Accession No 10541

This reissue completely supersedes and replaces the 30 January 1962 issue of this report.



# NORTH AMERICAN AVIATION, INC.

# SPACE and INFORMATION SYSTEMS DIVISION

5555556

6666

CONTENTS

Section

CON

# INTRODUCTION .

| LITTLE JOE II LAUNCH VEH  | ICLE   | 3 -   | •                                                                                                               |       | •     | lit<br>2010<br>• an ∳ran r |
|---------------------------|--------|-------|-----------------------------------------------------------------------------------------------------------------|-------|-------|----------------------------|
|                           |        |       |                                                                                                                 |       |       |                            |
| OBJECTIVE                 | •      | •     |                                                                                                                 |       | •     |                            |
| DESCRIPTION .             | •      | •     | •                                                                                                               |       |       | •                          |
| PROPULSION .              | •      | •     |                                                                                                                 |       |       | •                          |
| Rocket Motors             |        |       |                                                                                                                 | •     |       | •                          |
| Propellant                | •      |       |                                                                                                                 | •     |       | •                          |
| INSTRUMENT UNIT           | •      |       |                                                                                                                 | · .   | •     | •                          |
| GUIDANCE AND CONT         | RO     | L.    | • 1                                                                                                             | •     | •     | •                          |
| <b>INSTRUMENTATION</b>    |        | •     | •                                                                                                               | •     | •     | •                          |
| Description               |        | •     |                                                                                                                 |       |       | •                          |
| Monitoring                | • .    | •     |                                                                                                                 | •     |       |                            |
| Measurement List          |        |       |                                                                                                                 | •     |       | •                          |
| Telemetry and Radi        | o F    | reque | ency                                                                                                            | Syst  | ems   |                            |
| ABORT SENSING AND         | DES    | STRU  | JCTS                                                                                                            | sýst  | ГЕМ   | · .                        |
| Abort Systems .           |        | •     |                                                                                                                 |       |       | •                          |
| Destruct System           | •      |       |                                                                                                                 |       |       | •                          |
| INTERFACES                | •      |       | •                                                                                                               |       |       | •                          |
| Mechanical                | •      | •     |                                                                                                                 | •     | •     |                            |
| Electrical                |        |       | •                                                                                                               |       | •     | •                          |
| AERODYNAMIC .             | •      | •     | •                                                                                                               |       | •     | •                          |
| CONTROL DYNAMICS          | •      | •     |                                                                                                                 | •     |       | •                          |
| MISSION-TRAJECTOR         | Y/P    | AYL   | .OAD                                                                                                            |       |       |                            |
| CAPABILITIES .            |        | •     | •                                                                                                               | •     |       | •                          |
| ENVIRONMENTAL PR          | OFI    | LES   | •                                                                                                               | •     |       | •                          |
| PHYSICAL CONFIGUR         | ATI    | ON    | •                                                                                                               | •     |       |                            |
| <b>Overall Dimensions</b> | •      | •     | •                                                                                                               |       |       |                            |
| Weights and Center-       | -of-   | Grav  | ity I                                                                                                           | Jocal | tions |                            |
| LIMITATIONS .             |        | •     | 1944 - 1945 - 1945 - 1945 - 1945 - 1945 - 1945 - 1945 - 1945 - 1945 - 1945 - 1945 - 1945 - 1945 - 1945 - 1945 - |       |       |                            |
| Surface Wind Veloci       | itie 3 |       |                                                                                                                 | •     | • • • |                            |
| Wind Shear                | •      | •     | с <u>-</u>                                                                                                      | •,    | :     |                            |
| Launch Angle              |        |       | <u>.</u>                                                                                                        |       | •     | nina.<br>Status inter      |
| Paylord                   | •      |       |                                                                                                                 | •     |       |                            |

NORTH AMERICAN AVIATION. INC.



| Section |                    |          |        |        |       |      |     |    |     | -<br>Page |
|---------|--------------------|----------|--------|--------|-------|------|-----|----|-----|-----------|
| 11      | C-1 LAUNCH VEHICLE | •        | •      | •      | •     | •    | •   | •  | •   | 8         |
|         | OBJECTIVE          |          | _      |        | •     | •    |     | •  | •   | 8         |
|         | DESCRIPTION        |          |        |        |       |      |     | •  |     | 8         |
|         | Stage S-I          |          |        |        |       |      | •   |    | •   | 8         |
|         | S-I/S-IV Interst   | age      | Sect   | ion    |       | •    |     |    |     | 8         |
|         | Stage S-IV         |          |        | ·      |       |      | •   | •  | •   | 8         |
|         | Instrument Unit    |          | •      |        |       |      |     | •  |     | 11        |
|         | PROPHLSION         | •        | •      | •      |       |      |     | 1. |     | 11        |
|         | First Stage (S-I)  | •        | •      | •      | •     | •    |     |    | •   | 11        |
|         | Second Stage (S-1) | v        | •      | •      | •     |      |     |    | -   | 11        |
|         | INSTRUMENT UNI     | т,       | •      | •      | •     | •    | •   |    | •   | 16        |
|         | CUDANCE AND CO     | т<br>ОМТ | י איס. | •      | •     | •    | •   | •  | •   | 17        |
| 3       |                    |          | no.    | •      | •     | •    | •   | •  | •   | 18        |
|         | INSTROMENTATIC     | 11       | •      | •      | •     | •    | •   | •  | •   | 19        |
|         | Description.       | •        | •      | •      | ٠     | •    | •   | •  | •   | 10        |
|         | Monitoring .       | •        | •      | •      | •     | •    | •   | •  | •   | 10        |
|         | Measurement L      | ist      | •      | •      | •     | •    | •   | •  | •   | 18        |
|         | Telemetry and I    | Kadı     |        | reque  | ency  | Syst | ems | •  | •   | 18        |
|         | ABORT SENSING A    | AND      | DES    | STRU   | JCT   | 515. | LEW | 5. | •   | 30        |
|         | Abort Sensing S    | yste     | em     | •      | •     | •    | •   | •  | •   | 30        |
|         | Destruct System    | ns       | •      | •      | •     | •    | •   | .• | •   | 31        |
|         | INTERFACES .       | •        | •      | •      | •     | •    | •   | •  | •   | 31        |
|         | Mechanical.        | •        | •      | •      | •     | •    | •   | •  | •   | 31        |
|         | Electrical .       | •        | •      | •      | •     | •    | •   | •  | •   | 31        |
|         | DESIGN CRITERIA    | 1        | •      | •      | •     | •    | •   | ٠  | •   | 31        |
|         | • Vehicle Configu  | rati     | on     | •      | •     | •    | •   | •  | •   | 31        |
|         | Mass Character     | isti     | CS     | •      | •     | •    | •   | •  | •   | 33        |
|         | Design Trajecto    | orie     | s.     | •      | •     | •    | •   | •  | •   | 33        |
|         | Environmental      | Con      | ditic  | ns     | •     | ÷    | •   | •  | •   | 33        |
|         | Aerodynamic Cl     | hara     | acter  | ristic | cs.   | •    | •   | •  | •   | 58        |
|         | Stability Analys   | is       | •      | •      | •     | •    | •   | •  | •   | 58        |
|         | Structural Char    | acte     | erist  | tics   | •     | •    | •   | •  | •   | 65        |
| 111     | C-5 LAUNCH VEHICLE | •        | •      | •      | ٠     | •    | •   | •  | •   | 93        |
|         | OBJECTIVE .        | •        | •      |        | •     | •    | •   |    | •   | 93        |
|         | DESCRIPTION        | •        |        | •      |       | •    | •   | •  |     | 93        |
|         | Stage S-IC .       |          |        |        |       |      | •   | •  | ٠   | ,<br>93   |
|         | Stage S-IC/S-II    | Int      | erst   | age S  | Secti | on   | •   | •  | •   | 93        |
|         | Stage S-II .       |          | •      | •      | •     |      |     |    | •   | 93        |
|         | S-II/S-IVB Inte    | rsta     | ige S  | Secti  | on    | •    | •   | •  |     | 93        |
|         | Stage S-IVB        |          |        |        |       |      | •   | •  | •   | 93        |
|         | Staging .          | •        | •      | •      | •     | •    | •   | •  | • • | 95        |



SID 62-148





Ň

Section

|                    |               |          |            |          |         |        |   | Page     |
|--------------------|---------------|----------|------------|----------|---------|--------|---|----------|
| PROPULSION .       |               |          |            |          |         |        |   | 95       |
| First Stage (S-IC) |               |          | •          |          | •       |        | • | 95       |
| Second Stage (S-II | ) .           |          |            |          | •       |        |   | 95       |
| Third Stage (S-IV) | 3).           |          |            | •        | •       | •      | • | 97       |
| INSTRUMENT UNIT    | , -           |          |            |          |         |        | • | 97       |
| Description        |               |          |            | •        |         | •      | • | 97       |
| Equipment          | ÷             | -        |            | •        |         | •      |   | 97       |
| GUIDANCE AND CON   | ITROL         |          |            |          |         |        |   | 98       |
| Description        |               |          |            |          |         |        | • | 98       |
| Concept            | •             | •        |            |          |         |        |   | 98       |
| INSTRUMENTATION    |               |          |            |          |         |        | - | 98       |
| Description.       |               |          |            |          |         |        |   | 98<br>98 |
| Monitoring         |               | •        | •          |          |         |        |   | 98       |
| Measurement List   | •             | •        | •          | •        | •       | •      | • | 98       |
| Telemetry and Ra   | dio Fr        | eane     | ency.      | •        | •       | •      | • | 48<br>48 |
| ABORT SENSING AN   | D DES         | TRI      | JCT        | -<br>585 | Tem:    | •<br>• | • | 90       |
| Abort Sensing Sys  | tem           |          |            |          |         | •      | • | 98       |
| Destruct System    |               | •        | •          | •        | •       | •      | • | 90       |
| INTERFACES         | •             | •        | •          | •        | •       | •      | • | 20       |
| Mechanical         | •             | •        | •          | •        | •       | •      | • | 9.2      |
| Electrical         | •             | •        | •          | •        | •       | •      | • | 77       |
| AERODYNAMICS       | •             | •        | •          | •        | •       | •      | • | 77       |
| Apollo Spacecraft  | /C-5 I        | ່ວມກ     | ch V       | ehic     | •<br>10 | •      | • | 77       |
| Aurodynamic Da     | ju≕u i<br>to  | Jaun     | .cn •      | Cinc     | 10      |        |   | 00       |
| CONTROL DYNAMIC    | ια .<br>'ς    | •        | •          | •        | •       | •      | • | 99       |
| Diaid Body Conty   | al Dui        | •        | •          | •        | •       | •      | • | 99       |
| Flantin Rody Contr |               | nerp     | les        | •        | •       | •      | • | 99       |
| Elastic Dody Cont  | roi<br>NV / D | •<br>AVI | •<br>• • • | •        | ٠       | •      | • | 99       |
| MISSION-INAJECIC   | JAI/P         | AIL      | JUAL       | )        |         |        |   | 0.0      |
| CAPABILITIES .     | •             | •        | •          | •        | •       | •      | • | 99       |
| Circumlunar .      | •             | •        | ٠          | •        | •       | •      | • | 99       |
| Lunar Orbital      | •             | •        | •          | •        | •       | •      | • | 99       |
| Lunar Landing .    | •             | •        | •          | •        | • .     | •      | • | 99       |
| ENVIRONMENTAL      | ROFI          | LES      | •          | •        | •       | •      | • | 100      |
| Atmospheric .      | •             | •        | •          | •        | •       | •      | • | 100      |
| Acceleration .     | •             | •        | •          | •        | •       | •      | • | 100      |
| Vibration          | •             | •        | •          | •        | •       | •      | • | 100      |
| Shock              | •             | •        | •          | •        | •       | •      | • | 100      |
| Aerodynamic Pre    | ssure         | •        | •          | •        | •       | •      | • | 100      |
| Temperature .      | •             | •        | •          | •        | •       | •      | • | 100      |
| Acoustic Noise .   | •             | •        | •          | •        | •       | •      | • | 100      |
| PHYSICAL CONFIGU   | JRATI         | ON       | •          | •        | •       | •      | • | 100      |
| Overall Dimensio   | ns .          | •        | •          | •        | •       | •      | • | 100      |
| Weight and Center  | r-of-G        | iravi    | ity L      | ocat     | ion     | •      | • | 100      |

.

# CUMPTERTIAL

.

| Section |                          | Page |
|---------|--------------------------|------|
|         | LIMITATIONS              | 100  |
|         | Surface Wind Velocities  | 100  |
|         | Wind Shear               | 100  |
|         | Launch Angle             | 100  |
|         | Payload                  | 100  |
| IV      | LAUNCH FACILITY CRITERIA | 101  |
|         | LAUNCH COMPLEX           | 101  |
|         | LAUNCH TASK SEQUENCE     | 101  |
|         | APPENDIX                 | 105  |

CONFIDENTIAL

v -

SPACE and INFORMATION SYSTEMS DIVISION

#### NORTH AMERICAN AVIATION, INC.

# ILLUSTRATIONS

#### Page Figure 1 General Arrangement of Little Joe II Booster and Apollo Prototype 3 2 Saturn C-1 Launch Vehicle 9 3 Saturn C-1 S-IV Stage Configuration 10 4 Saturn C-1 Instrument Unit Configuration 12 . 5 Saturn C-1 Flight Control System . . 14 6 Integrated Polarity Chart for S-I and S-IV Stages 15 7 Saturn C-1 and Apollo Spacecraft Configuration (Orbital Payload Version) . • • • 32 . . . Mass Moment of Inertia During First-Stage Burning 8 (100-Nautical-Mile Orbit) . . . 38 9 Mass Moment of Inertia During Second-Stage Burning (100-Nautical-Mile Orbit) . . . . . . 39 10 Vehicle Weight and Center of Gravity During First-Stage Burning (100-Nautical-Mile Orbit) . . . . 40 11 Vehicle Weight and Center of Gravity During Second-Stage Burning (100-Nautical-Mile Orbit) 41 12 Two Sigma (95-Percent Probability Level) Wind Profile Envelope . . . 48 . . . 13 Vertical Wind Shear Spectrum as Function of Altitude 49 14 Vertical Wind Speed Change Spectrum as Function of Altitude . 50 . . . . . . 15 Selected Vertical Shear Spectrums (Cape Canaveral, . Florida). • • • • 51 . 16 -Selected Vertical Wind Speed Change Spectrums (Cape Canaveral, Florida) . 52 17 Saturn C-1 Launch Vehicle Vibration and Shock Environment. 53 18 Frequency Spectrum at Station 0, C-1 Configuration (188 K) . 51 19 Frequency Spectrum at Station 409, C-1 Configuration (188 K) 55 20 Frequency Spectrum at Station 1000, C-1 56 Configuration (188 K) 21 Frequency Spectrum at Station 1800, C-1 Configuration (188 K) 57 22 Normal Force and Center of Pressure Versus Mach Number, C-1 Apollo First Stage, No Stubs or Fins 66

OUNT IDENTIME

vi

SPACE and INFORMATION SYSTEMS DIVISION

1

| Figure |                                                                                                        | <sup>°</sup> Page | •   |
|--------|--------------------------------------------------------------------------------------------------------|-------------------|-----|
| 23     | Normal Force and Center of Pressure Versus Mach<br>Number, C-1 Apollo First Stage, Stubs Only          | . 67              |     |
| 24     | Normal Force and Center of Pressure Versus Mach<br>Number, C-1 Apollo First Stage, Fins and Stubs .    | . 68              | _   |
| 25     | Normal Force and Center of Pressure Versus Mach<br>Number, C-1 Apollo Second Stage                     | . 69              | ·   |
| 26     | Mean Base Pressure Versus Mach Number, Saturn C-1<br>Apollo (a=0 Degrees)                              | . 70              |     |
| 27     | Total Drag Versus Mach Number, C-1 Apollo First<br>Stage, Fins and Stubs Included .                    | . 71              |     |
| 28     | Mean Base Drag Versus Mach Number, C-1 Apollo<br>First Stage                                           | . 72              | •   |
| 29     | Forebody Drag Versus Mach Number, C-1 Apollo First<br>Stage, No Stubs and Fins                         | . 73              |     |
| 30     | Distribution of Local Normal Force, C-1 Apollo First<br>Stage, No Stubs and Fins (By Linear Theory)    | . 74              |     |
| 31     | Distribution of Local Normal Force, C-1 Apollo First<br>Stage (By Second-Order Shock Expansion Theory) | 75                |     |
| 32     | Distribution of Local Normal Force, C-1 Apollo First<br>Stage (By Second-Order Shock Expansion Theory) | . 15              |     |
| 33     | Distribution of Viscous Crossflow Normal Force, C-1                                                    | . 10              |     |
| 34     | Local Axial Force Versus Vehicle Station, C-1 Apollo                                                   | . (1              | 200 |
| 35     | Local Axial Force Versus Vehicle Station, C-1 Apollo                                                   | . 78              |     |
| 36     | Maximum Angle of Attack Versus Burning Time S-I                                                        | . 19              |     |
| 37     | Stage, Saturn C-1 Apollo (Two-Sigma Winds)<br>Maximum Gimbal Angle Versus Burning Time S-I             | . 80              |     |
| 38     | Stage, Saturn C-1 Apollo (Two-Sigma Winds)<br>Shear Versus Vehicle Station, Saturn C-1 Apollo ·        | . 81              |     |
| 39     | (t = 60 Seconds)                                                                                       | . 82              |     |
| 40     | (t = 75 Seconds)                                                                                       | . 83              | •   |
| 41     | Apollo (t = 60 Seconds)                                                                                | . 84              |     |
| 42     | Apollo (t = 65 Seconds)                                                                                | . 85              |     |
| 43     | Apollo (t = 70 Seconds)<br>Bending Moment Versus Vehicle Station, Saturn C-1                           | . 86              |     |
| • -    | Apollo ( $t = 75$ Seconds)                                                                             | . 87              |     |

•

# OONFIDENTIAL

.

CONTIDENTIAL

CONFIDENTIAL

| Figure |                                                                              | Page |
|--------|------------------------------------------------------------------------------|------|
| -1-1   | Longitudinal Force Versus Vehicle Station, Saturn C-1                        |      |
| 45     | Apollo (t = Liftoff)<br>Longitudinal Force Versus Station, Saturn C-1 Apollo | 88   |
|        | (t = 60  Seconds)                                                            | 89   |
| 46     | Longitudinal Force Versus Station, Saturn C-1 Apollo                         |      |
|        | (t = 141.4  Seconds)                                                         | 90   |
| -17    | Saturn C-1 Apollo Space Vehicle Free-Free Frequency                          |      |
|        | Versus Flight Time                                                           | 91   |
| -i 8   | Saturn C-1 Apollo Space Vehicle Relative Amplitude                           |      |
|        | Versus Vehicle Stations First Free-Free Bending Modes .                      | 92   |
| 49     | Saturn C-1 Apollo Space Vehicle Relative Amplitude                           |      |
|        | Versus Vehicle Stations Second Free-Free                                     |      |
|        | Bending Modes                                                                | 92   |
| 50     | C-5 Vehicles                                                                 | 94   |
| 51     | Saturn Facility II, Launch Complex 37                                        | 102  |
| 52     | Concept of Service Tower Serving Two Pads                                    | 103  |
| 53     | Saturn C-1 Major Task Sequence                                               | 104  |
| A-1    | Nominal Thrust Build-up for 188 K H-1 Engine                                 | 107  |
| A-2    | Thrust Decay Dispersion at Altitude for 188 K H-1                            |      |
|        | Engine (Based on Saturn SA-1 Flight Test Data)                               | 108  |
| A-3    | Estimated Starting Transient for RL10-A-3 Engine                             |      |
|        | (At 100,000-Foot Altitude)                                                   | 109  |
| A - 4  | Estimated Shut-Down Transient for the RL10-A-3 Engine                        |      |
|        | (At 200,000-Foot Altitude)                                                   | 110  |
| A-5    | Typical Mean Altitude Thrust Time Curve With Limits                          |      |
| •      | for 2 KS 36, 250 Rocket Motor                                                | 111  |
| A-6    | Location of S-I Stage Retrorockets                                           | 112  |
| A-7    | Thrust Versus Burning Time, Thiokol TX-280 Solid-                            |      |
|        | Propellant Rocket Motors                                                     | 113  |
|        | •                                                                            |      |

- viii -

.

١.

SID 62-148

;

IS EN TIAL

- 12 I

. ..

# TABLES

| Table      | •                                                    | Page  | •  |
|------------|------------------------------------------------------|-------|----|
| 1          | Little Joe II Weight, Center of Gravity, and Moments |       |    |
|            | of Inertia for Six Booster Configurations            | -1    |    |
| 2          | H-1 Engine Performance Parameters (Base on           |       |    |
|            | Saturn SA-I Flight Data)                             | 13    |    |
| 3          | RL 10-A-3 Engine Performance Parameters              | . 17  |    |
| -1         | Condensed S-1 Measurement List                       | 19    |    |
| 5          | Condensed S-IV Measurement List                      | 24    |    |
| 6          | Condensed Instrument Unit Measurement List           | . 28  |    |
| 7          | Preliminary Mass Characteristics During First-Stage  | ·     | ч. |
|            | Burning (100-Nautical-Mile Orbit)                    | , 34  |    |
| 8          | Preliminary Mass Characteristics During Second-      |       |    |
|            | Stage Burning (100-Nautical-Mile Orbit)              | , 35  |    |
| 9          | Instrument Unit Assembly Weight Breakdown (100-      |       |    |
|            | Nautical-Mile Orbit)                                 | . 36  |    |
| 10         | First-Stage Flight Design Trajectory, 8-Engine       |       |    |
|            | (100-Nautical-Mile Orbit)                            | , 42  |    |
| 11         | Second Stage Flight Design Trajectory, 8-Engine      |       |    |
|            | S-I Flight (100-Nautical-Mile Orbit)                 | . 43  |    |
| 12         | First-Stage Flight Design Trajectory, 7-Engine       |       |    |
|            | (100-Nautical-Mile Orbit)                            | . 44. |    |
| 13         | Second-Stage Flight Design Trajectory, 7-Engine      |       |    |
|            | S-1 Flight (100-Nautical-Mile Orbit).                | . 45  |    |
| 1.4        | Ground Wired Gradient During Free Starting           | . 46  |    |
| 15         | Ground Wired Gradient During Launch                  | . 47  |    |
| 16         | Sound Pressure Loading for Different Radii and       |       |    |
|            | Angles From Exhaust Direction                        | . 59  |    |
| 17         | Sound Pressure Loading for Different Radii and       |       |    |
|            | Angles From Exhaust Direction                        | . 60  |    |
| 18         | Sound Pressure Loading for Different Radii and       |       |    |
|            | Angles From Exhaust Direction                        | . 61  |    |
| 19         | Sound Pressure Loading for Different Radii and       |       |    |
| • /        | Angles From Exhaust Direction                        | . 62  |    |
| 20         | Maximum Sound Pressure Loading for Major             |       |    |
| -0         | Ground Support Equipment and Facilities During       |       |    |
|            | Launch Phase (Before Lift-Off)                       | . 63  |    |
| 21         | Maximum Sound Pressure Loading for Major             |       |    |
| <u>~ 1</u> | Ground Support Equipment and Facilities During       |       |    |
|            | Flicht Dhage (After Lift-Off)                        | . 64  |    |
|            | riight Phase (Anter Ant-Ou)                          | • •   |    |

- ix -

UUNTIDENTIAL

.

•

.



SPACE and INFORMATION SYSTEMS DIVISION

| Table                                                                                        | Page |
|----------------------------------------------------------------------------------------------|------|
| 22 Launch Complex 37, Maximum Sound Pressure<br>Loading for Various Vehicle Altitudes (After | / -  |
| Lift-Off)                                                                                    | 05   |
| Low-Orbit and Three-Stage Escape Missions                                                    | 96   |
| A-1 Retro Rocket Parameters                                                                  | 10ú  |
| A-2 Rocket Parameters                                                                        | 106  |

.

.

•

× -

CONFIDENTIAL

\_

## INTRODUCTION

The material in this report has, for the most part, been adopted from NASA documents and working papers. In some cases, the information is an approximation and is meant to be used only as a guide.

As additional or more exact information becomes available, it will be incorporated in subsequent revisions.

- 1 -



## I. LITTLE JOE II LAUNCH VEHICLE

### OBJECTIVE

The primary purpose of the Little Joe II launch vehicle will be to provide trajectory to the Apollo prototype spacecraft for testing the abort systems at high altitude. Both the launch-escape and service module methods will be used.

#### DESCRIPTION

The design of Little Joe II is not yet firm; the descriptions and configurations given are only approximate.

The Little Joe II is twice as large and four times as heavy as the Little Joe I booster. It is a staged-fired, fin-stabilized, solid-fuel rocket booster designed to accommodate up to seven Algol rocket motors with provisions to eliminate motors to change performance characteristics. The booster consists of three major assemblies: the forward body, the after-body, and the fins. (See Figure 1.)

The various sequences of staging which may be utilized, depending upon the performance required, are given in Table 1.

#### PROPULSION

2.

#### ROCKET MOTORS

Up to seven Algol (first-stage Scout) solid-fuel rocket motors may be used.



- 3 -

NORTH AMERICAN AVIATION, INC.

SPACE and INFORMATION SYSTEMS DIVISION

CONCIDENTI

. `~

| n si terretari<br>N |                    |                  |
|---------------------|--------------------|------------------|
| ertia               |                    |                  |
| s of In             |                    |                  |
| Moment              |                    | S                |
| , and               | suo                | ANTION           |
| Center of Gravity   | oster Configuratio | SOOSTER CONFIGUR |
| I Weight, (         | for Six Boo        | VIEWS OF H       |
| Joé I               | •                  | END              |
| Little              |                    |                  |
| ۲                   |                    |                  |
| able                |                    |                  |



F



~

| 44     |                               |                       |                              |                | 2                            |                |                              | 11-11 <sup>2</sup> | *Sh.     |
|--------|-------------------------------|-----------------------|------------------------------|----------------|------------------------------|----------------|------------------------------|--------------------|----------|
| <br>2. | 547,000                       | e0, 000               | -                            |                | 376                          | ş0, 000        | 398                          | 38, 400            | > 5      |
|        | 541,500                       | 71.000                |                              |                |                              |                | 398                          | 53,400             | >>       |
| ~      | 687,000                       | 109,000               |                              |                | 409                          | 98, 700        | 415                          | 156.200            | N        |
|        | 734,000                       | 110,000               |                              |                |                              |                | 41 8                         | 173,800            | 111      |
|        | 734,000                       | 110,000               | 409                          | \$3,000        | 414                          | 121,300        | 418                          | 178, 800           | П        |
|        | 734,000                       | 110,000               | 404                          | 63, 800        | 412                          | 102,100        | 418                          | 174, 800           | - :<br>- |
|        | Pitch-Yaw                     | Roll                  | Center of<br>Gravity Station | Weight<br>(15) | Center of<br>Gravity Station | Weight<br>(1b) | Center of<br>Gravity Station | Weight<br>(JD)     |          |
|        | s of Inertia<br>tage Ignition | *Moment<br>at First-S | l-Stage Ignition             | At Thirc       | l-Stage Ignition             | At Seconc      | t-Stage Ignition             | At Firs            |          |

SID 62-149

Note

Weight, center of gravity, and inertia figures are for the total configuration escape system, capsule, retropack, adapter, booster, and other components,

N

 $\geq$ 



### PROPELLANT

To perform satisfactorily, the Algol rocket-motor propellant must be maintained at a temperature of 70 to 90 F before flight.

### INSTRUMENT UNIT (NOT APPLICABLE)

# GUIDANCE AND CONTROL

A control system will be required; however, these requirements have not been established.

# INSTRUMENTATION

DESCRIPTION

MONITORING

MEASUREMENT LIST

:

Mandatory

Optional

TELEMETRY AND RADIO FREQUENCY SYSTEMS

# ABORT SENSING AND DESTRUCT SYSTEMS

ABORT SYSTEMS

## DESTRUCT SYSTEM

- 5 -



.`~



#### INTERFACES

#### MECHANICAL

ELECTRICAL

## AERODYNAMIC

# CONTROL DYNAMICS

# MISSION-TRAJECTORY/PAYLOAD CAPABILITIES

## ENVIRONMENTAL PROFILES

## PHYSICAL CONFIGURATION

# OVERALL DIMENSIONS

The overall dimensions given in Figure 1 include the Little Joe II booster, adapter section, prototype Apollo spacecraft, and launch escape tower.

# WEIGHTS AND CENTER-OF-GRAVITY LOCATIONS

A list of weights and center-of-gravity stations are included in Table 1.

- 6 -



NORTH AMERICAN AVIATION, INC.



1

LIMITATIONS

SURFACE WIND VELOCITIES

WIND SHEAR

LAUNCH ANGLE

PAYLOAD

Weight

IULITIAL

Center-of-Gravity Location



.

- 7 -



# II. C-I LAUNCH VEHICLE

## OBJECTIVE

The purpose of the C-I launch vehicle will be to provide the Apollo spacecraft with the necessary guidance and propulsion for unmanned reentry and unmanned and manned earth-orbital spacecraft missions.

# DESCRIPTION

The typical two-stage Apollo Saturn C-1 launch vehicle, Figure 2, consists of four major components.

STAGE S-I

The first stage (S-1) is powered by eight Rocketdyne H-1 engines with a total thrust of 1.5 million pounds. Propellants for these engines consist of 850,000 pounds of LO<sub>2</sub> and RP-1. Tail fins are provided to improve the stability of the first-stage flight. The diameter of the propellant tanks is about 257 inches.

# S-1/S-IV INTERSTAGE SECTION

This is a 220-inch-diameter cylindrical section which remains with the first stage (S-1) after in-flight separation of the second stage (S-IV).

STAGE S-IV

The second stage (S-IV), shown in Figure 3, will be powered by six Pratt & Whitney RL10-A-3 engines with a total thrust of 90,000 pounds. Propellants for these engines consist of 100,000 pounds of  $LO_2/LH_2$ . The rear and forward interfaces of the S-IV have nominal diameters of 220 inches and 154 inches respectively.

After second-stage boost into orbit, the S-IV booster and attached instrument unit are separated from the payload.

١

ł



Figure 2. Saturn C-l Launch Vehicle

2

UUNTIDENTIAL

.~



 $\mathbf{\nabla}$ 

FIELD SPLICE

SEPARATION PLANE





#### INSTRUMENT UNIT

The instrument unit contains the Saturn C-1 launch vehicle guidance and instrumentation. It has a nominal diameter of 154 inches. (See Figure 4.)

## PROPULSION

FIRST STAGE (S-1)

#### Engines

The S-1 stage power plant consists of eight engines. Four, inboard engines, are mounted in a closed square pattern. The other four, outboard engines, are mounted on the points of a larger square rotated 45 degrees from the inner pattern. Each outboard engine is designed to permit a  $\pm 10$  degree square gimbal pattern in any direction from the null position by means of two hydraulic actuators. This gimbaling establishes proper forces for pitch, yaw, and roll control of the launch vehicle.

The Rocketdyne H-1 engine is a greatly simplified and repackaged S-2D engine. The engine parameters are shown in Table 2.

#### Propellant

The propellants used in the S-1 stage are RP-1 and LO<sub>2</sub>. The RP-1 containers are pressurized with  $GN_2$  and the LO<sub>2</sub> containers are pressurized by  $GO_2$ .

#### Control System

Each outboard engine is equipped with an independent closed-loop hydraulic system which supplies hydraulic pressure for engine gimbaling. Two electrically controlled, hydraulically operated actuators; a main hydraulic pump; an auxiliary motor and pump; and an accumulator-reservoir assembly are the major components in the S-1 stage control system.

#### SECOND STAGE (S-IV)

#### Engines

Six 15,000-pound vacuum-thrust  $LO_2/LH_2$  RL10-A-3 engines are used on the S-IV stage. Each engine is a regeneratively cooled, turbopump-fed rocket engine.







Figure 4. Saturn C-1 Instrument Unit Configuration

- 12 -

5 . ) · . . .



|        | TL |  |
|--------|----|--|
| MAT TO | TT |  |

1

| Nominal engine thrust                                      | 188K lb (sea level)                             |
|------------------------------------------------------------|-------------------------------------------------|
| Thrust variation                                           | ±3%                                             |
| Thrust overshoot                                           | 5%                                              |
| Time from ignition to 90% thrust<br>(maximum)              | 1.3 sec                                         |
| Nominal specific impulse                                   | 255.0 lb-sec/lb (sea level)                     |
| Engine mixture ratio                                       | 2.26                                            |
| Cutoff impulse (sea level)                                 | 42,000 lb-sec                                   |
| Cutoff impulse (altitude)<br>Maximum<br>Minimum<br>Average | 98,400 lb-sec<br>73,640 lb-sec<br>82,170 lb-sec |
| Cutoff impulse variation<br>Maximum (sea level)            | ±7,500 lb-sec                                   |
| LO <sub>2</sub> pump NPSH (required)                       | 60 ft                                           |
| Fuel pump NPSH (required)                                  | 35 ft                                           |
| Thrust build-up rate (average)                             | 71, 300 lb/10 ms                                |
| Thrust build-up deviation (for<br>3σ confidence level)     | 27,200 lb/10 ms                                 |

# Table 2. H-1 Engine Performance Parameters (Based on Saturn SA-1 Flight Data)





CONFIDENTIAL





UUITIDEITIA

TYPICAL ENGINE DEFLECTIONS TO CORRECT FOR POSITIVE VEHICLE MOVEMENTS ¥9. \$ 34 · \* & Y Y â 1-1 ACTUATOR LAYOUT Figure 6. Integrated Polarity Chart for S-I and S-IV Stages ¢PC, ¢P 8 C01 2G OF 5-17 STAGE PAYLUAD 98.70 ₫ž ξŌ 4Y,4YS CY r ÷ 215 ≥ NULLEVEN E ¥ I ð REL ί. RET -I PULARITY TABLE . . 123 è НEТ 134 Ξ ~ 1423 0 × 8 0 H Renal ð Ŧ. Ξ RET RET EXT 5 <u>8</u> Ŧ N IV -1 κ ê \$0, \$P 8.00 ACTUATUN Ξ ANTA TABLE CG OF TUTAL PACE VEHICLE 14 5 Rit RET ě 8ET 8ET ..... 1.4L & AC 5 Alt lugical Arrows Indicate Positive Veriale dioxement. Aution to the shown of finances mown with the from Att find of Vehicles. 2 ġ ; 1 J¥ R: T 1-3 Ξ ÷ 04. 8 4 5 C zenicle Tillts - Ser Postron L. ex84 -2 AUT N TUR 5 7-7 tioles. 2 Ţ 2 \_. 5. *....* -1. AL PIATOR LAYUOT TYPICAL ENGINE DEFLICTION" TUCC ORIECT FOR POLITIVE VENCLE IN VERENTS Ξ å, 1.5 ã -

- 15 -

=



SID 62-148

NORTH AMERICAN AVIATION, INC.

SPACE and INFORMATION SYSTEMS DIVISION

Thrust control is accomplished by sensing engine chamber pressure. Ignition is accomplished by means of an electric spark ignitor projecting into the combustion chamber. Starting and stopping are controlled by valving. A hydraulic pump is used to provide power for the gimbal actuator.

The RL10-A-3 engine performance parameters are shown in Table 3.

## Propellants

The propellants used in the S-IV stage are  $LO_2$  and  $LH_2$ . The  $LO_2$  container is pressurized by ambient He during ground operation and by heated GHe during flight. The  $LH_2$  container is pressurized by ambient He during ground operation and, in flight, pressurized as required prior to  $GH_2$  flow from the engines to the pressurization system.

#### Control System

The S-IV stage contains six independent closed-loop, flight-control hydraulic systems. Two linear-type hydraulic actuator assemblies are connected to each engine to provide gimbal motion. Proper gimbal positioning of the engines during flight is provided by correction signals generated in the guidance and control system.

#### INSTRUMENT UNIT

The instrument unit is mounted to the forward end of the S-IV stage. The forward end of the unit's fuselage provides the interface mount for the Apollo spacecraft. In order to satisfy the requirements of noninterference with the spacecraft body, no portion of the units structure extends above the interface. The form of the unit is much like four spokes attached to the hub of a wheel forming a hollow cavity of five elements. The outside diameter and length of the fuselage rim are 154 inches and 58 inches respectively; the inside diameter of each spoke tube container is 40 inches. The inside diameter and length of the hub container are 70 inches and 103, 434 inches respectively.

The seven major items contained in the instrument unit are as follows:

- 1. Vehicle guidance system
- 2. Control system
- 3. Time base selector
- 4. Networks
- 5. Instrumentation and measuring
- 6. Air-bearing system
- 7. Special equipment

NORTH AMERICAN AVIATION, INC.



| Nominal thrust (vacuum)                      | 15,000 16                                |
|----------------------------------------------|------------------------------------------|
| Thrust variation (vacuum)                    | $\pm 2\frac{q_0^{\prime}}{10}$ (±300 lb) |
| Maximum time from ignition to 90% thrust     | 2 sec                                    |
| Minimum specific impulse $(I_{SD})$ (vacuum) | 420 lb sec/lb                            |
| Engine mixture ratio                         | $5:1 \pm 1.67\%$                         |
| Cutoff impulse (vacuum)                      | 2500 lb sec                              |
| Cutoff impulse variation (vacuum)            | ±140 lb sec                              |
| LO <sub>2</sub> pump inlet nominals          | 46.5 psia at 163 R                       |
| Fuel pump inlet nominals                     | 31.5 psia at 37 R                        |
| Rate of thrust increase                      | 250 lb/ms                                |
| Nozzle area ratio                            | 40:1                                     |
| Chamber pressure                             | 300 psia                                 |
| LO, NPSH (required)                          | 15 psi                                   |
| Fuel NPSH (required)                         | 8 psi                                    |
|                                              | ,                                        |

| Table 3. | RL10-A-3 | Engine | Performance | Parameters |
|----------|----------|--------|-------------|------------|
|----------|----------|--------|-------------|------------|

SPACE and INFORMATION SYSTEMS DIVISION

## GUIDANCE AND CONTROL

The guidance system for the Saturn C-1 vehicles will be integrated for all stages, and only switching networks will be necessary within each stage. The control system utilizes attitude information from the inertial platform, attitude rate derived from rate gyros or differentiated attitude signals, and lateral control derived from control accelerometers or "Q-Ball" transducer. These signals are summed and amplified in an analog control computer for transmittal of d-c signals to the actuators of the active stage. The flight control system of the vehicle is shown in Figure 5, and the integrated polarity chart for S-I and S-IV stages are shown in Figure 6. The excitation voltage for the engine position potentiometer, both for control and measuring instrumentation, shall be supplied from the instrument unit.

Vehicle control during S-I stage operation is maintained by gimbaling the four outboard engines to provide pitch, yaw, and roll control forces. The hydraulic actuators that provide the necessary engine gimbaling forces are capable of deflecting the engine plus or minus 8 degrees. Vehicle (attitude, attitude rate, angle-of-attack, or lateral acceleration) signal errors are sensed and transmitted to the control computer. The control computer distributes correction signals to the servo-valves on the outboard engine actuators.

S-IV stage in-flight control is accomplished by gimbaling the six engines. The hydraulic actuators that provide the necessary engine gimbaling forces are capable of deflecting the engine ±4 degrees. The amount of deflection is proportional to the command signals furnished by the control computer in the instrument unit.

The instrument unit will provide vehicle structure for stabilized platforms, guidance and instrumentation equipment. The design dictates that skin cutouts be made only where mandatory; therefore, all antennas or other exterior equipment shall be surface mounted.

- 17 -



SID 62-148

| Parameter                                                   | Range                   |
|-------------------------------------------------------------|-------------------------|
| Flight sequencer steps                                      | On-off                  |
| First motion                                                | On-off                  |
| Cut-off signal                                              | On-off                  |
| Engine cut-off                                              | On-off                  |
| LO <sub>2</sub> level cut-off                               | On-off                  |
| Fuel-level cut-off                                          | On-off                  |
| Retrorocket ignition signal (EBW)                           | On-off                  |
| Breakwire, retrorocket ignition                             | On-off                  |
| Temperature, base, tail                                     | 0 to 1500 C             |
| Actuator support temperature                                | -50 to +500 C           |
| Temperature at various inboard and outboard locations       | -50 to +900 C           |
| Outrigger thrust assembly liquid-<br>propellant temperature | -50 to +300 C           |
| Lower thrust ring temperature                               | -50 to +300 C           |
| Outrigger support temperature<br>liquid-propellant assembly | -50 to +300 C           |
| Engine shroud temperature                                   | 0 to 500 C              |
| Thrust frame area temperature                               | -50 to +100 C           |
| Radiation shield temperature                                | 0 to 800 C              |
| Tank shroud temperature                                     | 0 to 300 C              |
| Shroud skin temperature                                     | 0 to 800 C              |
| S-I/S-IV interstage temperatures                            | 0 to 825 C              |
| Base pressure tail                                          | 0 to 20 psia            |
| Retrorocket pressure                                        | 0 to 2500 psia          |
| Surface pressure, various stations                          | 0 to 25 psia            |
| Mounting stud strain                                        | 0.0008 to 0.008 in.     |
| Radiation shield longitudinal vibration                     | ±50 g                   |
| Strain, top skirt                                           | 0.0005 to 0.005 in./in. |
| Retrorocket longitudinal vibration                          | 0 to 40 g               |
| Spider beam longitudinal vibration                          | 0 to 40 g               |
| Sound intensity, fine                                       | 10 db                   |
| Sound intensity, coarse                                     | 110 to 190 db           |
| <b>b</b>                                                    |                         |

# Table 4. Condensed S-I Measurement List



. 35.

|                                       | Î |
|---------------------------------------|---|
| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |   |

÷...

| Parameter                                                | Range                      |
|----------------------------------------------------------|----------------------------|
| Experimental EBW, voltage                                | 0 to 5 v                   |
| Experimental EBW, trigger                                | On-off                     |
| Experimental EBW, breakwire                              | On-off                     |
| EBW voltage                                              | 0 to 5 v                   |
| Measuring voltage                                        | 0  to  5  v                |
| Frequency of inverter                                    | $400 \pm 0.25 \text{ cps}$ |
| AGC voltage, UDOP                                        | 0 to 5 v                   |
| AGC voltage, command                                     | 0 to 5 v                   |
| Beta reference voltage                                   | 0 to 5 v                   |
| Command voltage                                          | 55 to 65 v                 |
| Power transformer bus voltage                            | 0 to 28 v                  |
| Thrust commit voltage                                    | 9 to 28 v                  |
| Bas voltage                                              | 24 to 32 v                 |
| Power output. Azusa                                      | 0 to 2, 4 v de             |
| AGC voltage, Azusa *                                     | 0 to 2.4 v de              |
| Proquency, static inverter                               | 400 to 0.25 cps            |
| Fuel pump inter temperature                              | -20 to $+40$ C psid        |
| $\Delta P$ fuel slowning, pitch                          | t0.3 psid                  |
| $\Delta P$ fact stocking, yaw                            | $\pm 0.3$ psud             |
| $\Lambda$ P/LO2 slosning, pitch                          | ±0.5 psid                  |
| $\Delta P = LO_2$ sloshing yaw                           | ±0, * psid                 |
| AP propellant utilization computer.                      | 0 to 39 psid (1)           |
| $\Delta P$ propellant utilization computer $z$ , and $z$ | 0 to 20 psid (1)           |
| Ful pump inlet pressure                                  | 0 to 100.031               |
| LOg pum inter pressure                                   | 0 to 150 pria              |
| Full soction line vibration. longitudinal                | ±50 č                      |
| Fuel task vibration, pitch                               | $\pm 0$ , $\pm 0$          |
| Puel taisk vioretion, yaw                                | ±0.5 2                     |
| 10% emergency processie awitch                           | Onwolf                     |
| IC relation rol roles                                    | $O_{12} = -i \frac{1}{2}$  |
|                                                          |                            |
|                                                          |                            |

Table 4. Condensed S-I Measurement List (Cont)

-63

¥3330.30

|            | Parameter                                                | Range           |
|------------|----------------------------------------------------------|-----------------|
|            | Fuel temperature                                         | 0 to 40 C       |
|            | Main fuel valve position                                 | On-off          |
|            | Main fuel flow rate, dc                                  | 0 to 40 gal/sec |
|            | Main LO <sub>2</sub> flow rate, dc                       | 0 to 50 gal/sec |
|            | Main LO <sub>2</sub> valve position                      | On-off          |
|            | Main fuel flow rate, ac                                  | 0 to 40 gal/sec |
|            | Main LO <sub>2</sub> flow rate, ac                       | 0 to 50 gal/sec |
|            | Propellant utilization computer output, coarse           |                 |
|            | Propellant utilization computer output, fine             |                 |
| •<br> <br> | LO <sub>2</sub> level, discrete                          | On-off          |
|            | Fuel level, discrete                                     | On-off          |
|            | Gas top fuel tank temperature                            | -50 to +50 C    |
|            | Gas top LO <sub>2</sub> tank temperature                 | -50 to +200 C   |
|            | Skin LO2 tank temperature                                | -185 to +150 C  |
|            | Skin fuel tank temperature                               | 0 to 300 C      |
|            |                                                          | 100 to 40 C     |
|            | LO2 temperature                                          | -190 to -40 C   |
|            | LO2 flow rate to heat exchange ac                        | -200 to -100 C  |
|            | Heat-exchange On outlet temperature                      | 0  to  300  C   |
|            | High-pressure spheres temperature                        | -70 to +150 C   |
|            | ingli-pressure spheres temperature                       |                 |
|            | O2 manifold temperature                                  | -200 to +700 C  |
|            | Pressurization Gas in fuel tank                          | 0 to 30 psi     |
|            | Pressurization Gas in LO <sub>2</sub> tank               | 0 to 100 psi    |
|            | Pressurization Gas high-pressure spheres                 | 0 to 3500 psi   |
|            | Pressurization O <sub>2</sub> manifold                   | 0 to 400 psi    |
|            | Gas generator chamber temperature                        | 0 to 1000 C     |
|            | Pressurization gas in fuel tank                          | 0 to 30 psi     |
|            | Pressurization gas high-pressure                         | 0 to 3500 psi   |
|            | spheres                                                  | ·               |
|            | Pressurization gas generator LO <sub>2</sub><br>injector | 0 to 800 psia . |
|            | Turbine rpm                                              | 0 to 7000 rpm   |

# Table 4. Condensed S-I Measurement List (Cont)



- 21 -

-17-10



м.

| Table 4. | Condensed S | 5-I | Measurement | List ( | Cont) |
|----------|-------------|-----|-------------|--------|-------|
|          |             | -   |             |        |       |

| Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ParameterLO2 pump bearing temperatureIntermediate shelf bearing temperatureHigh-speed oparings temperatureTurbine shaft bearings temperatureTurbine exhaust temperatureGas generator chamber temperatureHydraulic oil temperatureEngine compartment temperatureFire wall temperatureCombustion chamber pressureTurbine inlet pressureAP turbine outlet to aspirator inletGear case top pressureGear case lubrication high pressurePressure gear case lubrication lowAP across aspiratorInside tail pressureAP yaw actuatorAP pitch actuatorHydraulic oil return pressureAP turbine outlet to exhaust nozzleCombustion chamber pressureThrust chamber dome lateral vibrationTurbine case top ressureInside tail pressureAP pitch actuatorHydraulic oil return pressureInside coll return pressureInside chamber dome lateral vibrationInside chamber dome, vibrationInside chamber dome, vibration <td>Range<br/>-20 to +200 C<br/>9 to 150 C<br/>0 to 150 C<br/>0 to 300 C<br/>0 to 300 C<br/>0 to 800 C<br/>0 to 1000 C<br/>-20 to +135 C<br/>0 to 1000 C<br/>0 to 1500 C<br/>0 to 1500 C<br/>0 to 600 psia<br/>0 to 650 psia<br/>0 to 20 psid<br/>0 to 20 psid<br/>0 to 200 psia<br/>0 to 200 psia<br/>0 to 25 psia<br/>0 to 3500 psi<br/>±3000 psid<br/>±3000 psid<br/>0 to 100 psi<br/>0 to 20 psia<br/>0 to 100 psi<br/>0 to 20 psid<br/>0 to 100 psi<br/>0 to 20 psid<br/>1 to 100 psi<br/>0 to 20 psid<br/>0 to 100 psi<br/>0 to 20 psid<br/>0 to 100 psi<br/>0 to 20 psid<br/>0 to 100 psi<br/>0 to 20 psid<br/>1 to 1000 psi<br/>1 to 20 psid<br/>1 to 1000 psi<br/>1 to 20 psi</td> | Range<br>-20 to +200 C<br>9 to 150 C<br>0 to 150 C<br>0 to 300 C<br>0 to 300 C<br>0 to 800 C<br>0 to 1000 C<br>-20 to +135 C<br>0 to 1000 C<br>0 to 1500 C<br>0 to 1500 C<br>0 to 600 psia<br>0 to 650 psia<br>0 to 20 psid<br>0 to 20 psid<br>0 to 200 psia<br>0 to 200 psia<br>0 to 25 psia<br>0 to 3500 psi<br>±3000 psid<br>±3000 psid<br>0 to 100 psi<br>0 to 20 psia<br>0 to 100 psi<br>0 to 20 psid<br>0 to 100 psi<br>0 to 20 psid<br>1 to 100 psi<br>0 to 20 psid<br>0 to 100 psi<br>0 to 20 psid<br>0 to 100 psi<br>0 to 20 psid<br>0 to 100 psi<br>0 to 20 psid<br>1 to 1000 psi<br>1 to 20 psid<br>1 to 1000 psi<br>1 to 20 psi |
| Thrust chamber dome lateral vibration<br>Turbine gear box vibration<br>Thrust chamber dome, vibration<br>Longitudinal<br>Pitch actuator pitch vibration<br>Yaw actuator yaw vibration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ±50 g<br>±50 g<br>±50 g<br>±40 g<br>±40 g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

----



| Parameter                                                     | Range               |
|---------------------------------------------------------------|---------------------|
| Gimbal point support vibration,<br>longitudinal               | +50 g               |
| Propulsion unit distribution 9A1 .<br>vibration, longitudinal | ±30 g               |
| Thrust chamber dome lateral vibration                         | ±50 g •             |
| Pitch actuator position                                       | ±10 deg             |
| Actuator position                                             | ±10 deg             |
| $\Delta I$ pitch actuator                                     | ±10 ma              |
| $\Delta 	ext{I}$ yaw actuator                                 | ±10 ma              |
| Level, hydraulic oil                                          | 0-3.75 <sup>2</sup> |
| LO <sub>2</sub> temperature, pump bearing No. 1               | -20 to +200 C       |
| Hydraulic oil temperature                                     | -20 to +135 C -     |
| Gear case lubricant temperature                               | 0-150 C             |
| Turbine spinner case temperature                              | -50 to -100 C       |
| Fire detection temperature                                    |                     |
| Hydraulic source pressure                                     | max 23 psi          |
| Gas generator fuel injector pressure                          | 0 to 800 psi        |
| Combustion stability monitor 🔨 🔹 vibration, longitudinal      | ±100 g              |

Table 4. Condensed S-I Measurement List (Cont)

1.

SID 62-148

VUITTDENTIN



.

ł

| Parameter                                            | Range           |
|------------------------------------------------------|-----------------|
| Prestart signal to sequencer                         | 0 to 28 v de    |
| S-I separation signal                                | 0 to 28 v de    |
| Engine start pressure switch pickup, Engine 1        | 0 to 28 v dc    |
| Engine prestart pressure switch pickup,<br>engine 1  | 0 to 28 y de    |
| Engine cut-off signal                                | 0 to 28 v dc    |
| S-IV engines start signal                            | 0 to 28 v dc    |
| Ullage rocket jettison current                       |                 |
| Ullage rocket pressure switch                        | 0 to 28 v de    |
| Retrorocket pressure switch                          | 0 to 28 v dc    |
| Payload abort signal to sequencer                    | 0 to 28 v dc    |
| Engine russ enable signal                            | 0 to 28 v dc    |
| Control switching network start command              | 0 to 28 v dc    |
| lgnite retrorockets signal                           | 0 to 28 v de    |
| Blow S-I to S-IV explosive bolts command             | 0 to 28 v de    |
| Payload separation signal                            | 0 to 28 v dc    |
| Base calorimeter temperature, black                  |                 |
| Base calorimeter temperature, gold                   |                 |
| Base pressure                                        |                 |
| Base temperature                                     |                 |
| S-I to S-IV extensiometer                            | 0 to 24 ft      |
| Axial acceleration                                   | -1 to +2 g      |
| Detonation pressure switch                           | 0 to 28 v dc    |
| Vibration pickup, engine compartment pitch axis      | 0 to 1200 cps   |
| Vibration pickup, engine compartment                 | 0 to 660 cps    |
| Vibration pickup, forward interstage,<br>thrust axis | 0 to 1200 cps   |
| Vibration pickup, Forward Interstage, oitch axis     | 0 to 600 cps    |
| Vibration (electronics package in engine             | 0 to 20 g rms   |
| Vibration (oxidizer feed line)                       | 0 to 20 g rms   |
| Vibration (fuel feed line)                           | 0 to 20 g rms   |
| Vibration (turbopump)                                | 0 to $20$ g rms |

# Table 5. Condensed S-IV Measurements List



SID(2-145

•

# UGATIOLIATIAL

)

| Table 5  | Condensed S-IV | Measurements | List (Cont) |  |
|----------|----------------|--------------|-------------|--|
| Table 5. | Condensed D-1V | Measurements |             |  |

SPACE and INFORMATION SYSTEMS DIVISION

| Parameter                                                                                                                                                                                                                     | Range                                                                                           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| Vibration (aft skirt, radial direction)<br>Vibration (aft skirt, thrust axis)<br>Vibration (telemetry package)<br>Vibration (outer tank surface)<br>Static inverter inner temperature                                         | 0 to 20 g rms<br>0 to 160 F |
| Battery temperature<br>Reference voltage, high<br>Reference voltage, low<br>Static inverter 115 v voltage<br>Battery voltage                                                                                                  | 0 to 160 F<br>+5 v dc<br>0 v dc<br>110 to 120 vac<br>27 to 29' v dc                             |
| D-c converter negative 6-volt output<br>D-c converter negative 12-volt output<br>D-c converter positive 28-volt output<br>Range safety AGC voltage<br>Telemetry antenna SWR                                                   | -5.5 to6.5 v dc<br>-10 to -14 v dc<br>26 to 30 v dc                                             |
| EBW converter output voltage<br>D-c power signal to interface<br>LH2 Temperature, suction line inlet<br>LO2 Temperature, suction manifold<br>Oxidizer tank ullage temperature, 85% level                                      | 0 to 28 v dc<br>-100 to -300 F                                                                  |
| Fuel tank ullage temperature 85% level<br>Temperature probe, LH2 tank, 40% level<br>Temperature probe, LH2 tank, 5% level<br>Temperature probe, LH2 tank, 1% level<br>Temperature probe, LO2 tank, 40% level                  | -200 to -423 F<br>-323 to -423 F<br>-413 to 423 F<br>-413 to -423 F<br>-187 to -297 F           |
| Temperature probe, LO <sub>2</sub> tank, 5% level<br>Temperature probe, LO <sub>2</sub> tank, 1% level<br>Fuel tank gas supply orifice differential<br>pressure<br>Fuel tank ullage pressure<br>Oxidizer tank ullage pressure | -287 to -297 F<br>-287 to -297 F<br>0 to 500 psid<br>0 to 40 psia<br>0 to 50 psia               |
| Fuel tank inner skin temperature<br>Base thrust structure temperature<br>Aft dome stress<br>Side tunnel temperature (internal)<br>Engine mount stress                                                                         |                                                                                                 |



|             |   | 1  |  |
|-------------|---|----|--|
| <b>U</b> CT | T | 1r |  |

| Parameter                                 | Range           |
|-------------------------------------------|-----------------|
| Thrust beam stress                        |                 |
| LH <sub>2</sub> tank mass, fine           | 0 to 5 v dc     |
| LH <sub>2</sub> tank mass, coarse         | 0 to 5 v dc     |
| LO, tank mass, fine                       | 0 to 5 v dc     |
| LO <sub>2</sub> tank mass, coarse         | 0 to 5 v dc     |
| LH <sub>2</sub> tank vent valve closed    | 0 to 28 v dc    |
| LO <sub>2</sub> tank vent valve closéd    | 0 to 28 v dc    |
| Fuel tank step pressure signal            | 0 to 28 v dc    |
| LH2 point level sensor                    | 0 to 28 v dc    |
| LO2 point level sensor                    | 0 to 28 v dc    |
| Cold helium bottle gas temperature        | -225 to -423 F  |
| Cold helium outlet temperature            | -200 to -400 F  |
| Helium heater chamber pressure            | 0 to 20 psia    |
| Cold helium bottle gas pressure           | 0 to 3500 psia  |
| Cold helium orifice differential pressure | 0 to 600 psid   |
| Ambient helium bottle pressure            | 0 to 3500 psia  |
| Ambient helium regulator outlet pressure  | 0 to 750 psia   |
| Helium heater combustion temperature      | 0 to +1500 F    |
| Outer surface temperature helium heater   |                 |
| Ambient helium bottle gas temperature     | -100 to +100 F  |
| Helium heater oxidizer valve closed       | 0 to 28 v dc    |
| Helium heater activate signal             | 0 to 28 v dc    |
| Helium heater fuel valve open             | 0 to 28 v dc    |
| Helium heater fuel valve closed           | 0 to 28 v dc    |
| Helium heater oxidizer valve open         | 0 to 28 v dc    |
| Hulium heater ignition exciter command    | 0 to 28 v dc    |
| Thrust chamber pressure                   | 0 to 400 psia   |
| Oxidizer nump speed                       | (0 to 60 cps)   |
| Turbine inlet temperature                 | -100 to 250 F   |
| Fuel pump inducer inlet temperature       | -415 to -423 F  |
| Oxidizer pump inlet temperature           | -275 to -300 F  |
| Fuel pump housing temperature             | +110 to -423 F  |
| Oxidizer pump housing temperature         | +110 to -423 F  |
| Thrust chamber pressure                   | 325 to 375 psia |
| Thrust chamber pressure (low range)       | 0 to 50 psia    |
| •                                         |                 |

# Table 5. Condensed S-IV Measurements List (Cont)

- 20 -

NORTH AMERICAN AVIATION, INC.



| Parameter                                                   | Range            |
|-------------------------------------------------------------|------------------|
| Fuel injector differential pressure                         | 0 to 50 psid     |
| Oxidizer injector differential pressure                     | 0 to 80 psid     |
| Venturi inlet pressure                                      | -1200 psia       |
| Turbine differential pressure                               | 0 to 600 psid    |
| Fuel pump outlet pressure                                   | 0 to 1500 psia   |
| Oxidizer pump outlet pressure                               | 0 to 600 psia    |
| Oxidizer pump inlet pressure                                | 0 to 50 psia (*  |
| Fuel pump inducer inlet pressure                            | 0 to 50 psia     |
| Accumulator GN <sub>2</sub> pressure, engine yaw actuator   | 0 to 3400 psia_  |
| Accumulator GH <sub>2</sub> pressure, engine pitch actuator | 0 to 3400 psia   |
| Reservoir oil pressure                                      | 0 to 300 psia    |
| High-pressure oil, vehicle pump engine                      | 0 to $3400$ psia |
| Hydraulic pump inlet oil temperature-engine                 | -40 + 350 F      |
| Yaw actuator reservoir surface temperature,                 | 0 to 500 F       |
| Pitch actuator reservoir surface temperature.               | 0 to 500 F       |
| engine                                                      | 1                |
| Engine pitch position                                       |                  |
| Engine yaw position                                         |                  |
| Engine position monitor reference voltage                   | +5 v dc          |
| Engine position monitor reference voltage                   | -5 v dc          |
| Propellant utilization ratio valve position                 | 0 to 5 v dc      |
| Propellant utilization error signal                         |                  |
| Propellant utilization start signal to sequencer            | 0 to 28 v dc     |
| Propellant utilization depletion signal to sequencer        | 0 to 28 v dc     |
| Hydraulic accumulators solenoid valve<br>open command       | 0 to 28 v dc     |
| Ignition exciter box output                                 | 0 to $6$ v dc    |

# Table 5. Condensed S-IV Measurements List (Cont)

- 27 -
ł

÷.

ł



| Parameter                                | Range         |
|------------------------------------------|---------------|
| Q Ball, Internal Temperature             | 0 to 150 C    |
| Total temperature                        | 0 to 800 C    |
| Wall temperature, density gage           | 0 to 100 C    |
| Air temperature, density gage            | 0 to 100 C    |
| Gas nitrogen manifold temperature        | -50 to +50 C  |
| Azusa temperature, internal              | 10 to 65 C    |
| Instrument compartment pressure          | 0 to 20 psia  |
| Air bearing supply ST-90 pressure        | 0 to 60 psid  |
| Control equipment pressure, supply       | 0 to 3500 psi |
| Control equipment pressure,<br>regulator | 0 to 800 psia |
| Dynamic pressure (Q)                     | 5 to 750 PSF  |
| Q ball, Differential pressure, pitch     | ±5 psi        |
| Q ball, Differential pressure, yaw       | ±5 psi        |
| Differential pressure, Q compensation    | 15 psi        |
| Pressure instrument compartment          | 0 to 20 psia  |
| ST-90, Y Axis Vibration                  | ±3 g          |
| Instrument Panel, Lateral Vibration      | ±5 g          |
| Lower Support, Longitudinal<br>Vibration | ±20 g         |
| Instrument Panel, Pitch Vibration        | ±3 g          |
| Angular Velocity, Pitch                  | ±10 deg/sec   |
| Angular Velocity, Yaw                    | ±10 deg/sec   |
| Longitudinal acceleration                | 0 to 5 g      |
| Longitudinal coarse acceleration         | 0 to 5 g      |
| Longitudinal acceleration                | ±1 g          |
| Pitch control acceleration               | ±5 m/sec sq   |
| Yaw control acceleration                 | ±5 m/sec sq   |
| Pitch control angular velocity           | ±10 deg/sec   |
| Yaw control angular velocity             | ±10 deg/sec   |
| Roll control angular velocity            | ±10 deg/sec   |
| Local angle-of-attack                    | ±10 deg.      |

Table 6 Condensed Instrument Unit Measurement List



 $SID \pm 2 \pm 14$  ~

| Parameter                                 | Range                                    |
|-------------------------------------------|------------------------------------------|
| Pitch angular velocity                    | ±100 deg/şéc                             |
| Yaw angular velocity                      | ±100 deg/sec                             |
| Roll angular velocity                     | ±100 deg/sec                             |
| Q ball, angle of attack, pitch            | ±15 deg                                  |
| Q ball, angle of attack, yaw              | ±15 deg                                  |
| Ram Air Density                           | $10^2$ to $10^{-3}$ mb, in 5 range steps |
| Pitch position, ST-90 minus               | ±15 deg -                                |
| Yaw position, ST-90                       | ±15 deg                                  |
| Roll position, ST-90                      | $\pm 15 \deg$                            |
| Servo signal, cross range<br>acceleration | ±100 mv                                  |
| Slant range acceleration, servo           | ±100 mv                                  |
| Slant range, servo signal                 | ±100 mv                                  |
| Time base selector output                 | $\overline{0}$ to 5 v                    |
| Time base selector zero indication        | on-off                                   |
| Instrument compartment<br>temperature     | 0 to 60 C                                |
| Temperature Inlet Air For Air Bearing     | 20 to 30 C ·                             |
| Air-Bearing Supply Pressure               | 0 to 60 psid                             |
| Air-Bearing Supply Pressure ST-90         | 0 to 3500 psig                           |
| Control Equipment Pressure, Supply        | 0 to 3500 psig                           |
| Control equipment pressure regulator      | 0 to 800 psi                             |

Table 6. Condensed Instrument Unit Measurement List (Cont)

- 29 -



SPACE and INFORMATION SYSTEMS DIVISION

### Second Stage (S-IV)

The telemetry of the S-IV stage uses three RF links. The links are three PDM/FM/FM sets. This telemetry system has 24 standard IRIG analog channels and 405 commutated channels. The only other RF link in the stage is the range safety command destruct link.

The frequencies are as follows:

| Telemetry | 251.5 mc            |
|-----------|---------------------|
|           | 255.1 mc            |
|           | 258.5 mc            |
| Command   | (Classified Secret) |

### Instrument Unit

Ì

The telemetry in the instrument unit consists of three FM/FM sets and one PCM/FM/FM set. This telemetry system has 48 standard IRIG analog channels and a PCM bit rate of 36,000 per second. All of the RF links for tracking are carried in the instrument compartment.

d

900 mc and 450 mc

The frequencies are as follows:

| Telemetry | 248.6 mc    |
|-----------|-------------|
|           | 252.4 mc    |
|           | 256.2 mc    |
|           | l unassigne |
|           |             |

UDOP

Azusa 500 mc

Radar altimeter Unassigned

C.-band radar 5555 mc

Development tracking

Unassigned

### ABORT SENSING AND DESTRUCT SYSTEMS

### ABORT SENSING SYSTEM

- 30 -



NORTH AMERICAN AVIATION, INC.



1

DESTRUCT SYSTEMS

INTERFACES

MECHANICAL

Propellant Systems

Hydraulic Systems

ELECTRICAL

Instrumentation System

Guidance and Control Systems

Electrical Power System

Abort Sensing and Destruct Systems

### DESIGN CRITERIA

### VEHICLE CONFIGURATION

The Saturn C-1 Apollo space vehicle consists of an S-I stage, and S-IV stage, an instrument unit, and a spacecraft (Figure 7).

The S-I stage has four  $LO_2$  and four fuel containers mounted circumferentially around a center  $LO_2$  container and is loaded with 850,000 pounds of useable propellants. Fins are provided for flight stability and are located on the aft section of the stage (Figure 2).

The S-IV stage is a cylindrical configuration, 220 inches in diameter and is loaded with 100,000 pounds of useable propellants. Exclusive of engines, the S-IV stage basically consists of four major units: the propellant containers, the forward interstage structure, the aft interstage structure, and the heat shield (Figure 3).

SID 62-148

아프 141219191262224

Saturn C-1 and Apollo Spacecraft Configuration (Orbital Payload Version)

Figure 7.

LEIDENT.





52

-

-

111・2・14~



The instrument unit is located on top of the S-IV stage and houses the active and passenger guidance systems and instrumentation, power supplies, antennas, and an X-shaped pressurized cylindrical section (Figure 4).

The spacecraft consists of a command module, service module, adapter, and a launch escape system.

### MASS CHARACTERISTICS

Preliminary mass characteristics and weight breakdown of the Saturn C-1 Apollo space vehicle for a 100-nautical-mile orbit are shown in Tables 7, 8, and 9. Mass moments of inertia, center of gravity shift, and decrease in weight versus burning time are shown in Figures 8 through 11.

### DESIGN TRAJECTORIES

Design trajectories of the Saturn C-1 Apollo space vehicles for a 100-nautical-mile orbit are shown in Tables 10 through 13. Trajectories are for both 7-engine and 8-engine control of the S-I stage.

### ENVIRONMENTAL CONDITIONS

The following natural and induced environments are those experienced by the Saturn C-1 vehicles during the manufacture, storage, test, transportation, launch, and flight phases.

### Ground Wind Criteria

Vehicle Free Standing on Launcher

While free standing on the launcher at Cape Canaveral, Florida, the Saturn C-l vehicle, empty or fueled, will be designed to be structurally capable of withstanding the conditions stated in Table 14.

### Vehicle Secured on Launcher

During periods when ground wind speeds are expected to exceed the conditions stated in Table 14, the vehicle must be secured to prevent excess loading. The vehicle may be secured by placing it in a shelter or by tying it to the service structure with the propellant tanks pressurized.

### Vehicle During Launch

The peak wind speeds to be considered for a Saturn C-1 vehicle 95-percent launch capability are stated in Table 15.

### - 33 -

### JUNIFIULINTIAL

# CUMPTUENTIAL

| Table 7. | Preliminary Mass Characteristics During First-Stage Burning |
|----------|-------------------------------------------------------------|
|          | (100-Nautical-Mile Orbit)                                   |

|                                                                                                                 | Woinht                 | Vehicle      | Moment<br>(Kg-M | of Inertia<br>I-Sec <sup>2</sup> )    |
|-----------------------------------------------------------------------------------------------------------------|------------------------|--------------|-----------------|---------------------------------------|
| Item                                                                                                            | (lb)                   | (in.)        | Roll            | Pitch                                 |
| Total dry first stage<br>First interstage<br>First stage retro-                                                 | 94,000<br>1,879        | 375<br>1060  | 30,150          | 312,700                               |
| mounts<br>Residuals                                                                                             | 1,660<br>17,423        | 922<br>286   |                 |                                       |
| First stage after<br>retrorocket<br>burnout<br>First-stage retro-                                               | 114, 962               | 380          | 34,677          | 379, 719                              |
| rocket propellant                                                                                               | 1, 340                 | 922          |                 | · · · · · · · · · · · · · · · · · · · |
| First stage at first<br>separation command<br>Apollo launch escape                                              | 116, 302               | 387          | 35, 320         | 391,656                               |
| propulsion system<br>Vehicle at second-<br>stage ignition                                                       | 3, 700<br>135, 018     | 1880<br>1242 |                 |                                       |
| Vehicle at end of<br>first-stage thrust<br>decay<br>First-stage main<br>propellants (includ-<br>ing reserve and | 255,020                | 861          | 39, 549         | 2,018,783                             |
| thrust decay)<br>Second-stage Chill-<br>down and vented<br>gases                                                | 854, 369<br>376        | 550<br>1275  |                 |                                       |
| Vchicle at first-stage<br>lift-off<br>First-stage transition<br>propellants                                     | 1, 109, 765<br>13, 381 | 622<br>852   | 206, 770        | 3,441,964                             |
| Vehicle at first-stage<br>ignition                                                                              | 1, 128, 146            | 625          | 210, 463        | 3, 474, 056                           |

- 31 -

|                                                                                                                                         |                           | •<br>Vehicle               | Momen<br>(Kg-N | t of Inertia<br>A-Sec <sup>2</sup> ) |
|-----------------------------------------------------------------------------------------------------------------------------------------|---------------------------|----------------------------|----------------|--------------------------------------|
| Item                                                                                                                                    | Weight<br>(lb)            | Center of Gravity<br>(in.) | Roll           | Pitch                                |
| Total dry second<br>stage<br>Residuals<br>Reserve propellants                                                                           | 11,700<br>494<br>500      | 219<br>192<br>157          | 2, 268         | 6,554                                |
| Second stage at<br>second separation<br>command<br>Vehicle instrument<br>unit assembly<br>Apollo orbital payload                        | 12,694<br>4,405<br>17,300 | 216<br>516<br>697          | 2,281          | 6,800                                |
| Vehicle at end of<br>second stage thrust<br>decay<br>Second-stage main<br>propellants (includ-<br>ing thrust decay and<br>helium heater | 34, 399                   | 496                        | 3, 955         | 61,837                               |
| Second-stage vehicle<br>at lift-off**<br>Second-stage weight                                                                            | 134, 489                  | 275                        | 3, 971         | 137,891                              |
| loss between first-<br>stage separation and<br>second-stage start                                                                       | 529                       | 216                        |                |                                      |
| Vehicle at second-<br>stage ignition                                                                                                    | 135,018                   | 275                        | 4,106          | 137, 923                             |

Table 8. Preliminary Mass Characteristics During Second-Stage Burning (100-Nautical-Mile Orbit)

- 35 -

CONFIDENT

CALTIAN



| Item                                                                                                                                                    | Weigh                          | t (lb) | Vehicle<br>Center of Gravity<br>(in.)* |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--------|----------------------------------------|
| Structure                                                                                                                                               |                                | 1700   | 1486                                   |
| Instrument panels                                                                                                                                       |                                | 119    | 1.477                                  |
| Guidance and control system<br>ST-90-S (including rack)<br>ST-124 (including rack)                                                                      | 480<br>125                     | 1049   | 1482                                   |
| Test adapter<br>Flight control computer<br>Program device                                                                                               | 70<br>13<br>50<br>32           |        |                                        |
| Time base selector<br>Guidance signal processors<br>Platform distributor<br>Guidance computers                                                          | 5<br>80<br>20<br>174           |        |                                        |
| Electrical power supply system<br>1000 VA inverters<br>Control voltage supply<br>Batteries                                                              | 60<br>10<br>150                | 220    | · 1480                                 |
| Electrical network system<br>Wiring (including clamps)<br>Power distributor<br>Flight Sequencer<br>Control distributor                                  | 300,<br>38<br>2<br>20          | 360    | 1483                                   |
| Measuring network system<br>Measuring racks<br>Measuring distributors                                                                                   | 60<br>20                       | 80     | 1476 -                                 |
| Telemetry system<br>PCM telemeters<br>Telemeter subcarriers<br>Telemeters (X 04)<br>P-F amplifiers<br>Telemeter power divider<br>Telemeter multicoupler | 59<br>58<br>58<br>28<br>1<br>3 | 293    | 1486                                   |

# Table 9. Instrument Unit Assembly Weight Breakdown(100-Nautical-Mile Orbit)

- 30 -

# CONFIDENTIAL

l



| Item                           | Weig | ht (1b) | Vehicle<br>Center of Gravity<br>(in.)* |
|--------------------------------|------|---------|----------------------------------------|
| Telemetry system (Cont)        |      |         | •                                      |
| Telemeter for PCM (X 07)       | 30   |         |                                        |
| Telemeter auxiliary equipment  | 16   |         | •                                      |
| Telemeter antennas             | 40   |         |                                        |
| Range safety and tracking      |      | 230     | 1481 .                                 |
| Azusa transponder              | 42   |         |                                        |
| Azusa antenna                  | 2    |         |                                        |
| Horizon sensor                 | 60   |         |                                        |
| Horizon sensor power supply    | 20   |         |                                        |
| C-band radar                   | 11   |         |                                        |
| C-band radar antenna           | 2    |         | ,                                      |
| Radar altimeter                | 16   |         | ,                                      |
| Radar altimeter antenna        | 8    |         |                                        |
| UDOP transponder               | 24   |         |                                        |
| Power dividers                 | 15   |         |                                        |
| Mistram transponder            | 17   |         |                                        |
| Mistram antenna                | 2    |         |                                        |
| Command antenna                | 10   |         |                                        |
| In-flight cooling system       |      | 180     | 1483                                   |
| LN <sub>2</sub> cooler (wet)   | 130  | ] ]     |                                        |
| Ducting and valve              | 50   |         |                                        |
| Air bearing system (2 spheres) |      | 94      | 1453                                   |
| Insulation                     |      | 40      | 1488                                   |
| Abort distributor              |      | 20      | 1449                                   |
| Attaching hardware             |      | 20      | 1472                                   |
| Total instrument unit          |      | 4405    | 1483                                   |

Table 9. Instrument Unit Assembly Weight Breakdown (100-Nautiçal-Mile Orbit) (Cont)

- 37 -



NORTH AMERICAN AVIATION. INC.

0 L

0 L

20

40



Figure 8. Mass Moment of Inertia During First-Stage Burning (100-Nautical-Mile Orbit)

60

80

S-I STAGE BURNING TIME (SECONDS)

100

- 38 -



120

140

160







Figure 9. Mass Moment of Inertia During Second-Stage Burning (100-Nautical-Mile Orbit)

- 39 -

CONCIDENTIAL

SPACE and INFORMATION SYSTEMS DIVISION

.1





ł١

NORTH AMERICAN AVIATION, INC.

·····



### SPACE and INFORMATION SYSTEMS DIVISION

1



Figure 11. Vehicle Weight and Center of Gravity During Second-Stage Burning (100-Nautical-Mile Orbit)

- 41 -

First-Stage Flight Design Trajectory, &-Engine (100-Nautical-Mile Orbit) Table 10.

The subscript

|                 |                    |            |            |          | Longítudinal |            |            |               | •           |          |         |
|-----------------|--------------------|------------|------------|----------|--------------|------------|------------|---------------|-------------|----------|---------|
|                 | P <sub>i</sub> ,th |            |            |          | Incrtial     | Dynamic    | Tilt       |               |             |          |         |
| occur]          | Angle              | Altitude   | Range      | Velocity | Acceleration | Pressare   | Angle      | Weight        | Thrust      | Drag     | Mach    |
| 12041           | (acg)              | (11)       | (ini man)  | (11/200) | (ä)          | (nr þs/gr) | (ដុំភ្នុង) | (01)          | (01)        | (11)     | -70.    |
| 0               | 0                  | 0          | 0          | 0        | 1. 36        | 0          | 0          | 1.105.425     | 1,498,850   | Ċ        | c       |
| 01              | 0                  | trãt       | 0          | 131      | 1.43         | 14.7       | 0.1        | 1.045,090     | 1, 503.244  | 6, 808   | 0.1     |
| 5               | °.<br>≁            | 2, 625     | 0          | 279      | •<br>]. 52   | 85.6       | 3. U       | 987, 690      | 1, 516, 207 | 15, 333  | 0.3     |
| 05              | t -<br>x           | €-, 234    | 0.1        | 4 n to   | 1.63         | 213.2      | 9.4        | 928, 830      | 1, 538, 363 | 22, 765  | 0.4     |
| ÷               | Jt. 2              | 11, 811    | 0.3        | 969      | 1.75         | 400.2      | 16.9       | 869, 970      | 1, 567, 861 | 43, 133  | 0.7     |
| С.<br>г         | 23. X              | 19.035     | 0.8        | 120      | 1.32         | 605.4      | 23.8       | 811,100       | 1, 600, 864 | 126, 422 | 0.9     |
| 0.4             | 31.4               | 29.527     | 1. to      | 1, 283   | 1. 42        | 742.0      | 31.4       | 752, 230      | 1, 631, 993 | 193, 932 | 1.3     |
| 014<br>2        | 35. X              | 36.417     | 2.4        | 1.503    | 2.05         | 783.2      | 35.8       | 716, 920      | 1, 647, 933 | 176, 099 | 1.6     |
| C.              | 38.4               | 41.667     | 3.0        | 1, 673   | 2.17         | 761.0      | 38.6       | 03, 370       | 1, 656, 928 | 152.172  | 1.7     |
| 0%              | 45.0               | 55,774     | 5.1        | 2, 142   | 2.49         | 655.8      | 45.0       | 634,510       | 1, 673, 176 | 98, 110  | 2.3     |
| 06              | 50.4               | 72,506     | x. 1       | 2.822    | 2.82         | 493.6      | 50.5<br>5  | 575, 640      | 1, 682, 325 | 54, 827  | 2.9     |
| 001             | 54.9               | 91,863     | 12.3       | 3, 599   | 3.21         | 309.7      | 55. l      | 516, 780      | 1, 686, 322 | 26, 943  | 3. ti   |
| 110             | 58.6               | 113, 845   | 17.9       | 4, 523   | 3. 66        | 170.6      | 58. 9      | 457,910       | 1, 683, 696 | 12, 123  | 4.4     |
| 120             | 61.6               | 139, 107   | 25.0       | 5, 633   | 4.22         | 88.1       | 62.0       | 349,050       | 1, 689, 402 | 5, 172   | 5.2     |
| 130             | 0.40               | 167.650    | 34.2       | 6,959    | 4.07         | 44.4       | 64. 0      | 340, 180      | 1, 689, 688 | 2,081    | 6.3     |
| 140.5           | 66.0               | 202,427    | 46.3       | 8, 678   | o. 0S        | 21.3       | 66.7       | 278, 130      | 1, 689, 799 | 763      | 3.4     |
| رد. 14 <i>t</i> | 67.0               | 223, 753   | 54.3       | 9, 20ń   | 3. 24        | 10.6       | 66.7       | 260, 520      | 844, 899    | 390      | ۍ.<br>ع |
| *Max e          |                    |            |            |          |              |            |            |               |             |          |         |
|                 |                    |            |            |          |              |            |            |               |             |          |         |
|                 | uin-stag           | e propell  | ants, 350, | 000 Ib   |              | S-IV ma    | in-stage   | · propellants | s, 100.0001 | р        |         |
| S-I the         | rust. A            | x 133 K II | 0          |          | ,            | S-IV thru  | ust, ó v   | 15 K Ib       |             |          |         |
|                 | dun ( <b>dt</b> .  | 255. 5 see | c (S. L. ) |          |              | s-IV Isp.  | .420 st    | ·c (vac)      |             |          |         |
|                 |                    |            |            |          |              | •          |            |               |             |          |         |

### GONCIDENTU

• •

### NORTH AMERICAN AVIATION, INC.



Second-Stage Flight Design Trajectory, 8-Engine S-I Flight (100-Nautical-Mile Orbit) Table 11.

-----

| Time<br>(sec)                          | Path<br>Anyle<br>(deg)                   | Altitude<br>(ft)                     | Range<br>(naut mi) | Velocity<br>(ft/sec)            | Longitudinal<br>Inertial<br>Acceleration<br>(g) | Dynamic<br>Pressure<br>(lb/sq ft) | Tilt<br>Angle<br>(deg)            | Weight<br>(1b)                        | Thrust<br>(1b)       | Drag<br>(1b)                          | Mach<br>No. |
|----------------------------------------|------------------------------------------|--------------------------------------|--------------------|---------------------------------|-------------------------------------------------|-----------------------------------|-----------------------------------|---------------------------------------|----------------------|---------------------------------------|-------------|
| 146.5<br>17/5                          | 69.9                                     | 228, 753                             | 54.3<br>102 A      | 10,470                          | 0.64<br>0.67                                    | NA*                               | 62.4<br>64.7                      | 139,850<br>133.420                    | 89,876<br>89,876     | NA*<br>                               | NA*         |
| 206.5                                  | 76.5                                     | <b>409, 776</b>                      | 154.9              | 11, 211                         | 0.70                                            |                                   | 67.0                              | 126,990                               | 89,876               |                                       |             |
| 236.5<br>266.5                         | 79.3<br>81.9                             | 481, 298<br>539, 697                 | 209.0<br>265.9     | 11, 702<br>12, 270              | 0. 7 <b>4</b><br>0. 78                          |                                   | 71.7                              | 114, 140                              | 89, 876              |                                       |             |
| 296.5                                  | 84. J                                    | 585, 628<br>620-077                  | 325.9<br>389-3     | 12, 913                         | 0.84<br>0.89                                    |                                   | 74.0<br>76.4                      | 107, 710<br>101, 280                  | 89, 876<br>89, 876   |                                       |             |
| 356.5                                  | 87.6                                     | 643, 371                             | 456.3              | 14,432                          | 0.95                                            |                                   | 78.8                              | 94,850                                | 89, 876              |                                       |             |
| 386.5<br>416.5                         | 88.8<br>89.8                             | 657, 150<br>662, 400                 | 527.4<br>602.9     | 15, 315<br>16, 283              | 1. 02<br>1. 10                                  |                                   | 81.3                              | 88, <b>4</b> 20<br>81, 990            | 89,876<br>89,876     |                                       |             |
| 447.1                                  | 90.6                                     | 660, 103                             | 684.3              | 17, 365                         | 1.19                                            |                                   | 86.4                              | 75,450                                | 89,876               |                                       |             |
| 477.1                                  | 91.0                                     | 652,557<br>640 746                   | 770.6<br>862 4     | 18, 540<br>19 836               | 1.30                                            |                                   | 88.9<br>91.6                      | 69, 020<br>62, 590                    | 89, 876<br>89, 876   | · · · · · · · · · · · · · · · · · · · |             |
| 537.1                                  | 91.2                                     | 627, 623                             | 960.8              | 21, 276                         | 1.60                                            |                                   | 94.2                              | 56, 160                               | 89, 876              |                                       |             |
| 567.1                                  | 90.9                                     | 615, 484                             | 1066.5             | 22, 897                         | I. 80                                           |                                   | 96.9                              | 49, 730                               | 89,876               | <u> </u>                              |             |
| 597. <b>1</b><br>609. 2                | 90.3<br>90.0                             | 607, 938<br>607, 282                 | 1180.6<br>1229.5   | 24, 741 <sup>.</sup><br>25, 568 | 2.08<br>2.21                                    |                                   | 99. /<br>100. 8                   | 43, 300<br>40, 700                    | 89, 876<br>89, 876   | -                                     | -           |
| = VN*                                  | Not a                                    | pplicable                            |                    |                                 |                                                 |                                   |                                   |                                       |                      |                                       |             |
| S-IV n<br>S-IV th<br>S-IV th<br>S-IV I | nain-sti<br>hrust, 4<br>5 <b>p</b> , 420 | age prope<br>6 x 15 K l<br>sec (vac) | 11ant, 100,<br>b   | 000 Ib                          |                                                 | S-I main<br>S-I thrus<br>S-I F/dn | -stage F<br>st, 8 x l<br>n/dt, 25 | ropellants<br>88 K lb<br>5. 5 sec (S. | , 850, 000 lt<br>L.) | 0                                     |             |
|                                        |                                          |                                      |                    |                                 |                                                 |                                   |                                   |                                       |                      |                                       |             |

- 43 -

SID 62-148

## OOMIDLINIA

 $\sim$ 

### NORTH AMERICAN AVIATION, INC.



Table 12. · First-Stage Flight Design Trajectory, 7-Engine (100-Nautical-Mile Orbit)

|                | the d             |            |             |          | Longitudinal<br>Inertial | Dynamic              | Tilt          | W. einht     | Turust      | D <b>r</b> ad | Mach     |
|----------------|-------------------|------------|-------------|----------|--------------------------|----------------------|---------------|--------------|-------------|---------------|----------|
| 1100 (Sec)     | (deg) (deg)       | (ft)       | (int mi)    | (ft/sec) | (g)                      | (1b/sq ft)           | (deg)         | (1b)         | (1)         | ء<br>(1b)     | No.      |
| C              | n<br>N            | 0          | 0           | 0        | 1.19                     | 0                    | 0             | 1, 102, 625  | 1, 311, 882 | 0             | 0        |
| 10             | 0                 | 328        | 0           | 72       | 1.25                     | ь. I                 | 0             | 1, 049, 830  | 1, 313, 999 | 2, 317        | 0        |
| 0,7            | 0.4               | 1, 312     | 0           | 161      | 1.32                     | 29.3                 | 0.5           | 921,750      | 1, 320, 569 | 9, 180        | 0.1      |
| 30             |                   | 3, 609     | C           | 272      | 1.39                     | 79.7                 | 2.5           | q43, 100     | 1, 332, 584 | 13, 964       | 0.2      |
| 40             | ي<br>ب            | 6, 390     | 0           | 413      | 1.49                     | 165.3                | 5. O          | 896, 600     | 1, 350, 111 | 19, 312       | 0.4      |
| 50             | 10. s             | 11,811     | 0.2         | 541      | 1.59                     | 287.5                | 10.8          | 845, 090     | 1, 372, 509 | 29, 714       | 0.6      |
| <del>с</del> 0 | 17.1              | 18,701     | 0.4         | 307      | 1.69                     | 430.9                | 17.1          | 793, 580     | 1, 397, 863 | 56, 866       | 0.8      |
| 70             | • 24. 0           | 27,231     | 1.0         | 1,050    | 1.72                     | 540.0                | 24.0          | 742, 080     | 1,423,084   | 145, 902      | 1.0      |
| x 1 %          | 29.7              | 35,701     | 1.7         | 1, 286   | 1.84                     | 592.7                | 29.7          | 700, 870     | 1,440,875   | 153, 336      | 1.3      |
| 30<br>80       | 31.1              | 38,058     | 0. I        | 1,348    | 1.88                     | 589.0                | 31.1          | 690,570      | 1,444,755   | 148, 369      | 1.4      |
| 00             | 37. 4             | 50, 525    | 3.3         | 1, 729   | 2.12                     | 529. to              | 37.9          | 639, 060     | 1, 460, 231 | 102,400       | 1.8      |
| 100            | 44.0              | 65,289     | 5. <b>4</b> | 2,215    | 2.40                     | 425.9                | 44.1          | 587, 560     | 1, 469, 733 | 63, 105       | 2.3      |
| 110            | 49.3              | 82, 349    | а. 4<br>4   | 2, 812   | 2. 09                    | 305.2                | 49.4          | 536,050      | 1,474,892   | 34, 039       | 2.9      |
| 120            | ج. <del>د</del> د | 102.034    | 12.5        | 3, 530   | 3.02                     | 181.5                | 5 <b>4</b> .0 | 434, 540     | 1,477,317   | 16,430        | ي.<br>۲. |
| 1 30           | ς. Υ.<br>Γ.       | 124, 344   | 17.8        | 4, 330   | 3.40                     | 101.0                | 57,8          | 433, 040     | 1,473,331   | 7,491         | 4.2      |
| 140            | e0. e             | 140, 278   | 24.7        | 5, 334   | 3. 86                    | ÷3. ĉ                | 61.0          | 381, 530     | 1,478,728   | 3, 306        | 4.9      |
| 150            | 03.2              | 177, 165   | 33.2        | te, 571  | 4.48                     | 25.5                 | 63.7          | 330, 020     | 1,478,905   | 1,422         | 6.0      |
| 160.6          | 65.4              | 210, 029   | 44.6        | 3, 097   | 5.37                     | 13.5                 | ú5.9          | 275, 380     | 1,478,971   | 496           | 8. O     |
| 100.0          | 60. <b>4</b>      | 230, 971   | 52.0        | 5, 475   | 2.42                     | <b>б.</b> б          | 65.0          | 262, 130     | 634,071     | 236           | 6.9<br>  |
| *Max (         | a)                |            |             |          |                          |                      |               |              |             |               |          |
|                | Ĩ                 |            |             |          |                          |                      |               |              |             |               |          |
| s-1 ma         | in-stag           | te propell | ants, 350,( | 000 11   |                          | S-IV ma.             | in-stag       | e propellant | s, 100,000  | lb .          |          |
| S-I thr        | ust, 7            | v Iss K II | -2          |          |                          | S-IV thr             | ust, u        | 415 K lb     |             |               |          |
| S-1 F/4        | dm/dt.            | 255.5 se   | c (S. L. )  |          |                          | S-IV I <sub>sp</sub> | , 420 s       | ec (vac)     |             |               |          |

- 44 -



Second-Stage Flight Design Trajectory, 7-Engine S-I Flight (100-Nautical-Mile Orbit) Table 13.

| Time<br>(sec)                             | Path<br>Angle<br>(deg)          | Altitude<br>(ft)                                 | Range<br>(naut mi)        | Velocity<br>(ft/sec)          | Longitudinal<br>Incrtial<br>Acceleration<br>(g) | Dynamic<br>Pressure<br>(lb/sq ft) | . Tilt<br>Angle<br>(deg)        | Weight<br>(1b)                        | Thrust<br>(1b)                | Drag<br>(lb) | Mach<br>No. |
|-------------------------------------------|---------------------------------|--------------------------------------------------|---------------------------|-------------------------------|-------------------------------------------------|-----------------------------------|---------------------------------|---------------------------------------|-------------------------------|--------------|-------------|
| 166. 6<br>196. 6                          | 69.6<br>73.1                    | 230, 971<br>325, 787                             | 52.0<br>97.7              | 9, 73 <b>4</b><br>10, 066     | 0.65<br>0.69                                    | NA *                              | 57.5<br>59.9                    | 137, 050<br>130, 620                  | 89, 876<br>89, 876            | NA*          | NA*         |
| 226. 6<br>256. 6<br>286. 6                | 76.3<br>79.2<br>81.7            | <b>4</b> 06, 823<br><b>4</b> 75, 065<br>530, 839 | 145.6<br>196.2<br>249.6   | 10, 476<br>10, 965<br>11, 532 | 0.72<br>0.76<br>0.81                            |                                   | 62.4<br>64.9<br>67.4            | 124, 190<br>117, 760<br>111, 340      | 89, 876<br>89, 876<br>89, 876 |              |             |
| . 316.6<br>346.6                          | 83.9<br>85.8                    | 57 <b>4</b> , 802<br>608, 266                    | .306. 2<br>366. 1         | 12, 178<br>12, 904            | 0.86<br>0.92                                    |                                   | 72.8                            | 104, 910<br>98, 480                   | 89, 876<br>89, 876            |              |             |
| 376.6<br>406.6<br>436.6                   | 87.4<br>88.7<br>6.7             | 631,888<br>646,324<br>652,886                    | 429.7<br>497.4<br>569.6   | 13, 711<br>14, 606<br>15, 594 | 0.98<br>1.05                                    |                                   | 75.5<br>78.3<br>81.2            | 92, 050<br>85, 620<br>79, 190         | 89, 876<br>89, 876<br>89, 876 |              |             |
| 465. 1<br>495. 1<br>525. 1                | 90.3<br>90.8<br>91.1            | 652, 886<br>647, 308<br>638, 122                 | 642.8<br>725.2<br>813.6   | 16, 627<br>17, 828<br>19, 167 | 1. 23<br>1. 35<br>1. 49                         |                                   | 84. 1<br>87. 1<br>90. 3         | 73, 090<br>66, 660<br>60, 230         | 89, 876<br>89, 876<br>89, 876 |              |             |
| 555.1<br>585.1<br>615.1                   | 91.1<br>90.8<br>90.4            | 626, 967<br>616, 140<br>608, 595                 | 908.9<br>1011.9<br>1123.6 | 20, 663<br>22, 359<br>24, 308 | 1.67<br>1.90<br>2.19                            |                                   | 93.5<br>96.7<br>100.1           | 53, 800<br>47, 370<br>40, 940         | 89, 876<br>89, 876<br>89, 876 |              |             |
| 632.3                                     | 90.0                            | 606,954                                          | 1192.0                    | 25, 568                       | 2.42                                            | -                                 | 102.0                           | 37, 270                               | 89, 876                       | -            | -           |
| " 'YN*                                    | Not aj                          | pplicable                                        |                           |                               |                                                 |                                   |                                 |                                       |                               |              |             |
| S-IV IT<br>S-IV th<br>S-IV I <sub>s</sub> | nain-sta<br>nrust, f<br>1p, 420 | lge prope.<br>5 x 15 K l<br>sec (vac)            | b                         | , 000 lb                      |                                                 | S-I main<br>S-I thrus<br>S-I F/dn | -stage<br>st, 7 x 1<br>n/dt, 25 | propellant,<br>88 K lb<br>5.5 sec (S. | 850, 000<br>L: )              |              |             |
|                                           |                                 |                                                  |                           |                               |                                                 |                                   |                                 |                                       |                               |              |             |

- 45 -



2

| Height Ab<br>Ground L             | ove<br>evel                                                                                                                   | Steady<br>Wine                                       | -State<br>d**                                        | Peak Wi                                              | nd***                                                |
|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|
| (meters)                          | (ft)                                                                                                                          | (m/sec)                                              | (knots)                                              | (m/sec)                                              | (knots)                                              |
| 3.0 9.1 18.3 30.5 61.0 91.4 121.9 | $     \begin{array}{r}       10 \\       30 \\       60 \\       100 \\       200 \\       300 \\       400     \end{array} $ | 11.8<br>14.8<br>17.3<br>19.3<br>21.9<br>23.7<br>24.9 | 23.0<br>28.8<br>33.6<br>37.5<br>42.6<br>46.0<br>48.3 | 16.6<br>20.7<br>24.2<br>27.0<br>30.7<br>33.2<br>34.8 | 32.2<br>40.3<br>47.0<br>52.5<br>59.6<br>64.4<br>67.6 |

| rapic 14. Oround wind Oradient During Free Dranding. | fable 14. | Ground | Wind | Gradient | During | Free | Standing* |
|------------------------------------------------------|-----------|--------|------|----------|--------|------|-----------|
|------------------------------------------------------|-----------|--------|------|----------|--------|------|-----------|

\*99. 9-percent probability of occurrence during the strongest wind month at Cap Canaveral, Florida.

\*\*Steady-State Wind: Average wind speed over a period of one (1) minute.

\*\*\*Peak Wind: Based on a gust factor of 1.4 applied to a steady-state wind magnitude.

### Winds at Altitude

Wind speed profile, wind shear, and wind speed change data for 95 percent probability of occurrence conditions are presented in Figures 12 through 16.

### Induced Environments

The following induced environmental criteria are preliminary but represent the latest available information.

The vehicle has been assigned an arbitrary zone breakdown, and the detailed environmental data corresponding to these specific zones are listed in Figure 17.

Vibration, Shock, and Acoustic Criteria

The vibration criteria levels given in Figure 17 are the input levels specified for a 10-minute logarithmic sweep of the frequency range of

SPACE and INFORMATION SYSTEMS DIVISION

15

| Height A                    | bove  | Steady- | -State - |         | ind***  |
|-----------------------------|-------|---------|----------|---------|---------|
| Ground 1                    | Level | Wine    | d**      | Peak Wi |         |
| (meters)                    | (ft)  | (m/sec) | (knots)  | (m/sec) | (knots) |
| 3.09.118.330.561.091.4121.9 | 10    | 7.2     | 14.0     | 10.1    | 19.6    |
|                             | 30    | 9.0     | 17.5     | 12.6    | 24.5    |
|                             | 60    | 10.8    | 21.0     | 15.1    | 29.4    |
|                             | 100   | 11.6    | 22.5     | 16.2    | 31.5    |
|                             | 200   | 13.3    | 25.9     | 18.7    | 36.3    |
|                             | 300   | 14.4    | 28.0     | 20.2    | 39.2    |
|                             | 400   | 15.1    | 29.4     | 21.2    | 41.2    |

Table 15. Ground Wind Gradient During Launch\*

\*95-percent probability of occurrence during the strongest wind month at Cape Canaveral, Florida.

\*\*Steady-State Wind: Average wind speed over a period of one (1) minute.

\*\*\*Peak Wind: Based on a gust factor of 1.4 applied to a steady-state wind magnitude.

interest (thereby simulating the transient conditions of launch and flight). These levels are to be divided by two to obtain the levels for a 5-minute dwell at the major resonances of the hardware under investigation (thereby simulating the steady-state or "mainstage" portion of flight).

The shock criteria levels given in Figure 17 are input levels of a half-sine shock pulse of 8 milliseconds duration.

The acoustic criteria given in Figures 18 through 21 represent the launch condition external sound pressure level spectrum for various stations throughout the complete Saturn C-1 vehicle. The maximum broad band (0.10 kc) overall sound pressure levels (SPL) are also shown in these illustrations.

### Acoustic Environments

During the launch and flight phases of the Saturn vehicle, the following environments are induced for launch complex 37.



SPACE and INFORMATION SYSTEMS DIVISION ->



Figure 12. Two Sigma (95-Percent Probability Level) Wind Profile Envelope

CONFIDENTIAL

AGNEIDENTIAL

Ł





- 49 -

SID 62-148

OMEIDE







- 50 -

# CUNTIDENTIA

NORTH AMERICAN AVIATION, INC.

 $\mathcal{N}$ 





Figure 15. Selected Vertical Shear Spectrums (Cape Canaveral, Florida)

- 51 -

NORTH AMERICAN AVIATION, INC.

SPACE and INFORMATION SYSTEMS DIVISION





Figure 16. Selected Vertical Wind Speed Change Spectrums (Cape Canaveral, Florida)

- 52 -



. .





| Zone Area | Vibration Level<br>(Transient Condition)                                                                                                                | Shock Level-<br>ing's <del>Pea</del> k |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| 1         | 16 to 37 cps at 0.45-in. double amplitude<br>37 to 84 cps at 32-g peak<br>84 to 119 cps at 0.09-in. double amplitude<br>119 to 2000 cps at 65-g peak    | 150                                    |
| 2         | 16 to 29 cps at 0.35-in. double amplitude<br>29 to 100 cps at 15-g peak<br>100 to 189 cps at 0.029-in. double amplitude<br>189 to 2000 cps at 52-g peak | 100                                    |
| 3         | 16 to 35 cps at 0.35-in, double amplitude<br>35 to 2000 cps at 22-g peak                                                                                | 65                                     |
| 4         | 16 to 40 cps at 0.33-in. double amplitude<br>40 to 100 cps at 27-g peak<br>100 to 114 cps at 0.053-in. double amplitude<br>114 to 2000 cps at 35-g peak | 80                                     |
| 5         | 16 to 42 cps at 2-g peak<br>42 to 95 cps at 0.022-in. double amplitude<br>95 to 2000 cps at 10-g peak                                                   | 35                                     |

# Figure 17. Saturn C-1 Launch Vehicle Vibration and Shock Environment

- 53 -



~







- 54 -

NORTH AMERICAN AVIATION, INC.

CALTI



- 5, 5 L



CONFIDENTIAL

- 56 -





- 57 -



SPACE and INFORMATION SYSTEMS DIVISION

### Unimperati

In defining the acoustic environment, the values are based on eight 188,000-poind-thrust engines using a bilateral blast deflector. The acoustic levels specified in the Tables 14 through 17 are the anticipated overall sound pressure levels (SPL<sub>ca</sub>) in decibels (Ref. 0.0002 dynes/cm<sup>2</sup>). All radial distances are measured from the vertical axis of the vehicle on launch pad "B. The sound pressure level profile is symmetrical about horizontal centerlines of the bilateral exhaust deflector. The angular measurements in Tables 14 through 17 are measured from either exhaust stream in either direction from 0 to 180 degrees. The acoustic levels are given in 1 decibel increments measured on radius lines every 10 degrees around the launch complex. These tables can be used to determine the launch phase overall sound pressure level of pad "B" up to radii of approximately 2500 feet from the vehicle vertical axis.

The results in Table 18 are the launch phase overall sound pressure levels for the major items of GSE and launch facilities already located on the launch complex and pad "B".

The results in Table 19 are the maximum expected flight sound pressure levels for the GSE and launch facilities equipment due to the flight of the vehicle. These values do not occur simultaneously. They occur at some definite vehicle altitude and should be considered present only for a short time duration.

The results in Table 20 are maximum anticipated sound pressure levels for the early flight phase (up to 2000 feet altitude) of the Saturn vehicle and are only present for a short time duration.

### AERODYNAMIC CHARACTERISTICS

Gradient of normal force coefficient and center of pressure versus Mach number are shown in Figures 22 through 25 for first- and secondstage flight configurations. Mean base pressure versus Mach number is shown in Figure 26. Total drag coefficient, mean base drag coefficient, and forebody drag coefficient versus Mach number are shown in Figures 27 through 29. Distribution of local normal force coefficient and viscous crossflow normal force coefficient are shown in Figures 30 through 33. Local axial force coefficient versus vehicle station are shown in Figures 34 and 35.

### STABILITY ANALYSIS

Maximum angle of attack a and the maximum gimbal angle  $\beta$  curves used in the design of the C-1 launch vehicle were based on a fin plan form area of 181.9 square feet. The present concept is to use a fin plan form area of 121.2 square feet.

- 59

Table 16. Sound Pressure Loading for Different Radii and Angles From Exhaust Direction

| Angle<br>(deg)       | *130    | *131   | *132    | *133            | *134 | *135      | *136 | *137  | *138 | *139 | *140 |
|----------------------|---------|--------|---------|-----------------|------|-----------|------|-------|------|------|------|
|                      |         |        |         |                 | R    | adii (ft) |      |       |      |      |      |
| 0 - 180              | 1390    | 1240   | ļ102    | 983             | 876  | 782       | 969  | 621   | 553  | 493  | 439  |
| 10 - 170             | 1556    | 1390   | 1235    | 1103            | 981  | 876       | 781  | . 695 | 619  | 552  | 492  |
| 20 - 160             | 1970    | 1759   | 1564    | 1397            | 1242 | 1109      | 989  | 880   | 785  | 669  | 623  |
| 30 - 150             | 2500    | 2230   | 1985    | 1773            | 1579 | 1406      | 1254 | 1119  | 965  | 887  | 162  |
| 40 - 140             | 2610    | 2320   | 2067    | 1840            | 1640 | 1462      | 1305 | 1162  | 1037 | 923  | 822  |
| 50 - 130             | 2500    | 2230   | 1985    | 1773            | 1579 | 1406      | 1254 | 1119  | 995  | 887  | 791  |
| 60 - 120             | 2160    | 1930   | 1716    | 1532            | 1362 | 1217      | 1084 | 966   | 860  | 767  | 684  |
| 70 - 110             | 1798    | 1603   | 1428    | 1276            | 1135 | 1011      | 902  | 805   | 716  | 638  | 568  |
| 80 - 100             | 1047    | 1470   | 1308    | 1169            | 1038 | 928       | 825  | 733   | 655  | 585  | 521  |
| 06 - 06              | 1582    | 1415   | 1256    | 1123            | 1000 | 892       | 795  | 708   | 631  | 562  | 501  |
| *SPL <sub>oa</sub> ( | db) Ref | 0.0002 | dynes/c | sm <sup>2</sup> |      |           |      |       |      |      |      |

NORTH AMERICAN AVIATION, INC.



SPACE and INFORMATION SYSTEMS DIVISION

Fuble 17. Sound Pressure Londing for Different Kadii and Angles From Exhaust Direction

| Angle<br>(aeg)      |         | 71-2     | *143    | * 44            | *145  | *146        | *147 | *148 | *149 | *150  |
|---------------------|---------|----------|---------|-----------------|-------|-------------|------|------|------|-------|
|                     |         |          |         |                 | Radii | (It)        |      |      |      |       |
| 0 - 180             | 302     | 349      | 311     | 278             | 247   | 210         | 197  | 171  | 156  | 139   |
| 10 - 170            | 4 39    | 1ó£      | 348     | 311             | 277   | 247         | 220  | 196  | 175  | • 156 |
| 20 - 160            | いたら     | £95      | 441     | 393             | 350   | 313         | 27.9 | 248  | 221  | 197   |
| 50 - 150            | 706     | 628      | 560     | 500             | 444   | 397         | 454  | 315  | 281  | 250   |
| 40 - 140            | 154     | -<br>654 | 583     | 520             | 463   | 413         | 468  | 327  | 292  | 261   |
| 50 - 130            | 706     | 628      | 560     | 500             | 444   | 397         | 454  | 315  | 281  | 250   |
| c0 - 120            | 610     | 543      | 484     | 432             | 385   | 34 <i>5</i> | 306  | 272  | 242  | 217   |
| 70 - 110            | 507     | 452      | 403     | 360             | 320   | 285         | 255  | 226  | 202  | 180   |
| 30 - 100            | ÷       |          | 369     | 329             | °03   | 262         | 233  | 207  | 135  | 165   |
| ()n = ()6           | 440     | 398      | 355     | 316             | 282   | 251         | 224  | 661  | 178  | 159   |
| sph <sub>oo</sub> ( | db) Ref | 0.0002   | dynes/0 | cm <sup>2</sup> |       | -           |      |      |      |       |

\$

- 00 -

Sound Pressure Loading for Different Radii and Angles

From Exhaust Direction

Table 18.





NORTH AMERICAN AVIATION, INC.

SPACE and INFORMATION SYSTEMS DIVISION

Tuble 19. Sound Pressure Loading for Different Rada and Angles From Exhaust Direction

| Angre<br>(dec)       |          | 79 *   | *163    | \$16 <u>4</u>   | *165   | *160    | \$] (° 7       | #168     | 691¢               | 011*                 |
|----------------------|----------|--------|---------|-----------------|--------|---------|----------------|----------|--------------------|----------------------|
|                      |          |        |         |                 | Radii  | (it)    |                |          |                    |                      |
| 0 - 130              | 39       | 35     | 31      | 28              | 55     | 21      | 50             | [-<br>   | 16                 | er bei<br>2<br>prvod |
| 10 - 170             | 44       | 39     | يد<br>ج | 31              | 28     | പ<br>സ  | 22             | 07       | $\frac{\infty}{2}$ | 2                    |
| 20 - 1c.0            | 56       | 50     | 44      | 3ġ              | 35     | 31      | 10<br>11       | ຸ1<br>ເບ | <u>)</u>           | 20                   |
| 30 - 150             | 12       | 63     | 56      | 0 ic            | 4<br>4 | 40      | יה<br>די       | 2        | ~1<br>~1           | 25                   |
| 40 - 140             | ξŢ       | 65     | 58      | 52              | 46     | -1<br>+ | 1-<br>-r       | <u>/</u> | 67                 | 2 fr                 |
| 60 - 130             | 1.       | 63     | 56      | 50              | 44     | 40      | . <del>1</del> | 37       | <b>7</b><br>2      | c1<br>10             |
| 0 - 120              | 61       | 54     | 48      | 43              | 39     | . S     | ~~~<br>~~      | · [-<br> | 53                 | 55                   |
| 70 - 110             | 15       | 45     | 40      | 36              | 32     | 59      | 26             | 23       | 20                 | 18                   |
| 30 - 100             | 41       | 17     | 37      | 33              | 57     | 26      | دی             | 51       | 61                 | 17                   |
| 06 - 06              | 45       | 40     | 36      | 32              | 28     | دع<br>د | · ~:<br>~:     | 20       | ١٢                 | 16                   |
| *SPL <sub>oa</sub> ( | (db) Ref | 0.0002 | dynes/c | :m <sup>2</sup> |        |         |                |          |                    |                      |

)

•

ر. ر.

SID 62-148

- 62 -



- IPLENTINL

Table 20. Maximum Sound Pressure Loading for Major Ground Support Equipment and Facilities During Launch Phase (Before Lift-Off)

| Identification                                 | Location From<br>Vehicle Axis (ft) | SPL <sub>oa</sub> (db)<br>Ref 0.0002 dynes/cm <sup>2</sup> |
|------------------------------------------------|------------------------------------|------------------------------------------------------------|
| Launch pedestal                                | 0                                  | *                                                          |
| Umbilical tower                                | 58                                 | 159.7                                                      |
| Automatic ground control                       |                                    |                                                            |
| station                                        | 110                                | 154.4                                                      |
| Periphery camera pad B-1                       | 250                                | 150.8                                                      |
| Periphery camera pad B-4                       | 250                                | 149.6                                                      |
| Periphery camera pad B-2                       | 285                                | 149.4                                                      |
| Periphery camera pad B-3                       | 285                                | 149.5                                                      |
| Generator pad                                  | 300                                | 145.1                                                      |
| Power pedestal pad                             | 340                                | 148.1                                                      |
| Cooling tower                                  | 420                                | 144.0                                                      |
| High pressure gas storage                      | . 500                              | 141.5                                                      |
| area                                           |                                    |                                                            |
| RP-1 storage area                              | 680                                | 138.3                                                      |
| LO2 storage area                               | 740                                | 139.3                                                      |
| LH <sub>2</sub> storage area                   | 875                                | 136.6                                                      |
| Camera station 37-2                            | 875                                | 139.8                                                      |
| Camera station 37-4                            | 875                                | 139.3                                                      |
| Camera station 37-1                            | 930                                | 139.3                                                      |
| Camera station 37-3                            | 930                                | 139.0                                                      |
| Electrical equipment                           |                                    |                                                            |
| building B                                     | 960                                | 135.1                                                      |
| Launch control building                        | 1175                               | 136.2                                                      |
| Operations support                             | 1645                               | 133.4                                                      |
| building                                       |                                    |                                                            |
| *No value listed because of<br>exhaust stream. | particle impingeme                 | nt in the immediate                                        |

CONFIDENTIAL
| Table 21. | Maximum Sound F     | ressure  | Loading for  | Major C  | Ground Support |
|-----------|---------------------|----------|--------------|----------|----------------|
| Equip     | ment and Facilities | s During | Flight Phase | e (After | Lift -Off)     |

| Identification                   | SPL <sub>oa</sub> (db)<br>Ref 0.0002 d <b>yne</b> s/cm <sup>2</sup> |
|----------------------------------|---------------------------------------------------------------------|
| Launch pedestal                  |                                                                     |
| Umbilical tower                  | 157.3                                                               |
| Automatic ground control station | 151.8                                                               |
| Periphery camera pad B-1         | 144.7                                                               |
| Periphery camera pad B-4         | 144.7                                                               |
| Periphery camera pad B-2         | 143.5                                                               |
| Periphery camera pad B-3         | 143.5                                                               |
| Generator pad                    | 142.9                                                               |
| Power pedestal pad               | 142.0                                                               |
| Cooling tower                    | 140.2                                                               |
| liigh pressure gas storage area. | 138.7                                                               |
| RP-1 storage area                | 136.0                                                               |
| LO, storage, area                | 135.3                                                               |
| LH5 storage area                 | 133.8                                                               |
| Camera station 3742              | 133.8                                                               |
| Camera station 37-4              | 133.8                                                               |
| Camera station 37-1              | 133.3                                                               |
| Camera station 37-3              | 133.3 .                                                             |
| Electrical equipment building B  | · i33.0                                                             |
| Launch control building          | 131.2                                                               |
| Operations support building      | 128.3                                                               |

\*No value listed because of particle impingement in the immediate exhaust stream.

ONLELE TUENTIAL

•

• •

.



| Table 22. | Launch Complex 37, Maximum Sound Pressure Loading for |
|-----------|-------------------------------------------------------|
|           | Various Vehicle Altitudes (After Lift-Off)            |

SPACE and INFORMATION SYSTEMS DIVISION

Maximum angle of attack versus burning time for a 2 sigma wind is shown in Figure 36. Maximum gimbal angle versus burning time for a 2 sigma wind is shown in Figure 37.

#### STRUCTURAL CHARACTERISTICS

#### Load Data

Curves on shear and bending moment versus vehicle station during various flight times are shown in Figures 38 through 43. Longitudinal force versus vehicle station at rebound, liftoff, and various flight times are shown in Figures 44 through 46.

#### Bending Frequencies

Free-free frequency versus flight time curves are shown in Figure 47. Relative amplitude versus vehicle stations for first and second free-free bending modes are shown in Figures 48 and 49.

CONFIDENTIAL



SID 62-148



## SPACE and INFORMATION SYSTEMS DIVISION

~



- 67 -

SID 62-148

LID



- ú8 -

Figure 24. Normal Force and Center of Pressure Versus Mach Number, C-1' Apollo, First Stage, Fins and Stubs

SID 62-148







 $\sim$ 

**CONFIDENT** 

- 69 -



- 7C -

510+2-148



.



#### SPACE and INFORMATION SYSTEMS DIVISION

sić (







CONTIDENTIAL

SID 62-148







- 73 - `



0

-1

0





4

3

2

;

1

Figure 30. Distribution of Local Normal Force, C-1 Apollo First Stage, No Stubs and Fins (By Linear Theory)

- 74 -



7

6

5



-





- 75 -

CUNTIDENTIAL





- 76 -

CONTIDENTIAL

 $\sim$ 







DISTRIBUTION BASED ON  $Cd_c = 1.20 \neq f(M, \alpha)$ 





•







Figure 34. Local Axial Force Versus Vehicle Station, C-1 Apollo First Stage

- 78 -



SID 62-148







VEHICLE STATION (CALIBERS)





1



#### SPACE and INFORMATION SYSTEMS HIMISION





Figure 36. Maximum Angle of Attack Versus Burning Time S-I Stage, Saturn C-1 Apollo (Two-Sigma Winds)



UUINI

SID (2-148







Figure 37. Maximum Gimbal Angle Versus Burning Time S-I Stage, Saturn C-1 Apollo (Two-Sigma Winds)

SID 62-148





 $h_{1,2,\infty} = \frac{1}{2} \Delta \left( 1 + \frac{1}{2} \Delta \left( 1 + \frac{1}{2} \right) \right) = \frac{1}{2} \Delta \left( 1 + \frac{1}{2} \right)$ 

# $= \frac{1}{2} \left\{ \frac{1}{2}$









- 83 -

**CONFIDENTIAL** 







\_ - 85 -



с (\* -----



uni



TOTAL NORMAL LOAD FACTOR (9)



Figure 43.

Bending Moment Versus Vehicle Station, Saturn C-1 Apollo (t = 75 Seconds)

- '87 -







Figure 44. Longitudinal Force Versus Vehicle Station, Saturn C-1 Apollo (t = Liftoff)

- 88 -

CONFIDENTIAL



1 1







- 89 -

CONFIDENTIA





SPACE and INFORMATION SYSTEMS DIVISION





- 90 -





#### SPACE and INFORMATION SYSTEMS DIVISION





Pagare 37, Sature C-1 Apollo Space Veulale Free-Free Frequency Versus Flight Time

~ 11 ·

SID 63-145





Figure 48. Saturn C-1 Apollo Space Vehicle Relative Amplitude Versus Vehicle Stations First Free-Free Bending Modes





CONTIDENTIAL

- 92 -

15

#### III. C-5 LAUNCH VEHICLE

#### OBJECTIVE

The primary purpose of the Saturn C-5 vehicle will be to provide the Apollo spacecraft with the necessary guidance and propulsion for circumlunar, circumlunar with lunar orbit, and lunar landing missions.

#### DESCRIPTION

The Saturn C-5 vehicle will be capable of performing a two-stage, • low-orbit (primary) mission and a three-stage direct-escape (secondary) mission. For the primary mission, the C-5 configuration consists of an S-IC stage, an S-II stage, an Apolio spacecraft (command, service, and lunar landing modules) and a refueling tanker. The S-IVB is used as the third stage for the three-stage direct-escape mission. (See Figure 50.)

#### STAGE S-IC

The first stage (S-IC) will be powered by five F-l engines developing a total thrust of 7.5 million pounds. Propellants for these engines will consist of RP-l and LO<sub>2</sub>.

#### S-IC/S-II INTERSTAGE SECTION

#### STAGE S-II

The second stage (S-II) will be powered by five J-2 engines developing a total thrust of 1 million pounds. Propellants for these engines will consist of LO<sub>2</sub> and LH<sub>2</sub>. The S-II stage will be 396 inches in diameter.

#### S-II/S-IVB INTERSTAGE SECTION

#### STAGE S-IVB

The third stage (S-IVB) will be powered by one J-2 engine developing a total thrust of 200,000 pounds. Propellant for this engine will consist of

- 93 -

TI

.)



Figure 50. C-5 Vehicles



15

LO<sub>2</sub> and LH<sub>2</sub>. The S-IVB stage is 220 inches in diameter, but a 260-inch diameter configuration is presently under study.

#### Instrument<sup>\*</sup> Unit

STAGING

#### PROPULSION

#### FIRST STAGE (S-IC)

#### Engines

The S-IC stage power plant will consist of five engines. Four outer engines will be mounted parallel to the centerline (zero cant angle) on a 364-inch circle and will be gimbaled for control. The fixed center engine will be mounted to the thrust structure on the centerline of the stage.

#### Propellants

The S-IC stage propellants will be RP-1 and LO<sub>2</sub>. The fuel fill rate will be 2000 gallons per minute, and the LO<sub>2</sub> fill rate will be 10,000 gallons per minute. The propellant containers will have a capacity for 4,600,000. pounds of propellants.

#### Control System

The gimbal angle requirement (per engine model specification) is ±5 degrees (square pattern) of unrestricted control travel and 1 degree for snubbing, overtravel, misalignment, etc. The structural clearance for the gimbaling engines will be 7 degrees.

#### SECOND STAĠĘ (S-II)

#### Engines

The four outer engines of the S-II will be mounted parallel to the stage centerline and will be equally spaced on a 210-inch circle. The fifth engine will be mounted on the stage centerline. Each S-II engine will be vertically aligned with the corresponding F-1 engine on the S-IC stage. Table 23 summarizes the estimated nominal performance characteristics of the S-II stage for the two-stage and three-stage missions.





|                                  | Two-Stage<br>Low-Orbit Mission |               | Three-Stage<br>Escape Mission    |  |
|----------------------------------|--------------------------------|---------------|----------------------------------|--|
|                                  | Two-Stage C-5<br>Configuration |               | Three-Stage<br>C-5 Configuration |  |
|                                  | Engine-                        | No<br>Engines | No                               |  |
| ltem                             | Out                            | Out           | Engine-Out                       |  |
| S-II propellant loading, lb      | 800,000                        | 1,000,000     | 800,000                          |  |
| Initial conditions               |                                |               |                                  |  |
| Velocity (m/sec)                 | 2803                           | 2410          | 2670                             |  |
| Altitude (km)                    | 66.728                         | 60.22         | 57.36                            |  |
| Dynamic pressure (kg/sq m)       | 58                             | 100.3         | 169.0                            |  |
| *Flight path angle (deg)         | 68.47                          | 66.31         | 72.28                            |  |
| (1 - D)/W ratio                  | 0.718                          | 0.744         | 0.818                            |  |
| End-boost conditions             |                                |               |                                  |  |
| Velocity (m/sec)                 | 7391                           | 7391          | 6836                             |  |
| Altitude (km)                    | 185.2                          | 185.2         | 120.60                           |  |
| <b>*F</b> light path angle (deg) | 90.0                           | 90.0          | 90.67                            |  |
| (T - D)/W ratio                  | 2.455                          | 2.848         | 2.437                            |  |
| Mission payload weight (lb)***   | 218.000                        | 235.720       | 94.500                           |  |
| Specific impulse, vacuum (sec)   | 422                            | 422           | 422                              |  |
| Thrust, vacuum (lb)              | 800,000                        | 1,000,000     | 1,000,000                        |  |
| **Nominal burning time (sec)     | 413                            | 414           | 338                              |  |
| Deliebilitu                      |                                |               |                                  |  |
| Mission                          |                                | 95.0          | 95.0                             |  |
| Systems                          |                                | 99.0          | 99.0                             |  |
| Manned rating                    |                                | 99.9          | 99.9                             |  |
|                                  |                                | , , , , ,     | · · · ·                          |  |

| Table 23. | Nominal Performance Characteristics for Two-Stage | Low-Orbit |
|-----------|---------------------------------------------------|-----------|
|           | and Three-Stage Escape Missions                   |           |

\*Measured from local vertical.

\*\*Maximum burning time 422 sec if 100 percent of reserve propellant is used for correction.

\*\*\*LH2 tank sized for actual propellant loading. At 800,000-lb loading, scar weight is included for 1,000,000-lb propellant loading.

- 96 --

SID 62-148



#### Propellants

DETTM

The propellants used in the S-II stage will be  $LO_2$  and  $LH_2$ . The propellant containers will have a capacity of 940,000 pounds.

#### Control System

The four outer engines will gimbal for control, and the fifth engine will be fixed. The gimbal angle requirement is  $\pm 7$  degrees for control and 1/2 degree for snubbing, overtravel, misalignment, etc.

#### THIRD STAGE (S-IVB)

#### Engine

The single J-2 engine will be located on the centerline of the stage directly in line with the center engines of the S-IC and the S-II stages.

#### Propellants

The propellants used in the S-IVB stage will be LO2 and LH2. The propellant container will have a capacity of 100,000 pounds.

#### Control System

The engine will gimbal  $\pm 7$  degrees for control and 1/2 degree for snubbing, overtravel, misalignment, etc.

#### INSTRUMENT UNIT

#### DESCRIPTION

#### EQUIPMENT

- 97 -

#### GUIDANCE AND CONTROL

DESCRIPTION

CONCEPT

#### INSTRUMENTATION

DESCRIPTION

MONITORING

Crew

Mission Control Center

MEASUREMENT LIST

Mandatory

Optional

TELEMETRY AND RADIO FREQUENCY

Description

Frequencies

#### ABORT SENSING AND DESTRUCT SYSTEMS

#### ABORT SENSING SYSTEM

#### DESTRUCT SYSTEM



1

#### INTERFACES

MECHANICAL

Propellant

Hydraulic

ELECTRICAL

Instrumentation System

Guidance and Control System

Electrical Power Systems

Abort Sensing and Destruct Systems

#### AERODYNAMICS

#### APOLLO SPACECRAFT/C-5 LAUNCH VEHICLE AERODYNAMIC DATA

#### CONTROL DYNAMICS

RIGID BODY CONTROL PRINCIPLES

ELASTIC BODY CONTROL

#### MISSION-TRAJECTORY/PAYLOAD CAPABILITIES

CIRCUMLUNAR

LUNAR ORBITAL

LUNAR LANDING

UUMITUENINAL


# CONFERENTIA

## ENVIRONMENTAL PROFILES

ATMOSPHERIC

Physical Properties

Wind Profiles

ACCELERATION

**VIBRATION** 

SHOCK

AERODYNAMIC PRESSURE

TEMPERATURE

ACOUSTIC NOISE

### PHYSICAL CONFIGURATION

OVERALL DIMENSIONS

WEIGHT AND CENTER OF GRAVITY LOCATION

### LIMITATIONS

#### SURFACE WIND VELOCITIES

WIND SHEAR

LAUNCH ANGLE (NOT APPLICABLE)

PAYLOAD

Weight

Center of Gravity Locations

- 100 -



# N.

# IV. LAUNCH FACILITY CRITERIA

The Saturn C-l vehicles will be launched from AMR Complexes 34 and 37 under the overall direction of the Marshall Space Flight Center Launch Operations Directorate. Technical responsibility for preparation of each stage, spacecraft, or section of the total space vehicle to a flight readiness condition rests with each individual contractor.

#### LAUNCH COMPLEX

Launch Complex 34 basically consists of the launch control center, one launch pad, one service structure, propellant storage facilities, and one long cable mast. Launch Complex 37 basically consists of the launch control center, two launch pads, one service structure, propellant storage facilities, and two permanent umbilical towers. Launch Complex 34 service structure is moved to and from the pad on rails. Complex 37 service structure is moved from one pad to the other on rails. Hoisting and erecting equipment, elevators, and work platforms are contained in both service structures. Launch Complex 34 will be modified to meet the requirement for launching Saturn C-1 vehicles. Wind shields are provided on the service structure of Complex 37. An overall plan view of Launch Complex 37 is illustrated in Figures 51 and 52.

#### LAUNCH TASK SEQUENCE

The preliminary major task sequence for the S-I stage and the S-IV stage is shown in Figure 53. Time values are considered nominal with the automatic sequence starting 2 minutes before time zero.









- 102 -

SID 62-148





Figure 52. Concept of Service Tower Serving Two Pads



- 103 -

6 HR

5 HR

4 HR

\* TIME VALUES ARE NOMINAL

3 HR

2 HR

1 HR



Figure 53. Saturn C-1 Major Task Sequence

40 MIN 26 MIN 300 SEC 100 SEC 50 SEC



- 104 -

HOLD-DOWN ARMS RELEASE

MULTIPLE ENGINE CUT-OFF CAPABILITY

+1 SEC +2 SEC +3 SEC +3.3 +2.42 +0.42

LO, AND FUEL MASTS, UMBILICALS DISCONNECT VEHICLE SINGLE-ENGINE CUT-OFF CAPABILITY

0

LIFT-OFF



1

#### APPENDIX

# H-1 ENGINE PARAMETERS

H-1 engine parameters are shown in Table 2 and nominal thrust build-up is shown in Figure A-1. Thrust decay dispersion at altitude for H-1 engine is shown in Figure A-2.

#### RL10-A-3 ENGINE PARAMETERS

RL10-A-3 engine parameters are shown in Table 3. Estimated starting transient for RL10-A-3 engine is shown in Figure A-3 and estimated shutdown transient is shown in Figure A-4.

# S-I STAGE RETROROCKETS PARAMETERS

S-I stage retrorocket parameters are shown in Table A-1. Typical mean altitude thrust time curve with limits for S-I stage retrorockets are shown in Figure A-5. Location of S-I stage retrorockets is shown in Figure A-6.

S-IV STAGE ULLAGE ROCKETS AND RETROROCKETS PARAMETERS

S-IV stage ullage rockets and retrorockets parameters are shown in Table 25 and thrust versus burning time is shown in Figure A-7.





| Length (overall)                                      | 64.28 in                   |
|-------------------------------------------------------|----------------------------|
| Total weight (maximum)                                | 500 ІЪ                     |
| Total weight (nominal)                                | 481 lb                     |
| Propellant weight (nominal)                           | 327 lb                     |
| Time of burning (t <sub>b</sub> at 60 F)              | 2.15 sec                   |
| Thrust (average during t <sub>b</sub> at 250, 000 ft) | 37,000 lb                  |
| Total impulse                                         | 74,500 lb-sec              |
| Propellant designation                                | ANP-512DS Mod 3            |
| Flame temperature (adiabatic)                         | 4600° <b>F</b>             |
| Ignition                                              | Exploding bridgewire (EBW) |
| Experimental specific impulse                         | 224 lb-sec/lb              |
| Theoretical specific impulse                          | 232 lb-sec/lb              |
|                                                       |                            |

Table A-1. Retrorocket Parameters

Table A-2. Rocket Parameters

#### NORTH AMERICAN AVIATION, INC





Figure A-1. Nominal Thrust Build-up for 188 K H-1 Eugine

- 107 -







SAMPHOLITTAL

- 108 -







CONTINENTIAL

- 109 -







- 110 -

1 SPACE and INFORMATION SYSTEMS DIVISION



- 111 -

SID 62-148

, vr

 $\langle \rangle$ .

#### SPACE and INFORMATION SYSTEMS DIVISION



Notes

Retrorockets are located 45<sup>0</sup> from the fin positions
Alignment tolerances are being developed

Figure A-6. Location of S-I Stage Retrorockets



STD 62-148

. 15





Figure A-7. Thrust Versus Burning Time, Thiokol TX-280 Solid-Propellant Rocket Motors

COMPIDENTIAL

NORTH AMERICAN AVIATION, INC.



TO THE TRUE .

Table 6. Condensed Instrument Unit Measurement List

| Parameter                                | Range         |
|------------------------------------------|---------------|
| Q Ball, Internal Temperature             | 0 to 150 C    |
| Total temperature                        | 0 to 800 C    |
| Wall temperature, density gage           | 0 to 100 C    |
| Air temperature, density gage            | 0 to 100 C    |
| Gas nitrogen manifold temperature        | -50 to +50 C  |
| Azusa temperature, internal              | 10 to 65 C    |
| Instrument compartment pressure          | 0 to 20 psia  |
| Air bearing supply ST-90 pressure        | 0 to 60 psid  |
| Control equipment pressure, supply       | 0 to 3500 psi |
| Control equipment pressure,<br>regulator | 0 to 800 psia |
| Dynamic pressure (Q)                     | 5 to 750 PSF  |
| Q ball, Differential pressure,<br>pitch  | ±5 psi        |
| Q ball, Differential pressure, yaw       | ±5 psi        |
| Differential pressure, Q compensation    | 15 psi        |
| Pressure instrument compartment          | 0 to 20 psia  |
| ST-90, Y Axis Vibration                  | ±3 g          |
| Instrument Panel, Lateral Vibration      | ±5 g          |
| Lower Support, Longitudinal<br>Vibration | ±20 g         |
| Instrument Panel, Pitch Vibration        | ±3 g          |
| Angular Velocity, Pitch                  | ±10 deg/sec   |
| Angular Velocity, Yaw                    | ±10 deg/sec   |
| Longitudinal acceleration                | 0 to 5 g      |
| Longitudinal coarse acceleration         | 0 to 5 g      |
| Longitudinal acceleration                | ±1 g          |
| Pitch control acceleration               | ±5 m/sec sq   |
| Yaw control acceleration                 | ±5 m/sec sq   |
| Pitch control angular velocity           | ±10 deg/sec   |
| Yaw control angular velocity             | ±10 deg/sec   |
| Roll control angular velocity            | ±10 deg/sec   |
| Local angle-of-attack                    | ±10 deg.      |
| 5                                        |               |