

From Art to Engineering: The Birth of Software Engineering during the Development of the

Apollo Guidance Computer (1961-1971)

https://tinyurl.com/birth-of-softwareengineering

Rory Ward, B.Sc.

roryward@gmail.com

University College Dublin

College of Arts and Humanities

This dissertation is submitted in part fulfilment of the Master of Arts in

Global History

Submitted: July 2025

Updated: Oct 2025

Head of School: Professor Catherine Cox

Supervisor: Professor Alexander Wilkinson

https://tinyurl.com/birth-of-softwareengineering
mailto:roryward@gmail.com

Abstract

Software Engineering is used across the world to build software that we interact with every day.

The origins of this discipline go back to the 1960s when the Massachusetts Institute of Technology

(MIT) developed the Apollo Guidance Computer to meet President John F. Kennedy’s commitment

to “achieving the goal, before this decade is out, of landing a man on the moon and returning him

safely to the earth”.1 During the period at the beginning of the digital computer age, when

computers were the size of rooms and programming consisted of punching holes in cards, MIT

built the first small, real time, interactive computer that controlled the spacecraft that landed men

on the Moon. This technical marvel was a key component in the Apollo program with

responsibility for the navigation and guidance functions of the Moon missions. The teams at MIT,

which included Margaret Hamilton, developed the software for this computer and in the process

invented the term Software Engineering and the processes that make up the discipline. Using

extensive primary sources from MIT and NASA, this dissertation charts the development of the

software for the Apollo Guidance Computer and how it gave rise to the birth of Software

Engineering as an engineering discipline.

1 Yanek Mieczkowski, Eisenhower's Sputnik Moment: The Race for Space and World Prestige. 1st ed. Ithaca: Cornell
University Press, 2013, 265

Table of Contents

Introduction..1

1​ Genesis and Early Software Development Stages (1961–1964)... 8

3​ Initial Inroads into Software Engineering (1964–1966).. 21

4​ Crisis and the Emergence of Software Engineering (1966–1968)...26

5​ Software Engineering Matures (1968–1971).. 39

Conclusion..43

Appendix: Apollo Guidance Computer Software Releases.. 47

Bibliography... 49

Primary Sources.. 49

Secondary Sources...58

1

Introduction

Computers are ubiquitous in our modern world, but it is the software that runs on them that dictates

how these computers behave.2 Everything from financial systems to manufacturing processes to

household appliances and everything in between uses computer software that is designed, written,

tested, released, maintained and eventually retired. Modern life would be very different if we did

not have the software that we interact with numerous times daily.

Software has two main branches: Computer Science and Software Engineering. Computer Science

is the study of algorithms, data structures, computer architecture, network design and artificial

intelligence. Software Engineering is defined as “the application of a systematic, disciplined,

quantifiable approach to the development, operation, and maintenance of software; that is, the

application of engineering to software, and the study of such approaches”.3 In simpler terms, it is

bringing visibility and predictability into software development by providing clarity on what

features are required, how they will be implemented, when they will be delivered, whether they

reliably work as expected and how much they will cost. This dissertation focuses on the historical

foundations of Software Engineering during the Apollo Moon landing program.

The historiography of the Apollo missions is broad. A review of book length studies by Launius

from 2006 divided the work into five areas of research: precursor foreign and public policy,

technological innovation, the missions and cult of the astronaut, lunar science and the cultural

impact of Apollo.4 The first two of these areas are relevant to this dissertation. As of 2006,

according to Launius, the most well-developed area was on policy analysis centring on the reasons

behind the Space Race and the race to the Moon. Logsdon’s The Decision to Go to the Moon from

1970 details the process that led Kennedy to commit the USA to landing a man on the moon.5 This

was in large part based on the seemingly unending list of humiliations imposed on the USA by

USSR firsts in the space frontier, but also as a distraction to the recently failed Bay of Pigs

5 John M. Logsdon. The Decision to Go to the Moon: Project Apollo and the National Interest. Cambridge, MA: The
MIT Press, 1970.

4 Roger D. Launius, "Interpreting the Moon Landings: Project Apollo and the Historians." History and Technology 22,
no. 3 (2006): 225-255.

3 610.12-1990 - IEEE Standard Glossary of Software Engineering Terminology. S.l.: IEEE, 1990, 67

2 A. M. Turing, "On Computable Numbers, with an Application to the Entscheidungsproblem." Proceedings of the
London Mathematical Society s2-42, no. 1 (1937): 230-265; Computers are Universal Turing Machines and software is
the set of instructions to a Universal Turing Machine.

2

invasion of Cuba. Kennedy needed the USA to compete with the USSR in a way that allowed the

USA to catch up and surpass their rivals and the audacious plan of landing on the moon was a

clearly focused goal that could achieve that. McDougall’s … The Heavens and the Earth: A

Political History of the Space Race from 1985 focuses on the rivalry between the USA and the

USSR between the mid 1950s and the mid 1960s that led to the Space Race.6 He argued that the

Space Race institutionalized a ‘perpetual technological revolution’ where states were the instigator

of technological innovation, with Apollo being the main example. Since Launius’ review,

Mieczkowski’s Eisenhower's Sputnik Moment: The Race for Space and World Prestige from 2013

focuses on President Eisenhower, who was in office when Sputnik was launched in 1957, rather

than on President Kennedy.7 While detailing Eisenhower’s positive contributions, such as the

strengthening of the USA’s defensive missile capabilities and the creation of a civilian NASA

organisation, Mieczkowski also points to Eisenhower’s underestimation of the damage to the

USA’s domestic and international prestige due to the USSR’s successes in the early days of the

Space Race.

Launius’ second area of historiography is on technology innovation. The paper credits the NASA

History Series for detailing a significant part of this technology and gives Bilstein’s Stages to

Saturn from 1980 as a notable example from this series that details the creation of the Saturn V

rocket.8 Also mentioned is Apollo: Race to the Moon from 1989 that focuses on the managers,

engineers and processes that ran the whole program.9 For the purpose of this dissertation, also

referenced is Hall’s Journey to the moon: the history of the Apollo guidance computer from 1996,

which details the creation of the Apollo Guidance Computer.10 The author was one of the principal

designers of the computer and this monograph mainly focuses on the hardware aspects and does

not go into significant detail on the software side. Missing from Launius’s review is Tomayko’s

Computers in spaceflight: the NASA experience from 1988 which details how computers were used

across many NASA missions, including Apollo and includes a good section on how NASA and

MIT attempted to manage the process of creating the Apollo Guidance Computer hardware and

10 Eldon C. Hall, Journey to the moon: the history of the Apollo guidance computer. Aiaa, 1996.
9 Charles Murray and Catherine Bly Cox. Apollo: The Race to the Moon. New York: Simon and Schuster, 1989.

8 Roger E. Bilstein. Stages to Saturn: A Technological History of the Apollo/Saturn Launch Vehicles. Washington, DC:
NASA SP-4206, 1980.

7 Mieczkowski, Eisenhower's Sputnik Moment

6 Walter A. McDougall ... The Heavens and the Earth: A Political History of the Space Age. New York: Basic Books,
1985.

3

software.11 Mindel’s 2008 work Digital Apollo: Human and Machine in Spaceflight is an important

work that details how the astronauts worked with the Apollo Guidance Computer and how the

combination of human and computer provided the flexibility to ensure success in the moon

landings.12 It provides good detail on how the computer was used, with less detail on how the

computer software was implemented. O’Brien’s The Apollo guidance computer: Architecture and

operation from 2010 builds upon Hall’s and Mindel’s work but focuses on the design and use of

the computer, and less on the processes used to build the software.13 None of the existing

historiography focuses on the processes used to create the software that ran on the Apollo

Guidance Computer and that guided man to the Moon.

A newer area of research has been on gender studies during the Apollo program. There were

relatively few female leaders or engineers working in NASA or MIT during Apollo and more

research is needed here. Shetterly’s Hidden Figures: The American Dream and the Untold Story of

the Black Women Mathematicians Who Helped Win the Space Race from 2016 tells the story of

black women in the early days of NASA, focusing on Dorothy Vaughan who was the first black

manager in the precursor to NASA, the National Advisory Committee for Aeronautics, and on the

engineers Katherine Johnson and Mary Jackson.14 Margaret Hamilton was an important figure in

the creation of the Apollo Guidance Computer software, but was a relatively unknown figure until

the 1990s. Maurer’s The Woman in the Moon: How Margaret Hamilton Helped Fly the First

Astronauts to the Moon from 2023 is a welcome addition to this space.15 Another important

contribution that attempts to broaden the research to the pool of skilled women who performed one

of the key hidden production roles in the Apollo Guidance Computer is Shorey and Rosner’s A

voice of process: re-presencing the gendered labor of Apollo innovation from 2019. This research

tells the forgotten story of women weavers who worked for Raytheon and who weaved the core

rope memory that encoded all the software for the computer.16

16 Samantha Shorey and Daniela K. Rosner, "A voice of process: re-presencing the gendered labor of Apollo
innovation." communication+ 1 7, no. 2 (2019).

15 Richard Maurer, The Woman in the Moon: How Margaret Hamilton Helped Fly the First Astronauts to the Moon.
Roaring Brook Press, 2023

14 Margot Lee Shetterly. Hidden Figures: The American Dream and the Untold Story of the Black Women
Mathematicians Who Helped Win the Space Race. New York: HarperCollins, 2016.

13 Frank O’Brien, ed. The Apollo guidance computer: Architecture and operation. New York, NY: Praxis, 2010.

12 David A. Mindell. Digital Apollo: Human and Machine in Spaceflight. 1st ed. Cambridge, MA: MIT Press,
2008;2011

11 James E. Tomayko, "Computers in spaceflight: the NASA experience." Kent, Allen; Williams, James G., eds.
Encyclopedia of Computer Science and Technology 18, no. NAS 1.26: 182505 (1988)

4

Software Engineering as a standalone discipline has a history that goes back to the 1960s.

However, the historiographical record is slim. Campbell-Kelly’s Computer: A History of the

Information Machine from 1996 credits NATO conferences in 1968 and 1969, where a set of

contemporary experts discussed problems in software development, as an important milestone in

the creation of Software Engineering.17 O’Regan’s Brief History of Computing from 2018 credits

the same NATO conferences.18 Also from 2018, Booch’s The History of Software Engineering

credits Margaret Hamilton, who worked on the Apollo Guidance Computer at the Massachusetts

Institute of Technology (MIT), with inventing the term Software Engineering. None of the existing

historiography focuses on the creation of the Software Engineering discipline during the Apollo

program.

As defined today, Software Engineering provides an engineering focused approach to the

development of software, which is applied throughout the Software Development Life Cycle of a

software project. Although it is a broad discipline and under active research and ongoing

development, it generally includes several common functions.

Requirements Analysis and Definition involves documenting in detail what the software is

expected to accomplish. This usually involves a prioritization or phasing of different features. The

purpose of this effort is to get agreement, and sign-off, on what is needed from the software, from

all stakeholders.

Design and Architecture involves documenting how the software will be implemented, what

technology will be used, what interfaces will be provided by the software, what other systems does

the software need to interact with and how storage and/or networking will be implemented.

Implementation is the process of building the software and includes language choice and tooling

choices. It can also include standards for version control and coding style. This is to provide a

common basis for how the software is to be coded and to improve the future maintainability of the

software.

18 Gerard O’Regan, Brief History of Computing. 3;3rd 2021;Third; ed. Cham: Springer, 2021., 202
17 Martin Campbell-Kelly, Computer: A History of the Information Machine. 3rd ed. Boulder: Westview Press, 2014

5

Testing Strategy defines the approach to testing the software to ensure that it meets the functional

requirements. This can include testing tooling, test plans and requirements for different types of

testing, such as unit testing, integration testing, performance testing and reliability testing.

Release Management defines how the software is to be released to customers.

User Acceptance defines how the requester of the software approves and agrees that the software

meets their needs.

Software Maintenance involves the strategy of how to update software once it has been released

and usually includes a tightly managed change control process. This process defines and approves

what changes can be made. The final part of Software Maintenance is obsoleting the software,

which can include migration to a new system.

Overseeing all these functions is a project schedule that tracks timelines and costs.

The gap in the historiography is the connection between the history of Software Engineering and

the development of the software for the Apollo Guidance Computer. The focus of this original

research is to investigate how the teams at MIT, including the team led by Margaret Hamilton,

created the discipline of Software Engineering before the NATO conferences of 1968 and 1969 or

whether they were just the originators of the term. We will be looking for documented evidence of

Software Engineering practices, such as: requirements gathering, design, implementation, testing,

release management and maintenance.

We will show, based on the available primary sources, that Software Engineering principles did not

exist as the Apollo Guidance Computer was in its early days in 1961-1964, but that pressure to

deliver high quality, reliable, “man-rated” software to enable the successful manned landings on

the Moon before 1970 effectively forced the development of what we would recognize as Software

Engineering principles by 1968.19

The main repository for primary sources is the Apollo and Gemini Document Library on The

Virtual AGC Project website.20 Generally, they are contemporary documents with small

20 “Apollo and Gemini Document Library”, The Virtual AGC Project, accessed 23 July 2023,
https://www.ibiblio.org/apollo/links2.html#gsc.tab=0

19 “man-rated” means that astronauts’ lives were at stake.

https://www.ibiblio.org/apollo/links2.html#gsc.tab=0

6

distributions. The outlier to this is the five-volume R-700, MIT’s Role in Project Apollo, which was

written by MIT between 1971 and 1972 and can be assumed to have a MIT bias.21 There may be

further sources, such as early design documents, available at MIT, but these were unavailable.

Chapter 1, Genesis and Early Software Development Stages (1961–1964), provides the political

and technological landscape at the beginning of the Apollo program that led to the Apollo

Guidance Computer project. It also introduces Margaret Hamilton up until she joined the MIT

Instrumentation Laboratory as a computer programmer. Lastly, it provides a summary of the

development of the computer hardware and describes the first few years of software development,

when there was no Software Engineering in place.

The Initial Inroads into Software Engineering (1964–1966) chapter outlines the middle years of

development when the first aspects of Software Engineering started to develop. NASA made the

first attempt at defining a process for managing large software projects. MIT made improvements

in documentation and testing and the Apollo Guidance Computer had its first unmanned launch.

However, this wasn’t enough to avert a crisis around delivery.

Crisis and the Emergence of Software Engineering (1966–1968) details the crisis years of 1966 and

1967 related to the lack of process and delays in the program. By mid to late 1967, this resulted in

the eventual emergence of Software Engineering practices that helped resolve the crisis. A new

organizational structure and process was put in place in MIT. NASA and MIT agreed on a process

for defining, testing, accepting and changing software releases. Also, during this period, Margaret

Hamilton coined the term “Software Engineering”.

Finally, Software Engineering Matures (1968–1971) describes the final years of the program when

MIT successfully delivered many versions of the software and the Apollo Guidance Computer

successfully guided the manned missions to the Moon. It also reviews the motivations and

outcomes of the NATO Software Engineering conferences in 1968 and 1969 and argues that MIT

21 James A. Hand, “R-700, MIT’s Role in Project Apollo, Final Report on Contracts NAS 9-153 and NAS 9-4065,
Volume I, Project Management, Systems Development, Abstracts and Bibliography”, MIT Charles Stark Draper
Laboratory, October 1971; Anonymous, “R-700, MIT’s Role in Project Apollo, Final Report on Contracts NAS 9-153
and NAS 9-4065, Volume II, Optical, Radar and Candidate Subsystems”, MIT Charles Stark Draper Laboratory, March
1972; Eldon C. Hall, “R-700, MIT’s Role in Project Apollo, Final Report on Contracts NAS 9-153 and NAS 9-4065,
Volume III, Computer Subsystem”, MIT Charles Stark Draper Laboratory, August 1972; R-700, MIT’s Role in Project
Apollo, Final Report on Contracts NAS 9-153 and NAS 9-4065, Volume V, The Software Effort”, MIT Charles Stark
Draper Laboratory, March 1971

7

and NASA had already experienced the issues raised at these conferences and used Software

Engineering to resolve them. However, the learnings from the development of the Apollo Guidance

Computer were not widely disseminated.

8

1​ Genesis and Early Software Development Stages

(1961–1964)

In this chapter, we will provide the political and technology context of the early 1960s and cover

the creation of the Apollo Guidance Computer project at MIT. We will show that Software

Engineering, as described in the Introduction, did not exist during this period.

The main driver of growth in computing after World War II was the Cold War between the USA

and the USSR. Specifically, computers were required for the detailed computations needed for the

development of nuclear weapons and the offensive and defensive capabilities of both superpowers.

One of the first recognised computers was ENIAC which was built by the University of

Pennsylvania between 1943 and 1946 for nuclear weapons research and for calculating shell firing

tables. It replaced skilled human computers, usually women with mathematical backgrounds, who

calculated trajectories by hand.22 It was a huge machine, occupying a large room. It was

programmed by physically setting hundreds of switches and connecting cables to different parts of

the machine. It had 18,000 vacuum tubes, consumed 120,000 watts of power and could do 5,000

additions per second.23

These computers helped design Intermediate Range Ballistic Missiles (IRBMs) and

Inter-Continental Ballistic Missiles (ICBMs), along with the nuclear warheads that these missiles

carried. These missiles gave both superpowers the ability to launch nuclear weapons without the

need for bombers. A new front of the Cold War opened on 4 October 1957, when the USSR

launched Sputnik I, the world’s first artificial satellite. This was the opening salvo of the Space

Race, which was a race of propaganda and technological development. It was a Prestige Race

between the two superpowers, which was used to showcase the technical prowess, and hence

strength of the political philosophy, of each nation. There were many Soviet firsts during the early

part of the Space Race: first artificial satellite, first living animal in space, first spacecraft to hit the

Moon, first photographs of the back side of the Moon, first man in space, first woman in space and

the first spacewalk. President Eisenhower viewed the Soviet achievements as purely a propaganda

exercise, with limited value when it came to the defence strategy of the USA. He underestimated

23 Hall, Journey to the moon, 31
22 Jennifer S. Light, "When Computers were Women." Technology and Culture 40, no. 3 (1999): 455-483

9

the prestige aspect of these achievements, and he did not understand the reputational damage to the

USA because of these USSR firsts, both at home and abroad. This changed when Kennedy came to

power in 1961. At his State of the Union speech on 25 May 1961, six weeks after the USSR’s Yuri

Gagarin became the first man in space and a mere three weeks after the USA’s first manned

suborbital flight, flown by Alan Shepard, he committed the USA to “achieving the goal, before this

decade is out, of landing a man on the moon and returning him safely to the earth”.24 This was an

incredibly audacious goal, especially since man had just barely gone into earth orbit for the first

time and a lot of the required technology to accomplish Kennedy’s goal did not yet exist. However,

it did galvanise the public’s attention on a clearly defined and time limited goal.

One of the first major contracts awarded by NASA on 10 August 1961, only 10 weeks after

Kennedy’s announcement, was for the guidance and navigation computer.25 This was awarded to

MIT’s Instrumentation Laboratory, now the Charles Stark Draper Laboratory, and it was the

starting point for the Apollo Guidance Computer (AGC).26 The Instrumentation Laboratory had

previously worked on the Polaris missile and had completed a recent study for the Air Force on the

feasibility of a mission to fly-by and photograph Mars.27 While there was experience in MIT on

guidance systems, the Apollo Guidance Computer would require significant innovation in both

hardware, software and software engineering.

At the time the contract was signed in 1961, computer technology was still in its infancy. The

Whirlwind computer was built by MIT in the early 1950s and was designed to operate as an

aircraft flight simulator. It was much more powerful than ENIAC and could do 20,000 operations

per second.28 It was retired as obsolete in 1959, having never achieved its goal as a pilot trainer.

Over the 1950s, computer circuitry moved from using large, power hungry and unreliable vacuum

tubes to more efficient transistors. Computer memory moved from using magnetic drums to using

28 Hall, Journey to the moon, 31

27 Milton B. Trageser, “A recoverable interplanetary space probe”, Astronautics, Volume 5, Issue 5, May 1960: 32-35.
There is also a good description of early ideas of an inertial guidance computer that influenced the Apollo Guidance
Computer at R. Alonso and J.H. Lanning, Jr., “R-276, Design Principles for a General Control Computer”, MIT
Instrumentation Laboratory, April 1960.

26 Philip D. Hattis, "How Doc Draper Became The Father Of Inertial Guidance", Advances in the Astronautical
Sciences AAS/AIAA Guidance, Navigation and Control 2018, volume 164. :12

25 John Tylko, “MIT and navigating the path to the moon”, AeroAstro, 2009, accessed 19 January 2025,
https://web.mit.edu/aeroastro/news/magazine/aeroastro6/mit-apollo.html ; Also see “The First Apollo Mission Contract
goes to…”, Hack The Moon, accessed 8 May 2025,
https://wehackthemoon.com/people/first-apollo-mission-contract-goes

24 Mieczkowski, Eisenhower's Sputnik Moment, 265

https://web.mit.edu/aeroastro/news/magazine/aeroastro6/mit-apollo.html
https://wehackthemoon.com/people/first-apollo-mission-contract-goes

10

core memory. Speed and efficiency increased over the decade. Interacting with a computer was not

real time, in that they were programmed via switches or paper tape or punch cards, and you

received the output at some future point via a printer. Commercial development and use of

computers grew during the 1950s, starting with the UNIVAC computer in 1951.29 By the time of

Kennedy’s moonshot speech, the state of the art for general purpose commercial use was the IBM

1401. This computer was initially shipped in 1959, weighed 4,000 kg, consumed 13,000 watts of

power, cost $6,500 / month to rent, contained 10,600 transistors, had a clock speed of 87 KHz, and

was programmed via punch cards with program output via a printer.30

Software Engineering did not exist at this point, although programming did. Because computers

were not very powerful, programming tasks were constrained to relatively simple, and therefore

relatively small, tasks that did not require much engineering discipline. The process of

programming had evolved from physically rewiring the ENIAC computer, to providing instructions

on paper tape that were read by a tape reader, to providing instructions on stacks of punch cards via

a card reader. Each section of tape or each punch card represented one computer instruction. The

process of programming with punch cards is described well in Programming with Punched

Cards.31 In summary, the programmer needed to understand the machine instruction set of the

computer they were working on, then the code was written by hand on coding sheets. These sheets

were then taken to key punchers. Their job was to convert the coding sheets into a stack of punch

cards. The stack was then taken to the computer operator who scheduled a job to ingest the stack,

verify its correctness and provide a printout of the program source. The program source could then

be reviewed by the programmer. Updates to the program could be made by changing, adding or

removing specific punch cards in the stack and resubmitting. When the program was deemed

correct, the operator would schedule another job to run the program, and the output was provided

in another printout to the programmer. This is the process that the software teams in MIT

followed.32 Up until the Apollo Guidance Computer, the largest software effort was for the SAGE

(Semi-Automatic Ground Environment) system, which was an air defence reconnaissance system

for the United States deployed in the late 1950s. The system was also built by MIT.

32 Brock, “Oral History of Margaret Hamilton”, 24

31 Dale Fisk, Programming with Punched Cards, 2005, accessed 28 February 2025
https://web.archive.org/web/20090325223903/https://www.columbia.edu/acis/history/fisk.pdf

30 Robert Garner and Rick Dill, "The Legendary IBM 1401 Data Processing System." IEEE Solid State Circuits
Magazine 2, no. 1 (2010): 35.

29 Martin Campbell-Kelly, Computer: A History of the Information Machine. 3rd ed. Boulder: Westview Press, 2014,
107

https://web.archive.org/web/20090325223903/https://www.columbia.edu/acis/history/fisk.pdf

11

The politics of the Space Race had created the need for the Apollo Guidance Computer. The

existing computer technology was wholly inadequate for the task, software engineering did not

exist, and Margaret Hamilton was working as a programmer, but on a different project.

Margaret Elaine Heafield was born in 1936 in Paoli, Indiana, USA to teachers, Esther and Kenneth

Heafield. She went to high school in Hancock, Michigan and worked part time in the Arcadian

Mine tourist attraction. She went to college at the University of Michigan at Ann Arbor in 1954,

but transferred to Earlham College, Richmond, Indiana in 1955. She majored in Mathematics and

minored in Philosophy, graduating in 1958.33 While at Earlham, she met Jim Hamilton, whom she

married in 1958. After moving to Boston in 1959, they agreed that Jim would pursue his post

graduate studies first while Margaret supported the family, with the intention that she would go to

graduate school when Jim finished. This was also the year that their daughter, Lauren, was born.

Margaret procured a research assistant job in MIT, working in the Meteorology Department under

Dr. Edward Lorenz. Lorenz was researching mathematical models for predicting weather.

Margaret’s job was to convert his mathematical equations into computer code, via assembly

language that was then converted into holes in a paper tape, which was then ingested into the

LGP-30 computer.34 She was becoming a programmer, even though that job role had only recently

been created. Dr Lorenz is credited with discovering the Butterfly Effect, which is part of Chaos

Theory.35 He acknowledges Margaret Hamilton’s help in his 1962 paper, “The writer is greatly

indebted to Mrs. Margaret Hamilton for her assistance in performing the many numerical

computations which were necessary in this work”.36

In 1961, Margaret moved to a new job with a higher salary. This role was in MIT’s Lincoln

Laboratory where she worked on the SAGE project as a programmer on the AN/FSQ-7 computer.37

In all her roles, Margaret excelled at programming and leadership, and this was to continue

throughout her career. She continued to work on SAGE until 1963, at which point she moved back

to MIT’s meteorology department to be closer to her family. In late 1964, she noticed an

advertisement for MIT’s Instrumentation Laboratory in the Boston Globe. They were looking for

37 Brock, “Oral History of Margaret Hamilton”, 14

36 E. N. Lorenz, “The statistical prediction of solutions of dynamical equations”, Proc. Int. Symp. on Numerical
Weather Prediction, Tokyo, Japan, Meteorological Society of Japan, 1962, 629–634.

35 G. Ambika, "Ed Lorenz: Father of the ‘Butterfly Effect’." Resonance 20, no. 3 (2015): 198-205.
34 Maurer, The Woman in the Moon, 73
33 Maurer, The Woman in the Moon, 227

12

computer programmers for the Apollo program to “assist in data processing, trajectory analysis,

instrument data reduction and coding of flight programs”.38 Although Margaret was, at this time,

strongly considering continuing her post graduate degree in Mathematics, she jumped at the chance

to apply and was successful. She started working as a computer programmer for the Apollo

Guidance Computer at the Instrumentation Laboratory in April 1965.39

At the time of the contract between NASA and MIT, the requirements for a guidance and

navigation computer for the Moon missions were unclear. The overall approach to Apollo was yet

to be agreed. In June 1962, NASA converged on the Lunar Orbit Rendezvous method, where a

single launch vehicle puts a smaller spacecraft into a lunar orbit. Part of this spacecraft, the Lunar

Module (LM), lands on the Moon and returns to the orbiting spacecraft, the Command and Service

Module (CSM), which then returns to the earth. The requirements for the computer then converged

on guidance and navigation for all phases of the mission, including descent and ascent from the

lunar surface. This included ongoing calculation of the spacecraft position and trajectory,

integration with positioning controls such as the inertial management unit, control of the

spacecraft’s engines and real time management of the astronaut’s display and controls. There were

design constraints on physical size, weight and power as it had to fit in a small spacecraft with

highly constrained resources.

The hardware for the Apollo Guidance Computer went through a series of evolutions. Initially

based on MIT’s feasibility study for a Mars flyby mission, the architecture for the AGC was based

on the Mod-3C computer. The first laboratory-based version, the AGC-3, became available in

November 1962.40 It had a clock speed of 19.7 microseconds, 1K of RAM and 12K of ROM. MIT

made the enormous decision to become the first adopter of integrated circuits in the next version,

the AGC-4. Integrated circuits would reduce the size and weight of the computer and increase the

compute speed, without any reduction in reliability. However, it was a risky decision as integrated

circuits had only been invented in 1959 and were relatively unknown. The AGC-4 became

available in early 1963.41 It had a clock speed of 11.7 microseconds, 1K of RAM and 24K of

ROM.42 The first flight prototype, the AGC-4B, was tested in January 1964. The first production

42 Hall, Journey to the moon, 90. The Command Module had 24K ROM. The Lunar Module only had 12K ROM.
41 Hall, Journey to the moon, 87
40 Hall, Journey to the moon, 73
39 Maurer, The Woman in the Moon, 94

38 Advertisement in Boston Globe, 18 October 1964, 109, accessed 30 June 2025,
https://bostonglobe.newspapers.com/image/433781571/

https://bostonglobe.newspapers.com/image/433781571/

13

computers, entitled Block I AGC, and based on the AGC-4B, were produced by Raytheon in

August 1964 and these were used in the initial test and unmanned missions.43 Compute power and

available memory were expanded in a new Block II configuration, while also decreasing physical

size, weight and power consumption. It had a clock speed of 11.7 microseconds, 2K of RAM and

36K of ROM. The Block II AGC became available in the spring of 1966.44 Block II AGCs were

used on all manned missions. The final version weighed 32kg, used 55w of power, contained 5,600

integrated circuits and its dimensions were 60cm x 30cm x 15cm.

Compared to contemporary computer technology, it was a technical marvel. It was compact,

powerful, interactive and consumed a small amount of power.

The software effort in the Apollo Guidance Computer was massive for the 1960s and is still very

large by comparison to software projects today. In late 1961, the team was only ten people. By mid

1965, around the time when Margaret Hamilton joined the team, there were one hundred people.

At its peak size in mid 1968, there were approximately four hundred people. As Figure 1 below

shows, the hardware effort was front loaded in the early 1960s, but by late 1966, the software effort

was taking most of the effort, indicating the importance of the software effort in the second half of

the Apollo program.

44 Hall, Journey to the moon, 128; Also see Hall, “R-700, Volume III, Computer Subsystem”, 56-57 for a more in-depth
timeline of Block I and Block II delivery dates.

43 Hall, Journey to the moon, 100

14

Figure 1 Total people working on AGC software and hardware, measured on a quarterly basis.45

For the software teams, they had to write software for both the Block I and Block II computer

configurations. Different software was required for the Command and Service Module (CSM) and

the Lunar Module (LM). Also, different software was required for unmanned and manned

missions. Each had slightly different requirements. Over the life of the project, the software went

through several major releases to support different hardware and mission constraints, which is

summarized, up to Apollo 11, in Figure 2.

45 Johnson and Giller, “R-700, Volume V, The Software Effort”, 20-21; The graph presented here is based off the ‘total
hardware’ and ‘total software’ lines in the primary source.

15

Figure 2 The evolution of the AGC software, across Block 1 & II configurations, CSM and LM, and manned/unmanned

missions, up to Apollo 11.46

Software Engineering practices, as we understand them today, define the need for a functional

requirements document and a design document. The functional requirements document describes

what the software should do. The design document describes how the software will be

implemented. Both steps are required to get agreement on why the software is needed, what the

software will do, what constraints exist on the software and how the software will be implemented.

As the hardware effort was in full swing, the software effort was starting to ramp up in 1962. The

first aspect to be coded was the operating system for job management and for expanding the

instruction set of the computer. These were implemented without any formal requirements or

46 Johnson and Giller, “R-700, Vol V, The Software Effort”, 7 Also, see the Appendix in this document for a detailed
breakdown of software releases for the full Apollo program.

16

design documents, indicating a lack of Software Engineering practices at this point. These three

parts of this early work are named: the Executive, the Waitlist and the Interpreter. The Executive is

a priority-based job manager that ensures that the highest priority jobs are being executed first. The

Waitlist keeps track of, and executes, short jobs (such as keypresses) on time. The Interpreter

expands the computer’s basic instruction set in a memory efficient manner by encoding complex

trigonometrical and vector equations in basic machine instructions and making these instructions

available to the rest of the code.47

There is no requirements document or design document for the Executive, Waitlist and Interpreter.

This indicates that Software Engineering processes were not present at this point.48 User training

documentation was retrofitted after the fact by the programmers. It is possible to identify when

these functions were implemented. We know that they were available in the SUNRISE/33 software

release in July 1964.49 They were also available in the AGC-3 computer in March 1963.50

However, they are not mentioned in a Mod-3C document from November 1961, implying they

were implemented sometime in 1962.51

In comparison, on the hardware side, the design and evolution of the physical computer was

managed as an engineering exercise. This is a further indication of the minimal understanding of

how to build software and the high level of understanding on how to build physical devices. From

the beginning of the project, there was a Design Review Board and a Change Control Board. These

processes are discussed in a Technical Progress Report from December 1962.52 Up until the end of

1969, over 37,000 Technical Data Release or Revisions (TDRRs) impacting the hardware design of

the computer used these processes.53 However, the software side of the AGC did not use these

53 Hand, “R-700, Volume I, Project Management”, 24-25

52 Anonymous, “Report E-1236. Monthly Technical Progress Report. Project Apollo Guidance and Navigation
Program. Period Jun 11, 1962 through July 17, 1962”, MIT Instrumentation Laboratory, 17 July 1962, 1-6

51 R. Alonso, J.H. Laning, Jr. and H. Blair Smith, “E-1077, Preliminary Mod 3C Programmers Manual”, MIT
Instrumentation Laboratory, November 1961. Nor are they mentioned in R. Alonso and J.H. Lanning, Jr., “R-276,
Design Principles for a General Control Computer”, MIT Instrumentation Laboratory, April 1960.

50 Albert Hopkins, Ramon Alonso and Hugh Blair Smith, “R-393, Logical Description for the Apollo Guidance
Computer (AGC 4)”, 5 March 1963, page 2-18

49 R. Battin et al “R-467, The Compleat Sunrise, Being a Description of Program SUNRISE, (SUNRISE 33 – NASA
DWG #1021102)”, MIT, September 1964, 5-47

48 Eldon C. Hall, “R-410 General Design Characteristics of the Apollo Computer”, MIT Instrumentation Laboratory,
May 1963, 7 has a reference to what might be a requirements document for the Interpreter at Muntz, Charles A,
“MIT/IL AGC Memo #2, A List Processing Interpreter for AGC 4”, 7 January 1962. However, this document is not
available.

47 “SINGLE_PRECISION_SUBROUTINES.agc.html”, The Virtual AGC Project GitHub Repository, accessed 20
January 2025, https://www.ibiblio.org/apollo/listings/Comanche055/SINGLE_PRECISION_SUBROUTINES.agc.html
; For example, this is the implementation of Sine and Cosine in the Interpreter.

https://www.ibiblio.org/apollo/listings/Comanche055/SINGLE_PRECISION_SUBROUTINES.agc.html

17

processes. Software, or programming, was not considered an engineering exercise, as after all,

there was nothing you could touch or see in the software, it was merely programming the hardware

to behave in a certain way. As we shall see, this was to become very problematic as the 1960s

progressed and the amount of effort on the software side increased significantly.

In another indication of the lack of understanding of the importance of software, the organisational

chart for MIT’s AGC work from May 1962 does not include a software group. The closest groups

are the Computer Division, run by E.C. Hall and the Space Guidance Analysis Division, run by

R.H. Battin. Hall was one of the key people that built out the hardware design. Battin, in later

years, would eventually be one of the key people on the software side.54

The first release of the AGC code was entitled ECLIPSE, and it was released in February 1964.55

This was a test release that brought together the fundamental parts of the software: Executive,

Waitlist, Interpreter and the programs for interacting with the Display and Keyboard (DSKY) in the

Block 1 hardware configuration. It was used to test the manufacturing process for the fixed

memory, which was a woven rope core memory.56 Although we know of its existence from the

historical record, there is no documentation outlining the requirements, design or test plans for

ECLIPSE, so there is no indication of Software Engineering practices being used at this point. The

closest we get to a functional description is MIT Instrumentation Laboratory, DG Memo No.88,

Description and Status of AGC Programs from January 1964 which hints at problems in the

development process:

 “Several ‘lists’ of computer programs have been written, and no two lists call the programs

by the same names or strike the division between successive programs at the same point in

the mission, even when written by the same author. Increased effort has been expended

recently to produce a program organization”.57

57 J. L. Nevins, “MIT Instrumentation Laboratory, DG Memo No.88, Description and Status of AGC Program”, 20
January 1964, 1

56 Hall, “R-700 Vol III, Computer Subsystem”, 155
55 Hall, “R-700 Vol III, Computer Subsystem”, 152

54 Anonymous, “Apollo Organization”, MIT Instrumentation Laboratory, May 1962, accessed 3 July 2025,
https://www.ibiblio.org/apollo/Documents/ApolloOrg-1962-05.jpg

https://www.ibiblio.org/apollo/Documents/ApolloOrg-1962-05.jpg

18

Fred Martin, who, later in the timeline of the program, was the MIT project manager for the

Command and Service Module software deliverables and liaised closely with NASA, remembered

this early development phase as follows:

“There was the small group, seat-of-the-pants effort that was unfettered and unhindered, for

the most part, by NASA, and devoid, pretty much, of real bureaucracy. And I think that, as

Dan [Lickly] pointed out, you had-- a lot of the fundamental engineering work was done

during that period. And it was very fortunate that we were able to do it unfettered. Because

I think that a lot of the fundamental issues on how to get to the Moon, let's say, were solved

in this period of isolation-- almost isolation, and small groups”.58

This quote is quite illuminating, as it points to the lack of oversight from NASA during this process

and it equates Software Engineering processes with bureaucracy. Even today, Software

Engineering processes are sometimes viewed by software developers as bureaucracy as they do

impose a structured methodology on the software development process.

One of the areas that we can begin to see the development of Software Engineering is in the testing

process of the AGC, which verifies that the software functionality matches the requirements.

Modern Software Engineering requires code to be testable and for a project to have a testing

strategy with different levels of testing: unit testing, functional testing, integration testing and

performance testing. Also, releases are gated on passing an agreed level of testing.

MIT started to achieve this, initially more through necessity than foresight. As ECLIPSE was being

developed between 1962 and 1964, MIT had a problem in that neither the physical AGC computer

nor any of the spacecraft instruments that the computer interacted with were available yet.

Therefore, it was impossible to do any testing of the software. The approach taken to mitigate this

issue was to simulate everything based on the best understood specifications of the yet-to-be-built

computer. This ‘All Digital’ simulator, which itself was a significant software effort, ran on IBM

and Honeywell mainframes in a laboratory at MIT. It consisted of two main components: the ‘AGC

Instruction Simulator’ which implemented the instruction set of the physical computer, along with

simulated fixed and erasable memory and the ‘Environment’ which simulated the spacecraft

instruments, spacecraft dynamics, trajectory changes, celestial body movements and gravitational

58 MIT Video Productions, “Apollo Guidance Computer Project – MIT History Conference pt.2 – 2001”, 14 September
2001, 49:45 – 50:39, https://www.youtube.com/watch?v=quIfco4RLCg

https://www.youtube.com/watch?v=quIfco4RLCg

19

impacts.59 It had numerous options for stopping, starting, recording, replaying, tracing and

dumping the environment during the tests. This ‘All Digital’ simulator became operational in

September 1962 and was used to test ECLIPSE and all future releases.60 In fact, it was also vice

versa, as the ECLIPSE software was also used to uncover bugs in the simulator. Another additional

advantage of the simulator was that it could be constantly updated as the known details for the

Apollo Guidance Computer and the spacecraft were being changed. The ‘All Digital’ simulator

was the testing work horse for MIT and played the largest part in the testing and verification.

Although there does not seem to be an early design document for the simulator itself, it is

documented in significant detail, although much later in the Apollo program, in Digital Simulation

Manual.61

In summary, by early 1964, there were approximately sixty people working on the software for the

Apollo Guidance Computer, as compared to almost six hundred people working on the hardware.

The first parts of the software had been implemented and the first release, ECLIPSE, had been

released. The ‘All Digital’ simulator was available. All of this had been done without any Software

Engineering practices.

61 Pieter Mimno, “R-599 Digital Simulation Manual”, MIT Instrumentation Laboratory, January 1968. A later
document goes into more detail – F.K. Glick and S.R. Femino, “E-2475 A Comprehensive Digital Simulation for the
Verification of Apollo Flight Software”, MIT Charles Stark Draper Laboratory, January 1970

60 Hall, Journey to the moon, 157
59 Johnson and Giller, “R700, Vol V, The Software Effort”, 86

20

2​ Initial Inroads into Software Engineering

(1964–1966)

The next phase in the development of the Apollo Guidance Software shows improvements in

documentation and testing at MIT and shows how NASA made initial approaches on how to

manage large software projects, although these were not adopted by MIT.

The next major release of the AGC software was the SUNRISE release in July 1964. It is described

in detail in a document produced by MIT and Raytheon in March 1964.62 This is an improvement

on the previous approach as it was produced before the actual release of the software. While this is

a technical training document, it does contain a relatively complete functional description of the

AGC hardware and the software that runs on it. Expanding on what is the ECLIPSE release,

SUNRISE also includes Mission functions such as navigation and Auxiliary functions such as

displaying information.63 SUNRISE was used to test the initial AGC hardware. Another detailed

end-user document produced in September 1964, after the release date, describes how to use the

Display and Keyboard DSKY to control the computer. It should be noted that this document

includes the first mention of the 1201 and 1202 program alarms that happened during the Apollo

11 landing.64 Documentation is improving at this point, but there is still no documented design or

test plans or anything that resembles a user acceptance plan. In today’s understanding of Software

Engineering, these are all required documents.

From the early 1960s, NASA understood there was an issue with managing large scale software

projects, including the AGC. Working with Bellcomm, the concerns and initial proposals for

managing these concerns are contained in a November 1964 document Management Procedures in

Computer Programming for Apollo – Interim Report.65 The report asserts that “computer

programming is a describable, orderly process having a determinable, predictable end product”.66 It

66 Keese et al., “Interim Report”, abstract

65 W.M. Keese et al., “Management Procedures In Computer Programming Apollo – Interim Report”, Bellcomm Inc,
30 November 1964

64 Battin et al., “R-467, The Compleat Sunrise”, 79
63 Anonymous, “FR-2-115”, page 15-63.

62 Anonymous, “Apollo Guidance Computer Information Series, Issue 15, Block I Apollo Guidance Computer
Subsystem, FR-2-115”, 27 March 1964. The Apollo Guidance Computer Information Series (AGCIS) was published
between 1963 and 1966 to inform the technical staff of MIT and Raytheon about the Apollo Guidance Computer
subsystems.

21

describes the problems of lack of definitive requirements, complex interfaces, lack of quality, lack

of programming experience and lack of understanding of costs. It describes computer

programming as “neither mysterious nor ‘artistic’. Rather it is describable, orderly, and predictable

and therefore susceptible to close management control”.67 The document then details potential

solutions for further study, specifically defining controls for “proper documentation; adherence to

program standards in the area of coding, flow charting, program verification; costs, schedules and

requirements; methods of payment; and acceptance testing”.68 However, at this time, none of these

recommendations were used by MIT’s Apollo Guidance Computer software development team.

The first Apollo launch that included an AGC was the AS-202 mission on 25 August 1966. This

was a ballistic suborbital unmanned mission with the goal of testing the main components of

Apollo, including the Saturn IV B rocket and the guidance systems. This flight included the

Command and Service Module but not the Lunar Module. The post launch report indicated that

“The guidance and navigation subsystem … demonstrated their adequacy for a manned orbital

mission”.69 The software release for this launch was called CORONA and it was released for

manufacturing in January 1966.70 In terms of documentation, CORONA is the first time we see the

Guidance and Navigation System Operations Plan (GSOP).71 The Guidance System Operations

Plan evolved during the development of the AGC to become the formal specification and NASA’s

signoff document for MIT’s software efforts for each launch. It evolved through a series of

discussions among the personnel at NASA and MIT’s Instrumentation Laboratory.72 Each

subsequent delivery from MIT for a manned or unmanned flight included a GSOP and it grew from

a relatively compact one volume document for AS-202 to a six-volume document in later missions.

For the AS-202 mission, the GSOP details the Guidance & Navigation Flight Operations,

Guidance Equations, Control Data, Error Analysis, Configuration, Instrumentation and

Performance Analysis. The document was initially written in January 1965, one year ahead of the

software release, and was revised in July 1965 and again in October 1965 to take into account

feedback from NASA. It is an incredibly detailed definition of all aspects of the AGC, including

72 Johnson and Giller, “R-700, Vol V, The Software Effort”, 15

71 John M. Dahlen et al., “R-477 Guidance and Navigation System Operations Plan, Apollo Mission 202”, January
1965

70 John E. Miller and Ain Laats, “E-2397, Apollo Guidance and Control System Flight Experience”, MIT
Instrumentation Laboratories, June 1969, 1

69 Anonymous, “MSC-A-R-66-5, Postlaunch Report for Mission AS-202 (Apollo Spacecraft 011)”, NASA Manned
Spacecraft Center, 12 October 1966. section 11.0

68 Keese et al., “Interim Report”, section 4.0
67 Keese et al., “Interim Report”, section 3.1.1

22

detailed handwritten flow charts of all the actions that the AGC takes during the mission, for

example the actions at the time of launch.73 The presence of an acceptance plan shows the maturing

of the Software Engineering processes.

The CORONA release and the AS-202 mission also exercised the next evolution of testing

infrastructure. While the ‘All Digital’ simulator remained the workhorse of testing, it had some

limitations. It did not use the physical Apollo Guidance Computer hardware, it was not interactive,

so it could not test the astronauts interacting with the computer via the DSKY and the

mathematical models of the Environment were not sufficiently accurate. What was needed was an

integration testing tool that could verify that the Apollo Guidance Computer programs matched

expected requirements in an environment that, as much as possible, matched a working spacecraft.

The solution to these limitations was the ‘Hybrid’ simulator, which used a combination of analogue

and digital computers plus the physical AGC computer, along with guidance instruments to

accomplish real time, interactive simulation of flights.74 For flexibility, the fixed memory within

the AGC was replaced by a core rope simulator, which enabled different versions of the software to

be easily loaded. The user (a designer, a programmer, a human-factors engineer or an astronaut)

interacted with the simulation via the DSKY, hand controllers and switches on a mock-up of the

spacecraft. To better understand the complexity, and hence utility of this simulator, we will go into

a little more detail. The simulator consisted of an analogue simulation of the mathematical model

of the spacecraft dynamics (such as mass changes, centre of gravity changes and gravitational

effects), a simulation of the inertial subsystem (so the spacecraft knows its attitude and velocity), a

simulation of the optical subsystem (so the spacecraft knows its position and orientation in space),

a Command Module mock-up, a Lunar Lander mock-up, and the core rope simulator attached to

the physical AGC hardware.75 Across this whole system, specific scenarios could be tested, and the

behaviour of the computer programs could be analysed dynamically or post the test.76 The ‘Hybrid’

simulator was first used for the AS-202 unmanned mission and was expanded upon for future

missions. It was used to test all future missions. The importance of the ‘Hybrid’ simulator is

evident from a memo from October 1966 – “It was discovered during program development for

76 Philip G. Felleman, “E-2066 Hybrid Simulation of the Apollo Guidance Navigation and Control System”, MIT
Instrumentation Laboratory, December 1966, 1

75 Madeline M. Sullivan, “Hybrid Simulation of the Apollo Guidance and Navigation System”, Simulation, Vol 7 No 1
July 1966: 28-32

74 Johnson and Giller, “R-700, Vol V, The Software Effort”, 89
73 Dahlen et al., “Apollo Mission 202”, 3-12

23

AS-204/205 [the planned first manned mission] that the hybrid facility at MIT was an extremely

valuable tool for program debugging”.77

The next significant step for the AGC (and more broadly, for the Apollo program) was a manned

mission in late 1966 or early 1967. This was the target of the SUNSPOT release. However, by this

point, the complexity of the software and the hardware had significantly increased. There was also

intense pressure from NASA to meet deadlines. The project organization and processes had been

intentionally kept informal, as evidenced by the limited documentation efforts of previous releases.

However as of late 1965, around the time of the CORONA release, “the development of the

computer programs became the central problem of the entire Apollo project at the Instrumentation

Laboratory”.78 There was a shortage of experts in MIT and documentation fell behind because

“These engineers were so busy developing the programs that they had little or no opportunity to

document them”.79

Margaret Hamilton took some of the learnings from her work on SAGE into the Apollo Guidance

Computer software development, such as putting comments in code.80 Common coding standards

and coding style guidelines are a well understood aspect of Software Engineering as it improves

the understandability and maintainability of the code. There is no documented evidence of a formal

coding style in the Apollo Guidance Computer, apart from code commenting.

In summary, towards the end of 1966, there were approximately two hundred and fifty people

working on the software for the Apollo Guidance Computer. The computer and its software had a

successful maiden flight in the unmanned AS-202 mission, the Hybrid simulator had been

developed, and we see the emergence of the first Guidance and Navigation Systems Operations

Plan documentation. These were all good signs of an emerging Software Engineering mindset.

However, the recommended process improvements from Belcomm had not been implemented and

the existing informal process was straining under the pressure to deliver. This was soon to become

a crisis.

80 Brock, “Oral History of Margaret Hamilton”, 15
79 Hand, “R-700, Volume I, Project Management”, 37
78 Hand, “R-700, Volume I, Project Management”, 37

77 Howard W. Tindall, “66-FM1-124. Program Development Plans are coming!!”, 12 October 1966, accessed on 21
March 2025, https://www.ibiblio.org/apollo/Documents/tindallgrams02.pdf

https://www.ibiblio.org/apollo/Documents/tindallgrams02.pdf

24

3​ Crisis and the Emergence of Software Engineering

(1966–1968)

1966 was a crunch time for the development of the AGC that ultimately resulted in a better

Software Engineering process for the rest of the Apollo program. The software effort was

becoming the critical deliverable holding up the whole effort to land on the Moon. The tragic

Apollo 1 fire in January 1967 gave NASA and MIT the time and space to re-examine how the

effort was being managed and to introduce Software Engineering practices that paid dividends in

future years.

After the CORONA software was released in January 1966, the team focused on the SUNSPOT

release, which was for the first manned mission, originally scheduled for late 1966. There were two

launches that were being targeted: the AS-204A launch, which was a manned 14-day earth orbit

mission and the AS-204B, which had the same objectives, but would be unmanned had the launch

vehicle not been qualified for manned flights.81 The objective was to test the functions of the

Command Module in earth orbit. The main additional requirements on SUNSPOT revolved around

more elaborate astronaut-interface display programs. As this was to be the first manned mission,

program interaction with the astronauts was a key feature.82 The main impediment to the release of

SUNSPOT was overuse of the computer memory. Basically, the software had outgrown the

physical memory constraints of the hardware. As Howard “Bill” Tindall, Director of Flight

Operations at NASA, noted:

“Our basic problem seems to center on the time available to prepare the computer programs

for these flights and on the fact that the computer is not big enough to contain all of the

programs which appear to be either required or highly desirable for the mission”.83

83 Howard W. Tindall, “66-FM1-59. Spacecraft computer program requirements for AS-207/208, AS-503, and
AS-504”, 12 May 1966, accessed on 13 February 2025, https://www.ibiblio.org/apollo/Documents/tindallgrams02.pdf

82 Johnson and Giller, “R-700, Vol V, The Software Effort”, 9

81 Courtney G. Brooks and James M. Grimwood, Loyd S. Swenson, “Preparations for the First Manned Apollo
Mission” in Chariots for Apollo: A History of Manned Lunar Spacecraft, NASA Special Publication-4205, NASA
History Series, 1979. Accessed 10 February 2025, https://solarviews.com/history/SP-4205/ch8-7.html

https://www.ibiblio.org/apollo/Documents/tindallgrams02.pdf
https://solarviews.com/history/SP-4205/ch8-7.html

25

These, along with other issues impacting the schedule were resolved via several “Black Friday”

meetings where hard decisions were made about what to include or not include in the software

release. According to MIT,

“These meetings became emotional because of disagreement about what was, in fact,

nonessential. Nonetheless, difficult compromises resulted in the current fixed-storage

capacity being reduced sufficiently to allow inclusion of every essential routine”.84

Other memos from Howard Tindall describe the difficult situation that year: concern about getting

a detailed schedule (entitled a Program Development Plan), concerns about the amount of manual

work required by the astronauts to interact with the computer, reviews of the developing

AS-207/208 GSOP document, concerns about the testing capacity and concerns on the availability

of new testing hardware and its impact on the flight schedule.85 With multiple software releases

being worked on concurrently and significant schedule pressure, the lack of Software Engineering

process gives the strong impression that the overall project was lurching from one chaotic situation

to the next.

This was becoming obvious to most parties, including MIT.

“An informal organization was workable in the five earliest, innovative years of Apollo.

Thereafter, this approach exhibited shortcomings related to problems of communication,

documentation, and the changing external environment as the project grew larger and the

type of work changed significantly. A more formal structural approach was viable”.86

It was around mid 1966 that Margaret Hamilton first started using the term “Software Engineering”

for the work that she and the teams around her were doing.87 At this time, she was a programmer

on the Command and Service Module code and had not yet assumed a formal leadership role.

From an oral history of Hamilton in 2017, “I said, ‘Why don’t we call this one the hardware

87 Maurer, The Woman in the Moon, 155
86 Hand, “R-700, Volume I, Project Management”, 41

85 Howard W. Tindall, “66-FM1-70. Spacecraft computer program status report”, 2 June 1966; Howard W. Tindall,
“66-FM1-100. Notes regarding the AS-207/208 Guidance Systems Operation Plan (GSOP) meeting with MIT”, 30
August 1966; Howard W. Tindall, “66-FM1-170. More interesting things about our work with MIT”, 28 November
1966; Howard W. Tindall, “66-FM1-191. MIT’s digital computers are saturated until the IBM 360 becomes
operational”, 22 December 1966, accessed 13 February 2025,
https://www.ibiblio.org/apollo/Documents/tindallgrams02.pdf

84 Johnson and Giller, “R-700, Vol V, The Software Effort”, 15

https://www.ibiblio.org/apollo/Documents/tindallgrams02.pdf

26

engineering part and this the software engineering part?’ It was like I just came up with a term to

say let’s name this part in this whole system definition”.88 And from an interview with Hamilton in

2014, “I fought to legitimize software so that both software engineering and those who built it

would receive the respect they deserved, so I began using the term ‘software engineering’ to

differentiate it from hardware and other forms of engineering”.89 This is an important event as

others in MIT started to appreciate the need to bring engineering discipline to the software

development process.

NASA continued to understand there was an ongoing oversight problem with the development of

software in Apollo. In September 1966, almost two years after the previous document Management

Procedures in Computer Programming for Apollo – Interim Report was published, the concepts are

expanded upon in another document from Belcomm, written by some of the same authors, entitled

Procedures for Management Control of Computer Programming in Apollo.90 While acknowledging

that “The commitment to use computers in Apollo came at a time when formal and proven

management techniques for the control of computer program production were either unknown or

undocumented”, it goes on to describe specific deliverables such as System Requirements, Detailed

Design, Test Specifications and specific milestones along the definition, acquisition and operation

phase of software delivery.91

The Apollo 1, formerly known as AS-204A, fire happened on 27 January 1967 during a ground test

of the Command Module. It resulted in the deaths of three astronauts: Roger Chaffee, Gus Grissom

and Ed White. The tragedy affected all parts of the Apollo program and forced a re-examination of

all functions within Apollo to understand what happened and to ensure nothing equivalent could

happen again. Although the AGC was not culpable for any part of the tragedy, the delay to the

overall program gave NASA and MIT time to reset, ensure proper processes were in place and to

retarget their efforts for future missions. The next manned mission would not be until October

1968.

91 Liebowitz and Sheppard, Parker, “Control of Computer Programming”, 1

90 B.H. Liebowitz and C.S. Sheppard, E.B Parker III, “Procedures for Management Control of Computer Programming
in Apollo”, Bellcomm Inc, 28 September 1966

89 James Rubio Hancock, “Margaret Hamilton, the programming pioneer who took Apollo to the Moon”, El Pais, 25
December 2014, accessed 16 January 2025,
https://verne.elpais.com/verne/2014/12/11/articulo/1418314336_993353.html

88 Brock, “Oral History of Margaret Hamilton”, 33

https://verne.elpais.com/verne/2014/12/11/articulo/1418314336_993353.html

27

The last memo from Howard Tindall before the Apollo 1 fire details an MIT meeting from 26

January 1967 related to the future scheduled AS-206 mission.92 Interestingly, he says “Obviously

our toughest job is going to be wrenching this program out of MIT’s grasp, since to them quality

still comes before schedule. But that’s just a little game we are playing, and I don’t consider it

unhealthy”.93 This approach would change after the fire. There is a gap of twenty-six days in the

memos, possibly because of the fire. The next memo details another hole in the Software

Engineering process, which is cost accountability – “We requested MIT to propose at our next

meeting how they intend to provide cost accounting for their work in the software area, something

which is sadly inadequate at this time”.94

As 1967 progressed, it was becoming clearer that there were continued serious concerns with the

Apollo Guidance Computer. In March, concerns were raised “regarding the adequacy and formality

of the final verification testing of the Apollo spacecraft computer programs and its interfaces with

other spacecraft systems”.95 Particularly concerning was “that documentation of the test plans and

test results was not even adequate to really understand what had been done”.96 In summary, while

there was now a specification of what was required, there was a lack of process around ensuring

that what was delivered matched the requirements. As part of mitigating these concerns, the

outcomes of the ‘All Digital’ simulation test runs were to become a formal part of the verification

and acceptance process.97 This would eventually turn into a specified level of testing that each

release was to attain.

By May of 1967, the pressures associated with the schedule, the testing, the cost accounting, the

constraints imposed by the computer hardware, all in conjunction with the impact of the Apollo 1

fire all came to a head. In a Howard Tindall memo entitled A new spacecraft computer

97 Tindall, “67-FM1-23”, 2. See bullet 5 “It is intended that the so-called Bit-by-Bit simulation facility at MSC play a
formal part in the program verification process”. The All Digital simulation was also known as the Bit-by-Bit
simulation.

96 Tindall, “67-FM1-23”, 1

95 Howard W. Tindall, “67-FM1-23. Summary of what needs to be done to develop flight confidence in the spacecraft
computer programs”, 23 March 1967, accessed on 17 March 2025,
https://www.ibiblio.org/apollo/Documents/1967_tindallgrams.pdf , 1

94 Howard W. Tindall, “67-FM1-18. Spacecraft Computer Program Development Newsletter”, 27 February 1967,
accessed on 17 March 2025, https://www.ibiblio.org/apollo/Documents/1967_tindallgrams.pdf .

93 Howard W. Tindall, “67-FM1-17. AS-206 Spacecraft Computer Program Newsletter”, 31 January 1967, accessed on
17 March 2025, https://www.ibiblio.org/apollo/Documents/tindallgrams02.pdf . In the margin of this memo, in
handwriting, is “Fire about now!”

92 AS-206 was to be the first mission to launch with a Lunar Module. It was scheduled for April 1967 but was
cancelled after the Apollo 1 fire.

https://www.ibiblio.org/apollo/Documents/1967_tindallgrams.pdf
https://www.ibiblio.org/apollo/Documents/1967_tindallgrams.pdf
https://www.ibiblio.org/apollo/Documents/tindallgrams02.pdf

28

development program development working philosophy is taking shape, Tindall describes the move

from delivery to a tight official flight schedule to delivering to a higher quality bar, even if this

means delivering a little later. “These things are most clearly evident right now on LM-1 [Apollo

5] where it’s almost unthinkable to fly with any known deficiencies in the program”.98 The final

paragraph summarizes the change in approach from just before the Apollo 1 fire, “It should

certainly be easier to handle than our previous ‘schedule is king – anything is better than nothing’

type of problem”.99

It was also around mid 1967 that a new organisational structure was put in place at MIT to better

meet the needs of the growing requirements on software development. Within the Mission

Development Division under R.H. Battin, there was now a Guidance Programs group, with the

moniker 23B, that had responsibility for the onboard software.100 In May 1967, 23B was led by E.

M. Copps.101 Within 23B, there was a CSM Group and an LM group, with responsibility for the

Command and Service Module software and the Lunar Module software respectively. Margaret

Hamilton led the CSM Group in late 1967.102

The outcome of discussions between NASA and MIT resulted in the earliest formally documented

definition for how the AGC software was to be developed, tested and accepted. This is the Apollo

Guidance Software Development and Verification Plan written by NASA in October 1967, with

input from MIT.103 It is obviously heavily influenced by the September 1966 Bellcomm document,

as the names of several milestones are repeated in both documents.

103 The Guidance Software Validation Committee, "Apollo Guidance Software Development and Verification Plan”, 4
October 1967

102 Anonymous, “Apollo Organization”, MIT Instrumentation Laboratory, 30 Sep 1968, accessed 12 October 2025,
https://www.ibiblio.org/apollo/Documents/ApolloOrg-Group-23B-only-1968-09.jpg indicates that Margaret Hamilton
is leading the CSM Programming group in September 1968. K.W. Greene, "MIT Management Development Plan
Meeting #4", MIT Instrumentation Laboratory, 7 Nov 1967, 6, accessed 12 October 2025,
https://www.ibiblio.org/apollo/Documents/mit_dev_plan_meeting_04.pdf is the first of twenty weekly management
meetings (starting on 13 Oct 1967) that cc’d Margaret Hamilton. As these meetings included the leader of 23B and
cc’d the subgroup leaders, it is reasonable to assume the Margaret Hamilton led the CSM group in November 1967.

101 Anonymous, “Apollo Organization”, MIT Instrumentation Laboratory, May 1967, accessed 3 July 2025,
https://wehackthemoon.com/sites/default/files/styles/hero_extra_large_1x_2000x_/public/media/photograph/45838.jpg
?itok=ECT1UPEe

100 Hand, “R-700, Volume I, Project Management”, 37-38
99 Tindall, “67-FM1-39”, 2

98 Howard W. Tindall, “67-FM1-39. A new spacecraft computer program development working philosophy is taking
shape”, 17 May 1967, 1, accessed on 13 January 2025,
https://web.mit.edu/digitalapollo/Documents/Chapter7/tindallgrams.pdf

https://www.ibiblio.org/apollo/Documents/ApolloOrg-Group-23B-only-1968-09.jpg
https://www.ibiblio.org/apollo/Documents/mit_dev_plan_meeting_04.pdf
https://wehackthemoon.com/sites/default/files/styles/hero_extra_large_1x_2000x_/public/media/photograph/45838.jpg?itok=ECT1UPEe
https://wehackthemoon.com/sites/default/files/styles/hero_extra_large_1x_2000x_/public/media/photograph/45838.jpg?itok=ECT1UPEe
https://web.mit.edu/digitalapollo/Documents/Chapter7/tindallgrams.pdf

29

The document defines several key milestones that eventually result in acceptance of the software

by NASA. The first milestone is the Critical Design Review (CDR), which approves the

preliminary Software Design Specification and precedes the actual development phase.104 The

second milestone is the First Article Configuration Inspection (FACI) which reviews and accepts

the test plans.105 This milestone precedes the software qualification and verification phase. The

third milestone is the Customer Acceptance Readiness Review (CARR), where the software is

formally approved and accepted after passing the qualification and verification phase.106 At this

point, the software is released for memory fabrication, after which, verification and system testing

can take place. In parallel, any final updates to the specifications and flow diagrams are completed.

The final milestone is the Flight Readiness Review (FRR), where approval to use the fabricated

software on a particular flight is granted.107 The document goes into significant detail on the testing

requirements, including the use of simulators and astronaut procedure testing. It also details the

software change procedure for changes after the Critical Design Review milestone.

MIT was not enthusiastic with some of these processes and viewed them as an overly bureaucratic

imposition from NASA. Hamilton noted “we evolved our ‘software engineering’ rules with each

new relevant discovery while top management rules from NASA went from complete freedom to

bureaucratic overkill”.108 Fred Martin, MIT project manager for the Command and Service Module

software deliverables, remembered this imposition starting around the Autumn of 1966:

“And these groups now were fairly large, and NASA wanted to see formal schedules, and

time to complete this module, and time to complete that module, and reporting on a

monthly-- I can't even remember the schedule, what it was. But things started to build up in

reviews and in paperwork, and in monitoring and so on. And I would say that that became a

different era of doing work at the lab, and much less fun for a lot of people”.109

While all this was going on, MIT continued to work on and deliver the next version of the

Command Module software, effectively in parallel with the SUNSPOT release. This was entitled

SOLARIUM and it was released for manufacture in November 1966. It was used in the unmanned

109 MIT Video Productions, “Apollo Guidance Computer Project”, 53:06 – 53:44

108 Margaret Hamilton, “The Language as a Software Engineer”, ICSE 2018 Plenary Sessions, 31 May 2018, 25:26,
https://www.youtube.com/watch?v=ZbVOF0Uk5lU

107 The Guidance Software Validation Committee, " Development and Verification Plan”, section 7.5
106 The Guidance Software Validation Committee, " Development and Verification Plan”, section 7.4
105 The Guidance Software Validation Committee, " Development and Verification Plan”, section 7.3.2
104 The Guidance Software Validation Committee, " Development and Verification Plan”, section 7.2.2

https://www.youtube.com/watch?v=ZbVOF0Uk5lU

30

AS-501/Apollo 4 (launch date November 1967) and AS-502/Apollo 6 (launch date April 1968)

missions. Apollo 4 was the first mission after the Apollo 1 fire and was the first to test the Saturn V

launch vehicle. As per previous releases, its specification was defined in a Guidance and

Navigation System Operations Plan, and similarly, this was approved many months (July 1966)

before the release of the software (November 1966).110 The interim ‘All Digital’ simulation results

were published in October 1966.111 While similar to the CORONA release, SOLARIUM replaced

the elliptical trajectory supported in CORONA, with support for parabolic and hyperbolic

trajectories which matched the return trajectories from a mission to the Moon.112 Even though this

release was before the published date of the Apollo Guidance Software Development and

Verification Plan, it was of high quality as evidenced in the Apollo 4 Mission Report - “All

sequencing and computational operations performance by the Apollo guidance computer have been

verified to have been correct”.113

In parallel to SOLARIUM, MIT were also working on the software for the first unmanned Lunar

Module mission, entitled SUNBURST. Although running on the same physical computer

hardware, this software was very different to the Command and Service module in that it included

control of the Lunar Module guidance systems. The software was delivered in October 1967 and

flew on Apollo 5 in January 1968. The software was critical to the testing of the Lunar Module

descent and ascent stages during this unmanned flight. The seven section GSOP for this mission

was first written in January 1967 and so follows the developing pattern of writing the GSOP a long

away ahead of the software release.114

114 Ronald S. Burkey, “Apollo Program MIT technical documents from JSC”, accessed 6 May 2025,
https://www.ibiblio.org/apollo/NARA-SW/IndexOfNaraBox209G.html The January 1967 date comes from the table
Box 36, which lists R-527. Also see Anonymous, “R-527 (Rev 2) Guidance System Operations Plan for Unmanned
LM Earth Orbital Missions using Program SUNBURST, Section 7 G&N Error Analyses”, MIT Instrumentation
Laboratory, December 1967

113 Apollo 4 Mission Evaluation Team, “Apollo 4 Mission Report”, NASA Manned Spacecraft Center, Houston, Texas,
7 January 1968, 1-3. Also see R.C. Millard, “MIT Management Development Plan Meeting #6”, 21 November 1967, 1
which includes “It was stated by C. Kraft of NASA/MSC that the performance of the AS-501 Mission was perfect and
that MIT was to be congratulated.”

112 Johnson and Giller, “R-700, Vol V, The Software Effort”, 9. For a detailed list of changes between AS 202 /
CORONA and AS 501 / SOLARIUM, see J.A. Simpson, “Flight 501 Memo #8. Programming Changes from AS-202
to AS-501”, MIT Instrumentation Laboratory, 7 October 1968

111 Jay Sampson, “Flight 501 Memo #10, Summary of Results of AS-501 Digital Simulations”, MIT Instrumentation
Laboratory, 26 October 1966

110 Anonymous, “R-537 Guidance and Navigation System Operations Plan Apollo Mission 501”, MIT Instrumentation
Laboratory, July 1966

https://www.ibiblio.org/apollo/NARA-SW/IndexOfNaraBox209G.html

31

As a gauge of how busy MIT were with the Apollo program at this time, on 21 November 1967,

they were working concurrently on six separate releases of the software: SUNBURST (LM

software for Apollo 5), SOLARIUM (CSM software for Apollo 6), SUNDISK (CSM software for

Apollo 7), COLOSSUS (CSM software for Apollo 8), SUNDANCE (LM software for Apollo 9)

and LUMINARY (LM software for Apollo 10).115 There were approximately three hundred people

working on the project at this point. Tracking all of these was becoming a major task itself.

Software Engineering processes continued to develop based on the rapid rate of software

development at MIT. The Apollo Guidance Software Development and Verification Plan was

superseded in 1968 by a triumvirate of documents, one of which is the Apollo CMC/LGC Software

Development Plan.116 While keeping the same milestones, this document revised the details of the

three milestones up to and including the Customer Acceptance Readiness Review milestone. The

main difference is the replacement of the System Design Document (SDS) with the Guidance

System Operations Plan (GSOP), which had already existed and had the same function as the SDS.

The development plan is broken into three phases: Program Definition, Program Implementation

and Qualification. Formal transition from the Program Definition to Program Implementation

phase is via the Critical Design Review (CDR) milestone. Formal transition from the Program

Implementation to Qualification phase is via the First Article Configuration Inspection (FACI)

milestone. Completion of the Qualification phase is via the Customer Acceptance Readiness

Review (CARR) milestone.

The document also details levels of testing to describe different types of testing. Level 1 testing is

low level engineering testing as the software is developed. Level 2 testing are more formal tests

than Level 1 that are run on the ‘All Digital’ simulator. Level 3 testing tests combinations of

programs “at the level of astronaut callable programs” in both the “All Digital” and “Hybrid”

simulators. Level 4 testing is mission sequencing testing across multiple astronaut callable

programs. Level 4 testing is required for the software to move to the Qualification Phase via the

FACI milestone. The document also maintains and further clarifies the software change procedure

post the CDR milestone.

116 J.V. Mutchler, “TRW Note No. 68-FMT-643. Apollo CMC/LGC Software Development Plan”, 30 April 1968
115 Millard, “MIT Management Development Plan Meeting #6”, 1-5

32

In reality, no mission release was ever accepted according to these milestones. The CDR milestone

was kept, but the FACI and the CARR milestones were not used. The final Flight Software

Readiness Review (FSSR) milestone was kept as the only official meeting for accepting the release

for a particular flight. The function on the FACI (to review test plans and instigate formal change

control on requirements) and the CARR (to formally accept the release and to proceed to

manufacturing) was accomplished by more dynamic regular Software Development Plan meetings

between MIT and NASA.117

Once the GSOP had been approved, any subsequent changes had to be managed carefully, which is

another important Software Engineering practice. This was first raised in a document in November

1967 where NASA/MSC committed to “develop and document a change procedure to assure the

proper control and understanding of PCR’s”.118 Previous to this, change control was ad hoc. Based

on the guidelines in Apollo CMC/LGC Software Development Plan, NASA and MIT put in place a

formal change control procedure around three types of artifacts: a Program Change Request (PCR),

a Program Change Notice (PCN) and an Anomaly Report (AR).

A group within NASA, with representation from MIT, called the Apollo Spacecraft Software

Configuration Control Board (ASSCCB), initiated and approved specific change requests, which

were tracked along with the GSOP that they impacted. A PCR is a request for a change that

impacts the GSOP. There was a myriad of underlying reasons for the change, such as input from

NASA, MIT or a mission astronaut, either because the GSOP was incorrect or was nebulous. The

PCR process started around November 1967.119 The first GSOP revision that shows lists of

approved PCRs is July 1968.120 An example of an approved PCR is PCR 210 from 1968 that

requests a change to increase the DPS (Descent Propulsion System) Throttle Recovery Limit and to

move that configuration from fixed memory to erasable memory.121

A PCN is a notification that a change has been made, either of low impact, such as documentation

updates or to unblock program development in a timely manner. An example of an approved PCN

121 F.V. Bennett, “Apollo Spacecraft Software Configuration Control Board, Program Change Request 210”, 11 June
1968, accessed 9 January 2025, https://www.ibiblio.org/apollo/Documents/PCR-210.pdf

120 Anonymous, “R-557 Guidance System Operations Plan For Manned LM Earth Orbital Missions Using Sundance
(Rev. 306). Section 4 PGNCS Operational Modes (Rev 3)”, MIT Instrumentation Laboratory, January 1969, v

119 Millard, “MIT Management Development Plan Meeting #6”, 1 explicitly mentions PCR #4, so PCR #1 was
sometime before this.

118 Millard, “MIT Management Development Plan Meeting #6”, 2
117 Johnson and Giller, “R-700, Vol V, The Software Effort”, 96

https://www.ibiblio.org/apollo/Documents/PCR-210.pdf

33

is PCN 497 that notifies a change in how the lunar landing braking phase (P63) calculates the

throttle up time of the descent engine.122

The Software Control Board (SCB) was responsible for reviewing and approving PCRs and PCNs.

For the example above, PCR 210 was approved at the 19th Software Control Board meeting on 27

June 1968.123 Once the software is released for manufacturing of the rope, further testing may

uncover problems either with the rope manufacture or the functionality of the software in the rope.

These problems are described in Anomaly Reports. As fixing a problem in the manufactured rope

is expensive, an anomaly was usually mitigated via a program note for the mission. If this was not

possible, then a PCR or PCN is raised and approved by the SCB. Lower-level changes, which were

deemed not to impact the GSOP could be approved solely by MIT, via their Assembly Control

Board. An example of an Anomaly Report is LNY 79 that identified a lunar module oscillation

issue with the P64/P65 lunar landing programs, resulting in a program note to the Apollo 11

crew.124 The problem was fixed, via a PCR in a future release, for the Apollo 12 crew.125

The change control process, as designed, did impose constraints on changes after a certain point

and this could cause frustration with the developers at MIT. For example, Jim Miller, who

developed the AGC simulators, remembers:

“… the purpose being to find any more bugs that hadn't been found. And sometimes, when

you found-- sometimes you would find bugs that just you felt had to be fixed. And usually,

they could be. But once the program was delivered, this group of people, who were the only

people in the world who NASA thought could write the software, suddenly were so stupid

that no change they proposed could be plausible at all. And so anything you suggested, the

answer was no. And you had to beg and so forth, for the interest of the project, to be

allowed to remove this desperately bad thing”.126

126 MIT Video Productions, “Apollo Guidance Computer Project”, 1:18:50 – 1:19:28

125 George W. Cherry and Fred H. Martin, “MIT/IL Software Development Plan for LUMINARY 1B LGC Program
(Final Issue)”, MIT Instrumentation Laboratory, 22 August 1969, II-4 shows that PCR 840 fixed LNY 79

124 K.W. Krause, “MIT/IL Software Anomaly Report, LNY 79, 20 June 1969, accessed 21 May 2025,
https://www.ibiblio.org/apollo/Documents/LNY-79.pdf

123 G.W. Cherry “Apollo Project Memo No. 1933. LM Program Items Discussed and Acted on at the 19th SCB
Meeting”, 27 June 1968, accessed 9 January 2025, https://www.ibiblio.org/apollo/Documents/Memo-SCB19_text.pdf ,
3

122 G.W. Cherry, “Apollo Spacecraft Software Configuration Control Board, Program Change Notice 497”, 15 July
1968, accessed 9 January 2025, https://www.ibiblio.org/apollo/Documents/PCR-497.pdf

https://www.ibiblio.org/apollo/Documents/LNY-79.pdf
https://www.ibiblio.org/apollo/Documents/Memo-SCB19_text.pdf
https://www.ibiblio.org/apollo/Documents/PCR-497.pdf

34

The testing levels in the Apollo CMC/LGC Software Development Plan were also not used exactly

as defined. There were six levels of testing, not four. Level 1 and Level 2 testing matched the

document. Level 3 was program level testing on the ‘All Digital’ and ‘Hybrid’ simulators. Each

test case was included in the GSOP and was part of the acceptance process. Level 4 was

sequencing testing across multiple programs, again using the ‘All Digital’ and ‘Hybrid’ simulators.

When Level 4 testing was completed, the software was ready to be released to manufacturing.

Level 5 was a repeat of all Level 3 and 4 testing before the actual release to manufacturing. Level 6

testing, which occurred after the software was released to manufacturing, established performance

specifications and was oriented towards a particular launch.127 A reasonably good example of an

L4 test plan can be found at LUMINARY Memo #30.128

Future versions of the Lunar Module software, SUNDANCE and then LUMINARY, included the

programs for navigating down to the Moon’s surface, launching from the Moon’s surface and

rendezvousing with the Command Module in lunar orbit. The strategic approach to landing on the

Moon, on which this software is based, is described in detail in Apollo lunar module landing

strategy from 1966.129 This is a good example of a Software Engineering requirements document,

as it details exactly how to get the lunar surface safely. It is the basis of the lunar module programs:

P63 (Braking Phase), P64 (Final Approach Phase), P65 (Automatic Landing Phase) and P66

(Semi-Automatic Landing Phase).130 SUNDANCE was used in Apollo 9. LUMINARY was used in

Apollo 10, Apollo 11 and all future missions.

130 Phill Parker, “The Apollo On-board Computers”, Apollo Flight Journal, accessed 16 May 2025,
https://www.nasa.gov/history/afj/compessay.html . For an example of the underlying code, P63 Braking Phase is at
“THE_LUNAR_LANDING.agc.html”, The Virtual AGC Project GitHub repository, accessed 16 May 2025,
https://www.ibiblio.org/apollo/listings/LUM69R2/THE_LUNAR_LANDING.agc.html

129 Donald C. Cheatham, Floyd V. Bennett, and Theoretical Mechanics Branch. "Apollo lunar module landing strategy."
in Apollo Lunar Landing Symposium 1966, 175-240.

128 J. Kernan and C. Schulenberg, “LUMINARY Memo #30, LUMINARY Level 4 Test Plan”, MIT Instrumentation
Laboratory, 7 June 1968

127 Johnson and Giller, “R-700, Vol V, The Software Effort”, 84-86

https://www.nasa.gov/history/afj/compessay.html
https://www.ibiblio.org/apollo/listings/LUM69R2/THE_LUNAR_LANDING.agc.html

35

4​ Software Engineering Matures (1968–1971)

In this chapter, we describe the culmination of the program, when the AGC was used to

successfully land six manned missions on the Moon. We also describe the NATO conferences in

1968 and 1969 and argue that NASA and MIT had already resolved a lot of the issues raised at

these conferences.

As development proceeded through 1968, the processes for defining requirements, tracking

progress and change control across many releases were bedded in. While there were some teething

problems at the start of 1968, by the end of the year, the process was running quite well. For

example, in March 1968, Howard Tindall wrote “I guess I am attacking the old ‘MIT me’ in stating

that we are seriously handicapped by having no reliable definition of the Luminary lunar surface

and ascent programs”.131 In May 1968, he raised issues with the PCR process, “That strikes me as a

real improvement in the program but it mystifies me as how it go[t] changed without a PCR or

PCN, or even letting anyone know”.132 However, towards the end of the year, most of Tindall’s

memos are about “mission technique” meetings, which define specific requirements for the C

missions (demonstrate Command and Service Module, crew performance and rendezvous

capability), D mission (demonstrate Lunar Module and crew performance in Earth Orbit), F

mission (demonstrate Lunar Module and crew performance in Lunar Orbit), and G mission

(manned lunar landing demonstration). Although these requirements are fed to MIT and result in

changes to the software, Tindall’s memos later in the year barely mention MIT, implying that the

process is running smoothly. A good example of this is the ASSCCB meeting from 8 October

1968, which describes various PCRs that were reviewed and approved at this meeting, without any

significant contention.133

133 Howard W. Tindall, “68-FM-T-225. Results of' the October 8 Apollo Spacecraft Software Configuration Control
Board (ASSCCB) meeting”, 16 October 1968, accessed on 7 May 2025,
https://www.ibiblio.org/apollo/Documents/tindallgrams02.pdf This document approves PCR 547, which is J.
Shillingford, “Apollo Spacecraft Software Configuration Control Board, Program Change Request 547”, 3 September
1968, accessed 7 May 2025, https://www.ibiblio.org/apollo/Documents/PCR-547.pdf

132 Howard W. Tindall, “68-PA-T-106A. Spacecraft computer program newsletter”, 24 May 1968, accessed on 7 May
2025, https://www.ibiblio.org/apollo/Documents/tindallgrams02.pdf

131 Howard W. Tindall, “68-PA-T-48A. Ascent Phase Mission Techniques meeting - February 27”, 4 March 1968,
accessed on 7 May 2025, https://www.ibiblio.org/apollo/Documents/tindallgrams02.pdf

https://www.ibiblio.org/apollo/Documents/tindallgrams02.pdf
https://www.ibiblio.org/apollo/Documents/PCR-547.pdf
https://www.ibiblio.org/apollo/Documents/tindallgrams02.pdf
https://www.ibiblio.org/apollo/Documents/tindallgrams02.pdf

36

Also, in October 1968, the Final Report from the Apollo Guidance Software Task Force was

published and was quite positive in its conclusions.134 In summary, it concluded that the situation at

the time of publishing was good, no major improvements needed to be made, complex software

required an ongoing high degree of communication and that schedule control and visibility was

adequate. This was a positive reflection on the pain and effort that MIT and NASA had gone

through during the development of the AGC.

Between 1968 and the early part of 1971, MIT delivered high quality, reliable AGC software for

eleven manned missions, including nine versions of the Command Module software and seven

versions of the Lunar Module software.135 In agreement with NASA, the naming convention was

changed to use ‘C’ words for Command Module software and ‘L’ words for Lunar Module

software.136 Hence the move to names like COLOSSUS and COMANCHE for the Command

Module and LUMINARY for the Lunar Module.

Margaret Hamilton continued to assume an active leadership position in the CSM software

development group during this time. From an organisational chart from February 1969, she was the

Director of the CSM Programming group within the Mission Program Development Division

(23B).137 Hamilton’s peer, J. Kernan led the LM group. Dan Lickly was the overall owner of 23B at

this time.

The first successful Moon landing was Apollo 11 on 20 July 1969 when Niall Armstrong and Buzz

Aldrin became the first men to walk on the Moon. The AGC Command Module software was

COLOSSUS IIA, released in April 1969 and the Lunar Module software release was LUMINARY

IA, released in June 1969. The software performed admirably, but there was significant uncertainty

during the landing sequence when “1201” and “1202” program alarms happened. These indicated

that the computer was overloaded and that it was concentrating only on the highest priority tasks,

meaning the landing itself. The computer had behaved correctly, and the problem was later

137 Anonymous, “Apollo Organization”, MIT Instrumentation Laboratory, 1 February 1969, accessed 3 July 2025,
https://www.doneyles.com/LM/ORG/index.html , 5

136 Johnson and Giller, “R-700, Vol V, The Software Effort”, 6
135 Hall, “R-700 Vol III, Computer Subsystem”, 153

134 W.G. Heffron, “NASA CR-97638, Distribution of the Final Report of the Apollo Guidance Software Task Force”,
Bellcomm, Inc. 7 October 1968, 6-7

https://www.doneyles.com/LM/ORG/index.html

37

diagnosed as a misplaced switch in the Lunar Module related to the rendezvous radar.138 This issue

was fixed for the Apollo 12 software via the existing PCR process.139

After Apollo 11, Dan Lickly left the Instrumentation Laboratory and Margaret Hamilton assumed

overall leadership of 23B sometime between August and September 1969.140 She was to lead this

group until the end of the Apollo program.

Feature development and bug fixes continued through Apollo 15. The final software for the

Command Module and Lunar Module was released in February and March 1971, respectively. As

the software had become very stable by this point, features and bug fixes reduced to the point

where the exact same software flew on the final three missions: Apollo 15, 16 and 17. In a memo

approving this approach from August 1971, Howard Tindall wrote in the margin “Behold these

people, for they have created perfection !!!”.141

As the 1960s progressed and the available compute power increased, the problems with building

large scale software projects that MIT and NASA had already uncovered became more evident to

other parts of the industry. As Dijkstra reflected on the software crisis of the 1960s “and now we

have gigantic computers, programming has become an equally gigantic problem”.142 To address

this growing concern, NATO organized two conferences, one in 1968 in Garmisch, Germany and

the other in 1969 in Rome, Italy.143 The conferences are generally credited with helping establish

143 Peter Naur and Brian Randell, eds. Software Engineering: Report of a conference sponsored by the NATO Science
Committee, Garmisch, Germany, 7-11 Oct. 1968, Brussels, NATO Scientific Affairs Division, 1969; J. N. Buxton and

142 Edsger W. Dijkstra, "The Humble Programmer." Communications of the ACM 15, no. 10 (1972): 861.

141 Howard W. Tindall, “FA-115, Flight ropes for Apollo 16 and 17”, 17 August 1971, 1, accessed on 2 July 2025,
https://www.ibiblio.org/apollo/Documents/16_17_flight_ropes.pdf

140 Margaret Hamilton, “R-567 Guidance System Operations Plan for Manned LM Earth Orbital and Lunar Missions
using Program LUMINARY 1B (Rev. 116) Section 4 PGNCS Operational Modes (Rev. 6)”, MIT Instrumentation
Laboratory, September 1969, is signed off by Margaret Hamilton, who has the title “Director, Mission Program
Development Apollo Guidance and Navigation Program”. Margaret Hamilton, “COMANCHE 55 AGC Program
Listing”, 28 March 1969, 1, accessed 12 October 2025, https://archive.org/details/Comanche55J2k60/mode/1up . This
is the Apollo 11 CSM software and lists Dan Lickly as the overall owner of 23B on 28 March 1969, with Margaret
Hamilton responsible for the CSM group. Lickly left MIT to start Intermetrics in 1969. However, it is reasonable to
assume that he stayed with MIT until Apollo 11 returned on 24 July 1969. Therefore, the time window for Hamilton to
take over 23B is between August and September 1969.

139 D. Eyles, “Apollo Spacecraft Software Configuration Control Board, Program Change Request 848, Prevent RR
ECDUs from Stealing LGC Memory Cycles”, 23 July 1969, accessed 2 July 2025,
https://www.ibiblio.org/apollo/Documents/PCR-848.pdf Note this is only three days after the problem occurred during
the Apollo 11 landing. The PCR was implemented before 6 August 1969 as per C. Schulenberg, “LUMINARY Memo
#103”, MIT Instrumentation Laboratory, 6 August 1969, 2. The code that implements the fix for Apollo 12 can be
found at “T4RUPT_PROGRAM.agc.html”, The Virtual AGC Project GitHub repository, accessed 2 July 2025,
https://www.ibiblio.org/apollo/listings/Luminary116/T4RUPT_PROGRAM.agc.html#525241555443484B

138 Apollo 11 Mission Evaluation Team, “16.2.5 Computer Alarms During Descent” in Apollo 11 Mission Report
MSC-00171, NASA, Manned Spacecraft Center, Houston, Texas, November 1969, 16-12 to 16-14

https://www.ibiblio.org/apollo/Documents/16_17_flight_ropes.pdf
https://archive.org/details/Comanche55J2k60/mode/1up
https://www.ibiblio.org/apollo/Documents/PCR-848.pdf
https://www.ibiblio.org/apollo/listings/Luminary116/T4RUPT_PROGRAM.agc.html#525241555443484B

38

software engineering as a recognized discipline. They discussed similar problems that had already

occurred at MIT, such as the lack of clear requirements and the inability to deliver on schedule.

They discussed solutions to these problems, including introducing education on engineering

practices, and introducing practices such as clearly defined requirements, documented designs,

testing plans, acceptance plans and change management. MIT were not present at either

conference, but the Apollo program did participate in the 1969 conference where a paper

discussing the ground control software in support of mission control was presented and

discussed.144 It is unclear why MIT did not participate.

Most of the problems related to the “software crisis” had been experienced by MIT during the

development of the Apollo Guidance Computer.145 Similarly, through trial and error, and the

imposition of a hard deadline to land a man on the Moon by the end of the 1960s, a lot of the

postulated solutions had been implemented by NASA and MIT by the time of these conferences.

However, the rest of the nascent industry did not know about them.

145 Naur and Randell, Software Engineering, 70-71
144 Buxton and Randell, Software Engineering Techniques, 32-36

B. Randell, eds., Software Engineering Techniques: Report on a Conference Sponsored by the NATO Science
Committee, Rome, Italy, 27th to 31st October 1969, Brussels, NATO Scientific Affairs Division, 1970

39

Conclusion

The goal of this dissertation is to examine MIT’s software development efforts for the Apollo

Guidance Computer and chart how Software Engineering practices were created by these teams

during the period of 1961- 1971.

The first chapter provides context on the politics and technology of the early 1960s, a background

to Margaret Hamilton and an overview of the AGC hardware development. It then describes the

complexity of the overall software effort and examines the early operating system development and

the first release of the software, which was done without any formal requirements document,

design document or user acceptance document. It compares this approach to the computer’s

hardware development, which was much more engineering focused effort. On the positive side, it

details the approach to a testing strategy, which was encouraging. However, these years did not

have any recognizable Software Engineering practices.

The Initial Inroads into Software Engineering (1964–1966) chapter details improvements in

documentation for the next set of releases, which included the first unmanned mission. This is the

first time we see the Guidance and Navigation Systems Operations Plan (GSOP), which in later

years was to become the preeminent document for every mission. We also see improvements in the

testing strategy and NASA’s early attempts at managing large scale software projects. These all

point in the right direction for Software Engineering. However, the size and complexity of the

project had pushed MIT’s informal approach to its limit.

Crisis and the Emergence of Software Engineering (1966-1968) details the difficulties in 1966

where schedule pressure and delivery delays caused significant friction between NASA and MIT.

NASA again attempted to define how to manage large scale software projects, but it was not until

mid 1967 that this was agreed with MIT, who also put a new organisational structure in place. It is

during this period that the GSOP document becomes more formal and effectively becomes the

de-facto functional requirements and user acceptance document. Outside of the GSOP, a formal

change control process was put in place, which controlled how changes were made after a certain

point. It was also during this period that Margaret Hamilton first started using the term “Software

Engineering”.

40

Lastly, Software Engineering Matures (1968–1971) details how the agreed processes started to pay

dividends and the level of tension between NASA and MIT decreased. MIT became an efficient

Software Engineering machine and successfully delivered high quality software for the six manned

missions up to and including Apollo 17. It also outlines the two NATO conferences which are also

credited with creating the discipline of Software Engineering. The chapter argues that MIT had

already experienced the “software crisis” discussed at these conferences during the AGC software

development effort and had already defined Software Engineering solutions to solve these crises.

However, these solutions had not been widely disseminated.

In comparison to the practices of Software Engineering defined in the Introduction, the approach

taken by MIT and NASA is impressive. On the positive side, the Guidance and Navigation

Systems Operations Plan (GSOP) document forms the basis of the following steps: Requirements

Analysis and Definition, Testing Strategy and User Acceptance. While, during the early phases, the

GSOP was written after the release, this morphed in later phases to be written well before the

software was finished, which is more correct. Release Management is covered well in the

numerous software releases and the manufacturing of core memory ropes. The Software

Maintenance step is covered well in the processes around Program Change Requests, Program

Change Notices and Anomaly Reports.

On the negative side, there is no documentation on Design and Architecture, although there is some

after the fact documentation. There is little documentation on Implementation processes, such as

coding standards and coding style. While the language choice was constrained to the AGC Basic

and Interpreted assembly language, there is no documentation on how to write consistent,

maintainable code. There are informal guidelines on commenting on the code, but nothing else.

The most advanced aspect of the AGC Software Engineering was the Testing Strategy, both for the

creation of the ‘All Digital’ and Hybrid simulators and the creation of six levels of testing as part

of the acceptance process. While the initial approach was created due to the lack of hardware

availability, this grew into a highly flexible, very advanced, testing strategy with full mock-ups of

the Command Module and the Lunar Module and the ability to test every conceivable scenario.

The “software crisis” described at the NATO conferences in 1968 and 1969 had already happened

at MIT in 1966 and the solutions for these crises had been put in place. The hard deadline of the

41

end of the decade imposed by Kennedy’s goal forced MIT and NASA to define Software

Engineering practices, well before any other institution. This resulted in a set of software that

helped meet Kennedy’s goal of landing a man on the Moon and returning him to earth. As Hall

points out “The fact remains that Apollo computers successfully guided nine lunar missions and

five Earth-orbital missions without a failure”.146 However, there is limited evidence of MIT

communicating their Software Engineering approach after Apollo completed. This is an area for

future study. Most of the key individuals remained with MIT to work on the software for the Space

Shuttle program. After leaving MIT in 1976, Margaret Hamilton started a company called Higher

Order Software. She also founded Hamilton Technologies in 1986. Both companies were involved

in the detection and avoidance of errors in early software development.

It was not until much later in the 20th century that broad credit was given to MIT for the

technological achievement they accomplished in building the Apollo Guidance Computer based on

early 1960s technology. Margaret Hamilton was one of several key people in this project. She

joined the effort in April 1965, took over leadership of the CSM software group in 1967 and led the

overall onboard software effort from Sep 1969 until the end of Apollo. She has become an iconic

figure within Software Engineering. In 2003, she was awarded NASA’s Exceptional Space Act

Award and in 2016, she received the Presidential Medal of Freedom from President Obama, who

remarked:

“Three minutes before Armstrong and Aldrin touched down on the Moon, Apollo 11's lunar

lander alarms triggered: red and yellow lights across the board. Our astronauts didn't have

much time. But thankfully, they had Margaret Hamilton. A young MIT scientist—and a

working mom in the sixties—Margaret led the team that created the onboard flight software

that allowed the Eagle to land safely. And keep in mind that, at this time, software

engineering wasn't even a field yet. There were no textbooks to follow, so, as Margaret

says, "There was no choice but to be pioneers." Luckily for us, Margaret never stopped

pioneering”.147

147 Barack Obama, “Remarks on Presenting the Presidential Medal of Freedom”, 22 November 2016, accessed 3 July
2025, https://www.presidency.ucsb.edu/documents/remarks-presenting-the-presidential-medal-freedom-15

146 Hall, Journey to the moon, 120

https://www.presidency.ucsb.edu/documents/remarks-presenting-the-presidential-medal-freedom-15

42

We owe a lot to MIT and to NASA as they were pioneers in the emergence of Software

Engineering. What they created during the 1960s would be recognizable to every Software

Engineer today.

Areas for future work include researching the AGC testing strategy, the simulators that MIT built,

the companies that were later founded by Margaret Hamilton and how all of this influenced future

Software Engineering concepts such as Agile Development and Test-Driven-Development.

Another area is applying modern automated testing techniques to old code bases, such as the

Apollo Guidance Computer software, to quantify the correctness of that software and potentially

identify unknown bugs in that software. And finally, the development and institutionalisation of

Software Engineering principles post the Apollo Guidance Computer, and the NATO conferences

is an area for further research.

43

Appendix: Apollo Guidance Computer Software

Releases

A detailed breakdown of the AGC software releases, including release name and version identifier

is in the table below.148

Release Date /
Mission Date

Mission
Identifier

Mission Type149 Mission Name Manned CSM AGC Version LM AGC Version

February 1964 / NA ECLIPSE

July 1964 / NA SUNRISE/33

January 1966
25 August 1966

AS-202 Unmanned CORONA/261

July 1966
Cancelled (Apollo 1

Fire)

AS-204A Apollo 1 Manned SUNSPOT

November 1966
9 November 1967

AS-501 A-1 Apollo 4 Unmanned SOLARIUM/55

October 1967
22 January 1968

AS-204 Apollo 5 Unmanned SUNBURST/120

November 1966
4 March 1968

AS-502 A-2 Apollo 6 Unmanned SOLARIUM/55

3 March 1966
27 May 1968

LTA-8 Manned AURORA/85

13 Mar 1967
16 June 1968

2TV-1 Manned SUNDIAL/E

February 1968
11 October 1968

 C Apollo 7 Manned SUNDISK/282

August 1968
21 December 1968

 C Apollo 8 Manned COLOSSUS I/237

149 “Apollo Program History”, March To The Moon, accessed 14 May 2025,
https://tothemoon.im-ldi.com/about/apollo_history

148 “Command-Module Flight Software”, The Virtual AGC Project, accessed 4 July 2025,
https://www.ibiblio.org/apollo/Colossus.html#gsc.tab=0 ; “Lunar Module Flight Software”, The Virtual AGC Project,
accessed 4 July 2025, https://www.ibiblio.org/apollo/Luminary.html#gsc.tab=0

https://tothemoon.im-ldi.com/about/apollo_history
https://www.ibiblio.org/apollo/Colossus.html#gsc.tab=0
https://www.ibiblio.org/apollo/Luminary.html#gsc.tab=0

44

Release Date /
Mission Date

Mission
Identifier

Mission Type149 Mission Name Manned CSM AGC Version LM AGC Version

CM Oct/1968
LM October 1968

3 March 1969

 D Apollo 9 Manned COLLOSSUS IA/249 SUNDANCE/306

CM April 1969
LM April 1969

18 May 1969

 F Apollo 10 Manned COLOSSUS II/MANCHE45rev2 LUMINARY I/69 Rev 2

CM April 1969
LM June 1969

16 July 1969

 G Apollo 11 Manned COLOSSUS IIA/COMANCHE55 LUMINARY IA/LMY99 rev 1

CM July 1969
LM August 1969

14 November 1969

 H-1 Apollo 12 Manned COLOSSUS IIB/COMANCHE67 LUMINARY IB/ 116

CM December 1969
LM February 1970

11 April 1970

 H-2 Apollo 13 Manned COLOSSUS IIC/MANCHE72 rev 3 LUMINARY IC/LM131 rev 1

CM May 1970
LM September 1970

31 January 1971

 H-3 Apollo 14 Manned COLOSSUS IID/COMANCHE108 LUMINARY ID/178

CM February 1971
LM March 1971

26 July 1971

 J-1 Apollo 15 Manned COLOSSUS III/ARTEMIS72 LUMINARY IE/210

CM February 1971
LM March 1971

16 April 1972

 J-2 Apollo 16 Manned COLOSSUS III/ARTEMIS72 LUMINARY IE/210

CM February 1971
LM March 1971

7 December 1972

 J-3 Apollo 17 Manned COLOSSUS III/ARTEMIS72 LUMINARY IE/210

45

Bibliography

Primary Sources

610.12-1990 - IEEE Standard Glossary of Software Engineering Terminology. S.l.: IEEE, 1990.

Alonso R. and J.H. Lanning, Jr., H. Blair Smith. “E-1077, Preliminary Mod 3C Programmers

Manual”, MIT Instrumentation Laboratory, November 1961.

Alonso R. and J.H. Lanning, Jr. “R-276, Design Principles for a General Control Computer”, MIT

Instrumentation Laboratory, April 1960.

Anonymous. “Apollo Guidance Computer Information Series, Issue 15, Block I Apollo Guidance

Computer Subsystem, FR-2-115”, 27 March 1964

Anonymous, “Apollo Organization”, MIT Instrumentation Laboratory, May 1962, accessed 3 July

2025, https://www.ibiblio.org/apollo/Documents/ApolloOrg-1962-05.jpg

Anonymous, “Apollo Organization”, MIT Instrumentation Laboratory, May 1967, accessed 3 July

2025,

https://wehackthemoon.com/sites/default/files/styles/hero_extra_large_1x_2000x_/public/media/ph

otograph/45838.jpg?itok=ECT1UPEe

Anonymous, “Apollo Organization”, MIT Instrumentation Laboratory, 30 September 1968,

accessed 12 October 2025,

https://www.ibiblio.org/apollo/Documents/ApolloOrg-Group-23B-only-1968-09.jpg

Anonymous, “Apollo Organization”, MIT Instrumentation Laboratory, 1 February 1969, accessed

3 July 2025, https://www.doneyles.com/LM/ORG/index.html

Greene, K.W., "MIT Management Development Plan Meeting #4", MIT Instrumentation

Laboratory, 7 Nov 1967, accessed 12 October 2025,

https://www.ibiblio.org/apollo/Documents/mit_dev_plan_meeting_04.pdf

https://www.ibiblio.org/apollo/Documents/ApolloOrg-1962-05.jpg
https://wehackthemoon.com/sites/default/files/styles/hero_extra_large_1x_2000x_/public/media/photograph/45838.jpg?itok=ECT1UPEe
https://wehackthemoon.com/sites/default/files/styles/hero_extra_large_1x_2000x_/public/media/photograph/45838.jpg?itok=ECT1UPEe
https://www.ibiblio.org/apollo/Documents/ApolloOrg-Group-23B-only-1968-09.jpg
https://www.doneyles.com/LM/ORG/index.html
https://www.ibiblio.org/apollo/Documents/mit_dev_plan_meeting_04.pdf

46

Anonymous. “MSC-A-R-66-5, Postlaunch Report for Mission AS-202 (Apollo Spacecraft 011)”,

NASA Manned Spacecraft Center, 12 October 1966

Anonymous. “R-527 (Rev 2) Guidance System Operations Plan for Unmanned LM Earth Orbital

Missions using Program SUNBURST, Section 7 G&N Error Analyses”, MIT Instrumentation

Laboratory, December 1967

Anonymous. “R-537 Guidance and Navigation System Operations Plan Apollo Mission 501”, MIT

Instrumentation Laboratory, July 1966

Anonymous. “R-557 Guidance System Operations Plan For Manned LM Earth Orbital Missions

Using Sundance (Rev. 306). Section 4 PGNCS Operational Modes (Rev 3)”, MIT Instrumentation

Laboratory, January 1969

Anonymous, “R-700, MIT’s Role in Project Apollo, Final Report on Contracts NAS 9-153 and

NAS 9-4065, Volume II, Optical, Radar and Candidate Subsystems”, MIT Charles Stark Draper

Laboratory, March 1972

Anonymous. “Report E-1236. Monthly Technical Progress Report. Project Apollo Guidance and

Navigation Program. Period Jun 11, 1962 through July 17, 1962”, MIT Instrumentation

Laboratory, 17 July 1962

Apollo 4 Mission Evaluation Team. “Apollo 4 Mission Report”, NASA Manned Spacecraft Center,

Houston, Texas, 7 January 1968

Apollo 5 Mission Evaluation Report, “Apollo 5 Mission Report, MSC-PA-R-68-7”, NASA

Manned Spacecraft Center, Houston, Texas, 27 March 1968

Apollo 11 Mission Evaluation Team, “16.2.5 Computer Alarms During Descent” in Apollo 11

Mission Report MSC-00171, NASA, Manned Spacecraft Center, Houston, Texas, November 1969

Battin, R. and R.Crisp, A.Green et al. “R-467, The Compleat Sunrise, Being a Description of

Program SUNRISE, (SUNRISE 33 – NASA DWG #1021102)”, MIT, September 1964

47

Bennett, F.V. “Apollo Spacecraft Software Configuration Control Board, Program Change Request

210”, 11 June 1968, accessed 9 January 2025,

https://www.ibiblio.org/apollo/Documents/PCR-210.pdf

Boston Globe, 18 October 1964, 109, accessed 30 June 2025

https://bostonglobe.newspapers.com/image/433781571/

Brock, David C. “Oral History of Margaret Hamilton”, Computer History Museum, CHM

Reference number: X8186.2017, accessed 16 January 2025,

https://archive.computerhistory.org/resources/access/text/2022/03/102738243-05-01-acc.pdf

Burkey, Ronald S. “Apollo Program MIT technical documents from JSC”, accessed 6 May 2025,

https://www.ibiblio.org/apollo/NARA-SW/IndexOfNaraBox209G.html

Buxton, J. N. and B. Randell, eds. Software Engineering Techniques: Report on a Conference

Sponsored by the NATO Science Committee, Rome, Italy, 27th to 31st October 1969, Brussels,

NATO Scientific Affairs Division, 1970

Cheatham, Donald C., Floyd V. Bennett, and Theoretical Mechanics Branch. "Apollo lunar module

landing strategy." in Apollo Lunar Landing Symposium 1966, 175-240.

Cherry, G.W. “Apollo Project Memo No. 1933. LM Program Items Discussed and Acted on at the

19th SCB Meeting”, 27 June 1968, accessed 9 January 2025,

https://www.ibiblio.org/apollo/Documents/Memo-SCB19_text.pdf

Cherry, G.W. “Apollo Spacecraft Software Configuration Control Board, Program Change Notice

497”, 15 July 1968, accessed 9 January 2025,

https://www.ibiblio.org/apollo/Documents/PCR-497.pdf

Cherry, George W. and Fred H. Martin. “MIT/IL Software Development Plan for LUMINARY 1B

LGC Program (Final Issue)”, MIT Instrumentation Laboratory, 22 August 1969

Dahlen, John M. and Albrecht Kosmala, Daniel J. Lickly, John T. Shillingford, Balraj Sokkappa.

“R-477 Guidance and Navigation System Operations Plan, Apollo Mission 202”, January 1965

https://www.ibiblio.org/apollo/Documents/PCR-210.pdf
https://bostonglobe.newspapers.com/image/433781571/
https://archive.computerhistory.org/resources/access/text/2022/03/102738243-05-01-acc.pdf
https://www.ibiblio.org/apollo/NARA-SW/IndexOfNaraBox209G.html
https://www.ibiblio.org/apollo/Documents/Memo-SCB19_text.pdf
https://www.ibiblio.org/apollo/Documents/PCR-497.pdf

48

Dijkstra, Edsger W. "The Humble Programmer." Communications of the ACM 15, no. 10 (1972):

859-866.

Eyles, D. “Apollo Spacecraft Software Configuration Control Board, Program Change Request

848, Prevent RR ECDUs from Stealing LGC Memory Cycles”, 23 July 1969, accessed 2 July

2025, https://www.ibiblio.org/apollo/Documents/PCR-848.pdf

Felleman, Philip G. “E-2066 Hybrid Simulation of the Apollo Guidance Navigation and Control

System”, MIT Instrumentation Laboratory, December 1966.

Fisk, Dale. Programming with Punched Cards, 2005, accessed 28 February 2025

https://web.archive.org/web/20090325223903/https://www.columbia.edu/acis/history/fisk.pdf

Glick, F.K. and Femino, S.R. “E-2475 A Comprehensive Digital Simulation for the Verification of

Apollo Flight Software”, MIT Charles Stark Draper Laboratory, January 1970.

Hall, Eldon C. “R-410 General Design Characteristics of the Apollo Computer”, MIT

Instrumentation Laboratory, May 1963

Hall, Eldon C. “R-700, MIT’s Role in Project Apollo, Final Report on Contracts NAS 9-153 and

NAS 9-4065, Volume III, Computer Subsystem”, MIT Charles Stark Draper Laboratory, August

1972

Hamilton, Margaret, “COMANCHE 55 AGC Program Listing”, MIT Instrumentation Laboratory,

28 March 1969, accessed 12 October 2025,

https://archive.org/details/Comanche55J2k60/mode/1up

Hamilton, Margaret, “R-567 Guidance System Operations Plan for Manned LM Earth Orbital and

Lunar Missions using Program LUMINARY 1B (Rev. 116) Section 4 PGNCS Operational Modes

(Rev. 6)”, MIT Instrumentation Laboratory, September 1969

Hamilton, Margaret. “The Language as a Software Engineer”, ICSE 2018 Plenary Sessions, 31

May 2018. Video, 25:26, https://www.youtube.com/watch?v=ZbVOF0Uk5lU

https://www.ibiblio.org/apollo/Documents/PCR-848.pdf
https://web.archive.org/web/20090325223903/https://www.columbia.edu/acis/history/fisk.pdf
https://archive.org/details/Comanche55J2k60/mode/1up
https://www.youtube.com/watch?v=ZbVOF0Uk5lU

49

Hand, James A. “R-700, MIT’s Role in Project Apollo, Final Report on Contracts NAS 9-153 and

NAS 9-4065, Volume I, Project Management, Systems Development, Abstracts and Bibliography”,

MIT Charles Stark Draper Laboratory, October 1971

Heffron W.G. “NASA CR-97638, Distribution of the Final Report of the Apollo Guidance

Software Task Force”, Bellcomm, Inc. 7 October 1968.

Hopkins, Albert and Ramon Alonso, Hugh Blair Smith. “R-393, Logical Description for the

Apollo Guidance Computer (AGC 4)”, 5 March 1963

Johnson, Madeline S. and Donald R. Giller. “R-700, MIT’s Role in Project Apollo, Final Report on

Contracts NAS 9-153 and NAS 0-4065, Volume V, The Software Effort”, MIT Charles Stark

Draper Laboratory, March 1971

Keese W.M. and B. H. Liebowitz, W.J. Martin et al., “Management Procedures In Computer

Programming Apollo – Interim Report”, Bellcomm Inc, 30 November 1964

Kernan, J. and C. Schulenberg. “LUMINARY Memo #30, LUMINARY Level 4 Test Plan”, MIT

Instrumentation Laboratory, 7 June 1968

Krause, K.W. “MIT/IL Software Anomaly Report, LNY 79, 20 June 1969, accessed 21 May 2025,

https://www.ibiblio.org/apollo/Documents/LNY-79.pdf

Liebowitz, B.H. and C.S. Sheppard, E.B Parker III. “Procedures for Management Control of

Computer Programming in Apollo”, Bellcomm Inc., 28 September 1966

Lorenz, E.N., “The statistical prediction of solutions of dynamical equations”. Proc. Int. Symp. on

Numerical Weather Prediction, Tokyo, Japan, Meteorological Society of Japan, 1962, 629–634.

Millard, R.C. “MIT Management Development Plan Meeting #6”, 21 November 1967

Miller, John E. and Ain Laats. “E-2397, Apollo Guidance and Control System Flight Experience”,

MIT Instrumentation Laboratories, June 1969.

Mimno, Peter. “R-599 Digital Simulation Manual”, MIT Instrumentation Laboratory, January

1968.

https://www.ibiblio.org/apollo/Documents/LNY-79.pdf

50

MIT Video Productions. “Apollo Guidance Computer Project – MIT History Conference pt.2 –

2001”, 14 September 2001, https://www.youtube.com/watch?v=quIfco4RLCg

Mutchler, J.V. “TRW Note No. 68-FMT-643. Apollo CMC/LGC Software Development Plan”, 30

April 1968

Naur, Peter and Brian Randell, eds. Software Engineering: Report of a conference sponsored by the

NATO Science Committee, Garmisch, Germany, 7-11 Oct. 1968, Brussels, NATO Scientific Affairs

Division, 1969

Nevins, J. L. “MIT Instrumentation Laboratory, DG Memo No.88, Description and Status of AGC

Program”, 20 January 1964

Obama, Barack “Remarks on Presenting the Presidential Medal of Freedom”, 22 November 2016,

accessed 3 July 2025,

https://www.presidency.ucsb.edu/documents/remarks-presenting-the-presidential-medal-freedom-1

5

Sampson, J.A. “Flight 501 Memo #8. Programming Changes from AS-202 to AS-501”, MIT

Instrumentation Laboratory, 7 October 1968

Sampson, Jay. “Flight 501 Memo #10, Summary of Results of AS-501 Digital Simulations”, MIT

Instrumentation Laboratory, 26 October 1966

Schulenberg, C. “LUMINARY Memo #103”, MIT Instrumentation Laboratory, 6 August 1969

Shillingford, J. “Apollo Spacecraft Software Configuration Control Board, Program Change

Request 547”, 3 September 1968, accessed 7 May 2025,

https://www.ibiblio.org/apollo/Documents/PCR-547.pdf

Sullivan, Madeline M. “Hybrid Simulation of the Apollo Guidance and Navigation System”,

Simulation, Vol 7 No 1 July 1966.

The Guidance Software Validation Committee. "Apollo Guidance Software Development and

Verification Plan”, 4 October 1967

https://www.youtube.com/watch?v=quIfco4RLCg
https://www.presidency.ucsb.edu/documents/remarks-presenting-the-presidential-medal-freedom-15
https://www.presidency.ucsb.edu/documents/remarks-presenting-the-presidential-medal-freedom-15
https://www.ibiblio.org/apollo/Documents/PCR-547.pdf

51

The Virtual AGC Project, “Apollo and Gemini Document Library”, accessed 23 July 2023,

https://www.ibiblio.org/apollo/links2.html#gsc.tab=0

The Virtual AGC Project, “Command-Module Flight Software”, accessed 4 July 2025,

https://www.ibiblio.org/apollo/Colossus.html#gsc.tab=0

The Virtual AGC Project, “Lunar Module Flight Software”, accessed 4 July 2025,

https://www.ibiblio.org/apollo/Luminary.html#gsc.tab=0

The Virtual AGC Project GitHub Repository. “SINGLE_PRECISION_SUBROUTINES.agc.html”,

accessed 20 January 2025,

https://www.ibiblio.org/apollo/listings/Comanche055/SINGLE_PRECISION_SUBROUTINES.agc

.html

The Virtual AGC Project GitHub repository. “SUNBURST/120

FRESH_START_AND_RESTART.agc.html”, accessed 1 July 2025

https://www.ibiblio.org/apollo/listings/Sunburst120/FRESH_START_AND_RESTART.agc.html#4

64F524745544954

The Virtual AGC Project GitHub repository. “T4RUPT_PROGRAM.agc.html”, accessed 2 July

2025,

https://www.ibiblio.org/apollo/listings/Luminary116/T4RUPT_PROGRAM.agc.html#5252415554

43484B

The Virtual AGC Project GitHub repository. “THE_LUNAR_LANDING.agc.html”, accessed 16

May 2025, https://www.ibiblio.org/apollo/listings/LUM69R2/THE_LUNAR_LANDING.agc.html

Tindall, Howard W. “66-FM1-59. Spacecraft computer program requirements for AS-207/208,

AS-503, and AS-504”, 12 May 1966, accessed on 13 February 2025,

https://www.ibiblio.org/apollo/Documents/tindallgrams02.pdf

Tindall, Howard W. “66-FM1-70. Spacecraft computer program status report”, 2 June 1966,

accessed 13 February 2025, https://www.ibiblio.org/apollo/Documents/tindallgrams02.pdf

https://www.ibiblio.org/apollo/links2.html#gsc.tab=0
https://www.ibiblio.org/apollo/Colossus.html#gsc.tab=0
https://www.ibiblio.org/apollo/Luminary.html#gsc.tab=0
https://www.ibiblio.org/apollo/listings/Comanche055/SINGLE_PRECISION_SUBROUTINES.agc.html
https://www.ibiblio.org/apollo/listings/Comanche055/SINGLE_PRECISION_SUBROUTINES.agc.html
https://www.ibiblio.org/apollo/listings/Sunburst120/FRESH_START_AND_RESTART.agc.html#464F524745544954
https://www.ibiblio.org/apollo/listings/Sunburst120/FRESH_START_AND_RESTART.agc.html#464F524745544954
https://www.ibiblio.org/apollo/listings/Luminary116/T4RUPT_PROGRAM.agc.html#525241555443484B
https://www.ibiblio.org/apollo/listings/Luminary116/T4RUPT_PROGRAM.agc.html#525241555443484B
https://www.ibiblio.org/apollo/listings/LUM69R2/THE_LUNAR_LANDING.agc.html
https://www.ibiblio.org/apollo/Documents/tindallgrams02.pdf
https://www.ibiblio.org/apollo/Documents/tindallgrams02.pdf

52

Tindall, Howard W. “66-FM1-100. Notes regarding the AS-207/208 Guidance Systems Operation

Plan (GSOP) meeting with MIT”, 30 August 1966, accessed 13 February 2025,

https://www.ibiblio.org/apollo/Documents/tindallgrams02.pdf

Tindall, Howard W. “66-FM1-124. Program Development Plans are coming!!”, 12 October 1966,

accessed on 21 March 2025, https://www.ibiblio.org/apollo/Documents/tindallgrams02.pdf

Tindall, Howard W. “66-FM1-170. More interesting things about our work with MIT”, 28

November 1966, accessed 13 February 2025,

https://www.ibiblio.org/apollo/Documents/tindallgrams02.pdf

Tindall, Howard W. “66-FM1-191. MIT’s digital computers are saturated until the IBM 360

becomes operational”, 22 December 1966, accessed 13 February 2025,

https://www.ibiblio.org/apollo/Documents/tindallgrams02.pdf

Tindall, Howard W. “67-FM1-17. AS-206 Spacecraft Computer Program Newsletter”, 31 January

1967, accessed on 17 March 2025, https://www.ibiblio.org/apollo/Documents/tindallgrams02.pdf

Tindall, Howard W. “67-FM1-18. Spacecraft Computer Program Development Newsletter”, 27

February 1967, accessed on 17 March 2025,

https://www.ibiblio.org/apollo/Documents/1967_tindallgrams.pdf .

Tindall, Howard W. “67-FM1-23. Summary of what needs to be done to develop flight confidence

in the spacecraft computer programs”, 23 March 1967, accessed on 17 March 2025,

https://www.ibiblio.org/apollo/Documents/1967_tindallgrams.pdf .

Tindall, Howard W. “67-FM1-39. A new spacecraft computer program development working

philosophy is taking shape”, 17 May 1967, accessed on 13 January 2025,

https://web.mit.edu/digitalapollo/Documents/Chapter7/tindallgrams.pdf

Tindall, Howard W. “68-PA-T-48A. Ascent Phase Mission Techniques meeting - February 27”, 4

March 1968, accessed on 7 May 2025,

https://www.ibiblio.org/apollo/Documents/tindallgrams02.pdf

https://www.ibiblio.org/apollo/Documents/tindallgrams02.pdf
https://www.ibiblio.org/apollo/Documents/tindallgrams02.pdf
https://www.ibiblio.org/apollo/Documents/tindallgrams02.pdf
https://www.ibiblio.org/apollo/Documents/tindallgrams02.pdf
https://www.ibiblio.org/apollo/Documents/tindallgrams02.pdf
https://www.ibiblio.org/apollo/Documents/1967_tindallgrams.pdf
https://www.ibiblio.org/apollo/Documents/1967_tindallgrams.pdf
https://web.mit.edu/digitalapollo/Documents/Chapter7/tindallgrams.pdf
https://www.ibiblio.org/apollo/Documents/tindallgrams02.pdf

53

Tindall, Howard W. “68-PA-T-106A. Spacecraft computer program newsletter”, 24 May 1968,

accessed on 7 May 2025, https://www.ibiblio.org/apollo/Documents/tindallgrams02.pdf

Tindall, Howard W. “68-FM-T-225. Results of' the October 8 Apollo Spacecraft Software

Configuration Control Board (ASSCCB) meeting”, 16 October 1968, accessed on 7 May 2025,

https://www.ibiblio.org/apollo/Documents/tindallgrams02.pdf

Tindall, Howard W. “FA-115, Flight ropes for Apollo 16 and 17”, 17 August 1971, 1, accessed on

2 July 2025, https://www.ibiblio.org/apollo/Documents/16_17_flight_ropes.pdf

Trageser, Milton B. “A recoverable interplanetary space probe”, Astronautics, Volume 5, Issue 5,

May 1960

Turing, A. M. "On Computable Numbers, with an Application to the

Entscheidungsproblem." Proceedings of the London Mathematical Society s2-42, no. 1 (1937):

230-265.

https://www.ibiblio.org/apollo/Documents/tindallgrams02.pdf
https://www.ibiblio.org/apollo/Documents/tindallgrams02.pdf
https://www.ibiblio.org/apollo/Documents/16_17_flight_ropes.pdf

54

Secondary Sources

Ambika, G. "Ed Lorenz: Father of the ‘Butterfly Effect’." Resonance 20, no. 3 (2015): 198-205.

Bilstein, Roger E. Stages to Saturn: A Technological History of the Apollo/Saturn Launch Vehicles.

Washington, DC: NASA SP-4206, 1980.

Booch, Grady. "The History of Software Engineering." IEEE Software 35, no. 5 (2018): 108-114.

Brooks, Courtney G. and James M. Grimwood, Loyd S. Swenson. “Preparations for the First

Manned Apollo Mission” in Chariots for Apollo: A History of Manned Lunar Spacecraft, NASA

Special Publication-4205, NASA History Series, 1979. Accessed 10 February 2025,

https://solarviews.com/history/SP-4205/ch8-7.html

Campbell-Kelly, Martin. Computer: A History of the Information Machine. 3rd ed. Boulder:

Westview Press, 2014.

Garner, Robert and Rick Dill, "The Legendary IBM 1401 Data Processing System." IEEE Solid

State Circuits Magazine 2, no. 1 (2010): 28-39.

Hack The Moon. “The First Apollo Mission Contract goes to…”. Accessed 8 May 2025,

https://wehackthemoon.com/people/first-apollo-mission-contract-goes

Hall, Eldon C. Journey to the moon: the history of the Apollo guidance computer. Aiaa, 1996.

Hancock, James Rubio. “Margaret Hamilton, the programming pioneer who took Apollo to the

Moon”, El Pais, 25 December 2014, accessed 16 January 2025,

https://verne.elpais.com/verne/2014/12/11/articulo/1418314336_993353.html

Hattis, Philip D. "How Doc Draper Became The Father Of Inertial Guidance", Advances in the

Astronautical Sciences AAS/AIAA Guidance, Navigation and Control 2018, volume 164.

Launius, Roger D. "Interpreting the Moon Landings: Project Apollo and the Historians." History

and Technology 22, no. 3 (2006): 225-255.

https://solarviews.com/history/SP-4205/ch8-7.html
https://wehackthemoon.com/people/first-apollo-mission-contract-goes
https://verne.elpais.com/verne/2014/12/11/articulo/1418314336_993353.html

55

Light, Jennifer S. "When Computers were Women." Technology and Culture 40, no. 3 (1999):

455-483

Logsdon, John M. The Decision to Go to the Moon: Project Apollo and the National Interest.

Cambridge, MA: The MIT Press, 1970.

McDougall, Walter A. ... The Heavens and the Earth: A Political History of the Space Age. New

York: Basic Books, 1985.

March To The Moon. “Apollo Program History”, accessed 14 May 2025,

https://tothemoon.im-ldi.com/about/apollo_history

Maurer, Richard. The Woman in the Moon: How Margaret Hamilton Helped Fly the First

Astronauts to the Moon. Roaring Brook Press, 2023.

Mieczkowski, Yanek. Eisenhower's Sputnik Moment: The Race for Space and World Prestige. 1st

ed. Ithaca: Cornell University Press, 2013.

Mindell, David A. Digital Apollo: Human and Machine in Spaceflight. 1st ed. Cambridge, MA:

MIT Press, 2008;2011

Murray, Charles and Catherine Bly Cox. Apollo: The Race to the Moon. New York: Simon and

Schuster, 1989.

O’Brien, Frank, ed. The Apollo guidance computer: Architecture and operation. New York, NY:

Praxis, 2010.

O’Regan, Gerard. Brief History of Computing. 3;3rd 2021;Third; ed. Cham: Springer, 2021

Parker, Phil. “The Apollo On-board Computers”, Apollo Flight Journal, accessed 16 May 2025,

https://www.nasa.gov/history/afj/compessay.html .

Shetterly, Margot Lee. Hidden Figures: The American Dream and the Untold Story of the Black

Women Mathematicians Who Helped Win the Space Race. New York: HarperCollins, 2016.

Shorey, Samantha and Daniela K. Rosner. "A voice of process: re-presencing the gendered labor of

Apollo innovation." communication+ 1 7, no. 2 (2019).

https://tothemoon.im-ldi.com/about/apollo_history
https://www.nasa.gov/history/afj/compessay.html

56

Tomayko, James E. "Computers in spaceflight: the NASA experience." Kent, Allen; Williams,

James G., eds. Encyclopedia of Computer Science and Technology 18, no. NAS 1.26: 182505

(1988).

Tylko, John. “MIT and navigating the path to the moon”, AeroAstro, 2009, accessed 19 January

2025, https://web.mit.edu/aeroastro/news/magazine/aeroastro6/mit-apollo.html

https://web.mit.edu/aeroastro/news/magazine/aeroastro6/mit-apollo.html

	Abstract
	
	Introduction
	1​Genesis and Early Software Development Stages (1961–1964)
	2​Initial Inroads into Software Engineering (1964–1966)
	3​Crisis and the Emergence of Software Engineering (1966–1968)
	4​Software Engineering Matures (1968–1971)
	Conclusion
	
	Appendix: Apollo Guidance Computer Software Releases
	Bibliography
	Primary Sources
	Secondary Sources

