orbits following CSI and CDH were computed to be greater than $35,000 \mathrm{ft}$ (lunar orbit) or 85 nmi (earth orbit).
e. The CSI and CDH maneuvers were assumed to be parallel to the plane of the CSM orbit. However, crew modification of Delta V (LV) components may have resulted in an out-of-plane CDH maneuver.
2. The Rendezvous Radar may or may not be used to update the LM or CSM state vectors for this program. If radar use is desired the radar was turned on and locked on the CSM by previous selection of P20. Radar sighting marks will be made automatically approximately once a minute when enabled. The rendezvous tracking mark counter is zeroed by the selection of P20 and after each thrusting maneuver.
3. The ISS need not be on to complete this program unless automatic state vector updating is desired by the Rendezvous Navigation program (P20). If selected, P20 will define the status of the ISS.
4. Once the parameters required for computation of the maneuver have been completely specified, the value of the active vehicle central angle of transfer is computed and stored. This number will be available for display to the astronaut through the use of V06 N52.
The astronaut would call this display to verify that the central angle of transfer of the active vehicle is not within 170 to 190 degrees. If the angle is within this zone the atronaut should reassess the input targeting parameters based upon Delta V and expected maneuver time.
5. This program is selected by the astronaut by DSKY entry.

Selected Displays:

1. V06 N37

Time of TPI ignition
2. V06 N55

R2: Elevation angle
R3: Central angle of passive vehicle
3. V06 N58

Pericenter altitude	$X X X X . X \mathrm{nmi}$
$\Delta V(T P I)$	$X X X X . X \mathrm{ft} / \mathrm{s}$
$\Delta V(T P F)$	$X X X X . X \mathrm{ft} / \mathrm{s}$

4. V06 N81

Components of $\Delta V(L V)$ for TPI
5. V06 N59

Components of $\Delta \mathrm{V}$ (LOS)
6. V16 N45

Marks (RR)
Time from TPI ignition
Middle gimbal angle
7. V06 N52

Central angle of active vehicle
8. V06 N16 (results from V90E)

Time of event
9. V06 N90 (results from V90E)
Y

YDOT
PSI

00XXX. h
$000 \times X$. min
0XX.XX s
$X X X . X X$ deg
$X X X . X X \operatorname{deg}$

XXXX.X nmi

XXXX.X ft/s

XXXX.X ft/s

XXXX.X ft/s
$X X X X X$. marks
$X \times b \times X \min / s$
XXX.XX deg
XXX.XX deg

00XXX. h
000XX. min 0XX.XX s
XXX.XX nmi
$X X X X$. ft / s
XXX.XX deg

Purpose:

1. To calculate the required Delta V and other initial conditions required by the LGC for LM execution of the next midcourse correction of the transfer phase of an active LM rendezvous.

Assumptions:

1. The ISS need not be on to complete this program unless automatic state vector updating is desired by the Rendezvous Navigation program (P20). If selected, P20 will define the status of the ISS.
2. The Rendezvous Radar is on and is locked on the CSM. This was done during previous selection of P20. Radar sighting marks will be made automatically approximately once a minute when enabled. The rendezvous tracking mark counter is zeroed by the selection of P20 and after each thrusting maneuver.
3. The time of intercept (T(INT)) was defined by previous completion of the Transfer Phase Initiation (TPI) program (P34) and is presently available in LGC storage.
4. Once the parameters required for computation of the maneuver have been completely specified, the value of the active vehicle central angle of transfer is computed and stored. This number will be available for display to the astronaut through the use of V06 N52.
The astronaut would call this display to verify that the central angle of transfer of the active vehicle is not within 170 to 190 degrees. If the angle is within this zone the astronaut should reassess the input targeting parameters based upon Delta V and expected maneuver time.
5. The program is selected by the astronaut by DSKY entry prior to any anticipated rendezvous midcourse correction.

Selected Displays:

1. V06 N81

Components of $\Delta \mathrm{V}$ (LV)
XXXX.X ft/s
2. V06 N59

Components of $\Delta \mathrm{V}$ (LOS) $\quad \mathrm{XXXX} . \mathrm{Xft} / \mathrm{s}$
3. V 16 N 45

Marks (RR)	$X X X X X$. marks
Time from TPM ignition	$X \times b \times X \mathrm{~min} / \mathrm{s}$
Middle gimbal angle	$X X X . X X$ deg

4. V06 N52

Central angle of active vehicle
XXX.XX deg
5. V06 N16 (results from V90E)

Time of event
00xXX. h
000XX. min
OXX.XX s
6. V06 N90 (results from V90E)

Y
XXX.XX nmi

YDOT
XXXX.X ft/s
PSI
XXX.XX deg

Purpose:

1. To calculate the required Delta V and other initial conditions required by the LGC for LM execution of the first maneuver (SOI) of the Stable Orbit Rendezvous. Given:
a. Time of ignition (TIG).
b. Central angle of transfer (CENTANG) from TIG to intercept time.
c. The displacement of the active vehicle stable orbit point, specified as a distance between the two vehicles along the passive vehicle orbit.
2. To calculate the required Delta V and other initial conditions required by the LGC for LM execution of the second maneuver (SOR) of the Stable Orbit Rendezvous. Given:
a. A respecification of 1.a above.
b. An optional respecification of $1 . b$ above.
3. To calculate these parameters based upon maneuver data approved and keyed into the LGC by the astronaut.
4. To display to the astronaut and the ground certain dependent variables associated with the maneuver for approval by the astronaut/ground.
5. To store the SOI and SOR target parameters for use by the desired thrusting program.

Assumptions:

1. The stable orbit point is defined as the final position (at completion of SOR) of the active vehicle relative to the passive vehicle.
2. The Rendezvous Radar may or may not be used to update the LM or CSM state vectors for this program. If radar use is desired the ISS should be in operation and the radar should have been turned on and locked on the CSM by previous selection of P20. Radar sighting marks will be made automatically approximately once a minute when enabled.
3. Once the parameters required for computation of the maneuver have been completely specified, the value of the active vehicle central angle of transfer is computed and stored. This number will be available for display to the astronaut through the use of V06 N52.
The astronaut would call this display to verify that the central angle of transfer of the active vehicle is not within 170 to 190 degrees. If the angle is within this zone the astronaut should reassess the input targeting parameters based upon Delta V and expected maneuver time.
4. The SOR phase of this program requires the TIG input be biased as a function of TPF and any midcourse corrections performed in the Stable Orbit Midcourse (SOM) program (P39).
5. The ISS need not be on to complete this program (see Assumption 2. above).
6. This program is selected by the astronaut by DSKY entry.

Selected Displays:

1. V06 N33

Time of ignition for SOI
00xXX. h
000XX. min
0xX.xX s
XXX.XX deg
3. V04 N06

Option code ID
Option code
4. V06 N57
ΔR
5. V06 N34

Time of arrival at SOR
6. V06 N58

Pericenter altitude (SOR)
ΔV (SOR)
Δv (SOR-final)
7. V06 N81

Components of $\Delta V(L V)$ for SOR
8. V16 N45

Marks (RR)
Time from SOI ignition
Middle gimbal angle
9. V06 N52

Central angle of active vehicle

00005
$0000 \times$ (1-first pass, 2-second pass)

XXXX.Xnmi
$00 \times x \times \mathrm{h}$
000XX. min
0XX.XX s

XXXX.X nmi
XXXX.X ft/s
$X X X X . X f t / s$

XXXX.X ft/s

XXXXX. marks
$X \times b \times X \mathrm{~min} / \mathrm{s}$
$x \times X . X \times \operatorname{deg}$
XXX.XX deg

P39-STABLE ORBIT MIDCOURSE (SOM) PROGRAM

Purpose:

1. To calculate the required Delta V and other initial conditions required by the LGC for LM execution of the next possible midcourse correction of the stable orbit transfer phase of an active LM rendezvous.
2. To compute and display suitable information to enable the crew to enter the final rendezvous phase at the correct time to complete the required thrusting maneuver.

Assumptions:

1. The ISS need not be on to complete this program (see Assumption 2. below).
2. The Rendezvous Radar may or may not be used to update the L.M or CSM state vectors for this program. If radar use is desired the ISS should be in operation and the radar should have been turned on and locked on the CSM by previous selection of P20. Radar sighting marks will be made automatically approximately once a minute when enabled.
3. Once the parameters required for computation of the maneuver have been completely specified, the value of the active vehicle central angle of transfer is computed and stored. This number will be available for display to the astronaut through the use of V06 N52.
The astronaut would call this display to verify that the central angle of transfer of the active vehicle is not within 170 to 190 degrees. If the angle is within this zore the astronaut should reassess the input targeting parameters based upon Delta V and expected maneuver time.
4. The time of intercept (T(INT)) was defined by previous completion of the Stable Orbit Rendezvous (SOR) program (P38) and is presently available in LGC storage.
5. This program is selected by the astronaut by DSKY entry.

Selected Displays:	
1. V06 N81	
Components of $\Delta \mathrm{V}$ (LV) for SOM	XXXX. ${ }^{\text {ft/s }}$
2. V16N45	
Marks (RR)	XXXXX. marks
Time from SOM ignition	$X \times \mathrm{b} \times \times \mathrm{min} / \mathrm{s}$
Middle gimbal angle	XXX.XX deg
3. V06 N52	
Central angle of active vehicle	XXX.XX deg

P40-DPS PROGRAM
Purpose:

1. To compute a preferred $I M U$ orientation and a vehicle attitude for an LM DPS thrusting maneuver.
2. To maneuver the vehicle to the thrusting attitude.
3. To control the PGNCS during countdown, ignition, thrusting, and thrust termination of a PGNCS controlled DPS maneuver.

Assumptions:

1. The target parameters have been calculated and stored in the LGC by prior execution of a prethrusting program.
2. The required steering equations are identified by the prior prethrust program, which either reset ("ASTEER") or set (External Delta V) the External Delta V flag. For External Delta V steering, VG is calculated once for the specified time of ignition. Thereafter both during DPS thrusting and until the crew notifies the LGC that RCS trim thrusting has been completed, the LGC updates VG only as a result of accelerometer inputs.
For steering control when using "ASTEER", the velocity required is calculated from the most recent intercept trajectory semimajor axis. The Lambert routine periodically recomputes the intercept trajectory semimajor axis for the "ASTEER" calculations. The interval between Lambert solutions is controlled by an erasable load value (UT).
3. The IMU is on and must be at a known orientation before this program may be completed. It is normally required that the ISS be on for a minimum of 15 minutes prior to a thrusting maneuver.
4. The event timer is set to count to zero at TIG.
5. Engine ignition may be slipped beyond the established TIG if desired by the crew, or if state vector integration cannot be completed in time.
6. If a thrusting maneuver is performed with the Guidance Control switch in PGNS and the Mode Control switch in Auto, the PGNCS will control the total vehicle attitude and generate either Mode 1 or Mode 2 attitude errors (See Assumption 7) for display on the FDAI. The crew may exercise control around the yaw axis only with the ACA (X-axis override), if the X-ax is override capability is permitted by the program in process. This manual control will be in the Rate Command/Attitude Hold mode. If a thrusting maneuver is performed with the Guidance Control switch in PGNS and the Mode Control switch in Attitude Hold the PGNCS will hold the vehicle attitude and will generate either Mode 1 or Mode 2 attitude errors for display on the FDAI. The crew may exercise manual attitude control about all vehicle axes with the ACA in either the Rate Command or Minimum Impulse mode. However, it is strongly recommended that powered flight not be attempted in the Minimum Impulse mode. During a thrusting maneuver in the PGNS/Attitude Hold mode the PGNCS will not be responsible if register overflows occur within the LGC. In the event that the Guidance Control switch is changed from PGNS to AGS during a thrusting maneuver, the LGC will continue computation of position and velocity, the desired thrust vector, and the desired attitude errors; however, the FGNCS will not be responsible if register overflows occur within the LGC.

P40 (continued)

7. The PGNCS can generate two types of attitude errors for display on the FDAI:

Mode 1-Selected by Extended Verb 61. Autopilot following errors used as a monitor of the DAP's ability to track automatic steering commands.
b. Mode 2-Selected by Extended Verb 62. Total attitude errors used to assist crew in manually maneuvering the vehicle
8. The X -axis override option provides the crew with the ability to exercise manual control about the LM X axis with the attitude controller even though the PGNCS Attitude Control mode is Auto. When the controller is returned to detent the PGNCS damps the yaw rate, stores the yaw attitude when the yaw rate is damped, and then maintains that attitude.

The X -axis override option is always available to the crew. However, it should not be exercised when the LGC is specifying a desired yaw attitude; that is, during the attitude maneuver to the thrusting attitude.
9. When the thrust/translation controller is set to minimum thrust position and the LGC throttle command is zero, the DPS will start at 10 percent thrust.
10. The Load DAP Data routine (R03) has been performed prior to selection of this program and the DPS engine gimbal has been previously driven to the correct trim position. If this burn is of sufficient duration that vehicle transients at ignition due to $\mathrm{CG} /$ thrust do not affect accomplishment of maneuver aim conditions, then the gimbal need not be driven to the trim position before TIG. Driving the gimbal to the trim position in worst case conditions could required 2 minutes.
11. During DPS burns only, the pitch-roll RCS jet autopilot (U and V jets) may be disabled by (V65) or enabled by (V75). This capability is intended to be used to prevent LM and descent stage thermal constraint violations during CSM-docked DPS burns (P40). The capability exists during P63 and P70 also. Performance of FRESH START (V36E) will always enable the capability in the autopilot.
12. For each burn an ignition total allowable time delay will be specified in the mission rules. This delay time is the total time which the thrusting maneuver may be delayed beyond the LGC calculated time of ignition. If engine restarts are involved, the accounting of this total time delay is up to the crew.
13. LGC and crew procedures in cases of LGC-assumed thrust failure are defined by the DPS/APS Thrust Fail routine (R40). This routine is called at DPS ignition by this program.
14. The LGC will neither designate nor read the Rendezvous Radar (RR) during this program.
15. This program should be selected by the astronaut by DSKY entry at least 5 minutes before the estimated time of ignition.
16. This program is selected manually by DSKY entry.
17. The Orbit Parameter Display routine (R30) may be called during this program by keying in V82E.

Selected Displays:

1. V06 N86

Components of VG (LV) for thrusting maneuver
XXXX.X ft/s
2. V50 N25 (change guidance control mode)
Checklist code 00203
3. V06 N40

Time from DPS ignition/cutoff	$X \times \mathrm{bXX} \mathrm{min} / \mathrm{s}$
Magnitude of velocity to be gained	$X X X X . \times \mathrm{ft} / \mathrm{s}$
ΔV (measured)	$X X X X . X \mathrm{ft} / \mathrm{s}$

4. V99 N40 (request engine on enable)

Display same as Item 3 above
5. V16 N85

Components of VG (LM body axes) XXXX.X ft/s
6. V06 N38

Time of state vector being integrated
7. V50 N18

Desired automaneuver FDAI ball angles
8. V06 N18

Final FDAI ball angles
R $X X X . X X$ deg
$P \quad X X X . X X$ deg
$Y \quad$ XXX.XX deg
9. V04 N12 (results from V82E)

Option code ID
Option code
10. V16 N44 (results from V82E)

Apocenter altitude
Pericenter altitude
TFF

00002

$0000 \times$ (1 -this vehicle $2-$ other vehicle)

XXXX.X nmi
XXXX.X nmi
$X X b \times X \mathrm{~min} / \mathrm{s}$

41-RCS PROGRAM

Purpose:

1. To compute a preferred IMU orientation and a vehicle attitude for an RCS thrusting maneuver.
2. To perform the vehicle maneuver to the thrusting attitude.
3. To provide suitable displays for manual execution of the thrusting maneuver in the Attitude Hold mode.

Assumptions:

1. The target parameters have been calculated and stored in the LGC by prior execution of a prethrusting program.
2. The required steering equations are identified by the prior prethrust program, which either reset ("ASTEER") or set (External Delta V) the External Delta V flag. For External Delta V steering, VG is calculated once for the specified time of ignition. Thereafter until the crew notifies the LGC that RCS thrusting has been completed, the LGC updates VG only as a result of accelerometer inputs.
For steering control when using "ASTEER", the velocity required is calculated from the most recent intercept trajectory semimajor axis. The Lambert routine periodically recomputes the intercept trajectory semimajor axis for the "ASTEER" calculations. The interval between Lambert solutions is controlled by an erasable load value (UT).
3. With the Guidance Control switch in PGNS and the Mode Control switch in Attitude Hold the PGNCS will hold the vehicle attitude and will generate either Mode 1 or Mode 2 attitude errors (See Assumption 4) for display on the FDAI. The crew may exercise manual attitude control about all vehicle axes with the ACA in either the Rate Command or Minimum Impulse mode. However, it is strongly recommended that powered flight not be attempted in the Minimum Impulse mode. During a thrusting maneuver in the PGNS/Altitude Hold mode the PGNCS will not be responsible if register overflows occur within the LGC.
4. The PGNCS can generate two types of attitude errors for display on the FDAI:
a. Mode 1-Selected by Extended Verb 61. Autopilot following errors used as a monitor of the DAP's ability to track automatic steering commands.
b. Mode 2-Selected by Extended Verb 62. Total attitude errors used to assist crew in manually maneuvering the vehicle.
5. The IMU is on and must be at a known orientation before this program may be completed. It is normally required that the ISS be on for a minimum of 15 minutes prior to a thrusting maneuver.
6. The event timer is set to count to zero at TIG.
7. RCS ignition may be slipped beyond the established TIG if desired by the crew, or if state vector integration cannot be completed on time.
8. The X -axis override option provides the crew with the ability to exercise manual control about the LM X axis with the attitude controller even though the PGNS Attitude Control mode is Auto. When the controller is returned to detent, the PGNCS damps the yaw rate, stores the yaw attitude when the yaw rate is damped, and then maintains that attitude.
The X -axis override option is always available to the crew. However, it should not be exercised when the LGC is specifying a desired yaw attitude; that is, during the attitude maneuver to the thrusting attitude.
9. The Load DAP Data routine (R03) has been performed prior to selection of this program.
10. The LGC will neither designate nor read the Rendezvous Radar (RR) during this program.
11. This program should be selected by the astronaut by DSKY entry at least 5 minutes before the estimated time of ignition.
12. The Orbit Parameter Display routine (R30) may be called during this program by keying in V82E.

Selected Displays:

1. V06 N86

Components of VG (LV) for thrusting maneuver
XXXX.X ft/s
2. V16 N85

Components of VG (LM body axis) for thrusting maneuver

XXXX.X ft/s
3. V99 N85 (request engine on enable)

Display same as Item 2 above
4. V06 N38

Time of state vector being integrated
5. V50 N18

Desired automaneuver FDAI ball angles
6. V06 N18

Final FDAI ball angles
7. V04 N12 (results from V82E)

Option code ID
Option code

00XXX. h
$000 \times X$. min
0XX.XX s

XXX.XX deg
 XXX.XX deg

00002
$0000 \times$ (1-this vehicle 2 -other vehicle)
8. V16 N44 (results from V82E)

Apocenter alitutude	XXXX. $\times \mathrm{nmi}$
Pericenter altitude	$X X X X . X \mathrm{nmi}$
TFF	$X X \mathrm{~b} \times \mathrm{Xmin} / \mathrm{s}$

P42-APS PROGRAM

Purpose:

1. To compute a preferred IMU orientation and a vehicle attitude for an LM APS thrusting maneuver.
2. To maneuver the vehicle to the thrusting attitude.
3. To control the PGNCS during countdown, ignition, thrusting, and thrust termination of a PGNCS-controlled APS maneuver.

Assumptions:

1. The target parameters have been calculated and stored in the LGC by prior execution of a prethrusting program.
2. The required steering equations are identified by the prior prethrust program, which either reset ("ASTEER) or set (External Delta V) the External Delta V flag. For external Delta V steering, VG is calculated once for the specified time of ignition. Thereafter both during APS thrusting and until the crew notifies the LGC that RCS trim thrusting has been completed, the LGC updates VG only as a result of accelerometer inputs.
For steering control when using "ASTEER", the velocity required is calculated from the most recent intercept trajectory semimajor axis. The Lambert routine periodically recomputes the intercept trajectory semimajor axis for the "ASTEER" calculations. The interval between Lambert solutions is controlled by an erasable load value (UT).
3. The IMU is on and must be at a known orientation before this program may be completed. It is normally required that the ISS be on for a minimum of 15 minutes prior to a thrusting maneuver.
4. The event timer is set to count to zero at TIG.
5. Engine ignition may be slipped beyond the established TIG if desired by the crew or if state vector integration cannot be completed in time.
6. If a thrusting maneuver is performed with the Guidance Control switch in PGNS and the Mode Control switch in Auto, the PGNCS will control the total vehicle attitude and generate either Mode 1 or Mode 2 attitude errors (See Assumption 7) for display on the FDAI. The crew may exercise control around the yaw axis only with the ACA (X -axis override) if the X -axis override capability is permitted by the program in process. This manual control will be in the Rate Command/Attitude Hold mode.

If a thrusting maneuver is performed with the Guidance Control switch in PGNS and the Mode Control switch in Attitude Hold the PGNCS will hold the vehicle attitude and will generate either Mode 1 or Mode 2 attitude errors for display in the FDAI. The crew may exercise manual attitude control about all vehicle axes with the ACA in either the Rate Command or Minimum Impulse mode. However, it is strongly recommended that powered flight not be attempted in the Minimum Impulse mode. During a thrusting maneuver in the PGNCS/Attitude Hold mode the PGNCS will not be responsible if register overflows occur within the LGC.
In the event that the Guidance Control switch is changed from PGNS to AGS during a thrusting maneuver, the LGC will continue computation of position and velocity, the desired thrust vector, and the desired attitude errors; however, the PGNCS will not be responsible if register overflows occur within the LGC.
7. The PGNCS can generate two types of attitude errors for diaplay on the FDAI:
a. Mode 1-Selected by Extended Verb 61. Autopilot following errors used as a monitor of the DAP's ability to track automatic steering commands.
b. Mode 2-Selected by Extended Verb 62. Total attitude errors used to assist crew in manually maneuvering the vehicle.
8. The X-axis override option provides the crew with the ability to exercise manual control about the LM X axis with the attitude controller even though the PGNCS Attitude Control mode is Auto. When the controller is returned to detent the PGNCS damps the yaw rate, stores the yaw attitude when the yaw rate is damped, and then maintains that attitude.

The X -axis override option is always available to the crew. However, it should not be exercised when the LGC is specifying a desired yaw attitude; that is, during the attitude maneuver to the thrusting attitude.
9. For each burn an ignition total allowable time delay will be specified in the mission rules. This delay time is the total time which the thrusting maneuver may be delayed beyond the LGC calculated time of ignition. If engine restarts are involved, the accounting of this total time delay is up to the crew.
10. The Load DAP Data routine (RO3) may have been performed prior to selection of this program.
11. LGC and crew procedures in cases of LGC-assumed thrust failure are defined by the DPS/APS Thrust Fail routine (R40). This routine is called at APS ignition by this program.
12. The LGC will neither designate nor read the Rendezvous Radar (RR) during this program.
13. This program should be selected by the astronaut by DSKY entry at least 5 minutes before the estimated time of ignition.
14. This program is selected manually by DSKY entry.
15. The Orbit Parameter Display routine (R30) may be called during this program by keying in V82E.

Selected Displays:

1. V06 N86

Components of VG (LV) for thrusting maneuver XXXX.X ft/s
2. V50 N25 (change guidance control mode)

Checklist code
00203
3. V06 N40

Time from APS ignition/cutoff
Magnitude of velocity to be gained
$\Delta \mathrm{V}$ (measured)
XXb $\times \times \mathrm{min} / \mathrm{s}$
XXXX.X ft/s
$X X X X . X \mathrm{ft} / \mathrm{s}$
4. V99 N40 (request engine on enable)

Display same as Item 3 above
5. V16 N85

Components of VG (LM body axes)
XXXX.X ft/s
6. V06 N38

Time of state vector being integrated $00 \times X \times \mathrm{h}$
000XX. min
0xX.XX s
7. V50 N18

Desired automaneuver FDAI ball angles
XXX.XX deg

P $X X X . X X$ deg
Y $X X X . X X$ deg
8. V06N18

Final FDAI ball angles
XXX.XX deg
$X X X . X X$ deg
$Y \quad X X X: X X \operatorname{deg}$
9. V04 N12 (results from V82E)

Option code ID
Option code
10. V16 N44 (results from V82E)

Apocenter altitude
Pericenter altitude
TFF

00002
$0000 \times$ (1 -this vehicle 2-other vehicle)

XXXX:X nmi
XXXX.X nmi
$X X b \times X$ min/s

Purpose:

1. To monitor vehicle acceleration during a non PGNCS controlled thrusting maneuver.
2. To display Delta V applied to the vehicle by this thrusting maneuver.

Assumptions

1. The IMIU would normally be on and the IMU Orientation Determination program (P51) completed before selection of this program.
2. The responsibility of avoiding gimbal lock during execution of this program is upon the astronaut
3. This program is normally used during the final phase of the rendezvous. If the crew desires to do any final phase thrusting maneuvers automatically under PGNCS control they must be accomplished via selection of the Transfer Phase Initiation (TPI) program (P34) and then the DPS Thrusting program (P40).
4. Range, range rate, and theta may be displayed during this program by calling the Rendezvous Parameter Display routine (R31).
5. This program should be turned on just prior to the planned thrusting maneuver and terminated as soon as possible after the maneuver in order to keep errors associated with Average G integration at a minimum.
6. The Orbit Parameter Display routine (R30) may be called during this program by keying in V82E.

Selected Displays:

1. V16 N83

Components of ΔV (LM body axes) $\quad X \times X \times . \times \mathrm{ft} / \mathrm{s}$
2. V16 N54 (results from V83E)

Range	$X X X . \times \times \mathrm{nmi}$
Range rate	$X \times \times \times . \times \mathrm{ft} / \mathrm{s}$
Angle between LM $+Z$ axis and local horizontal	$X X X . \times \times \mathrm{deg}$

3. V04 N12 (results from V82E)

Option code ID
Option code
4. V16 N44 (results from V82E)

Apocenter attitude	$\times \times \times \times . \times \mathrm{nmi}$
Pericenter attitude	$\times \times \times \times . \times \mathrm{nmi}$
TFF	$\times \times \mathrm{n} \times \mathrm{min} / \mathrm{s}$

00002
0000× (1-this vehicle 2 -other vehicle)

XXXX.X nmi
$X X b \times X \min / \mathrm{s}$

Purpose:

1. To determine the inertial orientation of the IMU using sightings on two celestial bodies with the AOT or a backup optical system.

Assumptions

1. This program may only be performed while the LM is in flight.
2. The ISS may be:
a. Off (standby).
b. On and aligned since turn-on.

If (a) is true, the IMU must be turned on before this program can be performed.
If (b) is true, this program can be completed.
3. There are no restraints upon the LM attitude control modes until a PGNCS controlled maneuver is called by a program or the crew wishes to ,manually maneuver the vehicle.
4. Time and RCS fuel may be saved, and subsequent IMU alignment decisions greatly simplified, if this program is performed in such a way as to leave the IMU inertially stabilized at an orientation as close as possible to the optimum orientation sequence followed by future LGC programs.
5. Extended Verbs should not be exercised during this program because of possible interference with R53.
6. The program is selected by the astronaut by DSKY entry.

Selected Displays:

1. V50 N25 (star acquisiton)

Checklist code
00015
2. V41 N22

CDU gimbal angles
3. V01 N71 (after mark)

R1: ABCDE
AB-Blank
C-AOT Detent
1-Left
2-Center
3-Right
4-Any rear
5-Backup optical system
DE-Celestial Body code
4. V06 N87

Backup optics LOS azimuth
$X X X . X X$ deg
$X X X . X X$ deg
5. V54 N71 (mark X or Y reticle)

Display same as Item 3 above
6. V52 N71 (mark X reticle)

Display same as Item 3 above
7. V53 N71 (Mark Y reticle)

Display same as Item 3 above
8. V06 N05

Star angle difference XXX.XX deg
9. V06 N88

Components of celestial body $1 / 2$ unit vector
. XXXXX

P52-IMU REALIGN PROGRAM

Purpose

1. To align the IMU from a "known" orientation to one of four orientations selected by the astronaut using sightings on two celestial bodies with the AOT or a backup optical system
a. Preferred Orientation (Option 0001). An optimum orientation for a previously calculated maneuver. This orientation must be calculated and stored by a previously selected program.
b. Landing Site Orientation (Option 0004)

$$
\begin{aligned}
& X_{S M}=\text { Unit }\left(R_{\text {LS }}\right) \\
& Y_{S M}=\text { Unit }\left(Z_{S M} \times X_{S M}\right) \\
& Z_{S M}=\text { Unit }\left(H_{C S M} \times X_{S M}\right)
\end{aligned}
$$

where:
The origin is the center of the moon.
$R_{L S}=$ The position vector of the LM on the lunar surface at a landing site and a time T (align) selected by the crew.
$H_{C S M}=$ The angular momentum vector of the CSM $\left(R_{C S M} \times V_{C S M}\right)$.
A special case of the landing site orientation occurs when T (align) is defined as the time of lunar landing T (land). This case occurs only if T (land) has been defined by the MSFN, transmitted to the crew, and the crew has then defined T (align) to be T (land) in this program.
c. Nominal Orientation (Option 00002)
$X_{S M}=$ Unit (R)
$\mathrm{Y}_{\mathrm{SM}}=$ Unit $(\mathrm{V} \times \mathrm{R})$
$Z_{S M}=$ Unit $\left(X_{S M} \times Y_{S M}\right)$
where:
$\mathrm{R}=$ The geocentric (earth orbit) or selenocentric (lunar orbit) radius vector at time T(align) selected by the astronaut.
$\mathrm{V}=$ The inertial velocity vector at time T (align) selected by the astronaut.
d. REFSMMAT (Option 00003)

Assumptions:

1. This program may only be performed while the LM is in flight
2. The configuration may be docked (LM/CSM) or undocked (LM alone). The present configuration should have been entered into the LGC by completion of the DAP Data Load routine (R03)
3. There are no restraints upon the LM attitude control modes until a PGNCS controlled maneuver is called by a program or the crew wishes to manually maneuver the vehicle. The Guidance Control switch may be at PGNS or AGS and, if at PGNS, the mode may be Auto or Attitude Hold. Prior to PGNCS controlled maneuvers the LGC will request the correct mode if it is not in effect. For manually controlled maneuvers the crew must select the correct modes.
4. This program makes no provision for an attitude maneuver to return the vehicle to a specific attitude. Such a maneuver, if desired, must be done manually. An option is provided however to allow pointing of the AOT at astronaut or L.GC selected stars either manually by the crew or automatically by an LGC controlled attitude maneuver.
5. The ISS is on and has been aligned to a "known" orientation which is stored in the LGC (REFSMMAT). The present IMU orientation differs from that to which it was last aligned only due to gyro drift; that is, neither gimbal lock nor IMU power interruption has occurred since the last alignment)
6. An option is provided to realign the IMU to the preferred, nominal, or landing site orientations without making celestial body sightings.
7. Extended Verbs should not be exercised during this program because of possible interference with R53.
8. The program is selected by the astronaut by DSKY entry.

Selected Displays:

1. V04 N06

Option code ID
Option code
2. V06 N34

Time of alignment
3. V06 N89

Designated landing site latitude
Desginated landing site longitude/2
Designated landing site altitude
5. V50 N25 (coarse align)

Checklist code
6. V 16 N 20

IMU gimbal angles
7. V 50 N 25 (fine alignment)

Checklist code

IG $X X X . X X$ deg
MG XXX.XX deg

00013

OG XXX.XX deg
XXX.XX deg

MG $X X X . X X$ deg
8. V50 N25 (star acquisition)

Checklist code
4. V06 N22

IMU gimbal angles at desired orientation

00014

00015

00001
0000X (1-preferred, $2-$ nominal, 3-REFSMMAT, 4-landing site)

00XXX. h
000XX. min
0XX.XX s
XX.XXX (+ north)

XX,XXX (+ east)
XXX.XX nmi

P52 (continued)

9. V01 N70 (before mark)
R1: $A B C D E$
AB-Blank
C-AOT Detent
1-Left
2-Center
3-Right
4-Any rear
5-Backup optical system
DE--Celestial Body code
10. V06 N87

Backup optics LOS azimuth	$X X X . X X$ deg
Backup optics LOS elevation	$X X X . X X$ deg

11. V01 N71 (after mark)

Display same as Item 9 above
12. V54 N71 (Mark X or Y-reticle)

Display same as Item 9 above
13. V52 N71 (Mark X-reticle)

Display same as Item 9 above
14. V53 N71 (Mark Y-reticle)

Display same as Item 9 above
15. V06 N05

Sighting angle difference $\quad X X X . X X$ deg
16. V06 N93

Gyro torque angles
17. V06 N88

Components of celestial body $1 / 2$ unit vector
X XX.XXX deg
Y $X X . X X X$ deg
Z XX.XXX deg
. $X X X X X$
18. V50 N18

Desired automaneuver FDAI ball angles
R $X X X . X X$ deg
P $X X X . X X$ deg
Y $X X X . X X$ deg
19. V06 N18

Final FDAI ball angles
R XXX.XX deg
P \quad XXX.XX deg
$Y \quad X X X . X X$ deg

P57-LUNAR SURFACE ALIGN PROGRAM

Purpose:

1. While on the surface of the moon to align or realign the IMU to one of two types of orientations:
a. Landing Site Orientation

$$
\begin{aligned}
& X_{S M}=U \text { nit }\left(R_{L S}\right) \\
& Y_{S M}=U \text { Uit }\left(Z_{S M} \times \times X_{S M}\right) \\
& Z_{S M}=\text { Unit }\left(H_{C S M} \times \times X_{S M}\right)
\end{aligned}
$$

where:

The origin is the center of the moon.
$R_{\text {LS }}=$ The position vector of the LM on the lunar surface at the most recently designated landing site and a time T (align) selected by the crew.
$H_{C S I M}=$ The angular momentum vector of the CSM $\left(R_{C S M} \times V_{C S M}\right)$.
b. Preferred Orientation

An IMU orientation specified by the ground and loaded into the LGC by the LGC Update program (P27). When such an orientation is loaded by the ground the preferred orientation flag will be also set during P27.

Assumptions:

1. There are several methods available to the crew for completing an IMU alignment. The resultant accuracy of the IMU to the specified desired orientation (that is, that orientation defined by the final REFSMMAT) is dependent upon the mode of alignment which the crew selects. This selection will be dictated by the circumstances at the time of alignment.
2. The LM has landed on the lunar surface. The LM yaw angle with respect to the inertial orientation of the IMU at landing was not constrained during landing.
3. All possible efforts have been made by the crew to assure that the LM will not shift its position with respect to the lunar surface. No provision has been made to incorporate in the LGC any measurement of LM settling on the lunar surface. However, a shifting of the LM will result in a misaligned IMU only in the case where an alignment is made from a stored LM attitude with respect to the lunar surface (Option Codes 00000 and 00001) and the IMU is not subsequently aligned by reference to celestial bodies and/or lunar gravity.
4. The ISS is on and may be:
a. At an inertial orientation "unknown" to the LGC; that is, having been shut down and restarted since landing without subsequent orientation determination.
b. At an inertial orientation "known" by the LGC; that is, neither gimbal lock nor IMU power interruption has occurred since the last IMU alignment or orientation determination. Therefore the present orientation differs from that stored in REFSMMAT oniy due to gyro drift and/or the initial misalignment of the IMU to the stored REFSMMAT.
5. Extended Verbs should not be exercised during the R59 portion of this program because of possible interference with R53.
6. No monitor or control of the Rendezvous Radar (RR) will be exercised by the LGC during this program except as defined by the RR Monitor routine (R2j).
7. The LM attitude with respect to the lunar surface is available in LGC storage; that is, it will have been stored by the Landing Conformation program (P68). Once this attitude has been stored it will be preserved by the LGC until it is replaced by a more recent value.
8. This program is selected by the astronaut by DSKY entry. It will normally be selected to perform an alignment of the IMU immediately after landing on the lunar surface, prior to selection of the RR Lunar Surface Navigation program (P22), prior to AGS initialization, and approximately 15 minutes prior to ascent. This program may also be used to provide an IMU alignment in time-critical emergencies prior to ascent.
9. The DAP should be off during gyro torquing by this program to preclude RCS jet firings due to realignment of the IMU causing attitude errors exceeding the maximum deadband
10. A determination of the LM position vector while on the lunar surface ($R_{L S}$) can be accomplished only in conjunction with IMU alignment mode option 2 (using AOT sightings on two celestial bodies). It is valid only if the lunar gravity vector has been previously defined during P57, using IMU alignment mode option 1 (using REFSMMAT or stored LM attitude and determination of lunar gravity vector) or option 3 (using single celetial body-sighting and determination of lunar gravity vector).
11. V06 N34 GET(ALIGN)
12. V05 N06

Option code ID
Option code

Datcode

00XXX. h
$000 \times \mathrm{X}$. min 0XX.XX s

00010
0000× (0-Prestored Attitude, 1-Prestored Attitude +g 2-two bodies, 3-ond body +g) OOCDE

C-REFSMMAT 1-defined $0-$ not defined
D-stored LM attitude 1 -available $0-$ not available
$\mathrm{E}=\mathrm{GETI}(\mathrm{AS})$ 1-defined
0-not defined
3. V06 N04 (angle between present and stored gravity vector) R1: Angle
XXX.XX deg
4. V01 N70 (before mark)

R1: ABCDE
$A B \div$ Blank
C-AOT Detent
1-Left
2-Center
3-Right
4-Any rear
5-Backup optical system
DE-Celestial body code
5. V06 N79

Cursor angle	$X X X . X X$ deg
Spiral angle	$X X X . X X$ deg
Position code	$0000 \times$

6. V01 N71

R1: ABCDE (see Item 4 above)
7. V06 N87 (LOS definition)

Azimuth	$\times \times X . \times \times \operatorname{deg}$
Elevation	$\times X X . \times \times \operatorname{deg}$

8. V52 (Mark X)
9. V06 N88

Components of celestial body $1 / 2$ unit vector . XXXXX
10. V50 N25 (celestial body acquisition)

Checklist code
00015
11. V06 N05

R1: Sighting angle difference $\quad \mathrm{XXX} . \mathrm{XX}$ deg
12. V06 N93

Gyro torque angles
13. V50 N25 (fine align)

Checklist code 00014
14. V06 N22

Desired ICDU angles

15. V06 N89

Landing site latitude	$\mathrm{XX} . \mathrm{XXX} \mathrm{deg}$
Landing site longitude/2	$\mathrm{XX} . \mathrm{XXX}$ deg
Landing site altitude	$\mathrm{XXX} . \mathrm{XX} \mathrm{nmi}$

P63-BRAKING PHASE PROGRAM

Purpose:

1. To calculate the required time of DPS ignition (TIG) and other initial conditions required by the LGC for a PGNCS-controlled, DPS-executed, braking phase of the powered landing maneuver.
2. To align the LM to the thrusting ignition attitude.
3. To control the PGNCS during countdown, ignition, and thrusting of the powered landing maneuver until HI gate.
4. To indicate to the crew that HI gate has been reached by automatic selection of the Approach Phase program (P64).

Assumptions:

1. The LM is on a descent coast orbit (Hohmann transfer) approaching the braking ignition point which is nominally 50,000 feet above the lunar radius at the designated landing site. The descent coast orbit is approximately coplanar with the CSM orbital plane. If the designated landing site is not in the descent coast plane at the nominal time of landing the plane change will be accomplished by the powered landing maneuver (Braking program, P63, and Approach program, P64).
2. The CSM is in a near-circular orbit around the moon at a nominal altitude of 60 nautical miles. The CSM is maintaining a preferred tracking attitude for optical tracking of the LM.
3. The $I M U$ is on and aligned to a landing site orientation defined for the designated landing site and the nominal time of landing (T (land)), but should be fine aligned to this orientation as closely as possible prior to DPS ignition. The LM has not yet been aligned to the correct attitude for ignition for the powered landing maneuver.
4. The Landing Radar (LR) was energized, checked out, and made ready at LR Position No. 1 prior to selection of this program.
5. The LGC will neither desianate nor read the Rendezvous Radar (RR) during this program. Radar data will not be incorporated into the LM state vector until the astronaut sets the LR permit flag via V57E indicating he is satisfied with the quality of the data. V58E will reset the LR permit flag.
6. The Landing Analog Displays routine (R10) is enabled at DPS ignition and is terminated upon termination of Average G. The Powered Flight Designate routine (R29) is not enabled during the lunar descent.
7. The entire powered landing maneuver (braking, approach, and landing) will be accomplished using the DPS engine.
8. The DPS is not throttlable over the whole range (0 to maximum). It must be operated either at maximum throttle or over a specific throttle range of lower settings. These throttle settings are total throttle settings; that is, the sum of the manual setting (whose minimum is about 10 percent) and the PGNCS commanded setting.

This program assumes the Throttle Control switch to be in Auto (the DPS receives the sum of the manual and PGNCS commanded settings) and the manual throttle to be set at minimum for ZOOMTIME seconds of thrusting, and thereafter at a level less than that required by the LGC. The value ZOOMTIME is in erasable storage, having been loaded prior to launch or by P27.
Due to the region of forbidden throttling, thrust command logic in conjunction with the interim terminal conditions assures that the commanded throttle remains at maximum until the guidance equations first require it to be within the allowable throttle range. Thereafter it should remain within the allowable throttle range.
Furthermore, the DPS must be started in the following sequence: $(1)+X$ axis 2 -jet ullage for 7.5 seconds, (2) ignition at minimum throttle, (3) ullage off 0.5 seconds after ignition, (4) ZOOMTIME seconds at minimum thrust, and (5) maximum throttle. The throttle setting then becomes controlled by the guidance equations.
9. During the powered landing maneuver, the LGC will monitor the presence or absence of the Auto Stabilization discrete. This discrete is issued to the LGC when the Mode Control switch is in the Auto position.
The LGC will also monitor the presence or absence of the Auto Throttle discrete. This discrete is issued to the LGC when the Thrust Control switch is in the Auto position.
Should either of these discretes be interrupted during the powered landing maneuver, the L.GC assumes that it no longer has complete automatic control of the maneuver.

The monitor and the associated LGC logic is included in the Landing Auto Modes Monitor routine (R13) which will be called by this program.
10. The X-axis override option provides the crew with the ability to exercise manual control about the LM X axis with the attitude controller even though the PGNCS Mode Control switch is in Auto. When the controller is returned to detent the PGNCS damps the yaw rate, stores the yaw attitude when the yaw is damped, and then maintains that attitude.

The X -axis override option is available to the crew (until the estimated altitude is below 30,000 feet); however, it should not be exercised when the LGC is specifying a desired yaw attitude; that is, during the attitude maneuver to the thrusting attitude. The option is inhibited by this program from midway in the program to the end.
11. The LGC specifies LM attitude during the powered landing maneuver based upon the requirements of thrust vector control, landing site visibility, and LR orientation. After DPS ignition, thrust vector control is required through the remainder of this program. The landing site becomes visible at the beginning of the approach phase.
Thrust vector control does not constrain the LM orientation about the thrust axis (yaw attitude). Rotation about the LM Y and LM Z axes is used to point the measured thrust vector along the desired thrust vector.

The first restraint upon the LM yaw attitude to occur is that of LR orientation. The LGC will not attempt to use LR data until the LGC estimation of altitude is 50,000 feet. Automatic X-axis override lockout and yaw attitude specification by the LGC will not occur until the LGC estimated altitude is 30,000 feet. Before this time, the astronaut must maneuver to a roughly-window-up yaw orientation to prevent subsequent loss of S-band lock-on. The LGC will then command the vehicle to the LGC-specified yaw attitude.
Subsequent to X -axis override lockout, control of the vehicle about the $L M \times$ axis is governed by LR orientation requirements during this program. The landing site becomes visible to the command pilot if the "look" angle (the angle between the LM -X axis and the LOS to the landing site) is greater than 25 degrees and the LOS is in or near the LM X/Z plane.
At any time during P63, P64, or P65, the magnitude of the look angle and the orientation of the look angle plane (that plane containing the LOS and the LM X axis) are defined by the inertial orientation of the LM X axis and the position of the LM with respect to the landing site.
12. The Rate of Descent (ROD) mode is not enabled during this program.
13. An abort from the lunar descent may be required at any time during the descent orbit injection, the descent coast, or the powered descent (P63), (P64), (P65), (P66), or (P67).
For aborts from the descent orbit injection or the descent coast it is assumed that sufficient time exists to perform a TPI maneuver (see Terminal Phase Initiation (TPI) program (P34)) to intercept the CSM directly.

For aborts after DPS ignition for the powered landing maneuver, time is critical. During this period an abort is nominally commanded by pushing one of two buttons in the LM. The abort may be commanded to use the descent stage (Abort button) or the ascent stage (Abort Stage button). If the descent stage is selected, and the DPS propellant approaches exhaustion, control must be switched to the ascent stage by the crew by ascent stage selection (Abort Stage button).
During the powered landing maneuver, the LGC will continuously monitor the Abort and Abort Stage discretes, and upon receipt of either will terminate the program in process and call the appropriate abort program (DPS Abort program (P70) or APS Abort program (P71)). Both abort programs will guide the LM to an acceptable orbit.
The monitor of the Abort and Abort Stage buttons is controlled by the Abort Discretes Monitor routine (R11) which will be enabled by this program.
14. If a thrusting maneuver is performed with the Guidance Control switch in PGNS and the Mode Control switch in Auto, the PGNCS will control the total vehicle attitude and generate either Mode 1 or Mode 2 attitude errors for display on the FDAI. The crew may exercise control around the yaw axis only with the ACA (X-axis override) and only if the X -axis override capability is permitted by the program in process. This manual control will be in the Rate Command/Attitude Hold mode.
If a thrusting maneuver is performed with the Guidance Control switch in PGNS and the Mode Control switch in Attitude Hold, the PGNCS will hold the vehicle attitude and will generate either Mode 1 or Mode 2 attitude errors for display on the FDAI. The crew may exercise manual attitude control about all vehicle axes with the ACA in either the Rate Command or Minimum Impulse mode. It is strongly recommended that powered flight not be attempted in the Minimum Impulse mode. During a thrusting maneuver in the PGNS/Attitude Hold mode the astronaut is responsible for maintaining small enough attitude errors to achieve guidance objectives.
15. Control of LM DPS, RCS, and APS is transferred from PGNCS to the Abort Guidance System (AGS) by changing the Guidance Control switch from PGNS to AGS.
The AGS will be capable of taking over control of the LM during any portion of the lunar descent or ascent or during either of the abort programs (P70 or P71). The AGS will guide the LM to a safe orbit.
The AGS may be initialized by the LGC at any time by manual selection of the AGS Initialization routine (R47).
In the event that the Guidance Control switch is changed from PGNS to AGS during a thrusting maneuver, the LGC will continue computation of position and velocity, the desired thrust vector, and the desired attitude errors. However, the PGNCS will not be responsible if register overflows occur within the LGC.
16. The PGNCS can generate two types of attitude errors for display on the FDAI:
a. Mode 1-Selected by Extended Verb 61. Autopilot following errors used as a monitor of the DAP's ability to track automatic steering commands.
b. Mode 2-Selected by Extended Verb 62. Total attitude errors used to assist crew in manually maneuvering the vehicle.
Display selection is always based upon the last entry made in the DSKY.
17. The event timer was set prior to selection of this program to count to zero at T BRAK based on a time from ignition provided by the ground.
18. The Load DAP Data routine (RO3) has been performed prior to selection of this program. At that time the DPS engine gimbal should have been driven to the correct trim position.
19. During DPS burn only, the pitch-roll RCS jet autopilot (U and V jets) may be disabled (V65E) or enabled (V75) by Extended Verb as shown. This capability is intended to be used to prevent LM and descent stage thermal constraint violations during CSM-docked DPS burns (P40). The capability exists during P70 also. Performance of FRESH START (V36E) will always enable the pitch-roll jets
20. LGC and crew procedures in cases of LGC-assumed thrust failure are defined by the DPS/APS Thrust Fail routine (R40). This routine is enabled at DPS ignition by this program.
21. This program is selected by the astronaut by DSKY entry. It should be selected at least 20 minutes before the nonminal time of ignition for the powered landing maneuver (T BRAK).
22. It is normally required that the ISS be on for a minimum of 15 minutes prior to a thrusting maneuver.
23. Engine ignition may be slipped beyond the established TIG if desired by the crew or if state vector integration cannot be completed in time.
24. Two alarm conditions may be originated by the PGNCS powered landing equations:
a. If subroutine ROOTSPRS in the RG/VG calculation fails to converge in 8 passes the LGC will turn on the Program Alarm light, store Alarm Code 1406, and go immediately to the final Automatic Request routine (ROO). This alarm can occur only in P63 or P64
b. If an overflow occurs anywhere in the landing equations the LGC will turn on the Program Alarm light, store Alarm Code 1410, stop all vehicle attitude rates, and continue. This alarm can occur only in P63, P64, P65, or P66.
25. This program aliows manual control of LM attitude and the selection of P66.

During P63 (P64 and P65) the astronaut can display the PGNCS total guidance error on the FDAI error needles (Attitude Monitor switch in PGNCS) by having keyed in V62E through the DSKY. He can then steer out the PGNCS P63 attitude errors with the PGNCS manually (Guidance Control switch in PGNCS and the PGNCS Mode Control switch in Attitude Hold); or automatically (PGNCS Mode Control switch in Auto); or with the AGS manually (Guidance Control switch in AGS and the AGS Mode Control switch in Attitude Hold).
NOTE: If the astronaut hits the ROD (Rate of Descent) switch while the PGNCS Mode Control switch is in Attitude Hold, the LGC will irrevocably transfer him out of the automatic guidance program modes (P63, P64, and P65) into the ROD program (P66)

Selected Displays:

1. V06 N61

TG	$\times \times b \times \times \mathrm{min} / \mathrm{s}$
TF GETI	$\times \times b \times \times \mathrm{min} / \mathrm{s}$
Crossrange	$\times \times \times \times . \times \mathrm{nmi}$

2. V06 N33

> Time of PDI ignition

00XXX. h
000XX. min
OXX.XX s
3. V50 N25 (fine align)
Checklist code 00014
4. V 50 N 18

Desired automaneuver FDAI ball angles
XXX.XX deg
$X X X . X X \operatorname{deg}$
XXX.XX deg
5. V06 N18

Final FDAI ball angles
$X X X . X X$ deg
P $X X X . X X$ deg
XXX.XX deg
6. V06 N62

Absolute value of velocity
Time from ignition
XXXX.X ft/s
$X \times b \times X \mathrm{~min} / \mathrm{s}$
XXXX.X ft/s
7. V99 N62 (request engine on enable)

Same display as Item 15 above
8. V06 N63

Absolute value of velocity
Altitude rate
Computed altitude
9. V50 N25 (reposition LR antenna) Checklist code

XXXX.X ft/s
$X X X X . X \mathrm{ft} / \mathrm{s}$ (+ ascent)
XXXXX.ft
10. V50 N25 (change guidance mode)

Checklist code
00500

00203
11. V 06 N68 (astronaut initiated display)

Slant range to landing site
XXXX.Xnmi
Time to go in braking phase
LR altitude (computed altitude)
XXb \quad X $\mathrm{min} / \mathrm{s}$
XXXXX .ft
12. V16 N68 (astronaut initiated display)

Display same as Item 11 above.
P64-APPROACH PHASE PROGRAM

Purpose:

1. To control the PGNCS during the thrusting of the powered landing maneuver between HI gate and LO gate.
2. To control the DPS thrust and attitude between HI gate and LO gate.
3. To provide the crew with the capability of redesignating the landing site to which the PGNCS is guiding the LM.
4. To select P65 automatically when TR is less than TENDAPPR (time to end of approach phase).

Assumptions:

1. The LM is on the powered landing descent between HI gate and LO gate.
2. The CSM is in a near circular orbit around the moon at a nominal altitude of 60 nautical miles. The CSM is maintaining a preferred tracking attitude for optical tracking of the LM.
3. The $I M U$ is on and accurately aligned to a landing site orientation defined for the designated landing site and the nominal time of landing (T(land)).
4. The Landing Radar (LR) is on, checked out, and should have been providing to the LGC velocity and range information with respect to the moon. This information should have been incorporated into the LM state vector. The LGC/LR operation is under the control of the Descent State Vector Update routine (R12) which is already in process.
5. The LGC will neither designate nor read the Rendezvous Radar (RR) during this program.
6. The entire powered landing maneuver (braking, approach, and landing) will be accomplished using the DPS engine.
7. The aim conditions (LO gate) for the approach phase are stored in the LGC.
8. The DPS is not throttlable over the whole range from 0 to maximum. It must be operated either at maximium throttle or over a specific throttle range of lower settings. These throttle settings are total throttle settings; that is, the sum of the manual setting (whose minimum is about 10 percent) and the PGNCS commanded setting.
This program assumes the Throttle Control switch to be in Auto (the DPS receives the sum of the manual and PGNCS commanded settings) and the manual throttle to be set at a level less than that required by the LGC.
Nominally, if the Approach Phase program is completed without any redesgination of the landing site (see Assumption 11), the throttle will remain with in the allowable throttle range throughout the phase. Excessive target redesignations during this program, however, may result in required throttle excursions outside the allowable range. In such cases the LGC will command maximum throttle for at least 2 seconds, and until the required throttle setting returns to the permitted throttle region.
9. During the powered landing maneuver, the LGC will monitor the presence or absence of the Auto Stabilization discrete. This discrete is issued to the LGC when the Mode Control switch is in the Auto position.

The LGC will also monitor the presence or absence of the Auto Throttle discrete. This discrete is issued to the LGC when the Thrust Control switch is in the Auto position.
Should either of these discretes be interrupted during the powered landing maneuver, the LGC assumes that it no longer has complete automatic control of the maneuver.
The monitor and the associated LGC logic is included in the Landing Auto Modes Monitor routine (R13) which is already in process.
10. The X -axis override option is not provided to the crew whenever the LGC estimated altitude is below 30,000 feet.
11. During most of the approach phase, the LGC provides the crew with the option to redesignate the landing site to which the PGNCS is guiding the LM. This option is called the Landing Point Designator (LPD) mode. The PGNCS Mode Control switch must be in Auto for the ACA to function as a landing site redesignator.
The landing point redesignation, if exercised, is based upon visual assessment of the lunar terrain with respect to the presently designated landing site. During the LPD mode the present landing site is displayed on the DSKY in terms of coordinates on the LPD sighting grid on the left hand LM window (LPD angle). Landing site redesignations are manually put into the computer via the attitude controller on an incremental basis; that is, a limit switch actuation in the attitude controller causes the LGC to redesignate the landing site as a fixed angular increment ($1 / 2$ degree in elevation, 2 degrees in azimuth) from the present LM/landing site LOS. The applicable attitude controller polarities are:
a. -Pitch Rotation gives -LPD Elevation (new site beyond present site).
b. +Pitch Rotation gives +LPD Elevation (new site short of present site).
c. +Roll Rotation gives +LPD Azimuth (new site to right of present site).
d. -Roll Rotation gives -LPD Azimuth (new site to left of present site).
12. The initial maneuver of the approach phase is the LM attitude transition from the LM attitude at the start of P64 to a satisfactory attitude for landing site visibility. After the completion of this maneuver the LM attitude is constrained by thrust
pointing requirements and is controlled about the thrust axis so as to maintain the current landing site in the LM X-Z plane. The conditions achieved at the start of P64 should be such that the thrust pointing requirements of the approach phase will yield satisfactory visibility and radar orientations.
The landing site becomes visible to the command pilot if the "look" angle (the angle between the $-X$ LM axis and the LOS to the landing site) is greater than 25 degrees and the LOS is in or near the LM X-Z plane.
At any time during P63, P64, or P65, the magnitude of the look angle and the orientation of the look angle plane (that plane containing the LOS and the LM X axis) are defined by the inertial orientation of the LM X axis and the position of the LM with respect to the landing site.
The inertial orientation of the LM X axis is controlled by requirements of thrust vector control. The orientation of the LM windows with respect to the look angle plane is controlled by rotation of the vehicle about the LM X axis.
13. The Rate of Descent (ROD) mode is not enabled during this program.
14. An abort from the lunar descent may be required at any time during the descent orbit injection, the descent coast, or the powered descent (P63), (P64), (P65), (P66), or (P67).

For aborts after DPS ignition for the powered landing maneuver, time is critical. During this period an abort is nominally commanded by pushing one of two buttons in the LM. The abort may be commanded to use the descent stage (Abort button) or the ascent stage (Abort Stage button). If the descent stage is selected, and the DPS propellant approaches exhaustion, control must be switched to the ascent stage by the crew by ascent stage selection (Abort Stage button).

During the powered landing maneuver the LGC will continuously monitor the Abort and the Abort Stage discretes, and upon receipt of either will terminate the program in process and call the appropriate abort program (DPS Abort program (P70) or APS Abort program (P71)). Both abort programs will guide the LM to an acceptable orbit.
Monitoring the Abort and Abort Stage buttons is controlled by the Abort Discretes Monitor routine (R11) which is already in process.
15. If a thrusting maneuver is performed with the Guidance Control switch in PGNS and the Mode Control switch in Auto, the PGNCS will control the total vehicle attitude and generate either Mode 1 or Mode 2 attitude errors for display on the FDAI.

If a thrusting maneuver is performed with the Guidance Control switch in PGNS and the Mode Control switch in Attitude Hold the PGNCS will hold the vehicle attitude and will generate either Mode 1 or Mode 2 attitude errors for display on the FDAI. The crew may exercise manual attitude control about all vehicle axes with the ACA in either the Rate Command or Minimum Impulse mode. It is strongly recommended that powered flight not be attempted in the Minimum Impulse mode. During a thrusting maneuver in the PGNS/Attitude Hold mode the PGNCS will not be responsible if register overflows occur within the LGC.
16. Control of the LM DPS, RCS, and APS is transferred from the PGNCS to the Abort Guidance System (AGS) by placing the Guidance Control switch from PGNS to AGS.
The AGS will be capable of taking over control of the LM during any portion of the lunar descent or ascent or during either of the abort programs (P70 or P71). The AGS will guide the LM to a safe orbit.
The AGS may be initialized by the LGC at any time during this program by manual selection of the AGS Initialization routine (R47).
In the event that the Guidance Control switch is changed from PGNS to AGS during a thrusting maneuver, the LGC will continue computation of position and velocity, the desired thrust vector, and the desired attitude errors. However, the PGNCS will not be responsible if register overflows occur within the LGC.
17. The PGNCS can generate two types of attitude errors for display on the FDAI:
a. Mode 1-Selected by Extended Verb 61. Autopilot following errors used as a monitor of the DAP's ability to track automatic steering commands.
b. Mode 2-Selected by Extended Verb 62. Total attitude errors used to assist crew in manually maneuvering the vehicle.
18. The Load DAP Data routine (RO3) has been performed prior to the start of the powered landing maneuver and should not be required during this program.
19. LGC and crew procedures in cases of LGC-assumed thrust failure are defined by the DPS/APS Thrust Fail routine (R40). This routine is in effect during this program, having been enabled by P63.
20. This program is automatically selected by the Braking Phase program (P 63) at the completion of the P63 aim conditions.
21. Two alarm conditions may be originated by the PGNCS powered landing equations:
a. If Subroutine ROOTSPRS in the RG/VG calculation fails to converge in 7 passes the LGC will turn on the Program Alarm light, store Alarm Code 1406 and go immediately to the Final Automatic Request routine (ROO). This alarm can occur only in P63 or P64.
b. If an overflow occurs anywhere in the landing equations the LGC will turn on the Program Alarm light, store Alarm Code 1410, stop all vehicle attitude rates, and continue. This alarm can occur only in P63, P64, P65, or P66.
22. This program allows manual control of the LM attitude. If manual control is desired put the PGNCS Mode Control switch in Attitude Hold and use the ACA to control the LM attitude.

If P66 is desired, click the ROD switch while the PGNCS Mode Control switch is in Attitude Hold.
P67 can be entered by placing the Throttle Control switch to Manual.
NOTE: Landing Site Redesignation must be completed before either P66 or P67 are selected, since P64 cannot be reentered once it has been exited.

Selected Displays:

1. V06 N64

Time left for redesignations (TR)/LPD	$\times \times \mathrm{b} \times \times \mathrm{s} / \mathrm{deg}$
Altitude rate	$\times \times \times \times . \times \mathrm{ft} / \mathrm{s}$
Computed altitude	$\times \times \times \times \times . \mathrm{ft}$

P65-LANDING PHASE (AUTO) PROGRAM

Purpose:

1. To control the PGNCS during the thrusting of the powered landing maneuver from the period immediately after completion of the approach phase aim conditions (LO gate) until touchdown on the lunar surface.

Assumptions:

1. The LM is on the powered landing descent having just arrived at the LO gate conditions.
2. The CSM is in a near circular orbit around the moon at a nominal altitude of 60 nautical miles. The CSM's position with respect to the LM is approximately 0 degrees central angle above the LM. The CSM is maintaining a preferred tracking attitude for optical tracking of and RR tracking by the LM.
3. The IMU is on and accurately aligned to a landing site orientation defined for the designated landing site and the nominal time of landing (T(land)).
4. The Landing Radar (LR) is on, checked out, and providing to the LGC velocity and range information with respect to the moon. This information has been incorporated into the LM state vector. The LGC/LR operation is under the control of the Descent State Vector Update routine (R12) which is already in process.
5. The LGC will neither designate nor read the Rendezvous Radar (RR) during this program.
6. The entire powered landing maneuver (braking, approach, and landing) will be accomplished using the DPS engine.
7. The DPS is not throttlable over the whole range from 0 percent to maximum. It must be operated either at maximum throttle or over a specific throttle range of lower settings. These throttle settings are total throttle settings; that is, the sum of the manual setting (whose minimum is about 10 percent) and the PGNCS commanded setting.
This program assumes the Throttle Control switch to be in Auto (the DPS receives the sum of the manual and PGNCS commanded settings) and the manual throttle to be set at a level less than that required by the LGC.
Nominally the throttle will remain within the allowable throttle range throughout this program.
8. During the powered landing maneuver, the LGC will monitor the presence or absence of the Auto Stabilization discrete. This discrete is issued to the LGC when the Mode Control switch is in the Auto position.

The LGC will also monitor the presence or absence of the Auto Throttle discrete. This discrete is issued to the LGC when the Thrust Control switch is in the Auto position.

Should either of these discretes be interrupted during the powered landing maneuver, the LGC assumes that it no longer has complete automatic control of the maneuver.

The monitor and the associated LGC logic is included in the Landing Auto Modes Monitor routine (R13) which is already in process.
9. The LPD option is not provided to the crew during this program.
10. The initial maneuver of the auto landing phase is the LM attitude transition from the LM attitude at LO gate to the hover attitude (LM X axis along the local vertical) The final designated landing site remains in the LM X-Z plane during this transition The LM attitude rate is maintained at $-3 \mathrm{ft} / \mathrm{s}$ until touchdown.
11. The crew can display LGC calculated values of forward velocity, lateral velocity altitude, and altitude rate on certain LM meters during this program. The calculation of these parameters is under the control of the Landing Analog Displays routine (R 10) which is already in process.
12. The Rate of Descent (ROD) mode is not enabled during this program.
13. An abort from the lunar descent may be required at any time during descent orbit injection, descent coast, or powered descent (P63), (P64), (P65), (P66), or (P67).

For aborts after DPS ignition for the powered landing maneuver, time is critical. During this period an abort is commanded by pushing one of two buttons in the LM. The abort may be commanded to use the descent stage (Abort button) or the ascent stage (Abort Stage button). If the descent stage is selected, and the DPS propellant approaches exhaustion, control must be switched to the ascent stage by the crew by ascent stage selection (Abort Stage button).
During the powered landing maneuver, the LGC will continuously monitor the Abort and Abort Stage discretes, and upon receipt of either will terminate the program in process and call the appropriate abort program (DPS Abort program (P70) or APS Abort program (P71)). Both abort programs will guide the LM to an acceptable orbit.
Monitoring the Abort and Abort Stage buttons is controlled by the Abort Discretes Monitor routine (R11) which is already in process.
14. Control of the LM DPS, RCS, and APS is transferred from the PGNCS to the Abort Guidance System (AGS) by placing the Guidance Control switch from PGNCS to AGS.
The AGS will be capable of taking over control of the LM during any portion of the lunar descent or ascent or during either of the abort programs (P70 or P71) and guiding the LM to a safe orbit.
The AGS may be initialized by the LGC at any time by manual selection of the AGS Initialization routine (R47).
In the event that the Guidance Control switch is changed from PGNCS to AGS during a thrusting maneuver, the LGC will continue computation of position and velocity, the desired thrust vector, and the desired attitude errors. However, the PGNCS will not be responsible if register overflows occur within the LGC.
15. The Load DAP Data routine (R03) has been performed prior to the start of the powered landing maneuver and should not be required during this program
16. LGC and crew procedures in cases of LGC-assumed thrust failure are defined by the DPS/APS Thrust Fail routine (R40). This routine is in effect during this program until selection of the Landing Conformation program (P68), having been called by P63.
17. This program is automatically selected by the Approach Phase program (P64) at the completion of the LO gate aim conditions.
18. Two alarm conditions may be originated by the PGNCS powered landing equations: a. If Subroutine ROOTSPRS in the RG/VG calculation fails to converge in $N(N=8$ for P63, $N=7$ for P64) passes the LGC will turn on the Program Alarm light, store Alarm Code 1406, and go immediately to the Final Automatic Request routine (R00). This alarm can occur only in P63 or P64.
b. If an overflow occurs anywhere in the landing equations the LGC will turn on the Program Alarm light, store Alarm Code 1410, stop all vehicle attitude rates, and continue. This alarm can occur only in P63, P64, P65, or P66.
19. This program allows for manual control of LM attitude and the selection of P66.

During P65 the astronaut can display the PGNCS total guidance error on the FDAI error needles (Attitude Monitor switch in PGNCS) by having keyed in V62E through the DSKY. He can then steer out the PGNCS P65 attitude erorrs with the PGNCS manually (Guidance Control switch in PGNCS and the PGNCS Mode Control switch in Attitude Hold); or automatically (PGNCS Mode Control switch in Auto); or with the AGS manually (Guidance Control switch in AGS and the AGS Mode Control switch in Attitude Hold).
NOTE: If the astronaut hits the ROD (Rate of Descent) switch while the PGNCS Mode Control siwtch is in Attitude Hold, the LGC will irrevocably transfer him out of P65 and into the ROD program (P66).

Selected Displays:

1. V06 N60

Horizontal velocity	$\times \times \times \times . \times \mathrm{ft} / \mathrm{s}$
Altitude rate	$\times \times \times \times . \times \mathrm{ft} / \mathrm{s}$
Computed altitude	$\times \times \times \times \times$.

P66-LANDING PHASE (ROD) PROGRAM

Purpose:

1. To modify the rate of descent of the LM (with respect to the lunar surface) in response to astronaut originated inputs via the LM Rate of Descent switch to the LGC.
2. To modify the inertial attitude of the LM in response to astronaut originated inputs via the attitude controller only if the Mode Control switch is in Attitude Hold.
3. In the absence of manual control inputs, to maintain a constant rate of descent and LM inertial attitude.
4. To update the LM state vector with vehicle acceleration and Landing Radar (LR) data.

Assumptions:

1. The LM is in the late stages of landing, with a relatively low inertial velocity.
2. The CSM is in a near circular orbit around the moon at a nominal altitude of 60 nautical miles. The CSM's position with respect to the LM is approximately 0 -degrees central angle above the LM. The CSM is maintaining a preferred tracking attitude for optical tracking of and RR tracking by the LM.
3. The IMU is on and accurately aligned to a landing site orientation defined for the designated landing site and the nominal time of landing (T (land)). IMU alignment took place during the Braking Phase program (P63) prior to DPS ignition.

P66 (continued)

4. The Landing Radar (LR) is on, checked out, and providing to the LGC velocity and range information with respect to the moon. This information has been incorporated into the LM state vector. The LGC/LR operation is under the control of the Descent State Vector Update routine (R12) which is already in process.
5. The LGC will neither designate nor read the Rendezvous Radar (RR) during this program.
6. The entire powered landing maneuver (braking, approach, and landing) will be accomplished using the DPS engine.
7. The DPS is not throttlable over the whole range from 0 percent to maximum. It must be operated either at maximum throttle or over a specific throttle range of lower settings. These throttle settings are total throttle settings; that is, the sum of the manual setting (whose minimum is 10 percent) and the PGNS commanded setting.
This program assumes the Throttle Control switch to be in Auto (the DPS receives the sum of the manual and PGNS commanded settings) and the manual throttle to be set at a level less than that required by the LGC.
Nominally the throttle will remain within the allowable throttle range through this program.
8. During the powered landing maneuver, the LGC will monitor the presence or absence of the Auto Stabilization discrete. This discrete is issued to the LGC when the Mode Control switch is in the Auto position.
The LGC will also monitor the presence or absence of the Auto Throttle discrete. This discrete is issued to the LGC when the Thrust Control switch is in the Auto position.
Should either of these discretes be interrupted during the powered landing maneuver, the LGC assumes that it no longer has complete automatic control of the maneuver.
The monitor and the associated LGC logic is included in the Landing Auto Modes Monitor routine (R13) which is already in process.
9. The LPD option is not provided to the crew during this program.
10. The LGC assumes all attitude changes to be manual throughout this program. The Mode Control switch may be in Auto or Attitude Hold. The LGC will hold inertial attitude in either mode. However, in the Attitude Hold mode the attitude may be changed by manual control via the attitude controller.
11. The crew has the capability to display LGC calculated values of forward velocity, lateral velocity, altitude and altitude rate on certain LM meters during this program. The calculation of these parameters is under the control of the Landing Analog Displays routine (R10) which is already in process.
12. During this program the LGC monitors the output of the Rate of Descent (ROD) switch in the LM. This switch is operated by the astronaut in response to his assessment of the present LM rate of descent based on out-the-window references and LM/DSKY displays.
Switch operation is on an incremental bias: either -(increase ROD) or + (decrease) ROD). Each command results in an LGC-commanded change of "RODSCALE" in the LM rate of descent. ("RODSCALE" is a value loaded into erasable storage prior to flight).
13. An abort from the lunar descent may be required at any time during descent orbit injection, descent coast, or powered descent (P63), (P64), (P65), (P66), or (P67).

For aborts after DPS ignition for the powered landing maneuver, time is critical. During this period an abort is commanded by pushing one of two buttons in the LM. The abort may be commanded to use the descent stage (Abort button) or the ascent stage (Abort Stage button). If the descent stage is selected, and the DPS propellant approaches exhaustion, control must be switched to the ascent stage by the crew by ascent stage selection (Abort Stage button).
During the powered landing maneuver, the LGC will continuously monitor the Abort and Abort Stage discretes, and upon receipt of either will terminate the
program in process and call the appropriate abort program (DPS Abort program (P70) or APS Abort program (P71)). Both abort programs will guide the LM to an acceptable orbit.

Monitoring the Abort and Abort Stage buttons is controlled by the Abort Discretes Monitor routine (R11) which is already in process.
14. If a thrusting maneuver is performed with the Guidance Control switch in PGNS and the Mode Control switch in Attitude Hold the PGNCS will hold the vehicle attitude and will generate either Mode 1 or Mode 2 attitude errors for display on the FDAI. The crew may exercise manual attitude control about all vehicle axes with the ACA in either the Rate Command or Minimum Impulse mode. It is strongly recommended that powered flight not be attempted in the Minimum Impulse mode. During a thrusting maneuver in the PGNS/Attitude Hold mode the PGNCS will not be responsible if register overflows occur within the LGC
15. Control of the LM DPS, RCS, and APS is transferred from the PGNCS to the Abort Guidance System (AGS) by placing the Guidance Control switch from PGNS to AGS.

The AGS will be capable of taking over control of the LM during any portion of the lunar descent or ascent or during either of the abort programs (P70 or P71). The AGS will guide the LM to a safe orbit.
The AGS may be initialized by the LGC at any time by manual selection of the AGS Initialization routine (R47)

In the event that the Guidance Control switch is changed from PGNS to AGS during a thrusting maneuver, the LGC will continue computation of position and velocity, the desired thrust vector, and the desired attitude errors; however, the PGNCS will not be responsible if register overflows occur with in the LGC.
16. The Load DAP Data routine (R03) has been performed prior to the start of the powered landing maneuver and should not be required during this program.
17. LGC and crew procedures in cases of LGC-assumed thrust failure are defined by the DPS/APS Thrust Fail routine (R40). This routine is in effect during this program until selection of the Landing Conformation program (P68), having been enabled by P63.
18. This program is automatically selected by the Landing Auto Modes Monitor routine (R13) during the powered landing maneuver when:
a. Rate of Descent switch is operated for the first time with the Attitude Control switch in Attitude Hold and the Throttle Control switch in Auto.
b. Auto throttle control is selected during the Landing Phase (Manual) program (P67).
Once this program has been selected it is no longer possible to return to the completely automatic powered landing programs (P63, P64, or P65).
19. Two alarm conditions may be originated by the PGNCS powered landing equations:
a. If Subroutine ROOTSPRS in the RG/VG calculation fails to converge in $\mathrm{N}(\mathrm{N}=8$ for P63, $\mathrm{N}=7$ for P64) passes the LGC will turn on the Program Alarm light store Alarm Code 1406, and go immediately to the Final Automatic Request routine (R00). This alarm can occur only in P63 or P64.
b. If an overflow occurs anywhere in the landing equations the LGC will turn on the Program Alarm light, store Alarm Code 1410, stop all vehicle attitude rates, and continue. This alarm can occur only in P63, P64, P65, or P66.

Selected Displays:

1. V06 N60

Horizontal velocity
XXXX.X ft/s
Altitude rate
Computed altitude
XXXX.X ft/s
XXXXX.ft

Purpose:

1. To update the LM state vector with vehicle acceleration and Landing Radar (LR) data during a non-PGNCS controlled landing maneuver.
2. To display horizontal velcoity, altitude rate, and computed altitude during a non-PGNCS controlled landing maneuver.

Assumptions:

1. The LM could be anywhere on the powered landing descent but nominally it has just completed the second transition.
2. The CSM is in a near circular orbit around the moon at a nominal altitude of 60 nautical miles. The CSM's position with respect to the LM is approximately 0 -degrees central angle above the LM. The CSM is maintaining a preferred tracking attitude for optical tracking of and RR tracking by the LM.
3. The IMU is on and accurately aligned to a landing site orientation defined for the designated landing site and the nominal time of landing (T(land)).
4. The Landing Radar (LR) is on, checked out, and providing to the LGC velocity and range information with respect to the moon. This information has been incorporated into the LM state vector. The LGC/LR operation is under the control of the Descent State Vector Update routine (R12) which is already in process.
5. The LGC will neither designate nor read the Rendezvous Radar (RR) during this program.
6. The entire powered landing maneuver (braking, approach, and landing) will be accomplished using the DPS engine.
7. This program assumes all throttle control to be manual throughout the program.
8. During the powered landing maneuver, the LGC will monitor the presence or absence of the Auto Stabilization discrete. This discrete is issued to the LGC when the Mode Control switch is in the Auto psotion.
The LGC will also monitor the presence or absence of the Auto Throttle discrete. This discrete is issued to the LGC when the Thrust Control switch is in the Auto position.
Should either of these discretes be interrupted during the powered landing maneuver, the LGC assumes that it no longer has complete automatic control of the maneuver.
The monitor and the associated LGC logic is included in the Landing Auto Modes Monitor routine (R13) which is already in process.
9. The LPD option is not provided the crew during this program.
10. The LGC assumes all attitude changes to be manual throughout this program. The Mode Control switch may be in Auto or Attitude Hold. The LGC will hold inertial attitude in either mode, however, only in the Attitude Hold mode may the attitude be changed by manual control via the attitude controller.
11. The crew has the capability to display LGC calculated values of forward velocity, lateral velocity, altitude, and altitude rate on certain LM meters during this program. The calculation of these parameters is under the control of the Landing Analog Displays routine (R 10) which is already in process.
12. The Rate of Descent (ROD) mode is not enabled during this program.
13. An abort from the lunar descent may be required at any time during descent orbit injection, descent coast, or powered descent (P63), (P64), (P65), (P66), or (P67).
For aborts after DPS ignition for the powered landing maneuver, time is critical. During this period an abort is commanded by pushing one of two buttons in the LM. The abort may be commanded to use the descent stage (Abort button) or the ascent stage (Abort Stage button). If the descent stage is selected, and the DPS propellant approaches exhaustion, control must be switched to the ascent stage by the crew by ascent stage selection (Abort Stage button).

During the powered landing maneuver, the LGC will continuously monitor the Abort and Abort Stage discretes, and upon receipt of either will terminate the program in process and call the appropriate abort program (DPS Abort program (P70) or APS Abort program (P71)). Both abort programs will guide the LM to an acceptable orbit.
Monitoring the Abort and Abort Stage buttons is controlled by the Abort Discretes Monitor routine (R11) which is already in process.
14. If a thrusting maneuver is performed with the Guidance Control switch in PGNS and the Mode Control switch in Attitude Hold, the PGNCS will hold the vehicle attitude and will generate either Mode 1 or Mode 2 attitude errors for display on the FDAI. The crew may exercise manual attitude control about all vehicle axes with the ACA in either the Rate Command or Minimum Impulse mode. It is strongly recommended that powered flight not be attempted in the Minimum Impulse mode. During a thrusting maneuver in the PGNS/Attitude Hold Mode, the PGNCS will not be responsible if register overflows occur within the LGC.
15. Control of the LM DPS, RCS, and APS is transferred from the PGNCS to the Abort Guidance System (AGS) by placing the Guidance Control switch from PGNS to AGS.
The AGS will be capable of taking over control of the LM during any portion of the lunar descent or ascent or during either of the abort programs (P70 or P71). The AGS will guide the LM to a safe orbit.

The AGS may be initialized by the LGC at any time by manual selection of the AGS Initialization routine (R47).
In the event that the Guidance Control switch is changed from PGNS to AGS during a thrusting maneuver, the LGC will continue computation of position and velocity, the desired thrust vector, and the desired attitude errors; however, the PGNCS will not be responsible if register overflows occur within the LGC.
16. The Load DAP Data routine (RO3) has been performed prior to the start of the powered landing maneuver and should not be required during this program.
17. LGC and crew procedures in cases of LGC-assumed thrust failure are defined by the DPS/APS Thrust Fail routine (R40). This routine is in effect during this program until selection of the Landing Conformation program (P68), having been enabled by P63.
18. This program is automatically selected by the Landing Auto Modes Monitor routine (R13) at any time during the powered landing maneuver when the throttle is manual (Thrust Control switch to Manual).

Once this program has been selected it is no longer possible to return to the completely automatic powered landing programs (P63, P64, or P65).

Selected Displays:

1. V06 N60

Horizontal velocity	$X X X X . X \mathrm{ft} / \mathrm{s}$
Altitude rate	$X X X X . X \mathrm{ft} / \mathrm{s}$ (+ ascent)
Computed altitude	

P68-LANDING CONFIRMATION PROGRAM

Purpose:

1. To terminate landing program and $D A P$ functions.
2. To initialize the LGC for lunar surface operation.

Assumptions:

1. This program is selected by the astronaut by DSKY entry. It is to be selected only after the LM has landed on the lunar surface (Programs P65, P66, or P67).
2. V37E68E selection of P68 will terminate Average G and command the engine off (see R00).
3. This program will not shut off the DAP. However, the attitude errors are zeroed and the maximum deadband is set. No jet firings should result until one of the following occurs in sufficient magnitude to cause the attitude errors to exceed the deadband:
a. The moon rotates,
b. The LM shifts on the lunar surface,
c. The IMU gyros are torqued for alignment by P57,
d. The IMU drifts.

The DAP may be shut off by setting the Mode-Control-PGNS switch to Off.

Selected Displays:

1. V06 N43

Latitude	XXX.XX deg (+ north)
Longitude	XXX.XX deg (+ east)
Altitude	$X X X X . X$ nmi
6 N56 (results from V85E)	
RR LOS Azimuth	XXX.XX deg
RR LOS Elevation	XXX.XX deg

P70-DPS ABORT PROGRAM

Purpose:

1. To control a PGNCS controlled DPS abort from the powered landing maneuver (P63, P64, P65, P66, or P67) when required.

Assumptions:

1. This program will control a DPS abort in one of two ways:
a. If the altitude is greater than 25,000 feet, this program will command maximum DPS throttle, continue DPS thrusting, perform an attitude maneuver (using the RCS) to the correct attitude to continue the abort ascent, and complete the abort ascent to insert the LM on an abort orbit
b. If the altitude is less than 25,000 feet, this program will command maximum DPS throttle and enter a vertical rise phase which will terminate either when the LM altitude exceeds 25,000 feet or when both of the following conditions are met: the LM Y axis is within 5 degrees of the desired pitchover axis and the LM vertical velocity is greater than $40 \mathrm{ft} / \mathrm{s}$.
During the vertical rise phase, the vehicle is maneuvered to align the LM $+X$ axis with the local vertical (using the RCS), and the LM $+Y$ axis normal to the anticipated pitch maneuvers plane. The program will then pitch the LM to the correct attitude for ascent and complete the abort ascent to insert the LM on an abort orbit.
2. The LM is on the powered landing descent somewhere between DPS iginition for the maneuver (P63) and DPS shutdown on the lunar surface (P65, P66, or P67).
3. The CSM is in a near circular orbit around the moon at a nominal altitude of 60 nautical miles. The CSM is maintaining a preferred tracking attitude for optical tracking of and RR tracking by the LM.
4. The IMU is on and accurately aligned to the landing orientation.
5. The Landing Radar (LR) is on and was checked out when in Position No. 1. The LGC/LR operation is under the control of the Descent State Vector Update routine (R12).
6. The Rendezvous Radar (RR) was energized and checked out prior to selection of this program.
7. The Landing Analog Displays routine (R 10) is enabled upon entry to this program, having been enabled by P63. R10 use of RR CDU's is inhibited by this program. R29 is enabled after completion of the vertical rise phase (if any). R10 and R29 are terminated upon termination of Average G
8. The DPS is not throttlable over the whole range from zero to maximum. It must be operated either at maximum throttle or over a specific throttle range of lower settings. These throttle settings are total throttle settings; that is, the sum of the manual setting (whose minimum is 10 percent) and the PGNCS commanded setting.

This program assumes the Throttle Control switch to be in Auto (the DPS receives the sum of the manual and PGNCS commanded settings) and the manual throttle to be set at a level less than that required by the LGC. The LGC will command maximum throttle for all DPS thrusting controlled by this program.
9. If a thrusting maneuver is performed with the Guidance Control switch in PGNS and the Mode Control switch in Auto, the PGNCS will control the total vehicle attitude and generate either Mode 1 or Mode 2 attitude errors (see Assumption 11) for display on the FDAI

If a thrusting maneuver is performed with the Guidance Control switch in PGNS and the Mode Control switch in Attitude Hold the PGNCS will hold the vehicle attitude and will generate either Mode 1 or Mode 2 attitude errors for display on the FDAI. The crew may exercise manual attitude control about all vehicle axes with the ACA in either the Rate Command or Minimum Impulse mode. It is strongly recommended that powered flight not be attempted in the Minimum Impulse mode During a thrusting maneuver in PGNS/Attitude Hold mode the PGNCS will not be responsible if register overflows occur within the LGC.
10. Control of the LM DPS, RCS, and APS is transferred from the PGNCS to the Abort Guidance System (AGS) by placing the Guidance Control switch from PGNS to AGS.
The AGS will be capable of taking over control of the LM during any portion of the lunar descent or ascent or during either of the abort programs (P70 or P71). The AGS will guide the LM to a safe orbit.
The AGS may be initialized by the LGC at any time by manual selection of the AGS Initialization routine (R47).

In the event that the Guidance Control switch is changed from PGNS to AGS during a thrusting maneuver, the LGC will continue computation of position and velocity, the desired thrust vector, and the desired attitude errors. However, the PGNCS will not be responsible if register overflows occur with in the LGC.
11. The PGNCS can generate two types of attitude errors for display on the FDAI:
a. Mode 1-Selected by Extended Verb 61. Autopilot following errors used as a monitor of the DAP's ability to track automatic steering commands.
b. Mode 2-Selected by Extended Verb 62. Total attitude errors used to assist crew in manually maneuvering the vehicle.
12. The Load DAP Data routine (R03) was completed prior to DPS ignition for the powered landing maneuver and should not be selected during this program.
13. During DPS burns only, the Pitch-Roll RCS jet autopilot (U and V jets) may be disabled (V65) or enabled (V75) by Extended Verb as shown. This capability is intended to be used to prevent LM and descent stage thermal constraint violations during CSM-docked DPS burns (P40). The capability exists during P63 also. Performance of FRESH START (V36E) will always enable the capability of the autopilot.
14. This program may be called in two ways:
a. Abort button-If the Abort button is used during the powered descent it will be detected by the Abort Discretes Monitor routine (R11). R11 will then call this program.
b. V37E 70E-This program may be called by the same procedure as other programs are manually called.
15. The LGC will not automatically select the APS Abort program (P71) if DPS fuel exhaustion occurs during execution of P70. The crew must anticipate DPS fuel exhaustion and select P71 by the Abort Stage button or by V37E 71E.

Selected Displays:

1. V16 N77 (astronaut initiated display)
Time to engine cutoff
$x \times b \times X \mathrm{~min} / \mathrm{s}$
LM velocity normal to CSM plane
XXXX.X ft/s
2. V16 N85 (astronaut initiated display)

Components of velocity to be gained (body axis)
XXXX.X ft/s
3. V50 N25 (change guidance control mode)

Checklist code
00203
4. V06 N63

Absolute value of velocity
XXXX.X ft/s
Altitude rate
Computed altitude
XXXX.X ft/s (+ ascent)
XXXXX.ft
5. V06 N76 (astronaut initiated display)

Downrange velocity	$X X X X . X \mathrm{ft} / \mathrm{s}$
Radial velocity	$X X X X . X \mathrm{ft} / \mathrm{s}$
Crossrange	$X X X X . X \mathrm{nmi}$
Apocenter altitude	
Pericenter altitude	$X X X X . X \mathrm{nmi}$
TFF	$X X X X . \times \mathrm{nmi}$
	$X X \mathrm{~b} \times \times \mathrm{min} / \mathrm{s}$

P71-APS ABORT PROGRAM

Purpose:

1. To control a PGNCS controlled APS abort from the powered landing maneuver (P63, P64, P65, P66, or P67) or a DPS Abort (P70) when required.

Assumptions:

1. The program will control an APS abort in one of two ways:
a. If the altitude is greater than 25,000 feet this program will ignite the APS, continue APS thrusting, perform an attitude maneuver (using the RCS) to the correct attitude to continue the abort ascent, and complete the abort ascent to insert the LM into an abort orbit.
b. If the altitude is less than 25,000 feet this program will ignite the APS, continue APS thrusting, enter a vertical rise phase which will terminate either when the LM altitude exceeds 25,000 feet or when both of the following conditions are met: the LM Y axis is within 5 degrees of the desired pitchover ax is and the LM vertical velocity is greater than $40 \mathrm{ft} / \mathrm{s}$.
During the vertical rise phase the vehicle is maneuvered to align the LM $+X$ axis with the local vertical (using the RCS) and the LM $+Y$ axis normal to the anticipated pitch maneuver plane. The program will then pitch the LM to the correct attitude for ascent, and then complete the abort ascent to insert the LM on an abort orbit.
2. This program does not check to see if the DPS has been staged. Thus if P71 is selected via V37 and the descent stage has not been manually staged this program may command engine on (Assumption 1.a or 1.b above). In such cases the command will go to the DPS.
3. The CSM is in a near circular orbit around the moon at a nominal altitude of 60 nautical miles. The CSM is maintaining a perferred tracking attitude for optical tracking of and RR tracking by the LM.
4. The IMU is on and accurately aligned to the landing site orientation.
5. The Landing Radar (LR) is on and was checked out when in Position No. 1. The LGC/LR operation is under the control of the Descent State Vector Update routine (R12).
6. The Rendezvous Radar (RR) was energized and checked out prior to selection of this program.
7. The Landing Analog Displays routine (R 10) is enabled upon entry to this program, having been enabled by P63. R10 use of the RR CDU's is inhibited by this program. R29 is enabled after completion of the vertical rise phase (if any). R10 and R29 are terminated upon termination of Average G.
8. If a thrusting maneuver is performed with the Guidance Control switch in PGNS and the Mode Control switch in Auto, the PGNCS will control the total vehicle attitude and generate either Mode 1 or Mode 2 attitude errors for display on the FDAI.
If a thrusting maneuver is performed with the Guidance Control switch set at PGNS and the Mode Control switch in Attitude Hold, the PGNCS will hold the vehicle attitude and will generate either Mode 1 or Mode 2 attitude errors for display on the FDAI. The crew may exercise manual attitude control about all vehicle axes with the ACA in either the Rate Command or Minimum Impulse mode. It is strongly recommended that powered flight not be attempted in the Minimum Impulse mode. During a thrusting maneuver in the PGNS/Attitude Hold mode, the PGNCS will not be responsible if register overflows occur within the LGC.
9. Control of the LM DPS, RCS, and APS is transferred from the PGNCS to the Abort Guidance System (AGS) by placing the Guidance Control switch from PGNS to AGS.
The AGS will be capable of taking over control of the LM during any portion of the lunar descent or ascent or during either of the abort programs (P70 or P71). The AGS will guide the LM to a safe orbit.
The AGS may be initialized by the LGC at any time by manual selection of the AGS Initialization routine (R47).
In the event that the Guidance Control switch is changed from PGNS to AGS during a thrusting maneuver, the LGC will continue computation of position and velocity, the desired thrust vector, and the desired attitude errors. However, the PGNCS will not be responsible if register overflows occur within the LGC.
10. The PGNCS can generate two types of attitude errors for display on the FDAI:
a. Mode 1-Selected by Extended Verb 61. Autopilot following errors used as a monitor of the DAP's ability to track automatic steering commands.
b. Mode 2-Selected by Extended Verb 62. Total attitude errors used to assist crew in manually maneuvering the vehicle.
11. The Load DAP Data routine (R03) was completed prior to DPS ignition for the powered landing maneuver and should not be selected during this program.
12. This program may be called in two ways:
a. Abort Stage button-If the Abort Stage button is used during the powered descent or the DPS Abort program (P70), it will be detected by the Abort Discretes Monitor routine (R11). R11 will then call this program.
b. V37E71E-This program may be called by the same procedure as other programs are manually called.
Selected Displays:
13. V16 N77 (astronaut initiated display)

Time to engine cutoff	$\mathrm{XXbXX} \mathrm{min} / \mathrm{s}$
	$X X X X . \times \mathrm{ft} / \mathrm{s}$

2. V16 N85 (astronaut initiated display)

Components of velocity to be gained (body axis)
XXXX.X ft/s
3. V50 N25 (change guidance control mode)

Checklist code
4. V06 N63

Absolute value of velocity	$X X X X . X \mathrm{ft} / \mathrm{s}$
Altitude rate	$X X X X . X \mathrm{ft} / \mathrm{s} \quad$ (+ ascent)
Computed altitude	$X X X X X . \mathrm{ft}$

5. V06 N76 (astronaut initiated display)

Downrange velocity	$\mathrm{XXXX} . \mathrm{Xft} / \mathrm{s}$
Radial velocity	$\mathrm{XXXX} . \mathrm{Xf} / \mathrm{s}$
Crossrange	$\mathrm{XXXX} . \times \mathrm{nmi}$

6. V16 N44 (results from V82E)

Apocenter altitude	$X \times \times \times . \times \mathrm{nmi}$
Pericenter altitude	$X \times \times \times . \times \mathrm{nmi}$
TFF	$X \times b \times \times \mathrm{min} / \mathrm{s}$

P72-CSM COELLIPTIC SEQUENCE INITIATION (CSI)
 TARGETING PROGRAM

Purpose:

1. To calculate parameters associated with the following concentric flight plan maneuvers for CSM execution of the maneuvers under the control of the CMC: the Coelliptic Sequence Initiation (CSI) and the Constant Delta Altitude maneuver (CDH).
2. To calculate these parameters based upon maneuver data approved and keyed into the LGC by the astronaut.
3. To display to the astronaut and the ground dependent variables associated with the concentric flight plan maneuvers for approval by the astronaut/ground.

Assumptions:

1. At a selected TPI time the line of sight between the CSM and the LM is selected to be a prescribed angle (E) from the horizontal plane defined at the CSM position.
2. The time between CSI ignition and CDH ignition must be computed to be greater than 10 minutes for successful completion of the program.
3. The time between CDH ignition and TPI ignition must be computed to be greater than 10 minutes for successful completion of the program.
4. CDH Delta V is selected to minimize the variation of the altitude difference between the orbits.
5. CSI burn is defined such that the impulsive Delta V is in the CSM horizontal plane at CSI ignition.
6. The pericenter altitude of the orbit following CSI and CDH must be greater than 35,000 feet (lunar orbit) or 85 nmi (earth orbit) for successful completion of this program.
7. The CSI and CDH maneuvers are assumed to be parallel to the plane of the LM orbit, however crew modification of Delta V(LV) components may result in an out-of-plane CSI maneuver.
8. The Rendezvous Radar may or may not be used to update the LM or CSM vectors for this program. If radar use is desired the radar was turned on and locked on the CSM by previous selection of P20. Radar sighting marks will be made automatically approximately once a minute when enabled. The rendezvous tracking mark counter is zeroed by the selection of P20 and after each thrusting maneuver.
9. The ISS need not be on to complete this program unless automatic state vector updating is desired by the Rendezvous Navigation program (P20). If selected, P20 will define the status of the ISS.
10. This program is selected by the astronaut by the DSKY entry.

Selected Displays:

1. V06 N11

Time of ignition for CSI	$00 X X X . \mathrm{h}$
	$000 \times \mathrm{x} . \mathrm{min}$
	$0 \times X . \mathrm{XX} \mathrm{s}$

2. V06 N55

Number of apsidal crossings (N)
Elevation angle (E) at TPI
Central angle of passive vehicle
0000x
XXX.XX deg
XXX.XX deg
3. V06 N37

Time of TPI ignition
$00 \times \times \times \mathrm{h}$
$000 \times \mathrm{X}$ min
0XX.XX s
4. V 06 N 75

Delta altitude
Delta time (CDH-CSI)
Delta time (TPI-CDH)
5. V06 N81

Components of $\Delta V(L V)$ for CSI
6. V06 N82

Components of $\Delta V(L V)$ for CDH
7. V16 N45

Marks (RR)
Time from CSI ignition
Middle gimbal angle
$X X X X . X$ nmi
$X X b \times X \min / s$
$X X b \times X \mathrm{~min} / \mathrm{s}$

XXXX.X ft/s

XXXX.X ft/s

XXXXX.
$X X b \times X \mathrm{~min} / \mathrm{s}$
XXX.XX deg
8. V06 N16 (results from V90E)

Time of event
00XXX. h
000xX. min
0XX.XX s
9. V06 N90 (results from V90E)

Y

$X X X . X X$ nmi
XXXX.X ft/s
XXX.XX deg

P73-CSM CONSTANT DELTA ALTITUDE (CDH) TARGETING PROGRAM

Purpose:

1. To calculate parameters associated with the concentric flight plan maneuvers with the exception of Coelliptic Sequence Initiation (CSI) for CSM execution of the maneuvers under control of the CMC. The concentric flight plan maneuvers are the Coelliptic Sequence Initiation (CSI), the Constant Delta Altitude maneuver (CDH), the Transfer Phase Initiation (TPI), and the Transfer Phase Final (TPF) or braking maneuver.
2. To calculate these parameters based upon maneuver data approved and keyed into the LGC by the astronaut.
3. To display to the astronaut and the ground dependent variables associated with the concentric flight plan maneuvers for approval by the astronaut/ground.

Assumptions:

1. This program is based upon previous completion of the Coelliptic Sequence nitiation (CSI) Targeting program (P72). Therefore:
a. At a selected TPI time the line of sight between the CSM and the LM was selected to be a prescribed angle (E) from the horizontal plane defined at the CSM position.
b. The time between CSI ignition and CDH ignition was computed to be greater than 10 minutes.
c. The time between CDH ignition and TPI ignition was computed to be greater than 10 minutes.
d. The variation of the altitude difference between the orbits was minimized.
e. CSI burn was defined such that the impulsive Delta V was in the CSM horizontal plane at CSI ignition.
f. The pericenter altitudes of the orbits following CSI and CDH were computed to be greater than 35,000 feet (lunar orbit) or 85 nmi (earth orbit).
g. The CSI and CDH maneuvers were assumed to be parallel to the plane of the LM orbit. However, crew modification of Delta V(LV) components may have resulted in an out-of-plane CSI maneuver.
Unless the inputs to this program are changed from those values inserted in P72, the calculated parameters for the remaining maneuvers of the concentric flight plan will vary from those originally calculated and displayed only due to the continuous radar updating of the LM or CSM orbit.
2. The Rendezvous Radar may or may not be used to update the LM or CSM stable vectors for this program. If radar use is desired the radar should have been turned on and locked on the CSM by previous selection of P20. Radar sighting marks will be made automatically approximately once a minute when enabled. The rendezvous tracking mark counter is zeroed by the selection of P20 and after each thrusting maneuver.
3. The ISS need not be on to complete this program unless automatic state vector updating is required by the Rendezvous Navigation program (P20). If selected, P20 will define the status of the ISS
4. This program is selected by the astronaut by DSKY entry.

Selected Displays:

1. V06 N13

Time of ignition for CDH
2. V06 N75

Delta altitude
Delta time (TPI-CDH)
Delta time (TPI-NOMTPI)
3. V06 N81

Components of $\Delta V(L V)$ for $C D H$
4. V16 N45

Marks (RR)
Time from CDH ignition
Middle gimbal angle

00XXX. h
$000 \times x$. min
0XX.XX s

XXXX.X nmi
$X X b \times X \mathrm{~min} / \mathrm{s}$
$X X b \times X \mathrm{~min} / \mathrm{s}$

XXXX.X ft/s

XXXXX.
$X X b \times X \min / s$
XXX.XX deg
5. V06 N16 (results from V90E)

Time of event
$00 \times X X . h$
$000 X X . \min$
$0 X X . X X$ s
6. V06 N90 (results from V90E)

Y	$X X X . X X \mathrm{nmi}$
YDOT	$X X X X . X \mathrm{ft} / \mathrm{s}$
PSI	$X X X . X X \mathrm{deg}$

P74-CSM TRANSFER PHASE INITIATION (TPI) TARGETING PROGRAM

Purpose:

1. To calculate the required Delta V and other initial conditions required by the CMC for CSM execution of the Transfer Phase Initiation (TPI) maneuver. Given:
a. Time of ignition (TIG(TPI)) or the elevation angle (E) of the CSM/LM LOS at TIG(TPI).
b. Central angle of transfer (CENTANG) from TIG(TPI) to intercept time.
2. To calculate TIG(TPI) given E or E given TIG(TPI).
3. To calculate these parameters based upon maneuver data approved and keyed into the LGC by the astronaut.
4. To display to the astronaut and the ground certain dependent variables associated with the maneuver for approval by the astronaut/ground.

Assumptions:

1. This program is based upon previous completion of the Constant Delta Altitude (CDH) Targeting program (P73). Therefore:
a. At a selected TPI time (now in storage) the line of sight between the CSM and the LM was selected to be a prescribed angle (E) (now in storage) from the horizontal plane defined at the CSM position.
b. The time between CDH ignition and TPI ignition was computed to be greater than 10 minutes.
c. The variation of the altitude difference between the orbits was minimized.
d. The pericenter altitudes of the orbits following CSI and CDH were computed to be greater than 35,000 feet (lunar orbit) or 85 nmi (earth orbit).
e. The CSI and CDH maneuvers were assumed to be parallel to the plane of the LM orbit. However, crew modification of Delta V(LV) components may have resulted in an out-of-plane CDH maneuver.
Unless the inputs to this program are changed from those inserted in P72 and/or P73, the calculated parameters for the remaining maneuvers of the concentric flight plan will vary from those originally calculated and displayed only due to the continuous radar updating of the LM or CSM orbit.
2. The Rendezvous Radar may or may not be used to update the LM or CSM state vectors for this program. If radar use is desired the radar should be turned on and locked on the CSM by previous selection of P20. Radar sighting marks will be made automatically approximately once a minute when enabled. The rendezvous tracking mark counter is zeroed by the selection of P20 and after each thrusting maneuver.
3. There is no requirement for ISS operation during this program unless automatic state vector updating is desired by the Rendezvous Navigation program (P20). If selected, P20 will define the status of the ISS.
4. Once the parameters required for computation of the maneuver have been completely specified, the value of the active vehicle central angle of transfer is computed and stored. This number will be available for display to the astronaut through the use of V06 N52.
The astronaut would call this display to verify that the central angle of transfer of the active vehicle is not within 170 to 190 degrees. If the angle is within this zone, the astronaut should reassess the input targeting parameters based upon Delta V and expected maneuver time.
5. This program is selected by the astronaut by DSKY entry.

Selected Displays:

1. V06 N37

Time of ignition for TPI
2. V06 N55

Blank
Elevation angle (E)
Central angle of passive vehicle
3. V06 N58

Perigee altitude (post TPI)
ΔV for TPI
Δv for TPF
4. V06 N81

Components of ΔV (LV) for TPI
5. V06 N59

Components of ΔV (LOS) for TPI
6. V16 N45

Marks (RR)
Time from TPI ignition
Middle gimbal angle
7. V06 N52

Central angle of active vehicle
8. VO6 N16 (results from V90E)

Time of event
9. V06 N90 (results from V90E)

Y
YDOT
PSI

00XXX. h
000XX. min
0XX.XX s
00XXX. h
000XX. min
0xX.XX s

00000
XXX.XX deg
XXX.XX deg

XXXX.X nmi
$X X X X . X \mathrm{ft} / \mathrm{s}$
XXXX.X ft/s

XXXX.X ft/s

XXXX.X ft/s

XXXXX.
$X X b \times X \min / s$
XXX.XX deg
XXX.XX deg
XxX. XX nmi

XXXX.X ft/s
XXX.XX deg

P75-CSM TRANSFER PHASE MIDCOURSE (TPM)
TARGETING PROGRAM
Purpose:

1. To calculate the required Delta V and other initial conditions required by the CMC for CSM execution of the next midcourse correction of the transfer phase of an active CSM rendezvous.

Assumptions

1. The ISS need not be on to complete this program.
2. The Rendezvous Radar is on and is locked on the CSM. This was done during previous selection of P20. Radar sighting marks will be made automatically approximately once a minute when enabled. The rendezvous tracking mark counter is zeroed by the selection of P20 and after each thrusting maneuver.
3. The time of intercept (T(INT)) was defined by previous completion of the Transfer Phase Initiation (TPI) Targeting program (P74) and is presently available in LGC storage.
4. Once the parameters required for computation of the maneuver have been completely specified, the value of the active vehicle central angle of transfer is computed and stored. This number will be available for display to the astronaut through the use of V06 N52.
The astronaut would call this display to verify that the central angle of transfer of the active vehicle is not within 170 to 190 degrees. If the angle is within this zone the astronaut should reassess the input targeting parameters based upon Delta V and expected maneuver time.
5. The program is selected by the astronaut by DSKY entry prior to any anticipated CMC rendezvous midcourse correction requiring LM parameter computation.

Selected Displays:

1. V06 N81

Components of ΔV (LV) for TPM
XXXX.X ft/s
2. V06 N59

Components of ΔV (LOS) for TPM XXXX.X ft/s
3. V16 N45
Marks (RR)
Time of TPM ignition

XXXXX.
Time of TPM ignition
$X X$ b XX min/s
Middle gimbal angle
XXX.XX deg
4. V06 N52

Central angle of active vehicle
XXX.XX deg
5. V06 N16 (results from V90E)

Time of event
00XXX. h
$000 \times \mathrm{X}$. min
0XX.XX s
6. V06 N90 (results from V90E)

Y

XXX.XX nmi

YDOT
$X X X X . X \mathrm{ft} / \mathrm{s}$
PSI
XXX.XX deg

P76-TARGET DELTA V PROGRAM

Purposes:

1. To provide a means of notifying the LGC that the CSM has changed its orbital parameters by the execution of a thrusting maneuver.
2. To provide to the LGC the Delta V applied to the CSM to enable an updating of the CSM state vector

Assumptions:

1. The LM crew has the Delta V to be applied to the CSM in local vertical axes at the specified TIG. These values are displayed prior to TIG by the thrusting programs P40 and P41 in the CMC). No provision is made in these thrusting programs to display the results of the maneuver in a form usable by this program.
2. If the Rendezvous Navigation program (P 20) or the Lunar Surface Navigation program (P22) is in process this program must be selected prior to the CSM thrusting maneuver. This can be assured by voice communication between the LM and CSM.
3. This program is selected by the astornaut by DSKY entry.

Selected Displays:

1. V06 N84

Components of ΔV (other vehicle)
 XXXX.X ft/s

2. V06 N33

Time of ignition of other vehicle
00XXX. h
00XX. min
0XX.XX s

P78-CSM STABLE ORBIT RENDEZVOUS (SOR)
TARGETING PROGRAM

Purpose:

1. To calculate the required Delta V and other initial conditions required by the CMC for CSM execution of the first maneuver (SOI) of the stable orbit rendezvous. Given:
a. Time of ignition (TIG)
b. Central angle of transfer (CENTANG) from TIG to intercept time.
c. The displacement of the stable orbit point of the active vehicle specified as a distance between the two vehicles along the passive vehicle orbit.
2. To calculate the required Delta V and other initial conditions required by the CMC for CSM execution of the second maneuver (SOR) of the Stable Orbit Rendezvous. Given:
a. A respecification of 1 .a above.
b. An optional respecification of 1.b above.
3. To calculate these parameters based upon maneuver data approved and keyed into the LGC by the astronaut.
4. To display to the astronaut and the ground certain dependent variables associated with the maneuver for approval by the astronaut/ground.
5. To store the SOI and SOR target parameters for use by the desired thrusting program.

Assumptions:

1. The stable orbit point is defined as the final position (at completion of SOR) of the active vehicle relative to the passive vehicle.
2. The Rendezvous Radar may or may not be used to update the LM or CSM state vectors for this program. If radar use is desired the ISS should be in operation and the radar should have been turned on and locked on the CSM by previous selection of P20. Radar sighting marks will be made automatically approximately once a minute when enabled.
3. Once the parameters required for computation of the maneuver have been completely specified, the value of the active vehicle central angle of transfer is computed and stored. This number will be available for display to the astronaut through the use of V06 N52

The astronaut would call this display to verify that the central angle of transfer of the active vehicle is not within 170 to 190 degrees. If the angle is within this zone the astronaut should reassess the input targeting parameters based upon Delta V and the expected maneuver time.
4. The SOR phase of this program requires the TIG input be biased as a function of TPF and any midcourse corrections performed in the Stable Orbit Midcourse (SOM) program (P39)
5. The ISS need not be on to complete this program (see Assumption 2. above).
6. This program is selected by the astronaut by DSKY entry.

Selected Displays:

1. V06 N33

Time of ignition for SOI
2. V06 N55

R3: Central angle of passive vehicle
3. V04 N06

Option code ID
Option code
4. V06 N57
Δ_{R}
5. V06 N34

Time of arrival at SOR
6. V06 N58

Pericenter altitude (SOR)
ΔV (SOR)
ΔV (SOR-final)
7. V06 N81

Components of $\Delta V(L V)$ for SOR
8. V16 N45

Marks (RR)
Time from SOI ignition
Middle gimbal angle
9. V06 N52

Central angle of active vehicle

00XXX. h
000XX. min
0XX.XX s
XXX.XX deg

00005
0000X (1 - first pass,
2-second pass)

XXXX.X nmi

00XXX. h
000XX min
0xX.XX s

XXXX.X nmi
$X X X X . X \mathrm{ft} / \mathrm{s}$
XXXX.X ft/s

XXXX.X ft/s
$X X X X X$. marks
XX b XX min/s
XXX.XX deg
XXX.XX deg

P79-CSM STABLE ORBIT MIDCOURSE (SOM)

 TARGETING PROGRAM
Purpose:

1. To calculate the required Delta V and other initial conditions required by the $C M C$ for CSM execution of the next possible midcourse correction of the stable orbit transfer phase of an active CSM rendezvous.
2. To compute and display suitable information to enable the crew to enter the final rendezvous phase at the correct time to complete the reuqired thrusting maneuver.

Assumptions:

1. The ISS need not be on to complete this program (see Assumption 2. below).
2. The Rendezvous Radar may or may not be used to update the LM or CSM state vectors for this program. If radar use is desired the ISS should be in operation and the radar should have been turned on and locked on the CSM by previous selection of P20. Radar sighting marks will be made automatically approximately once a minute when enabled.
3. Once the parameters required for computation of the maneuver have been completely specified, the value of the active vehicle central angle of transfer is computed and stored. This number will be available for display to the astronaut through the use of V06 N52
The astronaut would call this display to verify that the central angle of transfer of the active vehicle is not within 170 to 190 degrees. If the angle is within this zone the astronaut should reassess the input targeting parameters based upon Delta V and expected maneuver time.
4. The time to intercept (T(INT)) was defined by previous completion of the CSM Stable Orbit Rendezvous (SOR) Targeting program (P78) and is presently available in LGC storage.
5. This program is selected by the astronaut by DSKY entry.

Selected Displays:

1. V06 N81

Components of $\Delta V(L V)$ for SOM XXXX.X ft/s
2. V16 N45

Marks (RR)	$X X X X X$.
Time from SOM ignition	$X \times b \times X \mathrm{~min} / \mathrm{s}$
Middle gimbal angle	$X X X . X X \mathrm{deg}$

3. V06 N52

Central angle of active vehicle XXX.XX deg

ASPO 45 CRT DISPLAYS

MSK-683 (CM)
MSK-966 (CM)
MSK-1123 (LM)
MSK-1137 (LM)

MSK-966								
ID		IDENTIFTCATION OF DOWNLIST BEING TRANSMIITED		ADOT	-	DAP COMPUTED BODY RATES	Xx.xx	DEG/SEC
CMP	-	GREEENWICH MEAN TTME	$\begin{aligned} & \text { D } \\ & \mathrm{HX}: \mathrm{MX}: \mathrm{MX}: \mathrm{S} \end{aligned}$	OMGAC	-	COMMANDED BODY RAIES FROM CROSS PRODUCT STEEERING	xx.xx	DEG/SEC
CIE	-	CERNIRAL TIMING EQUIPMENTI TTNE	$\underset{\text { XXXX:XX:XX }}{\text { H }}$	BIAS	-	COMPUIED PIPA BIAS	$\pm \mathrm{X} . \mathrm{xxxx}$	FT/SEC
				*FGWD 0 - FGWD 11	-	COMPUTER FLAGWORDS 0 THRU 11	xxxxx_{8}	
geira	-	GROUND ELAPSED TTIME (ACIUAL)	xxxx:xx:xx	* chan 11 - chan 14	-	COMPUTER OUTPUT CHANUEIS	xxxxx_{8}	
CETC	-	GROUND EIAPSED TIIE (COMPUIED)		* chain $30-$ chan 33	-	COMPUIER INPUT CHANNEIS	xxxxx 8	
			H M	*IMDE30, IMDE33	-	COMPUIER IMU STATUS REGISTERS	xxxxx_{8}	
CEIH	-	GROUND ELAPSED TIME (RTCC)	xxxx : XX : XX	*OPTMDE	-	COMPUIER OPITCS STATUS REGISTER	xxxxx_{8}	
CMC	-	CM COMPUIER CLIOCK	$\underset{\mathrm{xxX}: \mathrm{MX}: \mathrm{XX} . \mathrm{Xx}}{\mathrm{M}}$	*DPDIR1, DPDITR2	-	DATA FOR DAP SEIECTION AND OPERATITON	xxxxx_{8}	
TCNSV	-	TIME OF CM STATE VECTOR	$\underset{x \times x: x x: X x}{\mathrm{H}} \underset{\mathrm{M}}{\mathrm{~S}}$	*PG	-	COMPUTITR PROGRAM NTMBER	xx	
				FL	-	VERb/NOUN FIASHER STATUS		
TTMSV	-	TIME OF LM State vecior	xxx: xX : xx . xx	WARN	-	CMC WARNING LAMP STAIUS		
TGO	-	TTIE TO CUIOFF	$\underset{\mathrm{XXX}: \mathrm{XX}: \mathrm{XX}}{\mathrm{M}}$	PRG	-	Program aiarm lamp status		
				кर̄к	-	UPLINK DATA STATUS		
TIG	-	TITE TO/FROM IGNITION	$\underset{\mathrm{xxx}}{\mathrm{H}: \mathrm{Mx}}: \mathrm{Sx} . \mathrm{xx}$	UPFST	-	BLOCK INLINK DISCRETE STATUS		
			H M S	UPSW	-	UPIINK ACCEPT/BLOCK SWITCH STATUS		
TEENT		TIME OF EVENT	XXX:XX:XX. XX	CMD		UPILINK TOO FAST STATUS		
SITE	-	SITE FROM WHICH DATA IS BEIVG RECEIVED		*VB	-	DSKY VERB DISPIAY	XX	
PIPA	-	PIPA COUNTS	$\pm \mathrm{xxxxx}$ counts	$*_{\text {NIN }}$	-	DSKY NOUN DISPLAY	xx	
delv		VALUES OF PIPA'S AT LAST READING, CORRECIED FOR SCAIE FACIOR ERROR AND BIAS	$\pm \mathrm{XxXXX}$ FPS	R1, R2, \& R3	-	DSKY ROW 1, ROW 2, AND RON 3 DISPLAYS	$\pm \mathrm{xx} \times \mathrm{xx}$	
VGIMU	-		$\pm \mathrm{XXXX} \times \mathrm{X}$ FPS	REDO	-	NUMBER OF RESTARTS	xxxxx_{8}	
		COORDINATES	土nxax ${ }^{\text {P }}$	RSBBQ	-	VALIE OF BBANK AND Q REGISTERS AT THE TIME OF A RESTART	xxxxx_{8}	
FCDU	-	FINAL DESIRED CDU ANGIES	+XXX.XX DEG					
DCDU	-	DESIRED CDU ANGIES	+XXX. XX DEG	DSTBI]	-	DISPLAY TABIE OF DSKY STATUS LIGHIS	xxxxx_{8}	
						XO400 ${ }_{8}=$ PROGRAM CAUTITON,		
ACDU	-	ACTUAL CDU ANGIRS	+XXX.XX DEG			XO200 ${ }_{8}^{\circ}=$ TRACKER WARNING, XOO2O $=$ NO ATTITUDE,		
ERROR	-	ATTIIUDE ERRORS COMPUIED BY RCS DAP	$\pm \mathrm{XX} . \mathrm{XX} \mathrm{DEG}$			$\mathrm{XOO}_{8} \mathrm{O}_{8}=\text { GIMBAL LOCK }$		
CDRFL	-	REIURN ADDRESS INFORMATION ASSOCIATED WITH DSKY DISPLAYS	xxxxx_{8}	*FAIRG	-	IST, 2ND, AND MOST RECENT ALARM CODES	xxxxx 8	
AK		RCS DAP FOLLOWING ERRORS OR TVC DAP ATTITUDE ERRORS	$\pm \mathrm{XX} . \mathrm{XX} \mathrm{DEG}$	*SEE CM SOFIWARE S	ECT	ON FOR FURTHER DEFIUITION		

NSK-1123

MSK-1137

MSK-1137 (CONTINUED)

LAUNCH AND BURN SCHEDULE

STABLE MEMBER ORIENTATIONS TRANSLUNAR INJECTION EVASIVE MANEUVER MIDCOURSE CORRECTIONS LUNAR ORBIT INSERTION(LOIן)
LUNAR ORBIT CIRCULARIZATION (LOI 2)
LM DESCENT AND LANDING
LM ASCENT AND RENDEZVOUS
TRANSEARTH INJECTION
MIDCOURSE CORRECTIONS
ENTRY

INCLINATION ANGLE (i) ~ 28 DEGREES

POSITION OF MOON AT VARIOUS STAGES OF

APOLLO 11 MISSION PROFILE

(TYPICAL)

APOLLO 11 CSM POWERED MANEUVER SUMMARY (TYPICAL)

EVENT	$\begin{gathered} \text { TTNE } \\ (\mathrm{h}: \mathrm{min}: \mathrm{s}) \end{gathered}$	PROPULSION SYSTEM	BURN DURATION (s)	ULLAGE DURATION (s)	$\begin{gathered} \text { TOTAL } \\ \Delta \mathrm{V} \\ \text { (ft/s) } \end{gathered}$	$\Delta \mathrm{V}_{\mathrm{X}}$	$\Delta \mathrm{V}_{\mathrm{Y}}$	$\Delta \mathrm{V}_{\mathrm{Z}}$	$\begin{aligned} & \text { RESULTANT* } \\ & \text { rp/ra } \\ & \text { (nmi) } \end{aligned}$	GUIDANCE MODE	REFSMMAT
Orbit Insertion	02:32:53	-	-	-	-	-	-	-	100/100	-	Launch Pad
TLI	00:30:00	S-IVB	321.0	-	$\sim 10,000$	-	-	-	111. 5/301,490	S-IVB/IU	Launch Pad
CSM Separation and Docking	01:25:20	SM RCS	-	-	0.8	-	-	-	-	-	Launch Pad
Evasive Maneuver	00:32:00	SPS	2.9	0.0	19.7	5.1	0.0	19.0	119/281,865	Ext ΔV	Launch Pad
S-IVB Slingshot	06:32:40	S-IVB	-	-	120.0	-	-	-	Solar Orbit	S-IVB/IU	-
MCC_{1}	15:00:00			0.0						Ext $\Delta \mathrm{V}$	Launch Pad
MCC_{2}	27:10:45	SPS/RCS		0.0	No					Ext ΔV	PTC
MCC_{3}	17:00:00			0.0	Zero					Ext ΔV	PTC
MCC_{4}	05:00:00			0.0						Ext ΔV	Landing Site
LOI_{1}	04:15:02	SPS	360.0	0.0	2,924.4	-2,892. 8	-425. 9	-50.3	57. 6/168.2	Ext ΔV	Landing Site
LOI_{2}	20:30:29	SPS	16.4	14.0	157.8				52.0/64.0	Ext ΔV	Landing Site
LM/CSM Separation	06:55:34	SM RCS	8.0	-	2.3	0.0	0.0	2.3	-	Ext ΔV	Landing Site
CSM Plane Change	24:47:32	SPS	0.9	14.0	16.6	0.0	16.6	0.0	56.6/58.8	Ext ΔV	Preferred
LM Jettison and Separation	03:21:29	SM RCS	3.2	-	1.0	-1.0	0.0	0.0	-	Ext ΔV	Liftoff
TEI (Nominal)	15:00:00	SPS	149.0	14, 0	3,292.7				N/A	Ext ΔV	Liftoff
MCC_{5}	29:38:53									Ext ΔV	PTC
MCC_{6}	12:00:00	SPS/RCS			Zero					Ext ΔV	PTC
MCC_{7}	03:00:00									Ext $\Delta \mathrm{V}$	Entry
Entry	-	-	-	-	-	-	-	-	-	-	Entry

[^3]APOLLO 11 LM POWERED MANEUVER SUMMARY (TYPICAL)

Event	TTNE (h:min:s)	$\begin{aligned} & \text { PROPULSION } \\ & \text { SYSTEM } \end{aligned}$	$\begin{array}{\|c\|} \hline \text { BURN } \\ \text { DURATION } \\ \text { (s) } \end{array}$	ULLAGE dURATION (s)	$\begin{aligned} & \text { TOTAL } \\ & \Delta \mathrm{V} \\ & (\mathrm{ft} / \mathrm{s}) \end{aligned}$	$\Delta \mathrm{V}_{\mathrm{X}}$	$\Delta \mathrm{V}_{\mathrm{Y}}$	$\Delta \mathrm{V}_{\mathrm{z}}$	$\begin{gathered} \text { RESULTANT* } \\ \text { rp/ra } \\ (\mathrm{nmi}) \\ \hline \end{gathered}$	GUIDANCE MODE	Refsmmat
DOI	56:25	LM-DPS	28.6	7.5	70.0	-70.0	0.0	0.0	7.1/58. 3	Ext ΔV	Landing Site
PDI	11:53 Landing 21:48:13 Ascent	LM-DPS	712.5	7.5	6,774.9					PGNCS	Landing Site
ASCENT	57:53	LM-APS	438.0	-	6,055.4				7.4/44. 1	PGNCS	Liftoff
CSI	58:18	LM-RCS	45.0	-	49.5	49.5	0.0	0.0	43.2/43. 7	Ext $\Delta \mathrm{V}$	Liftoff
CDH	38:31	LM-RCS	1.9	-	4.3	0.0	0.0	4, 3	42.6/44.1	Ext ΔV	Liftoff
TPI	41:17	LM-RCS	22.4	-	24.8	22.2	0.0	-11.1	42.1/61.2	Lambert	Liftoff
Braking Maneuvers											
1	01:13	LM-RCS	10.8	-	12.0				47.6/60.0		
2	01:38	LM-RCS	8.8	-	9.8				52.3/59. 5		
3	01:19	LM-RCS	4.3	-	4.8				54.8/59.4		
4	15:25	LM-RCS	4.2	-	4.7				57.4/59.2		

${ }^{*} \mathrm{R}_{\text {Moon }}=938.5 \mathrm{nmi}$

- imu ts left on for entire flight.
- ORIENTATION OF PIATFORM

1. LAUNCH ORIENTATION THROUGH MCC ${ }_{1}$
2. PTC ORIENIATION THROUGH MCC 3 .
3. LANDING SIIE REFSMMAT, FROM MCC 4 THROUGH IM TOUCHDOWN.
4. PREFERRED THRUSTING ORIENTATION (CSM ONLY) FOR PLANE CHANGE MANEUVER.
5. MOON LAUNCH ORIENTATION (BOTH VEHICLES) FROM IM ASCENT THROUGH TEI
6. PTC ORIENTATION THROUGH MCC 6 .
7. ENTRY REFSMMAT, FROM MCC 7 THROUGH ENITRY.

- REFSMMAT MATRICES

1. LaUnch	$\begin{aligned} & \underline{U} \text { XSM }=\text { DOWNRANGE } \\ & \bar{U} \text { YSM }=\underline{U} \text { ZSM X } X \underline{U} X S M \\ & \underline{U} \text { ZSM }=\overline{U N I T}(-\underline{\underline{T}} \text { LAUNCH }) \end{aligned}$	4. PREFERRRED	
2. PTC	$\underline{\mathrm{U}} \mathrm{XSM}=\mathrm{IN}$ THE ECLIPTIC PIANE AND PERPENDICULAR TO THE EARTH-MOON LINE PROJECTION IN THE ECLIPTIC PLANE AT THE AVERAGE TIME OF TRANSEARTH INJECTION FOR THE MONTHLY LAUNCH WINDOW AND AZIMUITH RANGE $\frac{U}{U} Y S M=U Z S M \times U X S M$ $\overline{\mathrm{U}} \mathrm{ZSM}=\overline{\text { PERRENDICTULAR TO }}$ TO THE ECLIPTIC PLANE AND DIRECTED SOUIH	5. MOON LAUNCH 6. ENIRY	
3. IANDING SIIIE	$\begin{aligned} & \mathrm{U} \text { XSM }=\mathrm{UNIT}(\underline{r} \text { LANDING }) \\ & \overline{\mathrm{U}} \mathrm{YSM}=\mathrm{U} \operatorname{ZSM} \overline{\mathrm{U}} \mathrm{XSM} \\ & \underline{\mathrm{U}} \mathrm{ZSM}=\mathrm{UNIT}[(\underline{r} \operatorname{CSM} \times \underline{\mathrm{V}} \operatorname{CSM}) \times \underline{U} \mathrm{XSM}] \end{aligned}$		

V37 Enter, 52 Enter
V04 N06 Flashing
R1: 00001
R2: $0000 \times$ IMU Align Option
1 - Preferred, 2 - Nominal.
3 - REFSMMAT, 4 - Landing Site
V51 Flashing - Please Mark

X	0	0	0	0	P52 Option			X	0	0	0	0	
+	0	0			$\left.\begin{array}{l}\text { Hours } \\ \text { Minutes } \\ \text { Seconds }\end{array}\right\}$ GET			+	0	0			
+	0	0	0					$+$	0	0	0		
+	0		,					$+$	0				
X	0	0	0		Celestial Body Code		N71	X	0	0	0		
					Star Angle Difference (degrees)		N05						
					$\left.\begin{array}{l} X \\ Y \\ Z \end{array}\right\}$	Gyro Torquing Angles (degrees)	N93						
					$\left.\begin{array}{c}X \\ Y \\ Z\end{array}\right\}$Calculated Gyro Drift (meru)								

NOTES:

V37 Enter, 47 Enter
V16 N83 Flashing, $\triangle \mathrm{V} X Y Z$ Body Axes
N62 Enter
V16 N62 Flashing, Inertial Velocity, Altitude Rate, Altitude

*Predicted Time of Beginning of S-IVB Restart Preparation for TLI (TB6 = TLI Ignition - 9 minutes)
**Nominal TLI ΔV Set into EMS ΔV Control
${ }^{\dagger}$ Nominal Inertial Velocity Displayed on DSKY at TLI Cutoff

V37 Enter, 30 Enter
V06 N33 Flashing, Load Desired GETI
V06 N81 Flashing, Load Desired Δv

NOTES:

PRO/GUI		PROPULSION SYSTEM (SPS/RCS)/ GUIDANCE (SCS/G\&N)
WT	Xxxxx (1bs)	PREMANEUVER VEHICLE WEIGHT
P TRIM	X. XX (DEG)	SPS PITCH GIMBAL OFFSET TO PLACE THRUST
Y TRIM	X. XX (DEG)	SPS YAU GIMBAL OFFSET TO PLACE THRUST
GETI	$\begin{aligned} & X X: X X: X X \\ & \text { (HRS:MIN:SEC) } \end{aligned}$	TIME OF MNVR IGNITION
$\Delta v X$	xxxx. ${ }^{\text {(}} \mathrm{fps}$)	P30 VELOCITY TO BE GAINED
$\Delta V Y$	XXXX. ${ }^{\text {(}}$ (fps)	COMPONENTS IN LOCAL VERTICAL
$\Delta V Z$	XxXX. X (fps)	COORDINATES
R	$x \mathrm{xxx}$ (DEG)	IMU GIMBAL ANGLES OF
P	$x^{\text {xxx }}$ (DEG)	maneuver attitude
Y	XXX (DEG)	
$\mathrm{H}_{\text {A }}$	xxxx. \times (nm)	PREDICTED APOGEE ALTITUDE AFTER MANEUVER
H_{p}	XXXX. ${ }^{\text {(}}$ (mm)	predicted perigee altitude AFTER MAHEUVER
$\Delta V T$	XXXX. X	total velocity of maneuver
BT	X:XX (MIN:SEC)	MANEUVER DURATION
$\triangle V C$	xxxx. ${ }^{\text {(fps) }}$	premaneuver av setting in EMS AV COUNTER
SXTS	XX (OCTAL)	SEXtANT StAR FOR MANEUVER ATTITUDE CK
SFT	XXX. X (DEG)	SEXTANT SHAFT SETTING FOR MANEUVER ATTITUDE CK
TRN	XX. X (DEG)	SEXTANT TRUNNION SETtING FOR MANEUVER ATTITUDE CK
BSS	XXX (OCTAL)	BORESIGHT STAR FOR MANEUVER ATTITUDE CK USING THE COAS
SPA	XX. X (DEG)	bSS PItch angle on coas
SXP	$X . X$ (DEG)	BSS X POSITION ON COAS
$\begin{aligned} & \text { LAT } \\ & \text { LONG } \end{aligned}$	$\begin{aligned} & x x . X x \\ & x X X . X X \end{aligned}$	latitude and longitude of the LANDING POINT FOR ENTRY GUIDANCE
RTGO	Xxxx.x	RANGE TO GO FOR EMS initialization
Vio	xxxxxx (fps)	INERTIAL VELOCITY AT . O5G FOR EMS INITIALIZATION
GET(.05G)	xx: Xx : xX	TIME OF . 05 G
SET STARS		STARS FOR TELESCOPE FOR BACKUP GDC ALIGN
R, P, Y (ALIGN)		attitude to be set in ATTITUDE SET TW FOR BACKUP GDC ALIGN
ULLAGE		NO. OF SM RCS JETS USED AND LENGTH OF TIME OF USSAGE
HORIZON WINDOW		WINDOW MARKING AT WHICH HORIZON IS PLACED AT A SPECIFIED TIG (ATT CK)

V37 Enter, 40 Enter
V50 N18 Flashing, Request Maneuver to FDAI R, P, Y Angles
V06 N18, rDAI R, P, Y Angles After Mlaneuver to Burn Attitude
50 N-5 Flashing, R1 $=00204$, Gimbal Actuator Test Option
$V: \mathcal{N} 40$, Time from Ignition, Velocity to be Gained, Measured Change in Velocity
¿99 N40 Flaihing, Engine On Enable Request
V06 N40, Time from Cutoff, Velocity to be Gained, Measured Change in Velocity
V16 N40 Flashing, Final Values at Engine Cutoff
V16 N85 Flashing, Body Axes Residuals (to be Nulled)
V37 Flashing, V82 Enter
V16 N44 Flashing, Apogee Altitude, Perigee Altitude, Time to Freefall to 35 K ft Moon Orbit 300 K ft Earth Orbit

V37 Enter, 52 Enter

V04 N06 Flashing

R1: 00001
R2: $0000 \times$ IMU Align Option
1 - Preferred, 2 - Nominal,
3 - REFSMMAT, 4 - Landing Site
V51 Flashing - Please Mark

X	0	0	0	0		P52 Option		X	0	0	0	0	
+	0	0				$\left.\begin{array}{l}\text { Hours } \\ \text { Minutes }\end{array}\right\}$	GET		+	0	0		

x	0	0	0	0	P52 Option		X	0	0	0	0	
+	0	0			Hours		+	0	0			
+	0	0	0		Minutes	GET	+	0	0	0		
$+$	0				Seconds		+	0				
X	0	0	0		Celestial Body Code	N71	X	0	0	0		
					Star Angle Difference (degrees)	N05						
					$\left.\begin{array}{l} X \\ Y \\ Z \end{array}\right\} \begin{aligned} & \\ & \text { Gyro } \\ & \text { Torquing } \\ & \text { Angles } \\ & \text { (degrees) } \end{aligned}$	N93						
					x							
					Y							

notes:

V37 Enter, 37 Enter

V06 N33 Flashing

Time of Ignition (h, min, 0.01 s)
V06 N60 Flashing
Blank, \triangle V Desired, GAMMA EI Desired (ft/s, 0.01 deg)
V06 N61 Flashing
Impact Latitude and Longitude ($0.01 \mathrm{deg}, 0.01 \mathrm{deg}$)
V06 N39 Flashing
ΔT of Transfer (h, min, 0.01 s)
V06 N60 Flashing
Blank, V Predicted GAMMA EI (ft/s, 0.01 deg)
V06 N81 Flashing
$\Delta V X(L V), \Delta V Y(L V), \Delta V Z(L V)$ at TIG $(0.1 \mathrm{ft} / \mathrm{s})$
V04 N06 Flashing
R1: 00007
R2: $0000 \times(1-$ SPS, 2-RCS)

V06 N33 Flashing

Time of Ignition (h, min, 0.01 s)
V16 N45 Flashing
Marks, TFI, Middle Gimbal Angle (marks, min/s, 0.01 deg)

		\oint		Time of Ignition (h, min)	N33			\oint		
$>$				ΔV Required (ft / s)	N60					
				Longitude of Splash Point	(deg)					
		$\$$		Time of Entry Interface (h	min)			\oint	,	

P23-OPTICS CALIBRATION
V37 Enter, 23 Enter
V05 N70 Flashing
R1: $000 \mathrm{DE} \quad \mathrm{Star} \operatorname{ID}$
R2: 0000
R3: $00 C D 0$ Hor ID C and D 1 or 2
V59 Flashing, Perform Optics Calibration

+	0	0				Hours	+	0	0			
+	0	0	0			Minutes GET		+	0	0	0	

NOTES:

V37 Enter, 23 Enter

V05 N70 Flashing

R1:	$000 \times \times$	Celestial Body Code
R2:	00×00	0 - Horizon
		1 - Earth Landmark
		2 - Moon Landmark
R3:	OOCDO	$\mathrm{C}=0, \mathrm{D}=0$ Landmark
		C-1 Earth Horizon
		C-2 Moon Horizon
		D-1 Near Horizon
		D. 2 Far Horizon

V51 Flashing Please Mark

$+$	0	0				Hours	GET	+	0	0			
+	0	0	0			Minutes		+	0	0	0		
+	0					Seconds)		+	0				
\times	0	0	0			Star ID	N71	x	0	0	0		
\times	0	0		0	0	LMK ID		\times	0	0		0	0
\times	0	0			0	Hor 10		\times	0	0			0
+						Trun Angle Degrees	$\begin{aligned} & \text { N92 } \\ & \text { R2 } \end{aligned}$	+					
						$\Delta \mathrm{Rnmi}$	N49						
						$\Delta \mathrm{Vft} / \mathrm{s}$							

+	0	0				Hours		+	0	0			
+	0	0	0			Minutes	GET	+	0	0	0		
+	0					Seconds		+	0				
\times	0	0	0			Star ID	N71	x	0	0	0		
X	0	0		0	0	LMK ID		x	0	0		0	0
\times	0	0			0	Hor ID		x	0	0			0
+						Trun Angle Degrees	$\begin{aligned} & \text { N92 } \\ & \text { R2 } \end{aligned}$	+					
						$\Delta \mathrm{Rnmi}$	N49						
						$\Delta \mathrm{Vft/s}$							

NOTES:

V37 Enter, 23 Enter
V05 N70 Flashing

R1:	$000 \times \times$	Celestial Body Code
R2:	00×00	0-Horizon
		1 - Earth Landmark
		2 - Moon Landmark
R3:	OOCDO	$\mathrm{C}=0, \mathrm{D}=0$ Landmark
		C-1 Earth Horizon
		C-2 Moon Horizon
		D.1 Near Horizon
		D. 2 Far Horizon

V51 Flashing .- Please Mark

$+$	0	0						+	0	0			
+	0	0	0					+	0	0	0		
+	0							+	0				
\times	0	0	0			Star ID	N71	x	0	0	0		
\times	0	0		0	0	LMK ID		x	0	0		0	0
\times	0	0			0	Hor ID		x	0	0			0
+						Trun Angle Degrees	$\begin{aligned} & \text { N92 } \\ & \text { R2 } \end{aligned}$	+					
						$\Delta \mathrm{Rnmi}$	N49						
						$\Delta \mathrm{Vft} / \mathrm{s}$							

+	0	0						+	0	0			
+	0	0	0					+	0	0	0		
+	0							+	0				
\times	0	0	0			Star 10	N71	\times	0	0	0		
\times	0	0		0	0	LMK 10		\times	0	0		0	0
\times	0	0			0	Hor ID		x	0	0			0
+						Trun Angle Degrees	$\begin{aligned} & \text { N92 } \\ & \text { R2 } \end{aligned}$	+					
						$\Delta \mathrm{Rami}$	N49						
						$\Delta \mathrm{Vft} / \mathrm{s}$							

NOTES:

V37 Enter, 23 Enter
V05 N70 Flashing

R1:	$000 \times \mathrm{x}$	Celestial Body Code R2:
	00×00	$0-$ Horizon $1-$ Earth Landmark $2-$ Moon Landmark
R3:	00 CD 0	C $=0, \mathrm{D}=0$ Landmark C-1 Earth Horizon C-2 Moon Horizon
		D-1 Near Horizon D.2 Far Horizon

V51 Flashing Please Mark

+	0	0						+	0	0			
+	0	0	0					+	0	0	0		
+	0							+	0				
x	0	0	0			Star ID	N71	x	0	0	0		
\times	0	0		0	0	LMK ID		\times	0	0		0	0
\times	0	0			0	Hor 10		\times	0	0			0
+						Trun Angle Degrees	$\begin{aligned} & \mathrm{N} 92 \\ & \text { R2 } \end{aligned}$	+					
						$\Delta \mathrm{Rnmi}$	N49						
						$\Delta \mathrm{fft} / \mathrm{s}$							

+	0	0				Hours	GET	+	0	0			
+	0	0	0			Minutes		+	0	0	0		
+	0					Seconds)		+	0				
\times	0	0	0			Star ID	N71	\times	0	0	0		
\times	0	0		0	0	LMK ID		\times	0	0		0	0
\times	0	0			0	Hor ID		\times	0	0			0
+						Trun Angle Degrees	$\begin{aligned} & \text { N92 } \\ & \text { R2 } \end{aligned}$	+					
						$\Delta \mathrm{Rnmi}$	N49						
						$\Delta \mathrm{Vft} / \mathrm{s}$							

NOTES:

37 Enter, 23 Enter

V05 N70 Flashing

R1:	$000 \times \times$	Celestial Body Code
R2:	00×00	O-Horizon
		1 - Earth Landmark
		2 - Moon Landmark
R3:	00 CDO	$\mathrm{C}=0, \mathrm{D}=0$ Landmark
		C.1 Earth Horizon
		C-2 Moon Horizon
		D. 1 Near Horizon
		D. 2 Far Horizon

V51 Flashing - Please Mark

$+$	0	0						+	0	0			
+	0	0	0					+	0	0	0		
+	0							+	0				
x	0	0	0			Star 10	N71	x	0	0	0		
\times	0	0		0	0	LMK ID		\times	0	0		0	0
\times	0	0			0	Hor ID		x	0	0			0
+						Trun Angle Degrees	$\begin{aligned} & \text { N92 } \\ & \text { R2 } \end{aligned}$	+					
						$\Delta \mathrm{Rnmi}$	N49						
						$\Delta \mathrm{Vft} / \mathrm{s}$							

+	0	0						+	0	0			
+	0	0	0					+	0	0	0		
+	0							+	0				
X	0	0	0			Star 10	N71	\times	0	0	0		
\times	0	0		0	0	LMK ID		\times	0	0		0	0
\times	0	0			0	Hor ID		x	0	0			0
+						Trun Angle Degrees	$\begin{aligned} & \text { N92 } \\ & \text { R2 } \end{aligned}$	+					
						$\Delta \mathrm{Rnmi}$	N49						
						$\Delta \mathrm{Vft} / \mathrm{s}$							

NOTES

V37 Enter, 52 Enter
V04 N06 Flashing
R1: 00001
R2: $0000 \times \mathrm{IMU}$ Align Option
1 - Preferred, 2 - Nominal,
3 - REFSMMAT, 4 - Landing Site
V51 Flashing - Please Mark

x	0	0	0	0	P52 Option			X	0	0	0	0	
+	0	0			Hours			+	0	0			
+	0	0	0		Minutes	GET		+	0	0	0		
+	0				Seconds			+	0				
X	0	0	0		Celestial Body Code		N71	X	0	0	0		
					Star Angle Difference (degrees)		N05						
					$\left.\begin{array}{l}X \\ Y \\ Z\end{array}\right\}$Gyro Torquing Angles (degrees)		N93						
					$\left.\begin{array}{l} x \\ y \\ z \end{array}\right\} \begin{aligned} & \text { Calculated } \\ & \text { Gyro } \\ & \text { Drift } \\ & \text { (meru) } \end{aligned}$								

NOTES:

V37 Enter, 30 Enter

V06 N33 Flashing, Load Desired GETI
V06 N81 Flashing, Load Desired Δv

NOTES:

P40 - SPS THRUSTING CSM

V37 Enter, 40 Enter
V50 N18 Flashing, Request Maneuver to FDAI R, P, Y Angles
V06 N18, FDAI R, P, Y Angles After Maneuver to Burn Attitude
V50 N25 Flashing, R1 $=00204$, Gimbal Actuator Test Option
V06 N40, Time from Ignition, Velocity to be Gained, Maasured Change
in Velocity
V99 N40 Flashing, Engine On Enable Request
06 N40, Time from Cutoff, Velocity to be Gained, Measured Change
V16 N40 Flashing, Final Values at Engine Cutoff
V16 N85 Flashing, Body Axes Residuals (to be Nulled)
V37 Flashing, V82 Enter
16 N44 Flashing, Apogee Altitude, Perigee Altitude, Time to Freefall
to $35 \mathrm{~K} \mathrm{ft} \mathrm{Moon} \mathrm{Orbit}$,300 Kft Earth Orbit

P41 - RCS THRUSTING
V37 Enter, 41 Enter
V50 N18 Flashing, Request Maneuver to FDAI R, P, Y, Angles V06 N18, FDAI R, P, Y Angles After Maneuver to Burn Attitude
V06 N85, X, Y, Z Body Axes Velocity to be Gained
16 N85 (Average G on at TIG-30) Velocity to be Gained
16 N85 Flashing, Body Axes Residuals (to be Nulled)

						50-18	Roll	
							Pitch	(deg)
							Yaw	
						06-18	Roll	
							Pitch	(deg)
							Yaw	
						06-85	x	
							\checkmark	VG (ft/s)
							z	
				,		16.85	x	
				.			Y	VG (ft/s)
				,			z	
				,		16.85	\times	
				.	-			$\begin{aligned} & \text { Residuals } \\ & (\mathrm{ftis} \text {) } \end{aligned}$
				.	,		z	
				-	-	x	$\begin{aligned} & \text { Trim } \\ & (\mathrm{ft} / \mathrm{s}) \end{aligned}$	
				,	-	r		
				.	,	z		

V37 Enter, 37 Enter
V06 N33 Flashing
Time of Ignition (h, min, 0.01 s)
V06 N60 Flashing
Blank, $\triangle V$ Desired, GAMMA EI Desired ($\mathrm{ft} / \mathrm{s}, 0.01 \mathrm{deg}$)
V06 N61 Flashing
Impact Latitude and Longitude (0.01 deg, 0.01 deg)
V06 N39 Flashing
ΔT of Transfer (h, min, 0.01 s)
V06 N60 Flashing
Blank, V Predicted GAMMAEI ($\mathrm{ft} / \mathrm{s}, 0.01 \mathrm{deg}$)
V06 N81 Flashing
$\Delta V X(L V), \Delta V Y(L V), \Delta V Z(L V)$ at TIG (0.1 ft/s)
V04 N06 Flashing
R1: 00007
R2: $0000 \times(1-\mathrm{SPS}, 2-\mathrm{RCS})$

V06 N33 Flashing

Time of Ignition ($\mathrm{h}, \mathrm{min}, 0.01 \mathrm{~s}$)
V16 N45 Flashing
Marks, TFI, Middle Gimbal Angle (marks, min/s, 0.01 deg)

V37 Enter, 52 Enter
V04 N06 Flashing
R1: 00001
R2: $0000 \times$ IMU Align Option
1 - Preferred, 2 - Nominal
3 - REFSMMAT, 4 - Landing Site
V51 Flashing - Please Mark

X	0	0	0	0	P52 Option			x	0	0	0	0		
+	0	0			$\left.\begin{array}{l}\text { Hours } \\ \text { Minutes } \\ \text { Seconds }\end{array}\right\}$ GET			+	0	0				
+	0	0	0					+	0	0	0			
+	0							+	0					
X	0	0	0		Celestial Body Code		N71	X	0	0	0			
					Star Angle Difference (degrees)		N05							
					$\left.\begin{array}{c} \mathrm{X} \\ \mathrm{Y} \\ \mathrm{Z} \end{array}\right\} \begin{aligned} & \text { Gyro } \\ & \begin{array}{l} \text { Torquing } \\ \text { Angles } \\ \text { (degrees) } \end{array} \end{aligned}$		N93							
					$\left.\begin{array}{l} X \\ Y \\ Z \end{array}\right\} \begin{aligned} & \begin{array}{l} \text { Calculated } \\ \text { Gyro } \\ \text { Drift } \\ \text { (meru) } \end{array} \end{aligned}$									

X	0	0	0	0	P52 Option		X	0	0	0	0	
+	0	0			Hours		+	0	0			
+	0	0	0		Minutes	GET	+	0	0	0		
$+$	0				Seconds		$+$	0				
X	0	0	0		Celestial Body Code	N71	X	0	0	0		
			\bigcirc		Star Angle Difference (degrees)	N05						
					$x)$	N93						
					$\left.\begin{array}{l} X \\ Y \\ Z \end{array}\right\} \begin{aligned} & \\ & \text { Calculated } \\ & \text { Gyro } \\ & \text { Drift } \\ & \text { (meru) } \\ & \hline \end{aligned}$							

NOTES:

P23-OPTICS CALIBRATION

V37 Enter, 23 Enter
V05 N70 Flashing
R1: 000 DE Star ID
R2: $00000 \quad$ Hor ID C and D 1 or 2
V59 Flashing, Perform Optics Calibration

NOTES:

V37 Enter, 23 Enter

V05 N70 Flashing

R1:	$000 \times x$	Celestial Body Code
R2:	00×00	0 - Horizon
		1 - Earth Landmark
		2 -- Moon Landmark
R3:	OOCDO	$\mathrm{C}=0, \mathrm{D}=0$ Landmark
		C-1 Earth Horizon
		C-2 Moon Horizon
		D. 1 Near Horizon
		D. 2 Far Horizon

V51 Flashing Please Mark

+	0	0						+	0	0			
+	0	0	0					+	0	0	0		
+	0							+	0				
\times	0	0	0			Star ID	N71	x	0	0	0		
\times	0	0		0	0	LMK ID		x	0	0		0	0
x	0	0			0	Hor ID		x	0	0			0
+						Trun Angle Degrees	$\begin{aligned} & \text { N92 } \\ & \text { R2 } \end{aligned}$	+					
						$\Delta \mathrm{Rnmi}$	N49						
						$\Delta \mathrm{Vft} / \mathrm{s}$							

+	0	0				$\left.\begin{array}{l} \text { Hours } \\ \text { Minutes } \end{array}\right\}$	GET	+	0	0			
+	0	0	0					+	0	0	0		
+	0					Seconds)		+	0				
x	0	0	0.			Star ID	N71	\times	0	0	0		
\times	0	0		0	0	LMK ID		\times	0	0		0	0
x	0	0			0	Hor ID		x	0	0			0
+						Trun Angle Degrees	$\begin{aligned} & \text { N92 } \\ & \text { R2 } \end{aligned}$	+					
						$\Delta \mathrm{Rnmi}$	N49						
						$\Delta \mathrm{fft} / \mathrm{s}$							

V37 Enter, 23 Enter
V05 N70 Flashing

R1:	$000 \times \mathrm{x}$	Celestial Body Code
R2:	00×00	0-Horizon
		1 - Earth Landmark
		2 - Moon Landmark
R3:	OOCDO	$\mathrm{C}=0, \mathrm{D}=0$ Landmark
		C-1 Earth Horizon
		C-2 Moon Horizon
		D-1 Near Horizon
		D. 2 Far Horizon

V51 Flashing - Please Mark

+	0	0						+	0	0			
+	0	0	0					+	0	0	0		
$+$	0							+	0				
x	0	0	0			Star 10	N71	x	0	0	0		
x	0	0		0	0	LMK ID		x	0	0		0	0
x	0	0			0	Hor ID		\times	0	0			0
+						Trun Angle Degrees	$\begin{aligned} & \text { N92 } \\ & \text { R2 } \end{aligned}$	+					
						$\Delta \mathrm{Rnmi}$	N49						
						$\Delta \mathrm{Vft} / \mathrm{s}$							

+	0	0				$\left.\begin{array}{l}\text { Hours } \\ \text { Minutes }\end{array}\right\}$ GET		+	0	0			
+	0	0	0					+	0	0	0		
+	0					Seconds)		+	0				
X	0	0	0			Star 10	N71	x	0	0	0		
\times	0	0		0	0	LMK ID		x	0	0		0	0
\times	0	0			0	Horld		\times	0	0			0
$+$						Trun Angle Dagrees	$\begin{aligned} & \text { N92 } \\ & \text { R2 } \end{aligned}$	+					
						$\Delta \mathrm{Rnmi}$	N49						
						$\Delta \mathrm{Vft} / \mathrm{s}$							

NOTES:

V37 Enter, 23 Enter

V05 N70 Flashing

R1:	$000 \times \times$	Celestial Body Code
R2:	00×00	0 - Horizon
		1 - Earth Landmark
		2. Moon Landmark
R3:	OOCDO	$\mathrm{C}=0, \mathrm{D}=0$ Landmark
		C-1 Earth Horizon
		C. 2 Moon Horizon
		D-1 Near Horizon
		D. 2 Far Horizon

V51 Flashing Please Mark

+	0	0				Hours	GET	+	0	0			
+	0	0	0			Minutes		+	0	0	0		
+	0					Seconds)		+	0				
\times	0	0	0			Star ID	N71	x	0	0	0		
\times	0	0		0	0	LMK ID		\times	0	0		0	0
\times	0	0			0	Hor ID		x	0	0			0
+						Trun Angle Degrees	$\begin{aligned} & \text { N92 } \\ & \text { R2 } \end{aligned}$	+					
						$\Delta \mathrm{R} \mathrm{nmi}$	N49						
						$\Delta \mathrm{Vft} / \mathrm{s}$							

$+$	0	0						+	0	0			
+	0	0	0					+	0	0	0		
$+$	0							+	0				
\times	0	0	0			Ster 10	N71	x	0	0	0		
x	0	0		0	0	LMK ID		\times	0	0		0	0
X	0	0			0	Hor 10		\times	0	0			0
+						Trun Angle Degrees	$\begin{aligned} & \text { N92 } \\ & \text { R2 } \end{aligned}$	+					
						$\Delta A_{\text {nmi }}$	N48						
						$\Delta \mathrm{Vf} / \mathrm{s}$							

NOTES:

V37 Enter, 23 Enter
V05 N70 Flashing

R1:	$000 \times \mathrm{x}$	Celestial Body Code
R2:	00×00	0 -Horizon
		1 - Earth Landmark
		2 Moon Landmark
R3:	OOCDO	$\mathrm{C}=0, \mathrm{D}=0$ Landmark
		C.1 Earth Horizon
		C-2 Moon Horizon
		D-1 Near Horizon
		D. 2 Far Horizon

V51 Flashing Please Mark

+	0	0				$\left.\begin{array}{l}\text { Hours } \\ \text { Minutes } \\ \text { Seconds }\end{array}\right\}$ GET		+	0	0			
+	0	0	0					+	0	0	0		
+	0							+	0				
\times	0	0	0			Star ID	N71	\times	0	0	0		
X	0	0		0	0	LMK ID		\times	0	0		0	0
x	0	0			0	Hor 10		\times	0	0			0
+						Trun Angle Degrees	$\begin{aligned} & \text { N92 } \\ & \text { R2 } \end{aligned}$	+					
						$\Delta \mathrm{Rnmi}$	N49						
						$\Delta \mathrm{Vft} / \mathrm{s}$							

+	0	0				$\left.\begin{array}{l}\text { Hours } \\ \text { Minutes } \\ \text { Seconds }\end{array}\right\}$ GET		+	0	0			
+	0	0	0					+	0	0	0		
+	0							+	0				
x	0	0	0			Star 10	N71	x	0	0	0		
x	0	0		0	0	LMK ID		\times	0	0		0	0
x	0	0			0	Hor ID		x	0	0			0
+						Trun Angle Degrees	$\begin{gathered} \text { N92 } \\ \text { R2 } \end{gathered}$	+					
						$\Delta R \mathrm{nmi}$	N49						
						$\Delta \mathrm{Vft} / \mathrm{s}$							

V37 Enter, 52 Enter
V04 N06 Flashing
R1: 00001
R2: $0000 \times$ IMU Align Option
1 - Preferred, 2 - Nominal,
3 - REFSMMAT, 4 - Landing Site
V51 Flashing - Please Mark

X	0	0	0	0	P52 Option			X	0	0	0	0	
$+$	0	0			Hours Minutes Seconds			$+$	0	0			
$+$	0	0	0					$+$	0	0	0		
$+$	0		-					$+$	0				
X	0	0	0		Celestial Body Code		N71	X	0	0	0		
					Star Angle Difference (degrees)		N05						
					$\left.\begin{array}{c} X \\ Y \\ Z \end{array}\right\} \begin{aligned} & \text { Gyro } \\ & \text { Torquing } \\ & \text { Angles } \\ & \text { (degrees) } \end{aligned}$		N93						
					$\left.\begin{array}{l} X \\ Y \\ Z \end{array}\right\} \begin{aligned} & \text { Caiculated } \\ & \text { Gyro } \\ & \text { Drift } \\ & \text { (meru) } \end{aligned}$								

X	0	0	0	0	P52 Option		x	0	0	0	0	
+	0	0			Hours		+	0	0			
+	0	0	0		Minutes	GET	+	0	0	0		
$+$	0				Seconds		+	0				
X	0	0	0		Celestial Body Code	N71	X	0	0	0		
					Star Angle Difference (degrees)	N05						
					$\left.\begin{array}{l} X \\ Y \\ Z \end{array}\right\} \begin{aligned} & \\ & \text { Gyro } \\ & \text { Torquing } \\ & \text { Angles } \\ & \text { (degrees) } \end{aligned}$	N93						
		6										
					x							
					$\left.\begin{array}{l\|l} Y \\ Z \end{array}\right\} \begin{aligned} & \text { Calculated } \\ & \text { Gyro } \\ & \text { Drift } \\ & \text { (meru) } \end{aligned}$							

NOTES:

V37 Enter, 30 Enter
V06 N33 Flashing, Load Desired GETI
v06 N81 Flashing, Load Desired ΔV

V37 Enter, 40 Enter
V50 N18 Flashing. Request Maneuver to FDAI R, P, Y Angles V06 N18, FDAI R, P, Y Angles After Maneuver to Burn Attitude V50 N25 Flashing, R1 $=00204$, Gimbal Actuator Test Option VO6 N40, Time from Ignition, Velocity to be Gained, Measured Change in Velocity
V99 N40 Flashing, Engine On Enable Request
V06 N4O, Time from Cutoff, Velocity to be Gained, Measured Change in Velocity
V16 N40 Flashing, Final Values at Engine Cutoff
V16 N85 Flashing, Body Axes Residuals (to be Nulled)
V37 Flashing, V82 Enter
V16 N44 Flashing, Apogee Altitude, Perigee Altitude, Time to Freefal 16 N 44 Flashing, Apogee Altitude, Perigee Alt
to 35 K ft Moon Orbit, 300 K ft Earth Orbit

						50-18	Roll	
							Pitch	(deg)
							Yaw	
						06-18	Roll	
								(deg)
							Yaw	
						06-40	TFI (min:s) VG (ft/s) $\Delta \mathrm{VM}(\mathrm{ft} / \mathrm{s})$	
						06-40	TFC (min:s) VG (ft/s) $\Delta \mathrm{VM}(\mathrm{ft} / \mathrm{s})$	
						16-40	TFC (min:s) VG (ft/s) $\Delta \mathrm{VM}(\mathrm{ft} / \mathrm{s})$	
						85	\times	
							$\begin{array}{ll} Y & \begin{array}{l} \text { Residuals } \\ (\mathrm{ft} / \mathrm{s}) \end{array} \\ z & \end{array}$	
						85	x	
							$\text { Y } \quad \underset{(\mathrm{ft} / \mathrm{s})}{\mathrm{TRIM}}$	
							z	
						44	HA (nmi)	
							HP (nmi)	
			1				TFF (min:s)	

P41 - RCS THRUSTING

V37 Enter, 41 Enter
V50 N18 Flashing, Request Maneuver to FDAI R, P, Y, Angles
VO6 N18, FDAI R, P, Y Angles After Manouver to Burn Attitude
V06 N85, X, Y, Z Body Axes Velocity to be Gained
V16 N85 (Average G on at TIG-30) Velocity to be Gained
V16 N85 Flashing, Body Axes Residuals (to be Nulled)

						50.18	Roll	
							Pitch	(deg)
							Yaw	
						06-18	Roll	
							Pitch	(deg)
							Yaw	
						06-85	x	
								VG (ft/s)
							z	
						16-85	x	
							Y	VG (ft/s)
							z	
						16-85	x	
								Residuals (ft / s)
							z	
						x		
						Y	$\begin{aligned} & \text { Trim } \\ & (\mathrm{ft} / \mathrm{s}) \end{aligned}$	
					!	z		

V37 Enter, 52 Enter
V04 N06 Flashing
R1: 00001
R2: $0000 \times$ IMU Align Option
1 - Preferred, 2 -- Nominal,
3 - REFSMMAT, 4 - Landing Site
V51 Flashing - Please Mark

NOTES:

V37 Enter, 52 Enter
V04 N06 Flashing
R1: 00001
R2: $0000 \times$ IMU Align Option
1 - Preferred, 2 - Nominal ,
3 - REFSMMAT, 4 - Landing Site
V51 Flashing - Please Mark

X	0	0	0	0	P52 Option			X	0	0	0	0		
+	0	0			$\left.\begin{array}{l}\text { Hours } \\ \text { Minutes } \\ \text { Seconds }\end{array}\right\}$ GET			+	0	0				
+	0	0	0					+	0	0	0			
+	0		-					$+$	0					
X	0	0	0		Celestial Body Code		N71	X	0	0	0			
					Star Angle Difference (degrees)		N05							
					$\left.\begin{array}{l} X \\ Y \\ Z \end{array}\right\} \begin{aligned} & \text { Gyro } \\ & \text { Torquing } \\ & \text { Angles } \\ & \text { (degrees) } \end{aligned}$		N93							
					$\left.\begin{array}{c}X \\ Y \\ Z\end{array}\right\}$Calculated Gyro Drift (meru)									

X	0	0	0	0	P52 Option		X	0	0	0	0	
+	0	0			Hours		+	0	0			
$+$	0	0	0		Minutes $\}$ GET		+	0	0	0		
+	0				Seconds		+	0				
X	0	0	0		Celestial Body Code	N71	X	0	0	0		
					Star Angle Difference (degrees)	N05						
					x	N93						
					$\left.\begin{array}{l} \mathrm{Y} \\ \mathrm{Z} \end{array}\right\} \begin{aligned} & \text { Gyro } \\ & \text { Torquing } \\ & \text { Angles } \\ & \text { (degrees) } \end{aligned}$							
					x							
					1							

NOTES:

V37 Enter, 30 Enter
V06 N33 Flashing, Load Desired GETI
V06 N81 Flashing, Load Desired Δv

P40 - SPS THRUSTING CSM

V37 Enter, 40 Enter

V50 N18 Flashing, Request Maneuver to FDAI R, P, Y Angles V06 N18, FDAI R, P, Y Angles After Maneuver to Burn Attitude V50 N25 Flashing, R1 $=00204$, Gimbal Actuator Test Option V06 N40, Time from Ignition, Velocity to be Gained, Measured Change in Velocity
V99 N40 Flashing, Engine On Enable Request
VO6 N40, Time from Cutoff, Velocity to be Gained, Measured Change in Velocity
V16 N40 Flashing, Final Values at Engine Cutoff
V16 N40 Flashing, Final Values at Engine Cutoff
V16 N85 Flashing, Body Axes Residuals (to be Nulled)
V37 Flashing, V82 Enter
V16 N44 Flashing, Apogee Altitude, Periges Altitude, Time to Freefall
to 35 K ft Moon Orbit, 300 K ft Earth Orbit

P41 - RCS THRUSTING

V37 Enter, 41 Enter

V50 N18 Flashing, Request Maneuver to FDAI R, P, Y, Angles V06 N18, FDAI R, P, Y Angles After Maneuver to Burn Attitude
V06 N85, X, Y, Z Body Axes Velocity to be Gained
V16 N85 (Average G on at TIG-30) Velocity to be Gained
V16 N85 Flashing, Body Axes Residuals (to be Nulled)

V37 Enter, 30 Enter
V06 N33 Flashing, Load Desired GETI
V06 N81 Flashing, Load Desired Δv

NOTES:

V37 Enter, 40 Enter
V50 N 18 Flashing, Request Maneuver to FDAI R, P, Y Angles
V06 N18, FDAI R, P, Y Angles After Maneuver to Burn Attitude V50 N25 Flashing, R1 $=00204$, Gimbal Actuator Test Option VO6 N40, Time from Ignition, Velocity to be Gained, Measured Change in Velocity
v99 N40 Flashing, Engine On Enable Request
VO6 N4O, Time from Cutoff, Velocity to be Gained, Measured Change in Velocity
V16 N40 Flashing, Final Values at Engine Cutoff
V16 N85 Flashing, Body Axes Residuals (to be Nulled)
V37 Flashing, V82 Enter
V16 N 44 Flashing, Apogee Altitude, Perigee Altitude, Time to Freefal
to $35 \mathrm{~K} \mathrm{ft} \mathrm{Moon} \mathrm{Orbit}$,300 Ktt Earth Orbit

P41 - RCS THRUSTING
V37 Enter, 41 Enter
V50 N18 Flashing, Request Maneuver to FDAI R, P, Y, Angles V06 N18, FDAI R, P, Y Angles After Maneuver to Burn Attitude
V06 N85, X, Y, Z Body Axes Velocity to be Gained
V16 N85 (Average G on at TIG-30) Velocity to be Gained V16 N85 Flashing, Body Axes Residuals (to be Nulled)

V37 Enter, 52 Enter

V04 N06 Flashing
R1: 00001
R2: $0000 \times \mathrm{IMU}$ Align Option
1 - Preferred, 2 Nominal.
3-REFSMMAT, 4-Landing Site
V51 Flashing - Please Mark

\times	0	0	0	0	P52 Option			x	0	0	0	0	
+	0	0			$\left.\begin{array}{l}\text { Hours } \\ \text { Minutes } \\ \text { Seconds }\end{array}\right\}$ GET			+	0	0			
+	0	0	0					+	0	0	0		
+	0							+	0				
X	0	0	0		Celestial Body Code		N71	X	0	0	0		
					Star Angle Difference (degrees)		N05						
					$\left.\begin{array}{c} x \\ y \\ z \end{array}\right\}$	Gyro Torquing Angles (degrees)	N93						
					$\left.\begin{array}{c} X \\ Y \\ z \end{array}\right\} \begin{aligned} & \begin{array}{l} \text { Calculated } \\ \text { Gyro } \\ \text { Drift } \\ \text { (meru) } \end{array} \\ & \end{aligned}$								

x	0	0	0	0	P52 Option			x	0	0	0	0	
+	0	0			Hours			+	0	0			
+	0	0	0		Minutes	GET		+	0	0	0		
$+$	0				Seconds			$+$	0				
X	0	0	0		Celestial Body Code		N71	X	0	0	0		
			,		Star Angle Difference (degrees)		N05						
					$\left.\begin{array}{l} X \\ y \\ z \end{array}\right\} \begin{aligned} & \text { Gyro } \\ & \text { Torquing } \\ & \text { Angles } \\ & \text { (degrees) } \end{aligned}$		N93						
					$\left.\begin{array}{l\|l} & \begin{array}{l} \text { Calculated } \\ Y \\ \text { Gyro } \\ z \end{array} \end{array}\right\} \begin{aligned} & \text { Dift } \\ & \text { (meru) } \end{aligned}$								

NOTES:

V37 Enter, 30 Enter
v06 N33 Flashing, Load Desired GETI
V06 N81 Flashing, Load Desired Δv

NOTES:

V37 Enter, 30 Enter
V06 N33 Flashing, Load Desirod GETI
V06 N81 Flashing, Load Desired Δv

						Purpose Prop/Guidance								
		1									1			
						Weight (lb)		N47	+					
	0	0				$\mathrm{P}_{\text {Trim }}$				0	0			
	0	0				$Y_{\text {Trim }}$				0	0			
+	0	0				Hours		N33	+	0	0			
+	0	0	0			Minutes	GETI		+	0	0	0		
+	0					Seconds			+	0				
						Δv_{X} N81 Δv_{Y} $L V$ Δv_{Z} $(\mathrm{ft} / \mathrm{s})$								
x	x	\times				R			\times	\times	\times			
\times	x	x				P IMU Gimbal			X	x	x			
x	x	x				Y			x	x	x			
+						Hapogee			+					
						HPerigee $\Delta \mathrm{VT}$ (ft / s)								
+									+					
x	x	x				BT (min:s) $\Delta V C(f t / s)$			x	x	x			
x									x					
x	x	x	x			SXT Star SFT (degrees) TRN (degrees)			x	x	x	x		
+					0				+					0
+				0	0				+				0	0
x	x	x				BSS (Coas Star) SPA (Coas Pitch, deg) SXP (Coas X Pos, deg)			x	x	x			
x	x								x	x				
x	x	x							x	x	\times			
	0					LAT (degress) LONG				0				
+						RTGO (nmi) EMS VIO (ft/s)			+					
+									+					
					,	GET Hr:m	$\begin{aligned} & \mathrm{T} 0.05 \mathrm{~g} \\ & \text { min: } \end{aligned}$							
						SET STARS								
x	x	x				${ }^{R}$ Align ${ }^{P}$ Align $Y_{\text {Align }}$			x	x	x			
x	x	x							x	x	\times			
x	x	x							x	x	x			
						ULLAGE								

V37 Enter, 30 Enter
V06 N33 Flashing, Load Desired GETI
V06 N81 Flashing, Load Desired Δv

NOTES:

V37 Enter, 52 Enter

V04 N06 Flashing
R1: 00001
R2: $0000 \times$ IMU Align Option
1 - Preferred, 2 - Nominal,
3 - REFSMMAT, 4 - Landing Site
V51 Flashing - Please Mark

x	0	0	0	0	P52 Option			x	0	0	0	0	
+	0	0			$\left.\begin{array}{l}\text { Hours } \\ \text { Minutes } \\ \text { Seconds }\end{array}\right\}$ GET			+	0	0			
+	0	0	0					+	0	0	0		
+	0							+	0				
\times	0	0	0		Celestial Body Code		N71	X	0	0	0		
					Star Angle Difference (degrees)		N05						
					$\left.\begin{array}{c} x \\ y \\ z \end{array}\right\}$	Gyro Torquing Angles (degrees)	N93						
					$\left.\begin{array}{l} x \\ \gamma \\ z \end{array}\right\} \begin{aligned} & \begin{array}{l} \text { Calculated } \\ \text { Gyro } \\ \text { Drift } \\ \text { (meru) } \end{array} \\ & \end{aligned}$								

X	0	0	0	0	P52 Option			x	0	0	0	0	
+	0	0			Hours			+	0	0			
+	0	0	0		Minutes	GET		+	0	0	0		
$+$	0				Seconds			+	0				
X	0	0	0		Celestial Body Code		N71	X	0	0	0		
					Star Angle Difference (degrees)		N05						
					$\left.\begin{array}{l} x \\ y \\ z \end{array}\right\} \begin{aligned} & \text { Gyro } \\ & \text { Torquing } \\ & \text { Angles } \\ & \text { (degrees) } \end{aligned}$		N93						
					$\left.\begin{array}{c} X \\ Y \\ z \end{array}\right\} \begin{aligned} & \text { Calculated } \\ & \text { Gyro } \\ & \text { Drift } \\ & \text { (meru) } \end{aligned}$								

NOTES

LOI ${ }_{1}$ EXECUTION
P30-EXTERNAL Δv

V37 Enter, 30 Enter
V06 N33 Flashing, Load Desired GETI
V06 N81 Flashing, Load Desired ΔV

NOTES:

LUNAR ORBIT INSERTION

V37 Enter, 52 Enter
V04 N06 Flashing
R1: 00001
R2: $0000 \times$ IMU Align Option
1 - Preferred, 2 - Nominal ,
3 - REFSMMAT, 4 - Landing Site
V51 Flashing - Please Mark

X	0	0	0	0	P52 Option			X	0	0	0	0	
+	0	0			$\left.\begin{array}{l}\text { Hours } \\ \text { Minutes } \\ \text { Seconds }\end{array}\right\}$ GET			+	0	0			
+	0	0	0					+	0	0	0		
+	0							$+$	0				
X	0	0	0		Celestial Body Code		N71	X	0	0	0		
					Star Angle Difference (degrees)		N05						
					$\left.\begin{array}{l} X \\ Y \\ z \end{array}\right\}$	Gyro Torquing Angles (degrees)	N93						
					$\left.\begin{array}{l}X \\ Y \\ Z\end{array}\right\}$Calculated Gyro Drift (meru)								

x	0	0	0	0	P52 Option		x	0	0	0	0	
+	0	0			Hours		$+$	0	0			
$+$	0	0	0		$\text { Minutes }\} \text { GET }$		+	0	0	0		
+	0				Seconds		+	0				
X	0	0	0		Celestial Body Code	N71	X	0	0	0		
					Star Angle Difference (degrees)	N05						
					X							
					$\left.\begin{array}{l\|l} \mathrm{Y} \\ \mathrm{Z} \end{array}\right\} \begin{aligned} & \text { Gyro } \\ & \text { Torquing } \\ & \text { Angles } \\ & \text { (degrees) } \\ & \hline \end{aligned}$							
					x							
					$\left.\begin{array}{l} \mathrm{Y} \\ Z \end{array}\right\} \begin{aligned} & \text { Calculated } \\ & \text { Gyro } \\ & \text { Drift } \\ & \text { (meru) } \end{aligned}$							

NOTES:

V37 Enter, 30 Enter
V06 N33 Flashing, Load Desired GETI
V06 N81 Flashing, Load Desired Δv

LOI_{2}
P3O-EXTERNAL ΔV
V37 Enter, 30 Enter
V06 N33 Flashing, Load Desired GETI
V06 N81 Flashing, Load Desired Δv

NOTES:

LUNAR ORBIT CIRCULARIZATION

V37 Enter, 22 Enter
V06 N45 Flashing, R3: Middle Gimbal Angle
V05 N70 Flashing, R2: A B 0 D E Landmark Code
A1 - Known, A2 - Unknown B - Index of offset designator
DE - Landmark ID
V06 N89 Flashing Landmark Coordinates

R1: Latitude
 R2: Longitude/2
 R3: Altitude

V51 Flashing - Please Mark

+	0	0			$\left.\begin{array}{l}\text { Hours } \\ \text { Minutes } \\ \text { Seconds }\end{array}\right\}$ GET		+	0	0		
+	0	0	0				+	0	0	0	
+	0						$+$	0			
					LAT (+ north)	N89					
					LONG/2 (+ east)						
					ALT (nmi)						
					$\Delta \mathrm{R} \mathrm{nmi}$	N49					¢
				1	$\Delta \mathrm{Vft} / \mathrm{s}$,

NOTES

V37 Enter, 22 Enter
V06 N45 Flashing, R3: Middle Gimbal Angle
V05 N70 Flashing, R2: A B 0 D E Landmark Code

> A1 - Known, A2 - Unknown
> B - Index of offset designator

DE - Landmark ID
V06 N89 Flashing Landmark Coordinates
R1: Latitude
R2: Longitude/2
R3: Altitude
V51 Flashing - Please Mark

NOTES:

V37 Enter, 52 Enter
V04 N06 Flashing
R1: 00001
R2: $0000 \times$ IMU Align Option
1 - Preferred, 2 - Nominal,
3 - REFSMMAT, 4 - Landing Site
V51 Flashing - Please Mark

X	0	0	0	0	P52 Option			X	0	0	0	0		
$+$	0	0			$\left.\begin{array}{l}\text { Hours } \\ \text { Minutes } \\ \text { Seconds }\end{array}\right\}$ GET			+	0	0				
+	0	0	0					+	0	0	0			
$+$	0		,					+	0					
X	0	0	0		Celestial Body Code		N71	X	0	0	0			
					Star Angle Difference (degrees)		N05							
					$\left.\begin{array}{l} X \\ Y \\ Z \end{array}\right\} \begin{aligned} & \text { Gyro } \\ & \text { Torquing } \\ & \begin{array}{l} \text { Angles } \\ \text { (degrees) } \end{array} \\ & \hline \end{aligned}$		N93							
					$\left.\begin{array}{c}X \\ Y \\ Z\end{array}\right\}$Calculated Gyro Drift (meru)									

X	0	0	0	0	P52 Option		X	0	0	0	0	
+	0	0			Hours		+	0	0			
+	0	0	0		Minutes	GET	+	0	0	0		
$+$	0				Seconds		+	0				
X	0	0	0		Celestial Body Code	N71	X	0	0	0		
					Star Angle Difference (degrees)	N05						
					$\left.X \begin{array}{l} X \\ Y \\ Z \end{array}\right\} \begin{aligned} & \text { Gyro } \\ & \text { Torquing } \\ & \text { Angles } \\ & \text { (degrees) } \end{aligned}$	N93						
					x							
					Y							

NOTES:

V37 Enter, 30 Enter
V06 N33 Flashing, Load Desired GETI
V06 N81 Flashing, Load Desired Δv

NOTES:

V37 Enter, 22 Enter
V06 N45 Flashing, R3: Middle Gimbal Angle
V05 N70 Flashing, R2: A B OD E Landmark Code
A1 - Known, A2 - Unknown
B - Index of offset designator
DE - Landmark ID
V06 N89 Flashing Landmark Coordinates

$$
\begin{array}{ll}
\text { R1: } & \text { Latitude } \\
\text { R2: } & \text { Longitude/2 } \\
\text { R3: } & \text { Altitude }
\end{array}
$$

V51 Flashing - Please Mark

NOTES:

V37 Enter, 30 Enter
V06 N33 Flashing, Load Desired GETI
V06 N81 Flashing, Load Desired Δv

						Purpose Prop/Guidance							

V37 Enter, 52 Enter
V04 N06 Flashing
R1: 00001
R2: $0000 \times$ IMU Align Option
1 - Preferred, 2 - Nominal,
3 - REFSMMAT, 4 - Landing Site
V51 Flashing - Please Mark

x	0	0	0	0	P52 Option			X	0	0	0	0	
+	0	0			$\left.\begin{array}{l}\text { Hours } \\ \text { Minutes } \\ \text { Seconds }\end{array}\right\}$ GET			+	0	0			
+	0	0	0					+	0	0	0		
+	0							+	0				
X	0	0	0		Celestial Body Code		N71	X	0	0	0		
					Star Angle Difference (degrees)		N05						
					$\left.\begin{array}{l} x \\ y \\ z \end{array}\right\} \begin{aligned} & \text { Gyro } \\ & \begin{array}{l} \text { Torquing } \\ \text { Angles } \\ \text { (degrees) } \end{array} \end{aligned}$		N93						
					$\left.\begin{array}{c}X \\ y \\ z\end{array}\right\}$Calculated Gyro Drift (meru)								

x	0	0	0	0	P52 Option			x	0	0	0	0	
+	0	0			$\left.\begin{array}{l}\text { Hours } \\ \text { Minutes } \\ \text { Seconds }\end{array}\right\}$ GET			+	0	0			
+	0	0	0					+	0	0	0		
+	0							+	0				
X	0	0	0		Celestial Body Code		N71	X	0	0	0		
					Star Angle Difference (degrees)		N05						
		-			$\left.\begin{array}{c} X \\ Y \\ z \end{array}\right\}$	Gyro Torquing Angles (degrees)	N93						
					$\left.\begin{array}{l} X \\ Y \\ z \end{array}\right\} \begin{aligned} & \\ & \text { Calculated } \\ & \text { Gyro } \\ & \text { Drift } \\ & \text { (meru) } \end{aligned}$								

NOTES:

11	GETI	XX:XX:XX
13	GETI	XX: XX : XX
22	$\begin{aligned} & R \\ & \mathrm{P} \\ & \mathrm{Y} \end{aligned}$	$X X X . X X$ (deg) $X \times X . X \times$ (deg) $X X X . X X$ (deg)
33	GETI	XX:XX: XX
37	GETI	XX:XX:XX
59	Delta \vee LOS 1 Delta V LOS 2 Delta V LOS 3	$\begin{aligned} & \text { XX. } \begin{array}{ll} (\mathrm{ft} / \mathrm{s}) \\ X X . X & (\mathrm{ft} / \mathrm{s}) \\ X X . X & (\mathrm{ft} / \mathrm{s}) \end{array} \end{aligned}$
81	Delta $V X$ Delta VY Delta VZ	$\begin{aligned} & X X . X(\mathrm{ft} / \mathrm{s}) \\ & \times X . X(\mathrm{ft} / \mathrm{s}) \\ & X X . X(\mathrm{ft} / \mathrm{s}) \end{aligned}$
84	Delta VX (0 VEH) Delta VY (0 VEH) Delta VZ (0 VEH)	$\begin{aligned} & X X . X(\mathrm{ft} / \mathrm{s}) \\ & X X . X(\mathrm{ft} / \mathrm{s}) \\ & X X . X(\mathrm{ft} / \mathrm{s}) \end{aligned}$
	N	XX
	ΔV_{c}	XX. X (ft/s)

Time of Ignition of CSI (h:min:s) Time of Ignition of CDH ($\mathrm{h}: \mathrm{min}: \mathrm{s}$) New ICDU Angles

Time of Ignition (h:min:s)
Time of Ignition of TPI ($\mathrm{h}: \mathrm{min}: \mathrm{s}$)
Delta V Line of Sight Components

Local Vertical Components of Velocity

Components of $\Delta \mathrm{V}$ Applied Along Local Vertical Axis at TIG

The Future Apsidal Crossing (Apolune or Perilune) of the Active Vehicle at Which CDH Should Occur
Velocity to be Set in EMS Counter

V37 Enter, 30 Enter
V06 N33 Flashing, Load Desired GETI
V06 N81 Flashing, Load Desired Δv

NOTES

P30 -- EXTERNAL ΔV (LM)

V37 Enter, 30 Enter
V06 N33 Flashing, Load Desired GETI V06 N81 Flashing, Load Desired ΔV

					Purpose							
+	0	0			Hours		N33	$+$	0	0		
$+$	0	0	0		Minutes	GETI		+	0	0	0	
+	0				Seconds			+	0			
					ΔV_{X}		N81					
					Y LVV							
					$\Delta V_{Z} \quad(\mathrm{ft} / \mathrm{s})$							
1				\bigcirc	$\Delta V R(\mathrm{ft} / \mathrm{s})$			+				
X	X	\times			BT (min s)			\times	x	\times		
\times	x	\times			R	FDAI Inertial Angles (degrees)		\times	X	X		
\times	X	\times						X	X	X		
					$\Delta V_{X} \quad$ AGS N86							-
				.	$\Delta v_{V} \quad \begin{aligned} & \text { Targeting } \\ & (\mathrm{ft} / \mathrm{s})\end{aligned}$.
					Δv_{Z}							d
X	\times	X	X		COAS Star			\times	X	\times	\times	
x					COAS $A>$ (degrees)			\times	X			-
x	\times				COAS EL (degrees)			\times	x			,
1					$\mathrm{H}_{\text {Apogee }}$		N42	$+$,
					HPerigee (nmi)							d
$+$,	$\Delta V T(f t / s)$			$+$,

NOTES

P63-BRAKING PHASE

V37 Enter, 63 Enter
V06 N61 Flashing
TG, TFI, crossrange ($\mathrm{min} / \mathrm{s}, \mathrm{min} / \mathrm{s}, 0.1 \mathrm{nmi}$)
V50 N25 Flashing
R1: 00014 Fine align option
V50 N25 Flashing
R1: 00500 (position LR to Position 1)
V50 N25 Flashing
R1: 00203 (switch Guidance Control to PGNS, Mode to Auto, Thrust Control to Auto)
V06 N62 Flashing
Inertial velocity, time from ignition, ΔV (accumulated) ($0.1 \mathrm{ft} / \mathrm{s}, \mathrm{min} / \mathrm{s}, 0.1 \mathrm{ft} / \mathrm{s}$)
V99 N62 Flashing
Enable on enable
V06 N63 Flashing
Inertial velocity, HDOT, H ($0.1 \mathrm{ft} / \mathrm{s}, 0.1 \mathrm{ft} / \mathrm{s}, \mathrm{ft})$
V16 N68
Slant range, TG, LR Alt - computed altitude ($0.1 \mathrm{nmi}, \mathrm{min} / \mathrm{s}, \mathrm{ft}$)

V37 Enter, 41 Enter
V50 N18 Flashing, Request Maneuver to FDAI R, P, Y Angles
V06 N18, FDAI R, P, Y Angles After Maneuver to Burn Attitude
V06 N85, X, Y, Z Body Axes Velocity to be Gained
V16 N85 (Average G on at TIG -30) Velocity to be Gained
V16 N85 Flashing, Body Axes Residuals (to be Nulled)

						50-18	Roll							
							Pitch	(deg)						
							Yaw							
						06-18	Roll							
							Pitch	(deg)						
							Yaw							
						06-85	X						-	
								VG (ft/s)					,	
							Z							
						16-85	x						-	
							Y	VG (ft/s)						
							z						,	
						16-85	X						,	
								Residuals (ft/s)					¢	
							Z							¢
						x							d	,
						Y	Trim (ft/s)							¢
				1	1	Z							¢	1

V37 Enter, 52 Enter
V04 N06 Flashing
R1: 00001
R2: $0000 \times$ IMU Align Option
1 - Preferred, 2 - Nominal,
3-REFSMMAT, 4 - Landing Site
V51 Flashing - Please Mark

x	0	0	0	0	P52 Option			x	0	0	0	0	
+	0	0			$\left.\begin{array}{l}\text { Hours } \\ \text { Minutes } \\ \text { Seconds }\end{array}\right\}$ GET			+	0	0			
+	0	0	0					+	0	0	0		
+	0							+	0				
X	0	0	0		Celestial Body Code		N71	X	0	0	0		
					Star Angle Difference (degrees)		N05						
					$\left.x \begin{array}{l} x \\ z \end{array}\right\} \begin{aligned} & \text { Gyro } \\ & \text { Torquing } \\ & \text { Angles } \\ & \text { (degrees) } \end{aligned}$		N93						
					$\left.\begin{array}{l} \mathrm{X} \\ Y \\ \\ z \end{array}\right\} \begin{aligned} & \text { Calculated } \\ & \text { Gyro } \\ & \text { Drift } \\ & \text { (meru) } \end{aligned}$								

NOTES:

V37 Enter, 52 Enter
V04 N06 Flashing
R1: 00001
R2: $0000 \times$ IMU Align Option
1 - Preferred, 2 - Nominal
3 - REFSMMAT, 4 - Landing Site
V01 N70 Flashing
R1: $00 C D E$
C-AOT Detent
1-L, $2-F, 3-R$
4- Any Rear, 5-COAS
V51 Flashing - Please Mark

x	0	0	0	0	P52 Option			x	0	0	0	0	
+	0	0			$\left.\begin{array}{l}\text { Hours } \\ \text { Minutes } \\ \text { Seconds }\end{array}\right\}$ GET			+	0	0			
$+$	0	0	0					+	0	0	0		
+	0							+	0				
X	0	0			AOT Detent and Star ID		N71	X	0	0			
					Star Angle Difference (degrees)		N05						
					$\left.\begin{array}{c} x \\ y \\ z \end{array}\right\}$	Gyro Torquing Angles (diegrees)	N93						
					$\left.\begin{array}{c}x \\ y \\ z\end{array}\right\}$Calculated Gyro Drift (meru)								

x	0	0	0	0	P52 Option			x	0	0	0	0	
+	0	0			$\left.\begin{array}{l}\text { Hours } \\ \text { Minutes } \\ \text { Seconds }\end{array}\right\}$ GET			+	0	0			
+	0	0	0					+	0	0	0		
$+$	0							+	0				
x	0	0			AOT Detent and Star ID		N71	\times	0	0			
					Ster Angle Difference (degrees)		N05						
					$\left.x \begin{array}{l}x \\ z\end{array}\right\}$Gyro Torquing Angles (dogrees)		N93						
					$\left.\begin{array}{c} x \\ v \\ z \end{array}\right\} \begin{aligned} & \text { Calculated } \\ & \text { Gyro } \\ & \text { Drift } \\ & \text { (meru) } \end{aligned}$								

NOTES:

LUNAR SURFACE PAD

0	0					Hours		0	0				
0	0	0				Minutes	Touchdown +11	0	0	0			
0						Seconds		0			-		
0	0					Hours	Liftoff Tim	0	0				
0	0	0				Minutes	Revolution	0	0	0			
0						Seconds		0			-		
0	0					Hours		0	0				
0	0	0				Minutes	CSM Period	0	0	0			
0	0	0				Seconds		0	0	0			
0	0					Hours	CSM Period Plus	0	0				
0	0	0				Minutes	Between Closest	0	0	0			
0	0	0				Seconds	off Time	0	0	0			
0	0					Hours		${ }^{\circ}$	0				
0	0	0				Minutes	for TPI after Abort from Power	0	0	0			
0						Seconds		0			.		

LUNAR LANDING, STAY, AND ASCENT PROGRAMS

- P63 LUNAR LANDING BRAKING PHASE
- P64 LUNAR LANDING APPROACH OR VISIBILITY PHASE
- P65 AUTOMATIC TERMINAL LANDING PHASE

1. P66 SEMIAUTOMA TIC LANDING (RATE OF DESCENT)
2. P67 MANUAL LANDING PROGRAM

- P68 LANDING CONFIRMATION PROGRAM
- P57 LUNAR SURFACE ALIGNMENT PROGRAM
- P22 LUNAR SURFACE NA VIGATION PROGRAM
- P12 ASCENT PROGRAM
- P20 RENDEZVOUS NAVIGATION
- P32 (CSI), P33 (CDH), P34 (TPI), P35 (TPM) RENDEZVOUi PROGRAMS

LANDING RADAR BEAM CONFIGURATION

ANT
$=24^{\circ}$
BRAKING PHASE ($\alpha<45 \mathrm{DEG}$)
ANTENNA BORESIGHT

ANGE BEAM: 4
VELOCITY BEAMS: $1,2,3$

$\mathrm{K}_{1}, \mathrm{~K}_{2}, \mathrm{~K}_{3}=$ VELOCITY BEAM TO BORESIGHT GEOMETRY

The LM state vector is updated during lunar descent by a recursive filtering process. The state vector extrapolation process is accomplished using PIPA data starting with the DPS ullage and trim and continuing throughout the powered descent maneuver. The state vector updating process is accomplished using Landing Radar range and velocity data subject to the following constraints.

Conditions necessary to update state using LR range data:

- Estimated LM altitude is less than 50,000 feet.
- Landing Radar is not being switched from Position No. 1 to Position No. 2.
- Range data measurement tests are satisfied.
- Data Good discrete has been present for 4 seconds or more.
- LR range scale has not been changed within last second.
- Measurement residual ($\delta \mathrm{q})$ is within specified limits $|\delta \mathrm{q}| \leq$ DELQFIX* $^{*}+0.125$ (q^{\prime}).
- Astronaut approval for updating has been given (V57).

Conditions necessary to update state using LR velocity data:

- Estimated velocity is less than $2,000 \mathrm{ft} / \mathrm{s}$.
- Landing Radar is not being switched from Position No. 1 to Position 2.
- Velocity data measurement tests are satisfied:
- Data Good discrete has been present for at least 4 seconds.
- Measurement residual is within specified limits $\left|\delta q_{u}\right| \leq 7.5+0.125\left(V_{u}^{\prime}-\right.$ $\left.\underline{\omega}_{p} \times \underline{r}_{p}\right)$.
- Astronaut approval for updating has been given (V57).

```
*DELQFIX = 200 ft
```


STATE VECTOR EXTRAPOLATION

State vector extrapolation is accomplished by an Average G routine at 2-second intervals coincident with PIPA $\Delta \mathrm{V}$ processing.

LM position vector ($\underline{r}_{\mathrm{p}}$) is extrapolated assuming constant velocity and acceleration over the 2 -second interval

$$
\begin{aligned}
& r=r_{0}+v_{0} \Delta t+\frac{1}{2} \text { a } \Delta t^{2} \\
& \underline{r}_{p}=\underline{r}_{n-1}+\underline{v}_{n-1}\left(t_{n}-t_{n-1}\right)+\frac{\Delta \widetilde{v} p}{2} \Delta t+\frac{g_{n-1}}{2} \Delta t^{2}
\end{aligned}
$$

where

$$
\underline{r}_{n-1}=\text { position vector }\left(\underline{r}_{p}\right) \text { at end of previous interval }
$$

$\underline{v}_{n-1}=$ velocity vector $\left(\mathrm{v}_{\mathrm{p}}\right)$ at end of previous interval
$\Delta \tilde{\mathrm{v}}_{\mathrm{p}}=$ accumulated PIPA $\Delta \mathrm{V}$ pulses during 2-second interval
$\underline{g}_{n-1}=$ lunar gravitational acceleration at end of previous interval
LM velocity vector $\left(\underline{v}_{p}\right)$ is extrapolated using PIPA ΔV pulses and the average gravitational acceleration over the 2 -second interval

$$
\begin{aligned}
& v=v_{0}+a \Delta t \\
& \underline{v} p=\underline{v} n-1+\underline{\Delta \tilde{v}} p+\left[\frac{\underline{\underline{g}} \mathrm{n}-1+g_{p}}{2}\right] \Delta t
\end{aligned}
$$

where
$\underline{\mathrm{v}}_{\mathrm{n}-1}=$ velocity $(\underline{\mathrm{v}} \mathrm{p})$ at end of previous interval
$\Delta \tilde{v}_{p}=$ accumulated PIPA $\Delta \mathrm{V}$ pulses over 2-second interval
$\mathrm{g}_{\mathrm{n}-1}=$ lunar gravitational acceleration at end of previous interval
$\mathrm{g}_{\mathrm{p}}=$ lunar gravitational acceleration at end of present interval
$\underline{g}_{\mathrm{p}}=\frac{-\mu_{\mathrm{M}}}{\mathrm{r}_{\mathrm{p}}{ }^{3}} \underline{r}_{\mathrm{p}}$
In addition to the state vector update, the following terms are computed
Altitude

$$
\mathrm{h}^{\prime}=\mathrm{r}_{\mathrm{p}}-\mathrm{r}_{\mathrm{Ls}}
$$

where
$r_{p}=$ magnitude of position, \underline{r}_{p}
$r_{\mathrm{LS}}=$ magnitude of landing site, $\underline{r}_{\mathrm{LS}}$
Velocity $\quad \mathrm{v}^{\prime}=|\underline{p}|$
Mass $\quad m_{n}=m_{n-1}-\left|\underline{\Delta} \tilde{v}_{p}\right| m_{n-1} / V_{e}\left(V_{e}=\right.$ Exhaust Velocity Constant $)$
Velocity
Increment $\quad \Delta V=\Delta V+\left|\Delta \tilde{v}_{p}\right|$

UPDATE THE STATE VECTOR USING

LR RANGE DATA

- Compute the measurement residual

$$
\delta q=\tilde{q}^{*}-q^{\prime}
$$

where
$\tilde{q}^{*}=$ altitude derived from LR slant range
$q^{\prime}=$ estimated altitude

- Update the position vector using the precomputed gain and measurement residual

$$
\underline{r}_{\mathrm{p}}=\underline{\mathrm{r}}_{\mathrm{p}}+\omega \delta \underline{\underline{u}}_{\mathrm{hp}}
$$

UPDATE THE STATE VECTOR USING

LR VELOCITY DATA

The Landing Radar has three velocity components. They are used (one during each 2-second interval) to update state according to the time line shown below

- Compute the measurement residual corresponding to the time that the velocity data is read (t_{u}).

$$
\delta q=\tilde{q}_{u}-q_{u}^{\prime}
$$

$$
\tilde{q}_{u}=L R \text { velocity component read at time } t_{u}
$$

$$
q_{u}^{\prime}=\text { estimated component of LM relative velocity in the direction of } \widetilde{q}_{u}
$$

$$
q_{u}^{\prime}=\left(\underline{v}_{u}^{\prime}-\omega_{\mathrm{p}} \times \underline{r}_{p}\right) \cdot \underline{u}_{A P_{u}}
$$

where
$\underline{\omega}_{p} \times \underline{r}_{p}=$ velocity of lunar surface
$\underline{u}_{A P_{u}}=$ unit vector in direction of LM velocity data
$\underline{v}_{u}^{\prime}-\underline{\omega}_{\mathrm{p}} \times \underline{\mathrm{r}}_{\mathrm{p}}=$ velocity of LM relative to lunar surface
$v_{u}^{\prime}=$ estimated LM velocity at time t_{u}
$\underline{v}_{u}^{\prime}=\underline{v}_{n-1}+\tilde{\Delta V}_{u}+g_{n-1}\left(t_{u}-t_{n-1}\right)$
where
$\underline{v}_{n-1}=L M$ velocity at end of previous update cycle
$\Delta \underline{\tilde{v}}_{u}=$ PIPA ΔV read at time of $L R$ velocity data t_{u}
$\mathrm{g}_{\mathrm{n}-1}=$ lunar gravitational acceleration at end of previous cycle

- Update the LM velocity vector at time t_{n} using measurement residual and extrapolate velocity $\left(\mathrm{v}_{\mathrm{p}}\right)$

$$
\underline{v}_{\mathrm{p}}=\underline{\mathrm{v}}_{\mathrm{p}}+\omega_{\mathrm{u}} \delta \mathrm{q} \underline{\mathrm{u}}_{\mathrm{AP}}^{\mathrm{u}}
$$

$$
\begin{aligned}
& \omega_{u}=0, v^{\prime}>v_{m} \\
& \omega_{u}= c\left(1-v^{\prime} / v_{m}\right), v^{\prime} \leq v_{m} \\
& c=K_{v x}, \tilde{q}_{u}=V_{x} \\
&=K_{v y}, \tilde{q}_{u}=V_{y} \\
&=K_{v z}, \tilde{q}_{u}=V_{z}
\end{aligned}
$$

LUNAR DESCENT - STATE VECTOR UPDATE ROUTINE

 RECURSIVE FILTER BLOCK DIAGRAM

State Vector Extrapolation

$$
\underline{x}^{\prime}=\left[\begin{array}{l}
\underline{r}_{p} \\
\frac{V}{-p}
\end{array}\right]=\left[\begin{array}{l}
\underline{r}_{n-1}+\left(t_{n}-t_{n-1}\right)\left(\underline{V}_{n-1}+\frac{\Delta V}{2}+\frac{\underline{g}_{n-1}}{2} \Delta t\right) \\
\left.\underline{v}_{n-1}+\Delta \widetilde{V}_{p}+\underline{g}_{p}+\underline{g}_{n-1}\right) \frac{\Delta t}{2}
\end{array}\right]
$$

- State Vector Update Using LR Data

$$
\underline{\hat{x}}=\left[\begin{array}{c}
\underline{r}_{\mathrm{p}} \\
\underline{\mathrm{~V}}_{\mathrm{p}}
\end{array}\right]+\left[\begin{array}{ccc}
\delta q_{\mathrm{h}} & \omega & \underline{u}_{\mathrm{hp}} \\
\delta q_{\mathrm{u}} & \omega_{\mathrm{u}} & \underline{u}_{\mathrm{AP}}^{\mathrm{u}}
\end{array}\right]
$$

LANDING POINT DESIGNATION

Landing site redesignation

LUNAR SURFACE ALIGNMENT - P57

OPTION	Los direction in basic ref. coord.	calculate refsmmat
0	 $\mathrm{LM}+\overline{\mathrm{Y}}$ and $+\overline{\mathrm{Z}}$ stored from prevtous alignment (P57, P68)	
1		
2		
3		

$\mathrm{MCl}=$ Moon Centored Inerttal; SMCS $=$ Stable Member Coordinate System

V37 Enter, 57 Enter

V06 N34 Flashing
Time of alignment ($\mathrm{h}, \mathrm{min}, 0.01 \mathrm{~s}$)
V05 N06 Flashing
R1: 00010
R2: $0000 \times$ Alignment mode
0 -anytime, 1 -REFSMMAT +
2-two bodies, 3 one body +9
R3: 00 A B 0 Datcode
$A=0-$ REFSMMAT not defined
1-REFSMMAT defined
$B=0-L M$ attitude not available 1-LM attitude available

V06 N04 Flashing
Gravity error angle (0.01 deg)
V06 N93 Flashing
X, Y, and Z gyro torquing angles (0.001 deg)
V50 N25 Flashing
R1: 00014 Fine align option
V06 N89 Flashing
Latitude, longitude/2, altitude of landing site ($0.001 \mathrm{deg}, 0.001 \mathrm{deg}, 0.01 \mathrm{nmi}$)

V37 Enter, 57 Enter
V06 N34 Flashing
Time of alignment (h, min, 0.01 s)
V05 N06 Flashing
R1: 00010
R2: $0000 \times$ Alignment mode
0-anytime, 1 -REFSMMAT $+g$
2-two bodies, 3-one body $+g$
R3: 00 A B 0 Datcode
$A=0-$ REFSMMAT not defined
1-REFSMMAT defined
$B=0-L M$ attitude not available
1-LM attitude available
V06 N04 Flashing
Gravity error angle (0.01 deg)
V06 N93 Flashing
X, Y, and Z gyro torquing angles (0.001 deg)
V50 N25 Flashing
R1: 00014 Fine align option
V06 N89 Flashing
Latitude, longitude/2, altitude of landing site (0.001 deg, $0.001 \mathrm{deg}, 0.01 \mathrm{nmi}$

+	0	0			Hours			N34	+	0	0			
+	0	0	0		Minutes Seconds	of Alignment			+	0	0	0		
+	0								+	0				
\times	0	0	0	0	Alignment Mode				x	0	0	0	0	
					Gravity Error Angle (deg)									
x	0	0			Star Code 1			N70	X	0	0			
					Cursor Angle (deg)			N79						
					Spiral Angle (deg) Star No. 1									
x	0	0	0	0	Position Code				X	0	0	0	0	
X	0	0			Star Code 2			N70	X	0	0			
					Cursor Angle (deg)			N79						
					Spiral Angle (deg) Star No. 2									
x	0	0	0	0	Position Code				X	0	0	0	0	
					Star Angle Difference (deg)			N05						
						Gyro		N93						
						TorquingAngles								
					z (deg)									
					X	Calculated								
						Gyro Drifts (meru)								
					z									
					Latitude (deg)			N89						
					Longitude/2 (deg) Landing Site Altitude (nmi)									

V37 Enter, 22 Enter

V06 N45 Flashing, R3: Middle Gimbal Angle
V05 N70 Flashing, R2: A B 0 DE Landmark Code

> A1 - Known, A2 - Unknown
> B - Index of offset designator
> DE - Landmark ID

V06 N89 Flashing Landmark Coordinates
R1: Latitude
R2: Longitude/2
R3: Altitude
V51 Flashing - Please Mark

NOTES:

V37 Enter, 52 Enter
V04 N06 Flashing
R1: 00001
R2: $0000 \times$ IMU Align Option
1 - Preferred, 2 - Nominal
3 - REFSMMAT, 4 - Landing Site
V51 Flashing - Please Mark

X	0	0	0	0	P52 Option		X	0	0	0	0	
+	0	0			Hours		+	0	0			
+	0	0	0		Minutes	GET	+	0	0	0		
$+$	0				Seconds		+	0				
X	0	0	0		Celestial Body Code	N71	X	0	0	0		
					Star Angle Difference (degrees)	N05						
					$x{ }_{\text {Gyro }}$	N93						
					Gyro Torquing Angles							
					$Z \quad \text { (degrees) }$,			
					x							
					Y $\}$Calculated Gyro Drift							
					$z \int \text { (meru) }$							

NOTES:

V37 Enter, 30 Enter
V06 N33 Flashing, Load Desired GETI
V06 N81 Flashing, Load Desired Δv

NOTES:

V37 Enter, 40 Enter
V50 N18 Flashing, Request Maneuver to FDAI R, P, Y Angles
V06 N18, rDAI R, P, Y Angles After Maneuver to Burn Attitude
V50 N-5 Flashing, R1 = 00204 , Gimbal Actuator Test Option
Vif N40, 'ime from Ignition, Velocit: to be Gained, Measured Change in Velocity
$\because 99$ N40 Flashing, Engine On En:bie Request
V06 N40, Time from Cutoff, Velocity to be Gained, Measured Change in Velocity
V16 N40 Flashing, Final Values at Engine Cutoff
V16 N85 Flashing, Body Axes Residuals (to be Nulled)
V37 Flashing, V82 Enter
V16 N44 Flashing, Apogee Altitude, Perigee Altitude, Time to Freefall to $35 \mathrm{~K} f \mathrm{Moon}$ Orbit, 300 K ft Earth Orbit

R2: $0000 \times$ IMU Align Option
1 - Preferred, 2 - Nominal
3 - REFSMMAT, 4 - Landing Site
V51 Flashing - Please Mark

NOTES:

V37 Enter, 22 Enter
V06 N45 Flashing, R3: Middle Gimbal Angle
V05 N70 Flashing, R2: A B 0 D E Landmark Code
A1 - Known, A2 - Unknown
B - Index of offset designator
DE - Landmark ID
V06 N89 Flashing Landmark Coordinates

$$
\begin{array}{ll}
\text { R1: Latitude } \\
\text { R2: } & \text { Longitude/2 } \\
\text { R3: } & \text { Altitude }
\end{array}
$$

V51 Flashing - Please Mark

+	0	0			$\left.\begin{array}{l}\text { Hours } \\ \text { Minutes } \\ \text { Seconds }\end{array}\right\}$ GET		+	0	0		
$+$	0	0	0				+	0	0	0	
$+$	0						+	0			
					LAT (+ north)	N89					
					LONG/2 (+ east)						
					ALT (nmi)						
-					$\Delta \mathrm{R} \mathrm{nmi}$	N49					,
				¢	$\Delta \mathrm{Vft} / \mathrm{s}$						¢

+	0	0			$\left.\begin{array}{l}\text { Hours } \\ \text { Minutes } \\ \text { Seconds }\end{array}\right\}$ GET		+	0	0		
+	0	0	0				+	0	0	0	
+	0						+	0			
					LAT (+ north)	N89					
					LONG/2 (+ east)						
					ALT (nmi)						
					$\Delta \mathrm{Rnmi}$	N49					
				d	$\Delta V \mathrm{ft} / \mathrm{s}$						¢

NOTES:

V37 Enter, 57 Enter

V06 N34 Flashing
Time of alignment ($\mathrm{h}, \mathrm{min}, 0.01 \mathrm{~s}$)
V05 N06 Flashing
R1: 00010
R2: 0000 X Alignment mode
0 -anytime, 1 -REFSMMAT +
2-two bodies, 3-one body $+g$
R3: 00 AB 0 Datcode
$A=0$-REFSMMAT not defined
1-REFSMMAT defined
$B=0-L M$ attitude not available 1-LM attitude available

V06 N04 Flashing
Gravity error angle (0.01 deg)
V06 N93 Flashing
X, Y, and Z gyro torquing angles (0.001 deg)
V50 N25 Flashing
R1: 00014 Fine align option
V06 N89 Flashing
Latitude, longitude/2, altitude of landing site ($0.001 \mathrm{deg}, 0.001 \mathrm{deg}, 0.01 \mathrm{nmi}$)

V37 Enter, 22 Enter V04 N06 Flashing

R1: 00012
R2: $0000 \times(1-C S M$ will not change orbit,
2-CSM will change orbit

V06 N33 Flashing

Time of ascent (h, min, 0.01 s)
V50 N25 Flashing (if RR Auto mode not selected)
R1: 00201 - switch RR mode to Auto

V37 Enter, 12 Enter
V06 N33 Flashing
Time of ascent (h, min, 0.01 s)
V06 N76 Flashing
Downrange velocity, radial velocity, crossrange ($0.1 \mathrm{ft} / \mathrm{s}, 0.1 \mathrm{ft} / \mathrm{s}, 0.1 \mathrm{nmi}$)
V50 N25 Flashing
R1: 00203 (switch Guidance Control to PGNS, Mode to Auto, Thrust Control to Auto)
V06 N74 Flashing
TFI, yaw after rise, pitch after rise ($\mathrm{min} / \mathrm{s}, 0.01 \mathrm{deg}, 0.01 \mathrm{deg}$)
V99 N74 Flashing
Engine on enable
V06 N63 Flashing
VI, HDOT, H ($0.1 \mathrm{ft} / \mathrm{s}, 0.1 \mathrm{ft} / \mathrm{s}, \mathrm{ft})$
V16 N85 Flashing
VGX (LM), VGY (LM), VGZ (LM) ($0.1 \mathrm{ft} / \mathrm{s}$)
V82 Enter
V04 N06 Flashing
R1: 00002
R2: $0000 \times$ (1-this vehicle, 2-other vehicle)
V16 N44 Flashing
Apocenter altitude, pericenter altitude, TFF ($0.1 \mathrm{nmi}, 0.1 \mathrm{nmi}, \mathrm{min} / \mathrm{s}$)

V37 Enter, 57 Enter

V06 N34 Flashing
Time of alignment ($\mathrm{h}, \mathrm{min}, 0.01 \mathrm{~s}$)
v05 N06 Flashing
R1: 00010
R2: $0000 \times$ Alignment mode
0 -anytime, 1 -REFSMMAT $+g$ 2-two bodies, 3-one body +9
R3: 00 A B 0 Datcode
$A=0-$ REFSMMAT not defined
1-REFSMMAT defined
$B=\begin{gathered}0-L M \text { attitude not available } \\ \\ 1-L M \text { attitude available }\end{gathered}$
V06 N04 Flashing
Gravity error angle (0.01 deg)
V06 N93 Flashing
X, Y, and Z gyro torquing angles (0.001 deg)
V50 N25 Flashing
R1: 00014 Fine align option
V06 N89 Flashing
Latitude, longitude $/ 2$, altitude of landing site ($0.001 \mathrm{deg}, 0.001 \mathrm{deg}, 0.01 \mathrm{nmi}$)

$\mathrm{a}_{\mathrm{R}}=(\mathrm{A}+\mathrm{B}) / \tau-\mu \mathrm{m} / \mathrm{R}^{2} \quad$ Command specific force (vertical)
$\mathrm{a}_{\mathrm{Y}}=(\mathrm{C}+\mathrm{D}) / \tau \quad$ Command specific force (cross range)
$\mathrm{a}_{\mathrm{Z}}=\left(\mathrm{a}_{\mathrm{T}}{ }^{2}-\mathrm{a}_{\mathrm{h}}{ }^{2}\right)^{1 / 2} \mathrm{SGN}\left(\dot{\mathrm{Z}}_{\mathrm{D}}-\dot{\mathrm{Z}}\right) \quad$ Command specific force (range)
$A=$ Pitch attitude constant $=\left[-K_{1} B-\left(\dot{R}_{D}-\dot{R}\right) / L\right]$
$\mathrm{B}=$ Pitch Rate Constant $=\left[\mathrm{K}_{2}\left(\dot{\mathrm{R}}_{\mathrm{D}}-\dot{\mathrm{R}}\right)-\mathrm{R}_{\mathrm{D}}-\mathrm{R}-\dot{\mathrm{R}} \mathrm{T}_{\mathrm{GO}}\right] / \mathrm{T}_{\mathrm{GO}} \mathrm{E}$.
$\mathrm{C}=\mathrm{Y}$ aw Attitude Constant $=\left[-\mathrm{K}_{1} \mathrm{D}-\left(\dot{\mathrm{Y}}_{\mathrm{D}}-\dot{\mathrm{Y}}\right) / \mathrm{L}\right]$
$\mathrm{D}=\mathrm{Y}$ aw Rate Constant $=\left[\mathrm{K}_{2}\left(\dot{\mathrm{Y}}_{\mathrm{D}}-\dot{\mathrm{Y}}\right)-\mathrm{Y}_{\mathrm{D}}-\mathrm{Y}-\dot{\mathrm{Y}} \mathrm{T}_{\mathrm{GO}}\right] / \mathrm{T}_{\mathrm{GO}} \mathrm{E}$
Where:
$a_{h}=$ specific force in RY plane.
$\tau=$ mass/mass flow rate
$\mathrm{T}_{\mathrm{GO}} \approx \mathrm{f}$ (APS Tail off. mass/mass flow rate, Exhaust velocity, velocity to be gained)
L, $E, K_{1}, K_{2} \approx \mathrm{f}$ (mass/mass flow rate. Exhaust velocity. Time to go)
$\mathrm{a}_{\mathrm{T}}=$ available specific force
$\mu \mathrm{m}$ lunar gravitational constant

LUNAR ASCENT TO ORBIT INSERTION

$(\underline{9 \times 45 \mathrm{nmi} \text { ORBIT })}$

LM INSERTION
 TO CSM ORBIT.

V37 Enter, 52 Enter
V04 N06 Flashing
R1: 00001
R2: $0000 \times$ IMU Align Option
1 - Preferred, 2 - Nomina
3 - REFSMMAT, 4 - Landing Site
V01 N70 Flashing
R1: 00 CDE
C - AOT Detent
1 - L, 2 - F, 3-R
4-Any Rear, 5-COAS
V51 Flashing - Please Mark

x	0	0	0	0	P52 Option		\times	0	0	0	0	
+	0	0			Hours		+	0	0			
$+$	0	0	0		$\left.\begin{array}{l}\text { Minutes } \\ \text { Seconds }\end{array}\right\}$ GET		+	0	0	0		
$+$	0						$+$	0				
x	0	0			AOT Detent and Star ID	N71	X	0	0			
					Star Angle Difference (degrees)	N05						
					$\left.\begin{array}{l} \mathrm{X} \\ \mathrm{Y} \\ \mathrm{Z} \end{array}\right\} \begin{aligned} & \text { Gyro } \\ & \begin{array}{l} \text { Torquing } \\ \text { Angles } \\ \text { (degrees) } \end{array} \\ & \text { and } \end{aligned}$	N93						
					$\left.\begin{array}{l} X \\ Y \\ Z \end{array}\right\} \begin{aligned} & \text { Calculated } \\ & \text { Gyro } \\ & \text { Drift } \\ & \text { (meru) } \end{aligned}$							

NOTES:

RENDEZVOUS DISPLAYS (ANALOG)

LM RENDEZVOUS DISPLAYS (Digital)

V37 Enter, 20 Enter
V50 N18 Flashing, Request Maneuver to FDAI Angles

V50 N25 Flashing

R1: 00201 Change RR Mode
$\because 50$ H!25!?"ashirg
R1: 00205 Manual Slew RR for Lock-on
DSKY BLANKS - RR Taking Marks

V06 N49 Flashing

R3: $0000 \times$ Source Code
$1-R R$ range, $2-R R$ range rate
3-RR shaft angle, $4-R R$ trunnion angle

V. 37 Enter, 20 Enter

V80 N18 Flashing, Request Maneuver to FDAI Angles
V60 N25 Flashing
R1: 00201 Change RR Mode
1.0. H ! 25 ! 'lachirg

R1: 00205 Manual Slew RR for Lock-on
D: $: K Y$ BLANKS - RR Taking Marks
V06 N49 Flashing
R3: $0000 \times$ Source Code
1 - RR range, 2 - RR range rate
3-RR shaft angle, 4-RR trunnion angle

							Between RR nd State Vector	N05							
							mil	N49							
							t/s)								
x	0	0	0	0			Code		x	0	0	0			
+						R		N18	+						
+							Final FDAI Angles (degrees)		+						
+						Y			+						

P32-COELLIPTIC SEQUENCE INITIATION (CSI)

V37 Enter, 32 Enter
V06 N11 Flashing
TIG of CSI (h, min, 0.01 s)
V06 N55 Flashing
Number of apsidal crossings, elevation angle for TPI ($+0000 \times, 0.01 \mathrm{deg}$)
V06 N37 Flashing
TIG of TPI (h, min, 0.01 s)
V16 N45 Flashing
Marks, time from ignition, middle gimbal angle (marks, min/s, 0.01 deg) V06 N75 Flashing
$\Delta H(C D H), \Delta T(C D H-C S I), \Delta T(T P I-C D H)(0.1 \mathrm{nmi}, \mathrm{min} / \mathrm{s}, \mathrm{min} / \mathrm{s})$
V06 N81 Flashing
$\Delta V_{X}(L V), \Delta V_{Y}(L V), \Delta V_{Z}(L V)$ of CSI ($0.1 \mathrm{ft} / \mathrm{s}$)
V06 N82 Flashing
$\Delta V_{X}(L V), \Delta V_{Y}(L V), \Delta V_{Z}(L V)$ of $C D H(0.1 \mathrm{ft} / \mathrm{s})$
V90 Enter (out of plane correction in final computation only)
V06 N16 Flashing
Time of event (h, min, 0.01. s)
V06 N90 Flashing
Y, YDOT, PSI ($0.01 \mathrm{~min}, 0.1 \mathrm{ft} / \mathrm{s}, 0.01 \mathrm{deg}$)

COELLIPTIC SEQUENCE INITIATION

NOTE: SHADOW IS WITH RESPECT
TO CSM ORBIT.

LM PLANE CHANGE
P3O-EXTERNAL $\triangle V$ (LM)

V37 Enter, 30 Enter
V06 N33 Flashing, Load Desired GETI
V06 N81 Flashing, Load Desired ΔV

NOTES:

V37 Enter, 41 Enter
V50 N18 Flashing, Request Maneuver to FDAI R, P, Y Angles
V06 N18, FDAI R, P, Y Angles After Maneuver to Burn Attitude
V06 N85, X, Y, Z Body Axes Velocity to be Gained
V16 N85 (Average G on at TIG-30) Velocity to be Gained
V16 N85 Flashing, Body Axes Residuals (to be Nulled)

P33-CONSTANT DELTA HEIGHT (CDH)

V37 Enter, 33 Enter
V06 N13 Flashing
TIG of CDH (h, min, 0.01 s)
V16 N45 Flashing
Marks, time from ignition, middle gimbal angle (marks, min/s, 0.01 deg)
V06 N75 Flashing
$\Delta H(C D H), \Delta T(T P I-C D H), \Delta T(T P I-T P I N O M)(0.1 \mathrm{nmi}, \mathrm{min} / \mathrm{s}, \mathrm{min} / \mathrm{s})$ V06 N81 Flashing
$\Delta V_{X}(L V), \Delta V_{Y}(L V), \Delta V_{Z}(L V)$ for $C D H(0.1 \mathrm{ft} / \mathrm{s})$
V90 Enter (out of plane correction in final compuation)
V06 N16 Flashing
Time of event (h, min, 0.01 s)
V06 N90 Flashing
Y, YDOT, PSI ($0.01 \mathrm{nmi}, 0.1 \mathrm{ft} / \mathrm{s}, 0.01 \mathrm{deg}$)

CONSTANT DELTA HEIGHT

 TO CSM ORBIT

V37 Enter, 41 Enter
V50 N18 Flashing, Request Maneuver to FDAI R, P, Y Angles V06 N18, FDAI R, P, Y Angles After Maneuver to Burn Attitude
V06 N85, X, Y, Z Body Axes Velocity to be Gained
V16 N85 (Average G on at TIG-30) Velocity to be Gained
V16 N85 Flashing, Body Axes Residuals (to be Nulled)

V37 Enter, 20 Enter
V50 N18 Flashing, Request Maneuver to FDAI Angles

V50 N25 Flashing

R1: 00201 Changê RR Mode
$\because 50$ r!2s!-1achirg
R1: 00205 Manual Slew RR for Lock-on

DSKY BLANKS - RR Taking Mark

V06 N49 Flashing

R3: $0000 \times$ Source Code
1 - RR range, $2-R R$ range rate
$3 R R$ shaft angle, 4 - RR trunnion angle

V37 Enter, 34 Enter
V06 N37 Flashing
TIG of TPI (h, min, 0.01 s)
V06 N35 Flashing
R2: Elevation angle, R3: Central angle ($0.01 \mathrm{deg}, 0.01 \mathrm{deg}$)

V16 N45 Flashing

Marks, time from ignition, middle gimbal angle (marks, min/s, 0.01 deg) V06 N58 Flashing

Pericenter altitude, $\Delta V(T P I), \Delta V(T P F)(0.1 \mathrm{nmi}, 0.1 \mathrm{ft} / \mathrm{s}, 0.1 \mathrm{ft} / \mathrm{s})$

V06 N81 Flashing

$\Delta V_{X}(L V), \Delta V_{Y}(L V), \Delta V_{Z}(L V)$ for TPI ($0.1 \mathrm{ft} / \mathrm{s}$)
V06 N59 Flashing
$\Delta V_{X}($ LOS $), ~ \Delta V_{Y}($ LOS $), ~ \Delta V_{Z}($ LOS $)$ for TPI $(0.1 \mathrm{ft} / \mathrm{s})$

TERMINAL PHASE INITIATION

P41 - RCS THRUSTING

V37 Enter, 41 Enter
V50 N 18 Flashing, Request Maneuver to FDAI R, P, Y Angles
V06 N18, FDAI R, P, Y Angles After Maneuver to Burn Attitude
V06 N85, X, Y, Z Body Axes Velocity to be Gained
V16 N85 (Average G on at TIG -30) Velocity to be Gained
V16 N85 Flashing, Body Axes Residuals (to be Nulled)

LM RENDEZVOUS FINAL PHASE

V37 Enter, 52 Enter
V04 N06 Flashing
R1: 00001
R2: $0000 \times$ IMU Align Option
1 - Preferred, 2 - Nominal,
3 - REFSMMAT, 4 - Landing Site
V51 Flashing - Please Mark

X	0	0	0	0	P52 Option			X	0	0	0	0	
+	0	0			$\left.\begin{array}{l}\text { Hours } \\ \text { Minutes } \\ \text { Seconds }\end{array}\right\}$ GET			+	0	0			
+	0	0	0					+	0	0	0		
+	0							+	0				
X	0	0	0		Celestial Body Code		N71	X	0	0	0		
					Star Angle Difference (degrees)		N05						
					$\left.\begin{array}{l} X \\ Y \\ Z \end{array}\right\} \begin{aligned} & \text { Gyro } \\ & \begin{array}{l} \text { Torquing } \\ \text { Angles } \\ \text { (degrees) } \end{array} \end{aligned}$		N93						
					$\left.\begin{array}{l}X \\ y \\ z\end{array}\right\}$Calculated Gyro Drift (meru)								

X	0	0	0	0	P52 Option			x	0	0	0	0	
+	0	0			$\left.\begin{array}{l}\text { Hours } \\ \text { Minutes } \\ \text { Seconds }\end{array}\right\}$ GET			+	0	0			
$+$	0	0	0					+	0	0	0		
+	0							+	0				
X	0	0	0		Celestial Body Code		N71	X	0	0	0		
					Star Angle Difference (degrees)		N05						
					$\left.\begin{array}{l}X \\ Y \\ Z\end{array}\right\}$Gyro Torquing Angles (degrees)		N93						
					$\left.\begin{array}{l} X \\ Y \\ z \end{array}\right\} \begin{aligned} & \text { Calculated } \\ & \text { Gyro } \\ & \text { Drift } \\ & \text { (meru) } \end{aligned}$								

NOTES:

V37 Emter, 30 Enter
VO6 N33 Flaehing, Load Desired GETI
v06 N81 Flashing, Loed Desired Δv

TRANSEARTH INJECTION

EVENT			$B T / \Delta \mathrm{V}$			TTNE								PRETHRUST TARGETING
TEI (NOMINAL) (POSIGRADE)			$\begin{aligned} & 149.0 / \\ & 3292.7 \end{aligned}$		15:00;00		$\begin{aligned} & \text { SPS/G \& N } \\ & \text { EXT } \Delta V(P-40) \end{aligned}$							P-30
				$\begin{array}{\|ll} \Delta \mathrm{v}_{\mathrm{X}} & \text { N85 } \\ \Delta \mathrm{V}_{\mathrm{Y}} & \text { RESIDUALS } \\ \Delta \mathrm{ft} / \mathrm{s} \\ \Delta \mathrm{~V}_{\mathrm{Z}} & \text { (BODY AXIS) } \end{array}$				+	x	x				h
			Δ					+	x	X	x			- min GET
			Δ					+	X					s
---*- $\mathrm{V}_{\mathrm{X}_{\text {TRIM }}}$					$--\cdots-\mathrm{V}_{\mathrm{Y}_{\text {TRIM }}}$									RIM ${ }^{\text {ft/s }}$

V37 Enter, 30 Enter
V06 N33 Flashing, Load Desired GETI
V06 N81 Flashing, Load Desired ΔV

NOTES:

OPTIONAL TEI

V37 Enter, 52 Enter
v04 N06 Flashing
R1: 00001
R2: $0000 \times$ IMU Align Option
1 - Preferred, 2 - Nominal,
3 - REFSMMAT, 4 - Landing Site
V51 Flashing - Please Mark

X	0	0	0	0	P52 Option			x	0	0	0	0	
+	0	0			$\left.\begin{array}{l}\text { Hours } \\ \text { Minutes } \\ \text { Seconds }\end{array}\right\}$ GET			+	0	0			
+	0	0	0					+	0	0	0		
+	0		¢					$+$	0				
X	0	0	0		Celestial Body Code		N71	X	0	0	0		
						ngle ence (degrees)	N05						
					$\left.\begin{array}{l} X \\ Y \\ Z \end{array}\right\}$	Gyro Torquing Angles (degrees)	N93						
					$\left.\begin{array}{l}X \\ Y \\ Z\end{array}\right\}$Calculated Gyro Drift (meru)								

X	0	0	0	0	P52 Option		X	0	0	0	0	
+	0	0			Hours		+	0	0			
+	0	0	0		Minutes $\}$ GET		+	0	0	0		
+	0				Seconds		+	0				
X	0	0	0		Celestial Body Code	N71	X	0	0	0		
					Star Angle Difference (degrees)	N05						
					$x)$	N93						
					$\left.\begin{array}{l}Y \\ Z\end{array}\right\}$Gyro Torquing Angles (degrees)							
					x							
					$\text { Y }\} \begin{aligned} & \text { Calculated } \\ & \text { Gyro } \end{aligned}$							
					$z \quad \text { (meru) }$							

NOTES:

V37 Enter, 30 Enter
V06 N33 Flashing, Load Desired GETI
v06 N81 Flashing, Load Desired Δv

P40 - SPS THRUSTING CSM

V37 Enter, 40 Enter
V50 N18 Flashing, Request Maneuver to FDAI R, P, Y Angles
V06 N18, FDAI R, P, Y Angles After Maneuver to Burn Attitude
V50 N25 Flashing, R1 $=00204$, Gimbal Actuator Test Option
V06 N40, Time from Ignition, Velocity to be Gained, Measured Change
VO6 N40, Time
in Velocity
v99 N40 Flashing, Engine On Enable Request
V06 N40, Time from Cutoff, Velocity to be Gained, Measured Change
in Velocity
V16 N40 Flashing, Final Values at Engine Cutoff
V16 N85 Flashing, Body Axes Residuals (to be Nulled)
V37 Flashing, V82 Enter
V16 N44 Flashing, Apogee Altitude, Perigee Altitude, Time to Freefall to $35 \mathrm{~K} \mathrm{ft} \mathrm{Moon} \mathrm{Orbit}$,

P41 - RCS THRUSTING

V37 Enter, 41 Enter

V 50 N18 Flashing, Request Maneuver to FDAI R, P, Y, Angles V06 N18, FDAI R, P, Y Angles After Maneuver to Burn Attitude V06 N85, X, Y, Z Body Axes Velocity to be Gained V16 N85 (Average G on at TIG-30) Velocity to be Gained V16 N85 Flashing, Body Axes Residuals (to be Nulled)

V37 Enter, 52 Enter
V04 N06 Flashing
R1: 00001
R2: $0000 \times$ IMU Align Option
1 -Preferred, 2 - Nominal,
3 - REFSMMAT, 4 - Landing Site
V51 Flashing - Please Mark

X	0	0	0	0	P52 Option		X	0	0	0	0	
+	0	0			$\left.\begin{array}{l}\text { Hours } \\ \text { Minutes } \\ \text { Seconds }\end{array}\right\}$		+	0	0			
+	0	0	0				+	0	0	0		
$+$	0		,				$+$	0				
X	0	0	0		Celestial Body Code	N71	X	0	0	0		
			-		Star Angle Difference (degrees)	N05						
					$\left.\begin{array}{l} X \\ Y \\ Z \end{array}\right\} \begin{aligned} & \text { Gyro } \\ & \text { Torquing } \\ & \begin{array}{l} \text { Angles } \\ \text { (degrees) } \end{array} \end{aligned}$	N93						
					$\left.\begin{array}{c}X \\ Y \\ Z\end{array}\right\}$Calculated Gyro Drift (meru)							

X	0	0	0	0	P52 Option		x	0	0	0	0	
+	0	0			Hours		$+$	0	0			
+	0	0	0		Minutes $\}$ GET		+	0	0	0		
$+$	0				Seconds		\pm	0				
X	0	0	0		Celestial Body Code	N71	X	0	0	0		
					Star Angle Difference (degrees)	N05						
					x)	N93						
					$x)$							
					$\begin{aligned} & \text { Y } \\ & \mathbf{Z} \end{aligned}\left\{\begin{array}{l} \text { Calculate } \\ \text { Gyro } \\ \text { Drift } \\ \text { (meru) } \end{array}\right.$							

NOTES:

V37 Enter, 30 Enter
V06 N33 Flashing, Load Desired GETI
V06 N81 Flashing, Load Desired ΔV

V37 Enter, 40 Enter
V50 N 18 Flashing, Request Maneuver to FDAI R, P, Y Angles
V06 N18, FDAI R, P, Y Angles After Maneuver to Burn Attitude
V50 N25 Flashing, R1 $=00204$, Gimbal Actuator Test Option
V06 N4O, Time from Ignition, Velocity to be Gained, Measured Change in Velocity
V99 N40 Flashing, Engine On Enable Request
vo6 N40, Time from Cutoff, Velocity to be Gained, Measured Change in Velocity
V16 N40 Flashing, Final Values at Engine Cutoff
V16 N85 Flashing, Body Axes Residuals (to be Nulled)
V37 Flashing, V82 Enter
V16 N44 Flashing, Apogee Altitude, Perigee Altitude, Time to Freefall
to 35 Kft Moon Or

P41 - P.CS THRUSTING

V37 Enter, 41 Enter

V50 N18 Flashing, Request Maneuver to FDAI R, P, Y, Angles V06 N18, FDAI R, P, Y Angles After Maneuver to Burn Attitude V05 N85, X, Y, Z Body Axes Velocity to be Gained
V16 N85 (Average G on at TIG-30) Velocity to be Gained V16 N85 Flashing, Body Axes Residuals (to be Nulled)

V37 Enter, 61 Enter
V06 N61 Flashing
V06 N60 Flashing, Record
V06 N63 Flashing, Used for EMS if no Communication
P62
V50 N25 Flashing, Request CM/SM Separation
V06 N61 Flashing
V06 N22, Monitor

P63

						Area								
X	x	X				R 0.05 g		X	X	x				
X	X	X				P 0.05 g		X	X	x				
x	x	x				Y 0.05 g		X	X	x				
						$\begin{aligned} & \text { GET } \text { Hor Ck } \\ & \text { P El-17 } \end{aligned}$								
X	X	X						X	X	x				
	0					Lat	N61		0					
						Long								
x	X	X				Max 9		x	X	X			,	
+						$\mathrm{V}_{400 \mathrm{~K}}$ $\gamma_{400 \mathrm{~K}}$	N60	+						
-	0	0						-	0	0				
+						RTGO EMS		+						
+						VIo		+						
			,			RTT								
x	x		,			RET $0.05 \mathrm{~g}{ }^{\prime \prime}$		x	x					
+	0	0				$\begin{aligned} & \mathrm{D}_{\mathrm{L}} \text { Max** } \\ & \mathrm{D}_{\mathrm{L}} \text { Min** } \\ & \mathrm{V}_{\mathrm{L}} \text { Max** } \\ & \text { V}_{\mathrm{L}} \text { Min** }^{*} \end{aligned}$	N69	+	0	0				
+	0	0						+	0	0				
+								+						
+								+						
X	X	X				D_{O} RET $V_{\text {Circ }}$		x	X	X				
x	x		,					x	x					
x	x		,			RETBBO RETEBO RETDRO		x	X					
x	x		,					x	x					
x	X							x	X					
x	x	X	X			SXTS SFT EI-2 TRN		x	x	x	x			
$+$,	0			+						0
+				0	0			+				0		0
X	X	X				BSS SPA El-2 SXP		X	x	x				
x	x							\times	x					
x	x	x						X	x	X			,	
X	X	X	X			Lift Vector		x	X	X	x			

AREA	XXX	Splashdown Area Defined by Target Line.
$\begin{aligned} & \text { R .05G } \\ & \text { P.05G } \\ & \text { Y.05G } \end{aligned}$	$\begin{aligned} & \text { XXX (deg) } \\ & \times \times X(\operatorname{deg}) \\ & X X X(\operatorname{deg}) \end{aligned}$	Spacecraft IMU Gimbal Angles Required for Aerodynamic Trim at 0.05 g
$\begin{aligned} & \text { GET } \\ & \text { (HOR CK) } \end{aligned}$	$\begin{aligned} & \text { XX:XX:XX } \\ & \text { (h:min:s) } \end{aligned}$	Time of Entry Attitude Horizon Check at EI-17 Minutes.
$\begin{aligned} & \text { P } \\ & \text { (HOR CK) } \end{aligned}$	XXX (deg)	Pitch Attitude for Horizon Check at EI-17 Minutes.
LAT	$\pm \times X . \times X$ (deg)	Latitude of Target Point.
LONG	$\pm \times X \times . \times \times$ (deg)	Longitude of Target Point.
MAX G	$X X . \times(\mathrm{g})$	Predicted Maximum Reentry Acceleration.
$\mathrm{V}_{400 \mathrm{~K}}$	XXXXX (ft / s)	Inertial Velocity at Entry Interface.
' 400 K	X.XX (deg)	Inertial Flight Path Angle at Entry Interface.
RTGO	XXXX.X (nmi)	Range to Go from 0.05 g to Target for EMS Initialization.
VIO	XXXXX. (ft/s)	Inertial Velocity at 0.05 g for EMS Initialization.
RRT	$\begin{aligned} & X X: X X: X X \\ & \text { (h:min:s) } \end{aligned}$	Reentry Reference Time Based on GET of Predicted 400K (DET Start).
RET .05G	$\begin{aligned} & X X: X X \\ & \text { (min:s) } \end{aligned}$	Time of 0.05 g from 400K (RRT).
DL MAX	X. XX (g)	Maximum Acceptable Value of Predicted Drag Level (from CMC).
DL MIN	X. $X \times$ (g)	Minimum Acceptable Value of Predicted Drag Level (from CMC).
V_{L}-MAX	XXXXX (ft/s)	Maximum Acceptable Value of Exit Velocity (from CMC).
V_{L} MIN	XXXXX (ft/s)	Minimum Acceptable Value of Exit Velocity (from CMC).
DO	X. XX (g)	Planned Drag Level During Constant g.
RET $\mathrm{V}_{\text {CIRC }}$	$\begin{aligned} & X X: X X \\ & (\min : s) \end{aligned}$	Time from EI that S/C Velocity Becomes Circular.
RETBBO	$\begin{aligned} & X X: X X \\ & (\min : s) \end{aligned}$	Time from El to the Beginning of Blackout.
RETEBO	$\begin{aligned} & X X: X X \\ & (\min : s) \end{aligned}$	Time from El to the End of Blackout.
RETDRO	$\begin{aligned} & X X: X X \\ & (\min : s) \end{aligned}$	Time from El to Drogue Deployment.
SXTS	XX (octal)	Sextant Star for Entry Attitude Check.
SFT	XXX. \times (deg)	Sextant Shaft Setting for Entry Attitude Check.
TRN	XX.X (deg)	Sextant Trunnion Setting for Entry Attitude Check.
BSS	XXX (octal)	Boresight Star for Entry Attitude Check Using the COAS.
SPA	XX. X (deg)	BSS Pitch Angle on COAS.
SXP	X. X (deg)	BSS X Position on COAS.
LIFT VECTOR	XX	Lift Vector Desired at 0.05 g Based on Entry Corroidor.

V37 Enter, 52 Enter

V04 N06 Flashing
R1: 00001
R2: $0000 \times$ IMU Align Option
1 - Preferred, 2 - Nominal
3 - REFSMMAT, 4 - Landing Site
V51 Flashing - Please Mark

NOTES:

V37 Enter, 30 Enter
V06 N33 Flashing, Load Desired GETI
V06 N81 Flashing, Load Desired Δv

notes:

P40 -- SPS THRUSTING CSM

V37 Enter, 40 Enter
V50 N 18 Flashing, Request Maneuver to FDAI R, P, Y Angles
V06 N18, FDAI R, P, Y Angles After Maneuver to Burn Attitude
V50 N25 Flashing, R1 $=00204$, Gimbal Actuator Test Option
v06 N4O, Time from Ignition, Velocity to be Gained, Measured Change in Velocity
V99 N40 Flashing, Engine On Enable Request
v06 N40, Time from Cutoff, Velocity to be Gained, Measured Change in Velocity
V16 N40 Flashing, Final Values at Engine Cutoff
V16 N85 Flashing, Body Axes Residuals (to be Nulled)
V37 Flashing, V82 Enter
V16 N44 Flashing, Apogee Altitude, Perigee Altitude, Time to Freefall
to 35 Kft Moon Orbit, 300 K ft Earth Orbit

P41 - P.CS THRUSTING

V37 Enter, 41 Enter

V50 N18 Flashing, Request Maneuver to FDAI R, P, Y, Angles
V06 N18, FDAI R, P, Y Angles After Maneuver to Burn Attitude
V06 N85, X, Y, Z Body Axes Velocity to be Gained
V16 N85 (Average G on at TIG-30) Velocity to be Gaine
V16 N85 Flashing, Body Axes Residuals (to be Nullied)

V37 Enter, 52 Enter

V04 N06 Flashing

R1: 00001
R2: $0000 \times$ IMU Align Option
1 - Preferred, 2 - Nominal
3 - REFSMMAT, 4 - Landing Site
V51 Flashing - Please Mark

X	0	0	0	0	P52 Option			x	0	0	0	0		
+	0	0			$\left.\begin{array}{l}\text { Hours } \\ \text { Minutes } \\ \text { Seconds }\end{array}\right\}$			+	0	0				
$+$	0	0	0					+	0	0	0			
+	0							+	0					
X	0	0	0		Celestial Body Code		N71	X	0	0	0			
					Star Angle Difference (degrees)		NO5							
					$\left.\begin{array}{c} X \\ Y \\ Z \end{array}\right\} \begin{aligned} & \text { Gyro } \\ & \text { Torquing } \\ & \text { Angles } \\ & \text { (degrees) } \end{aligned}$		N93							
					$\left.\begin{array}{c}X \\ Y \\ Z\end{array}\right\}$Calculated Gyro Drift (meru)									

x	0	0	0	0	P52 Option		x	0	0	0	0	
+	0	0			Hours		+	0	0			
+	0	0	0		Minutes $\}$ GET	GET	+	0	0	0		
$+$	0				Seconds		+	0				
x	0	0	0		Celestial Body Code	N71	X	0	0	0		
					Star Angle Difference (degrees)	N05						
					x (N 93							
					Y Torquing							
					x							
					Y							

NOTES:

V37 Enter, 61 Enter
V06 N61 Flashing
V06 N60 Flashing, Record
V06 N63 Flashing, Used for EMS if no Communication
P62
V50 N25 Flashing, Request CM/SM Separation
V06 N61 Flashing
V06 N22, Monitor
P63

	TYPICAL MISSION G ENTRY		
		NOMINAL	OPTIONAL
		ENTRY	ENTRY
INITIAL CONDITIONS AT ENTRY INTERFACE			
Time From Launch (day/h/min/s)	$8 / 3 / 1 / 6.5$	$8 / 3 / 13 / 32,9$	
Latitude	(deg)	3.527 S	3.033 S
Longitude	(deg)	171.376 E	171.357 E
Entry Angle	(deg)	6.500	6.510
Inertial Velocity	(ft/s)	$36,160.600$	$36,246.324$
Inertial Azimuth	(deg)	50.128	48.460
Angle Of Attack	(deg)	160.140	160.060 (approx)
Commanded Roll Angle	(deg)	0.000	0.000
SPLASH POINT CONDITIONS		$8 / 3 / 15 / 4.5$	$8 / 3 / 27 / 30.9$ (approx)
Time From Launch (day/h/min/s)	10.65 N	11.13 N	
Latitude	(deg)	172.50 W	172.50 W

MANEUVER FOOTPRINT AND NOMINAL GROUNDTRACK

PERTURBATIONS

BOOST MONITOR
TLI
LUNAR ORBIT
LM ASCENT
TEI
ENTRY

ERRORS IN PERICYNTHION
DUE TO VELOCITY ERRORS DURING IRANSLUNAR COAST

DIRECTION OF VELOCITY ERROR	ERROR IN PERICYNTHION ($\mathrm{n} . \mathrm{mi} / \mathrm{ft} / \mathrm{sec}$)
ERROR EXISTITNG AT TLI CUTOFF (02:44:18 GET)	
Along V Along $\bar{R} \times V$ Along $\overline{\mathrm{V}} \times(\underline{\mathrm{R}} \times \underline{\mathrm{V}})$	$\begin{array}{r} 112.32 \\ .11 \\ -6.76 \end{array}$
ERROR EXISTING AT MCC-1 (TLI + 9 hours) (11:44:18 GET)	
Along V Along $\bar{R} \times V$ Along $\bar{V} \times(\underline{R} \times \underline{V})$	$\begin{array}{r} 34.54 \\ 1.62 \\ -15.91 \end{array}$
ERROR EXISTING AT MCC-2 (TLI + 24 hours) ($26: 44: 18 \mathrm{GET}$)	
$\begin{aligned} & \text { Along } \frac{V}{A} \times V \\ & \text { Along } \times V(\underline{R} \times \underline{V}) \\ & \text { Along } \times(\underline{V} \end{aligned}$	$\begin{array}{r} 22.69 \\ 1.48 \\ -13.48 \end{array}$
ERROR EXISTING AT MCC-3 (LOI - 22 hours) (53:55:03 GET)	
$\begin{aligned} & \text { Along } V \\ & \text { Along } \bar{R} \times V \\ & \text { Along } \bar{V} \times(\underline{R} \times \underline{V}) \end{aligned}$	$\begin{array}{r} 10.04 \\ -5.77 \\ -\quad .98 \end{array}$
ERROR EXISTIING AT MCC-4 (LOI - 5 hours) ($70: 55: 03 \mathrm{GET}$)	
$\begin{aligned} & \text { Along } V^{*} \\ & \text { Along } \bar{R}^{*} \times V^{*} \\ & \text { Along } \bar{V}^{*} \times\left(\underline{R}^{*} \times V^{*}\right) \end{aligned}$	$\begin{aligned} & .40 \\ & 0 \\ & 2.71 \end{aligned}$

* \underline{R} and \underline{V} are with respect to moon centered inertial system

Transformation at TLI from stable member to $\underline{V}, \underline{R} \times \underline{V}$, and $\underline{V} \times(\underline{R} \times \underline{V})$.

$$
\left[\begin{array}{l}
\operatorname{UNIT}(\underline{\mathrm{V}}) \\
\operatorname{UNIT}(\underline{\mathrm{R}} \times \underline{\mathrm{V}}) \\
\operatorname{UNIT}(\underline{\mathrm{V}} \times \underline{\mathrm{R}} \times \underline{\mathrm{V}}))
\end{array}\right]=\left[\begin{array}{rrr}
.633 & .021 & -.773 \\
.020 & -.999 & -.014 \\
-.774 & -.008 & -.633
\end{array}\right]\left[\begin{array}{l}
\mathrm{X}_{\mathrm{SM}} \\
\mathrm{Y}_{\mathrm{SM}} \\
\mathrm{Z}_{\mathrm{SM}}
\end{array}\right]
$$

The thrust guidance used on Apollo, in simplified form, is as follows

The above steering loop attemps to drive V_{g} (velocity to be gained) to zero. The inability of the steering loop to drive V_{g} to zero will result in velocity residuals at the end of the burn as displayed in P-40.

Since the thrust guidance loop performs its calculations on the difference between ΔV measured and ΔV desired, the velocity residuals displayed by $P-40$ at the end of each burn are not caused by instrument errors but by the inability of the steering loop to drive V_{g} to zero.

Instrument errors result in a difference between the measured incremental velocity change and the true incremental velocity change. Assuming perfect cross product steering ($V_{\text {Residuals }}$ $=0$ in P-40) the resultant orbit will differ from the planned orbit. A measure of the difference between the actual and planned orbits is the error between actual and planned apogee and perigee.

The following tables relate incremental spacecraft velocity errors, during lunar orbit maneuvers, to errors in apogee and perigee. Knowing apogee and perigee errors, the table is used to obtain the required error in velocity, expressed in body axes coordinates. This velocity error is then converted to possible instrument errors by using the table relating PIPA bias and gyro drift to spacecraft velocity.

For example: Assume a perigee error of +5.0 nmi and zero spacecraft residuals, as shown in P-40, after the DOI maneuver.

1. Fram the "Lunar Orbit Maneuver Perturbation" table, the most sensitive spacecraft velocity error is ΔV_{X}.
2. The required velocity error is

$$
\Delta \mathrm{V}_{\mathrm{X}}=\frac{5.0}{-.700 \mathrm{n} \mathrm{mi}} \mathrm{mi} / \mathrm{ft} / \mathrm{sec}=-7.14 \mathrm{ft} / \mathrm{sec}
$$

3. The weighting factors relating instrument errors to velocity errors yield

$$
\begin{aligned}
& -0.84 \times 10^{-2} \mathrm{AB}_{\mathrm{X}} \times 58.6-3.17 \times 10^{-2} \mathrm{AB}_{\mathrm{Z}} \times 58.6=-7.14 \mathrm{ft} / \mathrm{sec} \\
& -0.49 \mathrm{AB}_{\mathrm{X}}-1.86 \mathrm{AB}_{\mathrm{Z}}=-7.14 \mathrm{ft} / \mathrm{sec}
\end{aligned}
$$

Therefore:

> Uncompensated $A B_{X}=+14.6 \mathrm{~cm} / \mathrm{sec}^{2}$ assuning $A B_{Z}=0$
> Uncompensated $A B_{Z}=+3.8 \mathrm{~cm} / \mathrm{sec}^{2}$ assuning $A B_{X}=0$
or a combination of the above could have caused the 5 n mi error in perigee.

The "Lunar Orbit Maneuver Perturbation" table also gives the transformation from stable member space to spacecraft body control axes space as follows:

where:

$$
\begin{aligned}
{[S M-N B]=} & \text { Transformation from stable member to the nav base using } \\
& \text { gimbal angles } \\
{\left[R_{X}\left(-7.25^{\circ}\right)\right]=} & \begin{array}{l}
\text { Rotation matrix about } X_{N B} \text { of }-7.25 \text { degrees to transform } \\
\\
\\
\\
\\
\text { from nav base space to spacecraft control axes space for } \\
\text { the }
\end{array}
\end{aligned}
$$

For the LM

The purpose of this transformation is to indicate the location of the stable member with respect to thrust. The assumed gimbal angles are as follows:

	OUIFR GIMBAL (degrees)	INNER GTMBAL (degrees)	MIDDLE GIMBAL (degrees)
LOI $^{\text {(den }}$			
IOI $_{2}$	358	227	345
IM DOI	0	239	358
IM CSI	180	285	0
IM CDH	0	188	0
IM TPI	0	8	0
TEI	0	276	0

For all maneuvers thrust is assumed along $+X_{S / C}$ axis with the exceptions of the CDH maneuver where thrust was assumed along the $-X_{S / C}$ axis, and the CSI and TPI maneuvers where thrust was assumed along the $+Z_{S / C}$ axis.

APOLLO 11 LUNAR ORBIT MANEUVER PERTURBATIONS

MANEUVER	BODY AXES VELOCITY ERRORS	ERROR IN PERIGEE (nmi/ft/s)	ERROR IN APOGEE ($\mathrm{nmi} / \mathrm{ft} / \mathrm{s}$)	STABLE MEMBER TO SPACECRAFT CONTROL AXES TRANSFORMATION $[\mathrm{SC}]=[\mathrm{M}][\mathrm{SM}]$		
LOI_{1}	$\begin{aligned} & \Delta \mathrm{V}_{\mathrm{X}} \\ & \Delta \mathrm{~V}_{\mathrm{y}} \\ & \Delta \mathrm{~V}_{\mathrm{z}} \end{aligned}$	-0.063	$\begin{aligned} & -0.802 \\ & -0.201 \\ & -0.095 \end{aligned}$	$\left[\begin{array}{l}-0.659 \\ -0.054 \\ -0.750\end{array}\right.$	-0.257 0.953 0.157	$\left.\begin{array}{r}0.706 \\ 0.296 \\ -0.642\end{array}\right]$
LOI_{2}	$\begin{aligned} & \Delta \mathrm{V}_{\mathrm{x}} \\ & \Delta \mathrm{~V}_{\mathrm{y}} \\ & \Delta \mathrm{~V}_{\mathrm{z}} \end{aligned}$	Graph A Graph B	Graph A Graph B	$\left[\begin{array}{r}-0.510 \\ 0.086 \\ -0.855\end{array}\right.$	-0.042 0.991 0.124	$\left.\begin{array}{r}0.859 \\ 0.099 \\ -0.502\end{array}\right]$
$\begin{aligned} & \mathrm{LM} \\ & \mathrm{DOI} \end{aligned}$	$\begin{aligned} & \Delta \mathrm{V}_{\mathrm{X}} \\ & \Delta \mathrm{~V}_{\mathrm{y}} \\ & \Delta \mathrm{~V}_{\mathrm{z}} \end{aligned}$	-0.700 -	-	$\left[\begin{array}{l}0.257 \\ 0 \\ 0.966\end{array}\right.$	0 1 0	$\left.\begin{array}{l}0.966 \\ 0 \\ -0.257\end{array}\right]$
$\begin{aligned} & \mathrm{LM}^{*} \\ & \text { CSI } \end{aligned}$	$\begin{aligned} & \Delta \mathrm{V}_{\mathrm{x}} \\ & \Delta \mathrm{~V}_{\mathrm{y}} \\ & \Delta \mathrm{~V}_{\mathrm{z}} \end{aligned}$	Graph C Graph D	Graph C Graph D	$\left[\begin{array}{l}-0.991 \\ 0 \\ -0.132\end{array}\right.$	0 1 0	$\left.\begin{array}{c}0.132 \\ 0 \\ -0.991\end{array}\right]$
$\begin{aligned} & \mathrm{LM}^{* *} \\ & \mathrm{CDH} \end{aligned}$	$\begin{aligned} & \Delta \mathrm{V}_{\mathrm{x}} \\ & \Delta \mathrm{~V}_{\mathrm{y}} \\ & \Delta \mathrm{~V}_{\mathrm{z}} \end{aligned}$	Graph E Graph F	$\begin{gathered} \text { Graph E } \\ \text { Graph F } \end{gathered}$	$\left[\begin{array}{l}0.991 \\ 0 \\ 0.132\end{array}\right.$	0 1 0	$\left.\begin{array}{c}-0.132 \\ 0 \\ 0.991\end{array}\right]$
$\begin{aligned} & \text { LM* } \\ & \text { TPI } \end{aligned}$	$\begin{aligned} & \Delta \mathrm{V}_{\mathrm{x}} \\ & \Delta \mathrm{~V}_{\mathrm{y}} \\ & \Delta \mathrm{~V}_{\mathrm{z}} \end{aligned}$	-	$\begin{array}{r} -0.30 \\ 0.67 \end{array}$	$\left[\begin{array}{c}0.106 \\ 0 \\ -0.994\end{array}\right.$	0 1 0	$\left.\begin{array}{l}0.994 \\ 0 \\ 0.106\end{array}\right]$

NOTES:

* Thrust is along +Z SC axis
** Thrust is along -X SC axis.
- Indicates coefficient is less than $0.06 \mathrm{nmi} / \mathrm{ft} / \mathrm{s}$

$\Delta V_{S C}$ ERRORS CAUSED BY GRRO DRIFTS $[\stackrel{\rightharpoonup}{\phi} \times \stackrel{\rightharpoonup}{\mathrm{A}}]$ AND PIPA BIASES

```
GYRO DRIFTS - MERU
PIPA BIASES - CM/SEC}\mp@subsup{}{}{2
\DeltaV SC - FT/SEC
\triangleT
\triangleT G - SEC (TIME FROM LAST ALIGMMENT TO BURN)
```

WEIGHT FACTORS RELATE PIPA BIAS AND GYRO DRIFTS TO VELOCITY ERROR.
LOI_{1}
$\Delta \mathrm{V}_{\mathrm{X}_{\mathrm{SC}}}=+5.48 \times 10^{-5} \mathrm{NBDZ} \Delta \mathrm{T}_{\mathrm{G}}+2.16 \times 10^{-2} \mathrm{AB}_{\mathrm{X}} \Delta \mathrm{T}_{\mathrm{P}}+0.84 \times 10^{-2} \mathrm{AB}_{\mathrm{Y}} \Delta \mathrm{T}_{\mathrm{P}}-2.32 \times 10^{-2} \mathrm{AB}_{\mathrm{Z}} \Delta \mathrm{T}_{\mathrm{P}}$
$\Delta V_{Y_{S C}}=-1.99 \times 10^{-4} \mathrm{NBDZ} \Delta \mathrm{T}_{G}+0.18 \times 10^{-2} \mathrm{AB}_{X} \Delta \mathrm{~T}_{\mathrm{P}}-3.28 \times 10^{-2} \mathrm{AB}_{Y} \Delta \mathrm{~T}_{\mathrm{P}}-0.97 \times 10^{-2} \mathrm{AB}_{\mathrm{Z}} \Delta \mathrm{T}_{\mathrm{P}}$
$\Delta V_{Z_{S C}}=+5.48 \times 10^{-5} \mathrm{NBDX} \Delta \mathrm{T}_{\mathrm{G}}-1.99 \times 10^{-4} \mathrm{NBDY} \Delta \mathrm{T}_{\mathrm{G}}+2.46 \times 10^{-2} \mathrm{AB}_{\mathrm{X}} \Delta \mathrm{T}_{\mathrm{P}}-0.51 \times 10^{-2} \mathrm{AB}_{\mathrm{Y}} \Delta \mathrm{T}_{\mathrm{P}}$
$+2.11 \times 10^{-2} \mathrm{AB}_{\mathrm{Z}} \Delta \mathrm{T}_{\mathrm{P}}$
LOI_{2}
$\Delta \mathrm{V}_{\mathrm{X}_{S C}}=+1.67 \times 10^{-2} A \mathrm{AB}_{\mathrm{X}} \Delta \mathrm{T}_{\mathrm{P}}-2.82 \times 10^{-2} \mathrm{AB}_{\mathrm{Z}} \Delta \mathrm{T}_{\mathrm{P}}$
$\Delta V_{Y_{S C}}=-1.01 \times 10^{-5} \mathrm{NBDZ} \Delta \mathrm{T}_{G}-3.25 \times 10^{-2} \mathrm{AR}_{\mathrm{Y}} \Delta \mathrm{T}_{\mathrm{P}}$
$\Delta V_{Z_{S C}}=-1.01 \times 10^{-5} \mathrm{NBDY} \Delta T_{G}+2.81 \times 10^{-2} A B_{\mathrm{X}} \Delta \mathrm{T}_{\mathrm{P}}+1.65 \times 10^{-2} \mathrm{AB}_{\mathrm{Z}} \Delta \mathrm{T}_{\mathrm{P}}$
IM DOI
$\Delta \mathrm{V}_{\mathrm{X}_{S C}}=-0.84 \times 10^{-2} \mathrm{AR}_{\mathrm{X}} \Delta \mathrm{T}_{\mathrm{P}}-3.17 \times 10^{-2} \mathrm{AB}_{\mathrm{Z}} \Delta \mathrm{T}_{\mathrm{P}}$
$\Delta V_{Y_{S C}}=-5.20 \times 10^{-6} \mathrm{NBDZ} \Delta \mathrm{T}_{\mathrm{G}}+3.28 \times 10^{-2} \mathrm{AB}_{Y} \Delta \mathrm{~T}_{\mathrm{P}}$
$\Delta V_{Z_{S C}}=-5.20 \times 10^{-6} \mathrm{NBDY} \Delta T_{G}-3.17 \times 10^{-2} A B_{X} \Delta T_{P}+0.84 \times 10^{-2} A B_{Z} \Delta T_{P}$
IM CSI
$\Delta V_{X_{S C}}=+3.65 \times 10^{-6} \mathrm{NBDY} \Delta \mathrm{T}_{\mathrm{G}}+3.25 \times 10^{-2} \mathrm{AB}_{\mathrm{X}} \Delta \mathrm{T}_{\mathrm{P}}-0.43 \times 10^{-2} \mathrm{AB}_{\mathrm{Z}} \Delta \mathrm{T}_{\mathrm{P}}$
$\Delta V_{Y_{S C}}=-3.65 \times 10^{-6} \mathrm{NBDX} \Delta \mathrm{T}_{\mathrm{G}}-3.28 \times 10^{-2} A R_{Y} \Delta \mathrm{~T}_{\mathrm{P}}$
$\Delta \mathrm{V}_{\mathrm{SC}}=+0.43 \times 10^{-2} \mathrm{AB}_{\mathrm{X}} \Delta \mathrm{T}_{\mathrm{P}}+3.25 \times 10^{-2} \mathrm{AB}_{\mathrm{Z}} \Delta \mathrm{T}_{\mathrm{P}}$
IM CDH
$\Delta V_{X_{S C}}=-3.25 \times 10^{-2} A B_{X} \Delta T_{P}+0.43 \times 10^{-2} \mathrm{AB}_{\mathrm{Z}} \Delta \mathrm{T}_{\mathrm{P}}$
$\Delta V_{Y_{S C}}=+4.38 \times 10^{-7} \mathrm{NBDZ} \Delta T_{G}-3.28 \times 10^{-2} \mathrm{AR}_{\mathrm{Y}} \Delta \mathrm{T}_{\mathrm{P}}$
$\Delta V_{Z_{S C}}=+4.38 \times 10^{-7} \mathrm{NBDX} \Delta \mathrm{T}_{\mathrm{G}}-0.43 \times 10^{-2} \mathrm{AB}_{\mathrm{X}} \Delta \mathrm{T}_{\mathrm{P}}-3.25 \times 10^{-2} \mathrm{AB}_{\mathrm{Z}} \Delta \mathrm{T}_{\mathrm{P}}$
IM TPI
$\Delta V_{X_{S C}}=+1.87 \times 10^{-6} \mathrm{NBDY} \Delta \mathrm{T}_{G}-0.35 \times 10^{-2} \mathrm{AB}_{\mathrm{X}} \Delta \mathrm{T}_{\mathrm{P}}-3.26 \times 10^{-2} \Delta B_{\mathrm{Z}} \Delta \mathrm{T}_{\mathrm{P}}$
$\Delta V_{Y_{S C}}=-1.87 \times 10^{-6} \mathrm{NBDX} \Delta T_{G}-3.28 \times 10^{-2}{ }^{A B_{Y}} \Delta T_{P}$
$\Delta \mathrm{V}_{\mathrm{Z}_{\mathrm{SC}}}=+3.26 \times 10^{-2} A \mathrm{X}_{\mathrm{X}} \Delta \mathrm{T}_{\mathrm{P}}+0.35 \times 10^{-2} \mathrm{AB}_{\mathrm{Z}} \Delta \mathrm{T}_{\mathrm{P}}$
TEI
$\Delta \mathrm{V}_{\mathrm{X}_{\mathrm{SC}}}=+4.50 \times 10^{-5} \mathrm{NBDZ} \Delta \mathrm{T}_{\mathrm{G}}-1.71 \times 10^{-2} \mathrm{AB}_{X} \Delta \mathrm{~T}_{\mathrm{P}}-0.75 \times 10^{-2} \mathrm{AB}_{\mathrm{Y}} \Delta \mathrm{T}_{\mathrm{P}}+2.70 \times 10^{-2} \mathrm{AB}_{2} \Delta \mathrm{~T}_{\mathrm{P}}$
$\Delta V_{Y_{S C}}=-2.62 \times 10^{-4} \mathrm{NBDZ} \Delta \mathrm{T}_{G}-0.68 \times 10^{-2} \mathrm{AB}_{\mathrm{X}} \Delta \mathrm{T}_{\mathrm{P}}+3.18 \times 10^{-2} \mathrm{AB}_{\mathrm{Y}} \Delta \mathrm{T}_{\mathrm{P}}+0.45 \times 10^{-2} \mathrm{AB}_{\mathrm{Z}} \Delta \mathrm{T}_{\mathrm{P}}$
$\Delta V_{Z_{S C}}=-2.62 \times 10^{-4} \mathrm{NBDY} \Delta \mathrm{T}_{\mathrm{G}}+4.50 \times 10^{-5} \mathrm{NBDX} \Delta \mathrm{T}_{\mathrm{G}}+2.72 \times 10^{-2} \mathrm{AB}_{\mathrm{X}} \Delta \mathrm{T}_{\mathrm{P}}+0.32 \times 10^{-2} \mathrm{AB}_{\mathrm{X}} \Delta \mathrm{T}_{\mathrm{P}}$ $+1.81 \times 10^{-2} \mathrm{AB}_{\mathrm{Z}} \Delta \mathrm{T}_{\mathrm{P}}$

EFFECT OF LUNAR DISTURBANCE ACCELERATION
ON LUNAR ORBITAL PARAMETERS (TYPICAL)

$$
\begin{aligned}
\underline{a}_{d M}= & \frac{\mu_{M}}{r^{2}}\left\{\sum_{i=2}^{4} J_{i M}\left(\frac{r_{M}}{r}\right)^{i}{ }_{\left[P_{i+1}^{\prime}\right.}(\cos \phi) \underline{u}_{r}-P_{i}^{\prime}(\cos \phi) \underline{u}_{Z}\right] \\
& +3 J_{22}\left(\frac{r_{M}}{r}\right)^{2}\left[\frac{-5\left(X_{M}{ }^{2}-Y_{M}{ }^{2}\right)}{r^{2}} \underline{u}_{Z}+\frac{2 X_{M}}{r} \underline{i}_{M}-\frac{2 Y_{M}}{r} \underline{j}_{M}\right] \\
& +\frac{3}{2} c_{31}\left(\frac{r_{M}}{r}\right)^{3}\left[\frac{5 X_{M}}{r}\left(1-7 \cos ^{2} \phi\right) \underline{u}_{r}+\left(5 \cos ^{2} \phi-1\right) \underline{1}_{M}\right. \\
& \left.\left.+\frac{10 x_{M} Z_{M}}{r^{2}} \underline{k}_{M}\right]\right\}
\end{aligned}
$$

where

$$
\begin{aligned}
& \mathrm{r}_{\mathrm{M}}=\text { mean lunar radius } \\
& \underline{\mathrm{r}}=\mathrm{x}_{\mathrm{M}} \underline{i}_{M}+\mathrm{Y}_{\mathrm{M}} \underline{\mathrm{j}}_{\mathrm{M}}+\mathrm{z}_{\mathrm{M}} \underline{\mathrm{k}}_{\mathrm{M}}=\text { spacecraft position vector in moon- } \\
& \text { fixed coordinates } \\
& \cos \phi=\underline{u}_{\mathrm{r}} \cdot \underline{\mathrm{u}}_{\mathrm{Z}} \\
& \mathrm{~J}_{2 \mathrm{M}}=2.07108 \times 10^{-4} \\
& J_{3 M}=-2.1 \times 10^{-5} \\
& \mathrm{~J}_{4 \mathrm{M}}=0 \\
& \mathrm{~J}_{22}=2.0716 \times 10^{-5} \\
& \mathrm{C}_{31}=3.82 \times 10^{-5}
\end{aligned}
$$

ALTITUDE ERROR (ft)

ALTITUDE ERROR (ft)

Inclination Error (deg)

ERRORS AT THE ENTRY IVIERFACE (400,000 FT. ALT.)

 DUE TO VELOCITY ERRORS DURING TRANSEARTH COAST| DIRECTION OF
 VELOCITY ERROR | ERROR IN VACUUM PERIGFE (n.mi/ft/sec) | ERROR IN TIME OF ARRIVAL ($\mathrm{sec} / \mathrm{ft} / \mathrm{sec}$) | ERROR IN VELOCITY
 AT EI
 (ft/sec/ft/sec) | ERROR IN
 FLIGHT PATH
 ANGIE AT EI
 (degrees $/ \mathrm{ft} / \mathrm{sec}$) |
| :---: | :---: | :---: | :---: | :---: |
| ERRROR EXISTITNG AT TEI CUTOFF (131:28:46 GET) | | | | |
| Along V^{*}
 Along $\overline{\mathrm{R}}^{*} \times \mathrm{V}^{*}$
 Along $\underline{\mathrm{V}}^{*} \times\left(\underline{R}^{*} \times \underline{V}^{*}\right)$ | $\begin{array}{r} -26.76 \\ .90 \\ -\quad 5.93 \end{array}$ | $\begin{array}{r} -102.75 \\ 3.2 \\ 3.95 \end{array}$ | 6.55 .11 -.02 | $\begin{array}{r} -2.44 \\ . .06 \\ -.42 \end{array}$ |
| ERROR EXISTING AT MCC-5 (TEI + 15 hours) ($146: 28: 46 \mathrm{GET}$) | | | | |
| $\begin{aligned} & \text { Along } \frac{V}{R} \times V \\ & \text { Along } \\ & \text { Along } \bar{V} \times(\underline{R} \times \underline{V}) \end{aligned}$ | $\begin{array}{r} 1.46 \\ .31 \\ 9.75 \\ \hline \end{array}$ | $\begin{array}{r} -\quad 20.45 \\ .85 \\ 29.80 \end{array}$ | $\begin{array}{r} -.43 \\ -.03 \\ .51 \end{array}$ | $\begin{aligned} & .10 \\ & .02 \\ & .69 \end{aligned}$ |
| ERRROR EXISTING AT MCC-6 (EI - 15 hours) (180:01:07 GET) | | | | |
| $\begin{aligned} & \text { Along } V \\ & \text { Along } \bar{R} \times \underline{V} \\ & \text { Along } \bar{V} \times(\underline{R} \times \underline{V}) \end{aligned}$ | $\begin{aligned} & 1.05 \\ & 0 \\ & 4.60 \end{aligned}$ | $\begin{gathered} -\quad 2.55 \\ 0 \\ 10.65 \end{gathered}$ | $\begin{gathered} .18 \\ 0 \\ -.13 \end{gathered}$ | $\begin{gathered} .07 \\ 0 \\ .32 \end{gathered}$ |
| ERROR EXISTIING AT MCC-7 (EI - 3 hours) (192:01:07 GET) | | | | |
| $\begin{aligned} & \text { Along } \frac{V}{\bar{R}} \times \underset{V}{ } \\ & \text { Along } \\ & \text { Along } \underline{V} \times(\underline{R} \times \underline{V}) \end{aligned}$ | $\begin{aligned} & .50 \\ & 0.5 \\ & 1.46 \end{aligned}$ | $\begin{aligned} & .30 \\ & 0 \\ & 2.65 \end{aligned}$ | $\begin{gathered} .30 \\ 0 \\ -.03 \end{gathered}$ | $\begin{gathered} .03 \\ 0 \\ .10 \end{gathered}$ |

* \underline{R} and \underline{V} are with respect to moon centered inertial system

Transformation at IEI from stable member to $\underline{V}, \underline{R} \underline{V}$ and $\underline{V} \times(\underline{R} \times \underline{V})$.

$$
\left[\begin{array}{l}
\text { UNIT }(\underline{\mathrm{V}}) \\
\text { UNIT }(\underline{\mathrm{R}} \times \underline{\mathrm{V}}) \\
\text { UNIT }(\underline{\mathrm{V}} \times(\underline{\mathrm{R}} \times \underline{\mathrm{V}})
\end{array}\right]=\left[\begin{array}{rrr}
.530 & .083 & -.843 \\
.041 & -.996 & -.073 \\
-.846 & +.004 & -.531
\end{array}\right]\left[\begin{array}{l}
\mathrm{X}_{\mathrm{SM}} \\
\mathrm{Y}_{\mathrm{SM}} \\
\mathrm{Z}_{\mathrm{SM}}
\end{array}\right]
$$

DIRECTIION OF VELOCITY ERROR	ERROR IN VACUUM PERIGEE ($\mathrm{n} . \mathrm{mi} / \mathrm{ft} / \mathrm{sec}$)	ERROR IV TIME OF ARRIVAL $(\mathrm{sec} / \mathrm{ft} / \mathrm{sec})$	ERROR IN VELOCITY AT EI ($\mathrm{ft} / \mathrm{sec} / \mathrm{ft} / \mathrm{sec}$)	ERROR IN FLIGHT PATH ANGLE AT EI (degrees/ft/sec)
ERROR EXISTIVG AT TEI CUTOFF ($143: 26: 35 \mathrm{GET}$)				
Along V^{*} Along $\overline{\mathrm{R}}^{*} \mathrm{x} \mathrm{V}^{*}$ Along $\underline{\mathrm{v}}^{*} \times\left(\underline{\mathrm{R}^{*}} \times \underline{\mathrm{v}}^{*}\right)$	$\begin{array}{r} -20.24 \\ 1.21 \\ -7.63 \end{array}$	$\begin{array}{r} -76.9 \\ 3.45 \\ -7.15 \end{array}$	$\begin{array}{r} .21 \\ .02 \\ -.06 \end{array}$	$\begin{array}{r} -1.75 \\ .09 \\ -.56 \end{array}$
ERROR EXISTING AT MCC-5 (TEI + 15 hours) ($158: 26: 35 \mathrm{GET}$)				
$\begin{aligned} & \text { Along } V \\ & \text { Along } \bar{R} \times V \\ & \text { Along } \underline{V} \times(\underline{R} \times \underline{V}) \end{aligned}$	$\begin{aligned} & 1.24 \\ & .11 \\ & 8.83 \end{aligned}$	$\begin{array}{r} -12.55 \\ . .25 \\ 23.4 \end{array}$	$\begin{array}{r} .19 \\ -.09 \\ -.16 \end{array}$	$\begin{aligned} & .09 \\ & .01 \\ & .65 \end{aligned}$
ERROR EXISTIIVG AT MCC-6 (EI - 15 hours) ($180: 13: 33 \mathrm{GET}$)				
$\begin{aligned} & \text { Along } V \\ & \text { Along } \times \frac{V}{R} \times(\underline{R} \times \underline{V}) \\ & \text { Along } \underline{V} \times \underline{2} \end{aligned}$	$\begin{gathered} .96 \\ 0 \\ 4.79 \end{gathered}$	$\begin{array}{r} -2.65 \\ 0 \\ 10.95 \end{array}$	$\begin{array}{r} .09 \\ -.01 \\ -.06 \end{array}$	$\begin{gathered} .07 \\ 0 \\ .35 \end{gathered}$
ERROR EXISTING AT MCC-7 (EI - 3 hours) (192:13:33 GET)				
Along V Along $\overline{\mathrm{R}} \times \mathrm{V}$ Along $\underline{V} \times(\underline{R} \times \underline{V})$	$\begin{array}{r} .49 \\ 0 \\ 1.49 \end{array}$	$\begin{gathered} .30 \\ 0 \\ 2.75 \end{gathered}$	$\begin{gathered} .34 \\ 0 \\ -.06 \end{gathered}$	$\begin{gathered} .03 \\ 0 \\ .11 \end{gathered}$

* \underline{R} and \underline{V} are with respect to moon centered inertial system

Transformation at IEI from stable member to $\underline{V}, \underline{R} \times \underline{V}$ and $\underline{V} \times(\underline{R} \times \underline{V})$.

$$
\left[\begin{array}{l}
\text { UNIT }(\underline{V}) \\
\text { UNIT }(\underline{R} \times \underline{V}) \\
\text { UNIT }(\underline{\mathrm{V}} \times(\underline{\mathrm{R}} \times \underline{v})
\end{array}\right]=\left[\begin{array}{lll}
+.701 & +.080 & -.708 \\
+.053 & -.996 & -.061 \\
-.711 & +.006 & -.703
\end{array}\right]\left[\begin{array}{l}
\mathrm{X}_{S M} \\
\mathrm{Y}_{S M} \\
\mathrm{Z}_{S M}
\end{array}\right]
$$

LEGEND

Guidance not terminated when drogue parachute deploy

Note: (3) Crossrange error due to ACBX and ACBZ
Crossrange e,
is negligible.
(4) Downrange error due to ACBY is negligible.
(5) Accelerometers assumed on 15 minutes

Typical Mission G
Entry Position Error Sensitivities at Guidance Termination

ERROR SOURCE (ϵ)	CROSSRANGE ERROR $(\mathrm{nmi} / \epsilon)$	DOWNRANGE ERROR $(\mathrm{nmi} / \epsilon)$
NBDX (meru)	-0.17	0.0
NBDY (meru)	0.0	-0.08
NBDZ (meru)	-0.44	0.0
ACBX $\left(\mathrm{cm} / \mathrm{sec}^{2}\right)$	0.0	-2.67
ACBY $\left(\mathrm{cm} / \mathrm{sec}^{2}\right)$	4.00	0.0
ACBZ $\left(\mathrm{cm} / \mathrm{sec}^{2}\right)$	0.0	-1.60

Notes:

(1) All sensitivities represent the slopes about the origin of those perturbation graphs presented previously.
(2) Assumed accelerometer operation began 15 minutes prior to EI.
(3) Assumed IMU drift 1.5 hours prior to EI.
(4) Crossrange-downrange definition:

$P=$ Pendulosity
 C $=$ Coefficient of Viscous Damping
 = Float Inertia

The PIP Signal Generator Ducosyn provides Information on rotor position in the form of a 3200 hertz output. The stable limit cycle in rotor position is converted to an AC suppressed carrier modulated signal.

The PIP Preamp amplifies the SG output ($14 \mathrm{~V} / \mathrm{V}$ gain) and phase shifte the 3200 hertz carrier 45° lag.

The AC Diff-Amp and Interrogate Module provides additional amplification ($3050 \mathrm{~V} / \mathrm{V}$), peak detects float position, and sets a flip-flop. One state of the flip-flop indicates float position on the, plus side of null and the other state means float position on the minus side of null.

The Binary Current Switch provides discrete current pulse outputs of appropriate phase as determined by the state of the II lp -flop in the AC Diff-Amp Module.

The Calibration Module is the passive circuit interface between the BCS and the PIP torquer. The circuitry introduce blas and acale factor adjust capablity into the PIPA loop.

The PIP Torque Ducosyn converts current pulses from the Calibration Module to torque about the PIP OA axis.

The DC Diff-Amp and PVR Module is the mechanism which regulates current and hence PIP torque to precisely controlled values.

PIPA CHARACTERISTICS

PARAMETER			CM		LM	
	Maximum measurabl	ration	19.1	g's	3. 26	g's
2.	Pendulosity	P	0.25	$\frac{\text { dyne } \mathrm{cm}}{\mathrm{~cm} / \mathrm{sec}^{2}}$	0.25	$\frac{\text { dyne } \mathrm{cm}}{\mathrm{~cm} / \mathrm{sec}^{2}}$
	Torque to balance	T	4680	dyne cm	800	dyne cm
	PIP float inertia	J	14.0	$\frac{\text { dyne } \mathrm{cm}}{\mathrm{rad} / \mathrm{sec}^{2}}$	14.0	$\frac{\text { dyne cm }}{\mathrm{rad} / \mathrm{sec}^{2}}$
5.	PIP viscous damping	C	12×10^{4}	$\frac{\text { dyne cm }}{\mathrm{rad} / \mathrm{sec}}$	12×10^{4}	$\frac{\text { dyne } \mathrm{cm}}{\mathrm{rad} / \mathrm{sec}}$
6.	PIP break point	C/J	8550	$\mathrm{rad} / \mathrm{sec}$	8550	$\mathrm{rad} / \mathrm{sec}$
	PIP time constant	J/C	. 117	ms	. 117	ms
	Total torque constan		. 42	dyne $\mathrm{cm} / \mathrm{ma}^{2}$. 42	dyne $\mathrm{cm} / \mathrm{ma}^{2}$
	Nominal torque curr		105	ma	44	ma

SUSPENSION CHARACTERISTICS

1. Radial Force
2. Suspension current
3. Phase angle of current
4. Suspension stiffness
2.3 grams per $.0001^{\prime \prime} \mathrm{min}$
$65 \pm 6 \mathrm{ma}$
the two ends (SG \& TG) matched within 3 ma
lags $45^{\circ} \pm 2.8^{\circ}$
30×10^{-3} grams/micro-inch

TYPICAL TEMPERATURE CHARACTERISTICS

1. Scale Factor
2. Bias
${ }^{\circ} \mathrm{F}$ Actual PIPA Temperature
$150 \mathrm{ppm} / \mathrm{O} \mathrm{F} \quad \mathrm{CM}$
$300 \mathrm{ppm} /{ }^{\circ} \mathrm{F} \quad \mathrm{LM}$
$.05 \mathrm{~cm} / \mathrm{sec}^{2} /{ }^{\mathrm{O} F} \mathrm{LM} / \mathrm{CM}$

PIPA PARAMETERS

Primary PIPA parameters are scale factor and bias. Specification values across ISS, G\&N, and S/C testing are as shown in Table I-l.

Table I-1

PIPA Coefficient Stability Criteria				
Coefficient	Units	D_{1}	D_{2}	D_{3}
PIPA Bias (A ${ }_{\mathrm{B}}$)	$\mathrm{cm} / \mathrm{sec}^{2}$	0.50	0.70	0.90
PIPA Scale Factor SF	ppm	400	500	600

PIPA bias in a unity gravity field (A_{b}) must be within $0.30 \mathrm{~cm} / \mathrm{sec}^{2}$ of that evaluated in a zero gravity (a_{b}) field at the ISS level of test.

The maximum value of PIPA parameters which can be compensated for by the computer is as shown in Table I-2.

Table I-2

Coefficient	Units	Max Value (CM)	Max Value (LM)
A_{b}	$\mathrm{cm} / \mathrm{sec}^{2}$	± 2.28	± 3.12
SF	ppm	± 1900	± 1900

PIPA COMPENSATION

```
Registe
PIPA Bias
Y PIPA Bias
Z PIPA Blas
PIPA Blas CM
PIPA Blas IM = (.0001907) (Reg Contents in Decimal) cm/sec
=(.0013923) (Reg Contents in Decimal) cm/sec
The correction to the PIPA's is
PIPA
PIPA \(_{C}\) is the compensated data for the \(I^{\text {th }}\) PIPA denoted PIPAX \(C_{C}\), PIPAY \({ }_{C}\), PIPAZ \({ }_{C}\)
\(\mathrm{SFE}=\frac{\mathrm{SF}-\mathrm{SF}_{\text {nom }}}{\mathrm{SF}_{\text {nom }}}\) (erasable load)
\(S F=\) Scale-factor \(\mathrm{CM} / \mathrm{Sec}\)
BIAS \(_{\text {I }}\) is the bias for the \(I^{\text {th }}\) PIPA (an erasable load)
```

where

PiPS = Polee Torque Power Supplj. For Elock II PIPS is in the PGA
For LEM PTPS is in the PTA
PEA = PIPA Eleatronivs Heaier Assenbly (CM); PIA = Pulse Torque Header Assembly (IFM).
PPA LOOP

APOLLO PIP

NOMOGRAPH FOR ZERO GRAVITY PIPA BIAS

NOMOGRAPH FOR ZERO GRAVITY PIPA BIAS

The coarse align loop drives the IMU gimbals to the angles conmanded by the computer with an accuracy of $\pm 1.5^{\circ}$. The coarse align mode also acts as a caging mode when a gimbal lock condition is approached

The three basic elements of the coarse align loop are the Digital Computer which issues angle commands ($\Delta \theta_{C}$) and moding discretes, the MMU, and the ECDU which encodes gimbal position and provides position and rate feedback for proper loop operation.

IMU FINE ALIGN LOOP

The fine align loop drives the IMU gimbals to the computer commanded angles $\pm 80^{\prime \prime}$ by pulse torquing the gyros. Pulse torquing is a computer controlled switching of a constant current source to a gyro torquer winding. The current produces gyro torque, a corresponding precession rate, and hence, gimbal position.

IMU INERTIAL MODE

The elements of the inertial mode are the gyro, stabilization amplifier, and gimbal torque motor. The gyro senses inertial rotation about its input axis and supplies torquing to the gimbal via the stabilization amplifier to compensate for the motion.

APOLIO INERTIAL INSTRUMENTATION/STABLE MEMBER ORIENTATION DIAGRAM

Garo drift is positive when the SM drift rate is about the positive gyro input (IA) axis.

Drift Rate About SM Axes	Gyro Drift Coefficient		
	NBD	ADIA	ADSRA
$\mathrm{W}_{\text {XSM }}$	$+\mathrm{NBDX}$	+ADIAX ($\mathrm{EXSM}^{\text {S }}$)	-ADSRAX ($\mathrm{a}_{\text {YSM }}$)
$\mathrm{W}_{\text {YSM }}$	+NBDY	+ADIAY ($\mathrm{a}_{\text {YSM }}$)	-ADSRAY ($\mathrm{a}_{\text {ZSM }}$)
$\mathrm{W}_{\text {ZSM }}$	-NBDZ	+ADIAZ ($\mathrm{z}_{\text {ZSM }}$)	+ADSRAZ ($\mathrm{a}_{\text {YSM }}$)

${ }^{\text {a }} \mathrm{XSM}^{\prime}{ }^{\text {a }}$ YSM' ${ }^{\text {a }}$ ZSM ${ }^{\text {is positive along positive stable member axes. }}$

Input axes of the $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ acceleraneters lie respectively along positive XSM, YSM, ZSM axes.

IMU COARSE ALIGN BLOCK DIAGRAM

IMU COARSE ALIGN FUNCTIONAL BLOCK DIAGRAM

IMU' "INERTLAL MODE" BLOCK DIAGRAM

IMU "INERTIAL MODE" FUNCTIONAL BLOCK DIAGRAM

$$
\begin{aligned}
\mathrm{K}_{\mathrm{T}}= & 1.52 \times 10^{7} \frac{\mathrm{dyn}-\mathrm{cm}}{\mathrm{~A}}, \mathrm{I} \\
& 1.52 \times 10^{7} \frac{\mathrm{dyn}-\mathrm{cm}}{\mathrm{~A}}, \mathrm{M} \\
& 1.23 \times 10^{7} \frac{\mathrm{dyn}-\mathrm{cm}}{\mathrm{~A}}, \mathrm{O}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{K}= & 1 \frac{\mathrm{~A}}{\mathrm{Vrms}}, \mathrm{I} \\
& 2 \frac{\mathrm{~A}}{\mathrm{Vrms}}, \mathrm{M} \\
& 3 \frac{\mathrm{~A}}{\mathrm{Vrms}}, \mathrm{O}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{H} & =0.434 \times 10^{6} \quad \frac{\mathrm{dyn}-\mathrm{cm}}{\mathrm{rad} / \mathrm{sec}} \\
\mathrm{C} & =0.475 \times 10^{6} \frac{\mathrm{dyn}-\mathrm{cm}}{\mathrm{rad} / \mathrm{sec}} \\
\mathrm{I} & =367 \mathrm{gm}-\mathrm{cm}^{2} \\
\mathrm{H} / \mathrm{C} & =0.915 \\
\mathrm{C} / \mathrm{I} & =1,290 \mathrm{rad} / \mathrm{sec}
\end{aligned}
$$

IMU STABILIZATION AMPLIFIER

IMU FINE ALIGN FUNCTIONAL BLOCK DIAGRAM

Gyro Torque $=\mathrm{K}_{\mathrm{T}} \mathrm{I}^{2}=0.6(85)^{2}=4,335 \mathrm{dyn}-\mathrm{cm}$

ELECTRONICS COUPLING DISPLAY UNIT (ECDU

The ECDU encodes and scales the IMU gimbal angles and transfers the angles to the computer in the proper format.

The ECDU is an analog-to-digital converter which utilizes two encoding loops and one read counter which can be accessed by the computer.

One encoding loop is used with the $16 \times$ gimbal resolver (the fine system) ; the other encoding loop is used with the $1 \times$ gimbal resolver (the coarse system).

The ECDU digital servo is analogous to a resolver synchro illustrated by following diagram.

IMU GIMBAL ANGLE AND OPTICS SHAFT SCALING DIAGRAM

Contents of Respective Location in AGC

Actual Optics Shaft Angle or IMU Gimbal Angle
DSKY Indication and CRT Display on RTCC
$+180^{\circ}+210^{\circ}+240^{\circ}+270^{\circ}+300^{\circ}+330^{\circ} 0^{\circ}+30^{\circ}+60^{\circ}+90^{\circ}+120^{\circ}+150^{\circ}+180^{\circ}$

NOTE: For Colossus, V16 N91 monitors the optics shaft angle in R1 (+XXX. XX) ; V16 N20 monitors the IMU gimbal angles as follows:

R1: Outer Gimbal ($+\mathrm{XXX} . \mathrm{XX}$)
R2: Inner Gimbal ($+\mathrm{XXX} . \mathrm{XX}$)
R3: Middle Gimbal (+XXX. XX)

OPTICS TRUNNION SCALING DIAGRAM

NOTE: CDUT (LOC 0035) is loaded with a -19.775° bias during ZERO OPTICS. This bias produces positive driving commands for angles up to $+64.775^{\circ}$ in the CMC mode. Without the bias, the CMC mode would drive the trunnion to the negative stop for command angles of 45° or greater.

LGC Location 0035 (CDUT) for Trunnion and 0036 (CDUS) for Shaft

180°	90°	45°	22.5°	11.25°	5.6°	2.8°	1.4°	0.7°	0.35°	0.17°	0.088°	0.044°	0.022°	40^{11}
2^{14}	2^{13}	2^{12}	2^{11}	2^{10}	2^{9}	2^{8}	2^{7}	2^{6}	2^{5}	2^{4}	2^{8}	2^{2}	2^{1}	2^{0}

Note: RR scaling is the same as IMU gimbal scaling.
LUMINARY RR Angle Readout (V16 N72)
R1 + XXX. XX Trunnion

R2 + XXX XX Shaft
RR Gyro
384 pulses $/ 0.5$ second maximum

Torque Commands

OPTICS TRUNNION/CDU/AGC INTERFACE DIAGRAM

AGC Location 0035 (CDUT)

45°	22.5°	11.25°	5.6°	2.8°	1.4°	0.7°	0.35°	0.17°	0.088°	0.044°	0.022°	$40^{\prime \prime}$	$20^{\prime \prime}$	$10^{\prime \prime}$
2^{14}	2^{13}	2^{12}	2^{11}	2^{10}	2^{9}	2^{8}	2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}

CDU Error Counter

2.8°	1.4°	0.7°	0.35°	0.17°	0.088°	0.044°	0.022^{2}	$40^{\prime \prime}$
2^{8}	2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}

[^4]165 pulses/0. 48 second maximum

APOLLO 25 IRIG

Moments of Inertia:

about OA:	$367.3 \mathrm{gram}-\mathrm{cm}^{2}$
about IA:	$650.8 \mathrm{gram}-\mathrm{cm}^{2}$
about SRA:	$724.9 \mathrm{gram}^{2}-\mathrm{cm}^{2}$

Damping Coefficients:

about OA:	4.75×10^{5} dyne $-\mathrm{cm} / \mathrm{rad} / \mathrm{sec}$
about IA:	$1.5 \times 10^{9} \mathrm{dyne}-\mathrm{cm} / \mathrm{rad} / \mathrm{sec}$
about SRA:	1.5×10^{9} dyne $-\mathrm{cm} / \mathrm{rad} / \mathrm{sec}$

Wheel Excitation: 28 volts, $800 \mathrm{cps}, 4.5$ watts at synchronism
Wheel Speed: 24, 000 rpm
Angular Momentum at $24,000 \mathrm{rpm}: 434 \times 10^{3} \mathrm{gram}^{\mathrm{grm}}{ }^{2} \mathrm{sec}$
Signal Generator :
Input: 4 volts, 3200 cps
Sensitivity: $10 \mathrm{mv} / \mathrm{mrad}$
Torque Generator Sensitivity: 0.6 dyne $-\mathrm{cm} / \mathrm{ma}^{2}$
Pulse Torque Scale Factor: $\quad \pi / 2^{20} \mathrm{rad} /$ pulse at 3200 pps
Magnetic Suspension:
Input: $\quad 4$ volts, 3200 cps
Stiffness: $6 \mathrm{gm} / 0.0001$ inches Radial
$0.8 \mathrm{gm} / 0.0001$ inches Axial
Typical Temperature Sensitivity
$\begin{array}{ll}\text { Scale Factor: } & 400 \mathrm{ppm} /{ }^{\circ}{ }^{\circ} \mathrm{F} \\ \text { Drift: } & 0.2 \mathrm{meru} / \mathrm{O}^{\mathrm{F}} \mathrm{F}\end{array}$
Actual IRIG temperature

Primary gyro parameters are ADIA, ADSRA, NBD and scale factor. Specification values across ISS, GadN, and S / C testing are as shown in Table II-1.

Table II-1

Gyro Coefficient Stability Criteria						
Coefficient	Units	DI	DR	D3	Max	
Acceleration Drift along the IA (ADIA)	meru/g	17	33	40	100	
Acceleration Drift along the SRA (ADSRA)	meru/g	14	21	25	40	
Non-Acceleration Blas Drift (NBD)	meru	6	9	11	15	

Gyro scale factor limits are $\pm 1750 \mathrm{ppm}$.
The maximum value of gyro performance parameters which can be compensated for by the computer is shown in Table II-2.

Table II-2		
Coefficient	Units	Max Value CM/IM
ADIA	meru/g	862
ADSRA	meru/g	862
NBD	meru	128.7

IMU GYRO COMPENSATION

The compensated PIPA data is used to compute the IRIG torquing necessary to cancel the NBD, ADIA and ADSRA gyro coefficients. The computations are
XIRIG $=-$ ADIAX PIPAX $_{C}+$ ADSRAX PIPAY $_{C}-$ NBDX Δt
YIRIG $=-$ ADIAY PIPAY $_{C}+$ ADSRAY PIPAZ $_{C}-$ NBDY Δt
ZIRIG $=-$ ADIAZ PIPAZ $_{C}-$ ADSRAZ PIPAY $_{C}+$ NBDZ Δt

where

XIRIG, YIRIG, ZIRIG are gyro drift compensations
NBDX, NBDY, KBDZ are gyro bias drifts (an erasable load)
ADSRAX, ADSRAY, ADSRAZ are gyro drifts due to acceleration in spin reference axis (an erasable load)

ADIAX, ADIAY, ADIAZ are syro drifts due to acceleration in the input axis (an erasable load)
When the magnitude of any IRIG command exceeds two pulses, the commands are sent to the gyros.
During free-fall only the NBDX , NBDY , NBDZ are the relevant coefficients and the routine is so ordered. that only these terms are calculated for the gyro compensation.
The computer NBD registers are 1460,1461 , and 1462 for the X, Y, and Z gyros respectively. GYRO DRIFT NBD $=(.007835)$ (Reg Contents in Decimal) MERU

GYRO PULSE TORQUING LOOP

NOMOGRAPH FOR GYRO DRIFT(NBD)

66
60
50

GYRO TORQUING ANGLES PROGRAM 52

NOMOGRAPH FOR GYRO DRIFT (NBD)

TYPICAL IMU TEMPERATURE

PIPA Temperature After Coolant Loss

PIPA Temperature After Power Loss

NOMINAL PARAMETERS

- PIPA Temperature $-130 \pm 1.5^{\circ} \mathrm{F}$
- Low Temperature Alarm $-126 \pm 2.5^{\circ} \mathrm{F}$ (PIPA Temperature)
- High Temperature Alarm $-135 \pm 2.5^{\circ} \mathrm{F}$ (PIPA Temperature)
- Safety Thermostat Opens $-140_{-2}^{+5}{ }^{\circ} \mathrm{F}$ (PIPA Temperature)
- Safety Thermostate Hysteresis - $2-5^{\circ} \mathrm{F}$

TYPICAL HEADER TEMPERATURES AFTER COOLANT LOSS

OPTICS

FUNCTIONAL DIAGRAM CELESTIAL BODY CODES IMU REALIGNMENT CISLUNAR NAVIGATION LANDMARK TRACK

TRUNNION COMPUTER OPERATE MODE FLNCTIONAL BLOCK DIAGRAM

SHAFT COMPUTER OPERATE MODE FUNCTIONAL BLOCK DIAGRAM

NoUN 7() (ol)ES

R1:	(:ELESTIAL I	B()I)Y	(\%)IDE ()OOXX	1R2:	LANIJMAIFK IJATA	AI3CIJE
() 0	Planet	27	ALKAII)		$A=1 \mathrm{IF}$ KNOWN	LI)MK
01	ALIPHEIRATZ	30	MENKENT		$A=2 \mathrm{IF}$ UNKN()	WN LIJMK
$(12$	DIIPHI)A	31	Alrcitulrus		$13=1$ ISEX ()F ()	FFSET IDESİ;
()3	NAVI	32	ALIPHEC(iA		($:$ = N()T USEI)	
(). 4	Achelrnalr	33	ANTAIRES		IDE = LIDMK II) N	
()5	P()LARIS	3.4	ATIRIA			
()6	Ac:AMAIP	35	irasalmague			
()7	MENKAR	36	VECAA			
1)	MIIPFAK	37	NUNKI			
11	ALIJEI3AIRAN	$4(1)$	ALTAII			
12	IRİEL					
13	(:AD'ELLA					
1.4	(iAN()IUS					
15	SIIRIUS					
16	1rpociyen					
17	IREs()R	41	I)Al3IH			
20)	ISNO(PES	42	1 EAC()(\%K			
21	ALIPHAIRI)	43	I)ENEI3	183:	H()IRIZ()N IJATA	()0(0)
22	IREsULUS	4.4	ENIF			
23	1)ENEI3()LA	45	F()MALHAUT		$(:)=1 F() R$ EAIRT	TH H()IRIZON
2.4	GIENAH	46	SUN		$($ = 2 FORR MCON	N H()IRIZ()N
25	Acirux	47	EAITTH		1) = 1 Folr NEAI	H Helrizon
26	SIPICA	51)	M()ON		I) $=2$ F()R FARI	Holziz()N


```
223 ((:ALIIIRATE FIIRST) (;MC:-FIREE
()1TT ZIP(1-MAN-I)IIP-L()
MAN T() A(:(2UIIRE STARR IN SXT
F()5 7() (STARR.LI)MK.H()R II)LI)&P1R()
F5() 25 ()(12()2 E F59
()PT Z1P()-()FF-MAIRK
F()G }137\mathrm{ (IR2=|3|AS)
V32 TIL 2 <()()3' PIR(), V37E 23E
(HPT ZIRO. (HPT M(I)SE-GMC:
F()5 7() (II()EN.I2()F:2I(OLN,22()F)IPI()
F5() 25 ()()2()2 1)\()
F5() 183 (;M(%, AUT()-1IR()
WHEN MANEUVEIR (:()MIPLETE. E
F5(9-()IT Z18() ()FF-E ()& 92
    (FIREE-IF MIC; RE(21))
OIPT-MAN-F5I-MAIRK
F5() 25 (0)(01G -IPR()
F()5 71 VEIRIFY & PIR()
F()rs.19 AlP.1.
IREJ-V37E 23E.
    AV.I. 12(:1)
    A(:(%-1ア\)
F37 (\frac{23E NEXT}{2,}
STAIR.()OE
RES()LVEI)-ME()-ZIP()-(%MC;
F(1) -15 (123=M(;A) 1P10)
```



```
F()f (39 LAT.L()N(i/2.ALT(!)P ()NLY)
(0)T ZIP()-()FF P1R()
(%) Y2 SHAFT TRUN MOIIE-MAN
F5I 5 MAIRKS 30) SE(: AIPAIRT
F5()25 ()()|&-1/R()
F()5 71 (:ONFIIPM-IIIO)
F()f BY (:ONFIIRM-PIRO
F()f 49 AR. AV (INM. .IFI'S)
WAIT 3() SE(%, PIRO) ORR V32E
F()G HS lR(i), V3rfE
```

11252 （N（）IPLANETS）（：M（；－FIREE
 F（）．f（） 6 ：V22E LI）I（）R $3-1$ Pl？ PIIEF．N（）M．IBEFSMMAT．LI）（；SITE
Fors 22 （NEW GIMIBAL AN（G） IPI（）IF M（IA（OK．（）IR MANEUVEIR F5（） 25 （）（）（）13（T）R1） （iYIRC）TOIR－E
C（IARSE ALIISN－PIR（）
If $2(1)$ WHILE MOVING
F5（） 25 （）（）（）1－4（ALI（iN（：K） （T）I3YPASS．E T（）F37）
PIR（）（F（）IR（O）PT VEIRIF）
F5（） 25 （0）（0）5 STAR SEL
（T）AC：（2 MANUALLY，E）
P1R（）－1ग（calpalr（Z1R（）－（）FF）
F（）7（）LI）STAR PIR（）
（）G 92 SHAFTMTIRUN OIPT－MAN－F5I－MAIZK F5（） 25 （0）（0）G IP子（） F（）I 71 STAl2非－1PI（）IST，2NI） F（）f（）5 STAIR ANG DIFF Ac（：Pro（IREJ．V32E） F（）G 93 T（）R AN（iLES T（1）R．IP（）：I3YPASS．V32E

 I A／G I USE I USE I USE I USE

SXT LOS MECHANICAL LIMITS
TRUNNION $O(0,-10)$ TO $90(10,0)$ DEG

SHAFT $270(0,-10)$ TO $-270(-10,0)$ DEG

SCT RETICLE

OUA LINE OF SIGHT TO IMU STABLE MEMBER TRANSFORMATION.

$\left[\begin{array}{l}\mathrm{x} \\ \mathrm{Y} \\ \mathrm{Z}\end{array}\right]_{\mathrm{SM}}\left[\begin{array}{ccc}\cos \mathrm{AI} & 0 & \sin \mathrm{AI} \\ 0 & 1 & 0 \\ -\sin \mathrm{AI} & 0 & \cos \mathrm{AII}\end{array}\right]\left[\begin{array}{ccc}\cos \mathrm{AM} & -\sin \mathrm{AM} & 0 \\ \sin \mathrm{AM} & \cos \mathrm{AM} & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & \cos \mathrm{AO} & -\sin \mathrm{AO} \\ 0 & \sin \mathrm{AO} & \cos \mathrm{AO}\end{array}\right]\left[\begin{array}{ccc}\cos 32^{*} & 0 & \sin 32^{*} \\ 0 & 1 & 0 \\ -\sin 32^{*} & 0 & \cos 32^{*}\end{array}\right]\left[\begin{array}{c}\cos \mathrm{AS} \\ \sin \mathrm{AS} \\ \sin \mathrm{AT} \\ \sin \mathrm{AT} \\ \cos \mathrm{AT}\end{array}\right]$
where
AI, AM and AO are the inner, middle, and outer gimbal angles as indicated by the CMC
AS and AT are the SXT LOS shaft and trunnion angles

ALIGNMENT OPTICAL TELESCOPE

Orbital Alignment

$\mathrm{N}=$ Detent Position
$\mathrm{R}_{\mathrm{N}}=\mathrm{AZ}_{2}-\mathrm{AZ}_{\mathrm{N}}$
(Note: R_{N} is a correction for the apparent rotation of the star field about the optical axis when the AOT is moved to different detent positions.)

Lunar Surface Alignmen

where
AI, AM, and AO are the inner, middle, and outer gimbal angles as indicated by the LGC
$\mathrm{A} \mathrm{Z}_{\mathrm{N}}$ and $E L_{\mathrm{N}}$ are the $A O T$ azimuth and elevation angles at the Nth detent.

[^5]$E L_{N} \approx 45^{\circ}, \mathrm{N}=1,2,---6 ; \mathrm{AZ}_{1} \approx-60^{\circ} ; \mathrm{AZ} 2 \approx 0^{\circ} ; \mathrm{AZ}_{3} \approx 60^{\circ} ; \mathrm{AZ}_{4} \approx 120^{\circ} ; \mathrm{AZ}_{5} \approx 180^{\circ} ; \mathrm{AZ}_{6} \approx-120^{\circ}$

IMU REALIGNMENT - P52

$\underline{\mathrm{U}}_{\mathrm{S} 1}=\left[\begin{array}{l}\mathrm{X}_{1} \\ \mathrm{Y}_{1} \\ \mathrm{Z}_{1}\end{array}\right]_{\mathrm{ECI}}$

$$
\underline{U}_{\mathrm{S} 2}=\left[\begin{array}{c}
\mathrm{x}_{2} \\
\mathrm{Y}_{2} \\
\mathrm{z}_{2}
\end{array}\right]_{\mathrm{ECI}}
$$

$\underline{U}_{S 1}$ and $\underline{U}_{S 2}$ are known unit vectors in ECI space of the stars and are stored in the AGC.
$\underline{U}_{S 1 M}=\left[\begin{array}{l}x_{1 M} \\ Y_{1 M} \\ Z_{1 M}\end{array}\right]_{S M} \quad \underline{U}_{S 2 M}=\left[\begin{array}{c}x_{2 M} \\ Y_{2 M} \\ z_{2 M}\end{array}\right]_{S M}$
$\underline{U}_{S 1 M}$ and $\underline{U}_{S 2 M}$ are the measured unit vectors (optics mark) in stable member (SM) space of the stars.

$$
\begin{aligned}
& {\left[\mathrm{S}_{\mathrm{A}}\right]=} {\left[\begin{array}{c}
\underline{U}_{\mathrm{S} 1} \\
\left(\underline{U}_{S 1} \times \underline{U}_{S 2}\right) \times \underline{U}_{S 1} \\
\underline{\mathrm{U}}_{\mathrm{S} 1} \times \underline{U}_{S 2}
\end{array}\right][\mathrm{ECI}] \quad\left[\mathrm{S}_{\mathrm{B}}\right]=\left[\begin{array}{c}
\underline{U}_{\mathrm{S} 1 \mathrm{M}} \\
\left(\underline{\mathrm{U}}_{\mathrm{S} 1 \mathrm{M}} \times \underline{U}_{\mathrm{S} 2 \mathrm{M}}\right) \times \underline{U}_{\mathrm{S} 1 \mathrm{M}} \\
\underline{\mathrm{U}}_{\mathrm{S} 1 \mathrm{M}} \times \underline{U}_{\mathrm{S} 2 \mathrm{M}}
\end{array}\right][\mathrm{SM}] } \\
& {\left[\mathrm{S}_{\mathrm{A}}\right]=[\mathrm{A}][\mathrm{ECl}] \quad\left[\mathrm{S}_{\mathrm{B}}\right]=[\mathrm{B}][\mathrm{SM}] } \\
& {\left[\mathrm{S}_{\mathrm{A}}\right]=\left[\mathrm{S}_{\mathrm{B}}\right] } \\
& {[\mathrm{A}][\mathrm{ECI}]=[\mathrm{B}][\mathrm{SM}] } \\
& {[\mathrm{SM}]=[\mathrm{B}]^{-1}[\mathrm{~A}][\mathrm{ECI}] } \\
& {[\mathrm{REFSMMAT}]=[\mathrm{B}]^{-1}[\mathrm{~A}] }
\end{aligned}
$$

LUNAR SURFACE ALIGNMENT - P57

OPTION	los direction in basic ref. coord.	Calculate refsmmat
0	 LM $+\overline{\mathrm{Y}}$ and $+\overline{\mathrm{Z}}$ stored from previous alignment (P57, P68)	
1		
2		
3		

MCI $=$ Moon Centered Inertal; SMCS - Stable Member Coordinate System

CISLUNAR NAVIGATION STAR/LANDMARK MEASUREMENT PROCESSING

The guidance computer utilizes a modified Kalman filter to incorporate the star/landmark measurement into estimates of the Spacecraft state vector. The state vector in this case is the deviation of the Spacecraft position and velocity from a reference conic.

$$
\text { State Vector } \left.=\underline{\mathrm{x}}(\mathrm{t})=\left\lfloor\frac{\delta \mathrm{r}}{\underline{\delta \mathrm{v}}}\right\rfloor\right\rfloor=\left[\begin{array}{c}
\delta \mathrm{r}_{\mathrm{x}} \\
\delta \mathrm{r}_{\mathrm{y}} \\
\delta \mathrm{r}_{\mathrm{z}} \\
\delta \mathrm{v}_{\mathrm{x}} \\
\delta \mathrm{v}_{\mathrm{y}} \\
\delta \mathrm{v}_{\mathrm{z}}
\end{array}\right]=\left[\begin{array}{c}
\text { Deviations from } \\
\text { conic position } \\
\text { Deviations from } \\
\text { conic velocity }
\end{array}\right]
$$

Deviations from the reference conic are assumed to be Gaussian distributed with a known mean and variance. The mean is estimated via the precision integration routines or obtained from MSFN. The variance is given by the error covariance matrix, which is precomputed and entered via erasable data load.

The basic recursive procedure of Kalman Filtering is as follows.

STAR/LANDMARK MEASUREMENT PROCESSING (CONTINUED)

1. Extrapolate the state vector ahead to time t_{n}, using the best estimate of the state at time t_{n-1}.

$$
\underline{\hat{x}}_{n}^{\prime}=\left[\phi_{n-1}\right] \underline{\hat{x}}_{n-1}
$$

2. Extrapolate the error covariance matrix in a similar manner.

$$
\left[E_{n}^{\prime}\right]=\left[\phi_{n-1}\right]\left[E_{n-1}\right]\left[C_{n-1}\right]^{T}+\left[U_{n-1}\right] \quad\left(U_{n-1}=\text { process noise }\right)
$$

3. Compute the optimal gain matrix.

$$
\left[K_{n}^{*}\right]=\left[E_{n}^{\prime}\right]\left[H_{n}\right]^{T}\left[H_{n} E_{n}^{\prime} H_{n}^{T}+V_{n}\right]^{-1} \quad\left(V_{n}=\text { measurement noise }\right)
$$

4. Calculate a measurement vector for time t_{n}.

$$
\hat{\underline{\hat{r}}}_{\mathrm{n}}^{\prime}=\left[\mathrm{H}_{\mathrm{n}}\right] \hat{\mathrm{x}}_{\mathrm{n}}^{\prime}
$$

5. Update the estimate of the state vector, using the extrapolated state $\hat{X}^{\prime}{ }_{n}$, the optimal gain $\left[K_{n}^{*}\right]$, the extrapolated measurement \hat{Y}_{n}^{\prime}, and the actual measurement at time t_{n}, \underline{Y}_{n}.

$$
\underline{\hat{X}}_{n}=\hat{X}_{n}^{\prime}+\left[K_{n}^{*}\right]\left(\underline{Y}_{n}-\underline{\hat{Y}}_{n}^{\prime}\right)
$$

6. Update the error covariance matrix in a similar manner.

$$
\left[E_{n}\right]=\left[E_{n}^{\prime}\right]-\left[K_{n}^{*}\right]\left[H_{n}\right]\left[E_{n}^{\prime}\right]
$$

The following diagram illustrates this procedure.

EXTRAPOLATE THE STATE VECTOR AND ERROR COVARIANCE MATRIX.
$\hat{X}_{n}^{\prime}=\left[\Phi\left(t_{n}, t_{n-1}\right)\right] \hat{X}_{n-1}$
$\left[E_{n}^{\prime}\right]=\left[\Phi\left(t_{n}, t_{n-1}\right)\right]\left[E_{n-1}\right]\left[\Phi\left(t_{n}, t_{n-1}\right)\right]^{\top}+\left[U_{n-1}\right]$

UPDATE THE STATE VECTOR AND ERROR COVARIANCE MATRIX.
$\hat{X}_{n}=\hat{X}_{n}^{\prime}+\left[K_{n}^{*}\right]\left(\underline{Y}_{n}-\left[H_{n}\right] \underline{X}_{n}^{\prime}\right)$
$\left[E_{n}\right]=\left[E_{n}^{\prime}\right]-\left[K_{n}^{*}\right]\left[H_{n}\right]\left[E_{n}^{\prime}\right]$

THIS TABLE AND THE FOLLOWING FIGURE SHOW THE DIFFERENCE BETWEEN CLASSIC KALMAN FILTERING TERMINOLOGY AND THE ACTUAL APOLLO NAVIGATION PROCEDURE.

Celestial Navigation Terminology	Kalman Filter Terminology	Correlation
$\begin{aligned} \underline{\mathrm{b}}= & \text { geometry vector of } \\ & \text { dimension "D" } \end{aligned}$	$[\mathrm{H}]=\underset{\text { matrix }}{ } \begin{aligned} & \text { measurement } \\ & \end{aligned}$	$\underline{-}^{\mathrm{T}} \Rightarrow[\mathrm{H}]$
$\begin{aligned} & \underline{\omega}= \text { weighting vector of } \\ & \text { dimension "D" } \end{aligned}$	$\left[\mathrm{K}_{\mathrm{n}}^{*}\right]=\underset{\text { matrix }}{\text { optimal gain }}$	
$\begin{aligned} {[\mathrm{W}]=} & \text { error transition matrix } \\ & \text { of dimension "D } x \text { " } \end{aligned}$	$\begin{aligned} {[E]=} & \text { error covariance } \\ & \text { matrix } \end{aligned}$	$[E] \Rightarrow\left[W W^{T}\right]$
$\underline{x}=$ state vector	$\underline{x}=$ state vector	$\underline{x} \Rightarrow \underline{x}$
$\begin{aligned} \bar{\alpha}^{2}= & \text { a priori measurement } \\ & \text { error variance (scalar) } \end{aligned}$	$[\mathrm{V}]=$ covariance of the measurement noise	$\bar{\alpha}^{2} \Rightarrow[v]$
$\mathbf{8 Q}=\underset{(\text { scalar })}{ } \begin{aligned} & \text { measurement deviation } \\ & \end{aligned}$	$\left(\underline{\hat{Y}}^{\prime}-\underline{Y}_{n}\right)=\begin{aligned} & \text { measurement } \\ & \text { residual }\end{aligned}$	$8 Q \Rightarrow\left(\underline{\hat{Y}}^{\prime}-\underline{Y}_{n}\right)$

The relationship between the state vector and measurement variable can be

The unit vector, \underline{u}_{p}, can be determined from Figure A

$$
\begin{aligned}
\underline{u}_{p} & =\text { Unit }\left(\underline{u}_{S}-\underline{u}_{1}\right) \\
\underline{u}_{1} & =\text { Component of } \underline{u}_{S} \text { along } \underline{u}_{C L}=\left(\underline{u}_{S} \cdot \underline{u}_{C L}\right) \underline{u}_{C L} \\
\underline{u}_{p} & =\text { Vnit }\left(\underline{u}_{S}-\left(\underline{u}_{S} \cdot \underline{u}_{C L}\right) \underline{u}_{C L}\right) \\
\because \quad b & =\frac{1}{\underline{r}}\left[\begin{array}{c}
\text { Unit }\left(\underline{u}_{S}-\left(\underline{u}_{S} \cdot \underline{u}_{C L}\right) \underline{u}_{C L}\right] \\
\underline{o}
\end{array}\right]
\end{aligned}
$$

CISLUNAR NA VIGATION (P23) - INFORMATION PROCESSING

EXTRAPOLATE THE STATE VECTOR AND ERROR TRANSITION MATRIX:
Extrapolation is accomplished via the Coasting Integration routine.
UPDATE THE STATE VECTOR AND ERROR TRANSITION MATRIX:

$$
\begin{aligned}
& \underline{x}=\underline{x}^{\prime}+\underline{\delta}=\underline{x}^{\prime}+\underline{\omega} \delta Q \\
& |W|=\left[W^{\prime} \left\lvert\, \frac{-\underline{\omega} \underline{z}^{T}}{1+\sqrt{\frac{\bar{x}^{2}}{z^{2}+\bar{x}^{2}}}}\right.\right.
\end{aligned}
$$

ORBITAL NAVIGATION - STATE VECTOR DEFINITION

FOR LANDMARK TRACKING THE STATE VECTOR IS DEFINED AS FOLLOWS.

$$
\underline{\mathrm{x}}=\left[\begin{array}{l}
\underline{\mathrm{r}}_{\mathrm{c}} \\
\underline{\mathrm{v}}_{\mathrm{c}} \\
\underline{\mathrm{r}}_{\mathrm{L}}
\end{array}\right]=\left[\begin{array}{l}
\text { POSITION OF SPACECRAFT } \\
\text { VELOCITY OF SPACECRAFT } \\
\text { INERTIAL POSITION OF LANDMARK }
\end{array}\right]
$$

WHERE:

$$
\begin{aligned}
\underline{\mathrm{r}}_{\mathrm{c}} & =\text { SPACECRAFT POSITION VECTOR } \\
& =\underline{\mathrm{r}}_{\mathrm{con}}+\underline{\delta r} \\
\underline{\mathrm{v}}_{\mathrm{c}} & =\text { SPACECRAFT VELOCITY VECTOR } \\
& =\underline{\mathrm{v}} \mathrm{con}^{+} \underline{\delta \mathrm{v}} \\
\underline{\mathrm{r}}_{\mathrm{L}} & =\text { LANDMARK POSITION VECTOR }
\end{aligned}
$$

ORBITAL NAVIGATION - LANDMARK TRACK

ORBITAL NAVIGATION - LANDMARK TRACK

ORBITAL NAVIGATION - LANDMARK TRACK (CONTINUED)

4. IN TERMS OF STATE VECTOR

$$
\underline{\mathrm{U}}_{\mathrm{S} 1} \cdot \underline{\mathrm{U}}_{\mathrm{LM}}=0=\frac{1}{\left|\mathrm{r}_{\mathrm{LM}}\right|}\left[\begin{array}{c}
\underline{-}_{\mathrm{S} 1} \\
0 \\
+\underline{\mathrm{U}}_{\mathrm{S} 1}
\end{array}\right] \cdot\left[\begin{array}{c}
\underline{\mathrm{r}}_{\mathrm{C}} \\
\underline{\mathrm{v}}_{\mathrm{C}} \\
\underline{\mathrm{r}}_{\mathrm{L}}
\end{array}\right]
$$

5. CONSIDERING ACTUAL MEASUREMENT \mathbf{r}_{M}

6. MEASUREMENT RESIDUAL IN TERMS OF STATE VECTOR
$\underline{U}_{S 1 M}=\operatorname{UNIT}\left(\underline{U}_{S} \times \underline{\mathrm{r}}_{M}\right)$
$\delta Q=0-\frac{1}{\left|\mathbf{r}_{M}\right|}\left[\begin{array}{c}-\underline{U}_{S 1 M} \\ 0 \\ \underline{U}_{S 1 M}\end{array}\right] \cdot\left[\begin{array}{c}\underline{r}_{C} \\ \underline{\mathrm{~V}}_{\mathrm{C}} \\ \underline{\underline{r}}_{\mathrm{L}}\end{array}\right]$ A SCALAR DEVIATION FROM ZERO.
UPDATE STATE
$\underline{X}=\underline{X}^{\prime}+\underline{\omega} \delta Q$
$\underline{x}^{\prime}=$ EXTRAPOLATED ESTIMATE OF STATE
$\underline{\omega}=$ OPTIMAL WEIGHT FACTOR

ORBITAL NAVIGATION (P22) - INFORMATION PROCESSING

EXTRAPOLATE THE STATE VECTOR AND ERROR TRANSITION MATRIX.
Extrapolation is accomplished via the Coasting Integration routine.

UPDATE THE STATE VECTOR AND ERROR TRANSITION MATRLX.

$$
\begin{aligned}
& \underline{x}=\underline{x}^{\prime}+\underline{\delta x}=\underline{x}^{\prime}+\underline{\omega} \delta Q \\
& {[W]=\left[W^{\prime}\right] \frac{-\underline{\omega} \underline{z}^{T}}{\sqrt{\frac{\bar{x}^{2}}{Z^{2}+\bar{\alpha}^{2}}}}}
\end{aligned}
$$

MEASUREMENT VARIANCE

OPTICAL TRACKING

$$
\begin{aligned}
\bar{\alpha}^{2} & =\operatorname{Var}_{\mathrm{SXT}}+\operatorname{Var}_{\mathrm{IMU}}+\frac{\operatorname{Var}_{\mathrm{INT}}^{*}}{\mathrm{r}_{\mathrm{CL}}{ }^{2}} \\
& =(0.2 \mathrm{mr})^{2}+(0.2 \mathrm{mr})^{2}+\frac{(14 \mathrm{~m})^{2}}{\mathrm{r}_{\mathrm{CL}}{ }^{2}}
\end{aligned}
$$

VHF RANGING

$$
\begin{aligned}
\bar{\alpha}^{2} & =\operatorname{Max}\left\{\operatorname{Var}_{\mathrm{R}}^{*}, \frac{\operatorname{Var}_{\mathrm{R} \min }^{*}}{\mathrm{r}_{\mathrm{CL}}{ }^{2}}\right\} \\
& =\operatorname{Max}\left\{0.0 \%, \frac{-83.6127 \mathrm{~m}^{2}}{\mathrm{r}_{\mathrm{CL}}{ }^{2}}\right\}
\end{aligned}
$$

ALTERNATE LOS

$$
\begin{aligned}
\bar{\alpha}^{2} & =\operatorname{Var}_{\mathrm{ALT}}^{*}+\operatorname{Var}_{\mathrm{IMU}} \\
& =12 \mathrm{mr}^{2}+(0.2 \mathrm{mr})^{2}
\end{aligned}
$$

INITIAL "W" MATRIX

$$
\begin{aligned}
& {[\mathrm{W}]=\left[\begin{array}{c:c}
\mathrm{w}_{\mathrm{rr}} \mathrm{I} & 0 \\
\hdashline 0 & \mathrm{w}_{\mathrm{rv}} \mathrm{I}
\end{array}\right]} \\
& \mathrm{w}_{\mathrm{rr}}^{*}=3,048 \mathrm{~m}=10^{4} \mathrm{ft} / \mathrm{s} \\
& \mathrm{w}_{\mathrm{rv}}^{*}=3.048 \mathrm{~m} / \mathrm{s}=10 \mathrm{ft} / \mathrm{s}
\end{aligned}
$$

*These values are stored in erasable memory.

RENDEZVOUS NAVIGATION PROGRAM (LEM)
 P-20

MEASUREMENT VARIANCE

RANGE MEASUREMENT

$$
\bar{\alpha}^{2}=\operatorname{Max}\left\{\operatorname{Var}_{\mathrm{R}}^{*}, \frac{\operatorname{Var}_{\mathrm{R} \min }^{*}}{\mathrm{r}_{\mathrm{CL}}{ }^{2}}\right\}=\operatorname{Max}\left\{0.111111 \times 10^{-4}, \frac{66 \mathrm{~m}^{2}}{\mathrm{r}_{\mathrm{CL}}{ }^{2}}\right\}
$$

RANGE RATE MEASUREMENT

$$
\bar{\alpha}^{2}=\operatorname{Max}\left\{\dot{\mathrm{r}}^{2} \operatorname{Var}_{\mathrm{V}}^{*}, \operatorname{Var}_{\operatorname{V} \min }^{*}\right\}=\operatorname{Max}\left\{\dot{\mathrm{r}}^{2} 1.8777 \times 10^{-6}, 0.017445 \mathrm{~m}^{2} / \mathrm{s}^{2}\right\}
$$

SHAFT ANGLE MEASUREMENT

$$
\bar{\alpha}^{2}=\operatorname{Var}_{\beta}^{*}+\operatorname{Var}_{\mathrm{IMU}}=(1 \mathrm{mr})^{2}+(0.2 \mathrm{mr})^{2}
$$

TRUNNION ANGLE MEASUREMENT

$$
\bar{\alpha}^{2}=\operatorname{Var}_{\theta}^{*}+\operatorname{Var}_{\mathrm{IMU}}=(1 \mathrm{mr})^{2}+(0.2 \mathrm{mr})^{2}
$$

INITIAL "W" MATRICES

FOR RENDEZVOUS
$[\mathrm{W}]=\left[\begin{array}{c:c:ccc}\mathrm{w}_{\mathrm{rr}} \mathrm{I} & 0 & 0 & 0 \\ \hdashline 0 & w_{r v} \mathrm{I} & \cdots & 0 & \\ \hdashline & - & \cdots & w_{\beta} & 0 \\ 0 \\ 0 & 0 & 0 & w_{\theta} & 0 \\ & & & 0 & 0\end{array}\right]$
$\mathrm{w}_{\mathrm{rr}}^{*}=3,048 \mathrm{~m}=10^{4} \mathrm{ft}$
$\mathbf{w}_{\text {rv }}^{*}=3.048 \mathrm{~m} / \mathrm{s}=10 \mathrm{ft} / \mathrm{s}$
$\mathrm{w}_{\beta}^{*}=15 \mathrm{mrad}$
$\mathrm{w}_{\theta}^{*}=15 \mathrm{mrad}$

FOR LUNAR SURFACE NAVIGATION

$$
[W]=\left[\begin{array}{c:c}
w_{\ell r^{I}} & 0 \\
\hdashline 0 & w_{\ell v^{I}}
\end{array}\right]
$$

$\mathrm{w}_{\ell \mathrm{r}}^{*}=1,524 \mathrm{~m}=5,000 \mathrm{ft}$
$\mathrm{w}_{\ell \mathrm{V}}^{*}=1.524 \mathrm{~m} / \mathrm{s}=5 \mathrm{ft} / \mathrm{s}$
*These values are stored in erasable memory.

MEASUREMENT VARIANCE

$$
\begin{aligned}
\bar{\alpha}^{2} & =\operatorname{Var}_{\mathrm{SCT}}+\operatorname{Var}_{\mathrm{IMU}} \\
& =(1 \mathrm{mr})^{2}+(0.2 \mathrm{mr})^{2}
\end{aligned}
$$

INITIAL "W" MATRIX

$$
[\mathrm{W}]=\left[\begin{array}{c:c:c}
\mathrm{w}_{\ell \mathrm{r}} \mathrm{I} & 0 & 0 \\
\hdashline 0 & \mathrm{w}_{\ell \mathrm{v}} \mathrm{I} & 0 \\
\hdashline 0 & 0 & \mathrm{w}_{\ell} \mathrm{I}
\end{array}\right]
$$

$$
\begin{aligned}
\mathrm{w}_{\ell \mathrm{r}}^{*} & =0.0 \\
\mathrm{w}_{\ell \mathrm{v}}^{*} & =0.0 \\
\mathrm{w}_{\ell}^{*} & =10,000 \text { meters }
\end{aligned}
$$

*These values are stored in erasable memory.

CISLUNAR MIDCOURSE NAVIGATION ROUTINE

 P-23MEASUREMENT VARIANCE

$$
\begin{aligned}
\bar{\alpha}^{2} & =\operatorname{Var}_{\operatorname{Trun}}+\operatorname{Var}_{\mathrm{L}} / \mathrm{r}_{\mathrm{CL}}{ }^{2} \\
& =(0.05 \mathrm{mr})^{2}+\frac{1 \mathrm{nmi}^{2}}{\mathrm{r}_{\mathrm{CL}}{ }^{2}}
\end{aligned}
$$

INITIAL "W" MATRIX

$$
\begin{aligned}
& {[\mathrm{W}]=\left[\begin{array}{c:c}
\mathrm{w}_{\mathrm{mr}} \mathrm{I} & 0 \\
\hdashline 0 & \mathrm{w}_{\mathrm{mv}} \mathrm{I}
\end{array}\right]} \\
& \hdashline \mathrm{w}_{\mathrm{mr}}^{*}=1,005.84 \mathrm{~m}=3,300 \mathrm{ft} \\
& \mathrm{w}_{\mathrm{mv}}^{*}=1.00584 \mathrm{~m} / \mathrm{s}=3.3 \mathrm{ft} / \mathrm{s}
\end{aligned}
$$

*These values are stored in erasable memory.

RENDEZVOUS RANGE (r_{m}) MEASUREMENT

RENDEZVOUS RANGE RATE (V_{m}) MEASUREMENT

Rendezvous range rate measurement has a term due to deviation from conic velocity ($\delta \mathrm{V}$) and a term due to deviation from conic position (δr_{I}). The term due to velocity deviation $\left(\underline{\delta V}_{\mathrm{L}}\right)$ is:

RENDEZVOUS RANGE RATE $\left(\mathrm{V}_{\mathrm{m}}\right)$ MEASUREMENT continued

RENDEZVOUS RADAR SHAFT ANGLE (β_{m}) MEASUREMENTS

The Rendezvous Radar shaft angle is defined in the radar X-Z coordinate plane. The effect of LM and CSM position vectors on the shaft angle can be determined by lonking at the projection of these vectors on the $x-z$ plane:
$\beta_{\mathrm{m}}=\beta_{\mathrm{o}}+\delta \beta_{\mathrm{m}}$
where $\beta_{\mathrm{m}}=$ estimate of RR shaft angle due to $\underline{r}_{\mathrm{LC}}$

$$
\beta_{o}=\text { portion of } R R \text { shaft angle due to }{ }_{-}^{r}{ }^{\text {and }} \underline{r}_{L_{C o n i c}}
$$

$$
\delta \beta_{\mathrm{m}}=\frac{1}{\underline{r}_{\mathrm{xz}}}\left[\text { Unit }\left(\underline{y}_{\mathrm{y}} \times \underline{u}_{\mathrm{LC}}\right) \cdot \underline{\delta r}_{\mathrm{L}}\right]
$$

The actual measured shaft angle has two components a nominal one due to spacecraft position and an additional deviation term $(\delta \beta)$ which is an element of the state vector.
$\hat{\beta}_{\mathrm{m}}=\beta_{\mathrm{m}}+\delta \beta=\beta_{\mathrm{o}}+\delta \beta_{\mathrm{m}}+\delta \beta$
The Kalman filter measurement variable. $=\delta \beta_{m}+\delta \beta_{0}=\underline{b}^{T} \underline{x}$

RENDEZVOUS RADAR TRUNNION ANGLE (θ) MEASUREMENTS

The rendezvous radar trunnion angle is defined in the $\underline{u}_{L C}$, \underline{u}_{y} plane and can be illustrated by projecting the spacecraft position vectors onto this plane. Like the shaft angle it is divided into two components, a nominal one due to spacecraft positions and a deviation term ($\delta \theta$) which is an element of the state vector.

CSM DAP CONTROI

Flashing V04 N46

Register 1:

A	B	C	D	E
CONFIG	XTAC	XTBD	DB	RATE

CONFIG - Vehicle Configuration
$0=$ No DAP is requested
$1=$ CSM alone
$2=$ CSM and LM
$3=$ SIVB, CSM and LM (SIVB control)
$6=$ CSM and LM (ascent stage only)
XTAC - X-Translations Using Quads AC
$0=$ Do not use AC
$1=$ Use $A C$
XTBD - X-Translations Using Quads BD
$0=$ Do not use BD
$1=$ Use $B D$
DB - Angular Deadband for Attitude Hold and Automatic Maneuvers

$$
\begin{aligned}
& 0= \pm 0.5 \text { degree } \\
& 1= \pm 5.0 \text { degrees }
\end{aligned}
$$

RATE - Rotational Rate for RHC in HOLD or AUTO Mode and for Automatic Maneuvers.

$$
\begin{aligned}
& 0=0.05 \mathrm{deg} / \mathrm{s} \\
& 1=0.2 \mathrm{deg} / \mathrm{s} \\
& 2=0.5 \mathrm{deg} / \mathrm{s} \\
& 3=4.0 \mathrm{deg} / \mathrm{s}
\end{aligned}
$$

Register 2

AC Roll	Quad A	Quad B	Quad C	Quad D

AC Roll - Roll-Jet selection
$0=$ Use BD roll Quads $1=$ Use AC roll Quads

A, B, C. D - Quad fails
$0=$ Quad has failed
$1=$ Quad operational
Flashing V06 N47
Register 1: CSM weight in pounds
Register 2: LM weight in pounds
Flashing V06 N48
Register 1: Pitch-trim gimbal offset, in $1 / 100$ degree
Register 2: Yaw-trim gimbal offset, in $1 / 100$ degree

AUTOMATIC MODE

1. Automatic three-axis rotation.
2. Manual three-axis rotation and translation
3. Attitude hold to program or manual defined attitude.
4. Automatic rate damping.

ATTITUDE HOLD MODE

1. Manual three-axis rotation and translation.
2. RHC produces a rotational rate as specified by N46 while out of detent.
3. Attitude hold to attitude selected via hand controller.
4. Automatic rate damping.

CSM DIGITAL AUTOPILOT
COASTING FLIGHT
AUTOMATIC ATTITUDE HOLD MODE

CSM DIGITAL AUTOPILOT
COASTING FLIGHT
aUtomatic attirude positioning mode

CSM DIGITAL AUTOPILOT
POWERED FLIGHT
THRUST VECTOR ATTITUDE CONTROL

CSM DIGITAL AUTOPILOT POWERED FLIGHT
TVC ROLL ATTITUDE HOLD CONTROL

Flashing V01 N46

Register 1:

c	A		B	C
CONFIG	ACC	ACA	DB	RATE

CONFIG - Vehicle Configuration
$1=$ Ascent stage only
$2=$ Ascent and descent stages
$3=$ LM and CSM docked
ACC - Acceleration Code
$0=$ Two-jet translation (RCS System A)
$1=$ Two-jet translation (RCS System B)
$2=$ Four-jet translation (RCS System A and B)

ACA - ACA Scaling
$0=$ Docked (4 deg/s, max. rate)
$1=$ Normal ($20 \mathrm{deg} / \mathrm{s}$, max. rate)

```
DB - Deadband
    0=0.3 degree
1=5.0 degrees
```

RATE - Maneuver Rate (Automatic Mode)
$0=0.2 \mathrm{deg} / \mathrm{s}$
$1=0.5 \mathrm{deg} / \mathrm{s}$
$2=2.0 \mathrm{deg} / \mathrm{s}$
$3=10.0 \mathrm{deg} / \mathrm{s}$

Flashing V06 N47
Register 1: LM weight in pounds
Register 2: CSM weight in pounds

Flashing V06 N48

Register 1: Pitch-trim engine gimbal angle, in $1 / 100$ degree
Register 2: Roll-trim engine gimbal angle, in 1/100 degree

AUTOMATIC MODE

1. Automatic three-axis rotation and translation.
2. Manual three-axis translation.
3. Manual X-axis rate command (inhibited in LPD phase)
4. Attitude hold to program defined attitude
5. Automatic rate damping

ATTITUDE HOLD MODE

1. Manual three-axis translation.
2. Manual three-axis rate command using V77
3. Manual minimum impulse command using V76.
4. Attitude hold to attitude selected via hand controller
5. Automatic rate damping

V77 - Used to provide a manual rate command. Commanded rotational rate is proportional to hand controller (ACA) deflection. Maximum commanded rotational rate is either $4 \mathrm{deg} / \mathrm{s}$ or $20 \mathrm{deg} / \mathrm{s}$ as chosen in DAP Data Load routine.

V76 - Used to provide a minimum impulse command. Releases Attitude Hold mode and allows vehicle to drift freely. One impulse is produced for each hand controller (ACA) deflection greater than 2.5 degrees.

LM DIGITAL AUTOPILOT
COASTING FLIGHT
ATTITUDE-HOLD CONTROL MODE

LM DIGITAL AUTOPILOT

COASTING FLIGHT
MANUAL ATTITUDE RATE MODE

LM DIGITAL AUTOPILOT COASTING FLIGHT
AUTOMATIC ATTITUDE POSITIONING MODE

ALtomatic attitlde and steering control mode

REFERENCES

2. Spacecraft Operational Trajectory for Mission G, Volume I, Operational Mission Profile, Launched July 16, 1969, MSC Internal Note No. 69-FM-98, May 16, 1969
3. Spacecraft Operational Trajectory for Mission G, Volume II, Operational Mission Profile Trajectory Parameters, Launched July 16, 1969, MSC Internal Note No. 69-FM-99, May 8, 1969.

Preliminary Apollo 11 Flight Plan, NASA, April 15, 1969
LM Rendezvous Procedures, G Mission, MSC Internal Note No. CF-R-69-23, May 16, 1969.
Guidance System Operations Plan for Manned LM Earth Orbital and Lunar Landing Missions Using Program Luminary IA, MIT Instrumentation Laboratory, Report No. R-567, Section 4 April 1969.
7. Guidance System Operations Plan for Manned CM Earth Orbital and Lunar Missions Using Program Colossus 1 and Program Colossus 1A, MIT Instrumentation Laboratory, Report No. R-577, Section 4, December 1968.
8. Guidance System Operations Plan for Manned CM Earth Orbital and Lunar Missions Using Program Colossus 2A, MIT Instrumentation Laboratory, Report No. R-577, Section 5, April 1969.
9. Guidance, Navigation, and Control, Lunar Module Functional Description and Operation Using Flight Program Luminary, MIT Instrumentation Laboratory, Report No. E-2260, March 1969.

Apollo Operations Handbook, Lunar Module LM5 and Subsequent, Volume I, Subsystems Data, LMA790-3-LM, Grumman Aircraft Engineering Corporation, December 15, 1968
11. Universal Lunar Module Systems Handbook, LM4 and Subsequent Vehicles, FC027, NASA, January 17, 1969.
12. Apollo Mission Techniques, Missions F and G, Transearth Injection, Midcourse Corrections and Entry (Volume 1), MSC Internal Note No. S-PA-9T-040, February 24, 1969.

Apollo Operations Handbook, Lunar Module LM5 and Subsequent, Volume II, Operational Procedures, LMA790-3-LM, Grumman Aircraft Engineering Corporation, May 1, 1969.

Radar Section Study Guide Lunar Module LM-4, LSG 770-154-5-LM-4, Grumman Aircraft Engineering Corporation, January 1969.
15. Control Electronics Section Study Guide Lunar Module LM-4, LSG 770-154-7-LM-4, Grumman Aircraft Engineering Corporation, January 1969.
16. Declination, Radial Distance, and Phases of the Moon for the Years 1961 to 1971 for Use in Trajectory Considerations, NASA Technical Note D-911, August 1961.

Notes on the Block II ECDU, AP-M \#17329, October 23, 1967
Block II 25 IRIG Pulse Torquing Circuit, XDE 34-R-20, June 30, 1967.
19. Block II Stab-Amp, AP-M \#15614, April 12, 1967.
20. Notes on G\&N JDC's 12220 and 12619 - The Gimbal Response Test, AP-M \#18834, May 1, 1968

ECDU Computer Operate Optics, AP-M \#18281, February 26, 1968
22. Orbital Navigation Via Landmark Tracking, AP-M \#21695, February 24, 1969.
23. Celestial Navigation, AP-M \#21569, February 4, 1969.
24. Notes on the Block II Coarse Align Loop, AP-M \#16949, Rev. 1, November 17, 1967.
25. Block II Optical Subsystem Test Results, XDE 34-T-57, Rev. D, September 6, 1966.
26. Notes on the Block II and LEM PIPA, AP-M \#17714, December 11, 1967.
27. AOT Usage During LM Operations on the Apollo 9 Mission, AP-M \#21623, February 6, 1969.

[^0]: *These switches are never called by name.

[^1]: *These switches are never called by name.

[^2]: *Theses switches are never called by name.

[^3]: ${ }^{*} \mathrm{R}_{\text {Moon }}=938.5 \mathrm{nmi}$

[^4]: \mid (DESOPTT - CDUT)/4
 (LOC 1160 - LOC 0035)/4

[^5]: AS $=\mathrm{Y}$ Reticle Angle
 $\mathrm{AT}=360+\mathrm{S}$ Reticle Angle -Y Reticle Angle

