STI CENTER -GS 53-45/100
NASA JOHNSON SPACE CUTE
210 NASA F OAO ONE
HOUSTON, TX 770533696
$75 N 72089$

NASA

National Aeronautics and
Space Administration

APOLLO 5 MISSION REPORT

APOLLO MISSION 5/AS-204/LM-1 TRAJECTORY RECONSTRUCTION AND POSTFLIGHT ANALYSIS

VOLUME I

SUPPLEMENT 2: APOLLO MISSION 5/AS- $204 /$ LH-1
TRAJECTORY RECONSTRUCTION AND POSTFLIGHT
ANALYSIS, VOLUME 1 (NASA) 187 p

DISTRIBUTION AND REFERENCING
This poper is not suitable for general distribution or referencing. It moy be ceferenced only in other working carrespondence and documents by participating organizations.

MANNED SPACECRAFT CENTER HOUSTON. TEXAS

May 1968

APOLLO 5 MISSION REPORT

Supplement 2

APOLLO MISSION 5/AS-204/LM-1 TRAJECTORY RECONSIRUCTION AND POSTFLIGHT ANALYSIS

VOLUME I

May 13, 1968

Prepared by: TRW Systems Group

Approved by: $\frac{\substack{\text { George M. Low } \\ \text { Manager } \\ \text { Apollo Spacecraft Program }}}{\text { Lown-1) }}$

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION MANNED SPACECRAFT CENTER

HOUSTON, TEXAS

1'RW NOTE NO. 68-FMT-642

PROJECT APOLLO
TASK MSC/TRW A-50

APOLLO MISSION 5/AS-204/LM-1 TRAJECTORY RECONSTRUCTION AND POSTFLIGHT ANALYSIS -
 APPENDIXES

VOLUME I

22 APRIL 1968

Prepared by
Guidance and Control Department
W. P. Girod
T. A. Phythian
G. L. Roland
Systems Evaluation Department
J. M. Allred
E. L. Barnett
D. H. Cooper
J. B. Moore

Prepared for

FOREWORD

This report is submitted to the NASA Manned Spacecraft Center in accordance with Task MSC/TRW A-50.3 Contract NAS 9-4810. This report contains the postflight analysis performed in conjunction with the flight of Apollo Mission 5/AS-204/LM-1, and is issued as a supplement to Section 3, Trajectory Section, of the Apollo Program Mission Report.

The report is issued in two volumes. Volume I contains details of the analysis and results obtained, including appendices. Volume II contains a listing of the " 45 Day" Best Estimated Trajectory (BET) for the LM-1 mission from S-IVB separation to the occurrence of the gimbal lock condition in the PRA.V burn sequence. This listing is in the NASA Apollo Trajectory (NAT) format which is shown below. The listing is not generally distributed, but is available from NASA/MSC upon request. Requests should be made to:

NASA/MSC Computations Analysis Division
Central Metric Data File
Code ED-5, Bldg. 12, Room 133
Houston, Texas 77058
The listing is in three parts which are identified by time span covered and the corresponding accession number.

Time Span (GET)

Part I
00:53:54-04:06:21
04:06:00-06:17:56
06:13:40-07:47:32
Part II
Part III

Accession No.
05-07334

05-07335
05-07336
masa apollo tmajectony inotx

1	$\begin{aligned} & \text { GWTR } \\ & \text { SECONDS } \end{aligned}$	$\begin{gathered} \text { GMTC } \\ \text { SFCOMOS } \end{gathered}$	$\begin{aligned} & \text { GNTC } \\ & \text { mours } \end{aligned}$	$\begin{gathered} \text { GETS } \\ \text { secomns } \end{gathered}$		$\begin{gathered} \text { GRE } \\ \text { SFCOMDS } \end{gathered}$	HR MINTC SEC
9	gencentric latitione DEGMESS	gennetic batitine DEGREES	gennetic LONGITIJNE DEGREES	geonetic aLTITLDE FEET	INFRTIAL VELDCITY FEFTISFC	inertial Path angle Degeefs	INERTIAL HEAOING DEGREES
15	nscl ination de grees	nent RaDHIIS FEE ${ }^{\top}$	Ranius dfatvative FEET/SEC	GEOCENTRIC ALTITUDE FFET	pelative velnctiv fEET/SEC	relative path angle OEGREES	relative meading DECREES
23	(BLANXI	C FMTRAL ANGLE DEGRFES	HORIION aNGLE DEGREES	SIIN TMETA DEGMESS	SIN PMI DEGREES	CROMD RANGE * (I	Distance travelfit NMI
27	$\operatorname{XEC}_{F E F T}$	$\begin{aligned} & Y \text { ECI } \\ & \text { FEET } \end{aligned}$	$\boldsymbol{2}_{\text {E ECET }}$	$\begin{aligned} & \operatorname{xnnt} E C I \\ & \text { FEFT/SEC } \end{aligned}$	vnnt EC! FEFT/SEC	TDOT ECT FFET/SEC	G sish x FEET/SEC**?
3.5	$\begin{gathered} \text { XFI } \\ \text { FEE } \end{gathered}$	$\begin{gathered} \text { YECIG } \\ \text { FEET } \end{gathered}$		xDOT ECIE FFET/SEC	YOOT ECIG FFET/SEC	tont fCIG FFET/SEC	$\begin{gathered} G \operatorname{SUB} Y \\ \text { FEET/SEC } \end{gathered}$
43	$\times \mathrm{ArPC}$	Y AGES	Y AGE	XDOT AGC FEFT/SEC	yont acic FEET/SfC	7nnt age FEFT/SEC	$\begin{gathered} G \operatorname{sun} 7 \\ \text { FEFT/SEC**? } \end{gathered}$
50	PEESF	$\begin{aligned} & \text { OESF } \\ & \text { FEET } \end{aligned}$	$\begin{aligned} & \text { RESF } \\ & \text { FFET } \end{aligned}$	PNOT ESF FEET/SEC	$\begin{aligned} & \text { ODOT ESF } \\ & \text { FEFT/SEC } \end{aligned}$	RDIT ESF FEET/SEC	g, toral FFET/SEC**?
57	$\operatorname{HECF}_{F F \in T}$	$\begin{aligned} & \text { VFCF } \\ & \text { FEET } \end{aligned}$	$\begin{aligned} & \forall F C F \\ & \text { FEET } \end{aligned}$	$\begin{aligned} & \text { GOONT ECF } \\ & \text { FEET/SFCH* } 2 \end{aligned}$	vont ecf FEET/SEC**2	wont eck FEFT/SEC** 2	ORAt
64	$\begin{aligned} & \text { xomi ECI } \\ & \text { FEET/SFC**2 } \end{aligned}$	vonot EC! FFET/SFC**2	$\begin{aligned} & \text { RODNTECI } \\ & \text { FEEY/SEC**2 } \end{aligned}$	xoont ecig FFFT/SEC**	yodot ecig FEET/SER.**	ZDONT ECIG FEET/SEC**2	aevolution
11	YDNOT AGC FEET/SEC**2	vonit agc FEET/SEC**?	?nnot AGC FEET/SEC.**2	APCEFE RaOIUS FFET	$\begin{gathered} \text { PFRIGEF } \\ \text { RADIHS } \\ \text { FFET } \end{gathered}$	apriget ALTITIDE NMI	pfatgee altitine $\mathrm{N}=1$
73	$\begin{aligned} & \text { SFMI-MAJJR } \\ & \text { AXIS } \\ & \text { FFET } \end{aligned}$	$\begin{gathered} \text { SEMI-MINOR } \\ \text { AXIS } \\ \text { FEET } \end{gathered}$	ECCENTRICIT	INCLINAIION DETREES	RT. ASCEN. NODE, ATRES DEGREES	ARGIMENT DERIGFE DEGREFS	reve AnCuAly DEGRES
$* 5$	$\begin{aligned} & \text { PERION } \\ & \text { MINITFFS } \end{aligned}$	RT. ASCEN. SAT., GRNWTH DEGREES	RT. ASCEN. SAT.. ARIES nefrees	(ALARK)	RT. ASCEN. NOTE, GRNWCH DFGREES	FCCENTRIC ANOMALY DEGREES	MFAN ANOMALV DFGREFS
$9 ?$	(RLANK)	$\begin{gathered} \text { SFMI -LATUS } \\ \text { RECTIMM } \\ \text { FEET } \end{gathered}$	SPEFN TF SDUIND FEET/SEC	$\begin{aligned} & \text { MACH } \\ & \text { NHMAER } \end{aligned}$	grammic PRESSIGF LB/FT**2	REYNOLDS NUMRFR	intal ENERTY FTHES
97	ATMOSPHERIC DEASITY SLUGS/FT**3	ATMOSPHERIC prfsstre (B/IN** 2	TEMPERATIRE DFGREES RANKINE	$\begin{aligned} & \text { YONAT PIPA } \\ & \text { FFET/SEE*E } \end{aligned}$	YDDOT PIPA FFET/SEC** 2	$\begin{aligned} & \text { TOnOT PIPA } \\ & \text { FFET/SEC***2 } \end{aligned}$	pipa tigal atcelfearton FEFT/SEC**?
$10 n$	$\begin{aligned} & \text { XDOT PIPA } \\ & \text { FEET/SEG } \end{aligned}$	vont PIDA FEET/SER	2007 PIPA FEFT/SEC	pipa rctal velocity FFET/SEC	AERDOYNAMt VELOCITY FEET/SEC	AFRTDYNAMIC PATH ANGLE DEGREFG DEGREFS	afronornamic hFADINT, nfgrefs
113	xont esf WIND CDRQ. FEET/SEC	vDOT FSF WINO CORR. FEET/SEC	1007 ESF winn cora. FEET/SEC	$\begin{gathered} \text { HINR } \\ \text { SPFEC } \\ \text { FEET/SEC } \end{gathered}$	WIN DIRECTION negrefs		

Page
3. APOLLO MISSION 5/AS-204/LM-1 TRAJECTORYRECONSTRUCTION AND POSTFLIGHT ANALYSIS3-1
3.1 Introduction and Summary 3-1
3.1.1 Sequence of Events 3-1
3.1.2 Analysis and Programs 3-1
3.2 Ascent Analysis 3-7
3. 3 Orbit Analysis 3-24
3.3. Lunar Module Orbital Reconstruction 3-36
3.3.2 RTCC Trajectory Comparison 3-38
APPENDIXES
A. TRACKER RESIDUAL PLOTS A-1
B SUPPLEMENTARY DATA B-1

ILLUSTRATIONS

Page
3-1 AS-204 Mission Timeline and Tracking Periods 3-3
3-2 Uncompensated G\&N Minus S-IVB (Boost) - Delta X
Velocity 3-10
3-3 Uncompensated G\&N Minus S-IVB (Boost) - Delta Y
Velocity 3-11
3-4 Uncompensated G\&N Minus S-IVB (Boost) - Delta Z
Velocity 3-12
3-5 Uncompensated G\&N Minus S-IVB (Boost) - Delta X
Position 3-13
3-6 Uncompensated G\&N Minus S-IV B (Boost) - Delta Y
Position 3-14
3-7 Uncompensated G\&N Minus S-IV B (Boost) - Delta Z
Position 3-15
3-8 Compensated G\&N Minus S-IV B (Boost) - Delta X Velocity 3-16
3-9 Compensated Ci\&N Minus S-IV B (Boost) - Delta Y Velocity 3-17
3-10 Compensated Ci\&N Minus S-IVB (Boost) - Delta Z
Velocity 3-18
3-11 Compensated Ci\&N Minus S-IV B (Boost) - Delta X Position 3-19
3-12 Compensated G\&N Minus S-IV B (Boost) - Delta Y
Position 3-20
3-13 Compensated G\&N Minus S-IV B (Boost) - Delta Z
Position 3-21
Page
3-1 Summary of Events 3-2
3-2 IMU Performance Parameters 3-9
3-3 State Vector Comparison - Compensated LM G\&N Minus $\operatorname{BET}(\mathrm{t}=600.0$ seconds) 3-22
3-4 Timeline of Launch Events 3-23
3-5 LM Orbital Fit Summary 3-26
3-6 Residual Mean and RMS by Station and Data Type for Segments 1-5 3-29
3-7 State Vector Summary 3-34
3-8 Maneuver Summary 3-37
3-9 Position and Velocity Comparison - LM-1 G\&N versus BET/PRA III 3-38
3-10 RTCC Summary of Radar Data for AS -204/LM-1 3-39
3-11 RTCC Comparison Summary 3-44
3-12 RTCC Comparison Summary for Special Vectors 3-45
B-1 Radar Data Summary B-2
B-2 C-band Station Locations B-4
B-3 USBS Station Locations B-6
B-4 Drag Summary B-7
B-5 Radar Data Weighting B-7

3. APOLLO MISSION 5/AS-204/LM-1 TRAJECTORY RECONSTRUCTION AND POSTFLIGHT ANALYSIS

3. 1 INTRODUCTION AND SUMMARY

3. 1. 1 Sequence of Events

The Apollo 5 mission was launched from launch complex 37 B at Cape Kennedy, Florida, on 22 January 1968. Range zero was established at 22 hours, 48 minutes, and 8 seconds Greenwich mean time (GMT), with lift-off occuring 0.4 second later. Lunar module/Saturn IVB (LM/S-IVB) insertion occurred at 10 minutes and 3.3 seconds ground elapsed time (GET) with subsequent LM/S-IVB separation at 53 minutes and 56 seconds GET.

After two and a half revolutions, the first descent engine burn was initiated by the guidance computer. This burn was performed at less than full tank pressures; consequently, the thrust buildup was not adequate, and the engine was shutdown by the computer 4 seconds after ignition.

The premature cutoff of this burn required deviations from the planned mission. A modified alternate mission was used which combined mission program sequences III and V. Mission program sequence III was comprised of two descent engine burns and two ascent engine burns. However, the second ascent engine burn in sequence III was inhibited by ground command. Mission program sequence V was comprised of an ascent engine burn that continued until all the fuel aboard was depleted. Table 3-1 lists the times associated with events pertinent to this trajectory analysis. A complete mission description may be obtained from the Apollo 5 Mission Report. Figure 3-1 presents the AS -204 mission time lines and tracking periods.

3.1.2 Analysis and Programs

This section describes the programs that are used in the postflight trajectory analysis. The programs used to reconstruct the orbital phase of a mission and associated programs are discussed first, followed by description of the programs used in the analysis of the guidance system and the reconstruction of the spacecraft trajectory during thrusting periods.

Table 3-1. Summary of Events

Event	Revolution		Date	Ground Elapsed Time (hr:min:sec)	Greenwich Mean Time (hr:min:sec)
LM/S-IVB Separation*	1	22	January	0:53:55.9	23:42:02.9
+X translation off	1	22	January	0:54:10.2	23:42:18.2
DPS 1 ullage on	3	23	January	3:59:33.9	2:47:41.9
DPS 1 engine ignition	3	23	January	3:59:41.7	2:47:49.7
DPS. 1 engine cutoff	3	23	January	3:59:45.7	2:47:53.7
RCS +X ullage start (PRA III)	4	23	January	6:10:07. 4	4:58:15. 4
DPS engine igniton (PRA III)	4	23	January	6:10:41.7	4:58:49.7
FITH (PRA III)	4	23	January	6:12:14.7	5:00:22.7
APS engine cutoff (PRA III)	4	23	January	6:13:14.3	5:01:22. 3
RCS +X ullage start (PRA V)	5	23	January	7:44:00.3	6:32:08.3
APS engine ignition (PRA V)	5	23	January	7:44:12.7	6:32:20. 7
APS fuel depletion (PRA V)	5	23	January	7:50:03.0	6:38:11.0

[^0]

GREENWICH MEAN TIME (OAY: (IR:MIN:SEC)

Figure 3-1. AS-204 Mission Timeline and Tracking Periods

Orbit Reconstruction Frograms

Low-speed tracking data for a mission are received from MSC on a magnetic tape. The data tape is input into the Master Tape Generator (MATAG) Program which reformats the data into a format that is compatible with the TRW orbit determination program (ESPOD) and generates a time-ordered master data tape. The master data tape is then input into the ESPOD Data Generator (EDG) Program which edits the master data tape and outputs the data in the form of tape or cards.

The ESPOD Program determines the state vector for a spacecraft at a given epoch and the covariance matrix of uncertainties. This is accomplished by an iterative process which minimizes the weighted sum of the squares of the residuals, where the residuals are the difference between the actual observations and the computed observations based upon a current estimate of the spacecraft trajectory. ESPOD also has the capability of including in the solution vector such parameters as drag $\left(C_{d} A / 2 M\right)$, radar errors, and station location errors.

There exist two versions of ESPOD, both of which have the general capability described above. The USB ESPOD is distinguished by the fact that it can process RAER, RXY, and doppler radar tracking data. It does not, however, have the capability of modeling burns. The IGS ESPOD, in contrast, can only process RAER radar tracking data even though it does have two burn models, the LOP burn model and the IGS burn model. The LOP burn model uses an analytic thrust acceleration model - constant thrust oriented along the roll axis. Thrust/mass ratio, and orientation of roll axis are some of the parameters that can be included in the solution vector. The IGS burn model uses an acceleration burn tape based on telemetered data which is then input into ESPOD. Accelerometer and gyro errors may be modeled or included in the solution vector.

After a best estimate of the trajectory (BET) is obtained in ESPOD, a trajectory tape is generated and input into the RTCC Comparison Program. This program compares the RTCC trajectory and the BET by means of state vector differences exhibited in various coordinate systems. The total difference in position and velocity is also listed.

Guidance and Navigation Programs

The spacecraft trajectory during thrusting periods after S-IVB separation is reconstructed from inertial measurement data telemetered from the guidance and navigation system. Before an accurate reconstruction can be undertaken, it is necessary to determine the systematic errors present in the guidance system hardware so that appropriate corrections to the IMU data can be made. This procedure for trajectory reconstruction may be divided into three general areas.

Data Processing
The three sources of trajectory data used in Apollo IMU evaluation must be formated so that they are compatible with the trajectory computing programs.
a) The $G \& N$ Processor Program is used to edit Apollo downlink telemetry data and produce a regular ephemeris of measured position, velocity, and acceleration.
b) The S-IVB Processor Program is used to interpolate the S-IVB IU trajectory to the AGC/LGC time base and rotate the data into appropriate coordinate frames.
c) The General Data Processor Program is used to smooth, interpolate, and rotate high-speed tracking data (GLOTRAC, C-band) to an appropriate time base and coordinate frame.

IMU Evaluation
Determination of the systematic errors present in the Apollo guidance system is based primarily on comparisons of the trajectory (sensed and total) as measured by the AGC/LGC, with S-IVB and GLOTRAC trajectories. The boost phase of any mission is the most important for this analysis because of the relatively long time duration with high acceleration levels. The two principal tools used in IMU error analysis are discussed in the following paragraphs.
a) The Error Analysis Program (EAP) is used to compute the partial derivatives of sensed position, velocity, and acceleration ($\partial \mathrm{Ps} / \partial E k, \partial \mathrm{Vs} / \partial \mathrm{Ek}_{\mathrm{k}}, \partial \mathrm{As} / \partial E k$) with respect to each of the error terms, E_{k}, in the Apollo IMU error model. The input which drives the EAF is the edited ephemeris of sensed acceleration obtained from the $G \& N$ Processor Program.
b) The Velocity Comparison Program (VELCOMP) corrects the Apollo sensed trajectory profile using the EAP partials and the best estimates of the IMU errors, E_{k}. It then compares the corrected trajectory (in both sensed and total coordinates) with external reference trajectory data (S-IVB and GLOTRAC). The recovered set of IMU errors must, of course, be compatible with the preflight test history of the onboard guidance system and with the known trajectory constraints during later phases of the mission.

Trajectory Reconstruction

During thrusting periods for which limited external trajectory data are available, a different technique for trajectory reconstruction is employed. This method relies on two external inputs: (1) the set of IMU hardware errors determined from ascent analysis and (2) an accurate state vector, $\left(\mathrm{P}_{\mathrm{o}}, \mathrm{V}_{\mathrm{o}}\right)$, from the ESPOD program to initialize the total trajectory. The Trajectory Reconstruction Program is driven with the outputs of the G\&N Frocessor and EAP Programs. At time, t_{i}, the total corrected velocity is computed from:

$$
V_{T i}=V_{o}+V_{s i}-\sum_{K} \frac{\partial V_{s i}}{\partial E_{k}} E_{k}+V_{G i}
$$

This quantity is integrated to obtain total position, P_{Ti}, which is extrapolated to time, t_{i+1}, for the next computation of velocity due to gravity, ($V_{G i+1}$).

3. 2 ASCENT ANALYSIS

Analysis of IMU errors consists of determining the physically acceptable set of errors which bring the LM $G \& N$ trajectory into agree-
ment with the best estimate of the actual trajectory flown. This "best estimate" is referred to as the Best Estimate Trajectory (BET). During the boost phase there were eight trajectories available from which to chose a standard of comparison, or BET. These eight trajectories were classed into two independent groups. Five of the trajectories were generated by MSFC from the S-IVB Instrument Unit (IU) telemetry data. They represent a five-stage evolution in the processing of that data, from the raw (quick look) IU output through a final S-IVB BET designated the "Final S-IVB Observed Mass Point Trajectory (OMPT)' ${ }^{\prime \prime}$. The three remaining trajectories represent a similar evolution in the processing of GLOTRAC radar data. The final OMPT and final GLOTRAC trajectories agreed closely throughout most of the burn. However, the GLOTRAC data BET became erratic near the endpoints of the burn, and the final trajectory generated from it was truncated to exclude data prior to 24 seconds and subsequent to 552 seconds. Therefore, in order to have a continuous trajectory available for comparisons with the LM $G_{\&} N$ data, and since the S-IVB data agreed so well with the external source (GLOTRAC), the S-IVB final OMPT was chosen as the boost phase BET.

The error magnitudes associated with each IMU error model parameter were derived from comparisons of the LM G\&N trajectory and the BET. These errors are presented in Table 3-2 together with their preflight estimates and uncertainties. In this table, the great majority of the derived error magnitudes lie within their associated uncertainty band. In general, errors satisfying that constraint will not be discussed further except to reiterate that they were selected because the state vector errors they produce coincide with observed residuals.

The IMU error set given in Table 3-2 was used to construct a compensated LM G\&N trajectory. Plots of the trajectory comparisons are presented in this section to demonstrate the residuals in velocity and position which were obtained before and after compensation of the LM G\&N trajectory. Figures 3-2 through 3-7 present the velocity and position residuals, respectively, which existed between the uncompensated $G \& N$ and BET trajectories. Figures 3-8 through 3-13 present the residuals remaining after the LM $G \& N$ trajectory had been compensated for errors.

Table 3－2．IMU Performance Parameters

Parameter	Actual Value （Inflight Periormance）	LGC Compensation Value （Preflight Load）	Actual Error Actual Minus Compensation）	PreflightData Mean	Preflight Eitror Estimates （Preflight Data Nean Minus Compensation）	$\underset{\text { Specification }}{\text { it }}$ （GSOP）	Erfor Uncertaingy＊	
							Maximum	Minimum
B $\times(4 \mathrm{~g})$	96.0	143.0	－47．0	154.0	11.0	204.0	215.0	－193．0
BY（	－364． 0	－224．0	－140．0	－263．0	－39．0	204.0	165．0	－243．0
ACRTH：	19.0	122.0	－103．0	122.0	0.0	204.0	204.0	－204．0
ACロでロ！								
SFEX（PPM）	－41．0	－145．0	104． 0	－142．0	3.0	116.0	119.0	－113．0
SFEY（PPM）	－59．0	－74．0	15.0	－80．0	－6．0	116.0	110.0	－122．
SFEZ（PPM）	－431．0	－519．0	88.0	－469．0	50.0	116.0	166.0	－66．0
MXAZ（arc sec）	21.0	Uncompensated	21.0	－6．0	－6．0	20.0	14.0	－26．0
MXAY（arcsec）	－5．0	Uncompensated	5.0	－3．0	－3．0	20.0	17.0	－23．0
MYAZ（arc sec）	24.0	Uncompensated	－24．0	10.0	10.0	20.0	30.0	－10．0
MYAX（arc sec	10.0	Uncompensated	10.0	－4．0	－ 4.0	20.0	16.0	－24．0
MZAY（arc sec）	13.0	Uncompensated	13.0	0.0	0.0	20.0	20.0	－20．0
MZAX（arc sec）	－5．0	Uncompensated	－5．0	－20．0	－20．0	20.0	0.0	－40．0
NBDX（deg／hr）	－0．1468	－0． 120	－0．0268	－0．132	－0．012	0.030	0.018	－0．082
NBDY（deg／hr）	－0．1172	－0． 117	－0．0002	－0．124	－0．007	0.030	0.023	－0．037
NBDZ（deg／hr）	－0．0179	－0．030	0． 0121	－0．0345	－0．0045	0.030	0． 0255	－0．0345
ADIAX（deg／hr／g）	－0．326	－1．005	0．6，79	－0．728	0． 237	6.120	0． 397	0． 157
ADIAY（deg／hr／g）	－0．0954	－0．105	0． 0096	－0．0345	0.0705	0.120	0． 190	－0．0495
ADIAZ（deg／hr／g）	－0． 131	－0．735	0． 604	－0． 4 4， 8	0． 16.7	0.120	0． 287	0.057
ADSR AX（deg／hr／g）	0.20 B	0． 807	0.101	1）． 102	－6．006	c． 075	0.070	－0．080
A DSR AY（deg／hr／g）	0.0821	0.094	－0．0169	0.0855	－0．0135	0.075	0.0615	－0．0885
ADSRAZ（deg／hr／g）	0． 0645	0.0	0.0645	－0．00\％	-1.000	0.075	0． 06.6	－0．08
ADOAX（deg／hr／g）	0.0293	Uncompensaled	0.0293	0.035	c． 1135	0．015＊＊	0． 050	0.020
ADOAY（deg／hr／g）	0.0195	Uneompensated	0.0195	0．018	0.018	0.015	0.033	0.003
ADOAZ（deg／hr／g）	0.0395	Uncompensated	0.0395	0.035	11．035	0.015	0.050	0.020

＊The error uncertainty is formed in two steps．First，the difference（Prefight Data Mcan－LGC：Compensation）is formed．This represente the value of actual inflight ryror which would result if inflight performance coincided exactiy with the preflight data mean．In the second step．the value of actual（Data Mran ．LGC Compensation）$\pm 1 z$ are formed．These quantities represent the maximumant manmum of the is（specification） uncertainty band for the IMU performance error．
The to values listed for ADOA are not Block il sperifications（none are availabie）．They represent only an estimate of＂reasonable values．＂

Figure 3-2. Uncompensated G\&N Minus S-IVB (Boost) - Delta X Velocity

Figure 3-3. Uncompensated G\&N Minus S-IVB (Boost) - Delta Y Velocity

Figure 3-4. Uncompensated G\&N Minus S-IVB (Boost) - Delta Z Velocity
3-13

Figure 3-5. Uncompensated G\&N Minus S-IVB (Boost) - Delta X Position

Figure 3-6. Uncompensated G\&N Minus S-IVB (Boost) - Delta Y Position

Figure 3-7. Uncompensated G\&N Minus S-IVB(Boost) - Delta 7. Position

Figure 3-8. Compensated G\&N Minus S-IVB (Boost) - Delta X Velocity

Figure 3-9. Compensated $\mathrm{G}^{2} \mathrm{~N}$ Minus S-IVB (Boost) - Delta Y Vclocity

Figure 3-10. Compensated G\&N Minus S-IVB (Boost) - Delta Z Velocity

Figure 3-11. Compensated GRN Minus S-IVB(Boost) - Delta X Position

Figure 3-12. Compensated G\&N Minus S-IVB (Boost) - Delta Y Position

Figure 3-13. Compensated G\&N Minus S-IVB(Boost) - Delta Z Position

Table 3-3 presented below summarizes these comparisons at 600 seconds (approximately 9 seconds after S-IVB cut-off). 'V" denotes velocity in feet per second. "P" denotes position in feet. The vectors were compared in the LM $G \& N$ coordinate system.

Table 3-3. State Vector Comparison - Compensated LM G\&N Minus BET, $(t=600.0$ seconds)

	Uncompensated	Compensated
VX (G\&N)-VX (BET)	131.213	-0.044
VY (G\&N)-VY (BET)	-260.148	-0.002
VZ (G\&N)-VZ (BET)	257.367	0.035
PX (G\&N)-PX (BET)	$34,954.651$	-8.390
PY (G\&N)-PY (BET)	$-64,879.780$	16.613
PZ (G\&N)-PZ (BET)	$63,469.562$	-85.887

The uncompensated residuals were between one and two orders of magnitude greater in all axes than those experienced on preceding Apollo flights. This was true for two reasons. First, the LM IMU was skewed with respect to the traditional "launch inertial" orientation so that both the " X " and the " Y " axes were out of the horizontal plane and no axis was oriented directly crossrange. One effect of this orientation was to make the "X" and "Y" IMU axes susceptible to substantial correlated misalignments arising from gyro drift errors. Assuming that each drift error varied randomly from the launch load, it can be seen that an extremely complicated pattern of super-imposed initial IMU misalignments could and did arise prior to lift-off. Secondly, one of the IMU error sources (ADIAX) was deliberately biased to an extreme value via the LGC compensation load, thereby producing "built-in" error. This resulted in an artificially large ADIAX error, which in turn generated enormous IMU
misalignments (-3377 arc-seconds in "X" and -1951 arc-seconds in "Y") in addition to those resulting from the other terms.

All events in this section are related to the time base which defines time zero ($t=0.0$) as the "instant" at which LM guidance reference release (GRR) occurred. The following table of launch events (Table 3-4) is included as a guide to the time relationships existing between LM GRR and other events of significance in the launch process. The times of these events are given in the Greenwich mean time (GMT) base.

Table 3-4. Timeline of Launch Events

Event	GMT (hr:min:sec)
S-IVB GRR	$22: 48: 03.039$
Range Clock Zero	$22: 48: 08.000$
Lift-off	$22: 48: 08.000$
LM GRR	$22: 48: 08.860$
LGC Clock Zero	$22: 48: 08.960$
PIPTIME	$22: 48: 10.870$

LM GRR was triggered by the LGC upon detection of an average liftoff acceleration at or above 1.1 g over a half-second sample interval. From Table 3-4 it can be seen that LM GRR occurred 0.860 seconds after range clock zero. Thus, range time can be calculated from times in the LM GRR time base by addition of 0.860 seconds.

The LM-1 flight represented a substantial departure from earlier missions with regard to the amount of data available for postflight IMU analysis. In preceding missions, independent trajectory measurements of reasonable quality were available for several high acceleration flight phases. In general, usable data have been obtained during boost, during
several orbital burn sequences, and during reentry. However, the LM-1 mission necessarily precluded an intact reentry and recover. In addition, revisions made in the flight profile were such that high quality tracking data were not available during the burns. As a consequence of this, determination of IMU performance errors depended entirely upon analysis of boost phase data. A summary of these errors is presented in Table 3-2. Most of the performance errors lay well within specified 1σ limits. Errors which exceeded these limits were X -accele rometer misalignment about Z (MXAZ); Y-accelerometer misalignment about Z (MYAZ), X-gyro input axis acceleration sensitive drift (ADIAX), Z -gyro input axis acceleration sensitive drift (ADIAZ), and X-gyro spin axis acceleration sensitive drift (ADSRAX). The ADIAX and ADIAZ results are of particular interest. The prelaunch calibrations for these parameters were widely dispersed. Postflight analysis resulted in estimates of these terms quite consistent with laboratory calibrations. These facts, coupled with prior flight history cast some doubt on the validity of preflight tests procedures and results.

As indicated earlier, the quality of tracking data during and after orbital burns was inadequate to obtain an accurate ESPOD trajectory. However, a comparison was made between the compensated LM-1 G\&N burn trajectory and an ESPOD state vector at completion of the burn. The results of this comparison appear in Table 3-9. As can be seen from the table, the agreement is poor. The difference is believed to be largely attributable to the ESPOD trajectory for the postburn interval, which is considered unreliable.

3.3 ORBIT ANALYSIS

3.3.1 Lunar Module Orbital Reconstruction

The lunar module (LM) trajectory was reconstructed using low speed C-band and low speed S-band radar tracking data and the TRW Orbit Determination Program (ESPOD). The LM orbital segment of the flight begins at LM/S-IVB separation and ends at the ascent propulsion system (APS) fuel depletion burn. For the purpose of reconstructing a best estimate of the trajectory (BET), the LM orbital phase of the flight was divided into five segments as follows:

Segment 1 LM/S-IVB separation to first descent propulsion system burn (DPS-1) cutoff

Segment 2 DPS- 1 engine cutoff to the beginning of program reader assembly III (PRA III)

Segment 3 End of PRA III to the end of the first period (5 hours and 9 minutes GMT) of reaction control system (RCS) thrusting following PRA III

Segment 4 End of the first period of RCS thrusting following PRA III to the beginning of the second period (5 hours and 59 minutes GMT) of RCS thrusting following PRA III

Segrnent 5 The beginning of the second period of RCS thrusting following PRA III to beginning of PRA V

Table 3-5 presents a summary of information pertinent to the reconstruction of each of the above mentioned segments.

Before the reconstruction of each segment is discussed in detail, a few assumptions concerning these fits should be stated. First, it is assumed that all stations are in perfect time synchronization with one another unless otherwise noted. Second, it is assumed that all data are time tagged on the receive pulse; thus, the light time correction retards the time tag of the data. Third, it is assumed that a 0.107 -second timing bias added to all tracking data accounts for the difference between UT1 and UTC for 22-23 January 1968.

Information which is too detailed to present in the body of this report, but nevertheless has a significant influence on the resulting BET, is presented in Appendix B. The information found in Appendix B is listed below:

- A summary of radar observations for the lunar module spacecraft with comments on the use of each pass of data
- A summary of the station locations used in ESPOD
- A summary of drag parameter ($\mathrm{C}_{\mathrm{d}} \mathrm{A} / 2 \mathrm{~m}$) values for various phases of the mission
- A table of radar data weights used in ESPOD for C -band and S -band radar data

Table 3-5. LM Orbital Fit Summary

The free-flight portion of the trajectory for Segment 1 (see Table 3-5) was reconstructed using C-band and S-band radar tracking data; however, not all of the available data were used in the fit. All the doppler data were weighted out of the fit, although some of the doppler data were good. Angular information was also weighted out of the fit when suspicious residual patterns occurred that corresponded to low elevation passes. Another reason that the data were weighted out was the need for better data balance between stations in the southern hemisphere and stations in the northern hemisphere. See Appendix B for comments on the use of the available data for this segment.

A drag value of 0.2039 feet $^{2} / \mathrm{slug}$ was used in the fit which solved on the state vector and X - and Y -angle biases at TEXSO1 and TEXS02. A 0.132 -degree X-angle bias and 0.064 -degree Y-angle bias were recovered for TEXS. The DPS 1 burn was modeled by the IGS burn model and initial misalignments in the platform and accelerometer biases were fixed at the values obtained by analyzing the guidance system.

The trajectory which resulted from a fit using only C-band data was compared with the EET at epoch. The comparison revealed a total difference in position of 2.68 feet and a total difference in velocity of 0.54 feet/ second. Also a trajectory which resulted from a fit using only S-band data (RXY and doppler), when compared with the BET at epoch, revealed a total difference in position of 1017 feet and a total difference in velocity of 0.29 feet/second. These comparisons indicate that the C-band data and the S-band data were consistent:

The residual mean and RMS by station and data type are listed in Table 3-6 for Segments 1 through 5. All quantities are defined as usual, and N is the number of data points for each observation type. Residual plots for this segment can be found in Appendix A.

The trajectory for Segment 2 was reconstructed using C-band and S-band data. In a manner similiar to the Segment 1 trajectory reconstruction, the doppler data and angle data corresponding to low elevation passes were weighted out of the fit.
a. C-band data

	Rev.	Semment i	Rov.	Range (it)				Serment 4	Rev.	Sogment 5	
				Sorment 2	Rav.	Stegment 3	Rev.				
Slation				77.0							Mean RMS
ANTC			4	124.0							N
				31.0							Mean
				90.0			s	123.0			RMS
ASCC			4	248.0			5	81.0			N
		255.0		25.0							Mean RMS
Bdoc	2.1	12.0 62.0									
CROC		191.0 121.0	3	-166.0 76.0			5	-17.0 20.0 10.0	5	195.0 17.0 53.0	Mean RMS N
	1.2			38.0							Mann
cBIC				-2.0							RMS
			4	50.4							N
				30.0						-758.0	Mean
HAWC.				-165.0					5	300.0	RMS
			3.4	142.01 55.0						46.0	N
	2, 1			55.0							Mean
MLAC,		-96.0		18.1)							RMS
		11.0	4	48.1)							N
		46.0		35.3							Mean
PATC.		-23.0									\%MS
	2	21.0									N
		7.0					5	-34.0			Mean
tANC								92.0			$\mathrm{N}_{\mathrm{N}} \mathrm{m}$
								19.0			
W HSC		156.0	,	15.0	4						Mean
		86.0		36.0							

b. S-band data

Station	Rev.	Sogmont 1	Rev.	Striment 2	Range (ft)		Rev:	Segment 4	Rev.	Segment S	$\begin{aligned} & \text { Mean } \\ & \text { RMS } \\ & \mathrm{N} \end{aligned}$
					Rey.	Segment 3					
ACNS							5	$\begin{array}{r} 35.0 \\ 92.0 \end{array}$			
							5	39.0			
		-263.0									Mean
CNBS	1	157.0									N
		21.0 -28.0		7.0					5	177.0 67.0	Mann RMS
CROS	1.2	144.0 44.0	3.4	200.0 33.0						41.0	
	2	-31.0 51.0									$\begin{aligned} & \text { Mean } \\ & \text { RMS } \\ & N \end{aligned}$
clos		31.0									
				-249.0					5	245.0	RMS
GwMS			4	118.0 16.0						75.0	
				266.0							Mozn
GYMS			3.4	524.0							$\underset{\mathrm{N}}{\text { RMS }}$
				32.0							
		114. ${ }^{\text {c }}$		33.0							Mean
haws	2	137.0 35.0	9.4	140.6 47.0							
				-304.0		-21.0					Mean RMS
MLLS			4	$\begin{aligned} & 13.0 \\ & 15.0 \end{aligned}$	5	$\begin{aligned} & 45.0 \\ & 11.0 \end{aligned}$					N
TEXS	1,2	-59.0 173.0			4	105.0 119.0					Mean HMS N
		45.0				21.0					

Table 3-6. Residual Mean and RMS by Station and Data Type for Segments 1-5.

Rov.	Eloration (dog)									
	Sermeat 1	Rev.	Sopment 2	Revs	Sacment 3	Rev.	Semmeat 4		Sefrnats	
		-	$\begin{aligned} & -0.0086 \\ & 0.0052 \\ & 33.0 \end{aligned}$							$\underset{N}{\operatorname{Mens}}$
		4	$\begin{aligned} & -0.0307 \\ & 0.0041 \\ & 250 \end{aligned}$			5	$\begin{aligned} & -0.0222 \\ & 0.0104 \\ & 81.0 \end{aligned}$			${ }_{\text {Mans }}^{\text {RMS }}$
2,3	0. 0.0061									$\operatorname{Mans}_{\mathrm{N}}^{\mathrm{MNO}}$
1.2	$\begin{gathered} 0.0003 \\ 0.0088 \\ 7.0 \end{gathered}$	3.4	$\begin{aligned} & 0.0054 \\ & 0.0070 \\ & 38.0 \end{aligned}$			3	$\begin{aligned} & -0.0120 \\ & 0.0065 \\ & 10.0 \end{aligned}$	5	$\begin{aligned} & 0.0196 \\ & 0.0050 \\ & 53.0 \end{aligned}$	$\begin{aligned} & \text { Nons } \\ & \mathbf{N M S S} \end{aligned}$
,		4	$\begin{aligned} & 0.0109 \\ & 0.0050 \\ & 30.0 \end{aligned}$							Mons
'		3.4	$\begin{aligned} & -0.0018 \\ & 0.00143 \\ & 55.0 \end{aligned}$					5	$\begin{aligned} & -0.0224 \\ & 0.0169 \\ & 43.0 \end{aligned}$	Noms
2,3	$\begin{aligned} & 0.0087 \\ & 0.0065 \\ & 46.0 \end{aligned}$									$\begin{aligned} & \text { Mams } \\ & \mathrm{N} \end{aligned}$
2	$\begin{aligned} & 0.0028 \\ & 0.0031 \\ & 7.0 \end{aligned}$									${ }_{\text {Mans }}^{\text {Rms }}$
						5	$\begin{gathered} -0.0209 \\ 0.0069 \\ 101.0 \end{gathered}$			$\begin{aligned} & \text { Menan } \\ & \mathbf{N} M \mathrm{~N} \end{aligned}$
1	$\begin{array}{r} -0.0052 \\ 0.0049 \end{array}$	3	$\begin{aligned} & -0.0047 \\ & 0.00077 \\ & 31.0 \end{aligned}$	4	$\begin{aligned} & -0.0297 \\ & 0.3044 \\ & 7.0 \end{aligned}$					(Moan

Y-Angle (dez)										
Rev,	Sorment 1	Rev.	Sogment 2	$\underline{\text { Rev. }}$	Segment 3	Rev.	Senment 4	Rev.	Sermont 5	
2	$\begin{array}{r} 0.0007 \\ 0.0068 \\ 23.0 \end{array}$					5	$\begin{aligned} & 0.0127 \\ & 0.0113 \\ & 13.0 \end{aligned}$			Mann RmS
!	$\begin{aligned} & 0.0224 \\ & 0.0038 \end{aligned}$									$\underset{\text { Masm }}{\substack{\text { RMS }}}$
1.2	$\begin{aligned} & 0.0126 \\ & 0.0056 \\ & 4.0 \end{aligned}$					5	$\begin{aligned} & 0.0110 \\ & 0.0060 \\ & 21.0 \end{aligned}$	5	$\begin{aligned} & 0.0155 \\ & 0.0193 \\ & \text { si.0 } \end{aligned}$	
2	$\begin{aligned} & 0.01817 \\ & 0.0077 \\ & 31.0 \end{aligned}$	4	$\begin{aligned} & 0.0146 \\ & 0.0053 \\ & 20.0 \end{aligned}$							${ }_{\text {chen }}^{\text {Mas }}$
		4	$\begin{aligned} & -0.0050 \\ & 0.0210 \\ & 16.0 \end{aligned}$					5	$\begin{aligned} & -0.0569 \\ & 0.0146 \\ & 108.0 \end{aligned}$	Masn RMS N
2	$\begin{aligned} & 0.0484 \\ & 0.0074 \\ & 21.0 \end{aligned}$	3.4	$\begin{aligned} & 0.0455 \\ & 0.0085 \\ & 32.0 \end{aligned}$	4	$\begin{aligned} & 0.0462 \\ & 0.0063 \\ & 00.004 \\ & 13.0 \end{aligned}$					${ }_{\text {Mash }}^{\text {M }}$
2	$\begin{aligned} & -0.0238 \\ & 0.0069 \\ & 15.0 \end{aligned}$	3.4	$\begin{aligned} & -0.0223 \\ & 0.0264 \\ & 34_{1} .0 \end{aligned}$							$\begin{aligned} & \text { Menn } \\ & \text { RMS } \\ & \mathrm{N} \end{aligned}$
				s	$\begin{aligned} & 0.0346 \\ & 0.0346 \\ & 9.0 \end{aligned}$					M1.2n R 145 N
1.2	$\begin{gathered} 0.0001 \\ 0.0101 \\ +4.11 \end{gathered}$			4	$\begin{aligned} & 0.0673 \\ & 9.0052 \\ & 10.0 \end{aligned}$					$\begin{aligned} & \text { Mann } \\ & \text { RMS } \\ & N \end{aligned}$

An attempt was made to fit all the data from LM/S-IVB separation to the beginning of PRA JII while modeling the DPS 1 burn. However, the poor data coverage prior to PRA III resulted in an unsatisfactory fit. Now the Segment 2 trajectory fit the data prior to PRA III better than the combined fit of Segment 1 and Segment 2. Therefore, in order not to compromise the initialization of the PRA III burn, the Segment 2 trajectory was chosen as the BET for this phase of the mission.

A drag value of $0.2039 \mathrm{feet}^{2} / \mathrm{slug}$ was used in the Segment 2 fit which solved on the state vector. TEXS03 had an X-angle bias of 0.148 degree and a Y-angle bias of 0.075 degree. These results compare favorably with the values recovered for TEXS in the Segment 1 fit. The Segment 1 trajectory was compared with the Segment 2 trajectory at DPS 1 engine cutoff. The comparison revealed a 2000-foot difference in total position and a 2.42 -foot/second difference in total velocity.

The Segment 2 trajectory was also compared with two other trajectories at epoch. The first trajectory resulted from a C-band data fit; the second trajectory resulted from an S-band data fit (RXY and doppler). The comparisons indicate that both the C-band trajectory and the S-band trajectory are within 200 feet in total position and 0.15 foot $/$ second in total velocity of the BET. This again indicates that the C-band data and the S-band data are consistent.

The residual mean and RMS by station and data type for Segment 2 are found in Table 3-6. The residuals for this segment are found in Appendix A.

The trajectory from the end of PRA III to the beginning of PRAV was divided into three segments $(3,4,5)$ because low-level RCS thrusting occurred during this period. Segment 3 covers the period from the end of PRA III to 5 hours and 9 minutes GMT; RCS thrusting occurred during this segment. Segment 4 covers the period from 5 hours and 9 minutes GMT to 5 hours and 59 minutes GMT; this is a free-flight period. Segment 5 covers the period from 5 hours and 59 minutes GMT to the beginning of PRA V; RCS thrusting occurred during this segment.

The trajectory for Segment 3 was reconstructed using all available C-band and S-band data. Since more than half the available data were
from TEXS, the TEXS data dominated the fit. Also the maximum elevations for the other stations (GYMS, WHSC, and MLAS) were all less than 8 degrees.

A drag value of 0.4516 feet $^{2} / \mathrm{slug}$ was used in the fit that solved on the state vector. Table 3-5 presents a summary of information for this fit.

The residual mean and RMS by station and data type for Segment 3 are listed in Table 3-6. Residual plots for this segment can be found in Appendix A.

The trajectory for Segment 4 was reconstructed using all available C-band and S-band data. The majority of the data, 271 observations of the total 380 observations, were observations that had elevations below 10 degrees. Available information indicated that no RCS thrusting occurred during this interval. Therefore, although the data situation is not the best, confidence can be placed in the reconstructed trajectory.

The solution vector consisted of the state vector with drag modeled using a value of 0.4516 feet $^{2} /$ slug. The trajectory for Segment 4 was compared with the trajectory for Segment 3 at 5 hours and 9 minutes. The total difference in position was 1467 feet, and the total difference in velocity was 2.17 feet/second. These differences are a measure of the effect of the RCS thrusting on the Segment 3 trajectory.

The residual mean and RMS by station and data type for Segment 4 can be found in Table 3-6. The residual plots for this segment can be found in Appendix A.

The trajectory for Segment 5 was reconstructed using all available C-band and S-band data. As with Segments 3 and 4, the primary data problem was the lack of tracking data with elevations above 10 degrees. Only Guam had tracking data above 10 degrees elevation (maximum elevation was 28 degrees for Guam). RCS thrusting occurred for a period of about 30 minutes; therefore, the accuracy of the reconstructed trajectory is degraded by these conditions. The solution vector for the fit was the state vector with drag modeled by a value of $0.4516 \mathrm{feet}^{2} / \mathrm{slug}$.

The resultant residual patterns (see Appendix A for the residual plots for this segment) were erratic and verify the fact that thrusting occurred. Also the Segment 4 trajectory was compared with the Segment 5 trajectory a.t 5 hours and 59 minutes GMT. The total difference in position and the total difference in velocity (5500 feet and 8.07 feet/ second, respectively) are a measure of the effects of RCS thrusting on the Segment 5 trajectory.

Attempts were made to fit Segments 4 and 5 together using limited telemetered acceleration information from Carnarvon and Hawaii, but the lack of telemetry information from Guam prevented a good fit of Segment 4 and Segment 5 data.

The residual mean and RMS by station and data type for Segment 5 can be found in Table 3-6. The residual plots for this segment are given in Appendix A.

Table 3-7 lists state vectors corresponding to specific events. The quantities tabulated are defined as follows:

Symbol	Definition of Symbols
LAT	Geodetic latitude of the vehicle measured posi- tive north of the equator (degrees)
LON	Longitude of the vehicle measured positive east of the Greenwich meridian (degrees)
AZ	Flight-path angle measured positive downward from the local vertical (degrees)
R	Azimuth of the velocity vector measured posi- tive east of true North (degrees)
V	Magnitude of the position vector (feet)
	Magnitude of the velocity vector (feet/second)

Table 3-7. State Vector Summary

	Event	$\begin{gathered} \text { Time GET } \\ \text { (hr:min:sec) } \end{gathered}$	Latitude (deg)	$\begin{gathered} \text { Longitude } \\ \text { (deg) } \end{gathered}$	BETA (deg)	$\begin{gathered} A Z \\ (\mathrm{deg}) \end{gathered}$	$\begin{gathered} \mathrm{R} \\ (\mathrm{ft}) \\ \hline \end{gathered}$	$\begin{gathered} V \\ (\mathrm{ft} / \mathrm{sec}) \end{gathered}$
	+X Translation off (sep.)	0:54:10.2	-31.578148	107.15595	90.005536	93. 961834	21,635,720	25,460.530
	DPS i ullage on	3:59:33:9	-27.003219	101.99132	90.136776	72. 594769	21,615,994	25,485. 209
	DPS 1 engine cutoff	3:59:45.7	-26.758944	102. 79818	90. 136960	72. 209104	21,615,221	25,490. 971
	RCS +X ullage start (PRA III)	6:10:07.4	28.751790	241.60041	89.876680	104.15639	21,479,158	25,650.409
ω i	APS engine cutoff (PRA III)	6:13:14.3	24.907457	254. 58882	90. 364718	110.08745	21,490,924	26, 316. 044
+	RCS + X ullage start (PRA V)	7:44:00. 3	30.360802	208. 32355	91.497051	99. 283024	21,617, 284	26, 160. 508

The following data anomalies were observed on the Apollo 5 flight:
ASCC04 The range residuals exhibited a peaked pattern while the azimuth residuals had a 0.06 -degree discontinuity at the maximum elevation of the pass (Appendix A).
$C L Q C \quad$ The radar site had a wrong fit for the azimuth and elevation angles.

WHSC02 Large angle residuals substantiated the fact that White Sands tracked on a side lobe.

TANC05 A minus 0.065-degree bias in azimuth was observed during this pass.

The following data biases we re observed from Table 3-6:
CROC The average azimuth bias for revolutions 1 - 5 was -0.0049 degree.

GYMS The average Y-angle bias for revolutions 2-4 was - 0.0466 degree.

GWMS . The average X-angle bias for revolutions 4-5 was - 0.0295 degree.

HAWS The average Y-angle bias for revolutions $2-4$ was -0.0231 degree.

TEXS The average X -angle bias for revolutions 1-4 was 0.1262 degree, and the average Y-angle bias for revolutions 1-4 was 0.0684 degree.

Maneuver Analysis

It was not possible to reconstruct the PRA III and PRA V maneuvers using low-speed C-band tracking data and telemetered acceleration information in the form of an acceleration burn tape, in IGS ESPOD for the following reasons:

- The lack of good C-band data
- The thruster activity following PRA III

However, DPS 1 was modeled in the Segment 1 trajectory by using the burn tape and values for platform errors that were obtained by analyzing the guidance system.

In order to give the reader some idea of the magnitude of the burns, the following information is tabulated. Table 3-8 lists the maneuver, the time of initiation of the maneuver (GMT), the source of the information, the duration of the maneuver in seconds (Δt), the component $\Delta V^{\prime} s$ in $L M$ guidance platform coordinates ($\Delta V x, \Delta V y, \Delta V z)$, and the total velocity (ΔV). The listed velocities have not been corrected for guidance errors.

3.3.2 Orbital Burn Phases

Normally, the Apollo G\&N trajectory (total position and velocity) estimates during all burns are available on downlink at 2 -second intervals. However, after premature termination of the DPS-1 burn, the LGC was placed in idle mode. In this mode, only the accumulated accelerometer counts were available. Using these counts and compensating for the IMU performance errors determined from boost data, the LM-1 G\&N trajectory for PRA III was reconstructed. PRA III was the second descent engine burn (the first successful descent engine burn, under program reader assembly control).

The LGC PRA III trajectory was initialized on (or made to coincide with) the ESPOD BET at time $(t)=22191.05$ seconds for LM GRR immediately prior to DPS ignition. In this manner perfect agreement (LM G\&N versus $B E T$) was obtained at the beginning of the comparison interval. However, the ESPOD BET is discontinuous over the burn periods. It consists of two distinct segments, one terminating at ignition and the other beginning at shutdown. It was not possible to link these end points reliably with tracking data taken during the burn. Moreover, the BET sequence obtained after shutdown covers a period of only 5 minutes and is based on inadequate data (TEX, with twenty-one data points; WHS, with only seven data points). A better orbit determination during that period was not possible because of RCS activity during orbit five (for which there was no telemetry coverage). Consequently, the postburn BET was completely independent of the preburn trajectory (from which the initialization vector was taken) and was of uncertain quality. For this reason, the rather

Table 3-8. Maneuver Summary

Maneuver	Time of Initiation, GE T (hr:min:sec)	Source	$\begin{gathered} \Delta t \\ (\mathrm{sec}) \\ \hline \end{gathered}$	$\begin{gathered} \Delta V_{x} \\ \left(\mathrm{ft}_{\mathrm{sec}}\right) \end{gathered}$	$\begin{gathered} \Delta V \\ (\mathrm{ft} / \mathrm{sec}) \\ \hline \end{gathered}$	$\begin{gathered} \Delta V_{z} \\ (\mathrm{ft} / \mathrm{sec}) \end{gathered}$	$\begin{gathered} \Delta V \\ (\mathrm{ft} / \mathrm{sec}) \\ \hline \end{gathered}$
DPS I*	3:59:41 = 7	$\mathrm{G} \& \mathrm{~N}$	4. 0	3. 05	-0.49	-1.96	3.66
PR A III*	6:10:07.4	$G \& N$	186.9	-612.56	-400.66	149.45	747.05
PRA V*	7:44:00.3	$\mathrm{G} \& \mathrm{~N}$	210.0	1,531.89	-427. 55	-359.41	1,630.54

*This includes the ΔV due to ullage.
large postburn velocity discrepancies (Table 3-9) between reconstructed LM G\&N and BET are not considered significant.

In like manner, the PRA V burn reconstruction was initialized with the ESPOD BET at $t=27,639.05$ seconds, and the trajectory was reconstructed using LGC data and the IMU errors determined from ascent analysis. Since no useable telemetry data were available after occurence of the gimbal lock condition, the trajectory reconstruction was terminated at $\mathrm{t}=28,051.05$ seconds.

$$
\begin{array}{ll}
\text { Table 3-9. Position and Velocity Comparison - } \\
& L M-1 G \& N \text { versus BET/PRA III } \\
& (t=22,419.05 \text { seconds })
\end{array}
$$

LM IMU	Coordinates
$V Y(G \& N)-V X(B E T)$	-0.39
$V Y(G \& N)-V Y(B E T)$	0.52
$V Z(G \& N)-V Z(B E T)$	-14.10
$P X(G \& N)-P X(B E T)$	-612.00
$P Y(G \& N)-P Y(B E T)$	-289.00
$P Z(G \& N)-P Z(B E T)$	-2048.00

3. 4 RTCC TRAJECTORY COMPARISON

The state vectors obtained in real time by the RTCC for the Apollo 5 mission were compared with the Task A-50 best estimate of the trajectory (BET) at RTCC anchor times from LM/S-IVB separation to HAW05 (prior to PRA V). The purpose of making these comparisons is to aid the RTCC in evaluating fit procedures for this and subsequent Apollo Missions.

The state vector comparisons are discussed in this section. Also included in the discussion is a set of special state vectors comparisons of

Table 3-10. RTCC Summary of Radar Data for AS-204/LM-1

Code	Batch	Anchor Time (day:hr:min:sec)	N	$\mathrm{E}_{\text {MAX }}$ (deg)	A/R
BDAC	06	00:22:58:12	21	28	S
BDQC	08	00:22:58:12	21	28	A
REDC	02	00:23:00:24	34	25	R
CYIC	05	00:23:07:48	33	30	R
TANC	09	00:23:27:00	23	12	A
CROC	11	00:23:42:18	42	12	A
CROS	13	00:23:42:48	37	13	A
CNBS	12	00:23:50:18	27	8	A
WHSC	14	01:00:19:18	47	17	A
PATC	16	01:00:24:36	47	20	R
MLAC	17	01:00:24:36	51	23	A
MILS	18	01:00:26:48	24	23	R
BDQC	19	01:00:28:00	54	51	A
REDC	20	01:00:35:00	32	38	R
BD AS	21	01:00:29:54	32	50	A
REDC	20	01:00:35:00	32	38	R
TANC	23	01:00:58:48	50	26	A
CROC	22	01:01:15:06	52	20	A
CROS	24	01:01:16:48	35	20	A
HAWS	26	01:01:40:06	37	11	R
GDSS	25	01:01:50:24	29	15	A
WHSC	27	01:01:53:36	34	60	R
MLAC	29	01:01:57:48	53	39	A
BDQC	31	01:02:01:12	47	12	A
BDAS	35	01:02:02:54	30	12	R
ANTC	33	01:02:03:36	39	7	A
REDC	34	01:02:07:54	18	4	R
PREC	37	01:02:28:06	18	16	R
CROC	39	01:02:48:30	50	44	S
CROC	41	01:02:48:30	50	44	S

Table 3-10. RTCC Summary of Radar Data for AS-204/LM-1 (Continued)

Code	Batch	Anchor Time (day:hr:min:sec)	N	$\mathrm{E}_{\text {MAX }}$ (deg)	A/R
CROS	42	01:02:48:30	25	43	A
HAWC	44	01:03:12:42	53	24	A
WTNC	43	01:03:18:27	16	39	R
CLQC	48	01:03:22:29	42	13	R
GYMS	46	01:03:24:12	47	24	R
WHSC	47	01:03:25:30	49	42	A
MLAC	50	01:03:31:18	47	19	A
GBIC	51	01:03:31:24	54	25	A
MILS	52	01:03:33:48	22	17	R
ANTC	53	01:03:35:54	55	43	A
ASCC	54	01:03:49:48	54	14	A
CROC	55	01:04:22:54	6	3	R
CROS	56	01:04:22:54	8	3	R
GWMS	57	01:04:33:18	38	22	A
HAWC	58	01:04:47:12	32	6	R
HAWS	60	01:04:47:18	18	6	R
WTNC	59	01:04:51:37	24	42	R
GYMS	61	01:04:57:18	30	51	R
WHSC	56	01:04:58:36	33	10	R
TEXS	66	01:05:01:00	11	12	R
TEXS	67	01:05:02:12	15	15	R
ASCC	68	01:05:22:54	48	10	R
ASCC	70	01:05:22:54	80	10	S
ACNS	69	01:05:25:18	22	9	A
TANC	72	01:05:40:06	80	33	A
TANC	73	01:05:50:18	28	13	A
CROC	74	01:05:58:00	63	5	A
GWMS	75	01:06:10:48	66	29	A
HAWS	77	01:06:27:42	24	8	R
HAWC	79	01:06:27:48	49	8	A
WTNC	78	01:06:32:29	15	18	R

3.40
prime interest to the RTCC. As previously noted, a time bias was added to the time tag of the low speed tracking data to account for the difference between UT1 and UTC. The real-time orbit determination program does not account for the difference between UT1 and UTC. However, when the comparisons were made, the BET was adjusted so that the BET and the RTCC trajectory were using the same time scale (UTC).

Table 3-10 lists in detail the data received and processed by the RTCC. The maximum elevation of the pass ($E_{\text {max }}$), the anchor vector time (GMT), the number of valid points in each batch (N), and an indication that the data were either accepted or rejected (A / R) is tabulated. An "S' in the accept/reject column denotes an single station solution. The batch number is simply a numbering system used by the RTCC and has no special significance. The MSC memorandum on the RTCC Mission Data Summary was the source of Table 3-10.

RTCC Comparisons

A summary of comparisons is listed in Table 3-11. The table lists the data used in the fit to obtain the RTCC vector, the RTCC batch number, the RTCC anchor time (GMT), the maximum elevation of the pass ($E_{\text {max }}$), the BET segment number, the total difference in position (ΔR), and the total difference in velocity (ΔV).

It can be seen from the summary that good comparisons were obtained for Segments 1 and 2. The exceptions are the CROC 39, the CROC 41, and the CFOS 42 comparisons. The large total velocity difference for these three comparisons can be explained by the fact that the RTCC fits occurred immediately following DPS 1 engine cutoff and were essentially single station fits.

The relatively bad comparisons for Segments 4 and 5 are the result of low level RCS thrusting which occurred from 5 hours, 1 minute, and 36 seconds GMT to 5 hours and 9 minutes GMT and from 5 hours and 59 minutes GMT to 6 hours and 32 minutes GMT on 23 January. Segments 4 and 5 were defined by these periods of $R C S$ thrusting; consequently, the effects of the thrusting on the trajectory were minimized. The RTCC, however, was unaware that thrusting was occurring, and consequently, it
tried to fit the data from ASCC 70 to HAWC 79 which degraded the resulting trajectory.

The bad comparison for TANC73 can be explained by the fact that only 28 observations were used in this fit (80 observations were used in the TANC72 fit). The maximum elevation of the data in the TANC73 fit was 13 degrees compared to a maximum elevation of 33 degrees for the data in the TANC 72 fit.

Special Comparisons

The summary of special comparisons can be found in Table 3-12. The vectors are time ordered according to anchor time and the total difference in position and velocity is listed.

The output of the RTCC Compare Program is listed for each vector appearing in Tables 3-11 and 3-12.

The results of the comparison program are given in the following listing. The definitions of the symbols used are as follows.

Symbol	Definition of Symbols for RTCC Comparison
X Y	Components of the position and velocity vector referenced to a geocentric, inertial, Cartesian, coordinate system. It is a right handed system
Z	where the X-axis lies in the true equatorial plane
X	in the direction of the Greenwich meridian at 0^{h} day of launch, the Z -axis is orthogonal to the
$\left.\begin{array}{l} Y \\ Z \end{array}\right)$	true equatorial plane, and the Y -axis completes the right-handed system. The units are earth radii and earth radii/hour.
SEMI-MAJ OR	Semi-major axis (feet)
ECCEN	Eccentricity of the orbit
INCL	Inclination of the orbit plane to the equator measured positive counter clockwise from the equatorial plane to the orbit plane at the ascending node (degrees)
NODE	Right ascension of the ascending node (degrees)

Symbol
ARG PERIGEE

TRUE ANOM

PERIOD
APOGEE

PERIGEE

VEL-MAG

FLT PATH

HEADING

DECLIN
LONG

HEIGHT

DELTA U
DELTA V
DELTA W
DELTA UDOT
DELTA VDOT
DELTA WDOT

DELTA POS

DELTA VEL

Argument of perigee measured positive in the direction of motion from the ascending node (degrees)

True anomaly measured positive in the direction of motion (degrees)

Osculating period of the orbit (minutes)
Altitude of apogee above a reference sphere (nautical miles)

Altitude of perigee above a reference sphere (nautical miles)

Magnitude of the inertial velocity vector (feet/ second)

Flight path angle measured positive downward from the local vertical (degrees)

Azimuth of the velocity vector measured positive east of true North (degrees)

Declination (degrees)
Longitude of the vehicle measured positive east of the Greenwich meridian (degrees)

Height of the vehicle above a reference sphere (nautical miles)

Difference between the RTCC and TRW components of the position and velocity vector in a vehicle centered, coordinate system where the U-axis is collinear with the earth-centered inertial radius vector and is directed outward, the V -axis lies in the orbit plane and is orthogonal to the U-axis, and the W -axis completes the right-handed system.

Magnitude of the difference between the RTCC position vector and the TRW position vector

Magnitude of the difference between the RTCC velocity vector and the TRW velocity vector

$\underline{\text { Station }}$	Batch	Anchor Time (day:hr:min:sec)	$\mathrm{E}_{\max }$ (deg)	BET	$\begin{aligned} & \Delta R \\ & (\mathrm{ft}) \end{aligned}$	$\begin{gathered} \Delta V \\ (\mathrm{ft} / \mathrm{sec}) \end{gathered}$
CROC	11	22:23:42:18	12.5	1	1126	0. 88
CROS	13	22:23:42:18	12.5	1	1048	0.89
CNBS	12	22:23:50:18	8.1	1	552	0.51
WHSC	14	23:00:19:18	17.2	1	346	0.81
MLAC	17	23:00:24:36	22.5	1	335	0.77
$B D Q C$	19	23:00:28:00	50.6	1	301	0.67
BDAS	21	23:00:29:54	50.5	1	317	0.60
TANC	23	23:00:58:48	26.0	1	546	0.76
CROC	22	23:01:15:06	20.2	1	394	0.55
CROS	24	23:01:16:48	20.3	1	331	0.33
GDSS	25	23:01:50:24	14.7	1	201	0. 28
MLAC	29	23:01:57:48	39.2	1	232	0.22
BDQC	31	23:02:01:12	12.3	1	286	0. 19
ANTC	33	23:02:03:36	7. 4	1	333	0. 17
CROC	39	23:02:48:30	43.7	2	724	3.29
CROC	41	23:02:48:30	43.7	2	723	3. 29
CROS	42	23:02:48:30	43.4	2	632	3.59
HAWC	44	23:03:12:42	24.3	2	844	1. 17
WHSC	47	23:03:25:30	42.4	2	276	0.44
MLAC	50	23:03:31:18	19.3	2	310	0.44
GBIC	51	23:03:31:24	24.6	2	284	0. 40
ANTC	53	23:03:35:54	42.7	2	316	0.54
ASCC	54	23:03:49:48	14. 4	2	121	0.16
GWMS	57	23:04:33:18	22.1	2	1013	0.75
ASCC	70	23:05:22:54	9.5	4	2585	1. 15
ACNS	69	23:05:25:18	9.7	4	1778	4.01
TANC	72	23:05:40:06	33.4	4	1266	0.91
TANC	73	23:05:50:18	33.4	4	8111	23.01
CROC	74	23:05:58:00	5.0	4	2666	6.24
GWMS	75	23:06:10:48	28.5	5	2057	2. 09
HAWC	79	23:06:27:48	8.5	5	1600	2. 44

Table 3-12. RTCC Comparison Summary for Special Vectors

Vector Description	Anchor Time (day:hr:min:sec)	BET	$\Delta \mathrm{R}$ (ft)	$\Delta \mathrm{V}$ $(\mathrm{ft} / \mathrm{sec})$
High speed radar vector following the separation maneuver	$22: 23: 44: 00$	1	661	138.59
Best RTCC vector prior to DPS 1	$23: 02: 03: 36$	1	333	0.17
High speed vector following DPS 1	$23: 02: 48: 34$	2	6,870	18.47
Best RTCC vector prior to PRA 3	$23: 04: 33: 18$	2	1,013	0.75
High speed vector from WHSC following PRA 3	$23: 05: 02: 13.1$	3	2,640	49.61
Vector used to build LGC Navigation update	$23: 05: 09: 29$	4	27,918	65.88
prior to PRA. 5*				

[^1]


```
APOLEORTCC COMPARISNN
HOAS21 32 IBS MS MAN ACC NU UPN IENIT SITER VEH3
    TIME U.T. O HRS 29 MIN 54.0CO SEC TIME FROM LAUNCH
    23/ 1/68 O HRS 29 MIN 54.OCN SEC C DAYS 1 HRS 41 MIN 46.0JNSEC
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(\mathbf{x}\) & & \(Y\) & & 7 & & xnct & & Ynot & & 200T & & \\
\hline J． 44477133 E & 0こ & －0．75511829E & OC & ． \(5323993 C F\) & CC & 0． 38940784 F & & 2n583912F & & & & \\
\hline ）．44476705E & it & －．755103＊3E & 2r & \(\because 5323\) Q81 Y （ & \(\bigcirc\) & r．3R94III78E & 1 & C．2へ5R4727F & C1 & \(-\bigcirc 32401467 E\)
\(->324 \sim 247 E\) & \(\because\) & RTCC \\
\hline
\end{tabular}
DIFFERENCES IN NSCULATING FLEMENTS (RTCC - TRW)
```



```
    21556385.5u
        660.5%
    PERIOD
    RR. 34144588
    88.33738975
        0.CrC4C5693
    VEL-MAG
    25672.C3j5
    89.934925
    25671.95%2 90.93506363
    C.C8:32227 - % 1:3955
21.63070369
O.r.4473978 (%).E3070369
    APOGEE
    123.4こ4663)9
    123.21478271
    C. 18988037
    PERIGCE
2S-\varepsilon
        Q2.61843872
        9..59007290
NODE
201．0：140190
2：1．1． \(23403 ?\)
ARG PERIGEE
    84.23282)51
    84.39338357
    84.39338357
:3.87379574 PTCC
261.i(23403?
-C.n!C93842
C.2こ5R4727E C1 -).324O.3547E S天
13.71204916 TRW
    0.16CR4159 (RTCC-TRW)
                                    RTCE
                            \therefore.-2746592
                            HEADING
94.064.3885
94.064.13885
```

DECLIN 31.27835584
31.27876879
-1.06741294

LONG
LONG
292.01738739
292.31768875
$-n .0153 C 136$

```
292.31768875
    -n.unc.3c136
TRW
                                    (RTCC-TRM)

\section*{HEIGHT}
```

HEIGHI

```
HEIGHI
9.9.11688232 RTCC
9.9.11688232 RTCC
Gn.J7419823 TRW
Gn.J7419823 TRW
    1.042694:9 (RTCR-TRW)
```

```
    1.042694:9 (RTCR-TRW)
```

```
```

DIFFERENCE BETWEFN RTCC ANO TRW VECTIRS IN UVW CCCROINATES（FT，FT／SFC）

DELTA U	relta V	DFLTA W	DELTA HOOT	delta voot	elta mott
259.	－72．	－16？	r．56	－0．ce	－c． 2 C

```

MAGNITUDE UF VECTOR DIFFERENCE（FT．FT／SECI

OELTA POS

nELTA VEL
```

217.

＇． 6 ．

```















```

$\therefore 3 / 12 / 0^{\circ}$	ABCIIPPTEC COMP	SCar
ASCC5A 5- IRS	*S MA:\% A(C. llatate	2¢П! ?

```













```

DIFFERENCE BETWEEN RTCC AND TRW VECTORS IN UVW COCRDINATFS IFT,FT/SECI

DELTA II	DELTA V	DELTA W	DEETA UONT	DFETA VOTT	DELTA MDOT
-73.	a, 0 .	440.	- - . 7 -	$-\mathrm{C} .18$	C. 1.9

```
```

MAGNITUDE OF VECTOR DIFFERENCE (FT,FT/SEC

```
MAGNITUDE OF VECTOR DIFFERENCE (FT,FT/SEC
    OELTA POS DELTA VEL
    OELTA POS DELTA VEL
        1C!3. C.75
```

 1C!3. C.75
    ```




\section*{TRACKER RESIDUAL PLOTS}

This appendix contains plots of the range, azimuth, and elevation residuals to the reconstructed trajectory for the \(C\)-band radar data and plots of the range, X -angle, Y -angle, and doppler residuals to the reconstructed trajectory for the S-band radar data for the Apollo 5 mission. The trajectory was reconstructed using low speed C-band and S-band tracking data.

Each plot is identified by the name of the station, the revolution, the type of data, and the EET segment which generated the residuals. Near the bottom of each plot is listed representative spacecraft elevations above the local, station-centered, horizontal plane. This will help the reader to visualize the geometry of the pass. The time scale is given in minutes from 0 hour (GMT) of the day of epoch. The time scale may be correlated with the elapsed time from range zero by associating the first data point with the time listed near the top of each plot.

Below each plot comments will be made on such things as geometry of the pass, data quality, program model errors, etc., if applicable.

\section*{APPENDIX A}

\section*{CONTENTS}
Page
A-1 Revolution 1, Carnarvon: RAE (Segment 1 BET) ..... A- 7
A-2 Revolution 1, Carnarvon: Doppler (Segment 1 BET) ..... A- 8
A-3 Revolution 1, Canberra: RXY (Segment 1 BET) ..... A-9
A-4 Revolution 1, Canberra: Doppler (Segment 1 BET) ..... A- 10
A-5 Revolution 1, White Sands: RAE (Segment 1 BET) ..... A-11
A-6 Revolution 1, Texas: RXY (Segment 1 BET) ..... A-12
A-7 Revolution 1, Texas: Doppler (Segment 1 BET) ..... A-13
A-8 Revolution 2, Merritt Island: RAE (Segment 1 BET) ..... A-14
A-9 Revolution 2, Merritt Island: RXY (Segment 1 BET) ..... A-15
A-10 Revolution 2, Merritt Island: Doppler (Segment 1 BET) ..... A- 16
A-11 Revolution 2, Patrick: RAE (Segment 1 BET) ..... A- 17
A-12 Revolution 2, Grand Bahama: XY (Segment 1 BET) ..... A-18
A-13 Revolution 2, Bermuda: RXY (Segment 1 BET) ..... A-19
A-14 Revolution 2, Bermuda: Doppler (Segment 1 BET) ..... A-20
A-15 Revolution 2, Bermuda ( \(\Omega\) ): RAE (Segment 1 BET). ..... A-21
A-16 Revolution 2, Carnarvon: RAE (Segment 1 BET) ..... A- 22
A-17 Revolution 2, Carnarvon: RXY (Segment 1 BET) ..... A- 23
A-18 Revolution 2, Carnarvon: Doppler (Segment 1 BET) ..... A-24
A-19 Revolution 2, Hawaii: RXY (Segment 1 BET) ..... A-25
A-20 Revolution 2, Hawaii: Doppler (Segment 1 BET) ..... A-26
A-21 Revolution 2, Goldstone: RXY (Segment 1 BET) ..... A-27
A-22 Revolution 2, Guaymas: XY (Segment 1 BET) ..... A-28
A-23 Revolution 2, Guaymas: Doppler (Segment 1 BET) ..... A-29
Page
A-24 Revolution 2, White Sands: RAE (Segment 1 BET) ..... A- 30
A-25 Revolution 2, Texas: RXY (Segment 1 BET) ..... A-31
A-26 Revolution 2, Texas: Doppler (Segment 1 BET) ..... A-32
A - 27 Revolution 3, Merritt Island: RAE (Segment 1 BET) ..... A-33
A-28 Revolution 3, Merritt Island, RXY (Segment 1 BET) ..... A. 34
A-29 Revolution 3, Merritt Island, Doppler (Segment 1 BET). ..... A-35
A-30 Revolution 3, Grand Bahamas: XY (Segment 1 BET) ..... A- 36
A-31 Revolution 3, Bermuda (Q): RAE (Segment 1 BET) ..... A-37
A-32 Revolution 3, Bermuda: RXY (Segment 1 BET) ..... A-38
A-33 Revolution 3, Bermuda: Doppler (Segment 1 BET) ..... A- 39
A-34 Revolution 3, Antigua: RAE (Segment 1 BET) ..... A- 40
A -35 Revolution 3, Ascension: XY (Segment 1 BET) ..... A-41
A-36 Revolution 3, Ascension: Doppler (Segment 1 BET) ..... A-42
A-37 Revolution 3, Carnarvon: RAE (Segment 2 BET) ..... A-43
A-38 Revolution 3, Carnarvon: RXY (Segment 2 BET) ..... A. 44
A-39 Revolution 3, Carnarvon: Doppler (Segment 2 BET) ..... A-45
A -40 Revolution 3, Hawaii: RAE (Segment 2 BET) ..... A- 46
A-41 Revolution 3, Hawaii: RXY (Segment 2 BET ) ..... A-47
A. 42 Revolution 3, Hawaii: Doppler (Segment 2 BET) ..... A-48
A - 43 Revolution 3, California: RAE: (Segment 2 BET) ..... A-49
A - 44 Revolution 3, Guaymas: RXY (Segment 2 BET) ..... A- 50
A - 45 Revolution 3, Guaymas: Doppler (Segment 2 BET) ..... A-51
A - 46 Revolution 3, White Sands: RAE (Segment 2 BET) ..... A-52
A-47 Revolution 3, Texas: RXY (Segment 2 BET) ..... A-53
Page
A-48 Revolution 3, Texas: Doppler (Segment 2 BET) ..... A- 54
A-49 Revolution 4, Merritt Island: RAE (Segment 2 BET) ..... A-55
A-50 Revolution 4, Merritt Island: RXY (Segment 2 BET) ..... A-56
A. -51 Revolution 4, Merritt Island: Doppler (Segment 2 BET) ..... A-57
A. 52 Revolution 4, Grand Bahama: RAE (Segment 2 BET) ..... A-58
A. -53 Revolution 4, Grand Bahama: XY (Segment 2 BET) ..... A-59
A - 54 Revolution 4, Antigua: RAE (Segment 2 BET) ..... A-60
A -55 Revolution 4, Ascension: RAE (Segment 2 BET) ..... A-61
A -56 Revolution 4, Carnarvon: RAE (Segment 2 BET) ..... A-62
A-57 Revolution 4, Carnarvon: RXY (Segment 2 BET ) ..... A-63
A - 58 Revolution 4, Carnarvon: Doppler (Segment 2 BET) ..... A- 64
A-59 Revolution 4, Guam: RXY (Segment 2 BET) ..... A- 65
A - 60 Revolution 4, Guam: Doppler (Segment 2 BET) ..... A-66
A-61 Revolution 4, Hawaii: RAE (Segment 2 BET) ..... A-67
A. -62 Revolution 4, Hawaii: RXY (Segment 2 BET). ..... A-68
A-63 Revolution 4; Hawaii: Doppler (Segment 2 BET) ..... A-69
A-64 Revolution 4: Goldstone: XY (Segment 2 BET) ..... A- 70
A-65 Revolution 4, California: RAE (Segment 2 BET) ..... A-71
A-66 Revolution 4, Guaymas: RXY (Segment 2 BET) ..... A-72
A-67 Revolution 4, White Sands: RAE (Segment 3 BET) ..... A-73
A-68 Revolution 4, Texas: RXY (Segment 3 BET) ..... A-74
A-69 Revolution 4, Texas: Doppler (Segment 3 BET) ..... A-75
A-70 Revolution 4, Guaymas: RXY (Segment 3 BET) ..... A-76
A-71 Revolution 5, Merritt Island: RXY (Segment 3 BET) ..... A-77
Page
A-72 Revolution 5, Merritt Island: Doppler (Segment 3 BET) ..... A- 78
A-73 Revolution 5, Ascension: RAE (Segment 4 BET) ..... A-79
A-74 Revolution 5, Ascension: RXY (Segment 4 BET) ..... A -80
A-75 Revolution 5, Ascension: Doppler (Segment 4 BET) ..... A-81
A-76 Revolution 5, Tananarive: RAE (Segment 4 BET) ..... A. 82
A-77 Revolution 5, Carnarvon: RAE (Segment 4 BET) ..... A- 83
A-78 Revolution 5, Carnarvon: RXY (Segment 4 BET) ..... A- 84
A-79 Revolution 5, Carnarvon: Doppler (Segment 4 BET) ..... A- 85
A-80 Revolution 5, Guam: RXY (Segment 5 BET) ..... A- 86
A-81 Revolution 5, Guam: Doppler (Segment 5 BET) ..... A- 87
A-82 Revolution 5, Hawaii: RAE (Segment 5 BET). ..... A. 88
A-83 Revolution 5, Hawaii: RXY (Segment 5 BET). ..... A. 89
A-84 Revolution 5, Hawaii: Doppler (Segment 5 BET) ..... A-90

\section*{A-1. Revolution 1, Carnarvon: RAE (Segment 1 BET)}


Note:
- These data occurred immediately after the separation maneuver.


Note: - These data occurred immediately after the separation maneuver.
- These data were weighted out of the fit for data balance.

\section*{A-3. Revolution 1, Canberra: RXY (Segment 1 BET)}



Note: - These data were weighted out of the fit for data balance.

A-5. Revolution 1, White Sands: RAE (Segment 1 BET)


A-6. Revolution 1, Texas: RXY (Segment 1 BET)


。

Note: - Note the apparent X-angle and Y-angle biases.

A-7. Revolution 1, Texas: Doppler (Segment 1 BET)


Note: - These data were weighted out of the fit for data balance.

A-8. Revolution 2, Merritt Island: RAE (Segment 1 BET)


Note: - The elevation residual pattern indicates a possible refraction problem.

A-9. Revolution 2, Merritt Island: RXY (Segment 1 BET)


Note: - These data were weighted out of the fit for data balance.


Note:
- These data were weighted out of the fit for data balance.

A-11. Revolution 2, Patrick: RAE (Segment 1 BET)


A-12. Revolution 2, Grand Bahama: XY (Segment 1 BET)


Note: - These data were weighted out of the fit for data balance.

A-13. Revolution 2, Bermuda: RXY (Segment 1 BET)

-
- These data were weighted out of the fit for data balance.

A-14. Revolution 2, Bermuda: Doppler (Segment 1 BET)


Note:
- These data were weighted out of the fit for data balance.

A-15. Revolution 2, Bermuda (Q): RAE (Segment 1 BET)


TIEE, MDNTES FNAF romorert, Jow ze, ises

A-16. Revolution 2, Carnarvon: RAE (Segment 1 BET)


A-17. Revolution 2, Carnarvon: RXY (Segment 1 BET)



Note: - These data were weighted out of the fit for data balance.

\section*{A-19. Revolution 2, Hawaii: RXY (Segment 1 BET)}


Note: The data between 1 hour, 40 minutes, and 54 seconds and 1 hour, 41 minutes, and 54 seconds were tagged invalid at the station.

A-20. Revolution 2, Hawaii: Doppler(Segment 1 BET)
ESPOD RESIDUALS PLOT


Note: - These data were weighted out of the fit for data balance.

A-21. Revolution 2, Goldstone: RXY (Segment 1 BET)


Note: - Note the X-angle residual pattern.

A-22. Revolution 2, Guaymas: XY (Segment 1 BET)


Note: - These data were weighted out of the fit for data balance.

A-23. Revolution 2, Guaymas: Doppler (Segment 1 BET)
ESPDD RESIDUPLS PLOT

- These data were weighted out of the fit for data balance.

A-24. Revolution 2, White Sands: RAE (Segment 1 BET)


Note: - The station tracked the vehicle on a side lobe for this pass.

\section*{A-25. Revolution 2, Texas: RXY (Segment 1 BET)}


Note: Note the apparent X-angle and Y-angle biases.


Note: - These data were weighted out of the fit for data balance.

A-27. Revolution 3, Merritt Island: RAE (Segment 1 BET)


Note: - Note the crossover pattern in the azimuth residuals.
- The elevation residual pattern indicates a possible refraction problem.

A-28. Revolution 3, Merritt Island: RXY (Segment 1 BET)


Note:
- These data were weighted out of the fit for data balance.

A-29. Revolution 3, Merritt Island, Doppler (Segment 1 BET)

- These data were weighted out of the fit for data balance.

A-30. Revolution 3, Grand Bahamas: XY (Segment 1 BET)

- All the data were tagged invalid at the station.

A-3 1. Revolution 3, Bermuda (Q): RAE (Segment 1 BET)


A-32. Revolution 3, Bermuda: RXY (Segment 1 BET)


Note: - The data were weighted out of the fit for data balance.

A-33. Revolution 3, Bermuda: Doppler (Segment 1 BET)


Note: The data were weighted out of the fit for data balance.

A-34. Revolution 3, Antigua: RAE (Segment 1 BET)


Note: - The data were weighted out of the fit for data balance.

A-35. Revolution 3, Ascension: XY(Segment 1 BET)



Note:
- The data were weighted out of the fit for data balance.

\section*{A-37. Revolution 3, Carnarvon: RAE (Segment 2 BET)}


Note: - Note the positive jump in the azimuth residuals at 2 hours and 50 minutes GMT.

A-38. Revolution 3, Carnarvon: RXY (Segment 2 BET)


A-39. Revolution 3, Carnarvon: Doppler (Segment 2 BET)


Note:
- Station location errors and timing errors do not account for this residual pattern.
- These data were weighted out of the fit for data balance

A-40. Revolution 3, Hawaii: RAE (Segment 2 BET)


Note: - During this pass the elevation residuals were noisy.


A-42. Revolution 3, Hawaii: Doppler (Segment 2 BET)


Note:
- These data were weighted out of the fit for data balance.

A-43. Revolution 3, California: RAE (Segment 2 BET )


Note: - The granularity that the RTCC used for the angle observations was doubled in order to plot the residuals for this pass.

A-44. Revolution 3, Guaymas: RXY (Segment 2 BET)


Note: Note the noisy \(\mathbf{X}\)-angle residual pattern for this pass.

A-45. Revolution 3, Guaymas: Doppler (Segment 2 BET)

ESPOD RESIDURLS PLOT


Note: - The doppler residual pattern indicates an apparent height error.
- These data were weighted out of the fit.


A-47. Revolution 3, Texas: RXY (Segment 2 BET)


Note:
- Apparent biases in the \(X\)-and Y-angles are indicated by the residual patterns.

A-48. Revolution 3, Texas: Doppler (Segment 2 BET)


Note: - This is the best doppler residual pattern for Segment 2.
- These data were weighted out of the fit.

A-49. Revolution 4, Merritt Island: RAE (Segment 2 BET)


Note:
- The elevation residual pattern indicates a possible refraction problem.


A-51. Revolution 4, Merritt Island: Doppler (Segment 2 BET)


Note: - The doppler residual pattern indicates a possible timing or longitude error.
- These data were weighted out of the fit.

A-52. Revolution 4, Grand Bahama: RAE (Segment 2 BET)


Note: - Note the azimuth residual pattern between 3 hours and 33 minutes GMT and 3 hour and 34 minutes GMT.

A-53. Revolution 4, Grand Bahama: XY (Segment 2 BET)






Note: - The discontinuity in the azimut: residuals at 3 hours, 52 minutes, and 24 seconds GMT correspond: 1 , the maximum eletation of the pas. Also notr the triansulat ranneresidua pattern. The redar operater
 pass.

A-56. Revolution 4, Carnarvon: RAE (Segment 2 BET)


Note: - The maximum elevation for this pass was 3 degrees.
A.57. Revolution 4, Carnarvon: RXY (Segment 2 BET)


Note:
- The maximum elevation for this pass was 3 degrees.
- These data were weighted out of the fit.

A-58. Revolution 4, Carnarvon: Doppler (Segment 2 BET)


TIE, MDNTES MCN MIDNLONT, JAN ES. 15S

Note:
- The maximum elevation for this pass was 3 degrees.
- These data were weighted out of the fit.

A-59. Revolution 4, Guam: \(R X Y\) (Segment 2 BET)


Note:
- There is a discontinuity in the \(Y\)-angle residual pattern at + hour \(s\), 34 minutes, and 54 seconds GMT.


Note: - The residual pattern indicates an apparent timing error.
- These data were weighted out of the fit.

A-61. Revolution 4, Hawaii: RAE (Segment 2 BET)

ESPOD RESIDUALS PLOT


Note: - The elevation residuals are noisy during this pass.


Note: - The maximum elevation during this pass was 6 degrees.

A-63. Revolution 4, Hawaii: Doppler (Segment 2 BET)


Note: - The maximum elevation during this pass was 6 degrees.
- These data were weighted out of the fit.

A-64. Revolution 4, Goldstone: XY (Segment 2 BET)


Note: - These data occurred prior to PRA LIL.

A-65. Revolution 4, California: RAE (Segment 2 BET)


Note:
- The granularity that the RTCC used for the angle observations was doubled in order to plot the residuals for this pass.

A-66. Revolution 4, Guaymas: RXY (Segment 2 BET)


Note: - These data occurred prior to PRA III

A-67. Revolution 4, White Sands: RAE (Segment 3 BET)


Note: - These data occurred during the first period of thruster activity following PRA III

A-68. Revolution 4, Texas: RXY (Segment 3 BET)


Note
- These data occurred during the first period of thruster activity following PRA III
- Note the Y-angle bias.

A-69. Revolution 4, Texas: Doppler (Segment 3 BET)


Note:
- These data occurred during the first period of thruster activity following PRA III.

A-70. Revolution 4, Guaymas: RXY (Segment 3 BET)


Note: - These X-, Y-angle data occurred during the first period of thruster activity following PRA IIL

A-71. Revolution 5, Merritt Island: RXY (Segment 3 BET)


Note: - These data occurred during the first period of thruster activity following PRA III.

A-72. Revolution 5, Merritt Island: Doppler (Segment 3 BET)


Note:
- These data were not used in the fit.

A-73. Revolution 5, Ascension: RAE (Segment 4 BET)


A-74. Revolution 5, Ascension: RXY (Segment 4 BET)


Note: - The data between 5 hours and 27 minutes GMT and 5 hours and 30 minutes GMT were tagged invalid by the station.

A-75. Revolution 5, Ascension: Doppler (Segment 4 BET)

```

A-76. Revolution 5, Tananarive: RAE (Segment 4 BET)

```


\section*{A-77. Revolution 5, Carnarvon: RAE (Segment 4 BET)}


A-78. Revolution 5, Carnarvon: RXY (Segment 4 BET)


Note: - Note the erratic X-angle residual pattern.

A-79. Revolution 5, Carnarvon: Doppler (Segment 4 BET)

ESPOD RESIDUALS PLOT


A-80. Revolution 5, Guam: RXY (Segment 5 BET)


Note: - These data occurred during the second period of thruster activity following PRA III.
- Note the data drops in the range data. These range data were tagged invalid at the station.

A-81. Revolution 5, Guam: Doppler (Segment 5 BET)

ESPOD RESIOURLS PLOT


Note:
- These data occurred during the second period of thruster activity following PRA III.

A-82. Revolution 5, Hawaii: RAE (Segment 5 BET)


Note: - These data occurred during the second period of thruster activity following PRA III.

A-83. Revolution 5, Hawaii: RXY (Segment 5 BET )


Note:
- These data were deleted from the fit.

A-84. Revolution 5, Hawaii: Doppler (Segment 5 BET)


Note:
- These data were deleted from the fit.

Information which is too detailed for the body of the report is presented in this appendix. This information includes a summary of radar observations, a summary of station locations, a summary of drag values for various phases of the mission, and a summary of the radar data weights used in ESPOD.

Table \(\mathrm{B}-1\), a summary of data observations, lists the time of the first valid data point with an elevation above 3 degrees (rise time) and the elevation of this data point (rise elevation), the maximum elevation of the pass, the time of the last valid data point with an elevation above 3 degrees (set time) and the elevation of this data point (set elevation), and the number of valid data points by station and revolution. Also included is a comment regarding the use of each pass of data.

Table B-2 lists the C-band station locations used in ESPOD. These locations are referenced to the Fischer Ellipsoid of 1960.

Table B-3 lists the S-band station locations used in ESPOD. These locations are referenced to the Fischer Ellipsoid of 1960.

Table B-4, the drag summary, lists the vehicle configuration, the time interval for which the listed drag value is valid, vehicle weight for this time interval, vehicle cross sectional area, and the value of the drag parameter.

Table B-5 lists the values used by ESPOD to weight the radar tracking data from each station as a function of data type and radar type.

Table B-1. Radar Data Summary
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Station & Revolution & \[
\begin{gathered}
\text { Date } \\
\text { (yr:mo:day })
\end{gathered}
\] & \[
\begin{gathered}
\text { Rise Time. } \\
\text { GMT } \\
\text { (hr:min;sec }
\end{gathered}
\] & \(\qquad\) & Maximum * Elevation
\(\qquad\) & \[
\begin{gathered}
\text { Set Time. } \\
\text { GMT } \\
\text { (hr:min:sec) }
\end{gathered}
\] & \(\qquad\)
\[
\begin{aligned}
& \text { Sett } \\
& \text { Elevation }
\end{aligned}
\]
(dek) & Number of Observations & Comments \\
\hline CROC & 1 & 68:01:22 & 23:41:42 & 5.4 & 12.5 & 23:46:18 & 3.3 & 48 & The data were uned in the Segment 1 fit. \\
\hline Cros & 1 & 68:01:22 & 23:42:30 & 9. 0 & 12.5 & 23:46:18 & 3. 4 & 37 & The RXY data were used in the Sement 1 f \\
\hline CNBS & 1 & 68:01:22 & 23:49:24 & 4.6 & 8.1 & 23:52:54 & 5. 4 & 35 & The RXY data were used in the Segment in \\
\hline GLDS & 1 & 68:01:23 & 00:18:42 & 3. 4 & 4. 7 & 00:20:18 & 4. 5 & 31 & The data were not used in the Segment 1 fit . \\
\hline WHSC & 1 & 68:01:23 & 00:19:18 & 3. 2 & 17.2 & 00:24:00 & 3. 2 & 48 & The data were used in Segrnent 1 fit. \\
\hline TEXS & 1 & 68:01:23 & 00:21:00 & 4.6 & 32.1 & 00:25:48 & 3.2 & 43 & The RXY data were used in the Segment 1 fit. \\
\hline MILS & 2 & 68:01:23 & 00:24:36 & 3. 1 & 23.0 & 00:29:36 & 3.1 & 51 & The data were weighted out of the Segment 1 fit. \\
\hline PATC & 2 & 68:01:23 & 00:24:36 & 28 & 20.3 & 00:29:36 & 3.0 & 30 & The data were used in the Segment 1 fit. \\
\hline MLAC & 2 & 68:01:23 & 00:24:36 & 3.0 & 22.5 & 00:29:36 & 3.0 & 50 & The data were used in the Segment 1 fit. \\
\hline GBMS & 2 & 68:01:23 & 00:25:18 & 2. 9 & 14.0 & 00:29:54 & 3.2 & 47 & The data were weighted out of the Segment 1 fit. \\
\hline BDAS & 2 & 68:01:23 & 00:28:00 & 3.1 & 50.5 & 00:33:12 & 3. 2 & 53 & data were weighted out of the Segment 1 fit \\
\hline BDQC & 2 & 68:01:23 & 00:28:00 & 3.6 & 50.6 & 00:33:12 & 3.2 & 53 & data were used in the Segment 1 fit. \\
\hline REDC & 2 & 68:01:23 & 00:33:12 & 3. 0 & 38.4 & 00:38:36 & 3. 4 & 49 & The ahip data were not usedin the Segment 1 fit. \\
\hline CROS & 2 & 68:01:23 & 01:14:36 & 4. 2 & 20.3 & 01:20:06 & 3.2 & 55 & The RXY data were used in the Segment 1 fit. \\
\hline CROC & 2 & 68:01:23 & 01:14:48 & 5.4 & 20.2 & 01:20:06 & 3.1 & 54 & The data were used in the Segment 1 fit. \\
\hline HA WS & 2 & 68:01:23 & 01:40:06 & 3.0 & 11.4 & 01:44:30 & 3.2 & 36 & The RXY data were used in the Segment 1 fit. \\
\hline WTNC & 2 & 68:01:23 & 01:45:08 & 3. 3 & 14. 9 & 01:48:20 & 11.4 & 26 & The ahip data were not used in the Segment 1 fit \\
\hline GLDS & 2 & 68:01:23 & 01:50:12 & 3. 3 & 14.7 & 01:54:54 & 3.4 & 47 & The data were used in the Segment 1 fit. \\
\hline GYMS & 2 & 68:01:23 & 01:51:00 & 3. 0 & 22.8 & 01:55:06 & 8. 5 & 42 & The XY data were not used in the Segment 1 fit. \\
\hline WHSC & 2 & 68:01:23 & 01:53:36 & 16.7 & 60.4 & 01:56:48 & 3.4 & 33 & White Sands tracked on a side lobe; consequently. the data were not used on the Segment 1 fit. \\
\hline TEXS & 2 & 68:01:23 & 01:53:48 & 3. 3 & 17.7 & 01:58:54 & 3. 3 & 52 & The RXY data were used in the Segment 1 fit. \\
\hline MLLS & 3 & 68:01:23 & 01:57:48 & 3.4 & 41.0 & 02:02:54 & 3.3 & 51 & The data were weighted out of the Segment 1 fit. \\
\hline mLac & 3 & 68:01:23 & 01:57:48 & 3. 5 & 39.2 & 02:02:54 & 3. 3 & 52 & The data were used in the Segment \(t\) fit. \\
\hline GBMS & 3 & 68:01:23 & 01:58:24 & +. 5 & 24.2 & 02:03:30 & 3. 1 & 39 & The data were weighted out of the Segment 1 fit. \\
\hline BDAS & 3 & 68:01:23 & 02:01:36 & +. 6 & 12.2 & 02:05:42 & 3.3 & 42 & The data were weighted out of the Segment 1 fit. \\
\hline BDQC & 3 & 68:01:23 & 02:01:12 & 2. 8 & 12.3 & 02:05:42 & 3. 3 & 46 & The data were used in the Segment 1 fit. \\
\hline ANTC & 3 & 68:01:23 & 02:02:36 & 2.9 & 7.4 & 02:07:18 & 3.1 & 38 & The data were weighted out of the Segment 1 fic \\
\hline REDC & 3 & 68:01:23 & 02:07:54 & 3.1 & 3.8 & 02:09:42 & 3.0 & 18 & The ship data were not used in the Segment 1 fit. \\
\hline ACNS & 3 & 68:01:23 & 02:18:48 & 11.5 & 12.5 & 02:21:48 & 3.0 & 3 t & The XY data were used in the Setment 1 fit \\
\hline cros & 3 & 68:01:23 & 02:47:24 & 3.1 & 43.4 & 02:50:54 & 34.5 & 36 & The range data were uled in the Segrnent 2 fit. \\
\hline CROC & 3 & 68:01:23 & 02:47:24 & 3.1 & 43.7 & 02:53:24 & 3. 1 & 61 & The data were used in the Segment 2 fit . \\
\hline HAWC & 3 & 68:01:23 & 03:12:12 & 2. 4 & \(2+3\) & 03:17:48 & 3.3 & 52 & The data were used in the Segment 2 fit. \\
\hline
\end{tabular}

\footnotetext{
These angles have been corrected for refraction effects.
}

Table B-1. Radar Data Summary (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Station & Revolution & \[
\begin{gathered}
\text { Date } \\
\text { (yr:nu:day })
\end{gathered}
\] & \[
\begin{gathered}
\text { Rise Time, } \\
\text { GMT } \\
\text { (hr:minnsec) }
\end{gathered}
\] & Rise \({ }^{\text {* }}\) Elevation (def) & Maximum Elevation (dea) & \[
\begin{gathered}
\text { Set Time, } \\
\text { CiMT } \\
\text { (hr:min:sec) }
\end{gathered}
\] & \begin{tabular}{l}
\(\qquad\) \\
Elevation (deg)
\end{tabular} & Number of observations & Comments \\
\hline HAWS & 3 & 68:01:23 & 03:12:48 & 3.3 & 24.3 & 03:17:18 & 4.3 & 17 & The RXY data were used in the Segment 2 git. \\
\hline WTNC & 3 & 68:01:23 & 03:18:20 & 6.8 & 03.3 & 03:24:15 & 4. 5 & 50 & The ship data were not used in the Segment 2 fit. \\
\hline CLQC & 3 & 68:01:23 & 03:22:35 & 3.1 & 13.2 & 03:26:29 & 3. 1 & 39 & The angle data were bad, consequently the data were not used in the Segment 2 fit. \\
\hline GYMS & 3 & 68:01:23 & 03:24:18 & 3.3 & 23.7 & 03:29:18 & 3.4 & 34 & The RXY data were used in the Segment \(\bar{z}\) fir. \\
\hline WHSC & 3 & 68:01:23 & 03:25:30 & 6.0 & +2. 4 & 03:30:12 & 3.4 & 48 & The data were used in the Segment 2 fit. \\
\hline MLAC & \(+\) & 68:01:23 & 03:31:18 & \(5 .+\) & 19.3 & 03:35:54 & 3.0 & 46 & The data were used in the Segment 2 fit. \\
\hline GBIC & + & 68:01:23 & 03:31:30 & 3.4 & 24.6 & 03:36:36 & 3.4 & 52 & The data were used in the Segment 2 fit. \\
\hline GBMS & 4 & 68:01:23 & 03:32:24 & 8. 8 & 24.6 & 03:37:30 & 3. 2 & 52 & The data were not used in the Segrnent 2 fit. \\
\hline MaLS & 4 & 68:01:23 & 03:32:36 & 15.1 & 19.0 & 03:35:48 & 3. 4 & 33 & The data were weighted out of the Segment 2 fit \\
\hline ANTC & 1 & 68:01:23 & 03:35:54 & 3.0 & +2.7 & 03:41:24 & 3. 2 & 55 & The data were used in the Segment 2 j it. \\
\hline ASCC & 4 & 68:01:23 & 03:49:48 & 3.1 & 14.4 & 03:55:00 & 3.2 & 53 & The data were used in the Segment 2 fit. \\
\hline CWMS & 4 & 68:01:23 & 04:33:18 & 6.5 & 22.1 & 04:37:06 & 7. 3 & 39 & R RXY data were ured in the S \\
\hline HAWS & 4 & 68:01:23 & 04:47:12 & 3. 0 & 6.0 & 04:50:12 & 3.2 & 19 & The range data were used in the Segment 2 fit \\
\hline HAWC & 4 & 68:01:23 & 04:47:18 & 3. 2 & 5.6 & 04:50:12 & 3.2 & 30 & The data were used in the Segment 2 fit. \\
\hline WTNC & 4 & 68:01:23 & 04:51:37 & 3. 0 & 43.1 & 04:56:14 & 3.6 & 44 & The ship data were not used in the Segment 2 fit . \\
\hline GLDS & 4 & 68:01:23 & 04:56:06 & 3.1 & 9. 5 & 04:58:00 & 9.5 & 20 & The XY data were used in the Segment 2 \\
\hline CLQC & 4 & 68:01:23 & 04:56:49 & 5. A & 6.6 & 04:59:11 & 3.1 & 18 & The angle data were bad, consequently the data were not used in the Segment 2 fit. \\
\hline GYMS & 4 & 68:01:23 & 04:57:18 & 3.0 & 8.2 & 05:02:36 & 3.0 & 49 & The RXY data were used in the Segment 2 fit. \\
\hline WHSC & 4 & 68:01:23 & 04:58:42 & 4. 2 & 9.8 & 05:02:30 & 3.1 & 37 & The data were used in the Segment 3 fit. \\
\hline TEXS & 4 & 68:01:23 & 05:00:06 & 6. 8 & 14.7 & 05:03:36 & 13.6 & 24 & The data were used in the Segment \\
\hline ACNS & 5 & 68:01:23 & 05:23:06 & 3. 2 & 9.7 & 05:26:54 & 9.7 & 39 & The data were used in the Segment 4 fit. \\
\hline ASCC & 5 & 68:01:23 & 05:23:06 & 3.2 & 9.5 & 05:30:48 & 3.0 & 78 & The data were used in the Segment 4 fit. \\
\hline TANC & ; & 68:01:23 & 05:40:06 & 11.9 & 33.4 & 05:53:00 & 3.3 & 107 & The data were used in the Segment 4 fit. \\
\hline CROS & 5 & 68:01:23 & 05:58:12 & 3. 0 & 5.0 & 06:03:54 & 3.1 & 50 & The data were used in the Se \\
\hline CROC & 5 & 68:01:23 & 05:58:12 & 3.1 & 5.0 & 06:04:00 & 3.0 & 59 & The data were used in the Segments 4 and 5 fits. \\
\hline GWMS & 5 & 68:01:23 & 06:09:48 & 3.6 & 28.5 & 06:20:30 & 3. 2 & 104 & The data were used in the Sepment 5 fit. \\
\hline HAWS & 5 & 68:01:23 & 06:27:48 & 3.3 & 8.1 & 06:32:30 & 3. 3 & 28 & The data werp used in the Sepmen \\
\hline HAWC & 5 & 68:01:23 & 06:27:54 & 3.3 & 8.5 & 06:32:30 & 3.4 & 48 & The data were used in the Segment 5 fit. \\
\hline WTNC & 5 & 68:01:23 & 06:32:1 & 5.9 & 18.3 & 06: \(33: 53\) & 18. 3 & 13 & The ship data were not used in the Segment 5 fit. \\
\hline
\end{tabular}

\footnotetext{
*These angles have been corrected for refraction effects.
}

Table. B-2. C-band Station Locations
\begin{tabular}{|c|c|c|c|c|c|}
\hline Station & Radar Type & Identification & \[
\begin{gathered}
\text { Latitude } \% \\
(\mathrm{deg})
\end{gathered}
\] & \[
\begin{gathered}
\text { Longitude* } \\
\text { (deg) }
\end{gathered}
\] & \[
\begin{aligned}
& \text { Altitude* } \\
& \text { (deg) }
\end{aligned}
\] \\
\hline Antigua & FPQ-6 & ANT & 17.14403 & 298. 20714 & 190.29 \\
\hline Ascension & TPQ-18 & ASC & -7.97276 & 345. 59830 & 469. 16 \\
\hline Ascension & FPS-16 & ASC & -7.95151 & 345.58740 & 360.90 \\
\hline Bermuda & FPS-16 & B DA & 32.34810 & 295.34620 & 59.06 \\
\hline Bermuda & FPQ-6 & \(B D Q\) & 32.34796 & 295.34626 & 62.34 \\
\hline California & FPS-16 & CAL & 34.58290 & 239.43885 & 2119.42 \\
\hline California & TPQ-18 & CLQ & 34.66598 & 239. 41780 & 354.33 \\
\hline Canary Island & MPS-26 & CYI & 27.76321 & 344.36519 & 551.18 \\
\hline Cape Kennedy & FPS-16 & CNV & 28. 48177 & 279.42349 & 45.93 \\
\hline Carnarvon & FPQ-6 & CRO & -24.89740 & 113.71608 & 203.41 \\
\hline Eglin & FPS-16 & EGL & 30.42177 & 273. 20189 & 91.86 \\
\hline Grand Bahama & FPS-16 & GBI & 26.61579 & 281.65215 & 45.93 \\
\hline Grand Bahama & TPQ-18 & ĢBI & 26.63636 & 281.73229 & 39.37 \\
\hline Grand Turk & TPQ-18 & GTI & 21.46289 & 288. 86789 & 91.86 \\
\hline Hawaii & FPS-16 & HAW & 22. 12209 & 200.33462 & 3740.16 \\
\hline Merritt Island & TPQ-18 & MLA & 28. 42486 & 279.33560 & 39.37 \\
\hline Patrick & FPQ-6 & PAT & 28. 22655 & 279.40017 & 49. 21 \\
\hline Pretoria & MPS-25 & PRE & -25.94373 & 28. 35849 & 5334.65 \\
\hline
\end{tabular}

\footnotetext{
*All quantities are referenced to the Fischer Ellipsoid of 1960.
}

Table B-2. C-band Station Locations (Continued)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Station & Radar Type & Identification & \[
\begin{gathered}
\text { Latitude* } \\
\text { (deg) } \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\begin{array}{c}
\text { Longitude } \\
(\mathrm{deg})
\end{array} \\
\hline
\end{gathered}
\] & Altitude \({ }^{*}\) (deg) \\
\hline San Salvador & FPS-16 & SSI & 24. 11883 & 285. 49586 & 16. 40 \\
\hline Tananarive & FPS-16 & TAN & -19.00079 & 47.31505 & 4337.35 \\
\hline hite Sands & FPS-16 & WHS & 32. 35822 & 253.63044 & 4041.99 \\
\hline Woomera & FPS-16 & WOM & -30.81973 & 136.83699 & 495.41 \\
\hline
\end{tabular}
*All quantities are referenced to the Fischer Ellipsoid of 1960.

Table B-3. USBS Station Locations
\begin{tabular}{|c|c|c|c|c|c|}
\hline Station & Antenna & Identification & \begin{tabular}{l}
Latitude* \\
(deg)
\end{tabular} & Longitude*
\(\qquad\) & \[
\begin{gathered}
\begin{array}{c}
\text { Altitude* } \\
\text { (deg) }
\end{array} \\
\hline
\end{gathered}
\] \\
\hline Antigua & \(30^{1}\) & ANG & 17.01692 & 298. 24715 & 141.08 \\
\hline Ascension & \(30^{\prime}\) & ACN & -7.95506 & 345.67242 & 1843. 83 \\
\hline Bermuda & 30 & B DA & 32.35129 & 295. 34182 & 68.90 \\
\hline Canary Island & \(30^{\prime}\) & CYI & 27. 76454 & 344.36519 & 567.59 \\
\hline Canberra & \(85^{\prime}\) & CNB & -35.58474 & 148.97658 & 3766.40 \\
\hline Carnarvon & \(30^{\circ}\) & CRO & -24.90759 & 113.72425 & 190. 29 \\
\hline Goldstone & \(85^{\prime}\) & GDS & 35.34169 & 243. 12670 & 3166.01 \\
\hline Grand Bahama & \(30^{1}\) & GBM & 26.63286 & 281.76234 & 16. 40 \\
\hline Guam & \(30^{1}\) & G WM & 13.30924 & 144.73441 & 416.67 \\
\hline Guaymas & \(30^{\prime}\) & GYM & 27. 96321 & 249. 27915 & 62. 34 \\
\hline Hawaii & \(30^{\prime}\) & HAW & 22. 12490 & 200. 33501 & 3772.97 \\
\hline Madrid & \(85^{1}\) & MAD & 40.45536 & 355. 83261 & 2706.69 \\
\hline Merritt Island & \(30^{\prime}\) & MIL & 28.50827 & 279. 30658 & 32. 81 \\
\hline Texas & \(30^{\prime}\) & TEX & 27. 65375 & 262.62153 & 32. 81 \\
\hline
\end{tabular}

\footnotetext{
*All quantities are referenced to the Fischer Ellipsoid of 1960.
}

Table B-4. Drag Summary
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Station} & \multicolumn{2}{|c|}{Time Interval} & \multirow[t]{2}{*}{Vehicle Weight
\(\qquad\)} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Vehicle Area } \\
\left(\mathrm{ft}^{2}\right)
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Drag } \\
(\mathrm{ft} 2 / \mathrm{slug}) \\
\hline
\end{gathered}
\]} \\
\hline & From & \[
\begin{gathered}
\text { To } \\
(\text { day:hr:min:sec) }
\end{gathered}
\] & & & \\
\hline & (day:hr:min:sec) & & & 411.0 & 0.1897 \\
\hline M/S-IVB & 22:22:58:11.3 & 22:23:42:0 & & 200.6 & 0. 2039 \\
\hline LM & 22:23:42:03. 2 & 23:05:01:22.3 & & 129. 4 & 0.4516 \\
\hline LM & 23:05:01:22.3 & 23:06:32:08.3 & 9,170 & & \\
\hline
\end{tabular}

Table B-5. Radar Data Weighting
\begin{tabular}{|c|c|c|}
\hline & Type of Radar & Weighting \\
\hline Data Type & & ft . \(0.0258 \mathrm{deg}: 0.0258 \mathrm{deg}\) \\
\hline R:A:E & FPQ-6 & 5 . \(0.0354 \mathrm{deg}: 0.0354 \mathrm{deg}\) \\
\hline R:A:E & TPQ-18 and FPS- & 2 deg: 0.1720 deg \\
\hline R:A:E & MPS-26 & . \(0.1375 \mathrm{deg}: 0.1375 \mathrm{deg}\) \\
\hline R:X:Y & USB: \(\begin{aligned} 30-\mathrm{ft} \text { antenna } \\ 85-\mathrm{ft} \text { antenna }\end{aligned}\) & \(90 \mathrm{ft}\). 0. 1375 deg: 0.1375 deg \\
\hline Doppler (2 way) & USB: \(30-\mathrm{ft}\) antenna \(85-\mathrm{ft}\) antenna & 0.2 cycle/sec \\
\hline
\end{tabular}```


[^0]:    ${ }^{*}$ According to telemetry information separation occured at 53 minutes and 55.242 seconds GET

[^1]:    *High speed vector from WHSC prior to PRA 5 (vector used to build LGC navigation update)

