APOLLO MISSION SA-206A
SPACECRAFT PRELIMINARY


Volume I
TRAJECTORY DESCRIPTION

Prepared for
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
MANNED SPACECRAFT CENTER
Contract No. NAS 9-2938
Phase II (Apollo)
ROTE: This document contains information affectron the national defense of the United Siates menip the meanine of therema Espionage lawe, Thes a, whetrons 793 and $75 \hat{4}$. 工. 2 anstmis or the revelation prestcontents in any her to anaucinorized person is prohibites by law.

## TRWsystems

APOLLO MISSION SA-206A SPACECRAFT PRELIMINARY REFERENCE TRAJECTORY

Volume I
TRAJECTORY DESCRIPTION

Prepared for
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION MANNED SPACECRAFT CENTER

Contract No. NAS 9-2938
Phase II (Apollo)

## TRRASSYStEMS

## APOLLO MISSION SA-206A

ISPACECRAFT PRELIMINARY REFERENCE TRAJECTORY

1 JULY 1965

Volume I
TRAJECTORY DESCRIPTION

Prepared for
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION MANNED SPACECRAFT CENTER

Contract No. NAS 9-2938
Phase II (Apollo)

Approved by Carl R. Huss Chief Flight Analysis Branch

Approved by


Approved by


Manager
Manned Spaceflight
Department
Approved by $\qquad$
E. A. Ward

Manager
Mission Planning and
Operations, MTCP

## FOREWORD

This report, which defines the Spacecraft Preliminary Reference Trajectory for Apollo Mission SA-206A,is submitted by. TRW Systems to the NASA Manned Spacecraft Center in partial response to Tasic A-2i(Establishment of $t h e$ Reference Trajectory for Apollo Mission SA-206A) of the Apollo Mission Trajectory Control Program (Contract No. NAS 9-2938, Phase II). This report is presented in three yolumes. Volume I summarizes the mission objectives, the mission guidelines, and the input data for the mission simulation and provides a detailed description of the mission profile. Graphical and tabular time history data of spacecraft at titude, position, motion, and other pertinent trajectory data are also presented in Volume I. Volume II contains the trajectory listing of the mission profile, along with the trajectory print key. Detailed tracking time history data are presented graphically in Voiume III and annotated for significant events.
CONTENTS
3300-H007-RC000 Page iii
Page

1. INTRODUCTION AND SUMMARY ..... 1
1.1 Purpose ..... 1
1.2 Scope. ..... 1
1.3 Mission Profile Summary ..... 1
2. SPACECRAFT MISSION REQUIREMENTS ..... 5
2.1 Spacecraft Test Objectives ..... 5
2.1.1 Primary. ..... 5
2.1.2 Secondary. ..... 6
2.2 Mission Profile Guidelines ..... 6
2.2.1 Launch Vehicle Systems ..... 6
2.2.2 Spacecraft Systems. ..... 6
3. SUMMARY OF INPUT DATA ..... 9
4. 1 Saturn IB Launch Veh: 1 le ..... 9
3.2 Spacecraft (LEM-1) ..... 16
3.3 MSFN Stations. ..... 16
3.4 Earth Constants and Conversion Factors ..... 16
3.4.1 Earth Constaris ..... 17
3.4.2 Conversion Fac:ors ..... 17
5. 5 Spacecraft and Reference Coordinate Systems. ..... 23
6. MISSION ANALYSIS AND DESCRIPTION ..... 25
7. 1 Saturn IB Ascent to Orbit ..... 25
8. 2 S-IVB/SLA/LEM Orbital Coast ..... 26
9. 3 Spacecraft Separation ..... 26
10. 4 Orbital Cold-Soak to First DPS Burn ..... 27
11. 5 First DPS Burn. ..... 30
4.0 Orbital Coast to Seconc DPS Burn ..... 30
4.7 Second DPS Burn ..... 30
12. 8 Orbital Coast to FITH Abort Test ..... 33
4.9 FITH Abort Test ..... 33
13. : O Orbital Coast to Second APS Burn ..... 34
14. 11 Second APS Burn ..... 39
15. 12 Orbital Cold-Soak to Third APS Burn ..... 39
16. 13 Third APS Burn ..... 40
17. 14 Final Orbital Coast ..... 40
18. 15 Orbital Lifetime Estimates ..... 40

## CONTENTS (Continued)

Page
5. NOMINAL TRAJECTORY DATA ..... 43
5. 1 Mission Profile Data ..... 43
5.2 Trajectory Phase Data ..... 43
6. TRACKING AND COMMUNICATIONS DATA ..... 128
7. SUMMARY OF TECHNICAL ACHIEVEMENT ..... 137
APPENDIX
OPEN-LOOP ATTITUDE MANEUVER LOGIC ..... 138
REFERENCES ..... 140
ABBREVIATYONS ..... 142
Total Pages: ..... 152

## ILLUSTRATIONS

Page
1-1 Mission Summary ..... 3
3-1 S-IB Thrust Profile ..... 12
3-2 S-IB Propellant Weight Flow Rate Profile ..... 13
3-3 Saturn IB Launch Vehicle ..... 14
3-4 Saturn IB Zero-Lift Drag Coefficient (power-on and power-off) ..... 15
3-5 LEM-DPS Specific Impulse and Propellant Weight Flow Rate ..... 20
3-6 Spacecraft (LEM) ..... 21
3-7 Spacecraft and Reference System Coordinates ..... 24
4-1a S-IVB/LEM Relative Velocity and Distance to 22 Seconds ..... 28
4-1b S-IVB/LEM Relative Velocity and Distance to 240 Seconds ..... 29
4-2 LEM-DPS Thrust Profiles ..... 31
4-3 LEM-DPS Propellant Weight Flow Rate Profiles ..... 32
4-4a Relative Velocity and Separation Distance Following LEM Staging to APS Shutciown ..... 35
4-4b Relative Velocity and Separation Distance Following LEM Staging to 8 Seconds ..... 36
4-5a Relative Position Coordinates FoNowing LEM Staging to APS Shutdown ..... 37
4-5b Relative Position Coordinates Following LEM Staging to 8 Seconds ..... 38
5-1 Earth Ground Track/Entire Mission Profile ..... 47
5-2 Earth Ground Track/Second DPS Burn. ..... 50
5-3 Earth Ground Track/FITH Abort Test ..... 50
5-4 Saturn IB Ascent to Orbit/Altitude, Latitude, and Longitude ..... 56
-5-5 Saturn IB Ascent to Orbit/Inertial Velocity, Flight Path Angle, and Azimuth ..... 57
5-6 Saturn IB Ascent to Orbit/Relative Velocity, Flight Path Angle, and Azimuth ..... 58
5-7 Saturn IB Ascent to Orbit/Total Acceleration ..... 59
5-8 Satura IB Ascent to Orbit/Altitude, Mach Number. Drag and Dynamic Pressure. ..... 60
5-9 Saturn IB Ascent to Orbit/Pitch Rate, and Pitch Angle of Attack ..... 61
5-10 Saturn IB Ascent to Orbit/Vehicle Attitude (Launch Site Inertial) ..... 63

## ILLUSTRATIONS (Continued) <br> ILLUSTRATIONS (Continud)

$$
\begin{aligned}
& 3300-\mathrm{H} 007-\mathrm{RC} 000 \\
& \text { Page vi }
\end{aligned}
$$

Page
5-11 Saturn IB Ascent to Orbit/Vehicle Attitude (Earth Referenced Rotating) ..... 64
5-12 S-IVB/SLA/LEM Orbital Coast/Altitude, Latitude, and Longituce ..... 66
5-13 S-IVB/SLA/LEM Orbital Coast/Inertial Velocity, Flight Path Angle and Azimuth ..... 67
5-14 S-IVB/SLA/IEM Orbital Coast/Vehicle Attitude (Launch Site Inertial) ..... 68
5-15 S-IVB/SLA/LEM Orbital Coast/Vehicle Attitude (Earth Referenced Rotating). ..... 69
5-16 Spacecraft Separation/Altitude, Latitude, and Longitude ..... 71
5-17 Spacecraft Separation/Inertial Velocity, Flight Path Angle, and Azimuth ..... 72
5-18 Spacecrait Separation/Spacecraft Attitude (Launch Site Inertiai) ..... 73
5-19 Spacecraft Separation/Spacecraft Attitude (Earth Referenced Rotating). ..... 74
5-20 Spacecraft Separation/Total Acceleration ..... 75
5-21 . Orbital Coìi-Soaik to First DPS Burn/Altitude, Latitude, a=d Lozgitude ..... 77
5-22 Orbital Coici-Soak to First DPS Burn/Inertial Velocity, F: ght Path Angle, and Azimuth ..... 78
5-23 Orbital Coici-Soaik to First DPS Burn/Spacecraft Attitude (Lainch Site Inertial). ..... 79
5-24 Orbital Colci-Soak to First DPS Burn/Spacecraft Attitude (Eartin Referenced Rotating) ..... 80
5-25 First DPS Suin/Altitude, Latitude, and Longitude ..... 82
5-26 First DPS Ba:n/Inertial Velocity, Flight Path Angle, and Azinu:i ..... 83
5-27 First DPS Bura/S sacecraft Attitude (Launch Site Inertial) ..... 84
5-28 First DPS Burn/Spacecraft Attitude (Earth Referenced Rotating). ..... 85
5-29 First DPS Burn/Total Acceleration. ..... 86
5-30 Orbital Coast to Second DPS Burn/Altitude, Latitude, and Longitude. ..... 88
5-31 Orbital Coast to Second DPS Burn/Inertial Velocity, Flight Path Angle, and Azimuth ..... 89

ILLUSTRATIONS (Continued)
Page
5-32 Second DPS Burn/Altitude, Latitude, and Longitude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5-33 Second DPS Burn/Inertial Velocity, Flight Path Angle, and Azimuth . . . . . . . . . . . . . . . . . . . . . . . . . 92
5-34 Second DPS Burn/Spacecraft Attitude (Lauach Site Inertial) . . . . . .............................. . . . 93
5-35 Second DPS Burn/Spacecraft Attitude (Earth Referenced Rotating). . . . . . . . . . . . . . . . . . . . . . . . . 94 5-36 . Second DPS Burn/Total Acceleration. . . . . . . . . . . . . . 95
5-37 Orbital Coast to FITH Abort Test/Aititude, Latitude, and Longitude . . . . . . . . . . . . . . . . . . . . . 97
5-38 Orbital Coast to FITH Abort Test/Inertial Velocity, Flight Path Angle, and Azimuth . . . . . . ... . 98
5-39 FITH Abort Test/Altitude, Latitude, ani Longitude. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5-40 FITH Abort Test/Inertial Velocity, Flight Path Angle, and Azimuth . . . . . . . . . . . . . . . . . . . . . . . . 101
5-41 FITH Abort Test/Spacecraft Attitude (Launch Site Inertial) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5-42 FITH Abort Test/Spacecraft Attitude (Earth Referenced Rotating) . . . . . . . . . . . . . . . . . . . . . . . . 103
5-43 FITH hbort Test/Total Acceleration . . . . . . . . . . . . . . 104
5-44 Orbital Coast to Second APS Burn/Aititude, Latitude, and Longitude . . . . . . . . . . . . . . . . . . . . . . 106
5-45 Orbital Coast to Second APS Burn/Inertial Velocity, Flight Path Angle, and Azimuth . . . . . . . . . . 107
5-46 Second APS Burn/Altitude, Latitude, ard Longitude. . . . 109
5-47. Second APS Burn/Inertial Velocity, Flisỉt Path Angle, and Azimuth . . . . . . . . . . . . . . . . . . . . . . . . . 110
Second APS Burn/Spacecraft Attituce (Launch Site Inertial) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5-49 Second APS Burn/Spacecraft Attitude (Earth Referenced Rotating). . . . . . . . . . . . . . . . . . . . . . . . 112
5-50 Second APS Burn/Total Acceleration. . . . . . . . . . . . . . 113
5-51 Orbital Cold-Soak to Third APS Burn/Aititude. Latitude, and Longitude . . . . . . . . . . . . . . . . . . . . . 115
5-52 Orbital Cold-Soak to Third APS Burn/Inertial Velocity, Flight Path Angle, and Azimuth ......... . . 116
5-53 Orbital Cold-Soak to Third APS Burn/Spacecraft Attitude (Launch Site Inertial) . . . ................. 117

HLUSTRATIONS (Continued)

5-54 Orbital Cold-Soak to Third APS Burn/Spacecraft Attitude (Earth Referenced Rotating) . . . . . . . . . . . . . 118
5-55 Third APS Burn/Altitude, Latitude and Longitude . . . . . 120
5-56 Third APS Burn/Inertial Velocity, Flight Path Angle, and Azimuth . . . . . . . . . . . . . . . . . . . . . . . . . 121
5-57 Third APS Burn/Spacecraft Attitude (Launch Site Inertial) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
5-58 Third APS Burn/Spacecraft Attitude (Earth Referenced Rotating) . . . . . . . . . . . . . . . . . . . . . . . . 123
5-59 Third APS Burn/Total Acceleration . . . . . . . . . . . . . 124
5-60 Final Orbital Coast/Altitude, Latitude, and Longitude . . 126
5-61 Final Orbital Coast/Inertial Velocity, Flight Path
Angle, and Azimuth . . . . . . . . . . . . . . . . . . . . . . . . . 127
6-1 MSFN Tracking Summary . . . . . . . . . . . . . . . . . . . . 135
A-1 Euler Angle Transformation . . . . . . . . . . . . . . . . . 139

## TABLES

Page
3-1 Saturn IB Weight Statement ..... 10
3-2 Saturn IB Propulsion Data ..... 11
3-3 Saturn IB Event Timing Criteria ..... 11
3-4 LEM-1 Weight Statement ..... 18
3-5 Criteria for LEM-RCS Propellant Expenditures ..... 19
3-6 Radar Tracking Station Sites and Exuipment ..... 22
4-1 Ballistic Coefficients ..... 41
4-2 Orbital Lifetime Estimates ..... 41
5-1 Time Sequence of Events ..... 45
5-2 Orbital Characteristics of the Spacecraft Coast Phases ..... 51
5-3 Earth Shadow Data ..... 52
5-4 Spacecraft Body Attitude Rate History ..... 53
5-5 LEM-RCS Propellant Expenditures ..... 54
5-6 Saturn IB Ascent to Orbit/Discrete Events Summary. ..... 55
5-7 S-IVB/SLA/LEM Orbital Coest/Discrete Events Summary ..... 65
5-8 Spacecraft Separation/Discrete Events Summary. ..... 70
5-9 Orbital Cold-Soak to First DPS Burn/Discrete Events Summary ..... 76
5-10 First DPS Burn/Discrete Events Summary ..... 8:
5-11 Orbital Coast to Second DPS Surr/Discrete Events Summary ..... 87
5-12 Second DPS Burn/Discrete Events Summary ..... 90
5-13 Orbital Coast to FITH Abor: Iest/Discrete Events Summary ..... 96
5-14 FITH Abort Test/Discrete Events Summary ..... $\because 9$
5-15 Orbital Coast to Second APS Surn/Discrete Events Summary ..... 105
5-16 Second APS Burn/Discrete Everis Summary. ..... 1.3
5-17 Orbital Cold-Soak to Thisd APS Burn/Discrete Events Summary ..... 114
5-18 Third APS Burn/Discrete Events Summary. ..... 119
5-19 Final Orbital Coast/Discrete Events Summary ..... 125
6-1 MSFN Tracking Coverage ..... 129
6-2 Communications Void Intervals. ..... 133

## 1. INTRODUCTION AND SUMMARY

### 1.1 PURPOSE

The Spacecraft Preliminary Reference Trajectory defined in this document is designed for the unmanned Apollo Mission SA-206A. It is a combined launch vehicle and spacecraft trajectory profile that is intended to satisfy the mission's primary spacecraft objectives (Reference 1) without violating any of the launch vehicle and spacecraft constraints or the mission guidelines. Other than the removal of the long-curation cold-soak requirements, the basic trajectory profile is similar to that presented in the Preliminary Mission Profile, Reference 4. The purpose of this report is to improve upon and expand the scope of the trajectory profile presented in Reference 4 while complying with Reference 1.

### 1.2 SCOPE

This report is presented in three volumes. Volume I submits the spacecraft mission requirements, summarizes the input data used in the mission simulation, describes the major phases of the trajectory, and gives the trajectory analysis for applicable phases. It contains graphical and tabular time history data of the spacecraft attitucie, position, and motion. Spacecraft separation characteristics and tracking station visibility data are also presented in this volume.

Volume II of this report contains the trajectory listing of the mission simulation.

Volume III presents detailed tracking time history data for the ground stations available for operation on this mission. These cata consist of range, range rate, azimuth angle, elevation angle, and two spacecraft-toMSFN station look angles and are presented as a function of time for each of the ground stations. The times of significant events a=e noied on these plots.

## 1. 3 MISSION PROFILE SUMMARY

Apollo Mission SA-206A, currently planned for the second quarter of 1967, will be the first launch of a complete LEM spacecraft. For mission simulation purposes, the launch on an azimuth of $72^{\circ}$ from true North is assumed to occur at 13:00 GMT, April 1, from Launch Complex 37B of the Kennedy Spaceflight Center.

Major events of the mission are illustrated in Figure 1-1. The mission has been divided into 14 major phases:

1. Saturn IB Ascent to Orbit
2. S-IVB/SLA/LEM Orbital Coast
3. Spacecraft Separation
4. Orbital Cold-Soak to First DPS Burn
5. First DPS Burn
6. Orbital Coast to Second DPS Burn
7. Second DPS Burn
8. Orbital Coast to FITH Abort Test
9. FITH Abort Test*
10. Orbital Coast to Second APS Burn
11. Second APS Burn

- 12. Orbital Colc-Soak to Third APS Burn

13. Third APS Burn
14. Final Orbital Coast

The Saturn IB launch pease includes the burn of the S-iB stage and the burn of the S-IVB stage. The dummy CSM is jettisoned by firing the LES jettison motor at a point where the dynamic pressure is less than one pound per square foot.

S-IVB cutoff occurs at an alitude of 85 nautical miles $2=2$ zerodegree flight path angle, with the velocity necessary for an elliptical orjit insertion, having an apogee altitude of 120 nautical miles.

The spacecraft is separated from the S-IVB/SLA combination on the first orbit by the LEM-ECS thrusters while in sight of the Cararvon tracking station.

The first DPS burn is performed on the third orbit after the spacecraft has been subjected to $a=$ atitude-hold cold-soak (+ X-axis =ormal to the ecliptic) for approximatèy 3 hours.

The second DPS bura and the FITH abort test are performeci over the United States at the end of the third and fourth revolutions, respectively.
*This test includes a third DPS burn followed by a FITH abort simulation (LEM staging/first APS buen).


3300-H007-RC000
Page 4

Two short duration APS burns are then simulated, the first occuring 20 minutes after completion of the FITH abort test and the second one occuring approximately 2.5 hours after the first. During the 2.5 -hour orbital coast between the short duration APS burns, the LEM ascent stage + X-axis is aligned normal to the ecliptic for the second time.

## 2. SPACECRAFT MISSION REQUIREMENTS

### 2.1 SPACECRAFT TEST OBJECTIVES

The spacecraft test objectives presented here were taken from Reference 1.

### 2.1.1 Primary

a) Verify LEM subsystems operation after launch vehicle boost and during and after LEM propulsion system operation.
b) Evaluate Flight Control Systems (Guidance and Navigation -Stabilization and Control -- Reaction Control System) performance and operation at design inertias.
c) Demonstrate landing gear deployment and determine thermal distribution resulting from engine plume impingement.
d) Determine performance and operational characteristics of - the Electrical Power System (EPS), Environmental Control System (ECS), and operational instrumentation subsystems in earth orbit.
e) Determine LEM communications subsystem performance, operation, and Manned Space Flight Net (MSFN) compatibility.
f) Evaluate DPS and APS propulsion subsystems operation following orbital soaks, inclucing throttle and gimbal control, and demonstrate DPS and APS restart.
g) Demonstrate Fire-In-The-Hole (FITH) abort and evaluate the in-flight dynamics (staging characteristics), pressure distribution, and thermal distribution of the ascent/descent stages during staging.
h) Demonstrate LEM structural integrity, and determine ascent/ descent stage interaction loads, LEM/SLA interaction loads, and dynamic loads on pressurant storage and ascent/descent stage engine propellant tanks.
i) Evaluate performance and operational characteristics of RCS in earth orbital environment.
j) Demonstrate ullage settling time for APS and DPS operation.
k) Determine vibration environment in critical equipment areas, including engine induced vibration environment during APS and DPS operation.

### 2.1.2 Secondary

a) Demonstrate DPS and APS operation at low propellant quantities.
b) Demonstrate operation of the LEM Mission Programmer (LMP).

### 2.2 MISSION PROFILE GUIDELINES

The following mission profile guidelines for this Preliminary Spacecraft Reference Trajectory bave been compiled from data supplied by MSC and from References $1,2,4$, and 7 .

### 2.2.1 Launch Vehicle Systems

a) Launch azimuth of 72 degrees.
b) The Launch Escape Subsystem (Jettison motor) will be utilized to separate tie dummy CSM from the S-IVB/SLA/LEM combination at a point where the dynamic pressure is less than one pound per square foot.
c) The S-IVB/SLA/LEN combination is to be inserted into an orbit with concitions similar to Mission 207, but optimized as to altitude and eceez:-icity for communications, ground control and groanc monitoring aspects of the mission.
d) Guidance command angle rate limitation is to be one degree per second in pitch and yaw.
e) Approximately one orisit of S-IVB stabilization to provide for LEM subsystems cieciss, and to provide a stable S-IVB/SLA platform from winici to separate the LEM.

### 2.2.2 Spacecraft Systems

a) Separation of LEN f=om S-IVB/SLA using LEM-RCS thrusters and deployment of ianding gear during second orbit.
b) LEM attitude manewre =ate limitations (in the automatic mode) is to be 10 eiestees per second in pitch and roll, and 5 degrees per seconci in yaw.
c) LEM orbital altitude is not to exceed 300 nautical miles (communications Limitation).
d) The predicted orbital lifetime for the spent descent and ascent stages is not to exceed three months (also see Reference 19).
e) The coast times between propulsion tests should be used, as required, to optimize the ground coverage of the mission.
f) Backup ground command of S-IVB/LEM separation is recommended.
g) The third DPS burn and the first APS burn should have good, continuous ground coverage.
h) The FITH staging demonstration should be positioned so that at least three ground stations, with data record capability, can receive these data.
i) Orbital soaks are required prior to each APS and DPS burn. These soak periods are described below:

- Coast for approximately 4 hours with the LEM X-axis oriented perpencicuiar to the ecliptic (when not in the earth's shadow) prior to firing the descent stage engine.
- Coast, any orientation, for approximately 60 minutes between the first and second descent stage engine burns.
- Coast, any orientation, $20 \pm 2$ minutes between the first and second ascert stage engine burns. This time interval is critical since it is required to demonstrate APS restart uncer maximum heat soak back concitions.
- Coast for approximately 3 nours with the ascent stage X-axis oriented perpencicular to the ecliptic (when not in the earis's shadow) between the second and third ascent stage engine burns.
j) APS and DPS tests are required as follows:
- First DPS burn: 25 seconcis at 10 percent thrust, followed by a rapid rise to fuil thrust and 7 seconds at 100 percent thrust.
- Second DPS burn: 25 seconcis at 10 percent thrust, with a rapid rise to fuil tirast, then a 385-second continuous burr with the thrust decaying limear'y from 100 percent to $0 \cdot 0$ percent. Decrease thrust from 90 percent to 45 percert and burn for 115 seconds. Then concuct ra:ciom throttling between 10 percent and 50 percent thrust for 205 seconds.
- Third DPS burn/EITH staging/first APS burn: 25 seconds of DPS firing at 10 percent thrust, a rapid rise to full thrust, and 2 seconds at maximum thrust. FITH staging, followed by an APS burn with a duration to enscre propellant depletion after completion of the third APS burn.

3300-H007-RC000
Page 8

Second APS burn: 5 seconds.
Third APS burn: 5 seconds.

## 3. SUMMARY OF INPUT DATA

The input data in this section were extracted from the references and also include data agreed upon at several technical coordination meetings between MSC and TRW personnel. These data include all quantitative specifications on the launch vehicle, spacecraft, and MSFN stations, and form the basis for the Spacecraft Preliminary Reference Trajectory in support of Apollo Mission SA-206A.

## 3. 1 SATURN IB LAUNCH VEHICLE

Data necessary to adequately describe the launch vehicle were obtained from References 3, 4, 5, 7, 13 and 14 and supplemented by data from MSC/TRW technical coordination meetings. These launch vehicle data are included only for completeness and should not be used as official launch trajectory data or event times.. The official launch vehicle data and launch trajectory will be published by the MSFC.

A brief weight statement of the Saturn IB launch vehicle is presented in Table 3-1. The weights are given in a manner essentially equivalent to their chronological disposition during the mission.

The propulsion characteristics are presented in Table 3-2. The operation of the S-IVB stage is divided into three constant-thrust, constant-flow-rate phases. These phases, listed in order of occurrence, are:

- A short duration, nominal thrust, nominal specific impulse phase.
- A high thrust, low specific impulse phase.
- A low thrust, high specific impulse phase.

The launch vehicle event timing criteria used in the trajectory generation are presented in Table 3-3.

The Saturn IB launch vehicle is illustrated in Figure 3-3, and the zero-lift drag coefficient (power-on and power-off) data are presented in Figure 3-4. An aerodynamic reference area of 360.24 square feet was used.

Two static atmosphere models are used in the ascent trajectory simulation. Below an altitude of 35 km ( 114,830 feet), the Patrick AFB atmosphere (Reference 10) is used, and between 35 km and 400,000 feet, the U. S. Standard Atmosphere of 1962 (Reference 11) is used. No attempt has been made to remove the small discontinuity between the two models at 35 km .

## Event

Weight Losses (Ib)

Event Weights (lb)
$1,297,088$
861,829
S-IB Impulse Propellant

S-IB Inboard Engines Cutoff
S-IB Outboard Engines Impulse and Thrust Decay Propellants

24, 515
S-IB Outboard Engines Cutoff
Spent S-IB $\quad 98,826$
S-IB/S-IVB Interstage Adapter $\quad 7,000$
S-IVB Engine Ignition
S-IVB Impulse Propellant 227, 824
Thermolag and Ullage Cases 235
Dummy CSM/LES
9,540
S-IVB Engine Cutoff
67,319
Spent S-IVB
Consumable Propellants Remaining*
25,535

Instrument Unit
1.494

4,150
Spacecraft LEM Adapter
3,600
304,918
435,259

410,744

$$
1,0
$$

Spacecraft (LEM-1) in Orbit

[^0]
## S-IB Stage

(See Figures 3-1 and 3-2 for thrust and propellant weight flow rate profiles, respectively).

S-IVB Stage

| Programmed Mixture Ratio | 5.0 | 5.5 | 4.7 |
| :--- | :--- | :--- | :--- |
| Daration (sec)* | 10.00 | 285.33 | 152.78 |
| Thrust (lb) | 205,000 | 230,000 | 190.000 |
| Propellant Weight Flow Rate (lb/sec) | 481.221 | 543.607 | 444.476 |
| Specific Impulse (sec) | 426.0 | 423.1 | 427.5 |

* Total burn duration of the $S-$ IVB stage is 448.11 seconds.

Table 3-3. Saturn IB Event Timing Criteria

Event Timing Criteria
Saturn IB Liftoff
Pitch Over/Begin Gravity Turn
End Gravity Turn
S-B Inלoard Engines Cutoff
S-IB Outboard Engines Cutoff
$t_{0}$

S-IVB Ignition
$t_{0}+10$ seconds
$t_{1}-2$ seconds

Thermolag and Ullage Cases Jettison
$t_{1}$

- Dramy CSM/LES Jettison*

S-IVB Cutoff
$t_{2}\left(t_{1}+6\right.$ seconds $)$
$t_{3}\left(t_{2}+5.5\right.$ seconds $)$
$t_{3}+10$ seconds
$t_{3}+10$ seconds
$t_{4}$

* Dynamic pressure equal to approximately $0.98 \mathrm{lb} / \mathrm{ft}^{2}$.


Figure 3-1.. S-IB Thrust Profile


Figure 3-2. S-IB Propellant Weight Flow Rate Profile


NOTES:

1. ALL VEHICLE STATIONS AND DIMENSIONS ARE IN INCHES
2. SATURN REF: MSFC DWG 10M03544, REV. F


Figure 3-4. Saturn IB Zero-Lift Drag Coefficient (power-on and power-off)

### 3.2 SPACECRAFT (LEM-1)

The spacecraft weight breakdown was obtained from Reference 7 and is based on an inserted payload weight of 36,140 pounds. This 640 -pound increase from the LEM control weight of 35,500 pounds is the expected increase in payload capability by insertion into the nominal elliptical orbit. Spacecraft propulsion characteristics and LEM-Reaction Control System (RCS) propellant expenditure criteria were obtained from References 6 and 7 and meetings with MSC personnel.

The spacecraft weight statement is presented in Table 3-4. Flight performance propellant reserves equal to one percent of the consumable propellants are assumed. The criteria for establishing the LEM-RCS propellant expenditures are presented in Table 3-5. The ascent stage propulsion system is characterized by a vacuum nominal thrust and propellant weight flow rate of 3,500 pounds and 11.45 pounds per second, respectively. The descent stage propulsion system data are presented in Figure 3-5. An illustration of the spacecraft is shown in Figure 3-6.

## 3. 3 MSFN STATIONS

The MSFN stations that are planned to be available for support of this mission, their locations, and equipment available were obtained from Reference 18. These data are summarized in Table 3-6. Locations for three of the five Apollo tracking ships available for support of this mission are also indicated in Table 3-6. One ship has been placed near the western coast of Australia; one off the western coast of the continental United States, and the third near the western coast of Africa.

The station coordinates given are based on a Fischer ellipsoid. This model is described by:

$$
\begin{aligned}
& \mathbf{a}=\text { equatorial earth radius }=6378166.000 \text { meters (exact) } \\
& \mathbf{b}=\text { polar earth radius }=6356784.284 \text { meters } \\
& \mathbf{f}=\text { flattening }=1 / 2 \% 8.30
\end{aligned}
$$

The altitude is referenced to the ellipsoid and includes a geoidal separation.

### 3.4 EARTH CONSTANTS AND CONVERSION FACTORS

The following earth constants and conversion factors (Reference 15) have been used in the generation of the Spacecraft Preliminary Reference Trajectory.

### 3.4.1 Earth Constants

Rotational rate

Equatorial radius
Average radius
Gravitational parameter ( $\mu_{e}$ )
4. $37526902 \times 10^{-3} \mathrm{rad} / \mathrm{min}$
$0.417807416 \times 10^{-2} \mathrm{deg} / \mathrm{sec}$
$0.729211504 \times 10^{-4} \mathrm{rad} / \mathrm{sec}$
$2.092573819 \times 10^{7} \mathrm{ft}$
2. $0909841 \times 10^{7} \mathrm{ft}$
$5.53039344 \times 10^{-3} \mathrm{er}^{3} / \mathrm{min}^{2}$
$11.46782384 \times 10^{3} \mathrm{er}^{3} / \mathrm{day}^{2}$
$3.986032 \times 10^{5} \mathrm{~km}^{3} / \mathrm{sec}^{2}$
$1.407653916 \times 10^{16} \mathrm{ft}^{3} / \mathrm{sec}^{2}$
Coefficients of potential harmonics
$J$ term (second harmonic)
H term (third harmonic)
D term (fourth harmonic)
Earth flattening (f)

### 3.4.2 Conversion Factors

Kilometers per foot
Kilometers per nautical mile
Feet per nautical mile
Weight-to-mass ratio
Mass-to-weight ratio
Feet per earth equatorial radius
Nautical mile per earth equatorial radius
$1.62345 \times 10^{-3} \mathrm{nd}$ $-0.5: 5 \times 10^{-5} \mathrm{nd}$ $0.7575 \times 10^{-5} \mathrm{nd}$ 1/293.30.nd
$0.3048 \times 10^{-3} \mathrm{~km} / \mathrm{ft}$
$1.852 \mathrm{~km} / \mathrm{n} \mathrm{mi}$ 6076. $115486 \mathrm{ft} / \mathrm{n} \mathrm{mi}$
$32.17404856 \mathrm{lb} / \mathrm{slug}$
$0.03: 080950$ slug $/ \mathrm{lb}$
2. $092573819 \times 10^{7} \mathrm{ft} / \mathrm{er}$
$3443.93358 \mathrm{nmi} / \mathrm{er}$

Table 3-4. LEM-1 Weight Statement
Weight (lb)
LEM-1 in Orbit
32,540

21, 845
Descent Stage
Inert Weight ${ }^{1} \quad$ 4,623
Usable DPS Propellants ${ }^{2} \quad 17,050$
DPS Performance Reserves ${ }^{3} 172$
Ascent Stage
10,695
Inert Weight ${ }^{1}$
5,104
Usable APS Propellants ${ }^{2}$
4,965
APS Performance Reserves ${ }^{3} \quad 50$
Usable RCS Propellants ${ }^{4} 576$

1 Includes dry weight and trapped fluids.
2 Off-loaded by 133 pounds (full-tank capacity is 17,355 pounds).
3 Approximately one percent of propellants available.
4 From Reference 7.

## RCS Operation

Spacecraft Separation
Ullages Preceding

1) DPS Operation
2) APS Operation

Attitude Holds ( $\pm 5$ deg deadband)

1) During LEM Coast
2) During Ascent Stage Coast

Attitude Holds ( $\pm 0.3 \mathrm{deg}$ deadband)

1) During DPS Burns
2) During APS Burns
3) During FITH Staging

Attitude Orientation Maneuver*

1) LEM
2) Ascent Stage

## Propellant Expenditure Criteria

$1.25 \mathrm{lb} / \mathrm{sec}$

1. $25 \mathrm{lb} / \mathrm{sec}$
$1.25 \mathrm{lb} / \mathrm{sec}$
$0.26 \mathrm{lb} / \mathrm{hr}$
2. $30 \mathrm{lb} / \mathrm{hr}$
$10.5 \mathrm{lb} / \mathrm{burn}$
$0.15 \mathrm{lb} / \mathrm{sec}$ of burn
10 lb
$17.6 \mathrm{lb} /$ maneuver
$4.1 \mathrm{lb} /$ maneuver

* Attitude maneuver about all three axes.

Figure 3-5. LEM-DPS Specific Impulse and Propellant Weight Flow Rate

```
3300-H007-RC0OO
Page 21
```



Figure 3-6. Spacecraft (LEM)
Table 3-6. MSFN Station Sites and Equipment

| Latitude* <br> $(\mathrm{deg})$ | Longitude* <br> $(\mathrm{deg})$ | Altitude** <br> $(\mathrm{ft})$ |
| :--- | ---: | ---: |
| 28.481767 | -80.576514 | 45.9 |
| 26.615786 | -78.347849 | 45.9 |
| 24.118992 | -74.504077 | 9.8 |
| 21.462908 | -71.132043 | 82.0 |
| 32.347766 | -64.653643 | 9.8 |
| 17.143796 | -61.792683 | 85.3 |
| 27.735522 | -15.600000 | 95.1 |
| -7.972994 | -14.401694 | 469.2 |
| -25.945553 | 28.361996 | $5,334.6$ |
| -24.897356 | 113.716067 | 210.0 |
| 13.583333 | 144.924999 | 65.6 |
| 22.125267 | -159.667619 | 3.746 .7 |
| 34.582902 | -120.561149 | $2,119.4$ |
| 35.389638 | -116.848776 | 3.382 .5 |
| 27.958405 | -110.720791 | 59.0 |
| 32.358222 | -106.369564 | $4,042.0$ |
| 29.758610 | -95.363582 | 164.0 |
| -31.0 | 113.0 | 0.0 |
| 31.0 | -124.0 | 0.0 |
| 1.5 | -14.0 | 0.0 |

Tracking Equipment
FPS-16, TPQ-18, USBS $30^{\prime}$
FPS-16, TPQ-18
FPS-16
TPQ-18
FPS-16, FPQ-6, USBS 30'
FPQ-6, USBS 30'
MPS-26, USBS 30'
TPQ-18, USBS 30'
MPS-25
FPQ-6, USBS 30'
USBS $30^{\prime}$
FPS-16, USBS 30'
FPS-16
JPL $85^{\prime}$
USBS $30^{\prime}$
FPS-16
USBS $30^{\prime}$
USBS
USBS
USBS

[^1]** Altitude is above the Fischer reference ellipsoid.

## 3. 5 SPACECRAFT AND REFERENCE COORDINATE SYSTEMS

The spacecraft attitude is measured by the pitch, yaw, and roll angles required to rotate from the reference system to the current spacecraft orientation. The reference coordinate systems are illustrated in Figure 3-7 and defined below.

## Earth Referenced Rotating Coordinate System, XR-YR-ZR:

Right-handed, orthogonal system centered at the vehicle in which the positive $\hat{X}_{r}$ axis extends downrange in the direction of motion and lies in the the plane of the horizon, the positive $\hat{Y}_{r}$ axis extends upward along the geocentric radius vector, and the positive $\hat{Z}_{r}$ axis extends to the right in a direction orthogonal to the downrange direction.

Launch Site Inertial Coordinate System, XI-YI-ZI:

Right-handed, orthogonal system in which the origin coincides with the launch site, the positive $\hat{X}_{i}$ axis extends downrange in the direction of the launch azimuth and lies in the plane of the horizon, the positive $\hat{Y}_{i}$ axis extends upward along the geocentric radius vector at liftoff, and the positive $\hat{Z}_{1}$ axis extends to the right in a direction orthogonal to the launch azimuth.


EARTH REFERENCED ROTATING COORDINATE SYSTEM


Figure 3-7. Spacecraft and Reference System Coordinates

## 4. MISSION ANALYSIS AND DESCRIPTION

The Spacecraft Preliminary Reference Trajectory for Apollo Mission SA-206A is designed to meet the test objectives of Section 2.1. The Mission Profile Guidelines of Section 2.2 are followed except for those officially changed by References 2 and 7. To satisfy these objectives and guidelines and to determine values of the free variables, a certain amount of trajectory analysis was performed. The results of this analysis, along with a description of the resulting mission profile, are given in this section.

### 4.1 SATURN IB ASCENT TO ORBIT

Launch of Apoilo Mission SA-206A will occur from Launch Complex 37 B of the Kennedy Spacenight Centerduring the second quarter of 1967. The geodetic coordinates of the launch point are 28.531856 degrees North latitude and 80.564952 degrees West longitude. For the trajectory simulation, launch was assumed to occur at 13:00 hours GMT (08:00 hours EST) on 1 April 1967.

The Saturn ascent to orbit phase is initiated by a 10 -second vertical rise followed by a $0.1 \equiv 22$ degree kick (an instantaneous rotation of the vehicle attitude and velocis: rector) into a 128-second gravity turn trajectory with a 72-degree azimuti jeȧing. The inboard engines are shutdown approximately 6 seconds prior to $S-3$ engines cutoff. Following a 5.5-second coast from $S$-IB cutoff, the spe= $S-23$ and the interstage adapter are jettisoned. In the simulation, S-IVB eqgine ignition also occurs at this time and a pitch rate of 0.9904 degree per second cownward is initiated. This high pitch rate steering is terminated 9.00 seconds after ignition, and a low pitch rate of 0.0765 degree per second downward is initiated. Ten seconds after S-IVB engine ignition, the E-mmy CSM is jettisoned by using the LES jettison motor. This occurs at a $==$ =itwere the dynamic pressure is approximately 0.98 pound per square foc:. Reference 17 states that the dummy CSM/LES is approximately 73 feet away from the thrusting S-IVB/LEM at the end of tower jettison motor tirusting. Also, the separation velocity remains positive and the separation cistance keeps increasing. The thermolag and ullage cases are aiso jettisoned at this time. The low pitch rate steering is maintained untii S-IVB engine cutoff at approximately 10 minutes after liftoff.

The value of the kick angle and the magnitudes of the two pitch rates were determined by iteration techniques so that the following conditions would exist at S-IVB engine cutoff:

1) Inertial velocity of $25,694.78$ feet per second.
2) Inertial flight path angle of zero degrees.
3) Altitude of approximately 85 nautical miles.
4) S-IVB/SLA/LEM weight at insertion of 67, 319 pounds.
Conditions 1), 2), and 3) result in S-IVB cutoff at an altitude of 85.6 nautical miles, a zero degree flight path angle, and the velocity necessary for an elliptical orbit insertion_with an apogee altitude of 119.4 nautical miles.

The inserted weight from condition 4) is consistent with the launch vehicle capability as extracted from References 3, 7, and 14. Assuming a flight performance propeㄹant reserve of 1,494 pounds at S-IVB cutoff, the allowable spacecraft weight is 32,540 pounds in orbit. Table 3-1 presents a more complete breakdown of the inserted weight.

### 4.2 S-IVB/SLA/LEM ORSITAL COAST

Ten seconds after orjital insertion, the S-IVB/SLA/LEN combination is maneuvered at a 0.5 eiegree per second rate until the S-IVS +X -axis lies in the plane of the local horizontal and the - Z-axis is along the geocentric radius vector. Tais attitude is maintained in order to provide a stable platform from whici to separate the spacecraft. The duration of this orbital coast (insertion to spacecraft separation) is 45 minיtes and 48.4 seconds.

### 4.3 SPACECRAFT SEPARATION

The spacecraft separation events consist of the Spacecraft LEM Adapter (SLA) petal deployment, separation of the spacecraft by firing the LEM-RCS + X thrusters for 12 seconds, a coast for 8 seconds, followed by deployment of the LEM landing gear.

The in-orbit position of this sequence of events is near apogee in the first orbit, rather than during the second orbit as suggested in Section 2.2. This selection allows continuous tracking coverage for the events from the Carnarvon ground station, which has ground command capability. Apollo tracking ship No. 1 has been located near the western coast of Australia
in this profile to provide backup coverage for these events and for the subsequent first DPS burn.

Separation characteristics during the first several minutes after separation are illustrated in Figure 4-1. These data are based upon point mass simulations.

### 4.4 ORBITAL COLD-SOAK TO FIRST DPS BURN

Approximately 30 seconds after initiation of the LEM landing gear deployment the LEM is commanded to perform a 53.6 -second maz suver to align the +X -axis (yaw axis) normal to the ecliptic and the +Z -axis (roll axis) toward the sun. * The sun's position relative to the earth is dependent upon both the launch date and time of day. The spacecraft orieztation with respect to the earth, in this case, is also launch time and day cependent. The general attitude maneuver logic used to simulate the spacec=aft attitude orientation is summarized in the Appendix. Following this atitude maneuver, the spacecraft is put into an attitude hold mode ( $\pm 5$ cegrees deadband) and maintains this inertial attitude for approximate'y 2 hours and 57 minutes. In the simulation, the spacecraft attitude drizie? approximately 0.1 degree, with no maneuvers, during this cold-soak (see Figure 5-23).

After this orbital coast in the attitude-hold mode, a spacecraft orientation maneuver to the desired DPS ignition attitude is initizted. This maneuver takes approximately 41.5 seconds. The spacecraft 20 icis this attitude until the completion of the first DPS burn. The total :ime duration from spacecraft separation to the RCS ullage maneuver prececi: $\boldsymbol{z}_{5}$ the first DPS burn is approximately 3 hours and 5 minutes. The duratio of this coast is slightly less than that suggested in the Mission Profile Guicelines. This selection was made to allow the first DPS burn to occur wibie the spacecraft is in sight of the Carnarvon tracking station, which has the necessary ground command capability.

[^2]
Figure 4-1a. S-IVB/LEM Relative Velocity and Distance to 22 Seconds


Figure 4-1b. S-IVB/LEM Relative Velocity and Distance to 240 Seconds

### 4.5 FIRST DPS BURN

The first DPS ignition is preceded by an 8-second RCS ullage maneuver. RCS ignition occurs 2 minutes after the Carnarvon tracking station acquires the spacecraft on the third orbit. The Apollo ship used to track the spacecraft separation events is also tracking during this event. The constant spacecraft inertial attitude during the ullage and the DPS burn (see Figure 5-27) increases the orbit perigee altitude by approximately 17 nautical miles.

The first DPS burn consists of 25 seconds at 10 percent thrust, followed immediately by 7 seconds at 100 percent thrust. Thrust and propellant weight flow rate profiles for this burn, and for the subsequent DPS burns, are shown in Figures 4-2 and 4-3, respectively.

At DPS shutdown, the spacecraft is on an orbit characterized by perigee and apogee altitudes of 110.0 and 155.8 nautical miles, respectively. The resulting orbital period is 89.3 minutes.

## 4. 6 ORBITAL COAST TO SECOND DPS BURN

The spacecraft coasts in orbit, with no attitude constraints, for approximately 28 minutes. The spacecraft is being tracked approximately 20 minutes during this coast. It is expected that certain RCS tests will be performed during this coast. No attempt has been made to simulate these various tests in this profile; however, a certain portion of the RCS propellants available have been allocated for this phase of the mission (see Table 5-5). After this coast, a maneuver is initiated to orient the spacecraft to a desirecinertial attitude (see Figure 5-34). This maneuver takes approximately 30 seconds. The LEM holds this aititude to the second DPS burn ignition. The total time duration between the first DPS burn shutdown and the ullage mareuver preceding the second DPS burn is approximately 33 minutes and 20 seconds. This is slightly shorter than that suggested in the Mission Profile Guidelines, but it is necessary in order to achieve the tracking required for the second DPS burn.

### 4.7 SECOND DPS BURN

An 8-second RCS ullage maneuver precedes the second DPS ignition. RCS ignition occurs 2 minutes after Point Arguello tracking acquisition, and within sight of Apollo tracking ship No. 2 capable of ground-commanding



Figure 4-3. LEM-DPS Propellant Weight Flow Rate Profiles

the spacecraft, if necessary. The spacecraft is tracked continuously during the 730 -second burn by 11 tracking stations across the continental United States ard down the Eastern Test Range (ETR).

Most of the $\Delta V$ available from this burn (approximately 7,000 feet per second) is dissipated out of the orbit plane. This is done by selecting an inertial attitude at ignition (see Figure 5-34) and a spacecraft roll rate of 0.0166 degree per second, which places the LEM on an orbit with a perigee altitude of 140.9 nautical miles and an apogee altitude of 223.7 nautical miles. The period of this orbit is 91.1 minutes with an inclination of 31.425 degrees. This orbit increases the tracking duration of the ground stations on subsequent revolutions.

The thrust and propellant weight flow rate profiles for this burn are shown in Figures 4-2 and 4-3, respectively.

### 4.8 ORBITAL COAST TO FITH ABORT TEST

The LEM coasts in orbit with no attitude constraints for approximately 1 hour and 18 minutes. The spacecraft is being tracked approximately 30 miruies during this coast. It 1:; expected that various tests of the RCS will be continued during this coast period. No attempt has been made to simulate these tests in this profile; however, a certain portion of the RCS propellants available have been allocated for this phase of the mission (see Tabie 5-5). After this coast, a 7-second orientation maneuver is initiated to acineve the desired inertial attitude for the FITH abort test. The LEM holds this attitude for 7 minutes and 12 seconds.

## 4. 9 FITH ABORT TEST

An 8-second RCS ullage maneuver precedes this phase of the mission. RCS ignition occurs approximately 200 seconds after Point Arguello tracking acquisition. Apollo tracking ship No. 2 will provide the necessary ground command capability. The FITH abort test consists of a 27 -second DPS (third) burn and a 0.5 second coast, followed immediately by LEM staging and a 432.6-second APS (first) burn.

The third DPS burn thrust and propellant weight flow rate profiles are presented in Figures 4-2 and 4-3, respectively. At shutdown, all of the DPS propellants available, except the one percent flight performance reserves, have been consumed.

LEM staging and the first APS ignition occur simultaneously. It is assumed that 1,183 pound-seconds of impulse will be delivered to each stage during LEM staging. Staging characteristics during the first several minutes after LEM staging are presented in Figures 4-4 and 4-5. These data are based upon point mass simulations. LEM staging occurs at a position in the orbit to allow simultaneous tracking of the event by the Apollo tracking ship, Point Arguello, Goldstone, Guaymas, and White Sands ground stations. Section 2. 2. 2 h ) of the Mission Profile Guidelines suggests that this event be positioned so that at least three ground stations, with data record capability, can receive these data.

The spent descent stage is left on an orbit with a period of 91.1 minutes and an inclination of 31.438 degrees. The perigee altitude is 141.0 nautical miles and the apogee altitude is 223.1 nautical miles. The estimated descent stage maximum orbital lifetime is approximately 39 days (see Table 4-2).

The spacecraft ascent stage propulsion system is characterized by a vacuum thrust and propellant weight flow rate of 3,500 pounds and 11.45 pounds per second, respectively. The duration of the first APS burn was chosen so that all the p=opellants available, except the one percent flight performance reserves, are consumed over the three suggested burns. This resulted in a 31. -second decrease from the duration suggested in Section 2. 2. 2 j).

As in the second DPS burn, most of the $\Delta V$ available from these burns (approximately 5,000 feet per second) is dissipated out of the orbit plane. A constant inertial attitude is held (see Figure 5-41) from the RCS ullage maneuver to three seconcs after the APS ignition. The ascent stage is then rolled at a constant rate of 0.0293 degree per second. The $3-s e c o n d$ delay in the maneuver is to allow for hardware clearance. The above attitude and roll rate place the LEM ascent stage, at APS shutdown, on an orbit with a period of 92.0 minutes and an inclination of 31.375 degrees. The orbital perigee aititude is 135.4 nautical miles and the apogee altitude is 275 . 8 nautical miles.

## 4. 10 ORBITAL COAST TO SECOND APS BURN

The suggested 20 -minute time duration of this coast to within $\pm 2$ minutes is included in 2.2.2i) of the Mission Profile Guidelines. Using




[^3]



Figure l-dh. Rulative Velocily and Separation Distance Following LrM Staging to 8 seconds

TIME FROM STAGING (MIN:SEC)
THE MAGNITUDE OF THE
RELATIVE POSITION VECTOR



this coast time, it becomes necessary to locate Apollo tracking ship No. 3 off the western coast of Africa. The primary function of this ship is to provide general tracking information, data recording and ground command capabilities in support of the second APS pre-burn and burn events.

No attempt has been made to simulate various RCS tests expected to be performed during this coast; however, a certain portion of the RCS propellants available have been allocated for this phase of the mission (see Table 5-5). The spacecraft is being tracked approximately 8 minutes during this coast.

After approximately 14 minutes and 40 seconds of this coast have elapsed, a 12-second spacecraft orientation maneuver is initiated to achieve, and hold; the desired pre-burn attitude (see Figure 5-48).

### 4.11 SECOND APS BURN

A 3-second RCS ullage maneuver precedes the second APS ignition. This event is initiated approximately 4 minutes after the Apollo tracking ship begins tracking the spacecraft.

The inertial attitude (see Figure 5-48) is held constant during the 5-second burn. This attitude was determined so as to decrease the orbital perigee altitude. This is done to decrease the expected orbital lifetime of the ascent stage. The post-burn perigee altitude is 115.8 nautical miles and the apogee altitude is 268.3 nautical miles. This orbit has a period of 91.5 minutes and an inclination of 31.2718 degrees.

### 4.12 ORBITAL COLD-SOAK TO THIRD APS BURN

Ten seconds after the second APS burn, an 18-second spacecraft maneuver is performed to align the +X -axis (yaw axis) normal to the ecliptic and the $+Z$-axis (roll axis) toward the sun. This attitude is held ( $\pm 5$ degrees deadband) for approximately 2 hours and 30 minutes. This coast duration is slightly shorter than that suggested in the Mission Profile Guidelines. The in-orbit position of the third APS burn achieved by the shortened coast allowed the burn to occur over MSFN stations with the necessary ground command and data record equipment. After the attitudehold coast, an 8-second spacecraft orientation maneuver to the desired pre-burn attitude is initiated (see Figure 5-57).

In the simulation, the spacecraft attitude drifted approximately 0.1 degree, with no maneuvers, during the orbital cold-soak (see Figure 5-53).

## 4. 13 THIRD APS BURN

Two minutes after the Point Arguello tracking site acquires the spacecraft, a 3-second RCS ullage maneuver is performed and is immediately followed by a 5-second APS burn. All the available propellants are consumed by the APS during this burn, with the exception of a one percent flight performance reserve.

The initial inertial pitch attitude held during this APS burn (see Figure 5-57) was chosen to further decrease the orbit perigee altitude.

At APS shutdown, the spent LEM ascent stage is on an orbit characterized by a perigee altitude of 109.7 nautical miles and an apogee altitude of 284.8 nautical miles. The orbital period is 91.7 minutes. The estimated ascent stage maximum orbital lifetime is approximateiy 27 days (see Table 4-2).

### 4.14 FINAL ORBITAL COAST

The objectives of the mission are essentially completed at this point in the mission; however, if the capability exists, accitional tests of the RCS system will be performed during this coast. Again, no attempt has been made to simulate these various tests in this $p=0: i=$. A certain portion of the RCS propellants available have been allocatec for this phase of the mission. An allowance of approximately 4.5 hours is shown in this profile.

### 4.15 ORBITAL LIFETIME ESTIMATES

The approximate orbital lifetimes of various $\operatorname{ZEN}-1$ configurations have been estimated and are presented herein in tie form of days to impact.

The three basic spacecraft configurations cons:eered are outlined below:

## Configuration 1

The LEM-1 on the nominal orbit after separation from the S-IVB/SLA, but before any major propulsion tests.

## Configuration 2

The spent LLEM-1 descent stage on the nominal orbit at the instact of spacecraft separation.

## Configuration 3

The spent LEM-1 ascent stage on the nominal orbit after the third APS burn has been accomplished.

Ballistic coefficients, $W / C_{D} A$ (weight divided by the orbital drag coefficient and the frontal area), were calculated for each of the configurations. An orbital drag coefficient of 2.0 has been assumed. Various views of each configuration were studied in order to arrive at the minimum and the maximum frontal area that each configuration could exhibit normal to the velocity vector. Table 4-1. presents the results of this analysis.

Table 4-1. Ballistic Coefficients

| Coniiguration/Area |  |  | W/ $\mathrm{C}_{\mathrm{D}}{ }^{\text {A }}$ |
| :---: | :---: | :---: | :---: |
|  | Weight (1b) | Frontal Area ( $\mathrm{ft}^{2}$ ) | ( $1 \mathrm{~b} / \mathrm{ft}^{2}$ ) |
| 1/* | 32,540 | 200 | 81 |
| 2/minimum | 4,795 | 80 | 30 |
| 2/maximum | 4,795 | 200 | 12 |
| 3/minimum | 5,289 | 125 | 21 |
| 3/maximum | 5,289 | 190 | 14 |

*The frontal area of the LEMi-1 spacecraft does not appreciajly change when studied from various views; therefore, only one frontal area is given.

These ballistic coefficients, along with the applicable orbitai characieristics from the nominal trajectory and from Reference 16 were used to calculate the orbital lifetime estimates presented in Table 4-2.

Table 4-2. Orbital Lifetime Estimates

| Configuration |  | Orbital Lifetime (ciays) |  |
| :---: | :---: | :---: | :---: |
| 1 |  | Minimum | 6 (See Table 4-1.) |
| 2 |  | 16 | 39 |
| 3 |  | 18 | 27 |

It should be noted that even if the orbital lifetime estimates presented above are in error by so much as 100 percent, they will still fall well within the 3 -month limit for orbital lifetime suggested in the Mission Profile Guidelines section of this report. Furthermore, Reference 19 states that "special preventive measures are not required for the LEM on Apollo Mission SA-206A".

## 5. NOMINAL TRAJECTORY DATA

This section contains trajectory parameter histories describing and illustrating the nominal mission profile. These data, presented in tabular and graphic forms, are based upon the trajectory printout data in Volume II of this document."

### 5.1 MISSION PROFILE DATA

The time sequence of events for the entire mission is shown in Table 5-1. Figure 5-1 presents the earth ground track for the entire mission. Figures 5-2 and 5-3 present the earth ground track for the two propulsion system tests that occur over the United States. Orbital characteristics for the spacecraft coast phases are presented in Table 5-2.

Earth shadow information (daylight - darkness) is illustrated in Figure 5-1 and presented in tabular form in Table 5-3. A time history of the spacecraft body attitude rates is presented in Table 5-4.

Table 5-5 presents the LEM-RCS propellant expenditures based on the information from Reference 6, using the criteria established in Table 3-5.

### 5.2 TRAJECTORY PHASE DATA

Discrete events summaries and time history illustrations of the launch vehicle and spacecraft position, motion, and attitude are presented for each of the fourteen major phases of the mission as follows:

| Mission Phase | Table | Figures |
| :--- | :---: | :---: |
| Saturn IB Ascent to Orbit | $5-6$ |  |
| 5-4 through 5-11 |  |  |
| S-IVB/SLA/LEM Orbital Coast | $5-7$ | $5-12$ through 5-15 |
| Spacecraft Separation | $5-8$ | $5-16$ through 5-20 |
| Orbital Cold_Soak to First |  |  |
| DPS Burn | $5-9$ | $5-21$ through 5-24 |
| First DPS Burn | $5-10$ | $5-25$ through 5-29 |
| Orbital Coast to Second |  |  |
| DPS Burn | $5-11$ | $5-30$ through 5-31 |
| Second DPS Burn | $5-12$ | $5-32$ through 5-36 |
| Orbital Coast to FITH Abort Test | $5-13$ | $5-37$ through 5-38 |
| FITH Abort Test* | $5-14$ | $5-39$ through 5-43 |
| Orbital Coast to Second APS Burn | $5-15$ | $5-44$ through 5-45 |

[^4]Mission Phase
Second APS Burn
Orbital Cold-Soak to Third
APS Burn
Third APS Burn
Final Orbital Coast

Table
5-16
5-17. 5-51 through 5-54
5-18 5-55 through 5-59
5-19 5-60 through 5-61

The attitude angles presented in the figures above are referenced to a launch-centered inertial coordinate system and an earth-referenced rotating system. These coordinate systems and the spacecraft axis system are illustrated in Figure 3-7.

Table 5-1. Time Sequence of Events

## Phase Event

Time from Liftoff (hr:min:sec)

Saturn IB Ascent to Orbit
Liftoff/Begin Vertical Rise
Pitch-Over/Initiate Gravity Turn
End Gravity Tern
S-IB Inboard Engines Shutdown
S-IB Outboard Engines Shutdown/Coast
S-IVB Ignition
Jettison Thermolag, Ullage Cases, and Dummy CSM
S-IVB Shutdown into Elliptical Earth Orbit
S-IVB/SLA/LEM Ozbital Coast
Start of Orbital Coast
Maneuver to Ailign S-IVB X-Axis Along Orbit Path
S-IVB X-Axis Aligzed Along Orbit Path Carnarvon Tracking Acquisition SLA Petal Deployment

Spacecraft Separa:ion
SLA Petal Dezioymer:
LEM Separation/RCS Ignition RCS Shutdown
LEM Landing Gear Deployment
Orbital Cold Soak to First DPS Burn
LEM Landing Gear Deployment
Maneuver to $A: E_{2}=\mathrm{EM}+\mathrm{Z}$-Axis Toward The Sun
Maneuver to Required Pre-Buŕn
Inertial Attituでe
Carnarvon Tracking Acquisition
RCS Ullage Maneurer
First DPS Burn
RCS Ullage Maneuver
First DPS Ig:ition
DPS Shutdown
Orbital Coast to Second DPS Burn
DPS Shutdows
Maneuver to Required Pre-Burn Inertial Attitude
Point Arguello Tracking Acquisition RCS Ullage Maneuver

0:55:46. 26
0:55:48. 26
0:56:00. 26
0:56:08. 26

0:56:08. 26
0:56:38. 26
0:00:00. 00
0:00:10. 00
0:02:18. 00
0:02:20. 25
0:02:26. 25
0:02:31. 75
0:02:41. 75
0:09:59. 85

0:09:59. 85
0:10:09. 85
0:10:50. 64
0:53:46. 26
0:55:46. 26

3:54:28. 26
3:59:27. 93
4:01:27.93

4:01:27.93
4:01:35.93
4:02:07. 93

4:02:07. 93
4:30:07. 93
4:33:28. 24
4:35:28. 24

Table 5-1. Time Sequence of Events (Continued)

## Phase Event

Time from Liftoff
(hr:min:sec)
Second DPS Burn
RCS Ullage Maneuver
Second DPS Ignition
DPS Shutdown
Orbital Coast to FITH Abort Test
DPS Shutdown
Maneuver to Required Pre-Burn Inertial Attitude
Point Arguello Tracking Acquisition
RCS Ullage Maneuver

## FITH Abort Test

RCS Ullage Maneuver
Third DPS Ignition
DPS Shutdown/Coast
LEM Staging/First APS Ignition APS Shutdown

Orbital Coast to Second APS Burn

## APS Shutdown

Maneuver to Required Pre-Burn Inertial Attitude
Ship No. 3 Tracking Acquisition
RCS Ullage Maneuver

## Second APS Burn

| RCS Ullage Maneuver | $6: 40: 24.87$ |
| :--- | :--- |
| Second APS Ignition | $6: 40: 27.87$ |
| APS Shutdown | $6: 40: 32.87$ |

Orbital Cold-Soak to Third APS Burn
APS Shutdown
Maneuver to Align + Z-Axis Toward The Sun

6:40:32. 87

Maneuver to Required Pre-Burn Inertial Attitude
Point Arguello Tracking Acquisition RCS Ullage Maneuver

6:40:42. 87
9:10:32. 87
9:22:53. 33
9:24:53. 33
Third APS Burn
RCS Ullage Maneuver
Third APS Ignition
APS Shutdown
9:24:53. 33
9:24:56. 33
9:25:01. 33

## - Final Orbital Coast

APS Shutdown
9:25:01. 33
14:00:00.00
3300-H007-RC000
Page 47





Figure 5-2. Earth Ground Track/Second DPS Burn


Figure 5-3. Earth Ground Track/FITH Abort Test
Table 5+2. Orbital Characteriatics of the Spacecraft Coast Phases

| Coast Following: | Coast Duration (hr:min:sec) | Scmi-Major <br> Axis (ft) | $\begin{gathered} \text { Eccentricity } \\ \text { (nd) } \end{gathered}$ | $\begin{gathered} \text { Inclination } \\ \text { (deg) } \end{gathered}$ | Orbital Period (min) | Perigee ( n mi) | Apogee $\ln \mathrm{mi})$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Orbital Insertion* | 0:45:48 | 21,525,680 | 0.004779 | 32.474 | 88.149 | 85.5 | 119.4 |
| Spacecraft Separation | 3:05:28 | 21,532,980 | 0.003392 | 32.473 | 88.194 | 91.7 | 115.7 |
| First DPS Burn | 0:33:20 | 21,710,490 | 0.006405 | 32. 488 | 89.286 | 110.0 | 155.8 |
| Second DPS Burn | 1:25:00 | 22,010,550 | 0.011435 | 31. 425 | 91.144 | 140.9 | 223.7 |
| FITH Abort Test | 0:20:00 | 22,152,030 | 0.019247 | 31.235 | 92.024 | 135.4 | 275.8 |
| Second APS Burn | 2:44:20 | 22,069,490 | 0.020992 | 31.272 | 91.510 | 115.8 | 268. 3 |
| Third APS Burn** | 4:34:59 | 22,101,190 | 0.024072 | 31.236 | 91.707 | 109.7 | 284.8 |

[^5]Table 5-3. Earth Shadow Data

| Entrance Into Earth's Shadow (Time From Liftoff) |  | $\begin{array}{r} \text { Exit } \\ \text { Earth' } \\ \text { (Time Fr } \\ \hline \end{array}$ | om hadow Liftoff) | Time In <br> Earth's Shadow |
| :---: | :---: | :---: | :---: | :---: |
| Hrs | Min | Hrs | $\underline{\text { Min }}$ | Min |
| 0 | 38 | 1. | 14 | 36 |
| 2 | 6 | 2 | 43 | 37 |
| 3 | 34 | 4 | 11 | 37 |
| 5 | 3 | 5 | 40 | 37 |
| 6 | 35 | 7 | 11 | 36 |
| 8 | 6 | 8 | 43 | 37 |
| 9 | 37 | 10 | 14 | 37 |
| 11 | 9 | 11 | 45 | 36 |
| 12 | 39 | 13 | 17 | 38 |

Table 5-4. Spacecraft Body Attitude Rate History

Time from Liftoff
(hr:min:sec)
Spacecraft Separation 0:55:48. 26

Orbital Cold-Soak to First DPS Burn

|  | 0.0 | 0.0 | 0.0 |
| :--- | ---: | ---: | ---: |
| $0: 56: 03.26$ | 0.0 | -5.0 | 0.0 |
| $0: 56: 38.26$ | 0.0 | 0.0 | 10.0 |
| $0: 56: 45.06$ | 0.0 | -5.0 | 0.0 |
| $0: 56: 56.61$ | 0.0 | 0.0 | 0.0 |
| $0: 57: 31.88$ | 0.0 | 5.0 | 0.0 |
| $3: 54: 28.26$ | 0.0 | 0.0 | 10.0 |
| $3: 54: 32.16$ | 0.0 | -5.0 | 0.0 |
| $3: 54: 41.90$ | 0.0 | 0.0 | 0.0 |

Orbital Soak to Second DPS Burn

| 4:02:07.93. | 0.0 | 0.0 |  |
| :--- | ---: | ---: | ---: |
| 4:30:07.93 | 0.0 | 5.0 | 0.0 |
| 4:30:03.10 | 0.0 | 0.0 | 10.0 |
| 4:30:16.97 | 0.0 | 5.0 | 0.0 |
| 4:30:46.51 | 0.0 | 0.0 | 0.0 |

Second LDS Burn

| 4:35:36.24 | 0.0 | 0.0 | 6.0166 |
| :--- | :--- | :--- | :--- |
| $4: 47: 46.24$ | 0.0 | 0.0 | 0.0166 |

Orbital Coast to FITH Abort Test

| 4:47:46.24 | 0.0 | 0.0 | 0.0 |
| :--- | ---: | ---: | ---: |
| $6: 06: 06.24$ | 0.0 | -5.0 | 0.0 |
| $6: 06: 06.92$ | -10.0 | 0.0 | 0.0 |
| 6:06:07.50 | 0.0 | 5.0 | 0.0 |
| $6: 06: 13.23$ | 0.0 | 0.0 | 0.0 |

FITH Abort Test

| 6:12:45.77 | 0.0 | 0.0 | 0.0 |
| :--- | :--- | :--- | :--- |
| $6: 13: 24.27$ | 0.0 | 0.0 | 0.0293 |
| $6: 20: 24.87$ | 0.0 | 0.0 | 0.0293 |

Orbital Coast to Second APS Burn

| $6: 20: 24.87$ | 0.0 | 0.0 | 0.0 |
| :--- | :--- | ---: | ---: |
| $6: 35: 04.87$ | 0.0 | -5.0 | 0.0 |
| $6: 35: 06.94$ | 0.0 | 0.0 | -10.0 |
| $6: 35: 15.93$ | 0.0 | 5.0 | 0.0 |
| $6: 35: 16.76$ | 0.0 | 0.0 | 0.0 |

Orbital Cold-Soak to Third APS Burn
6:40:32. 87
0.0

6:40:42. 87
0.0

6:40:50. 72
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
5.0

0.0
0.0
0.0

6:40:55. 83
-5. 0
0.0

6:41:01. 13
9:10:32. 87
9:10:34. 80
9:10:38. 64
9:10:41. 30
0.0
0.0
0.0
$-10.0$
0.0
0.0

Table 5-5. LEM-RCS Propellant Expenditures*

| Maneuver | RCS <br> Propellant Expenditure (lb)** |
| :---: | :---: |
| Spacecraft Separation | 15.00 |
| Ullages Preceding |  |
| 1) DPS Operation | 30.00 |
| 2) APS Operation | 7.50 |
| Attitude Holds ( $\pm 5$ deg Deadband) |  |
| 1) During Lem Coast | 0.76 |
| 2) During Ascent Stage Coast | 3.90 |
| Attitude Holds ( $\pm 0.3$ deg Deadband) |  |
| 1) During DPS Burns | 31.50 |
| 2) During APS Burns | 64.18 |
| 3) During FITH Staging | 10.00 |
| Three Axis Attitude Orientation |  |
| 1) LEM | 70. 40 |
| 2) Ascent Stage | 8.20 |
| RCS Tests*** |  |
| 1) Coast Between First and Second DPS Burns | 18.84 |
| 2) Coast Between Second and Third DPS Burns | 91.22 |
| 3) Coast Between First and Second APS Burns | 44.89 |
| 4) Coast After Third APS Burn | 44.89 |
| Total - | 441.28 |
| Usable Propellant Remaining**** $=$ | 134.72 |

[^6]Table 5-6. Saturn IB Ascent to Orbit/Discrete Evente Summary

| Event |  | Altitude* <br> (ft) | Geodetic <br> Latitude** (deg) $\qquad$ | Longitude (deg) | Inertial <br> Velocity <br> (ft/sec) | Inertial <br> Flight Path Angle (deg) | Inertial <br> Azimuth <br> Angle $\qquad$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Liftoff/Begin Vertical Rise | 0:00:00.0 | -9 | 28.532 | -80.565 | 1,342 | 0.00 | 90.00 |
| Pitch-Over/Initiate Gravity Turn | 0:00:10.0 | 419 | 28. 532 | -80.565 | 1,344 | 3.82 | 89.99 |
| End Gravity Turn | 0:02:18.0 | 175,567 | 28.657 | -80.130 | 6,684 | 29.95 | 76. 29 |
| S-IB Inboard Engines Shutdown. | 0:02:20.2 | 183,197 | 28.666 | -80.100 | 6,935 | 29.75 | 76.16 |
| S-IB Outboard Engines Shutdown/Coa at | 0:02:26.2 | 204,284 | 28.690 | -80.012 | 7,310 | 29.01 | 75.98 |
| S-IVB Ignition | 0:02:31.7 | 223,581 | 28.714 | -79.929 | 7. 305 | 28.00 | 76,00 |
| Jettison Thermolag, Ullage Cases, and Dummy CSM | 0:02:41.7 | 257,046 | 28.757 | -79.775 | 7,378 | 26.14 | 76.00 |
| S-IVB Shutdown into Elliptical Earth Orbit | 0:09:59.9 | 516,621 | 31.965 | -62.846 | 25,695 | 0.00 | 83.01 |

S-IB INBOARD ENGINES SHUTDOWN/BEGIN THRUST DECAY S-IB OUTBOARD ENGINES SHUTDOWN/BEGIN THRUST DECAY - S-IB + ADAPTER JETTISON/S-IVB IGNITION/HIGH PITCH RATE

Figure 5-4. Saturn IB Ascent to Orbit/Altitude, Latitude, and Longitude






Figure 5-5. Saturn IB Ascent to Orbit/Inertial Velocity, Flight Path Angle, and Azimuth

Figure 5-6. Saturn IB Ascent to Orbit/Relative Velocity, Flight Path Angle, and Azimuth



Figure 5-9. Saturn IB Ascent to Orbit/Pitch Rate, and Pitch Angle of Attack
3300-H007-RC000 Page 62







(9ヨa) 3า9Nఈ M $\forall \lambda$

Figure 5-11. Saturn IB Ascent to Orbit/Vehicle Attitude (Earth Referenced Rotating)





6-01 $\times 1 \pm$ ) ヨan $1117 \forall$


Figure 5-14. S-IVB/SLA/LEM Orbital Coast/Vehicle Attitude (Launch Site Inertial)
START OF ORBITAL COAST maneuver to align s-ivb X-axis along orbit path 2 S-IVB X-AXIS ALIGNED ALONG ORBIT PATH

TIME FROM ORBITAL INSERTION (MIN:SEC)
Figure 5-15. S-IVB/SLA/LEM Orbital Coast/Vehicle Attitude (Earth Referenced Rotating)







Figure 5-18.


(9.01 $\times 1 \pm$ ) 30ח1117

Orbital Cold-Soak to First DPS Burn/Inertial Velocity, Flight Path Angle, and Azimuth



$\begin{array}{llllllll} & -20: 33: 20 & 0: 00: 00 & 0: 33: 20 & 1: 06: 40 & 1: 40: 00 & 2: 13: 20 & 2: 46: 40 \\ 3: 20: 00\end{array}$ TIME FROM LEM LANDING GEAR DEPLOYMENT (HR:MIN:SEC)



(930) 379 NV HOlld
Figure 5-23.

3300-H007-RC000
Page



Figure 5-26.



Figure 5-28. First DPS Burn/Spacecraft Attitude (Earth Referenced Rotating)

Figure 5－29．First DPS Burn／Total Acceleration
NOIIVタヨาヨコJヤ7VIO1

| Event | $\begin{gathered} \text { Time } \\ \text { From } \\ \text { Liftoff } \\ \text { (hr:min:sec) } \end{gathered}$ | Altitude* (ft) | $\begin{aligned} & \text { Geodetic } \\ & \text { Latitude } * * \\ & \text { (deg) } \\ & \hline \end{aligned}$ | Longitude** (deg) | Inertial Velocity (ft/sec) | $\begin{gathered} \text { Inertial } \\ \text { Flight } \\ \text { Path } \\ \text { Angle } \\ \text { (deg) } \\ \hline \end{gathered}$ | Inertial Azimuth Angle $\qquad$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DPS Shutdown | 4:02:07.9 | 664,457 | -25.077 | 113.906 | 25,619 | -0.11 | 68.46 |
| Maneuver to Required Pre-Burn Inertial Attitude | 4:30;07.9 | 788,523 | 28.562 | -148. 167 | 25,475 | 0.32 | 73.53 |
| Point Arguello Tracking Acquisition | 4:33:28.2 | 819,882 | 31.542 | -133.852 | 25, 441 | 0.31 | 81.14 |
| RCS Ullage Maneuver | 4:35:28.2 | 837,093 | 32.439 | -124.942 | 25,421 | 0. 30 | 86.12 |

[^7]3300-H007-RC000 Page 88


Figure 5-30. Orbital Coast to Second DPS Burn/Altitude, Latitude,
and Longitude


3300-H007-RC000<br>Page 91



Figure 5-32. Second DPS Burn/Altitude, Latitude, and Longitude


[^8]Angle, and Azimuth

Figure 5-34. Second DPS Burn/Spacteduft Attitude (Launch Site Inertial)

$3300-\mathrm{H} 007-\mathrm{RC} 000$
Page 95


SECOND DPS SHUTDOWN OCCURS

 Flight Path Angle, and Azimuth

(ОЭロ) 31כN甘 HIVd LHOITA TVIIX3NI




Figure 5-39. FITH Abort Test/Altitude, Latitude, and Longitude

3300-H007-RC000
Page 101


Figure 5-41. FITH Abort Test/Spacecraft Attitude (Launch Site Inertial)


3300-H007-RC000<br>Page 104


Table 5-15. Orbital Coast to Second APS Burn/Discrete Events Summary

| Event | Time From Liftoff (hr:min:sec) | $\begin{aligned} & \text { Altitude* } \\ & (\mathrm{ft}) \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Geodetic } \\ & \text { Latitude** } \\ & \text { (deg) } \end{aligned}$ | Longitude* (deg) | Inertial <br> Velocity <br> (ft/sec) | $\begin{gathered} \text { Inertial } \\ \text { Flight } \\ \text { Path } \\ \text { Angle } \\ \text { (deg) } \\ \hline \end{gathered}$ | Inertial <br> Azimuth <br> Angle <br> (deg) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| APS Shutdown | 6:20:24.9 | 839,355 | 31.375 | -85. 341 | 25,674 | -0.34 | 91.47 |
| Maneuver to Required Pre-Burn Inertial Attitude | 6:35:04.9 | 902,834 | 14.186 | -26. 375 | 25,592 | 0.70 | 118.20 |
| Ship No. 3 Tracking Acquisition | 6:36:29. 2 | 929,061 | 11.443 | -21.640 | 25,560 | 0.77 | 119.32 |
| RCS Ullage Maneuver | 6:40:24.9 | 1,016,990 | 3. 439 | -8.930 | 25,458 | 0.94 | 121.10 |

[^9]

*Altitude above the Fischer ellipsoid.
Table 5-16. Second APS Burn/Discrete Events Summary

| Event |  | Altitude* (ft) | Geodetic <br> Latitude** <br> (deg) | $\begin{aligned} & \text { Longitude** } \\ & (\mathrm{d} \lg \mathrm{~S}) \end{aligned}$ | Inertial Velocity (ft/ser) | $\begin{aligned} & \text { Inertial } \\ & \text { Flight } \\ & \text { Path } \\ & \text { Angle } \\ & \text { (Ueg) } \\ & \hline \end{aligned}$ | Inertial <br> Azimuth Angle (Heg) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RCS Ullage Maneuver | 6:40:24.9 | 1,016.990 | 3. 439 | -8.930 | 25.458 | 0.94 | 121.10 |
| Second APS Ignition | 6:40:27.9 | 1,018,239 | 3. 335 | -8.771 | 25,453 | 0.96 | 121.11 |
| APS Shutdown | 6:40:32,9 | 1,020,563 | 3. 163 | -8. 508 | 25,397 | 1.16 | 121.13 |

**Minus coordinates indicate West longitudes and South latitudes.






Figure 5-47. Second APS Burn/Inertial Velocity, Flight Path Angle, and Azimuth


Figuro 5-48. Sucond APS Burn/Spacecraft Attitude (Iaunch Site Inertial)





Figure 5-50. Second APS Burn/Total Acceleration
*Altitude above the Fischor allipaold.
Summary

| Inertial <br> Flight <br> Path <br> Angle <br> (deg) | Inertial <br> Azimuth <br> Anglo <br> (deg) |
| :---: | :---: |
| 1.16 | 121.13 |
| 1.16 | 121.16 |
| -0.96 | 65.65 |
| -0.08 | 91.38 |
| 0.09 | 96.32 |

- 




 PRE-BURN INERTIAL ATTITUDE

TIME FROM SHUTDOWN (HR:MIN:SEC)
Figure 5-53. Orbital Cold-Soak to Third APS Burn/Spacecraft Attitude (Launch Site Inertial)

Table 5-18. Third APS Burn/Discrete Events Summary

| Erent | $\begin{gathered} \text { Time } \\ \text { From } \\ \text { Liftoff } \\ \text { (hr:min:sec) } \\ \hline \end{gathered}$ | $\begin{aligned} & \text { Altitude }{ }^{*} \\ & (f t) \end{aligned}$ | Geodetic Latitude** (deg) | Longitude (deg) | Inertial <br> Velocity <br> (ft/sec) | $\begin{gathered} \text { Inertial } \\ \text { Flight } \\ \text { Path } \\ \text { Angle } \\ \text { (deg) } \\ \hline \end{gathered}$ | $\begin{gathered} \text { Inertial } \\ \text { Azimuth } \\ \text { Angle } \\ \text { (deg) } \\ \hline \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RCS Ullage Mancuver | 9:24:53.3 | 677,727 | 30.822 | -123.081 | 25,806 | 0.09 | 96.32 |
| Third APS Ignition | 9:24:56. 3 | 677,837 | 30.800 | -122.856 | 25,808 | 0.11 | 96.44 |
| APS Shutdown | 9:25:01. 3 | 678,302 | 30.760 | -122.431 | 25,833 | 0. 34 | 96.64 |



（○ヨa）ヨาONV HLVd 1 HOTTA TVILYヨNI

Figure 5－56．Third APS Eurn／Inertid Velocity，Elight Path Angle，and Azimuth


(9ヨ0) 770NV HOLId

Table 5-19. Final Orbital Coast/Discrete Events Summary

$$
\begin{gathered}
\text { Inertial } \\
\text { Flight } \\
\text { Path } \\
\text { Angle } \\
\text { (deg) } \\
\hline
\end{gathered}
$$

$$
\begin{aligned}
& 0.34 \\
& 0.34
\end{aligned}
$$

Altitude above the Fischer ellipsoid.
Minus coordinates indicate Westlongitudes and South latitudes.



## 6. TRACKING AND COMMUNICATIOINS DATA

Spacecraft visibility periods for the MSFN stations presented in Table 3-6 axe listed in Table 6-1. Table 6-2 presents the intervals of the mission which axe not secn by any of the tracking stations (communications void). The surface tracking coverage, duxing the ascent to orbit, spacecraft separation and staging, and all the APS and DPS burns, is shown in Figure 6-1. Spacecraft visiblity is defined as a tracking elevation angle greater than 5.0 degrees as measured from the station local horizontal.

Volume III presents detailed tracking time history data for the ground stations available for operation on this mission. These data consist of range, range rate, azimuth angle, clevation angle, and two spacecraft-toradar look angles, and are presented as a function of time for each of the ground stations. Significant events are noted in this data.

Table 6-1. Surface Tracking Coverage

| Tracking Station | ```Acquisition of Signal- \\ Time from Liftoff (hr:min:sec)``` | Loss of SignalTime from Liftoff (hr:min:sec) | $\begin{gathered} \text { Visitility } \\ \text { Duration } \\ \text { (minsec) } \\ \hline \end{gathered}$ |
| :---: | :---: | :---: | :---: |
| Grand Turk | 0:05:47.251 | 0:07:36.155 | 1:48.904 |
| Cape Kennedy | 0:00:19.332. | 0:07:56.850 | 7:37.518 |
| Grand Bahama | 0:01:55.066 | 0:08:16.833 | 6:21.767 |
| San Salvador | 0:03:10.837 | 0:08:34.194 | 5:23.357 |
| Bermuda | 0:05:57.792 | 0:11:51.464 | 5:53.672 |
| Grand Canary | 0:18:11.446 | 0:22:48,459 | 4:37.013 |
| Carnarvon | 0:53:46.255 | 0:57:26.467 | 3:40.211 |
| Ship No. 1 | 0:52:48.850 | 0:58:14.320 | 5:25.470 |
| Guaymas Mex. | 1:30:02.811 | 1:34:32.386 | 4:29.575 |
| White Sands | 1:31:36.161 | 1:35:31.470 | 3:55.310 |
| Texas | 1:33:24.034 | 1:37.57.064 | 4:33.030 |
| Cape Kennody | 1:36:56.104 | 1:40:57.147 | 4:01.043 |
| San Salvador | 1:39:55.908 | 1:40:15.058 | 0:19.150 |
| Grand Baham? | 1:37:45.816 | 1:41:04. 236 | 3:18. 419 |
| Bermuda | 1:40:10.280 | 1:44:47.569 | 4:37. 289 |
| Grand Canary | 1:52:49.890 | 1:53:16.695 | 0:26.805 |
| Carnarvon | 2:26:49.787 | 2:31:07.915 | 4:18.128 |
| Ship No. 1 | 2:25:49.235 | 2:31:15.095 | 5:25.859 |
| Hawaii | 2:52:51.470 | 2:55:22. 402 | 2:30.932 |
| Ship No. 2 | 3:00:13.931 | 3:04:43.612 | 4:29.681 |
| Pt. Arguello | 3:01:29.179 | 3:05:23.050 | 3:53.871 |
| Goldstone | 3:02:18.832 | 3:06:09.431 | 3:50.599 |
| Guaymas Mex. | 3:03:08.545 | 3:07:16.433 | 4:07.888 |
| White Sands | 3:04:03.940 | 3:08:37.138 | 4:33.199 |
| Texas | 3:06:31.995 | 3:10:51.530 | 4:19.534 |
| Cape Kennedy | 3:09:56.585 | 3:14:11.884. | 4:15.299 |
| Grand Bahama | 3:10:41.574 | 3:14:36.187 | 3:54.613 |
| San Salvador | 3:12:06.545 | 3:15:13.213 | 3:06.668 |
| Grand Turk | 3:13:51.382 | 3:15:18.672 | 1:27.290 |
| Bermuda | 3:13:09.569 | 3:17:23.260 | 4:13.691 |
| Ascension Is. | 3:29:52. 307 | 3:32:17.357 | 2:2.5.050 |
| Ship No. 3 | 3:27:15.925 | 3:32:18.010 | 5:02.085 |

Table 6-1. Surface Tracking Covexage (Continued)

| Tracking Station | ```Acquisition of Signal- Time from Liftoff (hr:min:sec)``` | Loss of SignalTime from Liftoff (hr:min:sec) | Visibility Duration (min:sec) |
| :---: | :---: | :---: | :---: |
| Pretoria | 3:39:53.816 | 3:45:05.434 | 5:11.618 |
| Ship No. 1 | 3:59:03.035 | 4:03:38.476 | 4:35.441 |
| Carnarvon | 3:59:27.932 | 4:04:45. 257 | 5:17.325 |
| Hawaii | 4:24:13.836 | 4:29:52.525 | 5:38.690 |
| Ship No. 2 | 4:32:39.315 | 4:38:44.995 | 6:05.680 |
| Pt. Arguello | 4:33:28. 239 | 4:39:35.237 | 6:06.999 |
| Goldstone | 4:34:17.826 | 4:40:23.2.67 | 6:05.481 |
| Guaymas Mex. | 4:35:52.021 | 4:41:23. 259 | 5:36.238 |
| White Sands | 4:36:30.704 | 4:12:44.528 | 6:13.823 |
| Texas | 4:39:03. 227 | 4:45:06.936 | 6:03.710 |
| Cape Kennedy | 4:42:25.312 | 4:48:29.985 | 6:04.673 |
| Grand Bahama | 4:43:08.439 | 4:48:54.293 | 5:45.854 |
| San Salvador | 4:44:24.118 | 4:49:38.932 | 5:14.814 |
| Grand Turk | 4:45:45.770 | 4:50:07.605 | 4:21.835 |
| Bermuda | 4:45:48.858 | 4:51:47.203 | 5:58:345 |
| Antigua | 4:49:07.508 | 4:51:5A. 875 | 2:47.368 |
| Ascension Is. | 5:03:29.420 | 5:06:20.425 | 2:51.005 |
| Ship No. 3 | 5:00:23.808 | 5:06:49.171 | 6:25.364 |
| Pretoria | 5:13:10.388 | 5:20:16.475 | 7:06.087 |
| Ship INo. 1 | 5:32:17.219 | 5:40:24.411 | 8:07.191 |
| Carnarvon | 5:32:50.370 | 5:41:16.890 | 8:26.519 |
| Hawaii | 5:59:23.175 | 6:06:27.794 | 7:04.619 |
| Ship No. 2 | 6:08:26.660 | 6:14:55.900 | 6:29.240 |
| Pt. Arguello | 6:09:25.772 | 6:15:40.107 | 6:14.335 |
| Goldstone | 6:10:18.916 | 6:16:26.178 | 6:07.262 |
| Guaymas Mex. | 6:11:41.628 | $6: 17: 39.046$ | 5:57.418 |
| White Sands | 6:12:31.502 | 6:18:48.977 | 6:17.474 |
| Texas | 6:15:06.373 | $6: 21: 11.454$ | 6:05.081 |
| Cape Kennedy | 6:18:32.619 | 6:2.4:29.362 | 5:56.74 |
| Grand Bahama | 6:1.9:14.850 | $6: 24: 52.706$ | 5:37.856 |
| San Salvador | 6:20:31.369 | 6:25:34.841 | 5:03.471 |
| Grand Turk | 6:21:57.695 | 6:25:59.271. | 4:01.575 |
| Bermuda | 6:22:00. 441 | 6:27:49.612 | 5:\%9.171 |

Table 6-1. Surface Tracking Coverage (Continued)

| Tracking Station | ```Acquisition of Signal- Time from Liftoff (hr:min:scc)``` | Loss of SignalTime from Liftoff $\qquad$ | Visibility Duration (min: bec ) |
| :---: | :---: | :---: | :---: |
| Antigua | 6:25:39.362 | 6:27:26. 348 | 1:46.986 |
| Ascension Is. | 6:39:48. 361 | 6:42:17.62.5 | 2:29.264 |
| Ship No. 3 | 6:36:29. 247 | 6:43:03.953 | 6:34.705 |
| Pretoria | 6:49:02. 437 | 6:57:07.692 | 8:05.255 |
| Ship No. 1 | 7:08:26. 337 | 7:17:35.094 | 9:08.757 |
| Carnarvon | 7:09:02. 751 | 7:18:22.595 | 9:19:844 |
| Hawaii | 7:36:32.552 | 7:42:44.092 | 6:11.541 |
| Ship No. 2 | 7:45:32.055 | 7:50:58.900 | 5:26.845 |
| Pt. Arguello | 7:46:34.339 | 7:51:41.945 | 5:07.606 |
| Goldstone | 7:47:27.257 | 7:52:25.581 | 4:58.324 |
| Guaymas Mex. | 7:48:43.802 | 7:53:47.183 | 5:03.381 |
| White Sands | 7:49:31.813 | 7:54:51.306 | 5:19.992 |
| Texas | 7:52:03. 342 | 7:57:25.773 | 5:22.430 |
| Cape Kennedy | 7:55:19.021 | 8:00:50.061 | 5:31.041 |
| Grend Bahama | 7:55:58.510 | 8:01:31.662 | 5:33.152 |
| San Salvador | 7:57:01.447 | 8:02:37. 268 | 5:35.821 |
| Bexmuda | 7:59:46.024 | 8:02:22.799 | 2:36.775 |
| Grand Turk | 7:58:02.963 | 8:03:36.527 | 5:33.564 |
| Antigua | 8:00:29.239 | 8:06:16.884 | 5:47.64.5 |
| Ship No. 3 | 8:13:07.508 | 8:19:22.094 | 6:14.586 |
| Ascension Is. | 8:13:33.696 | 8:21:28.000 | 7:54.304 |
| Pretoria | 8:25:00.845 | 8:34:11.435 | 9:10.591 |
| Ship No. 1 | 8:46:11.636 | 8:52:16.953 | 6:05.317 |
| Carnarvon | 8:46:09.943 | 8:54:12.567 | 8:02.624 |
| Guam | 8:59:58.421 | 9:05:2.4.385 | 5:25:964 |
| Hawaii | 9:13:55.813 | 9:18:28.917 | 4:33.104 |
| Pt. Arguello | 9:22:53.326 | 9:27:50.943 | 4:57.617 |
| Ship No. 2 | 9:22:02.780 | 9:27:26.010 | 5:23.230 |
| Goldstone | 9:23:47.814 | 9:28:27.798 | 4:39.984 |
| Guaymas Mex. | 9:25:06.053 | 9:30:38.120 | 5:32.066 |
| White Sands | 9:25:59.381 | 9:31:03.035 | 5:03.655 |
| Teras | 9:28:25.464 | 9:33:43.115 | 5:17.651 |
| Cape Kennedy | 9:32:19.286 | 9:36:19.038 | 3:59.752 |

Table 6-1. Surface Tracking Coverage (Continued)

| Tracking Station | ```Acquisition of Signal- Time from Liftoff (hr:min:sec)``` | Loss of SignalTime from Liftoff $\qquad$ | Visibility Duration $\qquad$ |
| :---: | :---: | :---: | :---: |
| Grand Bahama | 9:32:44.112 | 9:37:17.198 | 4:33.085 |
| San Salvador | 9:33:38. 448 | 9:38:38.312 | 4:59.865 |
| Grand Turk | 9:34:27.827 | 9:39:56.449 | 5:28.622 |
| Antigua | 9:37:02.602 | 9:42:37.024 | 5:34.422 |
| Ascension Is. | 9:51:06.897 | 9:57:46.241 | 6:39.434 |
| Pretoria | 10:02:02.787 | 10:11:38.407 | 9:35.620 |
| Guam | 10:36:20.887 | 10:42:33.092 | 6:12.205 |
| Hawaii | 10:52:35.449 | 10:54:20.597 | 1:45.148 |
| Pt. Arguello | 11:00:03.130 | 11:03:26.429 | 3:23.299 |
| Goldstone | 11:01:43.499 | 11:03:09.532 | 1:26.033 |
| Ship No. 2 | 1.0:53:44.630 | 11:03:56.334 | 5:11.705 |
| White Sands | 11:04:57.811 | 11:05:01.281 | 0:03.471 |
| Guayman Mex. | 11:01:53, 22,3 | 11:07:02.201 | 5:08.978 |
| Pretoria | 11:39:21.014 | 11:48:59.782 | 9:38.768 |
| Hawaii | 12:28:41.494 | 12:32:42. 412 | 4:00.918 |
| Pretoria | 13:16:32.296 | 13:25:55.831 | 9:23.535 |

Table 6-2. Communications Void Intervals

| Void Begins - | Void Ends | Void |
| :---: | :---: | :---: |
| Time from Liftoff (hr:min:sec) | Time from Liftoff $\qquad$ <br> (hr:min:sec) | Duration <br> (min:sec) |
| 0:00:00.000 | 0:00:19.332 | 0:19.332 |
| 0:11:51.464 | 0:18:11.446 | 6:19.982 |
| 0:22:48.459 | 0:53:46.255 | 30:57.796 |
| 0:58:14.320 | 1:30:02. 811 | 31:48.491 |
| 1:44:47.569 | 1:52:49.890 | 8:02. 321 |
| 1:53:16.695 | 2:26:49.787 | 33:33.092 |
| 2:31:15.095 | 2:52:51.470 | 21:36.375 |
| 2:55:22.402 | 3:00:13.931 | 4:51.529 |
| 3:17:23. 260 | 3:29:52.307 | 12:29.047 |
| 3:32:18.010 | 3:39:53.816 | 7:35.806 |
| 3:45:05.434 | 3:59:03.035 | 13:57.601 |
| 4:04:45. 257 | 4:24:13.836 | 10:28.579 |
| 4:29:52.525 | 4:32:39.315 | 2:46.790 |
| 4:51:54.875 | 5:03:29.420 | 11:34.545 |
| 5:06:49.171 | 5:13:10.388 | 6:21.217 |
| 5:20:16.475 | 5:32:17.219 | 12:00.744 |
| 5:41:16.890 | 5:59:23.175 | 18:06. 285 |
| 6:06:27.794 | 6:08:26.660 | 1:58.866 |
| 6:27:26.348 | $6: 39: 48.361$ | 12:22.013 |
| 6:43:03.953 | 6:49:02.437 | 5:58.484 |
| 6:57:07.692 | 7:08:26.337 | 11:18.645 |
| 7:18:22.595 | 7:36:32.552 | 18:09.957 |
| 7:42:44.092 | 7:45:32.055 | 2:47.963 |
| 8:06:16.884 | 8:13:07. 508 | 6:50.624 |
| 8:34:11. 435 | 8:46:11.636 | 12:00.201 |
| 8:54:12. 567 | 8:59:58.421 | 5:45.854 |
| 9:05:24.385 | 9:13:55.813 | 8:31.428 |
| 9:18:28.917 | 9:22:53.326 | 4:24.409 |
| 9:42:37.024 | 9:51:06.807 | 8:29.783 |
| 9:57:46.241 | 10:02:02.787 | $4: 16.546$ |
| 10:11:38.407 | 10:36:20.887 | 24:42. 280 |

Table 6-2. Communications Void Intervals (Continued)

| VoidBegins <br> Time from Liftoff <br> (hr:min:sec) | Void Ends - <br> Time from Liftoff <br> $($ hr:min:sec | Void <br> Duration <br> (min:sec) |
| :---: | :---: | :---: |
| $10: 42: 33.092$ | $10: 52: 35.449$ | $10: 02.357$ |
| $10: 54: 20.597$ | $11: 00: 03.130$ | $5: 42.533$ |
| $11: 03: 56.334$ | $11: 04: 57.811$ | $1: 01.477$ |
| $11: 07: 02.201$ | $11: 39: 21.014$ | $32: 18.813$ |
| $11: 48: 59.782$ | $12: 28: 41.494$ | $19: 41.712$ |
| $12: 32: 42.412$ | $13: 16: 32.296$ | $43: 49.88 .4$ |
| $13: 25: 55.831$ | $14: 00: 00.000$ | $34: 04.169$ |
|  |  |  |
|  |  | Total Void Time |



## 7. SUMMARY OF TECHNICAL ACHIEVEMENT

This report contains no innovations or improvements involving new technology, approaches, methods, or patentable ideas as defined in the contract's "New Technology and Propexty Rights in Inventions" clause.

## OPEN-LOOP MANEUVER LOGIC

The purpose of this appendix is to indicate the open-loop type logic used to simulate the spacecraft attitude change maneuvers in inertial space. This logic is similar to that expected to be used by the Apollo spacecraft. The reorientation will consist of a roll maneuver followed by a pitch or yaw maneuver and, if necessary, another roll maneuver. The magnitude and direction of the maneuvers are based upon Euler angles measured from the current attitude orientation to the desired attitude orientation.

Figure(A-1) shows the Eulex angle transformation required to change from one inertial attitude to another. These Euler angles are computed using the knowledge of the unit vectors which describe current. and desired orientation of the spacecraft roll, yaw, and pitch axes. The components of these unit vectors are measured in the Greenwich inertial coordinate system at the time of launch. Also calculated is the time required to perform the maneuver using the given spacecraft rotational rates.

The Euler angles are defined as follows:
$\phi=$ the azimuth angle measured in the plane formed by the $Y$ and $Z$ body axes measured from the $+Z$ body axis to the vector $\bar{N}$ in the direction of the -Y body axis.
$\theta=$ the polar angle measured from the initial roll axis $\left(X_{o}\right)$ to the final roll axis $\left(X_{f}\right)$.
$\psi=$ the azimuth angle measured in the new plane formed by the $Y$ and $Z$ body axes after the $\phi$ and $\theta$ rotations and is measured from $\stackrel{\pi}{N}$ to the final Z body axis $\left(\mathrm{Z}_{\mathrm{f}}\right)$.

The logic uses the Euler angles to compute the mancuver angles, ${ }^{*}$ roll(1)' $\alpha_{\text {yaw }}, \alpha_{\text {pitch }}$, and $\alpha_{\text {roll(2) }}$. The first maneuver is a roll to the closest pitch or yaw axis $\left(\left|\alpha_{\text {roll }}(1)\right| \leq 45\right.$ degrees $)$. The second maneuver is a pitch or yaw of $\pm \theta$ degrees. The third maneuver, $\alpha_{r o l l(2)}$, is the final roll and is dependent on the first two mancuvers.

The maneuver angles are defined as follows:
$\boldsymbol{\alpha}_{\text {roll }}(1)=$ the first rull the spacecraft has to perform
to reorient its attitude. $\left\{\begin{array}{c}\alpha_{\text {patch }} \\ \text { or } \\ \alpha_{\text {yaw }}\end{array}\right\}=\begin{aligned} & \text { the second mancuver the spacecraft has to } \\ & \text { perform to reorient its attitude (by definition } \\ & \text { one of the two angles is always zero) }\end{aligned}$
$\begin{aligned} & \dot{a}_{\text {roll }}(2)= \text { the third maneuver (second roll) the spacecraft } \\ & \text { has to perform to reorient its attitude. }\end{aligned}$


Figure A-1. Euler Angle Transformation

## REFERENCES

1. "Mission Requirements for Apollo Spacecraft Development Mission 206A (LEM-1)', MSC Internal Note No. 65-PL-1 (Revision A), from Systems Engineering Division, dated 11 May 1965.
2. "Comments on Revised Mission Requirements for SA-206A", from FM/Chief, Mission Planning and Analysis Division, dated 17 June 1965.
3. . "Saturn IB Control Weights Analyses", Chrysler Corporation TB-AE-65-117, from Advance Engincering Branch, dated 1. February 1965.
4. "Apollo Mission 206A-Preliminary Mission Profile (U)-Volume I", TRW/STL 3300-H001-RC000,R. K. Petersburg, dated 31 March 1965.
5. "Flight Mechanics, Dynamics, Guidance and Control Panel Interface Control Document-Saturn IB SA-206 (BP-30, LEM-1) (U)", MSFC 80M90206, no date.
6. "LEM-1 Preliminary Mission Capability Report-Mission SA-206A (Draft)", GAEC LED-540-38, from LEM Mission Analysis Group, dated 15 June 1965.
7. "Data for SA-206A PRT", from ATSO to FAB/C. R. Huss, dated 23 June 1965.
8. 

"Detailed Test Plan for LEM-1 (First Draft)", GAEC ITPLe6:1..3, from Flight Planning and Analysis, dated 15 Februaxy 1965.
9. "Mass Properties Data for SA-206A, LEM Alone Miseion", MSC P55/M612, from P55/Chief, Design Integration Branch, dated 22 January 1965.
10. "A Reference Atmosphere for Patrick AFB, Floricla", NASA Technical Note D-595, O. E. Smith, dated March 1961.
11. "U. S. Standard Atmosphere, 1962", U. S. Gopermment Printing Office, Washington, D.C., 1962.
12. "LEM Familiarization Manual", GAEC LMA 790-1, dated 15 July 1964.
13. "Aerodynamics Data Manual", North American Space and Information Systems Division, Vol. ARM 2-1, Fage 1.2.5-1, Revised 1 July 1964.
14. "Minutes of the Tenth Guidance and Pexformance Sub-Pancl", Enclosure 10, dated 20 April 1965.

## REFERENCES (Continued)

"Apollo Missions and Navigation System Characteristics", NASA. Apollo Navigation Working Group Technical Report No. 65-AN-1.0, dated 5 February 1965.
16. "Lifetime of Near Earth Satellites in Circular or Elliptical Orbits", NASA/MSC, OFO (JCB:jec), dated 13 September 1963, (C).
17. "A Preliminary Separation Study for SA- 206 Tower Jettison with the CSM Shroud", from FM3/Flight Analysis Branch/MSC, dated 17 February 1965.
18. "Operational Support Plan for the Apollo 200 Series Missions", prepared by the Flight Control Division/MSC, dated April 1965.
19. "Policy Guidance on Orbital Debris", Letter from NASA Headquarters/S. C. Phillips to MSC/W. A. Lee, dated 7 June 1965.

## ABBREVIATIONS

| APS | Ascent Propulsion System |
| :---: | :---: |
| CSM | Command and Service Module |
| DPS | Descent Propuleion System |
| ECS | Environmental Control System |
| EPS | Electrical Power System |
| EST | Eastern Standard Time |
| ETR | Eastern Test Range |
| FITH | Fire-In-The-Hole |
| GMT | Greenwich Mean Time |
| LEM | Lunar Excursion Module |
| LES | Launch Escape System |
| LMP | LEM Mission Programmer |
| MSC | Manned Spacecraft Center |
| MSFC | Marshall Space Flight Center |
| MSFN | Manned Space Flight Net |
| RCS | Reaction Control System |
| SLA | Spacecraft LEM Adapter |
| deg | degrees |
| er | earth equatorial radius |
| ft | feet |
| hr | hours |
| km | kilometers |
| 1 b | pounds |
| min | minutes |
| nmi | nautical miles |
| rad | radians |
| sec | seconds |


[^0]:    * Includes flight performance reserves.

[^1]:    * Minus coordinates are South latitudes and West longitudes.

[^2]:    \# In the automatic mode, the spacecraft is capable of executing a:titude rates up to 10 degrees per second in pitch and roll, and 5 degrees per second in yaw.

[^3]:    Relative Velocity and Separation Distance Following. LEM Staging to APS Shutdown | $\dot{j}$ |
    | :--- |
    | $\dot{4}$ |
    | $\dot{4}$ |

    Figure

[^4]:    * The FITH Abort Test phase consists of the third DPS burn, LEiA staging, and the first APS burn.

[^5]:    *S-IVB/SLA/LEM combination.
    **Mission is assumed to end 14 hours after liftoff.

[^6]:    *No allowances were made for RCS contingency operations. **Based on the criteria from Table 3-5 and from mission profile. ***Reference 6.
    .****Based on an RCS usable propellant loading of 576 pounds.

[^7]:    *Altitude above the Fischer ellipsoid.
    **Minus coordinates indicate West longitudes and South latitudes.

[^8]:    Second DPS Burn/Inertial Velocity, Flight Päth

[^9]:    *Altitude above the Fischer cllipsoid.
    **Minus coordinates Indicatc West longitudes and South latitudes.

