General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

FACILITY FORM 602

ACCESSION NUMBER

OR TMX

OR

AD NUMBER)

(THRU)

(CODE)

(CATEGORY)

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

MSC INTERNAL NOTE NO. CF-R-69-20

APRIL 29, 1969

APOLLO MISSION F PERFORMANCE ANALYSIS OF RENDEZVOUS CHARTS

Flight Procedures Branch

FLIGHT CREW SUPPORT DIVISION

MANNED SPACECRAFT CENTER HOUSTON, TEXAS MSC INTERNAL NOTE MSC-CF-R-69-20

APOLLO MISSION F PERFORMANCE ANALYSIS OF RENDEZVOUS CHARTS

PREPARED BY:

N. Bue

Robert K. Buell Orbital Procedures Section

John E. Hutchins Orbital Procedures Section

APPROVED BY:

Milton C. Contella Chief, Oribtal Trocedures Section

Paul C k

Paul C. Kramer Chief, Flight Procedures Branch

James W. Bilodeau

James W. Bilodeau
 Assistant Chief for Crew Integration

10728

Warren J North Chief, Flight Crew Support Division

April 29, 1969

TABLE OF CONTENTS

1

••• •

 \mathbf{C}

(

.

•

		Page
1.0	SUMMARY	1-1
2.0	DISCUSSION	· 2-1 · · · · · ·
	2.1 Study Rules	2-2
	2.2 Digital Program	2-3
	2.3 Charts	2-4
	2.4 Initial Conditions	2-6
	2.5 Errors in Sensors and Execution	2-8
	2.6 Braking Schedula and LOS Angular Rate Deadbands	2-9
3.0	RESULTS	3-1
	3,1 Maneuver Values	3-3
	3.2 Miss Distance	3 - 6
	3.3 Translational AV Used	3-7
	3.4 Arrival Time at TPI	3-8
	3.5 & T from TPI to TPF	3-9
4.0	REFERENCES	4-1
5.0	FIGURES	5-1

i

.

			•	jan ₽
	LIST OF ACRONY	MS AN	D ABBREV	TATIONS
AGS	Abort Guidance System	IdT	۲ ^۲ ۵۲	Along Line-of-Sight Component of TPI Solution
CDH	Constant Differential Height	IdI	۸۷ _N	Normal to Line-of-Sight Component of TPI Solution
CES	Control Electronic System		ļ	
CSI	Concentric Sequence Initiation	MCL	^{AV} LOS	Along Line-or-Signt Component of MCL Solution
CSM	Command and Service Module	MCL	۸V	Along Line-of-Sight Component of MC2 Solution
MI	Lunar Module	MC2	N N	Normal to Line-of-Sight Component of MC2
IOS	Line-of-Sight Between LM and CSM			TOTATOG
MCI	First Mid-Course Correction	CSI	۸۵۷ _H	Error in Horizontal Component of CSI Solution
GUN	Sanond Mid_formeration	CDH	۸۵۷	Error in Vertical Component of CDH Solution
		CDH	۵۵۷ _н	Error in Horizontal Component of CDH Solution
IdI	Terminal Phase Initialization		1	
TPF	Terminal Phase Finalization	Idi	AAV LOS	Error in Along Lize-of-Sight Gomponent of TPI Solution
ΔT	Change in Time	IdI	۸۵۷ _N	Error in Normal to Line-of-Sight Component of TPI Solution
۸V	Change in Velocity			
ø	Standard Deviation	MCI	AAV LOS	Error in Along Line-of-Sight Component of MCl Solution
CSI AV _H	Horizontal Component of CSI Solution	MCI	ΔV _N	Error in Normal to Line-of-Sight Component of MCl Solution
CDH AV _V	Vertical Component of CDH Solution	MC2	AAV _{LCS}	Error in Along Line-of-Sight Component of
CDH AV _H	Horizontal Component of CDH Solution			HOITNES 20
		MC2	N VAV	Error in Ncrmal to Line-of-Sight Component of MC2 Solution

4

C

C)

(

á

. .

ij

LIST OF TABLES

4

G.

. . . .

•

n

.

NO	TITLE	Page
2-1	Initial Conditions	2-6
2-2	Covariance Matrix	2 - 7
3-1	Run Summa ry	3-1
3-2	Maneuver Values	3-4
3-3	Differences Between Chart Solutions with Errors and Without Errors and Conic Solutions	3 - 5
3-4	Coordinates at Closest Approach	3 - 6
3 - 5	Translation Δ V	3-7

LIST OF FIGURES

,

#

•

0

0

NO	TITLE	Page
1.	CSI Chart	5-1
2.	CDH Chart	5-3
3.	TPI Chart	5-5
4.	MCl Chart	5-6
5.	MC2 Chart	5-7
6.	Polar Plot	5-8
7.	CSM Centered Relative Motion Plot	5-9
8.	Braking Schedule	5 - 10
9.	Total A V	5-11
10.	Time of TPI	5-12
11.	▲ T from TPI to TPF	5-13

•

APOLLO MISSION F PERFORMANCE ANALYSIS OF RENDEZVOUS CHARTS

1.0 Summary

3

A digital analysis of the F Mission backup rendezvous charts has been performed to verify their ability to predict CSI, CDH, TPI, and midcourse corrections in the presence of system and application errors and trajectory dispersions. Procedures for data acquisition were as defined in the current LM Rendezvous Procedures Document (Reference 1). The charts simulated were those from the LM 4 onboard data package. The mission situation simulated represented the PNGS inoperative, rendezvous radar information available from the tapemeter, attitude data from the AGS and control by the CES. The study showed that the standard deviation of the arrival time at TPI was 4.45 minutes. The mean ΔT from TPI to intercept with braking and line-of-sight control was 45.9 minutes with a standard deviation of 1.0 minutes. If no braking or line-ofsight control was executed after the second midcourse correction, the mean miss distance would have been 0.27 NM with a standard deviation of .41 NM. The mean total translational ΔV required after insertion was 150.5 ft/sec with a standard deviation of 21.0 ft/sec.

2.0 <u>Discussion</u>

This analysis was performed to determine the ability of the charts to predict all maneuvers after insertion required to complete the LM-active F mission rendezvous. One hundred independent sets of initial conditions (IC's) were selected by adding random errors to the 6 components of the nominal relative state vector between the LM and CSM. Forty percent of the relative error was incorporated into the inertial state vector of the CSM, while the remaining sixty percent of the relative error was incorporated into the inertial state vector of the LM.

The 100 cases were run including system and execution errors with braking and line-of-sight (LOS) control. The runs were repeated omitting braking and LOS control to obtain miss distances. The results of the 100 Monte Carlo runs were processed to obtain statistical data for the parameters of interest.

The first 50 cases were also run without system or application errors to establish the theoretical chart capabilities.

2.1. Study Rules

The following ground rules consistent with F Mission procedures and planning were used in this study:

- 1. CSI occurs 51 min 01 sec after insertion.
- 2. CDH occurs 58 min Ol sec after CSI.
- 3. TPI was assumed to occur 9 min after the elevation angle of 19.40 degrees was reached.
- 4. The first midcourse correction (MCl) occurred 15 minutes after TPI and the second midcourse correction (MC2) occurred at 30 minutes after TPI.
- 5. CSI and CDH were burned in local vertical coordinates using impulsive thrust.
- 6. TPI, MCl, MC2, braking, and LOS control were executed along and normal to the line-of-sight using finite thrust, burning each component individually.
- 7. 130 degrees of CSM orbit travel between TPI and TPF.
- 8. No out-of-plane corrections were made prior to LOS control during the braking phase.

2.2 Digital Program

In the analysis, functions describing the backup rendezvous charts were programmed into a digital routine which integrated the equations of motion of two particles about a triaxial lunar gravity model. These functions allowed simulation of the procedures for using the backup rendezvous charts by incorporating elevation angle (AGS address 304), range, and range rate from the tapemeter at the times called for by the backup data sequence. System errors were included in the data taken at each point and an appropriate error of application was included in each maneuver.

The runs included effects of both bias and random errors as defined in Section 2.5. Bias errors were selected by the program at the beginning of each run and held constant for that run. Random errors were selected at each point where data were taken.

2.3 Charts

The charts modeled in the study were those which will be carried on the F Mission, and are shown in Figures 1-6. The data sequence was obtained from Reference 1 and is summarized on the relative motion plot of the nominal trajectory from CSI-30 min to TPF (Figure 7).

2.3.1 CSI

The CSI chart solution is based on a third order Maclaurin's expansion of four variables for the delta V at CSI (range rate at 30, 20, and 10 minutes prior to CSI and range 10 minutes prior to CSI). The coefficients are determined by the simultaneous solution of several expansions, each representing a dispersed trajectory prior to CSI.

2.3.2 CDH

The CDH chart solution is based on a second order Maclaurin's expansion of three variables for the delta V at CDH (range rate at 36, 23, and 10 minutes prior to CDH). The coefficients are determined by the simultaneous solution of several expansions, each representing a dispersed trajectory prior to CDH.

2.3.3 TPI and MCC

The TPI charts solve for the relative position and velocity at TPI resolved into normal and along the line-of-sight (LOS) coordinates. The measured relative conditions are differenced from the required conditions for intercept in 130 degrees of orbit travel. Information required for the TPI charts is the

()

.

elevation angle at 9 and 5 minutes prior to TPI and range and range rate at 5 minutes before TPI. In a similar manner, the MCC charts maintain the time of TPF consistent with the TPI maneuver. Data are taken for the midcourses at 9 and 13 minutes after TPI for MCl and at 24 and 28 minutes after TPI for MC2. The same measurement sequence as used at TPI is used for both midcourse corrections.

2.4 Initial Conditions

The initial conditions were generated by perturbing the nominal state vectors of the LM and CSM with errors supplied by a relative covariance matrix. Forty percent of the relative error was applied to the state vector of the CSM, while the remaining sixty percent of the relative error was applied to the state vector of the LM.

The nominal vectors relative to the LM orbital plane were derived from Reference 2 and are summarized as follows:

Table 2-1 Initial Conditions CSI-33 min. (103 hrs 0 min 46 sec)

131859.3 feet LM Altitude 349583.7 feet CSM Altitude 5458.4 ft/sec LM Total Velocity 5350.0 ft/sec CSM Total Velocity .935 deg LM Flight Path Angle .002 deg CSM Flight Path Angle 11.869 deg In Plane Central Angle LM Latitude 0.0 deg 0.0 feet Out of Plane Distance 0.0 ft/secOut of Plane Velocity Heading Angle (relative to equator) 0.0 deg

The covariance matrix used for initialization of the Monte Carlo runs is as follows:

Table 2-2 Covariance Matrix

ſ.

254189300.	812877.2	44433410.	-53475.3	-424.228	214069.
812877.2	180909.9	271115.	-81.066	-2.29299	644.7975
44433410.	271115.	10541620.	-6910.21	-113.378	36791.17
-53475.3	-81.066	-6910.21	13.45366	.05168073	-45.6078
-424.228	-2.29299	-113.378	.05168073	.009133634	343047
214069.	644.7969	36791.17	-45.6078	343047	181.2414

It has since been learned that this matrix, obtained from Reference 3, reflects trajectory dispersions approximately 4 times greater than those which can be expected in the actual mission.

.

2.5 Errors in Sensors and Execution

The 1d errors in sensor and maneuver executions were:

1. System Errors

.

()

- A. Noise
 - 1. Range .333%
 - 2. Range Rate .333 ft/sec
- B. Biases and Drifts (constant for a given run)
- 1. Initial Pitch Bias .1 deg (assumes calibrated COAS)
 - 2. Pitch Drift Rate .18 deg/hr

2. Execution Errors

- A. Reading Tapemeter
 - 1. Range Rate .25 ft/sec
 - 2. Range
 - a. Outer Scale 2400 ft
 - b. Middle Scale 100 ft
- B. Application of Burns .25 ft/sec (per axis)
- C. Time Measurements .5' sec
- D. Elevation Angle .12 deg (Error in pointing Z-axis at target)

2.6 Braking Schedule and LOS Angular Rate Deadbands

÷

The braking schedule used in this simulation consisted of five gates and a lower limit on the range rate. The first gate was at 13500 fcet. At this point only LOS control was executed because the allowed range rate was 80 ft/sec. The second gate was at 6000 ft with an allowed range rate of 30 ft/sec. The nominal range rate at this range was 32 ft/sec. The remaining gates were 20 ft/sec at 3000 ft, 10 ft/sec at 1500 ft and 5 ft/sec at 500 ft. The lower range rate limit consisted of a straight line connecting 20 ft/sec at 13500 ft and 0 ft/sec at intercept.

Both the upper and lower range rate limits are shown in Figure 8. LOS control procedures were simulated by sampling inertial drift of the LOS inplane and normal to the orbit plane every 15 seconds beginning at a range of 13500 ft. When the LOS rates exceeded .3 mr/sec at a sampling time, thrust was applied in the appropriate axis in increments of 1 second until the LOS rate was reduced below the threshold. The 15 seconds were allowed to elapse before sampling again.

3.0 Results

Several sets of Monte Carlo runs were made to obtain statistical data for determination of the effects of errors, trajectory dispersions, and braking on the size of maneuvers, arrival time at TPI, and total translational ΔV . The sets of runs are identified in the following table:

Set	Number of Runs	Errors in Maneuver <u>Solutions</u>	Maneuvers Applied	LOS Control and Braking
Α	100	Yes	With Errors	Yes
		No		
B	100	Yes	With Errors	No
C	50	No	No Errors	No
D	50	No	No Errors	Yes

Solutions for the maneuvers in Set A were obtained with errors. In addition, conic solutions were obtained for each maneuver except CSI. These were used to establish nominal ΔV values, which were used as a basis to compute the $\Delta \Delta V$ values in Table 3-3. In the case of CSI, a chart solution with no sensor and reading errors was used for this purpose. All solutions which were actually applied in Set A, however, were arrived at using sensor and reading errors. The runs for Set B

Table 3-1 Run Summary

were identical to Set A, but with braking and LOS control omitted to establish miss distance.

Sets C and D were run to establish baseline data for chart performance. It was felt that a reduced number of runs would suffice to obtain statistically meaningful results since only initial conditions were varied. Examination of significant parameters such as maneuver solution and miss distances revealed nearly normal statistical distributions, confirming the adequacy of 50 runs for those sets. The runs for Sets C and D were made with the same initial conditions as the first 50 runs of Set A.

3.1 <u>Maneuver Values</u>

The nominal solution, along with the average, mean, and standard deviation for each maneuver in Set A and Set D are shown in Table 3-2 on Page 3-4. The data given for Set A are the solutions with errors. The average, mean, and standard deviation for the difference between the error solution and the theoretical solution computed for each maneuver in Set A are shown in Table 3-3 on Page 3-5.

It can be noted from the data in Table 3-3 that the chart solutions with errors progressively decrease in accuracy from CSI to CDH to TPI. The trend then reverses with MCCl more accurate than TPI and MCC2 more accurate than MCCl.

In addition, it should also be noted that the value listed for the nominal CSI solution in Table 3-2 differs from the current value for CSI ΔV . This is explained by the fact that the reference trajectory from which the IC's were derived represented a 58 NM circular orbit, due to a smaller DOI burn than is currently being used. The difference between the DOI burn and the current value, is approximately the same as the difference between the CSI burn and its current value.

Table 3-2

Magnitude of Maneuvers

Maneuvers	Nominal	Aver	age nnn A	Me Dem D	an cpm A	Standard De	eviation
	ft/sec	ft/sec	ft/sec	ft/sec	ft/sec	ft/sec	ft/sec
CSI AV _H	14.74	146.34	h7.07	46.34	70 . 74	4.62	5.05
CDH AVV	- 3.90	7.15	7.60	- 1.35	- 2.58	8.36	8.93
CDH AVH	1.92	6.50	6.97	.25	1.46	7.89	8.56
TPI AVLOS	24.48	25.08	24.76	25.08	24.76	3.26	4.33
TPI AV _N	37	1.00	2.74	. 64	· 54	1.33	3.47
MCC1 AV LOS	1.01	1.91	4.75	.75	.15	2.36	6.06
MCCI AVN	.28	3.20	4.19	3.20	3.07	1.93	4.58
MCC2 AV LOS	3.59	4.67	7.55	ł.67	5.75	2.51	47.74
MCC2 AVN	- 2.06	.93	2.39	76	95	69.	2.87

The term Average refers to the mean of the absolute values of the data.

ħ

The term Mean refers to the value obtained by dividing the arithmetic sum of a set of values by the number of values in the set.

Table 3-3

Differences Between Chart Solutions With and Without Errors and Conic Solutions

Maneuror	Aven	0	More	2	Ctondond 1	1
	Set D ft/sec	set A ft/sec	Set D ft/sec	u Set A ft/sec	Set D ft/sec	-
CSI AAV _H	0.0	.77	0.0	02	0.0	
CDH AAV _V	11.1	1.54	11.1	1.05	1.21	
CDH AAV _H	.25	94.	25	33	.34	
TPI AAVLOS	1.34	2.40	-1.04	76	1.45	
TPI AAV _N	.37	2.41	29	tht	· 54	
MCCI AAVLOS	1.59	2.65	-1.59	-1.83	.91	
MCCI AAVN	1.34	2.16	1.34	1.47	.37	
MCC2 AAVLOS	48.	1.48	82	97	.59	
MCC2 AAVN	•50	1.29	.50	.85	.16	

while the data listed under Set A represents the total expected error, including theoretical error, system The data in Table 3-3 listed under Set D represents the theoretical error inherent in the charts, errors, and execution errors.

*The value for CSI AAV represents the difference between CSI AV computed with sensor and reading errors, and the value for CSI AV computed without sensor and reading errors.

3.2 Miss Distance

The miss distances were established by Sets B and C. The average in plane miss distance at the point of closest approach for the 50 cases without errors (Set C) was 494 feet, and for the 100 cases with errors (Set B) was 1664 feet.

The average, mean, and standard deviation of the components of the miss distance in a local vertical coordinate system with X along the radius vector of the LM, Z along the angular momentum vector of the LM, and Y completing the righthanded system were as follows:

Table 3-4

Coordinates at Closest Approach

Axis	Ave	rage	Mea	an	Standard	Deviation
	SET B Feet	SET C Feet	SET B Feet	SET C Feet	SET B Feet	SET C Feet
x	939	194	-329	122	1488	208
Y	1374	454	102	392	1952	256
Z	301	251	51	17	411	307

3.3 ∆V Used

The mean total translation ΔV used in the 50 cases without errors (Set D) was 136.3 ft/sec with a standard deviation of 15.0 ft/sec while the mean for the 100 cases with errors (Set A) was 150.5 ft/sec with a standard deviation of 21.0 ft/sec.

The minimum and maximum ΔV cases without errors required 120.5 ft/sec and 180.1 ft/sec, respectively, while with errors minimum and maximum ΔV cases required 120.2 ft/sec and 230.4 ft/sec. Figure 9 shows the distribution of total ΔV .

A breakdown of how the ΔV was used is shown in the following table:

Table 3-5

Translation **AV**

Maneuver	∆V (Set D) Average Without Errors ft/sec	∆V (Set A) Average With Errors ft/sec
CSI	46.3	47.1
CDH	13.6	14.6
TPI	26.1	27.5
MCC1	5.1	8.9
MCC2	5.6	9.9
Braking and LOS Control	39.7	42.6

3.4 Arrival Time at TPI

.

The mean arrival time at TPI for the 50 cases without errors (Set D) was 23 seconds later than nominal with a standard deviation of 31 seconds, while the mean for the 100 cases with errors (Set A) was 21 seconds late with a standard deviation of 4 minutes and 27 seconds.

Figure 10 shows the distribution of arrival time at TPI over intervals of two minutes for the 100 cases with errors.

3.5 **A** T from TPI to TPF

The mean ΔT from TPI to close approach without braking for the 50 cases in Set C was 2586 seconds with a standard deviation of 9 seconds while the mean ΔT of transfer without braking for the 100 cases in Set B was 2584 seconds with a standard deviation of 44 seconds.

The mean Δ T from TPI to intercept with braking and LOS control for the 50 cases in Set D was 2747 seconds with a standard deviation of 32 seconds while the mean Δ T of transfer with braking for the 100 cases in Set A was 2756 seconds with a standard deviation of 59 seconds. The nominal case required 2737 seconds with braking and LOS control.

Figure 11 shows the distribution of the ΔT transfer with braking for the 100 cases with errors.

4.0 References

- 1. LM Rendezvous Procedures F Mission, Flight Crew Support Division, dated March 17, 1969.
- Apollo Mission F Spacecraft Operational Trajectory,
 Volume 1, Mission Profile, dated March 26, 1969.
- 3. Relative Covariance Matricies of the Actual Post Insertion and CDH State Vectors for Apollo 10, Mission Planning and Analysis Division, Memorandum No. 69-FM62-63, dated April 3, 1969.

FIGURE 1

					CCT RACKTID TARLE	MISSION F	I NOTOCTU	NOMTNAL.		(_283 3)		io (-173.0)		1 (- oh o)		(154.)			(203 U)		(01 2)		(300 0)	12.066	-F2 (-317.3)		(72.9)		-F4 (- 22.4)		(50.5)		CSI (0.0)		CSI (50.5)							ed by FPrB/OPS	4POLLO 10, APRIL 11, 1969
	2.	ι.	• 1			<u>~</u>	<u>،</u>	•7 T	("in) 6.	•1 1.	····	5	L-	· ·		•4	9.	10	0.	-2	4.	•	D	0.	N	5				• •		- 0	ΔΔΔ+		A V					t .	•	• Prepar	MISSIM A
4 12	10	15	5	5	0	101	0	1,1	15	17.	11	11	11	11	51	13	10	PL	7	11	1.	5	61	00	500	00	00	0	2				20	5.0	100		10				50	50	
r) r	120.0	1<1.0	1 22 .0	163.0	124-0	1 65 . 1)	126.0	127.0	128.0	129.0	130.0	131.0	132.0	133.0	154.0	135.0	136.0	137.0	138.0	139.0	140.0	141.0	1+2.0	143.0	144.0	145.0	1+6.0	147.0	0.111	0.6+1	0.001		0.541						0.801	0.601	100.0	0.101	
r L	12.4	13.4	74.4	15.5	10.5	77.5	74.5	79.5	40.4	9].7	R2.7	1.58	84.5	86. H	94.4	6.18	44.1	0.06	0.016	0.56	93.1	1.46	95.2	5.46	2.10	94.3	6.99	100.4	101.4	102.4	2.01 2.01			L L V I	1.101	1.001	8-01		H•[]]	112.4	113.4		
• 1	-70.)	0.11-	-72.0	-13.0	- 14 . ()	-75.0	-76.0	-77-0	-78.0	0.61-	0 · () H-	-41-0	-42.0	-43.0	- 94 - 0	()•58-	-84.0	-87.0	- BH - 0	-99-0	0.06-	0.16-	-92.0	-93.0	-94.0	-95.0	-96-0	-97.0	-98.0	0.66-	-100.0							0.101	0.401-	0.01-	-110.0	-111-0	
î	1.4.4	200.6	1.53.4	6-1142	1-240	243.9	7.1.1	247.4	244.4	£.17c	1.874	P74.9	8.470	74.K	2H() • 4	5.585	1.444	286.0	R-785	7.980	5.144	4.E94	5.754	0•19c	9.99c	7.00F	7.20E	304 . 4	306.3	1.405	910-01		1.015		0 - 0 I C				5.426	320.7	374.6	130.4	
с. • ч	-14.9.0	-141.0	-142.0	-143.0	- 44	-145.0	-146.0	-147.0	-144.0	-149.0	-150.0	-151-0-	-152.0	-153.0	-154.0	-155.0	-156.0	-157.0	-158.0	-159.0	-160.0	-161.0	-142.0	-163.0	-164.0	-165.0	-146.0	-167.0	-168.0	-149.0	-170.0	0.1/1-						n•	-178-0	-179.0	0.041-	-1H1-0	
5	247.3	744.4	4.645	250.5	251.55	252.5	253.6	254.4	255.1	256.7	257.8	25A.R	259.9	260.9	262.0	263.n	264.1	265.1	266.2	267.2	264.3	269.3	270.4	271.4	272.5	273.5	274.6	275.7	274.7	277.8	278.H		0.102		1.102				287.4	284.4	284.5	290.6	
.5	240.0	0.[42	242.0	243.0	244.0	245.0	246.0	247.0	248.0	249.0	250.0	251.0	252.0	253.0	254.0	255.0	256.0	257.0	258.0	259.0	260.0	261.0	262.0	263.0	264.0	265.0	266.0	267.0	268.0	269.0	270.0	0.112	0.212	0.613		0.010	0.010	0.112	279.0	279.0	280.0	2A1.0	

FIGURE 2

			CDH BACKTER WADTE	MICCION E	J MOTOCTH				TIME NOMINAL	(WIN)	-36 R1 (-122.21)		-23 R2 (-122.68)		-10 Å3 (-122.87)				AVX: X1 (47.2)		+X3 (0.1)		(47.3)		-X2 (-47.7)		AVX (- 0.4) FPS			AVZ: Z2 (231.3)		-21 (-94.8)		(136.5)		-23 (-136.5)	and a second sec	AVZ (0.0)		MISSION APOLLO 10, APRIL 11, 1969	1 Of 2	PREPARED BY FPRB/OPS
23	79.2	80.3	81.5	82.6	83.8	84.9	86.1	87.2	88.4	89.6	90.7	91.9	93.1	94.2	95.4	9.96	97.8	98.9	1001	101.3	102.5	103.7	104.9	106.1	107.3	108.5	109.7	10.0	113.3	114.5	115.7	116.9	118.2	119.4	120.6	121.8	123.0	124.3	125.5	126.7	128.0	129.2
X3	6.	6.	6.	6.	6.	6.	6.	6.	.8	.8	.8	.8	8.	.8	.8	.8	.8	8.	7.	7.	1.	7.	.7	1.	9.	9.	9.	<u>.</u>		5.	-5	-5	·-5	5.	4.	4.	4.	.	4.	e.	m.	r.
22	132.0	133.9	135.9	137.9	139.9	141.8	143.8	145.8	147.8	149.8	151.8	153.8	155.9	157.9	159.9	161.9	164.0	166.0	168.1	170.1	172.2	174.2	176.3	178.4	180.5	182.6	184.7	186.7	191.0	193.1	195.2	197.3	199.4	201.6	203.7	205.9	208.0	210.2	212.3	214.5	216.7	218.0
X2	30.6	31.0	31.3	31.7	32.1	32.5	32.8	33.2	33.6	33.9	34.3	34.7	35.0	35.4	35.8	36.1	36.5	36.9	37.2	37.6	38.0	38.3	38.7	39.0	39.4	39.8	1.04	40.5	0.14	41.5	41.9	42.2	42.6	42.9	43.3	43.6	0.44	44.3	7.44	45.0	45.4	45.7
21	52.6	53.4	54.3	55.1	55.9	56.8	57.6	58.4	59.3	60.1	61.0	61.8	62.7	63.5	64.4	65.3	66.1	67.0	61.9	68.8	69.6	70.5	71.4	72.3	73.2	74.1	75.0	76.9	1.17	78.6	79.5	80.4	81.4	82.3	83.2	84.2	85.1	86.0	87.0	87.9	6.89	89.8
X	29.7	30.1	30.5	30.8	31.2	31.6	32.0	32.4	32.7	33.1	33.5	33.9	34.2	34.6	35.0	35.4	35.7	36.1	36.5	36.9	37.2	37.6	38.0	38.3	38.7	39.1	39.5	39.8	10.6	40.9	41.3	1.14	42.0	42.4	42.8	43.1	43.5	43.9	44.2	14.6	45.0	45.3
RDOT	-75.	-76.	-17.	-78.	-79.	-80.	-81.	-82.	-83.	-84.	-85.	-86.	-87.	-88.	-89.	-90.	-91.	-92.	-93.	-94.	-95.	-96-	-97.	-98.	-99.	-100.	-101.	-102.	-101-	-105.	-106.	-107.	-108.	-109.	-110	-111.	-112.	-113.	-114.	-115.	-116.	-111-

																																						MISSION APOLLO 10, APRIL 11, 1969	2 01 2		PREPARED BY FPRB/OPS
23	130.5	131.7	132.9	134.2	135.4	136.7	137.9	139.2	140.5	7.141	143.0	144.3	145.5	146.8	148.1	149.3	150.6	151.9	153.2	154.5	155.8	157.0	158.3	159.6	160.9	162.2	103.5	1 99L	167.4	168.8	170.1	171.4	172.7	174.0	175.3	176.7	178.0	179.3	180.7	182.0	183.3
X3	e.	5.	-2	.2	2.	.1	۲.	.1	0.	0.	0	0	1	1	1	2	2	2	3	3	۳ . -	+.+ -	†	4	5	<u>.</u>					7	8	8	6	6	6	-1.0	-1.0	-1.1	-1.1	-1.2
22	221.0	223.2	225.4	227.6	229.8	232.0	234.2	236.4	238.6	240.9	243.1	245.3	247.6	249.8	252.1	254.4	256.6	258.9	261.2	263.4	265.7	268.0	270.3	272.6	274.9	211.2	0.612	C.102	286.5	288.9	291.2	293.6	295.9	298.3	300.7	303.0	305.4	307.8	310.2	312.6	315.0
X2	46.1	4.6.4	46.7	47.1	47.4	47.8	48.1	48.4	48.8	1.94	49.5	49.8	50.1	50.5	50.8	51.1	51.4	51.8	52.1	52.4	52.8	53.1	53.4	53.7	54.1	74.4	1.40	55.3	55.7	56.0	56.3	56.6	56.9	57.3	57.6	6.12	58.2	58.5	58.8	59.1	59.4
Zl	90.8	91.7	92.7	93.6	94.6	92.6	96.5	97.5	98.5	99.5	100.5	101.5	102.4	103.4	104.4	105.4	106.4	107.4	108.5	109.5	110.5	2.111	112.5	113.6	114.6	9.511	0.011	1.811	119.8	120.8	121.9	122.9	124.0	125.0	126.1	127.2	128.2	129.3	130.4	131.5	132.6
X	45.7	46.1	46.4	46.8	47.1	47.5	47.9	48.2	148.6	48.9	49.3	1.94	50.0	50.4	50.7	51.1	51.5	51.8	52.2	52.5	52.9	53.2	53.6	53.9	54.3	0.40	0.00	1.35	56.1	56.4	56.8	57.1	57.5	57.8	58.2	58.5	58.8	59.2	59.5	59.9	60.2
RDOT	-118.	-119.	-120	-121.	-122.	-123.	-124.	-125.	-126.	-127.	-128.	-129.	-130.	-131.	-132.	-133.	-134.	-135.	-136.	-137.	-138.	-139.	-140.	-141.	-142.	-143.	-144.	-146-	-147.	-148.	-149.	-150.	-151.	-152.	-153.	-154.	-155.	-156.	-157.	-158.	-159.

0

C

" F" MISSION

"F" MISSION

"F" MISSION

(

(

EUGENE DIETZGEN CO

ND. 34DR-M DIETZGEN GRAPH PAPER MILLIMETER

EUGENE DIETZGEN CO MADE IN U S A

340R-M DIETZGEN GRAPH PAPER MILLIMETER

Z

