Chassificariol cantes
Ta UNCLASSIFIED

Scientitic and Teunical Information Facility

TECHNICAL REPORT
TASK MSC/STL A-20

APOLLO MISSION SA 501

PRELIMINARY MISSION PROFILE (U)

TRW space technology laboratories

$$
\begin{aligned}
& 3300-6001-R C 000 \\
& \text { Total Pages: }
\end{aligned}
$$

APOLLO MISSION SA 501
 PRELIMINARY MISSION PROFILE (U)

22 FEBRUARY 1965
Prepared for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION MANNED SPACECRAFT CENTER

Contract No. NAS 9-2938
Phase II (Apollo)

TRY SPACE TECHNOLOGY LABORATORIES

FOREWORD

This report, which defines the Preliminary Mission Profile for Apollo Mission SA-501, is submitted by TRW Space Technology Laboratories (STL) to the NASA Manned Spacecraft Center in partial response to Task MSC / STL A-20 (Establishment of Reference Trajectory for Apollo Mission SA-501) of the Apollo Mission Trajectory Centrol Program (Contract No. NAS9-2938, Phase II). This report is presented in two volumes. Volume I summarizes the mission objectives, the system constraints, and the input data for mission simulation and describes the mission profile. It presents pertinent data in both tabular and graph forms. Volume II contains the trajectory listing of the mission profile, along with the necessary print key.

CONTENTS

Page

1. INTRODUCTION AND SUMMARY 1
1.1 Purpose 1
1.2 Scope 1
1.3 Profile Summary 1
2. SPACECRAFT MISSION REQUIREMENTS 4
2.1 Spacecraft Test Objectives 4
2.1.1 First Order 4
2.1.2 Second Order 4
2.1.3 Third Order 4
3. 2 Mission Constraints 5
2.2.1 Launch Vehicle System Constraints 5
2.2.2 Spacecraft Systems Constraints 5
2.2.3 Trajectory Profile Constraints 6
4. SUMMARY OF INPUT DATA 7
3.1 Launch Vehicle 7
3.2 Spacecraft 10
3.3 Ground Stations 10
3.4 Miscellaneous Data 15
3.4.1 Earth Constants 15
3.4.2 Miscellaneous Constants and Conversion Factors 16
5. MISSION ANALYSIS AND DESCRIPTION 17
4.1 Saturn V Ascent to Parking Orbit 17
6. 2 Earth Parking Orbit 18
7. 3 S-IVB Second Burn 18
8. 4 Earth Intersecting Coast 23
9. 5 SPS Burn 23
4.6 Pre-entry Sequence 25
4.6.1 Pre-entry Sequence (SPS Burn) 25
4.6.2 Pre-entry Sequence (No SPS Burn) 25
4.7 Atmospheric Entry 25
10. 7. 1 Atmospheric Entry (SPS Burn) 25
4.7.2 Atmospheric Entry (No SPS Burn) 26
1. 8 Vacuum Impact Points 26

CONTENTS (Continued)

Page5. NOMINAL TRAJECTORY DATA 27
6. TRACKING AND COMMUNICATIONS DATA 73
REFERENCES 75

ILLUSTRATIONS

Page
1-1 Mission Summary 3
3-1 Saturn V Reference Dimensions 11
3-2 Saturn V Zero Angle of Attack Drag Coefficient 12
3-3 Command Module Trim Drag Coefficient 13
4-1 Effect of S-IVB Second Burn Steering on the Earth Intersecting Coast (Sheets land 2) 22
4-2 Effect of SM Steering on Entry 24
5-1 Earth Ground Track 28
5-2 Altitude - Longitude History. 29
5-3 Saturn V Ascent to Orbit/Altitude, Latitude, and Longitude 32
5-4 Saturn V Ascent to Orbit/Inertial Velocity, Flight Path Angle, and Azimuth 33
5-5 Saturn V Ascent to Orbit/Relative Velocity, Flight Path Angle, and Azimuth 34
5-6 Saturn V Ascent to Orbit/Sensed and Total Acceleration 35
5-7 Saturn V Ascent to Orbit/Pitch Rate, Pitch Attitude, and Pitch Angle of Attack 36
5-8 Saturn V Ascent to Orbit/Altitude, Mach Number, and Dynamic Pressure 37
5-9 Earth Parking Orbit/Altitude, Latitude, and Longitude 39
5-10 Earth Parking Orbit/Inertial Velocity, Flight Path Angle, and Azimuth 40
5-11 Second S-IVB Burn/Artitude, Latitude, and Longitude 42
5-12 Second S-IVB Burn/Inertial Velocity, Flight Path Angle, and Azimuth 43
5-13 Second S-IVB Burn/Sensed and Total Acceleration 44
5-14 Second S-IVB Burn/Pitch Attitude, Pitch Rate, and Pitch Angle of Attack 45

ILLUSTRATIONS (Continued)
Page
5-15 Earth Intersecting Coast/Altitude, Latitude, and Longitude 47
5-16 Earth Intersecting Coast/Inertial Velocity, Flight Path Angle, and Azimuth. 48
5-17 SPS Burn/Altitude, Latitude, and Longitude 50
5-18 SPS Burn/Inertial Velocity, Flight Path Angle, and Azimuth 51
5-19 SPS Burn/Sensed and Total Acceleration 52
5-20 SPS Burn/Pitch Attitude, Pitch Rate, and Pitch Angle of Attack 53
5-21 Pre-entry Sequence/Altitude, Latitude, and Longitude 55
5-22 Pre-entry Sequence/Inertial Velocity, Flight Path Angle, and Azimuth 56
5-23 Pre-entry Sequence (No SPS Burn)/Altitude, Latitude, and Longitude 57
5-24 Pre-entry Sequence (No SPS Burn)/Inertial Velocity, Flight Path Angle, and Azimuth 58
5-25 Atmospheric Entry/Altitude, Latitude, and Longitude. 61
5-26 Atmospheric Entry/Inertial Velocity, Flight Path Angle, and Azimuth 62
5-27 Atmospheric Entry/Relative Velocity, Flight Path Angle, and Azimuth 63
5-28 Atmospheric Entry/Sensed and Total Acceleration 64
5-29 Atmospheric Entry/Altitude, Dynamic Pressure, and Mach Number 65
5-30 Atmospheric Entry/Range from Entry. 66
5-31 Atmospheric Entry (No SPS Burn)/Altitude, Latitude, and Longitude. 67
5-32 Atmospheric Entry (No SPS Burn)/Inertial Velocity, Flight Path Angle, and Azimuth 68
5-33 Atmospheric Entry (No SPS Burn)/Relative Velocity, Flight Path Angle, and Azimuth 69
5-34 Atmospheric Entry (No SPS Burn)/Sensed and Total Acceleration 70

ILLUSTRATIONS (Continued)

Page
5-35 Atmospheric Entry (No SPS Burn)/Altitude, Dynamic Pressure, and Mach Number 71
5-36 Atmospheric Entry (No SPS Burn)/Range From Entry 72
6-1 Tracking Visibility and Earth Shadow Data 74

TABLES
Page
3-1 Sequential Weight Statement 8
3-2 Stage Propulsion Data 9
3-3 Time Sequence of Events. 9
3-4 Atmospheric Values at 35 km 12
3-5 Spacecraft Weight Data 13
3-6 Radar Tracking Station. Sites and Equipment 14
5-1 Time Sequence of Events. 30
5-2 Saturn V Ascent to Orbit/Discrete Events Summary 31
5-3 Earth Parking Orbit/Discrete Events Summary. 38
5-4 Second S-IVB Burn/Discrete Events Summary 41
5-5 Earth Intersecting Coast/Discrete Events Summary 46
5-6 SPS Burn/Discrete Events Summary 49
5-7 Pre-entry Sequence/Discrete Events Summary 54
5-8 Pre-entry Sequence (No SPS Burn)/Discrete Events Summary 54
5-9 Atmospheric Entry/Discrete Events Summary 59
5-10 Atmospheric Entry (No SPS Burn)/Discrete Events Summary 60

1. INTRODUCTION AND SUMMARY

1. 1 PUR POSE

The Preliminary Mission Profile defined in this report is designed for the unmanned Apollo Mission SA-501. It is a combined launch vehicle and spacecraft trajectory profile that is intended to satisfy the mission's primary spacecraft objective (to obtain data on the thermal protection system under lunar entry conditions; Reference l) without violating any of the launch vehicle and spacecraft ground rules and constraints applicable to the mission. It also satisfies the single-SPS-burn mode previously agreed upon by MSC and MSFC.

1.2 SCOPE

In addition to the spacecraft mission requirements, this volume of the report summarizes the input data used in simulation of the profile. It describes the major phases of the mission, gives the trajectory analysis for applicable phases, and presents time history data for pertinent trajectory parameters. It also presents the spacecraft rise and set times as seen from 19 tracking stations and the times of spacecraft entry into and exit from the earth shadow.

Volume II of this report will contain the trajectory listing of the mission profile.

The computer simulations of both the launch vehicle and spacecraft trajectories were characterized by simple propulsion system models and open loop steering (constant attitude and attitude rate commands). These simulations do not consider spacecraft attitude during orbital coast operations and entry, RCS propellant consumption, or detailed tracking coverage. These items are currently under evaluation and will be reported in later documentation on this mission.

1.3 PROFILE SUMMARY

Apollo Mission SA-501, currently planned for the first quarter of 1967, will be the first launch of the Saturn V vehicle with an Apollo spacecraft. For mission simulation, launch is assumed to occur at

13:00 GMT, January 1, from launch complex 39A of the Merritt Island Launch Area. In addition to giving a daylight launch, this time selection results in almost a full day of sunlight near Hawaii for the Command Module (CM) recovery operation.

Major events of the mission are illustrated in Figure 1-1. The mission has been divided into seven major phases:

1. Saturn V ascent to orbit
2. Earth parking orbit
3. S-IVB second burn
4. Earth intersecting coast
5. Service Module Propulsion System (SPS) burn
6. Pre-entry sequence
7. Atmospheric entry

The Saturn V launch phase includes the burn of the S-IC stage, the burn of the S-II stage, and a partial burn of the S-IVB stage. Thrust termination for the latter occurs at a 100 nmi circular parking orbit. After approximately two revolutions in the earth parking orbit and while in the vicinity of Cape Kennedy, the S-IVB is restarted and burns to nominal fuel depletion. This burn injects the spacecraft into an orbit with an apogee altitude of $7,467 \mathrm{n} \mathrm{mi}$ and an inertial flight path angle at entry into the earth's atmosphere (defined as 400,000 feet) of -7.35 degrees. This earth-intersecting orbit will permit successful entry and recovery of the CM in case of an SPS failure.

Approximately 1-1/2 hours after apogee and while being tracked by Carnarvon, the SPS is ignited, accelerating the spacecraft so that an inertial entry velocity of $36,333 \mathrm{ft} / \mathrm{sec}$ and an inertial entry flight path angle of -7.35 degrees are achieved. Following SPS cutoff, a pre-entry sequence is initiated while the spacecraft is still under coverage of Carnarvon tracking. This coverage is lostapproximately 4-1/2 minutes after SPS burnout and atmospheric entry occurs about 7 minutes later. The spacecraft then flies a Nominal Undershoot Entry Trajectory over a 2500 n mi range and lands approximately 750 nmi due north of the Hawaiian Islands.
$3300-6001-\mathrm{RC} 000$
Page 3
Launch into parking orbit

(a)

\oplus

(a)

©

©

ceses

©

(13) Jettison Service Module

童

©

2. SPACECRAFT MISSION REQUIREMENTS

2. 1 SPACECRAFT TEST OBJECTIVES

The spacecraft test objectives presented here were taken from Reference 1.

2.1.1 First Order

a) Demonstrate satisfactory spacecraft performance at lunar return conditions during terminal transearth, entry, parachute-descent, and post-landing mission phases.
b) Demonstrate the structural integrity of the space vehicle (Saturn V/SLA-LEM-CSM).

2.1.2 Second Order

a) Evaluate CM heat shield performance at the Nominal Undershoot Entry, initiated at not less than the relative velocity corresponding to $36,333 \mathrm{ft} / \mathrm{sec}$ inertial velocity and an inclination of 40 degrees following a cold-soak to the transearth design temperature condition.
b) Determine Emergency Detection System open-loop performance.
c) Verify CM radiation shielding effectiveness.
d) Determine the structural and dynamic response of the CSM and adapter to the Saturn V launch environment.
2.1.3 Third Order
a) Determine the response of the LEM to the Saturn V launch environment.
b) Demonstrate normal mode separation of the Launch Escape System (LES) and the Boost Protective Cover (BPC) from the CSM.
c) Demonstrate (upon ground command) LES performance in event of launch vehicle failure prior to normal LES jettison.
d) Demonstrate maximum continuous SPS burn required (approximately 400 seconds to simulate lunar orbit insertion).
e) Demonstrate operation of the parachute recovery subsystem and recovery aids following entry at nominal design conditions.
f) Demonstrate operational radiation monitoring instrumentation in a radiation environment.
g) Demonstrate entry guidance at lunar return velocity:

2. 2 MISSION CONSTRAINTS

The following mission constraints for this Preliminary Mission Profile have been compiled from data supplied by MSC and from Reference 1.

2. 2.1 Launch Vehicle Systems Constraints

a) Launch azimuth of 72.0°.
b) The launch vehicle profile will be as close as possible to the profile of the nominal Lunar Orbital Rendezvous (LOR) mission.
c) Full S-IVB loading and full S-IVB burn are required.
d) A minimum of two orbits of the S-IVB/IU(Instrumentation Unit)/SC.
e) Tracking is required for both the pre-ignition sequence and the second S-IVB burn. This burn will occur over Eastern Test Range (ETR).
f) After S-IVB cutoff, the vehicle attitude will be maintained relative to the local vertical.
g) Guidance command angle rate limitation of leg/sec in pitch and yaw.
h) Thirty-degree maximum command attitude in the yaw plane.

2.2.2 Spacecraft Systems Constraints

a) Total mission duration (launch to CM splash) not to exceed 12 hours (programmer limit).
b) Spacecraft orientation control as required to provide structural temperature gradients.
c) A continuous SPS burn of at least 400 seconds.
d) Initiation of SM/CM separation manuever no later than 5 minutes before reaching 400,000-foot altitude.
e) Nominal trim lift-to-drag ratio is 0.34 .
f) Tracking is required for all SPS burns.
2.2.3 Trajectory Profile Constraints
a) A minimum of two revolutions in the 100 n mi parking orbit.
b) At least 4 hours of cold soak beyond earths' significant albedo (to simulate terminal transearth conditions).*
c) Free return of the spacecraft on an earth-intersecting trajectory following spacecraft/launch vehicle separation (to allow satisfactory recovery of the spacecraft in case of an SPS failure to fire).
d) CM entry into the earths' atmosphere (400, 000-foot altitude) with an inertial velocity of $36,333 \mathrm{ft} / \mathrm{sec}$ and an inertial flight path angle of -7.35 degrees (measured from the local horizontal).
e) A 2500 n mi range from entry to landing (Nominal Undershoot Entry Trajectory).
f) Earth landing to occur in the Pacific Ocean clear of any major island group.

[^0]
3. SUMMARY OF INPUT DATA

The summary of input data in this section consists of data from References 2 and 3 and data agreed upon at a number of unpublished technical coordination meetings of MSC and STL personnel. This data includes all quantitative specifications on launch vehicle, spacecraft, and ground tracking stations, and is considered adequate for the present evaluation of the mission.

3. 1 LAUNCH VEHICLE

Data on the Saturn V launch vehicle was based on material in Reference 2, and supplemented by an MSFC trajectory listing (dated 2 October 1964) for the SA-501 launch vehicle.

Weight and propulsion characteristics of the Saturn V launch vehicle are presented in Tables $3-1$ and $3-2$, respectively. Weights are given in a manner essentially equivalent to their chronological disposition in the trajectory simulation. It is understood that all jettison weights include propellant reserve allowances, if any. Propulsion data is used in a simple propulsion model that applies a constant propellant flow rate and a constant thrust, but with corrections for atmospheric pressure effects. The thrust history for the S-II stage is divided into three constant-thrust, constant-flow-rate phases to simulate the optimum thrust profile for this stage. These phases, listed in order of occurrence, are:

1) A short duration, nominal thrust, nominal specific impulse phase
2) A high thrust, low specific impulse phase
3) A low thrust, high specific impulse phase

The launch vehicle sequence of events used in the trajectory simulation is presented in Table 3-3. This sequence was derived from the above weight and propulsion data.

Table 3-1. Sequential Weight Statement

	Weight Losses (lb)	Event Weights (lb)
At Saturn V Liftoff		6,088,000
S-IC Propellant Consumed	4,192,421	
At Inboard Engine Cutoff*		1,895,579
S-IC Propellant Consumed	94,388	
At S-IC Burnout		1,801,191
S-IC at Burnout	394,145	
At S-II Ignition		1,407,046
S-IC/S-II Interstage $* *$	9,869	
LES Jettison ${ }^{*}$ *	8,200	
S-II Propellant Consumed	929,998	
At S-II Burnout		458, 979
S-II at Burnout	105, 041	
At S-IVB Ignition		353,938
S-IVB Propellant Consumed	84, 134	
At S-IVB Cutoff Into Parking Orbit		269, 804
Loss in Parking Orbit	3,873	
At S-IVB Second Ignition		265,931
S-IVB Propellant Consumed	141,312	
At S-IVB Burnout		124,619
S-IVB at Burnout	39,619	
Payload at Injection		85, 000
*S-IC inboard engine is cut off 4 sec prior to outboard engine cutoff ** S-IC/S-II interstage and LES are jettisoned at 30 and 35 sec after S-IB burnout and jettison, respectively.		

Table 3-2. Stage Propulsion Data

| Stage | Vacuum
 Thrust
 (lb) | Sea Level
 Thrust
 (lb) | |
| :--- | :---: | :---: | :---: | | Propellant |
| :---: |
| Flow Rate |
| $(\mathrm{lb} / \mathrm{sec})$ |

Table 3-3. Time Sequence of Events

Event

Liftoff

End Vertical Rise, Start Pitchover
Inboard Engine Cutoff
Outboard Engine Cutoff and S-IC Separation
S-II Ignition, Start High Pitch Rate Steering
Start Low Pitch Rate Steering
Jettison S-IC/S-II Interstage Adapter
Jettison Launch Escape System
S-II Burnout and Jettison, S-IVB Ignition
S-IVB Cutoff Into Orbit

S-IVB Restart
$T+0$
S-IVB Burnout
$\mathrm{T}+289.451$

The Saturn V launch vehicle is illustrated in Figure 3-1, and the zero angle-of-attack drag force data is presented in Figure 3-2. An aerodynamic reference area of 855.3 square feet was used.

The static atmosphere model used in the trajectory simulation has two parts. Below an altitude of 35 km , the Patrick Atmosphere (Reference 4) is used, while between 35 km and 400,000 feet, the U.S. Standard Atmosphere, 1962 (Reference 5) is used. Both atmospheres are provided to the computer as tables of pressure and temperature versus geometric altitude. In changing from the Patrick to the U.S. Standard Atmosphere at an altitude of 114,830 feet, no attempt has been made to remove the discontinuity between the two models. Table 3-4 gives comparative atmospheric values at that altitude.

3.2 SPACECRAFT

Weight characteristics for the Apollo spacecraft were obtained from Reference 6. SPS thrust and propellant flowrate characteristics and CM entry aerodynamic data were obtained in unpublished technical coordination meetings with MSC personnel. The sequential weight statement for the spacecraft is presented in Table 3-5. Approximately 1400 pounds of usable SPS propellants are not consumed, which should provide more than adequate allowance for flight performance reserves.

The SPS was characterized by a vacuum thrust of 21,900 pounds and a vacuum specific impulse of 313.0 seconds. This results in a propellant flow rate of $69.968 \mathrm{lb} / \mathrm{sec}$.

The aerodynamic trim drag coefficient data used for the CM entry trajectory is presented in Figure 3-3 and is based on an aerodynamic reference area of 129.36 square feet. The lift force is based on a constant 0.34 times the drag force. The entry trajectory is based upon the U.S. Standard Atmosphere, 1962, and a constant CM weight of 11,000 pounds.

3. 3 GROUND STATIONS

The precise complement of stations, their ultimate locations, their operating characteristics, and such related data to be used for Apollo Mission SA-501 are currently not known. The data in Table 3-6, compiled from tracking site and equipment information supplied by MSC, is assumed to be applicable at this time.

Figure 3-1. Saturn V Reference Dimensions

Figure 3-2. Saturn V Zero Angle of Attack Drag Coefficient

Table 3-4. Atmospheric Values at 35 km
Patrick Atmosphere U.S. Standard
Pressure ($\mathrm{lb} / \mathrm{in}^{2}$)
0.085922154
0. 083418396

Temperature (${ }^{\circ} \mathrm{R}$)
439. 42235
425.72477

Speed of sound ($\mathrm{ft} / \mathrm{sec}$)
1027. 6009
1011.4798

Density (slug/ft ${ }^{3}$)
$0.16403886 \times 10^{-4}$
0. 1643758×10^{-4}

Table 3-5. Spacecraft Weight Data

Weight Losses (lb)	Event Weights (lb)
	$\frac{93,200}{}$

At Liftoff
\quad Launch Escape System
At Injection Into Orbit
LEM Jettison
Saturn Launch Adapter
At SPS Ignition
\quad SPS Propellant Consumed
At SPS Cutoff
SPS Propellant Remaining
SPS Burnout

Command Module
8,200

LEM Jettison
21,490
3, 800
85,000

59, 710
37,083*
22,627
1,427
10, 200
11,000

Figure 3-3. Command Module Trim Drag Coefficient

The station coordinates given are based on a Fisher ellipsoid.
This model is described by:
$a=$ semimajor axis $=6378.166 \mathrm{~km}$
$\mathrm{b}=$ semiminor axis $=6356.784 \mathrm{~km}$
$f=$ flattening $=1 / 298.3$
The altitude is referenced to the ellipsoid and includes geoidal separation.

3.4 MISCELLANEOUS DATA

The following earth constants and conversion factors (Reference 7) have been used in the generation of the mission profile and are consistent with those presented in Reference 8.

3.4.1 Earth Constants

Rotational rate

Equatorial radius
4. $37526902 \times 10^{-3} \mathrm{rad} / \mathrm{min}$ $0.417807416 \times 10^{-2} \mathrm{deg} / \mathrm{sec}$
$0.729211504 \times 10^{-4} \mathrm{rad} / \mathrm{sec}$

Average radius
2. $092573819 \times 10^{7} \mathrm{ft}$

Gravitational parameter (He)
2. $0909841 \times 10^{7} \mathrm{ft}$
$5.53039344 \times 10^{-3} \mathrm{er}^{3} / \mathrm{min}^{2}$
$11.46782384 \times 10^{3} \mathrm{er}^{3} / \mathrm{day}^{2}$
3. $986032 \times 10^{5} \mathrm{~km}^{3} / \mathrm{sec}^{2}$
$1.407653916 \times 10^{16} \mathrm{ft}^{3} / \mathrm{sec}^{2}$
Coefficients of potential harmonics
J term (second harmonic) $\quad 1.62345 \times 10^{-3} \mathrm{nd}$
H term (third harmonic) $\quad-0.575 \times 10^{-5}$ nd
D term (fourth harmonic) $0.7875 \times 10^{-5} \mathrm{nd}$
Earth flattening (f) $\quad 1 / 298.3$ nd
3. 4. 2 Miscellaneous Constants and Conversion Factors

Velocity of light in a vacuum	$9.83571194 \times 10^{8} \mathrm{ft} / \mathrm{sec}$
Astronomical unit of length	$4.90810367 \times 10^{11} \mathrm{ft}$
Kilometers per foot	$0.3048 \times 10^{-3} \mathrm{~km} / \mathrm{ft}$
Kilometers per nautical mile	$1.852 \mathrm{~km} / \mathrm{n} \mathrm{mi}$
Feet per nautical mile	$6076.115486 \mathrm{ft} / \mathrm{n} \mathrm{mi}$
Weight-to-mass ratio	$32.17404856 \mathrm{lb} / \mathrm{slug}$
Mass-to-weight ratio	$0.031080950 \mathrm{slug} / \mathrm{lb}$
Feet per earth equatorial	
radius	$2.092573819 \times 10^{7} \mathrm{ft} / \mathrm{er}$
Nautical mile per earth equatorial radius	$3443.93358 \mathrm{n} \mathrm{mi/er}$

4. MISSION ANALYSIS AND DESCRIPTION

The mission profile for Apollo Mission SA-501 has been designed to meet the Test Objectives of Section 2.1 without violating the Mission Constraints of Section 2.2. To satisfy these objectives and constraints and determine values of the free variables, a certain amount of trajectory analysis was required. The results of this analysis, along with a description of the resulting mission profile, are given in this section.

In addition to the nominal mission profile, an alternate profile resulting from an SPS failure to burn is also described. These two profiles have been characterized by "SPS Burn" and "No SPS Burn" titles and are identical up to the SPS ignition.

In the selected profile, the time duration from S-IVB burnout to SPS ignition is slightly greater than 3-1/2 hours and therefore does not meet the 4 -hour cold soak constraint (Section 2.2.3b).

4.1 SATURN V ASCENT TO PARKING ORBIT

Launch of Apollo Mission SA-501 will occur from Pad "A" of Launch Complex 39 during the first quarter of 1967. The geodetic coordinates are $28^{\circ} 38^{\prime} 50.927^{\prime \prime}$ North latitude and $80^{\circ} 38^{\prime} 08.071^{\prime \prime}$ West longitude. For the trajectory simulation, launch was assumed to occur at 13:00 hours GMT (08:00 hours EST) on 1 January 1967.

The launch profile is initiated with a $12-\sec$ ond vertical rise followed by a 0.3568 -degree kick (an instantaneous rotation of the missile attitude and velocity vector) into a gravity turn trajectory with a 72degree azimuth heading. Approximately 4 seconds prior to S-IC outboard engine cutoff, the center engine is cut off. Following a 3.8-second coast from S-IC cutoff and separation, the S-II is ignited and initiates a pitch-up at a $1 \mathrm{deg} / \mathrm{sec}$ rate. This high pitch rate steering is terminated approximately 11.5 seconds after ignition, and a low pitch rate steering of $0.1043 \mathrm{deg} / \mathrm{sec}$ down is initiated. Thirty seconds after S-IC cutoff and separation, the S-IC/S-II interstage adapter is jettisoned, and 5 seconds later, the LES is jettisoned.

The S-II burnout and separation and the S-IVB ignition all occur simultaneously in the simulation per Reference 2 . The low pitch rate steering of $0.1043 \mathrm{deg} / \mathrm{sec}$ is maintained until S-IV B cutoff at circular orbit velocity.

The values of the kick angle, the duration of the high pitch rate steering, and the magnitude of the low pitch rate steering were determined by iteration techniques so that the S-IVB cutoff would occur at 100 n mi altitude with a zero-degree flight path angle and maximum injected weight (or concurrently, minimum S-IVB propellant consumption).

It should be noted that the injected weight of 269,804 pounds calculated in the above simulation is 366 pounds less than that presented in Reference 2. This amounts to 0.136 percent of the injected weight, or less than 1 second of S-IVB burning, and is well within the error to be expected due to non-nominal performance. These results are satisfactory for establishing the preliminary mission profile and the spacecraft launch environment.

4.2 EARTH PARKING ORBIT

The S-IVB cutoff, which occurs approximately 11.5 minutes after liftoff, injects the spacecraft into a 100 n mi circular parking orbit with an inclination of 32.588 degrees and an orbital period of 88.1 minutes. On the second orbit, approximately 169 minutes after S-IVB cutoff, the Point Arguello Tracking Site acquires the spacecraft at a 5.0-degree elevation angle from the horizon, in preparation for the S-IVB second burn ignition. This initial acquisition by Point Arguello marks the beginning of a period of continual tracking coverage over the continental United States.

4.3 S-IVB SECOND BURN

Eleven minutes after Point Arguello tracking acquisition, the spacecraft has passed over the Eastern coast and is approximately 240 n mi north of Cape Kennedy. At this point, the S-IVB is ignited and starts its second burn. This particular selection of ignition time was chosen for three reasons:

1) It is desirable to have a good period of tracking coverage prior to S-IVB ignition. The above selection allows 11 minutes of tracking coverage.
2) It is desirable to have a good period of tracking coverage following S-IVB burnout. This selection allows a 12minute period of Antigua tracking coverage from burnout to the time that the spacecraft goes below a 5.0 -degree tracking elevation angle.
3) For the earth intersecting coast profile selected, this timing places the CM splash point due north of the Hawaiian Islands. This appears to be a desirable landing point, for it places the impact position of the spent S-IVB stage and the SM near the middle of the Pacific Ocean and is a convenient position for operating the recovery force.

The S-IVB burns for a full 290 seconds, simulating a translunar injection. However, the pitch steering was determined so that the resulting orbit would remain near earth (less than $12,000 \mathrm{nmi}$ altitude) and intersect the earth's atmosphere. The latter allows for a successful CM recovery if the SPS fails to fire.

At this date, there are no firm criteria on which to base the selection of an entry flight path angle for the no-SPS-burn condition. There appear to be two alternatives, however. The first would be to perform a high heat rate test of the CM if the SPS fails to burn. A large value of the entry flight path angle is required in this case since the entry velocity is considerably less than the desired value of $36,333 \mathrm{ft} / \mathrm{sec}$. However, this alternative has an operational disadvantage in that the locations of atmospheric entry and CM splash from the no-SPS-burn case are considerably separated from those with an SPS burn, and two recovery teams would probably be needed to cover both landing locations.

The other alternative would be to select a no-SPS-burn entry condition in which the distance between the two landing sites would be minimized. This requirement would favor a shallow entry flight path angle in order to stretch the entry range to a maximum. The latter alternative was developed in this mission profile, and a flight path angle of -7.35 degrees (same as that required with an SPS burn) was selected. This results in a 363 nmi separation of the two CM splash points.

The effect of the S-IVB pitch rate on the initial pitch attitude * required to achieve entry flight path angles of $-7.35,-10.0,-12.5$, and -15.0 degrees is illustrated in Figure 4-1, Sheet 1 . This illustration also shows the resulting apogee altitudes and entry latitudes. Figure 4-1, Sheet 2, shows the effect of S-IVB pitch rate on entry longitude, the time duration from liftoff to entry, and the entry velocities. Several interesting observations concerning pitch steering may be made from this data:

1) Large values of $S-I V B$ pitch rate, both positive and negative, and greater in magnitude than $0.3 \mathrm{deg} / \mathrm{sec}$, appear desirable since they place the atmospheric entry into the Pacific Ocean and clear of the Asian continent, and sec ondly, reduce the total mission duration time.
2) Conversely, values of $\mathrm{S}-\mathrm{IVB}$ pitch rate less than $0.3 \mathrm{deg} /$ sec in magnitude have very long mission durations, very poor locations of atmospheric entry location, and the highest entry velocities.
3) Negative pitch rates (counterclockwise and up) require negative (down) values of the initial pitch attitude. This is deemed undesirable because it will cause the altitude to decrease initially and is an undesirable thrusting attitude.

Based on the above observations, an S-IVB pitch rate of $0.5 \mathrm{deg} /$ sec was selected for the second burn. This rosults in an initial pitch attitude of -122.4 degrees (up) for the entry flight path angle of -7.35 degrees.

[^1]

Figure 4-1. Effect of S-IVB Second
Burn Steering on the
Earth Intersecting Coast

entry long itude (Deg)
$\stackrel{\text { ¢ }}{1}$

Figure 4-1. Effect of S-IVB Second

Unfortunately, this selection does not meet the 4 -hours cold-soak constraint of Section 2.2.3.b. The elapsed time from S-IVB burnout to SPS ignition is only 3 hours and 34 minutes with this profile.

4.4 EARTH INTERSECTING COAST

At final burnout, 3 hours and 16 minutes after liftoff, the S-IVB has injected the spacecraft into an orbit characterized by a $7,467 \mathrm{n} \mathrm{mi}$ apogee altitude and a $-7.35-$ degree entry flight path angle. This orbit has a semimajor axis of $43,573,000$ feet, an orbital eccentricity of 0.5226 , and an orbital inclination of 32.6 degrees.

Although an exact coast duration from S-IVB burnout to S-IVB/CSM separation was not established in the launch vehicle constraint (2.2.1f), a 30-second coast period was assumed for this profile. Approximately 12 minutes after S-IVB burnout, the spacecraft goes below the 5-degree elevation angle from the Antigua tracking station. The ground tracking coverage over the continental United States before, during, and after the S-IVB burn should provide adequate ground tracking data for launch vehicle systems evaluation and spacecraft orbit determination.

Almost an hour and a half later, Carnarvon tracking observes the CSM at an elevation angle of 5.0 degrees and a range of 9500 nmi . Twenty-three minutes later (5 hours and 15 minutes after liftoff), the spacecraft reaches apogee. During the spacecraft descent from apogee, but prior to SPS ignition, the orbit state vector (position and velocity) and the target vector will be updated in the Apollo Guidance Computer (AGC) by Carnarvon tracking via the Up-Data-Link.

4. 5 SPS BURN

The nominal mission plan calls for the SPS to accelerate the spacecraft in such a way that the desired values of velocity and flight path angle at atmospheric entry will be achieved. Figure 4-2 illustrates the effects of SPS pitch rate and SPS ignition time (measured from apogee) on the SPS initial pitch attitude that is required at ignition in order to achieve the -7.35-degree entry flight path angle. The corresponding values of the entry velocity and time duration from SPS burnout to atmospheric entry are also shown in this figure. This data indicates that the entry velocity achieved from the 530-second SPS burn continues to increase as the SPS ignition time is delayed.
3300-6001-RC000

6000		5000		4000	3000	

The selection of a 45-minute period from apogee to ignition appears to be a reasonable one bascd on the above data. This selection allows for an ll. 3-minute period from SPS burnout to atmospheric entry. Resulting values of SPS pitch rate and initial pitch attitude ${ }^{*}$ to satisfy the $36,333 \mathrm{ft} / \mathrm{sec}$ entry velocity and the -7.35 -degree entry flight path angle were $-0.292 \mathrm{deg} / \mathrm{sec}$ (counterclockwise) and +129.3 degrees (down), respectively.

4. 6 PRE-ENTRY SEQUENCE

4.6.1 Pre-Entry Sequence (SPS Burn)

Almost 7 hours after liftoff, the SPS is cut off and an 11.3-minute coast to atmospheric entry is started. At 3.8 minutes after SPS cutoff, the spacecraft drops below a 5.0-degree Carnarvon tracking elevation angle. This profile assumes that 5 minutes prior to entry, CM/SM separation is initiated. The CM then assumes the proper entry attitude. Atmospheric entry occurs at a longitude of 155.64° East and a latitude of 23.40° North.

4.6.2 Pre-Entry Sequence (No SPS Burn)

The pre-entry sequence phase in case of SPS failure to burn is initiated at the nominal SPS ignition time, 45 minutes after apogee. Approximately 5. 3 minutes of Carnarvon tracking at elevation angles greater than 5.0 degrees remain after this time, and atmospheric entry occurs 12 . 1 minutes after loss of Carnarvon tracking. Entry occurs at 170.85° East longitude and 28.95° North latitude with an inertial velocity of $31,592 \mathrm{ft} / \mathrm{sec}$ and an inertial flight path angle of -7.35 degrees. As before, CM/SM separation is assumed to occur 5 minutes prior to entry.

4. 7 ATMOSPHERIC ENTRY

4. 7. 1 Atmospheric Entry (SPS Burn)

Seven hours and 18 minutes after liftoff, the CM initiates entry into the earth's atmosphere. The entry trajectory was simulated by using two values of the vertical lift-to-drag ratio. The maximum value 0.34 was used from entry to pullout (horizontal flight) while a lower value

[^2]was used from pullout to drogue chute deployment at 24,000 feet. A search iteration was performed on the latter lift-to-drag ratio in order to satisfy the 2500 nmi entry range requirement. The resulting lift-todrag ratio of 0.2346 simulates the effect of the Apollo CM rolling back and forth to reduce the vertical lift component.

Horizontal pullout is achieved 76.3 seconds after entry, and the CM starts an upward drift at the reduced lift-to-drag ratio. The CM ascends to an altitude of 360,400 feet before it starts the final descent 5-1/2 minutes after atmospheric entry. Drogue chute deployment occurs 9 minutes later at an altitude of 24,000 feet. Following the main parachute deployment at an altitude of 11,000 feet, the CM performs a water landing almost 16 minutes after entry and almost 7-1/2 hours after liftoff. The splash point latitude and longitude are 32. 46° North and 157. 98° West, respectively. This position places the spacecraft approximately 750 n mi north of Hawaii.

4. 7. 2 Atmospheric Entry (No SPS Burn)

The entry trajectory profile for the no-SPS-burn condition has a sequencing of events identical to that presented above. The primary difference in the two profiles is that the entry velocity for the no-SPSburn is $5740 \mathrm{ft} / \mathrm{sec}$ less than desired. By using maximum lift throughout this profile, a range of 1254 n mi from entry to landing can be achieved. The water landing occurs 11.4 minutes after entry and almost 7-1/2 hours after liftoff at 32.54° North 1 atitude and 165.15° West longitude. This splash point is approximately 363 n mi from that estimated for the nominal, SPS-burn profile.

4. 8 VACUUM IMPACT POINTS

Impact points for the $S-I C, S-I I$, and S-IV B have been calculated, based upon a vacuum ballistic entry. No impact was available for the SM since burnout inserts the $S M$ into an orbit with a perigee altitude of 10 nmi .

S-IC impact occurs at 30.16° North latitude and 74.59° West longitude while S-II impact occurs at 32.05° North latitude and 38.32° West longitude. The S-IVB impact following the second burn will occur at 31.48° North latitude and 176.90° West longitude.

5. NOMINAL TRAJECTORY DATA

This section contains trajectory parameter histories describing and illustrating the nominal mission profile. These data, presented here in tabular and graph forms, are based on the trajectory printout data in Volume II of this report. Data are presented for both the SPS burn profile and the no-SPS-burn profile.

Figures 5-1 and 5-2 present the earth ground track and the altitudelongitude history, respectively, for the entire mission profile. The time sequence of events for the mission is shown in Table 5-1.

For each of the mission's seven major phases, pertinent powered and and free flight trajectory parameters have been plotted as a function of time from liftoff. These graphs, along with related tabular data, have been grouped on the following pages according to mission phase, as follows:

1) Saturn V Ascent to Orbit (Table 5-2, Figures 5-3 through 5-8)
2) Earth Parking Orbit (Table 5-3, Figures 5-9 and 5-10)
3) Second S-IVB Burn (Table 5-4, Figures 5-11 through 5-14)
4) Earth Intersecting Coast (Table 5-5, Figures 5-15 and 5-16)
5) SPS Burn (Table 5-6, Figures 5-17 through 5-20)
6) Pre-entry Sequence (Tables 5-7 and 5-8, Figures 5-21 through 5-24)
7) Atmospheric Entry (Tables 5-9 and 5-10, Figures 5-25 through 5-36)

$3300-6001-\mathrm{RC} 000$
Page 29

Figure 5-2. Altitude - Longitude

Table 5-1. Time Sequence of Events

V Ascent to Parking Orbit

Liftoff	$13: 00: 00$
End Vertical Rise, Start Pitchover	$13: 00: 12.00$
S-IC Center Engine Cutoff	$13: 02: 22.13$
S-IC Outboard Engine Cutoff, S-IC Separation	$13: 02: 26.13$
S-HI Jnition	$13: 02: 29: 93$
S-IC/S-II Interstage Adapter Jettison	$13: 02: 56.13$
Launch Escape System Jettison	$13: 03: 01.13$
S-II Engine Cutoff, S-II Jettison, and S-IVB Ignition	$13: 08: 37.01$
S-IVB Engine Cutoff Into Earth Parking Orbit	$13: 11: 29.34$

Earth Parking Orbit

Start of Earth Parking Orbit	$13: 11: 29.34$
Start of Second Orbit	~ $14: 38: 00$
Acquisition of Point Arguello Tracking	$16: 00: 37.69$
End of Earth Parking Orbit	$16: 11: 37.69$

Second S-IVB Burn
Start of S-IVB Second Burn 16:11:37.69
Burnout of $S-I V B$
16:16:27.14
Earth Intersecting Coast
Start of Coast 16:16:27.14
Los Antigua Tracking $\quad 16: 28: 30.00$
S-IVB Jettison
16:16:57. 14
Acqure Carnarvon Tracking
Apogee of Coast ($7,467 \mathrm{n} \mathrm{mi}$ Altitude)
Update Spacecraft State Vector (Position and Velocity)
17:52:02. 20
19.36:00.00

End of Earth Intersecting Coast
SPS Burn

Start of SPS Burn	$19: 50: 37.33$
SPS Cutorf	$19: 59: 27.33$

Pre-entry Sequence
Start of Coast to Entry
19:59:27.33
Lose Carnarvon Tracking
20:03:15.28
SM Jettison and Assume Entry Attitude 20:05:40.00
$400,000 \mathrm{ft}$ Altitude
20:10:49.93
Atmospheric Entry
Start of Entry Trajectory 20:10:49.93
Pullout to Horizontal Flight, Start Roll Mancuvering 20:12:06.29
Drogue Chute Deployment at $24,000 \mathrm{ft}$
20:12:06.29
Main Parachute Deployment at $11,000 \mathrm{ft}$
20:26:06.27
Earth Landing
20:26:40.88

No SPS Burn Profile*

Pre-entry Sequence
Start of Coast to Entry
19:50:37. 33
Lose Carnarvon Tracking
20:05:56. 73
SM Jettison and Assume Entry Attitude
20:12:00.00
$400,000 \mathrm{ft}$
20:17:57.63

Atmospheric Entry

Start of Fintry Trajectory	$20: 17: 57.63$
Pullout to Horizontal Flight, Start Roll Maneuvering	$20: 19: 22.23$
Droge Chute Deployment at $24,000 \mathrm{ft}$	$20: 28: 11.29$
Main Chute Deployment at $11,000 \mathrm{ft}$	$20: 28: 46.65$
Earth Landing	$20: 29: 22.94$

[^3]| | 앙 | N | $\vec{\sigma}$ | $\stackrel{N}{N}$ | \cdots | $\stackrel{\square}{\square}$ | N | 8 | + |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | in | | - |
| | $\dot{\circ}$ | $\underset{\infty}{\infty}$ | $\stackrel{10}{\sim}$ | $\stackrel{1}{\sim}$ | ヘ | $\stackrel{10}{ }$ | \cdots | $\stackrel{-1}{\infty}$ | ∞ |
| | | | | | | | | | ∞ |

	ㅇ	+	\vec{N}	\bigcirc	O	m	\vec{N}	H	8
-0 0_{0}	O		\bigcirc			σ	$\underset{ }{7}$		O
	0	+i	+	i	$\stackrel{-}{-}$	\cdots	$\stackrel{1}{\sim}$	\bigcirc	-

Event
Liftoff
End Vertical Rise,
Start Pitchover
S-IC Center Engine
Cutoff
S-IC Outboard Engine
Cutoff, S-IC
Separation
S-II Ignition
S-IC/S-II Interstage
Adapter Jettison
Launch Escape System
Jettison
S-II Engine Cutoff,
S-II Jettisoned, and
S-IVB Ignition
S-IVB Engine Cutoff
Into Earth Parking
Orbit

Figure 5-3. Saturn V Ascent to Orbit/Altitude, Latitude, and Longitude

Figure 5-4. Saturn V Ascent to Orbit/Inertial Velocity, Flight Path Angle, and Azimuth

Figure 5-5. Saturn V Ascent to Orbit/Relative Velocity, Flight Path Angle, and Azimuth

Figure 5-6. Saturn V Ascent to Orbit/Sensed and Total Acceleration

Figure 5-7. Saturn V Ascent to Orbit/Pitch Rate, Pitch Attitude, and Pitch Angle of Attack

Figure 5-8. Saturn V Ascent to Orbit/Altitude, Mach Number, and Dynamic Pressure

	+	m	\sim	
	*	0	N	\bigcirc
	0	${ }^{+}$	$-$	N
	∞	$\dot{+}$	\cdots	$\stackrel{\circ}{0}$
	∞	∞	\cdots	0

0.001
10
0
0
0
0
-0.001

25,581
25,581
+
∞
n
n
n
N
∞
N
N
N

$\vec{\infty}$
$\dot{\infty}$
$\dot{\sim}$
$\dot{\infty}$
1
0
\sim
n
\cdots
\cdots
\cdots

\circ
-

32.711
32.340
27.884
31.559

$\begin{array}{c}\text { Altitude } \\ (\mathrm{ft})\end{array}$

607,582
607,131
601, 931
606,306
Earth Parking Orbit/Discrete Events Summary
Time
From
Liftoff
(sec)
$\left.\begin{aligned} & O \\ & 0 \\ & 0 \\ & n \\ & \end{aligned} \right\rvert\,$
689
5880
10,838
11,498
Table 5-3.
Event
Start of Earth Parking
Orbit
Start of Second Orbit
Acquisition of Point
Arguello Tracking
End of Earth Parking
Orbit

Table 5-4. Second S-IVB Burn/Discrete Events Summary

$$
\begin{aligned}
& \text { Time } \\
& \text { From } \\
& \text { Liftoff } \\
& \text { (sec) } \\
& \hline
\end{aligned}
$$

$$
\begin{aligned}
& \text { Altitude } \\
& (\mathrm{ft}) \\
& \hline
\end{aligned}
$$

$$
606,306
$$

$$
11,787 \quad 1,692,548
$$

Azimuth Angle (deg)
99.260
109.944

Figure 5-11. Second S-IVB Burn/Altitude, Latitude, and Longitude

Figure 5-12. Second S-IVB Burn/Inertial Velocity, Flight Path Angle, and Azimuth

Figure 5-13. Second S-IVB Burn/Sensed and Total Acceleration

Figure 5-14. Second S-IVB Burn/Pitch Attitude, Pitch Rate, and Pitch Angle of Attack
Table 5-5. Earth Intersection Coast/Discrete Events Summary

$$
17,522
$$

$$
30 \quad 371
$$

$$
\begin{aligned}
& 8 \\
& \infty \\
& \infty \\
& \dot{N}
\end{aligned}
$$

$$
\begin{aligned}
& 10,595 \\
& 10,075
\end{aligned}
$$

$$
\left.\begin{gathered}
0 \\
7 \\
7 \\
70 \\
000 \\
0 \\
0 \\
0 \\
0
\end{gathered} \right\rvert\,
$$

$$
\begin{aligned}
& 0 \\
& \stackrel{i n}{1} \\
& \substack{\infty \\
n \\
i}
\end{aligned}
$$

$$
\begin{aligned}
& 37.648 \\
& 46.236
\end{aligned}
$$

$$
\left.\begin{aligned}
& 0 \\
& \vec{y} \\
& \vec{y} 0 \\
& \underset{y}{7} \\
& 0 \\
& 0 \\
& H
\end{aligned} \right\rvert\,
$$

$$
\begin{aligned}
& \text { Time } \\
& \text { From } \\
& \text { Liftoff } \\
& \text { (sec) }
\end{aligned}
$$

$$
18,917
$$

$$
\begin{aligned}
& 23,760 \\
& 24,637
\end{aligned}
$$

$$
\begin{gathered}
\begin{array}{c}
\text { Altitude } \\
(\mathrm{ft})
\end{array} \\
\hline
\end{gathered}
$$

$$
\begin{aligned}
& 1,692,548 \\
& 2,390,000 \\
& 8,600,000
\end{aligned}
$$

$$
\begin{aligned}
& 8,600,000 \\
& 43,731,244
\end{aligned}
$$

$$
\begin{aligned}
& 43,731,244 \\
& 45,368,525
\end{aligned}
$$

$$
\begin{aligned}
& 26.488 \\
& 24 . \\
& 7 .
\end{aligned}
$$

$$
\begin{aligned}
& -31.076 \\
& -32.625
\end{aligned}
$$

$$
\begin{aligned}
& -20.838 \\
& -11.334
\end{aligned}
$$

$$
\begin{aligned}
& 30,371 \\
& 29,800
\end{aligned}
$$

$$
25,000
$$

20,000

$$
10,595
$$

$$
\begin{aligned}
& 17,148 \\
& 20,914
\end{aligned}
$$

Figure 5-15. Earth Intersecting Coast/Altitude, Latitude, and Longitude

Figure 5-16. Earth Intersecting Coast/Inertial Velocity, Flight Path Angle, and Azimuth
Table 5-6. SPS Burn/Discrete Events Summary

| Time
 From
 Liftoff
 (sec) | Altitude
 (ft) | Latitude
 (deg) | Longitude
 (deg) | Inertial
 Velocity
 (ft/sec) | Flight
 Path
 Angle
 (deg) | Azimuth
 Angle
 (deg) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 24,637 | $16,092,420$ | -11.334 | 100.370 | 20,914 | -30.386 | 59.189 |

Svent
Start of SPS Burn
SPS Engine Cutoff

Figure 5-17. SPS Burn/Altitude, Latitude, and Longitude

Figure 5-18. SPS Burn/Inertial Velocity, Flight Path Angle, and Azimuth

Figure 5-19. SPS Burn/Sensed and Total Acceleration

$$
\begin{aligned}
& \infty \\
& \infty \\
& -1 \\
& 0 \\
& 0 \\
& i n
\end{aligned}
$$

$$
8980 \varepsilon
$$

Lose Carnarvon Tracking
Event

Start of Coast to Entry

400,000 ft Altitude
Start of Coast to Entry

[^4]Table 5-7.
Time
\[

$$
\begin{gathered}
\text { Liftoff } \\
(\mathrm{sec}) \\
\hline
\end{gathered}
$$
\]

$$
\underline{(s e c)}
$$

$$
25,167
$$

$$
25,359
$$

$$
25,850
$$

$$
\begin{aligned}
& \text { Altitude } \\
& \text { (ft) } \\
& \hline
\end{aligned}
$$

$$
8,595,689
$$

$$
5,033,034
$$

$$
3,098,863
$$

$$
400,000
$$

$$
\begin{gathered}
\text { Latitude } \\
\text { (deg) } \\
\hline
\end{gathered}
$$

$$
-1.822
$$

$$
5.284
$$

$$
5.284
$$

$$
10.697
$$

$$
23.398
$$

(No SPS
$\begin{gathered}\text { Latitude } \\ \text { (deg) }\end{gathered}$
-11.334
7. 497

$$
123.585
$$

$$
123.585
$$

$$
\begin{array}{r}
\text { Inertial } \\
\text { Velocity } \\
\text { (ft/sec) } \\
\hline
\end{array}
$$

$$
30,868
$$

家

$$
0-0
$$

$$
32,921
$$

$$
\begin{aligned}
& 34,224 \\
& 36,333
\end{aligned}
$$

$$
\begin{gathered}
\text { Flight } \\
\text { Path } \\
\text { Angle } \\
\text { (deg) } \\
\hline-32.546 \\
-25,991
\end{gathered}
$$

$$
36,333 \quad-7.350
$$

$$
\begin{array}{r}
-20.882 \\
-7.350
\end{array}
$$

-22.885
-16.374
-7.350
Flig
Flight
Path $\begin{array}{r}\text { Angle } \\ \text { (deg) } \\ \hline\end{array}$
-30.386

$$
\begin{aligned}
& 58.985 \\
& 66.481
\end{aligned}
$$

$$
\begin{gathered}
\text { Azimuth } \\
\text { Angle } \\
\text { (deg) } \\
\hline
\end{gathered}
$$

$$
58.156
$$

$$
\begin{aligned}
& 62.582 \\
& 74.008
\end{aligned}
$$

wox f

Figure 5-21. Pre-entry Sequence/Altitude, Latitude, and Longitude

Figure 5-22. Pre-entry Sequence/Inertial Velocity, Flight Path Angle, and Azimuth

Figure 5-23. Pre-entry Sequency (No SPS Burn)/Altitude, Latitude, and Longitude

Event	Time From Liftoff \qquad (sec)	$\begin{aligned} & \text { Altitude } \\ & \text { (ft) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Latitude } \\ & \text { (deg) } \\ & \hline \end{aligned}$	$\begin{gathered} \text { Longitude } \\ \text { (deg) } \\ \hline \end{gathered}$	Inertial Velocity (ft/sec)	Flight Path Angle (deg)	$\begin{gathered} \text { Azimuth } \\ \text { Angle } \\ \text { (deg) } \\ \hline \end{gathered}$
Start of Entry Trajectory	25,850	400, 000	23. 398	155.637	36,333	-7. 350	66. 481
Pull Out to Horizontal Flight, Start Roll Maneuvering	25,926	170,362	26.126	162. 702	29,798	0.000	69.753
Drogue Chute Development	26, 733	24, 000	32.467	-157. 996	1,478	-17.004	90. 363
Main Parachute, Deployment	26,766	11,000	32. 466	-157. 985	1,421	-14.162	90.391
Earth Landing	26,801	0	32. 465	-157. 976	1,391	-12.111	90. 450

Flight
Path
Angle
(deg)

0
in

0. 000

m
m
0
m

8Lも'I
1,421
\vec{a}
m
$\begin{array}{r}\text { Inertial } \\ \text { Velocity } \\ \text { (ft/sec) } \\ \hline\end{array}$

Table 5-9.
400,000 28.950

$$
\begin{array}{lll}
\infty & \infty \\
\sim & \infty & \infty \\
n & n & \tilde{n} \\
\dot{N} & \underset{\sim}{n} & \dot{N}
\end{array}
$$

Table 5-10.

> Start of Entry Trajectory Pull Out to Horizontal Flight, Start Roll
Maneuvering Maneuvering Deployment Main Chute
Deployment
Earth Landing

$$
\begin{aligned}
& \begin{array}{l}
\text { Time } \\
\text { From } \\
\text { Liftoff } \\
(\mathrm{sec})
\end{array} \\
& \hline 26,278
\end{aligned}
$$

$$
\begin{aligned}
& 26,362 \\
& 26,891
\end{aligned}
$$

$$
\begin{aligned}
& 26,891 \\
& 26,926 \\
& 26,963
\end{aligned}
$$

$$
\begin{aligned}
& \text { Altitude } \\
& (\mathrm{ft}) \\
& \hline
\end{aligned}
$$

Altitude (ft)
(Latitude) (deg)

$$
400,000
$$

$$
\begin{array}{r}
157,728 \\
24,000
\end{array}
$$

$$
\begin{gathered}
11,000 \\
0
\end{gathered}
$$

$$
\begin{gathered}
\text { (Latitude) } \\
\text { (deg) } \\
\hline
\end{gathered}
$$

$$
28.950
$$

$$
\begin{aligned}
& 30.641 \\
& 32.538
\end{aligned}
$$

$$
\begin{aligned}
& \text { Longitude } \\
& \text { (deg) } \\
& \hline
\end{aligned}
$$

$$
170.851
$$

$$
\begin{array}{r}
178.235 \\
-165.177
\end{array}
$$

$$
\begin{aligned}
& \text { Inertial } \\
& \text { Velocity } \\
& \text { (ft/sec) } \\
& \hline
\end{aligned}
$$

$$
31,592
$$

$$
\begin{array}{r}
24,143 \\
1509
\end{array}
$$

$$
\begin{array}{ll}
8 & 8 \\
0 & 0 \\
\text { N } & \vdots
\end{array}
$$

Figure 5-25. Atmospheric Entry/Altitude, Latitude, and Longitude

[^5]

Figure 5-29. Atmospheric Entry/Altitude, Dynamic Pressure, and Mach Number

Figure 5-30. Atmospheric Entry/Range From Entry

Figure 5-31. Atmospheric Entry (No SPS Burn)/Altitude, Latitude, and Longitude

Figure 5-32. Atmospheric Entry (No SPS Burn)/Inertial Velocity, Flight Path Angle, and Azimuth

Figure 5-33. Atmospheric Entry (No SPS Burn)/Relative Velocity, Flight Path Angle, and Azimuth

Figure 5-35. Atmospheric Entry (No SPS Burn)/Altitude, Dynamic Pressure, and Mach Number

Figure 5-36. Atmospheric Entry (No SPS Burn)/Range From Entry

6. TRACKING AND COMMUNICATIONS DATA

Spacecraft visibility periods for the tracking stations presented in Table 3-6 are illustrated in Figure 6-1. Spacecraft visibility is defined as a tracking elevation angle greater than 5.0 degrees. Figure 6-1 also illustrates the time periods when the spacecraft is in the earths' shadow.

It is expected that at least one injection tracking ship and one entry tracking ship will be available for this mission. Visibility data is not presented for these stations because their placement for this mission has not been established.

1. ''Objectives, Requirements, and Flight Profile for Missions 501 and 502," MSC/ASPO/Test Program Planning Branch, 28 September 1964.
2. 'Minutes of Sixth Meeting of the Guidance and Performance SubPanel (U)" (Enclosure 8 titled "Preliminary Saturn V SA-501 Trajectory and Design Trade Studies'), MSFC/MSC, 30 October 1964. (C)
3. "Lunar Orbit Rendezvous Reference Trajectory Data PackageIssue 4 (U), "TRW Space Technology Laboratories Report No. 8408-6056-RC-000, 8 July 1964. (C)
4. O. E. Smith, "A Reference Atmosphere for Patrick AFB, Florida," NASA Technical Note D 595, March 1961.
5. "U. S. Standard Atmosphere, l 962," U. S. Government Printing Office, Washington, D. C. , 1962.
6. 'Minutes of Fourth Meeting of the Guidance and Performance SubPanel (U), " MSFC/MSC, 10 September 1964. (C)
7. J. O. Cappellari, Jr., 'Standard Astrodynamic Constants and Conversion Factors for Project Apollo, " Bellcomm Inc. , 8 January 1964.
8. "Apollo Operational Nominal Trajectory Ground Rules, " MSC Internal Note No. 64-OM-4, 14 March 1964.
9. "Design Reference Mission-Apollo Mission Planning Task Force," GAEC Report No. LED-540-12, 30 October 1964.

3300-6001-RC000
 Page 76

DISTRIBUTION

J. P. Mayer, NASA/MSC/MPAD (225 + 1 reproducible)

NASA/MSC Technical Information Division (4)
R. C. Liounis, NASA/MSC Control Systems Procurement (1)

TRW/STL (Apollo Distribution +2 reproducibles)

[^0]: *In the selected mission profile, the time duration from S-IVB burnout to SPS ignition is only slightly greater than 3-1/2 hours.

[^1]: For simulation purposes, the initial attitude is referenced to the inertial velocity vector.

[^2]: *Referenced to the inertial velocity vector.

[^3]: The event times are the mame through the Farth Intersecting Coast phase.

[^4]: Jettison SM and Assume Entry Attitude

[^5]: Figure 5-27. Atmospheric Entry/Relative Velocity, Flight Path Angle, and Azimuth

