(U69- 10,210 (+69-24311) - NS c 3 NATIONAL AERONAUTICS AND SPACE ADMINISTRATION (11242-24311) E-3 MSC INTERNAL NOTE MSC-CF-P-69-7 APOLLO ENTRY SUMMARY DOCUMENT MISSION "F" (AS-505/106/IM-4) :..

.

84

(THRU)

(CODE)

(CATEGORY)

- 3

70

(ACCESSION NUMBER)

(PAGES

(NASA CR OR TMX OR AD NUMBER)

N

FACILITY FORM 602

FINAL COPY

LIBRARY COPY

APR 9 1969

MANNED SPACECRAFT CENTER HOUSTON, TEXAS

March 17, 1969

MANNED SPACECRAFT CENTER HOUSTON TEXAS

APOLLO ENTRY SUMMARY DOCUMENT

MISSION F (AS-505/106/IM-4)

PREPARED BY:

James O. Rippey

AST, Launch and Entry Procedures Section

APPROVED BY:

uckere K. Marren Warren

Chief, Launch and Entry Procedures Section

Paul C. Kramer

Chief, Flight Procedures Branch

Paul C. Kramen James W. Bilodeau

Assistant Chief, Flight Crew Support Division

Warren J North

Chief, Flight Crew Support Division

Chairman, Crew Procedures Control Board

March 17, 1969

TABLE OF CONTENTS

1.0	Introduction	1
2.0	List of Acronyms and Abbreviations	2
3.0	Lunar Return Entry Techniques	5
	3.1 Reentry Guidance Events	8
	3.2 Summary of Monitoring Checks for Entry	10
	3.3 Monitoring without EMS	12
4.0	Earth Orbital Deorbit and Entry Techniques	13
	4.1 Typical Retrofire and Entry Sequence of Events	15
	4.2 Retrofire and Entry Alternatives	16
5.0	Detailed Entry Procedures	17
	5.1 Entry preparations for supercircular and earth orbital entries	17
	5.2 Supercircular entry	23
	5.3 G&N hybrid deorbits for earth orbital entries	29
	5.4 Normal deorbits for earth orbital entries	35
	5,5 Earth orbital entries	40
	5.6 Earth landing from supercircular and earth orbital entries	45
	5.7 Post landing	47
6.0	TLI Aborts	50
	6.1 TLI preparation procedures	52
	6.2 10 minute TLI abort procedures	55
	6.3 90 minute TLI abort procedures	57
7.0	Entry Pads	59
8.0	Entry Charts and TLI Charts	64
9.0	References	76

1.0 INTRODUCTION

The purpose of the Entry Summary Document is to provide a single source of entry crew procedure information for use in flight planning, crew training, and preparing onboard data. The techniques contained in this document were generally derived from other documentation and are combined here to serve as a single, compact training package.

In accordance with the Flight Crew Operations Directorate CREW PROCEDURES CONTROL PLAN dated March 1968, the preliminary ESD editions are distributed for review and comment and simulator validation until 5 months prior to launch. Thereafter final ESD procedures are distributed and serve as a control document with changes subject to approval by the Crew Procedures Control Board.

Comments to this document should be directed to the Flight Procedures Branch, Flight Crew Support Division, extension 3436.

2.0 LIST OF ACRONYMS AND ABBREVIATIONS

ACCUM	Accumlator
AMP	Amplifier
ANT	Antenna -
AOS	Acquisition of Signal
BBA	Backup Bank Angle
BCN	Beacon
BEF	Blunt End Forward
BETA	CMC Commanded Bank Angle
BMAG	Body Mounted Attitude Gyro
BRB	Bank Reverse Bank
CBN	Cabın
CDR	Commander
CDU	Coupling Data Unit
CKT	Circuit
СМ	Command Module
CMC	Command Module Computer
CMP	Command Module Pilot
CO	Cutoff
COAS	Crew Optical Alignment Sight
COMM	Communications
CRYO	Crvogenic
CSM	Command Service Module
CTR	Counter
C/WS	Caution Warning System
DAP	Digital Auto Pilot
DET	Digital Event Pilot
DL	Drag Acceleration at Skipout
DO	Constant Drag Control Acceleration Level
DSKY	Display and Keyboard
E	DSKY Enter
ECS	Environment Control Subsystem
EI	Entry Interface
EMS	Entry Monitor System
EPS	Electrical Power Subsystem
ESS	Essential
FCSM	Flight Combustion Stability Monitor
FDAI	Flight Director Attitude Indicator
FUNC	Function
G	Acceleration in Earth Gravitational Units
G&C	Guidance and Control
GET	Ground Elapsed Time
GETI	Ground Elapsed Time of Ignition
GDC	Gyro Display Coupler
GLY	Glycol
GMBL	Gimbal
G&N. G/N	Guidance and Navigation
, -/	

Lıst	of	Acronyms	and	Abbreviations	

GND	Ground
GPI	Gimbal Position Indicator
G-V	Acceleration-Velocity
HA	Height of Apogee
HE	Helium
HP	Height of Perigee
IMU	Inertial Measurement Unit
KA	Drag Acceleration necessary to initiate
	constant drag control
L/D	Lift to Drag Ratio
LEB	Lower Equipment Bay
LMP	Lunar Module Pilot
LOS	Loss of Signal
LV	Local Vertical, Lift Vector, Launch Vehicle
MAN	Manual
MCC	Midcourse Correction
MCC-H	Mission Control Center - Houston
MESC	Master Event Sequence Controller
MSFN	Manned Space Flight Network
MGA	Middle Gambal Angle
MK	Mark
MNVR	Mapeuver
MON	Monator
MUD	Motor
MTVC	Manual Thrust Vector Control
M	DSVV Nour
N ODT	Option Option
OPTEN	Oracetata en
07	Orregen
02 D	Batah an CMC Broomer
r DCA	Dussauus Compat Assarbla
PGA	Pressure Garment Assembly
PGNUS	Primary Guidance, Navigation and Control System
PLPA	Pulse Integrating Pendulous Accelerometer
PL DI GG	Planet
PLSS	Portable Life Support System
POSS	Possible
PRIM	Primary
PRPLNT	Propeilant
PSIA	Pounds Per Square Inch Absolute
PTT	Push to Talk
PUGS	Propellant Utilization and Gaging System
PWR	Power
R	Roll or CMC Routine
R1, R2, R3	Register 1, 2, 3
RAD	Radiator
RCDR	Recorder
RCS	Reaction Control System
ROT	Altıtude Rate
REFSMMAT	Reference to Stable Member Matrix

List of Acronyms and Abbreviations

REL	Relief
RET	Reentry Elapsed Time (Lunar Return Case) or Retro
	Elapsed Time (Earth Orbital Case). For lunar returns
	RET is zero at RRT. For earth orbital entries RET is
	zero at the deorbit burn time.
RHC	Rotational Hand Controller
RNG	Range
ROU	Routine
RRT	Reentry Reference Time (Based on MCC-H predicted time
	of EI to nearest second)
RSI	Roll Stability Indicator
RTGO	Range to Go
SA	Shaft Angle
SCS	Stabilization and Control System
SEC	Secondary
SECS	Sequential Events Control Subsystem
SEL	Select
SEP	Separation
SEQ	Sequential
SFT	Shaft Angle for SXTS when spacecraft is at
	ignition attitude
SM, S/M	Service Module
SPA	COAS Star Pitch Angle
SPS	Service Propulsion System
STBY	Standby
SXP	Star X Position (COAS)
SXT	Sextant
STS	Sextant Star
TA	Trunnion Angle
TB	Talkback Display, Time Base
TBD	To Be Determined
TERM	Terminate
TF	Time From
TFF	Time of Freefall
THBWLS	Thumbwhee1s
THÇ	Translational Hand Controller
TIG	Time of Ignition
TLI	Translunar Insertion
TM, TLM	Telemetry
TRNFR	Transfer
TVC	Thrust Vector Control
V	Velocity or DSKY Verb
VG	Velocity To Be Gained
VIO	Inertial Velocity
VL	Skipout Velocity
VM	Velocity Measured
Y	Yaw

3.0 LUNAR RETURN ENTRY TECHNIQUES

The timeline for lunar return entries is based on the recommendations found in reference 1, the simulator validated procedures in reference 2, and the mission validated procedures listed in the onboard checklist for the C Prime mission. The event times are listed in reference 3.

The preparation for lunar return entries begins at a convenient time about 30 hours before entry interface. At this time MSFN sends up all data sufficient for reentry, also an EMS entry selftest is made to assure maximum confidence in the EMS operation during entry. Thereafter various system powerups and checks are initiated as listed in section 5.1 and detailed in reference 4. Nominally, the PGNCS is up for the entire mission. However, if it is not, it is powered up at EI-7 hours in preparation for the last MCC and entry. The last MCC decision is made at about EI-6 hours for the maneuver to be performed at EI-3 hours if needed. Details of this maneuver are outlined in reference 1. After the MCC time P52 is again selected and the IMU is realigned to the REFSMMAT. If the IMU drift is within tolerance, the subsequent IMU/SCS drift check will determine if the SCS has drifted excessively. If so, the other EMAG's are selected and the IMU/SCS check repeated. This check is followed by a repeat of the EMS ΔV counter check and accelerometer bias check at EI-1 hour 15 minutes to determine if the scale factor and bias are adequate for entry monitoring. Final stowage, CM RCS preheat and pyro circuit and sequential tests are worked into this timeframe so that at EI-50 minutes the MSFN will be requested for a go to pyro arm by the crew in preparation for separation. At 45 minutes before EI the CMC update program P27 can be selected to permit update of the landing point location and the state vector. The entry PAD data, shown in section 7.0, is then voiced to the crew and recorded From this data the DET is set and started, the EMS initialized, and the RSI aligned. Prior to EI-20 minutes the crew will have strapped-in, completed their preseparation checklist, and maneuvered to the entry attitude. At this point, EI-19 minutes, the CMC entry program P61 is selected by the CMP. Ϊſ there was no entry PAD data because of communication loss, the velocity and range to go from P61 is recorded and used in the EMS. At EI-15 minutes the spacecraft is pitched down and the horizon is checked against the 31.7 degree window scribe line and the FDAI attitude. Τf there is significant disagreement the PGNCS is suspected and the spacecraft is held on the window reference. In P62 the spacecraft is yawed 45° from this attitude and separated from the SM. After separation the CM is yawed back in plane and the horizon check repeated. At approximately EI-10 minutes the pitch attitude is within 45° of the CMC commanded attitude and P63 is entered automatically. Since the CMC DAP tries to hold local pitch attitude and the CMC is not in control the crew observes the pitch error needle unpeg and approach zero about two minutes before .05g time. This serves as a go/no go CMC

check for entry control. If the FDAI pitch error does not decrease to within $\pm 5^{\circ}$ at 0.05g, the PGNCS is failed and the crew flies a constant g entry mode with EMS ranging after the velocity decrease to 25,500 feet per second. If the PGNCS is acceptable the spacecraft control is placed in CMC and the CMC mode is placed in automatic. At .05g the EMS automatically starts if the EMS mode switch was positioned to automatic earlier. This will be backed up manually 3 seconds after the ground computed .05g time recorded on the entry PAD by placing the EMS mode switch in manual if it has not started automatically. At PGNCS 0.05g indication, the CMC program changes to P64 and from this point the entry is under entry DAP control.

The lunar return entry nominally is performed by the PGNCS to insure control within the overshoot and g limit lines as well as optimize the landing point accuracy. Although the high speed entry involves a rapid sequency of events there are several monitoring tasks for the crew to determine if the automatic control is performing correctly.

An entry corridor verification check is made by observing the initial slope of the EMS V-g trace between 1 and 2 g's. If the EMS indicates the need to reverse the LV orientation and the independent g meter confirms the EMS g indication, the SC is immediately oriented as a result of the EMS indication.

The EMS g indication is continuously checked during entry using the independent g meter and the PGNCS g indication as a third vote. Decisions during the first entry (P64) are critical in terms of both excessive g lines and the PGNCS is not commanding (and SC responding) to correct the situation, the PGNCS is failed.

The FGNCS go/no go check for short range targets (1200-1400 n m1) for which P65 is not used is different since there are no CMC computed skip drag (DL) and skip velocity (VL) values. The check uses the EMS scroll to determine if the PGNCS is commanding the proper roll attitude to converge the EMS g level to a predetermined PAD value (D_0) as computed by MCC-H. For the nominal target range of 1,300 nautical miles, the crew will monitor the program change from P64 to P67 at approximately EI + 3 minutes. For ranges greater than 1,400 nautical miles, the program will transfer to the Upcontrol Program, P65, when VL is between 18,000 and 25,766 feet per second and constant drag has brought the CMC predicted range to within 25 nautical miles of the target range. The P65 PGNCS go/no go check consists of determining if both the DSKY display of skipout drag (DL) and skipout velocity (VL) are within the PAD limits. In addition, the EMS scroll is monitored to determine if the trace is approaching the DL and VL values.

Throughout entry the crew monitors the spacecraft response to the CMC roll commands by observing the FDAI indications. If the commands are

apparently good and in agreement with the EMS but the spacecraft response is questionable, the crew manually takes over and flies the CMC commands.

If the Upcontrol Program, P65, was entered, the program will nominally switch to the Final Entry Program, P67, for target ranges below approximately 1,800 nautical miles or to the Ballistic Program, P66, for ranges greater than approximately 1,800 nautical miles. The program transfer criteria are more precisely defined in reference 1.

If P66 is entered, the spacecraft is automatically rolled to the liftup, heads-down attitude to permit the horizon to be viewed from the window during the second entry. The entry attitude check is made by comparing the horizon with a specified window mark. If the check fails, the crew manually maintains the entry trim attitude using the horizon view for reference. The EMS is used for ranging, since the velocity has now decreased to below 25,500 feet per second.

The EMS scroll is continuously used to monitor for excessive g conditions during the second entry. If the EMS V-g trace violates the g lines and the PGNCS is not commanding (and spacecraft responding) to correct the situation, the PGNCS is failed, and the EMS is used for ranging after its g indication has been confirmed by the independent g meter.

The entry phase is essentially over when the relative velocity of the spacecraft decreases to less than 1,000 feet per second. This is indicated in P67 when RTGO, latitude, and longitude are displayed Since very little ranging capability exists after this point, the spacecraft is oriented either full lift up or down depending on RTGO negative or positive and the crew prepares for the earth landing phase.

3.1 REENTRY GUIDANCE EVENTS

3.1 REENTRY GUIDANCE EVENTS (Cont.)

TRAJECTORY EVENT	TIME FROM ENTRY INTERFACE MIN.SEC
400,000 FT	00 00
ENTER S-BAND BLACKOUT	00 26
0 05 G	00-30
KA - INITIATE CONSTANT DRAG	00.52
RDOT = -700 FPS	01.20
· PEAK G	01.24
P64 TO P67	02 10
EXIT S-BAND BLACKOUT	03.26
GUIDANCE TERMINATION	07 30
DROGUE DEPLOYMENT	08 33.2
MAIN DEPLOYMENT	09.22 0
TOUCHDOWN	14 15 2

$$L/D = 0.286$$

V = 36,221 R = 1350
 $\gamma = -6.48$

بر

Reference 10

TO SERVE AN ORING CHECKE HOW BALLIN

-9-

3.2 SUMMARY OF MONITORING CHECKS FOR ENTRY

TIME	MONITORING TEST	PURPOSE OF TEST	EFFECT OF FAILURE
EI - 30 HR	EMS SELF TEST	DETERMINE IF EMS SATISFACTORY TO MONITOP ENTRY THIS TEST IS MADE AT THIS TIME BECAUSE THIS IS THE LAST POSSIBILITY TO MO JE LANDING SITE	IF EMS IS FAILED NO TARGET RANGE GREATER THAN 1800 N MI WILL BE ALLOWED IF ALL ACCESSABLE TARGETS HAVE BAD WEATHER A MCC BURN MUST BE MADE TO MOVE THE LANDING AREA TO AN ACCEPTABLE AREA
t।-1 HR	FMS SELF TEST	DETERMINE IF EMS IS SATISFACTORY FOR MONITORING ENTRY	CONSTANT G BECOMES PRIME BACKUP MODE AND RANGING WILL BE LIMITED TO 1250 N MI
EI - 17 MIN	IS THE HORIZON VISIBL [#]	TO DETERMINE IF IMU-HORIZON CHECK CAN BE PERFORMED	 THE IMU-HORIZON CHECK CAN NOT BE PERFORMED THE VEHICLE SHOULD BE PITCHED TO ENTRY TRIM ATTITUDE THEN VERIFY THAT THE ATTITUDE IS THE ENTRY TRIM ATTITUDE VIA THE COAS IF COAS STAR NOT VISIBLE, FAIL GNCS, MANEUVER TO OBTAIN STAR AND MAINTAIN INERTIAL ATTITUDE WITH COAS STAR USE EMS FOR ENTRY IF AVAILABLE
EI - 17 MIN	IMU-HORIZON CHECK WITH HORIZON ON 31 7 DEG WIN- DOW MARK FDAI BALLS SHOULD READ WITHIN 1+5 DEG OF ATTITUDE PASSED FROM GROUND	CHECK OF IMU ALIGNMENT	 FAIL FDAI BALL NOT IN AGREEMENT WITH HORIZON CHECK ISOLATE ERROR SOURCE TO FDAI BALL OR IMU ERROR IF SCS HAS FAILED GNCS IS 60, NO BACKUP FDAI IS AVAILABLE, AND EMS RSI IS SUSPECT FOR ENTRY MONITORING IF IMU HAS FAILED, GNCS IS NO-GO FOR ENTRY USE EMS IF AVAILABLE
EI 15 MIN TO RET 0 05 G	CMC HORIZON CHECK MANUALLY TRACK HORIZON AND MONITOR • PITCH ERROR NEEDLE SHOULD GO TO ZERO 5 DEG AT 0 05 DEG • FDAI BALL SHOULD AGREE WITHIN \$5 DEG OF GROUND GIMBAL ANGLES AT 9 05 G AT 0 05 G TRIM HORIZON SHOULD BE AT 34 DEG MARA	CHECK OF IMU ALIGNMENT AND GUIDANCE CALCULATION OF TRIM ATTITUDE	GNCS IS NO GO FOR ENTRY, USE EMS IF AVAILABLE
EI + 30 SEC 0 05 G	CMC PROGRAM SHOULD SEQUENCE FROM P63 TO P64 AT RET 0 05 G +5 SFC	/ERIFY PIPA SENSING OF G- LEVEL	GNCS IS NO GO FOR ENTRY USE EMS IF AVAILABLE
FI - 30 SEC 0 C5 G	EMS SHOULD AUTON ATICALLY INITIATE AT RET 0 05 G 3 SEC	TO VEPIFY EMS SELF INITIALIZATION	MANUALLY INITIATE EMA AT RET 0 05 G +3 SEC IF MANUAL INITIALIZATION UNSUCCESSFUL EMS ENTRY NO GO, USE CONSTANT-G BACKUP MODE
EI + 60 SEC	CORRIDOR VERIFICATION CHECK IF VERIFIED EMS INDICATES VIDEATION OF OFF-SET LINES DETERMINE IF CMC IS AT PROPER ATTITUDE	VERIFY INITIAL LIFT VECTOR ORIENTATION	RE VERSE INITIAL ATTITUDE - RETURN CONTROL TO CMC AT 2 0 G IF COMMANDING PROPER ATTITUDE

2

3.2 SUMMARY OF MONITORING CHECKS FOR ENTRY (CONT'D)

	·····	·····	
TIME	MONITORING TEST	PURPOSE OF TEST	EFFECT OF FAILURE
CONTINUOUS EMS CHECK	VERIFY THAT EMS G-LEVFL IS WITHIN - 1 0 G OF G METER	VERIFY EWS OPERATION	IF GNCS AVAILABLE, CALL UP DSKY DISPLAY OF G-LEVEL FAIL SYSTEM NOT IN AGREEMENT WITH OTHER TWO
P64-P65	CONTINUOUS EMS-CMC CHECK VERIFY THAT THE EMS V G TRACE DOES NOT VIOLATE OFF- SET AND ONSET LINES WITH THE CMC NOT COMMANDING 180 + 15 DEG (OFFSET) OR 0 + 15 DEG (ONSET)	VERIFY PROPER ENTRY TRAJECTORY	GNCS NO GO - COMPLETE ENTRY WITH FMS
P64	MONITOR THAT CMC IS COMMANDING PROPER ATTITUDE TO CONVERGE EMS G-LEVEL TO DO	VERIFY PROPER ENTRY TRAJECTORY	GNCS NO GO - COMPLETE ENTRY WITH EMS
P64	VERIFY SEQUENCING TO P65 OR P67	VERIFY GNCS	GNCS NO GO - COMPLETE ENTRY WITH EMS
P65	VL, DL CHECK VERIFY THAT CMC VALUE FOR VL IS WITHIN +800 FPS AND DL IS WITHIN ±0.6 G OF GROUND VALUES AND THAT 18000 VL VSAT	VERIFY CMC PLANNED REFERENCE TRAJECTORY	GNCS NO GO - COMPLETE ENTRY WITH EM5 .
P65	VERIFY THAT EMS V, G TRACE APPROACHES PAS VALUES OF VL DL WITHOUT VIOLATING OFFSET UNES	VERIFY ENTRY TRAJECTORY	GNCS NO GO FOR ENTRY USE EMS IF AVAILABLE
P66	VEPIFY WITH HORIZON THAT CM IS IN PROPER TRIM ATTITUDE FOR SECOND ENTRY	VERIFY TRIM ATTITUDE	 GNCS NO GO FOR SECOND ENTRY - USE EMS RANGING
P67	VERIFY EMS V, G TRACE DOFS NOT JIOLATE G ONSET LINES WITHOUT CMC COMMANDING 0 - 15 DEG	VERIFY ENTRY TRAJECTORY	GNCS NO GO - COMPLETE ENTRY WITH EMS

3.3 MONITORING WITHOUT EMS G-METER PRIMARY MONITORING DEVICE

APPLICABLE PROGRAM	MONITORING TEST	REASON FOR TEST	EFFECT OF FAILURE	
P64-65	IF GNCS COMMANDS A 90 DEG BANK ANGLE FOR MORE THAN 1 COMPUTER CYCLE (2 SECONDS) THE G LEVEL FROM THE G METER SHOULD READ \geq 5 4 G DURING THOSE CYCLES (GNCS ROLLC \leq 90.0 DEG FOR G LEVEL \geq 5.4 G)	DETECT LARGE ACCELEROMETER ERROR	GNCS NO-GO, FLY CONSTANT G BACKUP MODE	
P64	VERIFY GNCS IS COMMANDING CORRECT BANK ANGLE TO CONVERGE G LEVEL TO - GNCS CONSTANT DRAG VALUE, DO	VERIFY PROPER TRAJECTORY CONTROL	GNCS NO-GO, FLY CONSTANT G BACKUP MODE	
P65	VERIFY THAT GNCS VL - DL SOLUTION IS WITHIN PAD LIMITS	VERIFY PROPER P65 END CONDITIONS	GNCS NO-GO, FLY CONSTANT G BACKUP MODE	
P67	VERIFY THAT GNCS ROLLC IS 0 ± 15 DEG FOR DRE < -9.0	VERIFY P67 TRAJECTORY CONTROL	GNCS NO-GO, FLY CONSTANT G BACKUP MODE	

4.0 EARTH ORBITAL DEORBIT AND ENTRY TECHNIQUES

As outlined in reference 5, a nominal PGNCS entry from earth orbit is based on a preparation time of 2 hours and 40 minutes, including 2 night passes. This time includes approximately 20 minutes before the first night pass after the CMC update and PAD data have been received. This time also includes approximately 20 minutes after the second night pass to allow sufficient time to prepare for retrofire after the IMU fine alignment. It has been determined coarse alignment accuracy is adequate for retrofire and entry and undoubtedly other functions could be omitted depending on the circumstances for the decision to reenter. Described herein are the nominal earth orbital entry procedures with pertinent comments on system validation for real time acceptance decisions.

After the entry decision is made the crew transfers the PGNCS from the standby to the operate mode and receives a CMC update with P27. Next, the maneuver PAD update is voiced up and the initial entry mode is determined. During the initial night pass the IMU orientation is established using P51 star sightings to obtain a REFSMMAT. The preferred orientation option in P52 is then selected to coarse align the IMU using the desired entry REFSMMAT determined by MCC-H. The GDC 1s now aligned to the IMU in preparation for an IMU/SCS drift check. If the GDC indicates the SCS drift rate exceeds 10 degrees per hour in any axis the check is repeated on the other BMAG's to establish if the GDC or just the single set is unusuable. Various sytem checks as listed in section 5.1 are performed as necessary consistent with the timeline dictates of the major activities Included in these checks are the EMS self-tests and the ΔV counter test. The latter requires the spacecraft be placed in drifting flight with the function switch in the ΔV position. If the counter registers a change of more than 25 feet per second within 100 seconds the scroll and counter are unreliable for monitoring the deorbit burn and entry ranging. If the EMS self-test fails and time does not allow further analysis a 55/55 BRB entry is planned as the PGNCS backup entry mode. After completion of these checks the entry The crew then selects the external ΔV PAD is provided by MCC-H program P30 and the appropriate deorbit thrusting program P40 or P41. During this period, which includes the final night pass, P52 may be selected to verify the IMU alignment. Since the retro attitude has been computed so that a window mark coincides with the horizon at GETI, this serves as the conclusive check on the PGNCS. At 5 minutes before retrofire the attitude check is made by verifying that the 12 degree scribe line is within 3 degrees of the horizon If not, the PGNCS has failed and the SCS is used for attitude reference and the

V counter for burn duration control. Since the SCS attitude was aligned to the IMU, a realignment is necessary. This is accomplished by manually maneuvering the spacecraft to maintain the 24 degree window mark on the horizon and releasing the GDC align button at TIG - 2 minutes. Upon completion of the burn the ΔV residuals are burned to within 0.2 feet per second. If the PGNCS, ΔV counter, or estimated burn duration are in disagreement it must be established whether sufficient velocity has been supplied to put the landing point in the footprint. The PGNCS data will be used if it is confirmed by one other source, if not the ΔV counter will be used if it is confirmed by the burn duration time. If additional ΔV is necessary the data is available to the crew on an onboard chart found in Section 8.0.

Post burn entry preparation requires EMS initialization, RSI alignment and pre-separation functions. The crew then selects the initial entry program P61 and records the displays as a check against PAD data Upon completion of these checks P62 is entered. The crew manually orients the spacecraft to the separation attitude and yaws 45° to insure against possible CM SM recontact. After separation the spacecraft is maneuvered to the reentry trim attitude which places the horizon on the 31.7° window mark at EI. Shortly thereafter in P62 the entry DAP is activated and P63 initiated. During this time MCC-H has computed a postburn update and it is voiced to the crew if different from preburn values. The EMS scroll and range counter will be adjusted accordingly if time permits A final PGNCS check prior to .05g may be monitored at this time. With the CMC mode in free and the manual attitude pitch in acceleration command while the horizon reference is held, the pitch error needle will decrease to zero as EI is reached. At RET 0.05g, the EMS mode switch is turned to manual, the entry 0.05-g switch and EMS roll switch are turned on, and the spacecraft control switched to CMC to begin DAP control. At the PGNCS 0.05-g indication, the program change from P63 to P64 is monitored and the time voice recorded. At this time the EMS range counter check is made during the 10 second period following EMS 0.05g. During this period the counter should count down 40 + 10 nautical miles. At PGNCS 0.2-g indication the change from P64 to P67 is monitored and the display may be held by keying VERB in order to record the initial downrange error display and compare it to the PAD value. The PGNCS has failed if the two do not agree within + 100 nautical miles. In the event P67 has not appeared when both the g-meter and the scroll indicate greater than 0.5g, the PGNCS has similarly failed. In either failure the SCS is used for attitude reference with an EMS entry. If the checks agree the crew remains with automatic DAP for the remainder of the entry.

The entry phase is essentially over when the relative velocity of the spacecraft decreases to less than 1000 feet per second. This is indicated in P67 when RTGO, latitude, and longitude are displayed. Since very little ranging capability exists after this point, the spacecraft is oriented either full lift up or down depending on RTGO negative or positive and the crew prepares for the earth landing phase. 4.1 Typical Retrofire and Entry Sequence of Events

```
Decision to reenter
P27 (CMC update)
Retrofire PAD update
Entry mode decision
P51 (IMU orientation determination) during first dark period
P52 (IMU coarse alignment)
EMS checks
Entry PAD update
P30 (external \Delta V)
P40 (SPS thrust)
P52 (IMU fine alignment) during second dark period
P40 (SPS thrust)
Ignition attitude check
Retrofire
P61.
P62
CM/SM separation
P63
Postburn PAD update
Entry attitude check
P64 (begin DAP control at 0.05g)
P67 (PGNCS go/no go check at 0.2g)
```

4.2 Retrofire and Entry Alternatives

System failure	Failure before	Failure after	Failure after
	committed to nomi-	committed to nomi-	committed to ballistic
	nal GETI (before	nal GETI (after	reentry (after
	nom GETI -3 mins)	nom GETI -3 mins)	delayed GETI -5 mins)
PGNCS	SCS burn at nominal GETI and EMS entry	SCS burn at nominal GETI and EMS entry	
PGNCS and EMS	Delay* GETI for SCS	SCS burn at nominal	Delay GETI for SCS
	burn and (90/90)	GETI and (55/55)	burn and (90/90)
	BRB ballistic entry	BRB entry	BRB ballistic entry
PGNCS and all onboard attitude reference	Delay** GETI for horizon monitor burn and rolling ballistic entry	Horizon monitor burn and rolling ballistic entry	Horizon monitor burn and rolling ballistic entry

* If voice communications fail, proceed with nominal GETI and use (55/55) BRB entry.

** If voice communications fail, proceed with nominal GETI and use rolling ballistic entry.

5 0 DETAILED ENTRY PROCEDURES

In order to combine similar procedures that are common to lunar return entries and earth orbit entries the following procedures are divided into categories that allow a minimum of duplicity. This provides a smaller training package and more closely resembles the onboard crew checklist when comparison is necessary.

5.1 Entry Preparations for Superclucular and Earth Orbital Entries

The entry preparations are combined in these procedures and steps peculiar to either supercircular or earth orbital entries are labeled accordingly. The time listings in this section are applicable to only supercircular entries since the earth orbital entry timeline is a function of several variables as described in section 4.0 and reference 5. 5.1 (Continued)

VEHICLE PREPARATION

1	INITIAL STOWAGE COMPLETED
2	CMC & ISS START UP
3	SCS POWER UP
4	P51 - IMU ORIENTATION
5	LOAD DAP V48E 11102, 01111, PRO, PRO, PRO
6 -06:00h	LAST MCC DECISION
7 -05:35h	NO COMM - P52 & NAV SIGHTINGS NOMINAL - P23/37 ONBOARD COMPARISON
8	DON MAE WESTS & FOOT RESTRAINTS
9	VHF AM A - SIMPLEX
10 -04:30h	P27 (SV, REFSMMAT), MNVR & ENTRY PAD UPDATES
11 -04:15h (::)	P52 - IMU REALIGN (OPTION 1)
12	P37 (NO COMM ONLY)
13	ECS CKS 02 SUPPLY REFILL ECS Monitor Ck EVAP H2O CONT (2) vlvs - AUTO SUIT HEAT EXCH SEC GLY - FLOW
14	EPS CKS #1, 3, 4 (5 if req'd)
15	<u>SPS CK</u> (If req'd)
16	RCS CKS SM RCS Monit Ck CM RCS Monit Ck
17	CILL SYC OF
	Caw 515 CK

19	DSKY	COND	LT	TESI

20 -03:45h	MIDCOURSE MANEUVER
	P30 - ΕΧΤ ΔV
-03:15h	P40/41 - SPS/RCS THRUSTING
-03:00h	MIDCOURSE (#7) BURN

- 21 NO COMM NAV SIGHTINGS
- 22 <u>MNVR TO ENTRY ATT</u> (Supercirc only) V62E
- 22A V49E
- 22B F 06 22 DESIRED FINAL GMBL ANGLES (.01°) LOAD ENTRY ATT PAD ANGLES PRO
- 22C F 50 18 REQ MNVR TO FDAI RPY ANGLES (.01°) (AUTO) SC CONT - CMC BMAG MODE (3) - RATE 2 CMC MODE - AUTO PRO (MAN) SC CONT - SCS MNVR to 22E
- 22D 06 18 AUTO MNVR TO FDAI RPY ANGLES (.01°)
- 22E F 50 18 REQUEST TRIM (.01°) (TRIM) Go to 22C (BYPASS) ENTR
- 23 -2:00hr BORESIGHT & SXT STAR CHECK OPT MODE - CMC OPT ZERO - OFF

V41 N91E

F 21 92 SHAFT, TRUN (.01°,.001°) Load SXTS angles

41 OPTICS DRIVE

CHECK SXT STAR OPT ZERO - ZERO CHECK BORESIGHT STAR (If avail)

P52 - IMU REALIGN 24 -01:35h Record gyro torquing angles R Ρ Ŷ If >1°, recycle P52 If confirmed, use SCS for EMS entry GDC ALIGN 25(<u>:</u>) If drift >10°/hr, change rate source FINAL STOWAGE 26 OPTICS (except for hybrid) ORDEAL GLY TO RAD SEC - BYPASS (verify) ' Cool pnl installed Y-Y struts (2) extended Stow Data Box R-12 EMS CHECK 27 -01:15h EMS FUNC - OFF cb EMS (2) - close EMS MODE - STBY EMS FUNC - EMS TEST 1 (wait 5 sec) EMS MODE - NORMAL (wait 10 sec) Check ind 1ts - off RANGE ind -0.0Slew hairline over notch in self-test pattern EMS FUNC - EMS TEST 2 (wait 10 sec) .05G lt - on (all others out) EMS FUNC - EMS TEST 3 .05G lt - on RSI Lower 1t - on (10 sec later) Set RANGE counter to 58 nm+0.0 EMS FUNC - EMS TEST 4 .05G lt - on (all others out) G-V trace within pattern to lwr rt corner @9G RANGE ind counts down to 0+0.2 EMS FUNC - EMS TEST 5 .05G 1t - on RSI upper 1t - on (10 sec later) RANGE ind ~ 0.0 Scribe traces vertical line 9g to 0.22+0.1ALIGN SCROLL TO ENTRY PATTERN (on 37K ft sec line) EMS FUNC - RNG SET G-V scroll assy traces vert. line 0.22g to 0+0.1 EMS MODE - STBY

28	<u>ΔV TEST (Deorbit only)</u> <u>EMS FUNC - ΔV SET/VHF RNG</u> SET ΔV ind to 1586.8 fps EMS MODE - NORMAL <u>EMS FUNC - ΔV TEST</u> SPS THRUST LT - on/off (10 sec) ΔV ind stops at -0.1 to -41.5 EMS MODE - STBY
29	PRIMARY WATER EVAP ACTIVATION GLY EVAP H20 FLOW - AUTO GLY EVAP STM PRESS - AUTO PRI ECS GLY PUMP - AC1
30 -01:10h	CM RCS PREHEAT Note: If sys test mtr 5c,d,6a,b,c,d all read 3.9 vdc (28°F) or more, omit preheat cb RCS LOGIC (2) - close CM RCS LOGIC - ON UP TLM CM - BLOCK (verify) cb CM RCS HTRS (2) - close CM RCS HTRS - ON (LMP Confirm) (20 min or til lowest rdg is 3.9 vdc) (Monitor Manf press for press drop)
31 (_:_:_)	FINAL GDC DRIFT CK (If req'd) If drift >10°/hr, Suspect GDC. Do not use RSI & FDAI #2
32 -00:50m	TERM. CM RCS PREHEAT UP TLM CM - BLOCK (verify) CM RCS HTRS - OFF CM RCS LOGIC - OFF
33	SYSTEMS TEST PANEL CONFIGURATION SYS TEST METER - 4B RNDZ XPNDR - OPERATE CM RCS HTRS - OFF WASTE H2O DUMP - OFF URINE DUMP - OFF
34	LEB LIGHTING - OFF
35	SEC WATER EVAP ACTIVATION GLY TO RAD SEC vlv - BYPASS SEC COOL EVAP - EVAP SEC COOL PUMP - AC2

36

PYRO BATT CK cb PYRO A SEQ A - close (verify) cb PRYO B SEQ B - close (verify) DC IND - PYRO BAT A(B) \pm If PYRO BAT A(B) < 35 vdc 'cb PYRO A(B) seq A(B) - open⁺ *PYRO A(B)BAT BUS A(B)TO PYRO* *MN BUS TIE - close × cb MNA BAT C - close cb MNB BAT C - close DC IND - MNB PNL 8 - All cb's closed except: PL VENT - open (verify) FLOAT BAG (3) - open (verify) DOCKING PROBE (2) - open (verify) EDS BAT (3) - open (verify) CM RCS HTRS (2) - open CM RCS ACTIVATION cb SECS ARM (2) - close (verify) cb SECS LOGIC (2) - close (verify) SECS LOGIC (2) - ON

cb SECS LOGIC (2) - close (verify) SECS LOGIC (2) - ON MSFN confirm GO for PYRO ARM(if poss) SECS PYRO ARM (2) - ARM CM RCS PRPLNT 1&2 - ON CM RCS PRESS - ON RCS Ind sw - CM1, then 2 He PRESS 3700-4400 psia MANF PRESS 287-302 psia SECS PYRO ARM (2) - SAFE SECS LOGIC (2) - OFF

38 -00:45m <u>P27 & ENTRY PAD UPDATE</u> Go To Entry Checklist Supercirc - pg <u>23</u> Hybrid - pg <u>29</u> Normal Deorbit - pg <u>35</u>

37

		5.2 <u>SUPERCIRCULAR ENTRY</u>
1		SET DET (up, to EI)
2		EMS INITIALIZATION SET RNG TO PAD DATA RNG EMS FUNC - Vo SET Slew Scroll to Pad Data VIO EMS FUNC - ENTRY
3		RSI ALIGNMENT FDAI SOURCE - ATT SET ATT SET - GDC EMS ROLL - on (up) GDC ALIGN PB - PUSH & HOLD YAW Tw - Position RSI thru 45° & back to LIFT UP GDC ALICN PB - Release EMS ROLL - OFF Align GDC to IMU
4		CM RCS RING A CK RCS TRNFR - CM cb CM RCS LOGIC MNB - open AUTO RCS SEL MNB (6) - OFF SC CONT - SCS Test Ring A Thrusters SC CONT - CMC RCS TRNFR - SM AUTO RCS SEL (12) - MNA/MNB (liftoff config) cb CM RCS LOGIC MNB - close
5		OPTICS PWR - OFF CMP to COUCH
	30:00m (-30:00)	MN BUS TIE (2) - ON TAPE RCDR - REWIND

6	35•00m	SEPARATION CK	LIST
	(-25.00)	TVC SERV	$\mathbf{PWR} 1 - \mathbf{AC1} / \mathbf{MNA}$
	(,	ch ELS (2) - close (verify)
		PRTM CLY	TO RAD - RYPASS ($p_{11}11$)
			$r_{\rm m} = FIII$
		02 SM SH	$PPIV$ r_1r_0 OFF
		CAR DDRS	S RET TT (2) = NORM
		CAD INDO	S(A) = STADT
		ለጽሰጽሞ ፍጆ	S PRPINT - RCS CMD (uerty)
		SW DUCT DI	THE PODING (A) _ ON
			(4) = 0
			ANT PWR - OFF
		FC PIMPS	(3) - OFF
		Verify s	ingle suit comproper
		loa	ls balanced
		FC 2 MN	AB - OFF
			AMP - LOW
		ch ECS R	$\Delta D CONT/HTR (2) - open$
		ch WASTE	$H_{20}/HRINE DIMP HTRS (2) - open$
		ch HTPS	$MD(2) \sim open$
		ED 11100 - ውርጥ ዝ20 1	$\frac{1}{1}$
		CAB FAN	(2) = OFF
		CLY FVAP	TEMP IN \sim Man
		SEC COOL	FVAP - RESET
		SEC COOL	PIIMP - off (ctr)
		0000	
		MNVR TO CM/SM	SEP P. R ATT
		SC CONT -	- SCS
		CMC MODE	- FREE
		MNVR TO 1	PAD ATT
		R	(0°)
		P	
		¥	(0°)

SI	IPERCIRCULAR	ENTRY (Continued)
41:00m		P61 - ENTRY PREP
1	(<u> </u>	V37E 61E
		* 05 09 01427 - ROLL REVERSED* * 05 09 01426 - IMU UNSAT *
2	F 06 61	IMPACT LAT, LONG, HDS UP/DN (+/-) PRO (.01°, fps, +00001)
3	F 06 60	GMAX,VPRED,GAMMA EI (.01°,fps,.01°) Record GMAX V400K GAMMA EI PRO
4	F 06 63 (ACC (REC	RTOGO (.lnm) PAD VIO (fps) PAD TFE(min-sec) Compare with MSFN for PGNS GO/NO GO If NO COMM, Set RTOGO & VIO in EMS & initialize CEPT) PRO CALC) V32E To 4

) -

P62 - CM/SM SEP & PRE-ENTRY MNVR CAUTION: Call No EXT Verbs In P62

		GROLION. GALL NO BAL VOIDD IN 102
5	F 50 25	00041 REQUEST CM/SM SEP
	() . 00	SC CONT - SUS/FREE
	43:00m	COMPARE PITCH ALL WITH PAD DALA
	(17.00)	
	(-1/:00)	YAW - 45 UUL-UF-PLANE (LEFI)
		KATE – HIGH
		ATT DB $-$ MIN
		MAN ATT (3) - RATE CMD
		BMAG MODE (3) - ATTI/RATE 2
		MN BUS TIE (2) - ON (verify)
		PRIM GLY TO RAD - BYPASS (verity)
		CM RCS LOGIC - ON (verity)
		SECS LOGIC (2) - on (up)
		SECS PYRO ARM - ARM
	45:00m	CM/SM SEP (2) - ON
	(-15:00)	CSM/LM FNL SEP (2) - on (up) (verify)
		C&W MODE – CM
		RCS TRNFR - CM
		CM RCS MANF PRESS - 28/-302 psia
		CM RCS LOGIC - OFF
		SECS PYRO ARM (2) - SAFE
		Monitor VMA/B:
		If <25 vdc go to EMERG
		POWERDOWN pg E/6-1
	50:00m	AUTO RCS SEL A/C ROLL (4) – OFF
	(-10:00)	AUTO RCS SEL CM 2(6)-OFF
		AUTO RCS SEL CM 1(6)-MNA
		YAW back to 0°
		PITCH TO HORIZ TRACK ATT
		$ROLL = 0^{\circ} (LIFT UP)$
		PITCH - 400K Horiz Mark (31./°)
		$YAW - 0^{\circ}$
		ATT DB – MAX
		MAN ATT PITCH - ACCEL CMD
		EMS DATA - Verify
		EMS FUNC - ENTRY (verify)
		EMS MODE – NORMAL
		cb SPS P&Y (4) – open
		MAINT HORIZ TRK
		PRO (Act ENTRY DAP)
6	F 06 61	IMPACT LAT,LONG,HDS/DN (.01°,.01°,-00001)
		rku
7	POSS 06 22	FINAL ATT DISP RPY (.01°)
/	1000 00 42	(Only if X-axis beyond 45° of Vel vector)

P63 - ENTRY INIT

8	06 64	G,VI,RTOGO (.01G,fps,.1nm)
		FDAI SCALE – 50/15
		ROT CONTR PWR DIR (both) - MNA/MNB
		TAPE RCDR - CMD RESET/HBR/FWD
	58•00m	HORIZ CK
(-	02:00)	Pitch error needle goes toward
		zero approaching .05G time
		MAN ATT (PITCH) - RATE CMD
		If CMC is GO:
		BMAG MODE (3) - RATE 2
		SC CONT - CMC/AUTO
		* If DAP NO GO
		* SC CONT - SCS *
		* FLY BETA *
		* If CMC NO GO: *
		* SC CONT - SCS *
		* FLY EMS *
		P64 - ENTRY POST .05G
		······································
9		RTOGO AT .05G AGREES WITH EMS-verify
		HORIZ CK
		.05G Lt - ON (EMS START)
.05G	time	
(+0_	_:)	* No EMS START within 3 sec: *
(_:_)	* EMS MODE – BACKUP/VHF RNG *
		.05G sw - on (up)
		EMS ROLL - on (up)
	06 68	BETA, VI, HDOT (.01°, fps, fps)
		Compare RSI & FDAI
		If CMC or PAD cmds Lift DN,
		MNVR Lift DN
		EMS GO/NO GO
		G-V Plot within limits
		Rng ctr dwn 60 <u>+</u> 7 during 10 sec
		period
		Monitor G-meter for
		convergence with pad data (Do)
		(V<27K fps) Go to 13

--27-

			<u>P65 - ENTRY - UP CONT</u> (V>27K fps)
10	F 16	69	BETA (.01°) PAD DL (.01G) PAD VL (fps) PAD
			* IF NO AGREEMENT: * * SC CONT SCS * * FLY EMS *
			PRO
11	06	68	BETA,VI,HDOT (.01°,fps,fps) (V <vl+500 &="" 13<="" fps="" go="" neg)="" rdot="" td="" to=""></vl+500>
		<u>P66</u>	- ENTRY - BALLISTIC (D <dl)< td=""></dl)<>
12	06	22 Mor	DESIRED GMBL ANGLES RPY (.01°) nitor horiz <u>+</u> 12° of 31.7° mark
			<u>P67 - ENTRY - FINAL PHASE</u> (0.2G)
13	06	66	BETA, CRSRNG ERR, DNRNG ERR
			KEY VERB Record DNRNG ERR KEY RLSE Monitor lift vector on RSI & FDAI
	16	67	RTOGO,LAT,LONG (Vrel=1000fps) (.1nm,.01°,.01°) SC CONT - SCS RTOGO NEG - LIFT UP RTOGO POS - LIFT DOWN Monitor altimeter
		Go Ta	EARTHLANDING pg 45

•

5.3 G&N HYBRID DEORBIT

VEHICLE PREP COMPLETE

P30 – EXTERNAL ΔV V37E 30E 1 2 F 06 33 GETI (ACCEPT) PRO (hr,min,.01sec) (REJECT) LOAD DESIRED GETI 3 (.1fps) F 06 81 AVX, Y, Z (LV) (ACCEPT) PRO (REJECT) LOAD DESIRED GETI F 06 42 HA, HP, ΔV (.lnm,.lfps) 4 Record ∆V (ACCEPT) PRO Reselect P30 or P27. Load new param. (REJECT) (marks,min-sec,.01°) 5 F 16 45 M,TFI,MGA *MGA -00002 • 1f * * IMU not aligned* SET DET PRO F 37 00E6 7 SEPARATION CK LIST PRIM GLY TO RAD - BYPASS (Pull) PLSS 02 vlv - FILL O2 SM SUPPLY vlv - OFF CAB PRESS REL v1v (2) - NORM cb ELS (2) - close cb SECS ARM (2) - close cb SECS LOGIC (2) - close (verify) AUTO RCS SEL CM (12) - MNA or MNB (liftoff config) ROT CONTR PWR NORM 1&2 - AC/DC ABORT SYS PRPLNT - RCS CMD SM RCS PRIM PRPLNT (4) - OPEN VHF AM (A&B) - OFF

(

CMP to Couch

8

•

9				MNVR TO PAD BURN ATT LOAD DAP BMAG MODE (3) - RATE 2 SC CONT - CMC/AUTO ATT DB - MIN MAN ATT(3) - RATE CMD	
10				V62E	
11				V49E	
12	F	06	22	DESIRED FINAL GMBL ANGLES LOAD MNVR PAD GMBL ANGLE PRO	(.01°) S
13	F	50	18 (AUT((MAN)	REQ MNVR TO FDAI RPY ANGLES D) PRO) SC CONT - SCS BMAG MODE (3) - RATE 2 MNVR To 15	(.01°)
14		06	18	AUTO MNVR TO FDAI RPY ANGLES	(.01°)
15	F	50	18 (TRIN (BYP/	REQ TRIM TO FDAI RPY ANGLES (i) Go to 13 ASS) ENTR	(.01°)
16				CHECK BORESIGHT & SXT STARS OPT MODE - CMC OPT ZERO - OFF	
17				V41 N91E	
18	F	21	92	SHAFT, TRUN (. Load SXTS angles	01°,.001°)
19		41		OPTICS DRIVE Check SXT STAR OPT ZERO - ZERO Check BORESIGHT STAR (1f aval	1)
20				V25 N17E Load Pad Data GMBL Angle for <u>CM</u> BURN ATT ATT SET tw - SET to PAD DATA GMBL ANGLE for CM BURN ATT	(,01°) s s

21 PWR REDUCTION HGA PWR - OFF FC PUMPS (3) - OFFVerify single suit compr oper, loads balanced FC 2 MN A&B - OFF S BD PWR AMP - LOW cb ECS RAD CONT/HTR (2) - open cb WASTE H20/URINE DUMP HTRS(2)- open cb HTRS OVLD (2) - open POT H20 HTR - OFF CAB FAN (2) - OFF GLY EVAP TEMP IN - MAN MN BUS TIE (2) - ON TVC SERVO PWR 1 - AC1/MNA GMBL MTR (4) - START P41 - RCS THRUSTING 22 V37E 41E 23 F 50 18 REQ MNVR TO LCL HORIZ (HDS ON) (.01°) (AUTO) BMAG MODE (3) - RATE 2 SC CONT - CMC/AUTO PRO To 24 (MAN/DAP) BMAG MODE (3) - RATE 2 SC CONT - CMC/HOLD V62E MNVR To 25 24 06 18 AUTO MNVR TO FDAI RPY (.01°) 25 F 50 18 REO TRIM TO LCL HORIZ (.01°) ALIGN SC ROLL (AUTO TRIM) PRO To 24 (BYPASS) ATT DB - MIN RATE - LOW MAN ATT (3) - RATE CMD BMAG MODE (3) - ATT1/RATE 2 ENTR

-31-

55:00m (.1fps) 26 06 85 VGX,Y,Z RECHECK BORESIGHT STAR TRANS CONIR PWR - on (up) EMS MODE - STBY (verify) EMS FUNC - AV SET/VHF RNG SET AV for SM BURN EMS FUNC - ΔV S BD ANT - OMNI C SECS LOGIC (2) - ON MSFN confirm Go for PYRO ARM SECS PYRO ARM (2) - ARM CM RCS LOGIC - ON (verify) 59·25 27 DSKY BLANKS 59:30 VG X,Y,Z (AVE G ON) (.lfps) 28 16 85 RHC's & THC - ARMED LIMIT CYCLE - OFF TAPE RCDR - CMD RESET/HBR EMS MODE - NORMAL 00.00 (.lfps) 29 F 16 85 REQ NULL VG X,Y,Z BURN EMS AV CTR TO ZERO RESET DET & COUNT UP If SM ONLY burn go to step 32 THC - LOCKED SC CONT - SCS/FREE RATE - HIGH PRIM GLY To RAD - BYPASS (verify) MN BUS TIE (2) - ON (verify) CM/SM SEP (2) - on (up) CSM/LM FNL SEP (2) - on (up) (verify) C&W MODE - CM RCS TRNFR - CM CM RCS LOGIC - OFF Monitor VM A/B. If <25 vdc, go to EMERG POWER DOWN Pg E/6-1 V63E * If CMC NO GO: $_{\star}$ × FDAI SOURCE - ATT SET * * * FDAI SEL - 1 or 2 * ÷ ATT SET - GDC

-32-

MAN ATT PITCH - ACCEL CMD FDAI SCALE - 5/5 MNVR TO CM BURN ATT (NULL ERR NEEDLES) R 0° Р Y 0° 30 CM RCS BURN RHC #1-Continuous Pitch Down RHC #2-Module Pitch to null needles BURN VGZ TO ZERO * If only 1 RHC × Pulse + P=5° from retro att.* * Maintain rates <3°/sec $\dot{\mathbf{x}}$ * 31 BURN COMPLETION AT: ΔV CTR= _____ or DET= _____ V82E 32 F 16 44 (.1nm,min-sec) HA,HP,TFF Check HP• If > Pad data, continue burn until < Pad PRO 33 F 16 85 VGX,Y,Z (.1fps) Read VG residuals to MSFN (HYBRID) PRO to 34 (SM ONLY BURN) PRO F 37 00EEI-15:00 V37E 47E F 16 83 (.lfps) ΔVX,Y,Z SC CONT - SCS/FREE MAN ATT (PITCH) - RATE CMD RATE - HIGH PRIM GLY TO RAD - BYPASS (verify) MN BUS TIE (2) - ON (verify) CM/SM SEP (2) - ON CSM/LM FNL SEP (2) - on (up) (verify) C&W MODE - CM RCS TRNFR - CM CM RCS LOGIC - OFF SECS PYRO ARM (2) - SAFE

-
PRO Monitor VMA/B: If <25 vdc go to EMERG POWER DOWN

34 F 37 00E PCM BIT RATE - LOW ATT DB - MAX EMS MODE - STBY EMS FUNC - OFF Go To EARTH ORBIT ENTRY, pg 40

-34-

8 SPS THRUSTING PREP CYCLE CRYO FANS SPS GAGING - ACl (verify) PUG MODE - NORM (verify) BMAG MODE (3) - RATE 2 $\Delta V CG \sim CSM$ CMC MODE - FREE AUTO RCS SEL (16) - MNA or MNB (liftoff config) SC CONT - CMC/AUTO 9 MNVR TO PAD BURN ATT V62E V49E 10 11 F 06 22 DESIRED FINAL GMBL ANGLES (.01°) LOAD MNVR PAD CMBL ANGLES PRO 12 F 50 18 REQ MNVR TO FDAI RPY ANGLES (.01°) (AUTO) PRO (MAN) SC CONT - SCS MNVR to 14 13 06 18 AUTO MNVR TO FDAI RPY ANGLES (.01°) 14 F 50 18 REO TRIM TO FDAI RPY ANGLES (.01°) (TRIM) Go to 12 (BYPASS) ENTR 15 BORESIGHT STAR CHECK 16 V37E 40E OPT PWR - OFF 17 F 50 18 REQUEST MNVR TO FDAI RPY ANGLES (.01°) BMAG MODE (3) - RATE 2 (AUTO) SC CONT - CMC/AUTO PRO to 18 (MAN/DAP) BMAG MODE (3) - RATE 2 SC CONT - CMC/HOLD MNVR to 19 (MAN/SCS) SC CONT - SCS MNVR to 19

5.4 NORMAL DEORBIT

VEHICLE PREP COMPLETE P30 – EXTERNAL ΔV 1 V37E 30E 2 F 06 33 GETI (hr,min,.01sec) (ACCEPT) PRO (REJECT) LOAD DESIRED GETI 3 F 06 81 (.1fps) $\Delta VX, Y, Z$ (LV) (ACCEPT) PRO (REJECT) LOAD DESIRED GETI (.lnm,.lfps) 4 F 06 42 HA, HP, AV Record ΔV (ACCEPT) PRO (REJECT) Reselect P30 or P27. Load new param. (marks,min-sec,.01°) 5 F 16 45 M, TFI, MGA *MGA -00002 If * * IMU not aligned* SET DET PRO F 37 00E 6 7 SEPARATION CK LIST PRIM GLY TO RAD - BYPASS (pull) PLSS 02 vlv - FILL 02 SM SUPPLY v1v - OFF CAB PRESS REL v1v (2) - NORM cb ELS (2) - close (verify) cb SECS ARM (2) - close (verify) cb SECS LOGIC (2) - close (verify) AUTO RCS SEL CM (12) - MNA or MNB (liftoff config) ROT CONTR PWR NORM 1&2 - AC/DC ABORT SYS PRPLNT - RCS CMD SM RCS PRIM PRPLNT (4), - OPEN VHF AM A&B - off (ctr)

18 06 18 AUTO MNVR TO FDAI RPY ANGLES $(.01^{\circ})$ F 50 18 19 REQUEST TRIM MNVR TO FDAI RPY ANGLES ALIGN S/C ROLL $(.01^{\circ})$ GDC ALIGN TVC CHECK & PREP cb STAB CONT SYS (all) - close cb SPS (12) - close ATT DB - MIN RATE - LOW LIMIT CYCLE - ON MAN ATT (3) - RATE CMD BMAG MODE (3) - ATT1/RATE 2 ROT CONTR PWR DIRECT (2) - OFF SCS TVC (2) - RATE CMD *If SCS, SCS TVC (2) - AUTO* * SC CONT - SCS ~ TVC GMBL DRIVE P&Y - AUTO +54 · 00m MN BUS TIE (2) - ON (-06.00)TVC SERVO PWR 1 - AC1/MNA 2 - AC2/MNBTRANS CONTR PWR - ON ROT CONTR PWR NORMAL 2 - AC RHC #2 - ARMED HORIZ CHK - Horiz on 12° window TIG-5min mark (Limit +3° PNGCS GO/NO GO) If NO GO set tw 180°,180°,0° Track horiz with 24° window mark At TIG-2 min Align GDC 55:00m PRIMARY TVC CHECK (-05:00)GMBL MOT P1-Y1 -START/ON(LMP confirm) *If SCS, verify Thumbwheel Trim* THC - CW Verify NO MTVC SEC TVC CHECK GMBL MOT P2-Y2 -START/ON(LMP confirm) SET GPI TRIM Verify MTVC THC NEUTRAL GPI returns to 0,0 (CMC) or trim (SCS) ROT CONT PWR NORM 2 - AC/DC (TRIM) Go to step 17 BMAG MODE(3) - ATT1/RATE2 (verify) (BYPASS) ENTR

2

F 50 25 00204 GMBL TEST OPTION 20 (ACCEPT) SC CONT - CMC (verify) PRO Monitor GPI Response: 00,20,-20,00,02,0-2,00,Trim * *TEST FAIL: * *SC CONT - SCS *SCS TVC (2) - AUTO* (REJECT) ENTR (min-sec,.1fps) 06 40 TFI,VG, AVM 21 *PROG ALM - TIG slipped* 94 *V5N9E 01703 × *KEY RLSE To 21 ROT CONTR PWR DIRECT (2) - MNA/B SPS He vlvs (2) - AUTO (verify) LIMIT CYCLE - OFF FDAI SCALE - 50/15 cb SPS P2, Y2 - open (for crit. burn) 58:00 ΔV THRUST A(B) - NORMAL (-02:00)THC - ARMED RHC (2) - ARMED TAPE RCDR - CMD RESET/HBR DSKY BLANKS 59:25 (-00:35)(AVE G ON) 59+30 EMS MODE - NORMAL (-00:30)(min-sec,.1fps) TFI,VG,∆VM 06 40 CHECK PIPA BIAS <2fps for 5 sec ULLAGE AS REQ 59:XX (--00:XX) *IF NO ULLAGE: * *DIR ULLAGE PB - PUSH* *CONTROL ATT W/RHC * MONITOR AVM (R3) COUNTING UP 59**:**55 (-00:05)F 99 40 ENG ON ENABLE REQUEST (AUTO IGN) PRO AT TFI >0 sec

(BYPASS IGN) ENTR to 24

22 00:00 IGN *If SCS - THRUST ON PB - PUSH* 06 40 TFC,VG,ΔVM (min-sec,.lfps,.lfps) *F 97 40 SPS Thrust fail * * *(RESTART) PRO TO IGN *(RECYCLE) ENTR To TIG-05 sec* SPS THRUST LITE - ON MONITOR THRUSTING Рс 95-105 ряза EMS COUNTING DOWN SPS INJ vlvs (4) - OPEN SPS He vlvs tb (2) - gray SPS FUEL/OXID PRESS - 175-195 psia PUGS - BALANCED *PROG ALARM * *V5N9E 01407 VG INC* *THC - CW, FLY MTVC* EC0 و *EMER SPS CUTOFF: * ΔV THRUST (2) - OFF^{λ} 23 F 16 40 TFC(STATIC), VG, ΔVM (min-sec, .1fps) ΔV THRUST A/B - OFF SPS INJ vlvs (4) - CLOSED SPS He tb (2) - bp cb SPS P2,Y2 - closed (verify) TVC SERVO PWR - AC1/MNA (verify) TVC SERVO PWR 2 - OFF PRO VG XYZ(CM) (.lfps) 24 F 16 85 NULL RESIDUALS RECORD ΔV CTR & RESIDUALS ΔVC VGX EMS FUNC - OFF EMS MODE - STBY VGY BMAG MODE (3) - RATE 2 ATT DB - MAX VGZ TRANS CONT PWR - OFF PRO 25 F 37 V82E 26 F 16 44 (.1nm,min-sec) HA, HP, TFF *R3-59B59 HP >49.4 nm* PRO 27 F 37 OOE

-40-

5.5 EARTH ORBIT ENTRY

 Verify CM/SM SEP ATT

 R
 (180°)
Р Р Y____ (0°) EMS INITIALIZATION EMS FUNC - RNG SET SET RNG TO PAD DATA RNG EMS FUNC - Vo SET Slew scroll to pad data VIO EMS FUNC - ENTRY RSI ALIGNMENT FDAI SOURCE - ATT SET ATT SET - GDC EMS ROLL - on(up) GDC ALIGN PB - PUSH & HOLD YAW tw - Position RSI thru 45° & back to LIFT UP GDC ALIGN PB - RELEASE EMS ROLL - OFF Align GDC to IMU PWR REDUCT (Norm Deorb Only) HGA PWR - OFF FC PUMPS (3) - OFF Verify single suit compr oper, loads balanced FC 2 MN A&B - OFF 'S BD PWR AMP - Low cb ECS RAD CONT/HTR (2) - open cb WASTE H20/URINE DUMP HTRS (2)-open cb HTRS OVLD (2) - open POT H20 HTR - OFF CAB FAN (2) - OFF GLY EVAP TEMP IN - MAN

4

1

2

3

P61 - ENTRY PREP

5 V37E 61E *05 09 01427 - ROLL REVERSED* *05 09 01426 - IMU UNSAT * 6 F 06 61 IMPACT LAT, LONG, HDS UP/DN (+/-) (.01°,.01°, +00001) PAD VALUES LAT LONG HDS UP/DN PRO GMAX, V400K, GAMMA EI (.01G, .fps, .01°) 7 F 06 60 Record GMAX V400K GAMMA EI PRO RTOGO (.1nm) PAD 8 F 06 63 VIO (fps) PAD TFE (min-sec) Compare with MSFN for PGNS GO/NO GO NO COMM, SET RTOGO & VIO IN EMS & INITIALIZE (ACCEPT) PRO

V32E to 8

(RECALC)

-41-

P62 - CM/SM SEP & PRE-ENTRY MNVR

9	F 50 25	00041 REQUEST CM/SM SEP SC CONT - SCS/FREE YAW - 45° out-of-plane (left for RCS,
		right for SPS)
		RATE - HIGH
		ATT DB - MIN
		MAN ATT (3) - RATE CMD
		BMAG MODE (3) - ATT1/RATE2
		PRIM GLY to RAD - BYPASS (verify)
		SECS LOGIC (2) - on (up)
		MSFN confirm GO for PYRO ARM
		SECS PYRO ARM - ARM
		MN BUS TIE (2) - ON (verify)
		CM/SM SEP (2) - ON
		CSM/LM FNL SEP (2) - on (up) (verify)
		C&W MODE - CM
		RCS TRNFR - CM
		CM RCS MANF PRESS - 287-302 psia
		CM RCS LOGIC - OFF
		SECS PYRO ARM – SAFE
		Monitor VMA/B:
		If <25vdc go to EMERG POWERDOWN Pg E/6-1
		AUTO RCS SEL A/C ROLL (4) - OFF
		AUTO RCS SEL CM 2(6) - OFF
		AUTO RCS SEL CM $1(6)$ - MNA or MNB
		YAW back to 0°
		PITCH TO ENTRY ATT
		ROLL 0° (LIFT UP)
		PITCH - HORIZ on 31.7° MARK (400K)
		YAW O°
		ATT DB - MAX
		MAN ATT (PITCH) - ACCEL CMD
		EMS DATA - Verify
		EMS FUNC - ENTRY (verify)
		EMS MODE - NORMAL
		MAINTAIN HORIZ TRK
		PRO (Act ENTRY DAP)
10	F 06 61	IMPACT LAT, LONG, HDS/DN
		PRO (.01,.01,-00001)
17	POSS 06 22	FINAL ATT DISP. RPY (.01°)
		(Only if X-axis beyond 45° of Vel vector)

P63 - ENTRY INIT

12 06 64 G,VI,RTOGO (.01G,fps,.lnm) FDAI SCALE - 50/15 ROT CONTR PWR DIR (both) - MNA/MNB TAPE RCDR - CMD RESET/HBR HORIZ CK Pitch error needle goes toward zero approaching .05G time MAN ATT (PITCH) - RATE CMD If CMC is GO: BMAG MODE (3) - RATE 2 SC CONT - CMC/AUTO *If DAP NO GO: * * SC CONT - SCS* * FLY BETA * *If CMC NO GO: * * SC CONT - SCS* * FLY EMS * RCS Deorb: Roll HDS UP TRACK HORIZ with 29° window mk P64 - ENTRY POST .05G 13 RTOGO AT .05G AGREES WITH EMS - verify HORIZ CK .05E Lt - on (EMS start) .05G time (+0 : :) *No EMS start within 3 secs* *EMS MODE - BACKUP/VHF RNG * .05G sw - on (up) EMS ROLL - on (up) 06 68 BETA, VI, HDOT (.01°, fps, fps) Compare RSI & FDAI If CMC or PAD emds Lift DN, MNVR Lift DN EMS GO/NO GO G-V Plot within limits Rng ctr dwn 60 + 7 during 10 sec period Monitor G-meter for convergence with pad data (Do) (V<27K fps) Go To 17

_44-

			$\frac{P65 - ENTRY - UP CONT}{(V)2/K}$ (V)2/K fps)
14	F 16	69	BETA (.01°) DL (.01G) PAD VL (fps) PAD *IF NO AGREEMENT:* *SC CONT - SCS * *FLY EMS * PRO
15	06	68	BEIA, VI, HDOT (.01°, fps, fps) (V <vl &="" +500="" 17<br="" fps="" go="" neg)="" rdot="" to="">P66 - ENTRY - BALLISTIC (D<dl)< td=""></dl)<></vl>
16	06	22	DESIRED GMBL ANGLES RPY (.01°) Monitor horiz <u>+</u> 12° of 31.7° mark P67 - ENTRY - FINAL PHASE (0.2G)
17	06	66	BETA, CRSRNG ERR, DNRNG ERR (.01°,.1nm,.1nm) KEY VERB Record DNRNG ERR KEY RLSE Limit: +100nm from PAD DRE Monitor lift vector on RSI & EDAT
	F 16	67	RTOGO,LAT,LONG (Vre1=1000fps) (.1nm,.01°,.01°) SC CONT - SCS RTOGO NEG - LIFT UP RTOGO POS - LIFT DOWN Monitor altimeter
		Go To	o EARTHLANDING pg <u>45</u>

(TT) 27V F د م D65 νσπ C тт ~~*****m

90K STEAM PRESS - PEGGED 50K CABIN PRESS REL vlv (2) - BOOST/ENTRY SECS PYRO ARM (2) - ARM 40K' \star * CM UNSTABLE $(90K^{\dagger} + 63s)$ * *RCS CMD - OFF * 40K' APEX COVER JETT PG-PUSH * *DROGUE DEPLOY PG - PUSH (2 sec* *after apex cover jett) × 30K * ELS LOGIC - ON (up) ELS - AUTO 24K' RCS disable (auto) (90K'+92s) *RCS CMD - OFF* Apex cover jett (auto) *APEX COVER JETT PB - PUSH* (WAIT 2 SECS) Drogue parachutes deployed (auto) *DROGUE DEPLOY PB - PUSH* If Drogues Fail: \star *ELS - MAN *Stabilize CM * *5K' MAIN DPLY PB - PUSH* *ELS - AUTO 눘 23.5K' Cabin Pressure increasing (Drogues + 50s) *If not increasing by 17K': *CABIN PRESS REL vlv (RH) - DUMP*

×

Main parachutes deployed MAIN DEPLOY PB - PUSH (within 1 sec) VHF ANT - RECY VHF AMA - SIMPLEX VHF BCN - ON CABIN PRESS REL vlv (2) - CLOSE DIRECT 02 v1v - OPEN CM RCS LOGIC - on (up) CM PRPLNT - DUMP (burn audible) Monitor CM RCS 1&2 for He press decrease *NO BURN or PRESS DECREASE * × * USE BOTH RHC's *DO NOT FIRE PITCH JETS × CM PRPLNT-PURGE (to zero He press) *CM RCS He DUMP PB - PUSH * *RHC (2) - 30 secs * ÷ NO PITCH * STRUT LOCKS (2) - UNLOCK cb FLT & PL BAT BUS A, B, & BAT C (3) - close cb FLT & PLT MNA & B (2) - open cb ECS RAD HTR OVLD (2) - open cb SPS P&Y (4) - open 3K' CABIN PRESS REL vlv (RH) - DUMP (after purge completed) FLOOD Lts - POST LDG CM RCS PRPLNT (2) - OFF ROT CONTR PWR DIRECT (2) - OFF 800* CAB PRESS RELF vlv - CLOSE (latch off) MN BUS TIE (2) - OFF AFTER LANDING: cb MAIN REL PYRO (2) - close

MAIN RELEASE - on(up)

Go to POSTLANDING pg <u>47</u>

5.7 POSTLANDING

STABILIZATION, VENTILATION, COMMUNICATIONS

DIRECT 02 vlv - CLOSE 1 2 Stabilization after landing ELS - AUTO (verify) cb MAIN REL PYRO (2) - close (verify) MAIN RELEASE - on (up) (verify) SECS PYRO ARM (2) - SAFE SECS LOGIC (2) - OFF cb BAT RLY BUS (2) - open *No contact with recovery forces* 5. *VHF AM A&B - off (ctr) * *VHF AM RCV ONLY - A cb PL VENT - close cb FLOAT BAG (3) - close cb UPRIGHT SYS COMPRESS (2) - close If Stable II: FLOAT BAG(3)-FILL till 2 min after upright, then - OFF VHF AM A/B & BCN - OFF while inverted If Stable I: After 10 Min Cooling Period, FLOAT BAG (3) - FILL 7 min, then OFF Post Stabilization And Ventilation 3 PL BCN LT - BCN LT LOW PL VENT vlv - UNLOCK (Pull) Remove PL VENT Exh Cover PL VENT - HIGH or LOW PL DYE MARKER - ON (swimmer comm) Release footstraps and_restraints cb MNA BAT BUS A & BAT C (2) - open cb MNB BAT BUS B & BAT C (2) - open cb FLT & PL BAT C - open cb PYRO A SEQ A - open cb PYRO B SEQ B - open *EACH HR - CHECK DC VOLTS > 27.5 V * <u>بار</u> *If Not * cb FLT & PL-BAT BUS A&B (2) -open* * cb FLT & PL BAT C (1) - open * <u>بد</u> * GO TO LOW POWER CHECKLIST Unstow and install PLV DISTRIB DUCT Deploy grappling hook and line if req.

Post Landing Communications VHF ANT-RECY (verify) VHF BCN - ON (verify) If no contact with recovery forces perform VHF BEACON Check MONITOR VHF BEACON transmission with VHF AM B Revr and/or Survival Transceiver *VHF Beacon not operating * *connect Survival Transceiver to ant* *cable behind VHF ant access pnl * *and place radio in BCN mode *

LOW POWER CHECKLIST

4

VHF BCN - OFF VHF AM (3) - RCV FLOOD Lts - OFF VHF AM A&B - off (ctr) VHF AM RCV ONLY - A (verify) COUCH LIGHTS - OFF POSTLANDING VENT SYS: minimize use SURV RADIO - plug into VHF BCN ANT cable conn behind VHF ant acess pnl & turn radio on in BCN mode

EGRESS PROCEDURES

	STABLE I
	Disconnect umbilicals
	Neck dam on
CMP	Center couch - 270° position
CDR, LMP	Armrests stowed
CDR	Connect raft to S/C, if desired, with
	green lanyard
	Connect raft white lanyards to suits &
	inflate water wings when exiting
	HATCH PISTON PRESS vlv - PRESS (Outbd)
CMP	Side Hatch opened
CDR	PL VENT - OFF
CMP	cb Pn1 250 (all) - open
	Egress with liferaft
LMP	Put hardware kit out
LMP,CDR	Egress

1

-48-

or C.	STABLE II
LMP	cb CREW STA AUDIO (3) - open
ALL	Disconnect umbilicals
	Release footstraps
	Release restraint harness
	Couch seat pans (3) - 170° position
CMP	Arm rests stowed
	Survival kits removed from stowage
CDR	Connect life raft mainline to CDR or S/C
CMP	Connect first white lanyard from
	life raft to suit
CDR	Connect third white lanyard from
	life raft to suit
LMP	Connect rucksacks together to yellow
	lanyard on raft bag
CMP	PRESSURE EQUALIZATION v1v - OPEN
CMP,LMP	Remove and stow fwd hatch
CMP	Exit feet first with rucksacks; when clear
	of S/C inflate water wings and raft
LMP	Exit feet first; when clear of S/C
	inflate water wings
CDR	Exit feet first; when clear of S/C
	inflate water wings

6.0 TLI ABORTS

TLI Aborts are contained in the ESD since the bulk of the functions concern entry preparations and performance. This allows a single source of procedures for procedure review, validation, checkout, and training These procedures incorporate TLI preparations as found in reference 6 with the TLI Abort Procedures and these tie into normal lunar return Entry Procedures found in section 5. The guidelines for this contingency are specified in reference 7.

Initial preparations for TLI position the necessary system switches in addition to performing an EMS ΔV test and a GDC alignment. After the DET is set for monitoring TB6 the CMP increases the light level of the LEB DSKY to maximum and returns to the his couch. This is done so that the LEB DSKY can be observed in the event sunlight or reflections wash out the main display panel DSKY during critical maneuvers. The crew then straps in and prepares for monitoring TB6 as indicated by the SII SEP Lite. The times sequence of procedures is keyed on this display and includes the DET START function and SIVB IGNITION. During the burn the crew monitors the FDAI's for attitude excursions and abnormal rates, reporting status checks to Mission Control at discreet times during the maneuver. Upon SIVB SHUTDOWN the CMP records the DSKY displayed performance parameters and awaits ground confirmation.

The rational for TLI aborts is described in reference 7. A summarization is extracted to provide background and guidelines in this document. The abort procedures cover aborts 10 minutes after contingent SIVB shutdown and aborts 90 minutes after normal SIVB shutdown time.

The 10 minute TLI abort is designed to be used during TLI in the event a spacecraft problem develops which can result in catastrophe if immediate action is not taken. If the situation permits, the crew should always allow the SIVB to complete TLI, at which time the ground and crew can perform a malfunction analysis to determine if an abort is advisable. If a failure occurs that necessitates the shutdown of the SIVB and the quick return of the crew to earth, this abort is designed to be as insensitive to execution errors as possible and still be targeted to midcorridor. The burn attitude with the fixed horizon reference is a constant value for any shutdown time. The burn duration is a function of shutdown time and is available from crew charts. Since the primary purpose of this abort is to return to earth as quickly as possible there are no restrictions as to landing location. However, if the time to EI is greater than about two hours a midcourse correction should be anticipated.

The 90 minute TLI abort is to be used if a critical subsystem malfunction is determined and the decision to abort is made after the TLI cutoff and before TLI cutoff plus approximately 80 minutes This allows sufficient separation and procedural time to set up for the SPS deorbit burn performed at about TLI + 90. Note that generally the deorbit burns will be performed a few minutes before TLI + 90 according to crew charts shown in reference 8. The nocomm exception requires that 90 minutes be the input time of ignition for P-37 (onboard return-to-earth abort program) so that onboard calculations can correspond with ground calculations to compute the CM landing point This TLI abort is designed so that return flight time does not exceed 18 hours and abort ΔV does not exceed 7000 fps. This abort can be performed using chart ΔV 's and attitudes and the earth's horizon serves as a sufficient reference. The maneuver is targeted to achieve the midcorridor entry target line and timed to result in a designated recovery area

It is obvious for abort decisions early in the TLI + 90 minute timeframe that a G&N SPS burn should be performed. In order to keep the TLI abort procedures consistent and with emphasis on simplicity, the procedures here reflect a SCS SPS abort burn to cover the full abort decision timeframe.

A midcourse correction for corridor control after a TLI abort may be desired if the SPS burn did not meet expectations. The TLI abort procedures in this section adapt to the normal lunar return timeline and procedures prior to the final MCC.

6.1 TLI PREPARATION PROCEDURES

GET = 1:50Don Helmets & Gloves XLUNAR - INJECT (verify) EDS PWR - on (verify) EMS FUNC - OFF (verify) EMS MODE - STBY EMS FUNC - AV SET/VHF RNG EMS MODE - NORMAL Set ΔV ind. to +1586.8 fps EMS FUNC - ΔV Test SPS THRUST Lt - on/off (10 sec) ΔV ind. stops at -0.1 to -41.5 EMS MODE - STBY EMS FUNC - ΔV SET/VHF RNG Set ΔVC EMS FUNC - ΔV GDC ALIGN FDAI Select - 1/2 cb SECS LOGIC (2) - close (verify) CRO AOS (:::cb SECS ARM (2) - close SECS LOGIC (2) - on (up)MSFN Confirm GO for PYRO ARM (if poss) SECS PYRO ARM (2) - on (up) TRANS CONTROL PWR - ON ROT CONTR PWR NORMAL (2) - AC/DC(verify) ROT CONTR PWR DIRECT (2) - MNA/MNB LV IND/GPI - SII/SIVB (verify) LV GUID - IU (verify) cb DIRECT ULLAGE (2) - closed Set EVENT TIMER to 51:00 Begin MONITOR For TB6 CRO LOS CMP to Couch (:::)(2:21:42) TB 6 - SII SEP Lt on (TIG-9 man, 38 sec) KEY V83E SET ORDEAL FDAI #2 ORB RATE at 180, 0, 0 SII SEP Lt out (38 sec later) 51:00 Start DET COUNTING UP SC CONT - SCS (verify) MONITOR LV TANK PRESS ΔP < 36 psid (OXID > FUEL) $\Delta P < 26$ psid (FUEL > OXID) *EMERGENCY CSM/LV SEP * UP TLM CM - BLOCK (verify) UP TLM IU - BLOCK (verify)

57:00 V37E 47E (check blas) Record (Limit: 9.8 fps/min) F 16 83 $\Delta VX, Y, Z$ (.1fps)58:00 N62E F 16 62 VI, HDOT, HPAD (fps,fps,.1nm) MONITOR VI () at ECO SCS TVC SERVO PWR 1 - AC1/MNA 2 - OFFTAPE RCDR - CMD RESET/HBR 58:20 EMS MODE - NORMAL 58:36 SII SEP Lt - ON *TLI Inhibit Signals will not* * be honored after 59:42 58:38 SIVB ULLAGE Begins 59:42 SII SEP Lt - off (TIG - 18 sec) 59:52 SIVB FUEL LEAD 59:55 SIVB ULLAGE discontinues 59.59 LV ENG 1 Lt - on _: GETI) 00:00 SIVB IGNITION (00:02 LV ENG 1 Lt - off MONITOR THRUST & ATTITUDE SUNRISE +45°/P,Y :__:__) MONITOR LV TANK PRESS +10°/sec P.Y SIVB ECO (Lt on) (BEGIN TB7) *EMER SIVB CUTOFF AT 6 SEC * × PAST BURN TIME IF VI ATTAINED * *THC CCW & NEUTRAL IN 1 SEC * or SII/SIVB sw - LV STAGE × *Premature Shutdown: * * HA<4K nm 봈 CSM & LM - Two phasing mnvrs, two SPS \star mnvrs to circularize at 150 nm* * earth orbit * * CSM only - SPS phasing mnvr, MCC's, low * × * earth orbit mission * 4K nm<HA<10K nm * CSM & LM - Two phasing mnvrs, two SPS * mnvrs to circularize at 150 nm* × * earth orbit * * CSM only - SPS phasing mnvr, MCC's, low * earth orbit mission × *10K nm<HA<25K nm CSM & LM - Two phasing mnvrs, APS burn to* * depletion, third phasing mnvr,* × SPS burn to semisync orbit * * CSM only - Two phasing mnvrs, SPS burn to* * semisync orbit * *25K nm<HA<40K nm CSM & LM - Two phasing mnvrs, APS burn to * * * depletion, third phasing mnvr, ż ŵ. SPS burn to semisync orbit CSM only - Two phasing mnvrs, SPS burn to * * * × semisync orbit HA>40K nm * × DPS avail - DPS LOI, circularize with SPS DPS not avail - Lunar flyby or CSM only to × * × * lunar orbit (if req'd ΔV * <4,000 fps) *

-53-

HAW AOS (__:__) KEY VERB (freeze display) SIVB ATT HOLD 20 sec & BEGIN VENTING SIVB MNVR TO ORB RT. (HDS DN) (.3°/sec) Record VI HDOT HPAD KEY RLSE F 16 62 KEY- RLSE ΔVX,Y,Z (.1fps) Record ΔVX_____ F 16 83 Δvy ΔVZ HAW LOS ∆vc (::)TAPE RCDR - off (ctr) EMS MODE - STBY EMS FUNC - OFF SECS PYRO ARM (2) - SAFE PRO

BURN STATUS REPORT

ΔTIG	VI
ВТ	HDOT
VGX	Н
R	Δνς
P	FUEL
Y	OXID
	UNBAL

REMARKS

F 37 08:00 00E GDS AOS CMP TO LEB (__:__:__)

6.2 TLI 10 MIN ABORT SECS LOGIC (2) - on (up) SECS PYRO ARM (2) - ARM TRANS CONTR - CCW (4 sec) & +X 00:00 DET RESET (verify) SIVB/CSM SEP 00:03 LV ENG 1 Lt - out * * CSM/LV SEP PB - PUSH * * RCS CMD-ON TRANS CONTR - neutral then +X for 00:05 10 sec SIVB/GPI sw - GPI * *Excessive rates: * * ΔV THRUST A - NORMAL * SPS THRUST - DIRECT × * *When rates damped: * * ΔV THRUST (2) - OFF * * SPS THRUST - NORMAL cb MNA BAT C - close cb MNB BAT C - close 00:14 TRANS CONTR +X - OFF V37E 00E PITCH UP to LOCAL VERT (+X axis toward the earth) RATE - LOW BMAG MODE (3) - ATT1/RATE 2 EDS PWR - OFF SECS PYRO ARM (2) - SAFE SECS LOGIC (2) - OFF cb SECS ARM (2) - open cb EDS (3) - open TRANS CONTR -X (8 to 10 sec) 01:00 RATE - HIGH MNVR TO RETRO ATT R___(180°) P (199°) Y___ ^{_}(0°) RETRO UPDATE .05G ------GETI GET DROGUE ____ ENTRY P ΔV R _____ VC Y _____ ∆tb GET 400K

ALIGN HORIZ ON RET +1° MK GMBL CHECK (Time Permitting) MN BUS TIE (2) - ON GMBL MTRS (4) - ON (LMP Confirm) cb SPS P2,Y2 - open RATE - LOW EMS MODE - STBY EMS FUNC - ΔV SET/VHF RNG SET ΔV from chart EMS FUNC - ΔV EMS MODE - NORMAL

- 09:45 ΔV THRUST A NORMAL V37E 47E (THRUST MONITOR)
 - F 16 83 ΔVX,Y,Z (.1 fps)

NOTE: For aborts during 1st min of TLI, KEY V82E F 16 44 (Ha,Hp,Tff) Burn until Hp < 19NM.

- 09:50 TRANS CONTR +X
- 10:00 THRUST ON PB PUSH TRANS CONTR +X - OFF BURN ΔV req'd ΔV THRUST (2) - OFF Report cutoff cb SPS P2, Y2- close GMBL MTRS (4) - OFF (LMP Confirm) TRANS CONT PWR - OFF TVC SERVO PWR (2) - OFF MN BUS TIE (2) - OFF cb SPS P1&2, Y1&2 - open
 - F 37 00E

Go to ENTRY PREP & SUPERCIRC ENTRY PROCEDURE If est. time to EI<01:55:00 omit MCC and enter the SUPERCIRC CKLIST as early as possible. Pg <u>23</u> If est. time to EI>01:55:00 anticipate a MCC. Enter the ENTRY PREP CKLIST at step 9 pg <u>18</u>

6.3	TLI 90 MIN ABORT PROCEDURES
TLI+25	Normal CSM/LV Separation- If decision
	to abort made before TLI+25 min,
	abort at this time. If abort deci-
	sion occurs after separation start
	with V37E 00E at 00:14
	SECS LOGIC (2) - on (up)
	MSFN Confirm GO for PYRO ARM
	SECS PYRO ARM (2) - ARM
00.00	TRANC CONTR - CCH (4 sec) & $\pm X$
00:00	DEE DECED (mort for)
00+02	DET KEDET (VELTTA)
00:05	SIVE/GPH SEF
	* USM/LV SEP PB - PUSH "
~~ ~~	* RCS CMD-UN *
00:05	TRANS CONTR - neutral then +x for . 10 sec
	SIVB/GPI sw - GPI
	*Excessive rates: *
	* ΔV THRUST A - NORMAL *
	* SPS THRUST - DIRECT *
	*When rates damped: *
	* ΔV THRUST (2) - OFF *
	* SPS THRUST - NORMAL *
	ch MNA BAT C $-$ close
	cb MNB BAT C - close
00:14	TRANS CONTR +X - OFF
	V37E 00E
	PITCH UP to LOCAL VERT (+X axis
	toward the earth)
	RATE - LOW
	BMAG MODE (3) - ATTL/RATE 2
	EDS PWR - OFF
	SECS PYRO ARM (2) - SAFE
	SECS LOGIC (2) - OFF
	cb SECS ARM (2) - open
	cb EDS (3) - open
01:00	TRANS CONTR +X (8 to 10 sec)
	RATE - HIGH
	MNVR TO RETRO ATT
	R (Block Data)
	P(Block Data)
	Y(Block Data)

	RETRO UPDATE GETI	(NO COMM - use Block .05G	Data)
GET	ΔV VC Δtb 400K	GET DROGUE ENTRY P R Y	
XX:XX	Set DET cou ALIGN HORIZ GMBL CHECK MN BUS TIE GMBL MTRS (cb SPS P2,Y RATE - LOW EMS MODE - EMS FUNC - SET AV from EMS FUNC - EMS FUNC - EMS MODE - TAPE RCDR -	nting up to GETI CON RET +1° MK (Time Permitting) (2) - ON (4) ~ ON (LMP Confirm) C2 - open STBY ΔV SET/VHF RNG h chart ΔV NORMAL - CMD RESET/HBR/RCD/FW	īD
59 : 45	ΔV THRUST A V37E 47E (THE	A - NORMAL RUST MONITOR)	
F 16 83	∆VX,Y,Z		(.1 fps)
59 : 59	THRUST ON F TRANS CON BURN AV r AV THRUST Report cu cb SPS P2,Y GMBL MTRS (TRANS CONT TVC SERVO F MN BUS TIE cb SPS P1&2	PB - PUSH WTR +X - OFF req'd (2) - OFF stoff (2) - OFF (4) - OFF (LMP Confirm PWR - OFF WR (2) - OFF (2) - OFF (2) - OFF (3) - OPF (4) - OPF	1)
F 37	00E		
Go to	o ENTRY PREP & Step 9 pg <u>1</u>	SUPERCIRC ENTRY PROC	EDURE

1

7.0 ENTRY PADS

Data PADS are used by the crew to record voice callups from the mission control center. The PAD formats are a function of the data transmitted and the form the flight crew finds to be efficient in performing their tasks after extensive training. The PADS presented in this section are included as examples and training aids.

PURP		v								v :		
GET												
304 (Τ		IN	¢ε>	q	T	1	IN	φEX	(
	02 T			1		<u>†</u> –-		-		1		
,	23			1		1		1	+	<u> </u>		
(24		1		† ·				╋╸ ~ ┃	·		
(25			1				[[1	
(56								· ·		1	
(77			1	1		- 		•			
	0			- 		- -				†	—— 	
]				1	-			 		1		
,	12		·∱· ⊶ │	 			1	1	╆-╍──ヽ ┃	<u> </u>		
•	13			j		1				1		
	4		1							<u>†</u>	1	
I	5			(f	 	f			1		1
	6										-	
ł	7		1								 	1
2	20.				 						<u> </u>	[
2	21		<u> </u>									
2	22		i 1					 				; ;
2	23		1]		[
2	24		1 -									
N	134	HRS	X	X	X			1	Х	X	X	
		MIN	X	×	X	X	1		Х	X	X	X
NAV C	HECK	SEC	X	, X		; 			X	X		1
Ň	143	LAT		0	Ĺ					0		
		LONG										
		ALT	+	0					+	0		
					-	-						

MAN	EU\	/ER	<u> </u>					~
						PURPO	SE	VEI
SET STARS			/			PROP/	GUID	IE U
+						WΤ	N47	MAN
RALTON	0	0				PTRIM	N48	
P ALTON	0	0				YTRIM		
Y ALTON +	0	0	·····			HRS	GETI	
	°,	0	0			MIN	N33	
+	0		•			SEC		
	1	•••		,		ΔV _X	N8I	
	1					ΔVY		
· · · · · · · · · · · · · · · · · · ·	1					ΔVZ		
· X	×	X			L	R		
×	х	х				Р		
x	x	х				Y		
+						Нд	N44	
	1					Hp		
 						Δντ		
	x	х	•			вт		
						ΔVC		
x	x	x	X			SXTS		
+					o	SFT		
+			•	0	0	TRN		
X	X	X	g	<u> </u>		BSS		
x	X]			SPA		
x	x	X				SXP		
	0		· · · ·			LAT	N61	
	7					LONG		:
+	. .					RTGO	EMS	
+				•	-	VIO		
		•	•			GET	05G	
-								

ł

		ENTRY	
			AREA
	X X X	X X X	R 05G
		XXX	P 056
			Y 05G
	• •		GET HOP
			Р СК
			LAT NGL
	•		
≻			MAX G
NTI		+	Vecare NGO
ш	- 0 0	- 0 0	1400K 100
	+	+	RTGO EMS
	•	•	VIO
		• •	RRT
			RET 056* -
	+ 0 0	+ 0 0	DI MAX*
	+ 0 0	+ 0 0	
	+	+	VI MAX*
	+	+	V_MIN*
	XXX	X X X	DO
	xx	x · x	RET VCIRC
	x x :	x x :	RETBBO
	x x	x x :	RETEBO
	x x 🚦) × × :	RETDRO
	XXXX	XXXX	SXTS
	+ 0	+ 0	SFT
	+ 00	+ 00	TRN
	XXX	XXX	BSS
	X X	x x	SPA
	X X X	X X X	SXP
	XXXX	XXXX	LIFT VECTOR

EARTH ORBIT ENTRY UPDATE							
x	-	X	-	AREA			
x x -		x x -	•	Δ V ΤΟ			
ххх		ххх		R 05G			
ххх		ххх		P 05G			
ххх		x x x		Y 05G			
+	•	+	•	RTGO EMS			
+		+		V10			
хх	•	X X	•	RET 05G			
0	•	0	•	LAT NGI			
				LONG			
xx	•	x x	•	RET 02G			
			·	DRE (55°) N66			
RR	/	RR	/	BANK AN			
хх	•	X X	•	RET RB			
хх	•	X X	•	RETBBO			
хх	•	X X	•	RETEBO			
x x	•	x x	•	RETDROG			
x x x		X X X		(90°/fps) CHART			
X X		X X		DRE (90°) UPDATE			
		POST B	URN				
ххх		XXX		R 05G			
+	•	+	•	RTGO EMS			
+		+		VIO			
хх	•	ХХ	•	RET O5G			
× ×	•	X X	•	RET 02G			
				DRE ±100nm N66			
R R	1	RR	/	BANK AN			
хх	•	X X	•	RETRB			
хх	•	x x	•	RETBBO			
X X	•	x x	:	RETEBO			
x x	•	x x	•	RETDROG +53sec			

3.0 ENTRY CHARTS AND TLI CHARTS

Crew charts provide additional onboard capability for monitoring mission events and supply information to perform specific functions if communication with MSFN have failed. Presented in this section are six onboard crew charts applicable to the reentry phase of the Apollo 8 mission as presented in reference 9 and two TLI abort charts as presented in reference 7.

The first chart presents the reentry corridor dynamic limit lines and reference lines as a function of reentry velocity ($V_{\rm EI}$) and flightpath angle ($\gamma_{\rm EI}$) at 400,000 ft altitude. The purpose of this chart is to insure, for the no communication case, that a proper $V_{\rm EI} - \gamma_{\rm EI}$ combination will be attained at reentry interface.

The dynamic limit lines, the constant g overshoot and 12 g undershoot boundaries, are based on aerodynamic and reentry conditions which result in the most restrictive corridor Three reference lines are also included on the chart and they are the lift vector orientation (LVO) line, the shallow target line, and the steep target line. The lift vector orientation line and the steep target line are both stored in the onboard computer and are utilized in programs 63 and 37, respectively. For a reentry velocity and flight-path angle located above the LVO line the onboard computer will command a lift vector down roll attitude at 0.05 g and will maintain that attitude to about 1 3 g Below the LVO line the computer will command a lift vector up attitude to approximately 1.3 g.

If program 37 is used in conjunction with return-to-earth targeting or midcourse corrections, the program will target automatically to the steep target line unless the flight-path angle override option is desired. If the flight-path angle override option is used, the desired flight-path angle at 400,000 ft altitude (reentry interface) is input into the CMC with the CMC determining the resulting reentry velocity. It is recommended that the steep target line be used for all onboard return-to-earth targeting and midcourse corrections. This steep target line will also be used for Mission Control Center (MCC) targeting for reentry velocities greater than 31,000 ft/sec For reentry velocities below 31,000 fps the MCC will utilize the shallow target line in order to increase the maneuver capability of the spacecraft

The second chart depicts the CMC commanded constant drag value, DO, as a function of reentry velocity at 400,000 ft altitude. During the reentry program 64 the guidance logic is generating roll commands which will attempt to drive the spacecraft to the commanded constant aerodynamic drag value, DO During this program (P64) the EMS V-g trace and the independent G meter will be monitored to insure that the spacecraft's actual drag level is converging to DO. If the computer is not generating the right roll commands during this period, a manual takeover is executed and the backup mode flown. For the lunar reentry return velocity DO is about 4 g's.

The third chart presents the pitch gimbal angle necessary to acquire the horizon at the 31 7 degree mark in the commander's rendezvous and docking windown This chart was generated assuming that the 0.05 g predicted trim pitch gimbal angle was 152.2 degrees; consequently, it is dependent on the given trajectory and vehicle parameters from which it was obtained. However, the chart is relatively insensitive to both the trajectory and vehicle parameters and could be used with a one to two degree accuracy throughout the reentry corridor for the lunar return velocities. Should the pitch trim gimbal angle at 0.05 g change during the mission, real time update of this chart can be accomplished by biasing the chart by the difference between the nominal and updated .05 g trim angle. Also, the pitch angle necessary to get the horizon at the 31 7 degree mark at 17 minutes prior to EI will be voiced to the crew and can be used as a second data point to update this chart.

The fourth chart can be used to determine the required magnitude of pitch from some given reference to locate the horizon at a prescribed elevation on the commander's rendezvous and docking window; i.e., at the 31 7 degree mark. Included are data for two different modes of approaching entry interface (400,000 feet altitude), each mode being illustrated for a lift vector up and a lift vector down CM attitude. The two modes are briefly defined as follows: (1) maintain the inertial attitude necessary to achieve aerodynamic trim conditions at the predicted time the spacecraft will experience a load factor of 0.05 g or, (2) continually maneuver the CM to cause it to be trimmed to its present position vector at all times assuming that the atmosphere existed beyond entry interface (this is what is done by the CMC) With either mode being chosen, the required pitch to obtain the horizon at some location in the window is shown for any time up to twenty minutes prior to entry interface. This can be done by subtracting the desired horizon position in the window from the pitch angle from chart 4. For example, if the CM is in a lift up 0.05 g trim attitude (top solid line) and the horizon is desired to be at the 31.7 degree mark in the window 12 minutes before entry interface, subtract 31.7 degrees from the value of ϕ from the chart The range of usable angles is shown on approximately 94.3 degrees the chart by the cross hatched area representing the field of view for an 80th percentile pilot

The two sets of dashed lines indicate the attitude region within which the angle of attack will be not greater than 45 degrees for either lift up (top set) or lift down (bottom set). This is significant since the crew could likely see a sharp jump of the roll and yaw error needles on the FDAI if the entry DAP were active and the angle of attack increased to a value greater than 45 degrees. As this occurs the DAP converts from a 0.1 second sampling DAP to a two second predictive DAP and interchanges the yaw and roll error signals on the FDAI.

If onboard return-to-earth targeting is required, the target longitude and latitude obtained from program 37 will need to be corrected to obtain the nominal 1350 n.m. reentry range. The fifth chart shows the longitude correction (the solid line) which is to be added or subtracted, depending on whether the target longitude from the DSKY is west (minus sign) or east (plus sign), as a function of inertial velocity at 400,000 ft altitude. The dashed lines on the chart depict the longitude corrections to be used for the fast and slow lunar return trajectories.

Corresponding to the longitude correction, a latitude correction must also be made. The latitude correction is determined by calling up program 21 and inputing various mission elapsed times. The output from this program is then used to plot a ground track. A latitude correction can then be determined for the corresponding change in longitude. This latitude correction may then be used to modify the target latitude obtained from P37.

The sixth chart is to be used as a backup chart in the case of an earth orbit alternate mission The chart shows two curves which are: (1) backup bank angle (BBA) versus burn error in the X-direction $(\Delta\Delta V_X)$; (2) downrange error at .2 g (P67) versus backup bank angle. An equation is shown on the chart to correct the backup bank angle for burn errors in the Z-direction. In order to obtain the correct burn residuals (errors) from the DSKY the S/C must be in the retro-fire attitude. The nominal retro elapsed time to reverse the bank angle (RETRB) is noted on the chart and is to be corrected by Δ RETRB shown on the right scale if burn errors are incurred. The use of this chart can be best shown by an example. Suppose a deorbit maneuver was performed and burn errors resulted in:

 $\Delta \Delta V_{\chi} = + 10.0 \text{ fps}$ $\Delta \Delta V_{\chi} = - 7.0 \text{ fps}$

From the BBA curve the backup bank angle for a $\Delta\Delta V_{\rm X}$ of + 10.0 fps is about 66°. The backup bank angle correction (Δ BBA) for the Z-axis error is (-0.40) · (-7.0)° or +2.8°. The total backup bank angle (BBA_T) is then BBA + Δ BBA or 68.8°. For a BBA_T of 68.8° the expected downrange error display on the DSKY at 0.2 g is about - 150 n. mi. Using this BBA_T a Δ RETRB of about +14 sec is obtained. This value is then added to the nominal RETRB of 22 min which

results in a corrected RETRB of 22 min 14 sec. This crew chart will be updated via voice 1 to 3 hours prior to all earth orbit reentries to compensate for deviations from the nominal end of mission orbital elements. The data points to update these two curves will be voiced up and recorded on the earth orbit entry pad message shown in section 7.0.

Charts 7 and 8 are onboard crew charts necessary to perform a 10 minute abort from TLI. These charts provide the SPS burn attitude, SPS ΔV requirement, and time to entry interface as functions of the inertial velocity at S-TVB cutoff. Charts for aborts after nominal TLI during the translunar coast phase are unnecessary since block data will be relayed to the crew for these cases while the crew is still in earth parking orbit.

;

Chart 1

Chart 2

Chart 4

CMC INERTIAL VELOCITY AT 400K ALTITUDE - FT/SEC

Chart 5

-73-

Chart 6

4

Chart 7

-74-

-75-

9.0 REFERENCES

- 1. Apollo Mission Techniques, Missions F & G Transearth Injection, Midcourse Corrections, and Entry, MSC Internal Note S-PA-9T-040 dated February 24, 1969.
- 2. Apollo Entry Summary Document, Mission F Preliminary Copy, MSC Internal Note MSC-CF-P-69-1 dated January 20, 1969.
- 3. Mission F Flight Plan, Preliminary Copy, dated March 12, 1969.
- Apollo Operations Handbook, Command and Service Modules, Volume II Operational Procedures, Block II, dated February 20, 1969.
- 5. Apollo Mission Techniques Earth Parking Orbit Retrofire and Entry Procedures (Missions C Prime, D, F, and G) MSC Internal Note S-PA-8M-035 dated December 16, 1968.
- 6. Apollo Abort Summary Document, Mission F, MSC Internal Note MSC-P-69-4 dated February 3, 1969.
- 7. Apollo Mission Techniques, Missions F & G Contingency Procedures, Draft copy, MSC Internal Note S-PA-9T-043 dated March 3, 1969.
- 8 Operational Abort Plan for the Apollo 8 Mission, MSC Internal Note 68-FM-209 dated November 26, 1968.
- 9. United States Government Memorandum "Apollo 8 Reentry Crew Charts," 68-FM23-216 dated December 12, 1968.
- 10. Reentry Crew Briefing Handout, F Mission Lunar Return, held February 24, 1969.