CREW PROCEDURES ORBITAL GUIDANCE AND NAVIGATION PROGRAM

NAVIGATION SECTION

1.0 PROGRAM DESCRIPTION

The CPB Guidance and Navigation Program, henceforth referred to as AAP, is a modification set to Program BETELGEUSE. The program library currently exists on tapes 183 or 184 in the Building 35 Tape . Library.

AAP provides environment and estimated states for two vehicles, rendezvous sensors and an inertial platform. These vehicles may be in orbit about either the earth or moon.

The navigation filter is a generalization of the Apollo-LM squareroot filter to two-vehicle estimation plus estimated sensor biases. A detailed exposition of the theory of this filter may be found in references 1 and 2, and of the covariance advancement method in reference 3. The filter accepts measurements of relative angle, range and/or rangerate, and updates the state of either or both vehicles in an optimal fashion.

The program is structured into a main overlay, and 1st and 2nd primary overlays. The main overlay lists input/output devices, zeros working core and sets values for sensor error models. The 1st primary overlay contains input/output routines, state and covariance integrators and the navigation package. The 2nd primary overlay contains subroutines necessary to compute rendezvous maneuvers as currently defined.

By the setting of appropriate flags, AAP can be caused to run in either single-run or monte-carlo modes. Data as specified by the user is collected at intervals on each cycle of a monte-carlo run, and stored on a local mass-storage file for later transference to a permanent data tape. This data may then be processed statistically by a separate program.

The following sections will deal with those portions of AAP which constitute the navigation function, and its controlling subroutines. It will be assumed that the user is otherwise familiar with standard BETEL-GEUSE functions and the operation of the guidance overlay.

2.0 PROGRAM CONTROL

n.ve

The sequence of cards portrayed in figure 2.1 constitutes the controlling set to read the program library, update corrections, load, execute and transfer run data from local to permanent storage. The following notes corresponding to cards identified with the same number are provided for clarity:

1. Creates local mass-storage file for monte-carlo data

2. Requests program library tape

3. Copies program library to local file

4. Copies compile file to local file

5. Update changed subroutines from program library

- 6. Compile updated routines
- 7. Rewind update file

8. Copy changed subroutines into compile file

9. Request additional field length for loading

10. Load updated program

11. Set up overlay linkages

12. Reduce to execution field length

13. Execute

14. Create a dummy file

15. Rewind the program data storage file

16. Request the permanent data storage tape

17. Turn data storage tape past previously stored data

18. Copy new data onto tape

Should abnormal termination of the program occur, placement of an EXIT. card following UNLOAD(DTAPE) will cause control to be transferred to the EXIT. card, and execution of all cards following. The card sequence from REWIND(FAKE) to UNLOAD(DTAPE) should be duplicated and placed behind the EXIT. card. This will prevent loss of data in the event of abnormal termination. In order for a subroutine to be modified, it must already exist in the tape program library. Attempts to add a previously non-existent subroutine will cause error termination. To ameliorate the effect of this restriction, the first primary overlay contains five dummy subroutines, OPEN1 to OPEN5. These may be modified as required to provide currently undefined program operations.

3.0 REQUIRED INPUT DATA

In order to produce desired program operation, it is necessary to specify sensor and IU error models, navigation initializing and control information and platform alignment times. If maneuvers are to be performed, targeting data and instructions as to which will be stored for later processing are also required. Vehicle state vectors and their covariance are specified in the usual way for all BETELGEUSE programs requiring such information.

3.1 HARD-WIRED CONSTANTS

Rendezvous sensors, alignments and maneuver applications are all modelled by AAP as pure Gaussian processes. Values for the means and standard deviations of these processes are set in program MAIN of the main overlay by FORTRAN replacement statements. Figure 3.1 presents the relevant portions of program MAIN with the subject variables underlined. A correction set of similar replacement statements must be contained in the update portion of the operating deck if sensors being modelled have a different error model than that shown in figure 3.1:

VARS ACCELEROMETER SCALE FACTOR ERROR (DIMENSIONLESS)

VARA DELTA-V CUTOFF UNCERTAINTY (FT/SEC)

<u>RVAR</u> ACTUAL VALUE OF RANGE MEASUREMENT ERROR AS A FRACTION OF TOTAL RANGE (DIMENSIONLESS)

RVARMIN ACTUAL VALUE OF MINIMUM RANGE ERROR (FT)

<u>VVAR</u> ACTUAL VALUE OF RANGE-RATE MEASUREMENT ERROR AS A FRACTION OF TOTAL RANGE-RATE (DIMENSIONLESS)

VVARMIN ACTUAL VALUE OF MINIMUM RANGE-RATE ERROR (FT/SEC)

VARAZ ACTUAL VALUE OF AZIMUTH MEASUREMENT ERROR (RADIANS)

VAREL ACTUAL VALUE OF ELEVATION MEASUREMENT ERROR (RADIANS)

- BR, BV, BAZ, BEL ACTUAL VALUES OF RANGE, RANGE-RATE, AZIMUTH AND ELEVATION MEASUREMENT BIASES. THESE ARE SET IN THE FIRST VISIT TO THE SENSOR NOISE SUBROUTINE ON THE BASIS OF THE VALUES OF BRO, BVO, BAZO AND BELO
- BRO ACTUAL VALUE OF RANGE BIAS ERROR (FT)

BVO ACTUAL VALUE OF RANGE-RATE BIAS ERROR (FT/SEC)

BAZO ACTUAL VALUE OF AZIMUTH BIAS ERROR (RADIANS)

BELO ACTUAL VALUE OF ELEVATION BIAS ERROR (RADIANS)

GDR ACTUAL VALUE OF GYRO DRIFT RATE ERROR (RADIANS/SEC)

ALIGNB ACTUAL VALUE OF INITIAL MIS-ALIGNMENT BIAS ERROR (RADIANS)

NFAMA INITIALIZER FOR MANEUVER APPLICATION ERRORS

NFAMB INITIALIZER FOR SENSOR BIAS ERRORS

. •

03/08/73 MSC VERSION 9.0 SCOPE-3-3----296-4 13.38.57.0APJH3S 13.30.57.00PJH,0M69000,PP7,T19009,MT91. 17.30.57. PEWIND (CAL). 1-7 30-57-9ENIND(STAT) 2. 30.57. REQUEST (TAPE1) PEFL183 13-31-14-POLLOUT COMPLETED. (FL 60000) 14.33.51.POLLIN COMPLETED. 14.34.14. (33 ASSTGNED) 14.34.04. REWIND (TAPE1) 3-14-34-84- COPYPE (TAPE1, KEN1) 4. 14.34.16.COPYPE(TAPE1,KEN2) U.S.J 14-34-25-UNLOAD (TAPE1) -14.34.26. PENIND (KEN1, KEN2) z -14-34-26-HPRATE (P=KE+11-W) 14.34.27 PEADING INPUT E-14-35-16-UPDATE-COMPLETE -6. 14.35.16. FTN (T=CCMPTLE). -14-36-30- 17-7-9-CP-SECONDS-COMPILATION TIME 7. 14.35.31.REWIND(LAO) 8-14-36-31-COPYL(X5+-2,1-5), XXX1-14.36.33. RK UPDATED UPDATED -14-35-34-INPUT 14.36.34. GNEXEC UPDATED 14-36-34- DELTAV UPDATED 14.36.34. STOPE1 UPDATED UPDATED -14.36.35 OUTPAT 14.36.87. POPCUT UPDATED -14-36-39- OPEN3-UPDATED - 36.40. CPEN4 UPDATED 36-40. OPENS UPDATED UPDATED -1, 36.42. CLOD 14.36.42. ICERR UPDATED 14.36.43. GIDSEL UPDA TED 14-36-49-COPYL DONE 9. 14.36.49.PFL,70003. < 14-36-40-LOAD(XXXY 10. 14.37.26.NOGO. <--11. 14-37-26-RFL,6000---< 12. 14.37.26. AAP. < 13. 14-38-44-POLLOUT COMPLETED. (FL 60000)-14.52.30.POLLIN COMPLETED. 15-27-52-FXIT -14. 15.27.52.PEWIND (FAKE) 141 15. 15.27.52-PFNTND15TATT 15.27.52. PEQUEST ("TAPF) ENAMELE WRITE ON REEL < 16. 15-27-52-285 15.28.17. (32 ASSIGNED) 15.28.17.PENIND (DTAPE) 15.28.17. COPYPE (DTAPE, FAKE, ?) -17. 15-28-30-COPYPEISTAT OTAPET 18. 21 15.29.13 PELEASE(FAKE) 11 15,29.13. HNLDAD (DTAPE) 0£ 15.20.14.MT 32 BLOCKS WRITTEN--800156 6 15.29.20.CP 1350.320 SEC. 8 315.604 SEC. .29.21.PP L 062.445 SEC. 29-20-IU 9 S _Figure 2.1_AAP_Control Cards

			•	1.4
C	LOAD ERROR MODEL		\	
	VARS=1.E-4			
	VARA=1.E-1			
C				
	RVAR=0.			
	RVARMIN = 33			
	VVAR=4.3E-3			
	VVARMIN=.43			
	VARAZ=2.E-3	• *	•	
	VAREL=2.E-3			
	<u>BR=0</u> ,			
	BV=0.			
	BAZ=0.			
	BEL=0.			
	BRO=0.			
	BV0=0.			
	BAZ0=17.45E-3		•	
	BEL0=17.45E-3			
C .				-
•	GDR=1.45E-7			
	ALIGNB=3.E-4			
	NFAMA= 46728			
*4	NFAMB= 12944			
	NFAMC= 31171	والتنهيب سيوفحه بحدوانه		antinia di Sanda Ingga antifasja.
	NFAMV= 22222			
C			· · ·	
	RVARB=0.			
	RVARMNB = 33.			
	VVARB=4.3E-3			
	VVARMNB=.43			1
	VARAZB=2.E-3			
	VARELB=2.E-3			
C				
and a local sector of the sect				

1.7

Figure 3.1 Hard-wired constants

.

NFAMC INITIALIZER FOR PLATFORM MISALIGNMENT AND DRIFT ERRORS

NFAMV INITIALIZER FOR SENSOR RANDOM NOISE ERRORS

<u>RVARB</u> FILTER VALUE OF RANGE MEASUREMENT ERROR AS A FRACTION OF TOTAL RANGE (DIMENSIONLESS)

RVARMNB FILTER VALUE OF MINIMUM RANGE ERROR (FT)

<u>VVARB</u> FILTER VALUE OF RANGE-RATE MEASUREMENT ERROR AS A FRACTION OF TOTAL RANGE-RATE (DIMENSIONLESS)

VVARMNB FILTER VALUE OF MINIMUM RANGE-RATE ERROR (FT/SEC)

VARAZB FILTER VALUE OF AZIMUTH MEASUREMENT ERROR (RADIANS)

VARELB FILTER VALUE OF ELEVATION MEASUREMENT ERROR (RADIANS)

All values are to be given 1-sigma (standard deviation) including sensor biases. Bias processes are considered as having a zero mean; these are constructed at the beginning of program execution and become the mean value of any subsequent random process. To the extent that it models or ignores sensor biases, and compensates for random noise in the weighting process, the filter contains a model of every known random process affecting the value of a measurement. The difference between the actual value of a random process, and the filter value, is that in general the actual values can only be guessed at. Hence the actual and filter values are not in general the same, and it is customary to set the filter value larger than the largest expected value of the actual errors.

3.2 INPUT DATA CARDS

In addition to normal BETELGEUSE input cards, additional cards are defined which control the storage of data at selected maneuvers, the performance of navigation processes and the time of platform alignments. Also, some of the BETELGEUSE input features are utilized in the normal way to set flags and support the input of other required data. These will now be examined on a card-by-card basis as to placement and content:

CARD #1, INTEGER PARAMETER, 1415

IDENT, C1-C5, Program will execute number of monte-carlo cycles equal to IDENT

NP, C6-C10, Number of P-array variables in data file

NINT, Cll-Cl5, Starting value of NGUIDE (determines which maneuver of rendezvous sequence is first)

NFIRST, C16-C20, BETELGEUSE initial condition option

NTABLE, C21-C25, Number of tables in input data file

- NV, C26-C30, Number of variables to be integrated (NV=37 for navigation runs)
- NMORE, C31-C35, Number of additional integer parameters to be read in on succeeding cards
- NT(1), C36-C40,
- NCOL, C41-C45, Number of columns of W to be advanced (must be greater than or equal to the number of variables being estimated)
 - C46-C50, Not used

C51-C55, Not used

- NPER, C56-C60, Number of navigation procedure cards in input file
- IBLATE, C61-C65, Keplerian gravity flag. IBLATE=0 specifies point mass accelerations. IBLATE=1 causes computation of aspherical perturbations
- IE, C66-C70, TPI angle search flag. IE=O causes TPI to be done on time. Otherwise, angle.
- CARD #2, CARD #3, HOLLERITH FIELD, 72H each Two comment cards for the purpose of describing and labeling the run deck
- CARD #4, DATA STORAGE CONTROL, 1515

Flags for the storage of up to 8 sets state vector and delta-v information at selected rendezvous maneuvers. The number of the integer field in the sequence of 15 determines at which maneuvers data will be stored, by setting a right-adjusted 1 in that field. EXAMPLE: A '1' in column 25 of this card causes data to be stored at NGUIDE=5, that is, TPT.

CARD #5 et seq., BETELGEUSE FLOATING POINT (P-ARRAY), 15, E15.7 P(297)=Input value of NFAM2, initial state error initializer

NAVIGATION PROCESS CONTROL CARDS, CONTIGUOUS WITH END OF BETELGEUSE FLOATING FOINT ENTRIES. THE NUMBER OF THESE CARDS MUST BE EQUAL TO NPER, AND CONVERSELY. 212,3F7.1,9F5.2,12

The following explaination applies to Ith card (I=1,NPER), that is, the Ith navigation procedure to be executed during each run: NE(I), Cl-C2, Value of NE(I) dtermines when card will become active. If NE(I)=5, card will become active during guidance period when NGUIDE=5, i.e. preTPI.

- DTL(I), C5-Cll, Number of minutes after previous maneuver that this card will become active. If there has been no previous maneuver, program will define previous maneuver as having occurred at time=0.
- DTN(I), Cl2-Cl8, Number of minutes before next maneuver that this card will become inactive.
- DTM(I), C19-C25, Number of minutes between measurements called for by this card.
- USP(I), C26-C30, 1-sigma radius of S/C position uncertainty, in thousands of feet
- USV(I), C31-C35, 1-sigma radius of S/C velocity uncertainty, in feet/second
- UTP(I), C36-C40, 1-sigma radius of TGT position uncertainty, in thousands of feet
- UTV(I), C41-C45, 1-sigma radius of TGT velocity uncertainty, in feet/second
- SR(I), C46-C50, 1-sigma range measurement bias uncertainty, in thousands of feet
- SO(I), C56-C60, l-sigma radius of angle measurement bias uncertainty about line-of-sight, milliradians
- SCl(I) and SC2(I), C61-C70, Dummy estimated constants, not currently defined, corresponding to elements 17 and 18 of the estimated state vector. Unless defined, these should be set to 0.
- NW(I), C71-C72, Reinitialization flag. NW(I)=0 causes a spherical reinitialization of the W-matrix to a diagonal form with values specified by C26-C70. NW(I)=1 inhibits the resetting of W and causes this procedure to become active with the existing value of W.

1	Figure 4.1 AAP Block Data									
0	BETELGEU 200 VEC LONGTIUDE LATITUDE ALT RATE 108 VEL 115	ADING X-BAR	A Y-BAR Z-BAR	U-BAR V-BAR W-BAR						
NAV	215.9674. 36.134 -75.88198 25557.69 17	3.48 B 127.	1933.	-2.84 -4.49 .18						
- A G T	<u>21513368. 35.138 75.873 92 25556.58 17</u>	2.958 180.	- 200% -13.							
	VS(POE) VS(PEE) VSD(BPE) VSD(BPE) 75	N STATE 1320.0 STATE XI(BRE)	YT(BRF) ZT(BRF)	XTD(BRF) YTD(BRF) ZTD(BRF)						
VAV	424213832881862095985312505.60 -22276.39	753.70 4242053.		12507.54 22280.53 -750.99						
ACT	4240690309666820862699. 12504.20 22275.49 -	755.53 4240567.	-309693220862871.	12565.78 22279.45 -763.99						
1	CARTESIAN STATE ERP	ORS IN MEASUREMENT								
	$\frac{XSE(MF)}{1341} = \frac{YSE(MF)}{-8596} = \frac{ZSE(MF)}{-2677} = \frac{-8.93}{-7.27} = \frac{-7.27}{-7.27}$	-3.57 1047.	-8704. 2682.	-8.84 -7.52 -3.80						
			\$							
8 -	RELAI	IIVE STALE ERRURS	***********************	<u>LOCITY************************************</u>						
1	RANGE R-RATE AZIMUTH ELEV SC1	SO2 XRE (MF)	YRE(MF) ZRE(MF)	XRDE(MF) YRDE(MF) ZRDE(MF)						
	<u>1. U</u> <u>1. U</u> <u>1. U</u> <u>3. U</u> <u>1. U</u>		S-DOT SD-CDEL	DELTA-H DELH-DOT D						
	RELATIVE PARAMETERSMARKS C		326 .234							
NA M	RANGE R-RATE AZIMUTH REL ELEV MFL3 0 UR 1	17.5 F	OVARIANCE OF RELATIVE E	RRORS (MF)						
ACT	3394.95 4.483 32.152 VHF 0 UAZ	4.6 X 144E+31	.452E+01 .566E-J1 .2	228E-01 .591E-02 .386E-03						
MEAS		4.5 Y F1.19554	15186 145F+01	+54E-03 .629E-02 .225E-01						
	IVERTIAL STANDARD DEVIATIONS E	883 XD 65958	.13667 .01338 .0	246E-01 .686E-04 .293E-05						
5/0	5349. 8738. 4128. 9.36 11.71 2.81 SRD .9	937 YD .15770	•92154 •15666	•10274 •278E-01 •574E-04						
- TGT	$-5349 - 8737 - 4128 - 9 \cdot 35 - 11 \cdot 71 - 2 \cdot 81 - 542 \cdot 342 - 34$	397	•00430 •00113							
12123										
	4.518 2NG2T013839 ETADI689 UVNUR									
	1.703 DVDOP									
1										
	AVIGATION-BURN ESTIMATE-IS DU= -2.412 DV= 4.344	4-DW= .109 (3							
THE AC	CTUAL COMPUNENTS WERE DU= -2.484 DV= 1.4.294	4 DW= .18/								
- ·										
1	' BETELGEI	USE STATE 1380.0	× 010 7 010							
	RAD_VEC_LONGITUDE_LATITUDE_ALT_RATE_HOR_VEL_H	$\frac{\text{E4DING}}{7,7,9} = \frac{\text{X-BAR}}{-31}$	-5612.	112331						
43T-	-21513493 - 19.474 - 75.795 - 1.0019 - 25560 - 34 - 17	7:.810 15.		•07 -•06 •07						
	CARTEST	AN-STATE-1380-0	• •							

.

ALIGNMENT CONTROL CARD, CONTIGUOUS WITH THE END OF NAVIGATION PROCESS CONTROL CARDS. THIS CARD MUST BE PRESENT, EVEN IF BLANK. 12.10E7.1

Program will read up to 10 decimal fields on card, following integer field. Integer in first two columns determines how many F-fields will be read in subsequent columns. Subsequent columns contain the times, in seconds, of desired platform realignments during each run. If card is blank, an alignment is automatically performed at time=0.

INPUT STATE COVARIANCE MATRIX, IMMEDIATELY FOLLOWING ALIGNMENT CARD. THIS MATRIX MUST BE PRESENT WITH DIMENSION 24×24 IF P(297) IS OTHER THAN ZERO.

INPUT TABLES CALLED FOR BY NTABLE, IMMEDIATELY FOLLOWING INPUT COVARI-ANCE MATRIX. THESE TABLES MUST BE PRESENT IF NTABLE IS GREATER THAN ZERO.

4.0 OUTPUT

Program AAP originates printed and mass storage output. Printed output is originated by the 2nd primary overlay during maneuver computations, by the 1st primary overlay during maneuver applications, and at each platform alignment. Block data on all vehicle states, and the status of the navigation, is printed periodically as specified by the user. A sample of such output is shown in figure 4.1 and will be discussed below. Block data print interval is controlled by setting P(9)equal to the desired print interval, in seconds. Block data is automatically printed every time the guidance (2nd) overlay is called, or whenever the W-matrix is reinitialized.

Area A: Time, in seconds, of the block print.

Area B: Azimuth of ground track; east is 0°, south is 90°, etc.

Cartesian State: Earth centered inertial frame (BRF)

Cartesian State Errors in Measurement Frame (MF): Measurement frame is defined as follows-

 $\text{UNIT}(\underline{X}_{MF}) = \text{UNIT}(\underline{Y}_{MF} \times \underline{Z}_{MF})$

 $\text{UNIT}(\underline{Y}_{MF}) = \text{UNIT}(\underline{R}_{TGT}) - \underline{R}_{S/C})$

 $\text{UNIT}(\underline{Z}_{MF}) = \text{UNIT}(\underline{R}_{S/C} \times \underline{Y}_{MF})$

XSE, YSE, ZSE: SPACECRAFT POSITION ERROR XSDE, YSDE, ZSDE: SPACECRAFT VELOCITY ERROR

XTE, YTE, ZTE: TARGET POSITION ERROR XTDE, YTDE, ZTDE: TARGET VELOCITY ERROR STATE ERRORS IN MF Relative State Errors: Bias estimation portion is the estimated bias minus actual bias for each sensor in ft, fps; mr.

XRE, YRE, ZRE: RELATIVE POSITION ERRORS IN MF (ft) XRDE, YRDE, ZRDE: RELATIVE VELOCITY ERRORS IN MF (fps)

Relative Parameters: Navigated and actual values of range, range-rate, azimuth and elevation in the local vertical inplane frame. Measured values of these quantities have noise and biases added and are given in the estimated measurement frame. Units are ft, fps, deg.

Area C: Navigation Status

MFLG: Filter status flag: MFLG=0 Marking is enabled on any procedure active during this period. MFLG=1 Marking is suspended because of final maneuver computation or recycle MFLG=2 Final comp has been done and the filter is waiting for ignition before resuming updates

RAD: Number of radar marks since last W-reinitialization
VHF: Number of VHF marks since last W-reinitialization
OPT: Number of angle marks since last W-reinitialization
UR: State uncertainty in next range measurement (ft)
URD: State uncertainty_in next r-rate measurement (fps)
UAZ: State uncertainty in next azimuth measurement (mr)
UEL: State uncertainty in next elevation measurement (mr)
SR: Weighting given a-priori estimate of range on last mark (A value of 1.0 indicates 100% confidence)

SRD: Same as above for r-rate SAZ: Same as above for azimuth SEL: Same as above for elevation

Area D: Coelliptical relative errors at phase match. Space craft is advanced to phase match with target and curvilinear errors are computed S-R: Down-range error

S-DOT: Horizontal speed error

SD-COEL: Horizontal speed error minus speed error if vehicle errors were coelliptical

DELTA-H: Vertical position error

DELH-DOT: Vertical speed error

- Area E: List of square roots of the diagonal terms of the filter covariance matrix. 1-sigma estimated uncertainty in the value of each estimated quantity, expressed in measurement frame. Vehicle rows are in the order of X, Y, Z, XD, YD, ZD; bias row is in order of R, RDOT, AZ, EL, SC1,SC2.
- Area F: Covariance of relative errors in the measurement frame. Diagonal elements are 1-sigma uncertainties in each of the frame directions in the order of X, Y, Z, XD, YD, ZD. Lower left portion (Area F1) is array of correlation coefficients.
 - Area G: Estimated and actual maneuver. The navigation burn estimate is that computed from the estimated vehicle states, The actual value is that maneuver actually applied in view of platform drift, scale factor error and cutoff uncertainty.

MASS DATA STORAGE

On each cycle of a monte-carlo set, AAP stores up to 350 items of data on a locally created file, in unformatted form, for later transference to a permanent data storage tape. Before writing the local file, the program writes the date, time and number of cycles (one word each) on the beginning of the file. At the end of each cycle, the DATA array of 350 words is dumped on the file. These words are allotted as follows:

DATA(1)=LOOP, Current value of the monte-carlo cycle index

DATA(2)-DATA(249), Up to 8 sets of state vector and maneuver information stored for selected maneuvers (see CARD #4). Each set consists of 31 elements: 1-6: S/C actual BRF vector 7-12: TGT actual BRF vector 13-18: S/C navigated BRF vector 19-24: TGT navigated BRF vector 25-27: Maneuver computed from actual states 28-30: Maneuver computed from estimated states 31: Time of ignition

DATA(251)-DATA(320), Up to ten sets of platform alignment information. Each set consists of 7 elements: 1-3: Platform angular drift rates (X,Y,Z) 4-6: Initial platform misalignment (X,Y,Z) 7: Time of alignment

DATA(321)-DATA(350), Arbitrary output specified by user.

Regardless of which maneuver is the first with a data storage flag set, the state vector/maneuver data is stacked, 3L elements at a time, beginning in DATA(2). All quantities are output in fundamental units of feet, seconds and radians. A dump of the DATA array in the indicated format is performed at the termination of each cycle.

5.0 PROGRAM MECHANIZATION

This section will discuss the implementation of the navigation • function down to the level of FORTRAN code. As a preliminary, the assignment and definition of all variables associated with the navigation will be reviewed.

MASTER COMMON AND EQUIVALENCE LIST

BLANK COMMON: VAR (5600)

GARB

ALIG

BV

LABEL COMMON: DELV

BETELGEUSE BLANK COMMON

LISTS VARS, VARA, NFAMA, SD(3) FOR USE IN MANEUVER APPLICATION ROUTINE. VARS, VARA, AND NFAMA ARE DISCUSSED IN SECTION 3.1. SD(3) ARE THREE ACCELEROMETER SCALE FACTORS CREATED ON FIRST VISIT TO DELTAV (MANEUVER APPLICATION).

LISTS ACTUAL STATISTICS OF SENSOR ERRORS FOR USE BY SENSOR NOISE ROU-TINE (GARBAGE). SEE SECTION 3.1.

LISTS ACTUAL STATISTICS OF PLATFORM ALIGNMENT AND DRIFT ERRORS FOR USE BY PLAT ALIGN ROUTINE (ALIGN). SEE SECTION 3.1.

LISTS FILTER STATISTICS OF SENSOR ERRORS FOR USE BY GEOMETRY VECTOR SUBROUTINE (BVEC). SEE SECTION 3.1.

	· · · · · · · · · · · · · · · · · · ·
DIMENSIONED ARRA	YS USED BY NAVIGATION
Y(100)	INTEGRATED VARIABLES
DYDX(100)	DERIVATIVES WRT TIME
NTEGER(100)	INTEGER PARAMETERS
P(5000)	BETELGEUSE WORKING ARRAY
SAVE(950)	NAVIGATION STORAGE ARRAY
BLK(700)	NAVIGATION SCRATCH PAD
DATA (350)	MONTE-CARLO MASS DATA STORAGE
COV(24,24)	INPUT STATE VECTOR COVARIANCE MATRIX
ୟ ସ୍(4)	MEASURED RELATIVE PARAMETERS
sig(4)	CURRENT VALUE OF MEASURED RELATIVE $\gamma \wedge^{\varphi}$ RANDOM NOISE
C(10)	ARRAY OF CONTROL TIMES FOR GNEXEC
REFMAT(3,3)	ESTIMATED TRANSFORMATION MATRIX FROM BRF TO PLATFORM AXES
XNBN(3), YNBN(3) ZNBN(3)), ESTIMATED NAVIGATION BASE UNIT VECTORS
NE(10)	SEE SECTION 3.2
NM(10)	n 11 11
DTL(10)	11 II II
DTN (10)	11 11 12
DIM(10)	11 11 11
USP(10)	н н н
USV(10)	11 II II
UTP(10)	и и и
UTV(10)	n n i '

WING AREA IS BLANK COMMO	ON FOR BETELGEUSE	POPOUL	
		DOROUT	2
			3
HF AT, MFTRN			1 1
	5.50 STY (13.)	- POPOUT	ц.
SIO /AR(560-), -Y(100),	-OY JX (100) ,-O (100) ,-FIRST (100)	POPOUT	12
NTEGER(100), 0(100)), 2(5)00)		17
ALENCE- (VAR(1), Y(1))		POPOUT	44
(VAR(101),0YDX(1		POPOLIT	14
(VAR(2,1),Q(1))			19
(VAR(301),FIRSTY	(1))	POPOUT	10
(VAR (401), NTEGER	(1))	PCPUUT	17
(VAR(501),0(1))		POPOUT	15
(VAR(6.1),P(1))-		PUPUUT	19
SION SAVE(95)), 3LK(70]), DATA(350), COV(24,24)	POPOUT	2 J
ALENCE (P (354)-, SAVE-(1-)-)-		PUPUUI	
(P(1300),BLK(1))		PCPOUL	22
(P(4074), DATA(1))	POPOUT	23
(P(4424),COV(1,1))	POPOUT	24
STON 00 (4) SIG (4) - C (1	0),-REFMAT(3,3),-XNBN(3),-YNBN(3)	PCPOUT	25
7NBN(3), NE(10), N	M(1)), OTL(1(), OTN(1), OTM(1))	POPOUT	25
USP-(11)USV-(-1-)	₩TP-(-1+;)-yUT-V-(-1+)-ySR-(-1+)-ySR-)-(-1+)	—— Р ОРОИТ——	27
SO(10), SC1(10), S	C2(10), NW(10), TLM(10), NS(3)	POPOUT	23
	IGN(10)-, -XNBE(3), -YNBE(3), -ZNBE(3)	POPOUT	29
X(18), WE(18,27)	ı	POPOUT	33
XI-VF(3),YLVE(3),ZL	VE(3)-, XLVN(3), YLVN(3), ZLVN(3)	NCSHIT	1
ALENCE (SAVE (1), QQ (1)),	(SAVE (5), SIG(1))	POPOUT	31
(SAVE-(-9)-, C(-1-)-)-		POPOUI	
(SAVE (28), XN 3N (1)), (SAVE(31), YNBN(1))	POPOUT	33
(SAVE (34), ZN3N(1)),(SAVE(37), NE(1))	POPOUT	34
(A) (SAVE (47), NH(1))	, (SAVE(57), DTL(1))	POPOUT	35
(SAVE (67) .0TN (1))-,(SAVE(77),DTM(1))	POPOUT	
(SAVE (87), USP (1)), (SAVE(97), USV(1))	POPOUT	37
(SAVE (1-7)-UTP (1	-)-)- (SAVE(117), UTV(1))	POPOUT	
(SAVE (127), SR(1)), (SAVE (137), SRO(1))	POPOUT	39
(SAVE (147), SO(1)),	- POPOUT -	49 -
(SAVE (167), SC2 (1)), (SAVE(177),NW(1))	POPOUT	41
(SAVE (187), TLM(1)), (SAVE (197), NS(1))	POPOUT	42
(SAVE (201), 7T7 (1	(SAVE (204), SZ(1))	POPOUT	43
(SAVE (2009) 212(2	N(1)-)(SAVE(218) NALIGN)	POPOUT	
(SAVE (229), YNBE	(1)), (SAVE(232), YNBE(1))	POPOUT	45
	(1)) (SAVE (258) X (1))	POPOUT	46-
(CAVE 12076) 4214	(1))	POPOUT	47
(SAVE (270), WE(1)		POPOUT	
VALENCE (SAVE / ZEST VIVE	(1))	NOSHIT	2
(SAVE (755) - YLVE (4.)	.)		
(SAVE (768) 71 V7(1)		NOSHIT	4
(SAVE (774) VEVE(1)			
(SAVE(774), VEVO(1)		NOSHIT	6
ISAVE (777) - 71 VM (4.3		NOSHIT	7
		POPOUT	49
· · · · · · · · · · · · · · · · · · ·	ų ,		-
	FIGURE 5.1 STANDARD COMMON BLOCK		
0			

SR(10)	SEE	SECTION	3.2	
SRD(10)	21	**	11	
SO(10)	71	*1	11	
SC1(10),SC2(10)	11	**	11	
NW(10)	11	11	11	

- . TLM(10) STORED TIME OF THE LAST MARK ON EACH NAVIGATION PROCEDURE
 - NS(3) NUMBER OF MARKS SINCE W-REINITIAL-IZATION ON RADAR, VHF AND OPTICS
 - ZTZ(4) A PRIORI UNCERTAINTY IN VALUE OF SENSOR MEASUREMENT
 - SZ(4) WEIGHTING ON A PRIORI ESTIMATE OF SENSOR MEASUREMENT
 - TALIGN(10) STORED TIMES OF FLATFORM ALIGNMENTS SEE SECTION 3.2
 - XNBE(3), YNBE(3), ACTUAL NAVIGATION BASE UNIT VECTORS ZNBE(3)
 - X(18) LOCAL STORAGE FOR ESTIMATED CAR-TESIAN STATE
 - WÉ(18,18) THE FAMOUS W-MATRIX
 - XLVE(3), YLVE(3) ACTUAL LOCAL VERTICAL UNIT VECTORS ZLVE(3)
 - XLVN(3),YLVN(3) ESTIMATED LOCAL VERTICAL UNIT ZLVN(3) VECTORS
 - DRIFT(3) INTEGRATED PLATFORM MISALIGNMENT ANGLES
- RATE(3) PLATFORM GYRO DRIFT RATES

Subroutines which utilize the BLK array for intermediate local computations define and equivalence local variables as required. These will be individually discussed in the section on subroutine structure. Figure 5.1 presents the standard navigation common block. In addition to the equivalences shown, the following are scattered throughout:

NTEGER(29),	NGUIDE	CURRENT VALUE OF NGUIDE
30	ICOMP	NAVIGATION STATUS FLAG (SEE MFLG, SECTION 4.0, AREA C)
31	ISTEP	GNEXEC INTEGRATION STEP-SIZE MANAGE- MENT FLAG
32	NOVER	OVERLAY RETURN MANAGEMENT FLAG
33	LIGN	CURRENT NUMBER OF PLATFORM ALIGN- MENTS ALREADY PERFORMED
34		NOT DEFINED
35	NGATE	BRAKING GATE COUNTER
36	NBRFL	SET WHEN IN BRAKING PHASE
42	NLINE	PRINTED OUTPUT LINE COUNTER
C(1)	TW .	TIME TAG ON W-MATRIX
8	STEP	SAVED VALUE OF INPUT INTEGRATION STEP SIZE
9	T2	SYNCH STEP SIZE FOR FINAL PASS AF- TER MANEUVER APPLICATION
1.0	TGN	TIME FROM NEXT IGNITION

5.1 FUNCTIONAL DESCRIPTION

In spite of the overlay structure, the actual operation of AAP is practically indestinguishable from that of the traditional BETEL-GEUSE program. The guidance overlay (2nd) acts like a subroutine which when called, computes a maneuver specified by the current value of NGUIDE. Other than the filter computation routines, the most significant addition to the program is the guidance and navigation executive, which controls the taking of navigation marks and the calling of the guidance overlay. The following is a list of subroutines peculiar to or modified by the presence of the navigation function:

MAIN REFERENCES MONTE-CARLO MASS STORAGE FILE (TAPE77=STAT) SETS VALUES FOR ERROR MODELS BY REPLACEMENT

RK

HAS OVERLAY RETURN FLAG (NOVER), CALL TO <u>GNEXEC</u>, CALL TO <u>SETY</u>, CALL TO <u>POPOUT</u>, ENTRY POINT FOR COVARIANCE ADVANCE-MENT (ENTRY RKW), INTEGRATES PLATFORM DRIFTS

INPUT WRITES ON MASS DATA STORAGE TAPE (77), READS DATA STORAGE CONTROL FLAGS, READS NAVIGATION PROCESS CONTROL CARDS, READS ALIGNMENT CONTROL CARD, INITIALIZES GUIDANCE, NAVI-GATION AND ALIGNMENT PARAMETERS, CALLS ALIGN AND SETY

- <u>GNEXEC</u> CONTROLS TAKING OF NAVIGATION MARKS, COMPUTATION AND APPLICATION OF MANEUVERS
- DELTAV APPLIES AN ESTIMATED AND ACTUAL MANEUVER TO THE ESTIMATED AND ACTUAL STATES
- STORE1 STORES 31 ELEMENTS OF STATE VECTOR AND MANEUVER INFOR-MATION AT SELECTED MANEUVERS

OUTDAT DUMPS THE MASS STORAGE MONTE-CARLO DATA AT THE END OF EACH CYCLE

- POPOUT COMPUTES ACTUAL, ESTIMATED AND MEASURED RELATIVE PARA-METERS, SETS UP VECTORS AND FILTER STATUS DATA, PRINTS BLOCK DATA AS REQUIRED
- <u>CART1, CART2</u> SUBROUTINE CONVERTS BETELGEUSE VECTOR TO CARTESIAN (<u>CART1</u>), OR A CARTESIAN VECTOR TO BETELGEUSE (CART2)
- SETY LOADS CARTESIAN FORM OF ESTIMATED BETELGEUSE STATE INTO Y ARRAY. CURRENTLY ONLY ONE INSTRUCTION IS ACTIVE- ALL CALLS TO SETY MAY BE REPLACED WITH THE STATEMENT CALL CART1(Y(38),Y(2))
- REL COMPUTES RELATIVE PARAMETERS (R, RDOT, AZ, EL) GIVEN CARTESIAN VECTOR AND UNIT VECTORS OF MEASUREMENT FRAME

SETS UP AN OUTPUT FORM OF THE BETELGEUSE VECTOR SETUP

CREATES INITIAL SENSOR BLASES AND ADDS RANDOM NOISE TO GARBAGE RELATIVE PARAMETERS

CREATES INITIAL PLATFORM DRIFT RATES, DEFINES A REFMAT ALIGN AND SETS MISALIGNMENT BLASES FOR EACH ALIGNMENT

LOCAL SUPERVISORY ROUTINE FOR TAKING A NAVIGATION MARK P20

COVARIANCE INTEGRATING SUBROUTINE ADVW

CALCULATES AND CONSTRUCTS REQUIRED GEOMETRY VECTORS FOR BVEC FILTER

CALCULATES WEIGHTING VECTOR, UPDATES STATE AND COVARIANCE FILTER

DUMMY SUBROUTINES FOR USER DEFINED FUNCTIONS OPEN1-OPEN5

The navigation function operates on a cartesian vector which is created periodically from the estmated BETELGEUSE state vector. This cartesian vector, although not itself integrated, is stored in the Y array. Because it is required for covariance advancement, the previous value of this vector , called X, is stored in the SAVE array from the previous visit to \underline{ADVW} . The allocation of the Y array to state and other variables is as follows:

TIME Y(1)

ESTIMATED BETELGEUSE STATE Y(2) - Y(13)

ESTIMATED VALUES OF SENSOR BLASES Y(14) - Y(19)

ACTUAL BETELGEUSE STATE Y(20)-Y(31)

ACTUAL VALUE OF SENSOR BIASES Y(32)-Y(37)

Y(38) - Y(49)ESTIMATED CARTESIAN STATE

ESTIMATED VALUE OF SENSOR BLASES (SAME AS Y(14)-Y(19)) Y(50) - Y(55)

Y(98) - Y(100)

TOTAL INTEGRATED PLATFORM DRIFT ANGLES. THESE ARE EQUIVALENCED TO DRIFT(3) IN SUBROUTINE ALIGN. ALSO, THEIR DERIVATIVES, RATE(3), ARE EQUIVALENCED TO DYDX(98)-DYDX(100) IN ALIGN.

5.2 COMPUTATIONAL ORGANIZATION

Figure 5.2.1 presents the interfaces of the major navigation functional subroutines. The remaining part of this section will present the FORTRAN code used to implement this function, with flow diagrams and explainatory notes where appripriate. The following comments refer to Figure 5.2.1:

MAIN Main program of main overlay.

- DUMMY1 Called by MAIN to bring in first primary overlay AAP(1,0)
- RK Integrating subroutine for (1,0). Also called at ENTRY RKW by ADVW for integration of W-matrix.
- INPUT Controls input of data to program. Called by RK at the beginning of each monte-carlo cycle
- ALIGN Simulates performance of platform alignment. Called by INPUT at beginning of program execution, and by GNEXEC at times defined by alignment control card.
- POPOUT Handles computation of actual, estimated and measured relative quantities for output and navigation. Computes and organizes for output other quantities of interest. Prints block data at intervals defined by P(9), and whenever called through ENTRY POPW by GNEXEC. Computation section of POPOUT will be executed when POPOUT is called on each pass through RK, even if print is inhibited.
- OVERLAY 2 Called in from GNEXEC at termination of the last marking procedure in a premaneuver period. Because return from AAP(2,0) is to DUMMY1 and RK, special provision is made in the program to return to the next instruction in GNEXEC following the call to AAP(2,0). This is accomplished by the setting of the NOVER flag.
- GNEXEC Executive routine. Controls taking of navigation marks, performance of platform alignments and computation of maneuvers. Called once each pass through RK.
- DELTAV Applies maneuvers computed by guidance overlay to actual and estimated states. Called from GNEXEC. Also calls ADVW to advance covariance to time of ignition.
- STORE1 Loads state vector and delta-v data into DATA array for dump to mass storage at end of cycle. Called from GNEXEC.

P20 Controls advancement of W, taking mark, updating state

ADVW ADVANCES W-MATRIX TO CURRENT TIME WHENEVER CALLED. ENTERS RK AT RKW FOR COLUMEN ADVANCEMENT OF MATRIX.

BVEC DETERMINES WHAT SORT OF MARK IS DESIRED, CALCULATES AP-PROPRIATE GEOMETRY VECTORS, CALLS FILTER TO UPDATE STATE AND COVARIANCE

FILTER CALCULATES WEIGHTING VECTOR, UPDATES STATE AND COVARIANCE.

()

NOTE: ARROWS GO FROM CALLING ROUTINE TO CALLED ROUTINE.

FIGURE 5.2.1 NAVIGATION INTERFACES

	COC 6600 FTN V3.0-P308 DPT=1	08/29/72	11.32.27.	
	OVERLAY (AAP,0,0) -	MAIN	2	
	PROGRAM MAIN(INPUT, OUTPUT, STAT, TAPE5=INPUT, TAPE6=OUTPUT	MAIN	3	
	*, TAPE77=STAT)	MAIN	· 4	
C	GENERAL SUBROUTINES FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS	MAIN	5	
C	BY MEANS OF FOUR POINT RUNGE KUTTA NUMERICAL INTEGRATION	MAIN	6	
		MAIN	7	
	COMMON VAR	MAIN	8	
C		MAIN	9 .	
· C	FOLLOWING IS LABELED COMMON FOR ERROR MODELS AND NAVIGATION	MAIN	10	
С		MAIN	11	
	COMMON/DELV/VARS,VARA,NFAMA,SO(3)	MAIN	12	
<u> </u>		MAIN	13	
	COMMON/GARB/RVAR,RVARMIN,VVAR,VVARMIN,VARAZ,VAREL,NFAMV	MAIN	14	
	BR, BV, BAZ, BEL, NFAMB	MAIN	15	
	*, BRO, BVO, BAZD, BELO	MAIN	16	
C	4	MAIN	17	
	COMMON/ALIG/GOR,ALIGNB,NFAMC	MAIN	18	
<u> </u>		MAIN	19	
	COMMON/BV/RVARB, RVARMNB, VVARB, VVARMNB, VARAZB, VARELB	MAIN	20	
	CIMENSION SAVE(950), BLK(700)	MAIN	21	
	EQUIVALENCE (P(350), SAVE(1))	MAIN	22 .	
	(P(1300),BLK(1))	MAIN	23	
C		MAIN	24	
	DIMENSION Y(100), DYDX(100), C(100), FIRSTY(100),	MAIN	25	
	1 P(5000),NTEGER(100),VAR(5600),D(100)	MAIN	26	
	EQUIVALENCE (VAR(1), Y(1)), (VAR(101), DYDX(1)),	MAIN	27	
	1 (VAR(201),0(1)), (VAR(301),FIRSTY(1)), (VAR(401),NTEGER(1)),	MAIN	28	
	2 (VAR (501), 0(1)), (VAR (601), P(1))	MAIN	29	Y
	EOUIVALENCE (P(2301), TWOPI), (P(2302), CRAD),	MAIN	30	Anter
	1 (°(2303),CNM)	MAIN	31	

•

•

.

٠

~

٠

.

•

•

.

.

۰

.

.

-1	ZERU GURE AT INITIAL LUAUING			MAIN	33
	00 20 J=1,5600	· ·		MAIN	3
1	VAR(J) = 0.0			MAIN	
. ~	SET IN FUNDAMENTAL CONSTANTS			MATN	54
	TWOPI=6.2831853072			MAIN	37
	CRAD=57,2957795131		<i>·</i>	MATN	3.9
	CNM=6076-10333			MATH	70
. 1		Λ.Ι		MAIN	39
· · ·				MAIN	40
				MAIN	41
	V4RA=1.E-1			MAIN	42
, i i i i i i i i i i i i i i i i i i i				MAIN	44
	RVAR=0.			SENSOR	1
	RVARMIN = 33.			SENSOR	. 2
	VVAR=4.3E-3			ΜΛΤΝ	47
	VVARMIN=.43 -			MATN	48
	VARAZ=2.E-3			SENSOR	70
	VARF1 = 2 - F + 3			SENSOR	
	P0-0			SENSUR	4
				MAIN	52
				MAIN	53
	BAZ=U.			MAIN	54
	86L=0.			MAIN	55
•	BR0=0.			MAIN	57
	BV0=0.		······································	MAIN	58
	B4Z0=17.45E-3			MAIN	59
*			······································		
			· · · · ·	· · · ·	
· · · ·	The construction of the co	a description or an or or or or		and a second	a below and the second second second
RCGRAM	MAIN CDC 6600	ETN V3-0-P308	OPT= 1	08/29/72	11.72.27.
					Trolesch
	BEL0=17.45E-3			ΜΔΤΝ	60
				MATN	61
	GDR=1.45E-7			MATN	62
	ALT GNB=3-F-4				02
	NFAMA= 46728			MAIN	63
				RANNO	1
	NEAMO- 74474		·	RANNO	2
				RANNO	3
	NF AMV = 22222			RANNO	4
U U				MAIN	65
	RVARB=0.			SENSOR	5
	RVARMNB = 33.			SENSOR	6
	VVARR=4.3E-3			MAIN	68

	VARAZB=2.E-3	SENSOR	8
	SET DERIVATIVE OF INDEPENDENT VARIALLE WRIT ITSELF EQUAL TO DNE	MAIN MAIN	1.0
	DYDX(1) = 1.0 SET DERIV OF BIAS TERMS EQUAL ZERC B	MAIN	74 75
	00 35 1=1,6 0 YDX(I+13)=0.	MAIN MAIN	76 77
35	DYDX(I+31)=0. CONTINUE B	MAIN MAIN	78 79
C SE	T JOB COUNTER LDDP=0	MAIN MAIN	80 81
c	TRANSFER CONTROL TO NAVIGATION OVERLAY CALL DUMMY1	MAIN MAIN	.82 83
	END	MĄIN	84
	1		
		,	
	,		

1

•

•

њт.

1.

:

.

.

. .

.

.

		ji ji		
HEDC	HITTN		HMM Y1	

đ

.

4.5

1 .

Ą,

1

SUBROUTINE DUMMY1	MAIN	85
C ROUTINE TO LOAD NAVIGATION OVERLAY	MAIN	86
CALL OVERLAY(3HAAP,1,0,6HREGALL)	 MAIN	88
END	MAIN	89

.

•

Υ.

U	ER	οu	T	I	Ń		U	M	M	Y	2	
---	----	----	---	---	---	--	---	---	---	---	---	--

CL. 3600 FTN V3.0-P308 OPT=1 08/29/72 11.3.27.

ł,

•	SUBROUTINE DUMMY2	*	MAIN	90
C · ROUTINE	TO LUAD GUIDANCE OVERLAY		MAIN	91
	CALL OVEPLAY (3HAAP, 2, 0, 6HRECALL)		MAIN	92
1	RETURN		MAIN	93
	END		MAIN	94

1

417

×.

1 1st Primary RK, DYDXS F

CL J600 FTN V3.0-P308 OPT=1 08/29/72 11.52.27.

C.	OVERLAY (1,0) PROGRAM NAVLAY TRANSFER CONTROL TO INTEGRATION SUBROUTINE	MAIN 95 MAIN 96 MAIN 97
	CALL RK END V	MAIN 98 MAIN 99
		· ·
	N	
*		
	3	
<u></u>		· · · · ·
·	·	
•	4-7 1 1	

.

.

PROGRAM MAIN

AREA A

THE FURPOSE AND HANDLING OF THESE INSTRUCTIONS IS DIS-CUSSED IN SECTION 3.1

AREA B TIME DERIVATIVES OF BIAS PORTION OF INTEGRATED STATE VECTORS IS SET EQUAL TO ZERO. ALL ESTIMATED SENSOR BIASES ARE ASSUMED CONSTANT.

ROUTINE RK

ſ

- AREA A IF THIS PASS THROUGH RK IS A RETURN FROM THE GUIDANCE OVERLAY, NOVER WILL BE SET TO 1,2,3 OR 4, DEPENDING ON THE LOCATION IN GNEXEC WHICH CALLED THE OVERLAY. IN THIS CASE, IT IS DESIRED TO GO DIRECTLY BACK TO GNEXEC.
- AREA B CALL TO SETY LOADS A CARTESIAN FORM OF THE BETELGEUSE ESTIMATED STATE INTO Y(38) - Y(55) FOR USE BY OTHER SUBROUTINES. THIS MUST BE ACCOMPLISHED EACH INTEGRATION STEP BEFORE VISITING OUTPUT OR NAVIGATION EXECUTIVE.
- AREA C CALL TO POPOUT ACCOMPLISHES COMPUTATION OF RELATIVE STATE QUANTITIES FOR USE BY NAVIGATION, AND PERIODIC PRINTING OF BLOCK DATA DESCRIBED IN SECTION 4.0
- AREA D GUIDANCE AND NAVIGATION IS VISITED EACH INTEGRATION CYCLE TO PROVIDE FOR PERFORMANCE OF NAVIGATION, COMPUTATION OF MANEUVERS AND MANEUVER APPLICATION
- AREA E RK WILL BE CALLED PERIODICALLY AT ENTRY RKW FROM ADVW FOR ADVANCEMENT OF COVARIANCE. IN THIS CASE, IT IS DESIRED TO GO TO THE RETURN STATEMENT AT THE CONCLUSION OF THE STATE INTEGRATION INSTRUCTIONS. BY SETTING NFLGW=1 UPON ENTRY AT RKW, PROGRAM WILL RETURN TO CALLING ROUTINE ADVW INSTEAD OF PROCEEDING TO NEXT INTEGRATION STEP. FLAG IS RESET UPON NEXT NORMAL PASS THROUGH RK.
- AREA F LOGICAL OPERATOR TRANSFERS CONTROL TO RETURN STATEMENT IF NFLGW IS SET. OTHERWISE PLATFORM DRIFTS ARE INTE-GRATED ONE STEP BEFORE GOING ON TO NEXT PASS THROUGH RK.

SUEROUTIN RK

	SUBRDUTINE RK	RK	2
C C	GENERAL SUBROUTINES FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS BY MEANS OF FOUR PDINT RUNGE KUTTA NUMERICAL INTEGRATION	RK RK	34
<u>C</u>		RK	5
U	COMMON VAD	RK	6
	DIMENSION Y(100), DYDX(100), G(100), ETRSTY(100),	RK	8
	PI5000 NTEGERITOD VAR (5600) NTT (14) NT2(14) NT(14) D(100)	PK	Q
	EDUIVALENCE (VAR(1), Y(1)), (VAR(101), DYDX(1)),	RK	. 10
	(VAR(201), D(1)), (VAR(301), FIRSTY(1)), (VAR(401), NTEGER(1)),	RK	11
	2 (VAR(501), D(1)), (VAR(601), P(1)), (NTEGER(6), N)	RK	· 12
	3, (NTEGER(32),NDVER)	RK	13
C	CHECK IF THIS IS A RETURN FROM AN OVERLAY CALL A	RK	14
	IF (NOVER.GI.O) GC TO 25	RK	15
	LUAD INPUT DATA INTO COMPUTER	RK /	16
10	CALCULATE THE INITIAL VALUES OF THE DEDIVATIVES	RK	17
	CALCOLATE THE INITIAL VALUES OF THE DERIVATIVES	RK	18
20		RK	19
		RK	20
L_25		RK DV	21
	CALL CNEVEC		22
Ļ	$\frac{1}{1} = \frac{1}{1} = \frac{1}$	RK	23
			25
	GO TO 29	RK	26
	ENTRY RKW	RK	27
	NFLGW = 1 E	RK	28
29	CONTINUE	RK	29
•	CALL DYDXS	RK	30
C	WRITE INITIAL VALUES OF DERIVATIVES	RK	31
30	CONTINUE	RK	32
С	CALCULATE THE DELTA $Y(J)$ AT $Y(1) = 0$	RK	33
40	DO 50 J = 1, N	RK	34
50	D(J) = DYDX(J)*P(1)	RK	35
С	CALCULATE THE Y(J) AT T \Rightarrow 0	RK	36
60	$DD \ 90 \ J = 1, N$	RK	37
70	$R = \bullet 5^{*} (D(J) - Q(J)) \qquad (\)$	RK	38
80	Y(J) = Y(J) + R	RK	39
90	Q(J) = Q(J) + 3.0*R5*D(J)	RK	40
C	CALCULATE THE DELTA $Y(J)$ AT $Y(1) = HALF$ STEP	RK	41
100	CALL DYDXS	RK	42
110	UU = 1, N	RK	43

U .		GALOVERAL INE ([J] A] I(L] = TALE SIEP	RK	<i>1.</i> E
	130	$DD = 160 \ J = 1.0$	DV	49
	Ô1-	R = -2928932197010 - 01000-		46
(150		KK .	
	-+61	1(0) - 1(0) + R	RK	
•	100	u(J) = u(J) + 3.0 + R292893219 + 0(J)	RK	49
C		CALCULATE THE DELTA $Y(J)$ AT $Y(1) = HALF$ STEP (AGAIN)	RK	50
	170.	CALL DYDXS	RK	51
	180	$D0 \ 190 \ J = 1, N$	RK	52
	-190-	D(J) = DYDX(J) + P(1)	RK	53
С		CALCULATE THE $Y(J)$ AT $Y(1) = HALE STEP (AGAIN)$	OV	50
,	200	10230 J = 1.N		55
	210	R = 1.707106784(0(1) - 0(1))		55
			<u></u>	56
				•
			· ····································	en na her git to i just a
· · ·				
			. /	
BROUTTNE	PV			
BROUTINE	RK	CDC 6600 FTN V3.0-F308 DPT=1	08/29/72	11.32.27.
BROUTINE	RK 220	$C_DC \ 6600 \ FTN \ V3.0-F308 \ DPT=1$ Y(J) = Y(J) + R	08/29/72 PK	11.32.27.
BROUTINE	RK 220	$C_DC \ 6600 \ FTN \ V3.0-F308 \ DPT=1$ $Y(J) = Y(J) + R$	08/29/72 RK	11.32.27. 57
BROUTINE	RK 220 230	$C_{D}C \ 6600 \ FTN \ V3.0-F308 \ DPT=1$ $Y(J) = Y(J) + R$ $Q(J) = Q(J) + 3.0*R - 1.70710678*D(J)$ $CALCULATE THE DELTA Y(J) AT Y(1) - EULL STEP$	08/29/72 RK RK	11.32.27. 57 58
BROUTINE	RK 220 230	$C_{D}C \ 6600 \ FTN \ V3.0-F308 \ DPT=1$ $Y(J) = Y(J) + R$ $Q(J) = Q(J) + 3.0*R - 1.70710678*D(J)$ $CALCULATE THE DELTA Y(J) \ AT Y(1) = FULL \ STEP$	08/29/72 RK RK RK RK	11.32.27. 57 58 59
BROUTINE	RK 220 230 240	$C_{D}C \ 6600 \ FTN \ V3.0-F308 \ DPT=1$ $Y(J) = Y(J) + R$ $Q(J) = Q(J) + 3.0*R - 1.70710678*D(J)$ $CALCULATE THE DELTA Y(J) \ AT Y(1) = FULL \ STEP$ $CALL \ DYDXS$	08/29/72 RK RK RK RK	11.32.27. 57 58 59 60
BROUTINE	RK 220 230 240 250	$C_{D}C \ 6600 \ FTN \ V3.0-F308 \ DPT=1$ $Y(J) = Y(J) + R$ $Q(J) = Q(J) + 3.0*R - 1.70710678*D(J)$ $CALCULATE THE DELTA Y(J) \ AT Y(1) = FULL \ STEP$ $CALL \ DYDXS$ $D0 \ 260 \ J = 1.N$	08/29/72 RK RK RK RK RK RK	11.32.27. 57 58 59 60 61
	RK 220 230 240 250 260	$C_{D}C \ 6600 \ FTN \ V3.0-F308 \ DPT=1$ $Y(J) = Y(J) + R$ $Q(J) = Q(J) + 3.0*R - 1.70710678*D(J)$ $CALCULATE THE DELTA Y(J) \ AT Y(1) = FULL \ STEP$ $CALL \ DYDXS$ $D0 \ 260 \ J = 1,N$ $D(J) = DYDX(J)*P(1)$	08/29/72 RK RK RK RK RK RK RK	11.32.27. 57 58 59 60 61 62
BROUTINE	RK 220 230 240 250 260	$C_{D}C \ 6600 \ FTN \ V3.0-F308 \ DPT=1$ $Y(J) = Y(J) + R$ $Q(J) = Q(J) + 3.0*R - 1.70710678*D(J)$ $CALCULATE THE DELTA Y(J) AT Y(1) = FULL STEP$ $CALL DYDXS$ $D0 \ 260 \ J = 1,N$ $D(J) = DYDX(J)*P(1)$ $CALCULATE THE Y(J) AT Y(1) = FULL STEP$	08/29/72 RK RK RK RK RK RK RK RK RK	11.32.27. 57 58 59 60 61 62 63
BROUTINE	RK 220 230 240 250 260 270	$C_{D}C \ 6600 \ FTN \ V3.0-F308 \ DPT=1$ $Y(J) = Y(J) + R$ $Q(J) = Q(J) + 3.0*R - 1.70710678*D(J)$ $CALCULATE THE DELTA Y(J) AT Y(1) = FULL STEP$ $CALL DYDXS$ $D0 \ 260 \ J = 1,N$ $D(J) = DYDX(J)*P(1)$ $CALCULATE THE Y(J) AT Y(1) = FULL STEP$ $D0 \ 300 \ J = 1,N$	08/29/72 RK RK RK RK RK RK RK RK RK RK	11.32.27. 57 58 59 60 61 61 62 63 64
BROUTINE	RK 220 230 240 250 260 270 280	$CDC \ 6600 \ FTN \ V3.0-F308 \ DPT=1$ $Y(J) = Y(J) + R$ $Q(J) = Q(J) + 3.0*R - 1.70710678*D(J)$ $CALCULATE \ THE \ DELTA \ Y(J) \ AT \ Y(1) = FULL \ STEP$ $CALL \ DYDXS$ $D0 \ 260 \ J = 1,N$ $D(J) = DYDX(J)*P(1)$ $CALCULATE \ THE \ Y(J) \ AT \ Y(1) = FULL \ STEP$ $D0 \ 300 \ J = 1,N$ $R = .16666666667*(D(J) - 2.0*Q(J))$	08/29/72 RK RK RK RK RK RK RK RK RK RK RK	11.32.27. 57 58 59 60 61 62 63 64 65
BROUTINE	RK 220 230 240 250 260 260 270 280 290	$C_{D}C \ 6600 \ FTN \ V3.0-F308 \ DPT=1$ $Y(J) = Y(J) + R$ $Q(J) = O(J) + 3.0*R - 1.70710678*D(J)$ $CALCULATE THE DELTA Y(J) AT Y(1) = FULL STEP$ $CALL DYDXS$ $D0 \ 260 \ J = 1,N$ $D(J) = DYDX(J)*P(1)$ $CALCULATE THE Y(J) AT Y(1) = FULL STEP$ $D0 \ 300 \ J = 1,N$ $R = .1666666667*(D(J) - 2.0*Q(J))$ $Y(J) = Y(J) + R$	08/29/72 RK RK RK RK RK RK RK RK RK RK RK	11.32.27. 57 58 59 60 61 62 63 64 65 66
BROUTINE	RK 220 230 240 250 260 260 270 280 290 300	$CDC \ 6600 \ FTN \ V3.0-F308 \ DPT=1$ $Y(J) = Y(J) + R$ $Q(J) = O(J) + 3.0*R - 1.70710678*D(J)$ $CALCULATE THE DELTA Y(J) AT Y(1) = FULL STEP$ $CALL DYDXS$ $DO 260 \ J = 1,N$ $D(J) = DYDX(J)*P(1)$ $CALCULATE THE Y(J) AT Y(1) = FULL STEP$ $DO 300 \ J = 1,N$ $R = .16666666667*(D(J) - 2.0*Q(J))$ $Y(J) = Y(J) + R$ $Q(J) = D(J) + 3.0*R5*D(J)$	08/29/72 RK RK RK RK RK RK RK RK RK RK RK RK RK	11.32.27. 57 58 59 60 61 62 63 64 65 66 67
BROUTINE	RK 220 230 240 250 260 260 270 280 290 300	$C_{DC} \ 6600 \ FTN \ V3.0-F308 \ DPT=1$ $Y(J) = Y(J) + R$ $Q(J) = O(J) + 3.0*R - 1.70710678*D(J)$ $CALCULATE THE DELTA Y(J) \ AT Y(1) = FULL \ STEP$ $CALL \ DYDXS$ $D0 \ 260 \ J = 1,N$ $D(J) = DYDX(J)*P(1)$ $CALCULATE THE Y(J) \ AT \ Y(1) = FULL \ STEP$ $D0 \ 300 \ J = 1,N$ $R = .16666666667*(D(J) - 2.0*Q(J))$ $Y(J) = Y(J) + R$ $Q(J) = D(J) + 3.0*R5*D(J)$ $TF(NFLGW-EQ.1) \ GO \ TO \ 330$	08/29/72 RK RK RK RK RK RK RK RK RK RK RK RK RK	11.32.27. 57 58 59 60 61 62 63 64 65 66 67 68
IBROUTINE C C	RK 220 230 250 250 260 260 280 290 300	$C_{D}C \ 6600 \ FTN \ V3.0-F308 \ DPT=1$ $Y(J) = Y(J) + R$ $Q(J) = Q(J) + 3.0*R - 1.70710678*D(J)$ CALCULATE THE DELTA Y(J) AT Y(1) = FULL STEP CALL DYDXS DO 260 J = 1,N D(J) = DYDX(J)*P(1) CALCULATE THE Y(J) AT Y(1) = FULL STEP DO 300 J = 1,N R = .16666666667*(D(J) - 2.0*Q(J)) Y(J) = Y(J) + R Q(J) = D(J) + 3.0*R5*D(J) TF(NFEGW.EQ.1) GO TO 330 INIEGRATE PLATECEM DRIFTS	08/29/72 RK RK RK RK RK RK RK RK RK RK RK RK RK	11.32.27. 57 58 59 60 61 62 63 63 64 65 65 66 67 68
UBROUTINE C C	RK 220 230 250 250 260 270 280 290 300	$CDC \ 6600 \ FTN \ V3.0-F308 \ DPT=1$ $Y(J) = Y(J) + R$ $Q(J) = 0(J) + 3.0*R - 1.70710678*D(J)$ CALCULATE THE DELTA Y(J) AT Y(1) = FULL STEP CALL DYDXS D0 260 J = 1,N D(J) = DYDX(J)*P(1) CALCULATE THE Y(J) AT Y(1) = FULL STEP D0 300 J = 1,N R = .16666666667*(D(J) - 2.0*Q(J)) Y(J) = Y(J) + R Q(J) = D(J) + 3.0*R5*D(J) TF(NFEGW.EQ.1) GO TO 330 INTEGRATE PLATFCRM DRIFTS D0 305 T = 98.100 TF(NFEGW.EQ.1) CO TO 330	08/29/72 RK RK RK RK RK RK RK RK RK RK RK RK RK	11.32.27. 57 58 59 60 61 62 63 63 64 65 65 66 67 68 69
BROUTINE C	RK 220 230 240 250 260 260 270 280 290 300	$C_{D}C \ 6600 \ FTN \ V3.0-F308 \ DPT=1$ $Y(J) = Y(J) + R$ $Q(J) = O(J) + 3.0*R - 1.70710678*0(J)$ $CALCULATE THE DELTA Y(J) AT Y(1) = FULL STEP$ $CALL DYDXS$ $D0 260 \ J = 1.N$ $D(J) = DYDX(J)*P(1)$ $CALCULATE THE Y(J) AT Y(1) = FULL STEP$ $D0 300 \ J = 1.N$ $R = .1666666667*(D(J) - 2.0*Q(J))$ $Y(J) = Y(J) + R$ $Q(J) = D(J) + 3.0*R5*D(J)$ $TF(NFLGW.EQ.1) \ GO TO \ 330$ $TF(NFLGW.EQ.1) \ GO TO \ 330$ F $INTEGRATE PLATFCFM DRIFTS$ $D0 305 T = 98,100$ $Y(T) = Y(T) + R$	08/29/72 RK RK RK RK RK RK RK RK RK RK	11.32.27. 57 58 59 60 61 62 63 64 65 65 66 67 68 69 70
UBROUTINE C C	RK 220 230 240 250 260 260 270 280 290 300	$CDC \ 6600 \ FTN \ V3.0-F308 \ DPT=1$ $Y(J) = Y(J) + R$ $Q(J) = 0(J) + 3.0*R - 1.70710678*D(J)$ CALCULATE THE DELTA Y(J) AT Y(1) = FULL STEP $CALL \ DYDXS$ $D0 \ 260 \ J = 1,N$ $D(J) = DYDX(J)*P(1)$ CALCULATE THE Y(J) AT Y(1) = FULL STEP $D0 \ 300 \ J = 1,N$ $R = .16666666667*(D(J) - 2.0*Q(J))$ $Y(J) = Y(J) + R$ $Q(J) = D(J) + 3.0*R5*D(J)$ $TF(NFEGW.E0.1) \ GO \ TO \ 330$ F $INTEGRATE PLATFCRM DRIFTS$ $D0 \ 305 \ T = 98,100$ $Y(1) = Y(I) + P(1)*DYDX(I)$ F	08/29/72 RK RK RK RK RK RK RK RK RK RK	11.32.27. 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
BROUTINE C C C	RK 220 230 240 250 260 270 280 290 300 305	$CDC \ 6600 \ FTN \ V3.0-F308 \ DPT=1$ $Y(J) = Y(J) + R$ $Q(J) = 0(J) + 3.0*R - 1.70710678*D(J)$ CALCULATE THE DELTA Y(J) AT Y(1) = FULL STEP $CALL \ DYDXS$ $D0 \ 260 \ J = 1,N$ $D(J) = DYDX(J)*P(1)$ CALCULATE THE Y(J) AT Y(1) = FULL STEP $D0 \ 300 \ J = 1,N$ $R = .16666666667*(D(J) - 2.0*Q(J))$ $Y(J) = Y(J) + R$ $Q(J) = D(J) + 3.0*R5*D(J)$ $TF(NFLGW.EQ.1) \ GO \ TO \ 330$ F INTEGRATE PLATF CFM DRIFTS $D0 \ 305 \ T = 98,100$ $Y(1) = Y(I) + P(1)*DYDX(I)$ F	08/29/72 RK RK RK RK RK RK RK RK RK RK	11.32.27. 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
UBROUTINE C C C	RK 220 230 250 250 260 270 280 290 300 305 310	$CDC \ 6600 \ FTN \ V3.0-F308 \ DPT=1$ $Y(J) = Y(J) + R$ $Q(J) = O(J) + 3.0*R - 1.70710678*0(J)$ CALCULATE THE DELTA Y(J) AT Y(1) = FULL STEP CALL DYDXS DO 260 J = 1,N D(J) = DYDX(J)*P(1) CALCULATE THE Y(J) AT Y(1) = FULL STEP DO 300 J = 1,N R = .1666666667*(D(J) - 2.0*Q(J)) Y(J) = Y(J) + R Q(J) = D(J) + 3.0*R5*D(J) IF(NFLGW.EG.1) GO TO 330 INTEGRATE PLATF CRM DRIFTS DO 305 T=98,100 Y(1)=Y(1) + P(1)*DYDX(1) PROCEED TO THE NEXT INTEGRATION STEP NGD = 1	08/29/72 RK RK RK RK RK RK RK RK RK RK	11.32.27. 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
IBROUTINE C C C	RK 220 230 250 250 260 270 280 290 300 300 305 310 320	$C_{DC} \ 6600 \ FTN \ V3.0-F308 \ DPT=1$ $Y(J) = Y(J) + R$ $Q(J) = O(J) + 3.0*R - 1.70710678*D(J)$ $CALCULATE THE DELTA Y(J) AT Y(1) = FULL STEP$ $CALL DYDXS$ $D0 260 \ J = 1,N$ $D(J) = DYDX(J)*P(1)$ $CALCULATE THE Y(J) AT Y(1) = FULL STEF$ $D0 300 \ J = 1,N$ $R = .16666666667*(D(J) - 2.0*Q(J))$ $Y(J) = Y(J) + R$ $Q(J) = D(J) + 3.0*R5*D(J)$ $TF(NFLGW.EQ.1) \ GO TO \ 330$ F $INTE GRATE PLATF CFM DRIFTS$ $D0 305 \ T = 98,100$ $Y(I) = Y(I) + P(1)*DYDX(I)$ F $PROCEED TO THE NEXT INTEGRATION STEP$ $NGD = 1$ $GO TD \ (20,330),NGO$	08/29/72 RK RK RK RK RK RK RK RK RK RK	11.32.27. 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
IBROUTINE C C C	RK 220 230 250 250 260 270 280 290 300 300 305 310 320 330	$CDC \ 6600 \ FIN \ V3.0-F308 \ DPT=1$ $Y(J) = Y(J) + R$ $Q(J) = 0(J) + 3.0*R - 1.70710678*D(J)$ CALCULATE THE DELTA Y(J) AT Y(1) = FULL STEP CALL DYDXS D0 260 J = 1,N D(J) = DYDX(J)*P(1) CALCULATE THE Y(J) AT Y(1) = FULL STEP D0 300 J = 1,N R = .1666666667*(D(J) - 2.0*Q(J)) Y(J) = Y(J) + R Q(J) = D(J) + 3.0*R5*D(J) TF(NFLGW.EQ.1) GO TO 330 INTEGRATE PLATFCFM DRIFTS D0 305 T=98,100 Y(1)=Y(I) + P(1)*DYDX(I) PROCEED TO THE NEXT INTEGRATION STEP NGD = 1 GO TD (20,330),NGO RETURN	08/29/72 RK RK RK RK RK RK RK RK RK RK	11.32.27. 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75

•

applan Sher Too INPUT

ROUTINE INPUT

AREA A

FIRST TWO INSTRUCTIONS CHECK NW(I) ARRAY (SEE SEC 3.2) TO RESET W-MATRIX REINITIALIZATION FLAGS. IF ANY FLAG OF THIS ARRAY IS O ON INPUT NAVIGATION CONTROL CARD, IT IS SET TO -1 AT TIME W IS REINITIALIZED. LAST FOUR IN-STRUCTIONS IN THIS ARE WRITE OUT ACCUMULATED MONTE-CARLO DATA TO LOCAL MASS STORAGE FILE AND THEN ZERO ARRAY FOR NEXT CYCLE.

- AREA B AT BEGINNING OF PROGRAM EXECUTION, SYSTEM ROUTINES ARE READ TO DETERMINE DATE AND TIME OF THIS RUN. THIS IN-FORMATION PLUS THE NUMBER OF MONTE-CARLO CYCLES TO BE EXECUTED ARE THE READ ONTO BEGINNING OF MASS STORAGE FILE.
- AREA C FOLLOWING INPUT OF BETELGEUSE HOLLERITH COMMENT CARDS, A CARD SPECIFYING THE MANEUVERS AT WHICH DATA WILL BE STORED IS READ IN AND PRINTED OUT. NO MORE THAN 8 ELE-MENTS OF NST(I) MAY BE NON-ZERO; THE DATA ARRAY HAS ROOM FOR ONLY 8 MANEUVERS WORTH OF DATA.
- AREA D AFTER INPUT OF BETELGEUSE FLOATING POINT ENTRIES, A SERIES OF UP TO LO NAVIGATION CONTROL CARDS IS READ IN. NUMBER OF THESE CARDS IS EQUAL TO NPER. AFTER INPUT, TIME, LENGTH, AND ANGLE QUANTITIES ARE RESCALED TO FUNDA-MENTAL UNITS OF SECONDS, FEET AND RADIANS.
- AREA E FOLLOWING NAVIGATION CONTROL CARDS, AN ALIGNMENT CONTROL CARD, AS SPECIFIED IN SEC 3.2 IS READ AND ALIGNMENT TIMES PRINTED OUT.
- AREA F DATA ARRAY STACK INDEX IS RESET. THIS INDEX IS INCREMENTED BY 1 EACH TIME A 31 ELEMENT ARRAY OF VECTOR AND MANEUVER DATA IS STORED IN THE DATA ARRAY. SEE MASS DATA STORAGE, PAGE 9.
- AREA G RESET MANEUVER TYPE COMPUTATION FLAG TO STARTING VALUE. RESET ALIGNMENT COUNTER FLAG (INCREMENTED BY 1 EACH TIME AN ALIGNMENT IS PERFORMED. SET MANEUVER COMPUTATION FLAG TO CALL FOR AN INITIAL VISIT TO THE GUIDANCE OVERLAY AT FIRST VISIT TO GNEXEC.

AREA H

H ZERO THE W-MATRIX TO BE SURE ITS NICE AND CLEAN FOR NEXT CYCLE. LOAD ESTIMATED CARTESIAN STATE INTO Y(38)-Y(55). PERFORM INITIAL ALIGNMENT TO DEFINE PLATFORM AXES.

OUTIN

CO. 5600 FTN V3.0-P308 OPT=1 08/29/72 11.0-27.

	SUBROUTINE INPUT	INPUT	2	
- 6	GENERAL SUBROUTINES FOR SOLVING ORDINARY DIFFERENTIAL FOUNTIONS	TNPUT	3	
č	BY MEANS OF FOUR POINT RUNGE KUTTA NUMERICAL INTEGRATION	INPUT	ů,	
- <u>c</u>		TNPUT	5	
. Č	INPUT - SUBPROGRAM FOR READING IN DATA	TNPUT	6	
		TNPIIT		
	DIMENSTON Y (180), DYDX (188), Q (188), FTRSTY (188),	TNPUT	8	
	-1 P(S100) NTEGER(100) VAR(S600) NT(14) NT2(14) NT(14) D(100)	TNPIT	<u> </u>	
	FOUTVALENCE (VAR(1), Y(1)), (VAR(101), DYDX(1)).	TNPUT	10	
	$-1 - (V \Delta R (201) + 0(1)) = (V \Delta R (301) + F T R S T Y (1)) = (V \Delta R (201) + N T F F R (1)) = (V \Delta R (201) + 0(1)) = (V \Delta R (201) + 0(1$	TNPUT	11	
	2 (VAR(501), 0(1)), (VAR(601), P(1)), (NTEGER(6), N),	TNPIT	12	
	-3 (NTEGER(1) TOENT) (NTEGER(2) NP) (NTEGER(3) NTNT)		13	
	4 (NTEGER(4) NETRST) (NTEGER(5) NTABLE) (NTEGER(7) NMORE)	TNPILT	14	
	$- \overline{\varsigma} - (MTEGEPTR) - MTEGEPTROTON - \overline{S} - MTEGEPTROTON - \overline{S} - MTEGEPTROTON - \overline{S} - MTEGEPTROTON - \overline{S} - $			
	$ = \frac{1}{2} \left(\frac{1}{1} + $		16	
	-7 - (NTECEP(t,t,t)) NPACES - (NTECEP(t,t,t)) NTECEP(t,t,t)) NTECEP(t,t,t) + NTECEP(t,t,t)) + NTECEP(t,t,t) + NTECEP(t,t,t)) + NTECEP(t,t)) + NTE		10	
	DIMENSION NOT(15) TIC(15)		10	
			10	
	EQUIVALENCE (P(294), NFAM2)	INPUT	19	
			20	
	(P(334), NSTAL)	INPUT	21	
	*, (P(335),NST(1))		22	
	· (P(2107), ((P1)	INPUI	23	
	*, (P(2141), TIG(1))	INPUT	24	
	EQUIVALENCE (NIEGER (12), NPER)	INPUT	25	
	*, (NTEGER(29),NGUIDE)	, INPUT	26	
	(NTEGER(30), ICOMP)	INPUT	27	
	*, (NTEGER(33),LIGN)	INPUT	28	
	*, (NTECER (35), NGATE)	INPUT	29	
	*, (NTEGER (36), NBRFL)	INPUT	- 30	
•	DIMENSION SAVE (950), BLK (700), DATA (350), COV (24,24)	INPUT	31	
	EQUIVALENCE (P(350), SAVE(1))	INPUT	32	
	*, (P(1300),BLK(1))	INPUT	33	
	*, (P(4074),DATA(1))	INPUT	34	
	*, (P(4424),COV(1,1))	INPUT	35	
	DIMENSION DQ(4), SIG(4), C(10), REFMAT(3,3), XNBN(3), YNBN(3)	INPUT	36	
	*, ZNBN(3), NE(10), NM(10), DTL(10), DTN(10), DTM(10)	INPUT	37	
	*, USP(10), USV(10), UTP(10), UTV(10), SR(10), SRD(10)	INPUT	38	
	*, SO(10), SC1(10), SC2(10), NW(10), TLM(10), NS(3)	INPUT	39	
	*, ZTZ(4), SZ(4), TALIGN(10), XNBE(3), YNBE(3), ZNBE(3)	INPUT	40	
	*, X(18), WE(18,27)	INPUT	41	
	EQUIVALENCE $(SAVE(1), QQ(1)),$ $(SAVE(5), SIG(1))$	INPUT	42	
	*, (SAVE(9),C(1)), (SAVE(19),REFMAT(1,1))	INPUT	43	·
		(SAVE(S4) 92NDN(1) 9 (SAVE(S7) 9NE(1))	THEOT	42
------------	------	---	----------	-----------
	¥ ,	(SAVE(47),NM(1)), (SAVE(57),DTL(1))	INPUT	46
	-+	(SAVE(67), DTN(1)), (AVE(77), DTM(1))	INPUT	4
\bigcirc	*	(SAVE(87), USP(1)), (, AVE(97), USV(1))	TNPUT	4
		(SAVE(107) - UTP(1)), $(SAVE(117) - UTV(1))$	TNPIT	<u> </u>
	·*	(SAVE(127), SP(1)), (SAVE(137), SP(1))	TNDUT	- 50
			TNPUT	50
		(SAVE(147), SU(17), (SAVE(157), SU1(1))	INPUT	51
	¥	(SAVE(167), SUZ(17), (SAVE(177), NW(1))	INPUT	52
		(SAVE (187), ILM(1)), (SAVE (197), NS(1))	INPUT	53
	*	(SAVE(200), ZTZ(1)), (SAVE(204), SZ(1))	INPUT	54
	*	(SAVE(208), TALIGN(1)), (SAVE(218), NALIGN)	INPUT	55
	*	(SAVE(229), XNBE(1)), (SAVE(232), YNBE(1))	INPUT	56
				•
			4	
	•			a a 11
POUTINE	INPU	CDC 6600 FTN V3.0-P308 OPT=1	08/29/72	11.32.27.
•	*	(SAVE(235), ZNBE(1)), (SAVE(258), X(1))	INPUT	57
	Ŧ	(SAVE(276), WE(1,1))	INPUT	58
· C		ZERO THE WORKING ARRAYS	INPUT	59
		00 5 I=1,700	INPUT	60
	5.	BLK(I)=0.	INPUT	61
<u>C</u> .		SET PAGE NO OF FIRST PAGE	TNPIIT	62
Ť	10	NPAGE = 1	TNPUT	63
•				60
		TE(1000 E0 4) C0 T0 20 + 1		64 65
			INPUT	65
	1.4		INPUT	66
	111	$T_{L}(MM(T) \bullet \Gamma \bullet O) MM(T) = O$	INPUT	67
		WEITE(7/) (DATA(1), 1=1, 350)	INPUT	68
		CALL OUTOAT	INPUT	69
		D0 15 I=1,350	INPUT	70
	15	DATA(I)=0. A	INPUT	71
		IF (LCOP.GI. IDENT) GO TO 20	TNPUT	
		WRITE (6, 80)	TNPILT	77
0		PEAD CONTROL INTECERS INTO PROBLEM		74
U			TNPUT	15
	20		INPUT	76
		KEAU(2, 3U) (NIEGER(J), J=1, 14)	TNPUT	
C		MAKE END-OF-FILE CHECK	INPUT	78
		. IF (EOF (5)) 21, 22	INPUT	79
	21	CALL EXIT	INPUT	80
	20	CONT TALLE	THOMAS	

WRITE DATE, TIME AND SIZE OF OPCOMING STATISTICAL SET B	INPUT	82	
CALL DATE(IDATE)	INPUT	83	
CALL TIME(ITIME)	INPUT	P P	
WRITE (77) IDATE, ITIME, IDENT	INPUT	د	
FORMAT(1415)	INPUT	86	
IF (NMDRE)60,60,50	INPUT	87	
NMD = 14 + NMORE	INPUT	88	
READ(5,30) (NTEGER(J), J=15, NMO)	INPUT	89	
WRITE HEADING AT TOP OF PAGE	INPUT	90	
CONTINUE .	INPUT	91	
NLINE=30	INPUT	92	
READ AND WRITE TWD CARDS OF RUN INFORMATION	INPUT	93	•
READ(5,80)	INPUT	. 94	
FDRMAT(72H	INPUT	95	
/72H	INPUT	96	
)	IŃPUT	97	•
WRITE (6,80)	INPUT	98	
WRITE(6,1000)	INPUT	99	
FORMAT(1H0,14X,29H** DATA INPUT FOR THIS RUN **//18X,	INPUT	100	
9HPARAMETER, 6X, 4HDATA/)	INPUT	101	
READ CONTROL FLAGS FOR DATA STORAGE	INPUT	102	
READ 475, (NST(I), I=1,15)	INPUT	103	
PRINT 480, (NST(I), I=1,15)	INPUT	104	
FORMAT(1515)	INPUT	105	
FORMATI/1X,51HBLCCK DATA WILL BE STORED AT THE FOLLOWING	NGUIDES- INPUT	106	Ţ
(15I5) C	INPUT	107	
CHECK FOR INOIVIOUAL FLOATING POINT DATA ENTRY	INPUT	108	
IF (NP) 2 50,250,110	INPUT	109	
	THOUT	110	
$00\ 140\ J = 1, NP$	INPUL	TTO	1
	CALL DATE(IDATE) CALL TIME(ITIME) WRITE (77) IDATE,ITIME,IDENT FORMAT(1415) IF (NMDRE)60,60,50 NMD = 14 + NMORE READ(5,30) (NTEGER(J),J=15,NMO) WRITE THEADING AT TOP OF PAGE CDNTINUE NLINE=30 READ AND WRITE TWD CARDS DF RUN INFDRMATION READ(5,80) FDRMAT(72H /72H	CALL DATE(IDATE)INPUTCALL TIME(ITIME)INPUTCALL TIME(ITIME, IDENTBWRITE (77) IDATE, ITIME, IDENTBFORMAT(1415)INPUTIF (NMDRE)60,60,50INPUTNMD = 14 + NMOREINPUTREAD(5,30) (NTEGER(J), J=15, NMO)INPUTWRITE THEADING AT TOP OF PAGEINPUTCONTINUEINPUTNLINE=30INPUTREAD (5,80)INPUTFDRMAT(72HINPUTWRITE (6,80)INPUTWRITE (6,80)INPUTWRITE (6,80)INPUTWRITE (6,1000)INPUTFORMAT(1HU,14X,29H** DATA INPUT FOR THIS RUN **//18X,INPUTYHP ARAMETER,6X,4HDATA/)INPUT2CAD CONTROL FLAGS FDR DATA STDRAGECREAD 475, (NST(I),I=1,15)INPUTFORMAT(1515)INPUTFORMAT(1515)INPUTFORMAT(1515)INPUTCHECK FDR INDIVIOUAL FLOATING POINT DATA ENTRYINPUTCHECK FDR INDIVIOUAL FLOATING POINT DATA ENTRYINPUT	CALL DATE(IDATE) INPUT 83 CALL TIME(ITIME) INPUT 83 CALL TIME(ITIME) INPUT 84 CALL TIME(ITIME) INPUT 84 CALL TIME(ITIME) INPUT 85 CALL TIME(ITIME) INPUT 86 FORMAT(1415) INPUT 86 IF (NMDRE)60,60,50 INPUT 87 NMD = 14 + NMORE INPUT 87 READ(5,30) (NTEGER(J),J=15,NMO) INPUT 89 WRITE HEADING AT TOP OF PAGE INPUT 90 CONTINUE INPUT 91 NUTNE=30 NLINE=30 INPUT 91 NPUT NLINE=30 INPUT 93 READ (5,80) INPUT READ AND WRITE TWO CARDS DF RUN INFDRMATION INPUT 94 FORMAT(72H INPUT 95 772H VT2H INPUT 94 97 WRITE (6,80) INPUT 98 NPUT 99 FORMAT(1H0,14X.29H** DATA INPUT FOR THIS RUN **//16X, INPUT 100 104 PHARAMETER, 6X, 4HDATA/) INPUT 102 104

UBRDUTINE	INPUT	· · C	DC 6600	FTN	V3.0-P308	DPT=1	08/29/72	11.32.27.	
	130	FORMAT(15,E15.7)					INPUT	112	
	1001	WRITE(6,1001) I,P(I) FORMAT(17X,I5,3X,E15.8)		·			INPUT INPUT	113 114	
	140	CONTINUE IF(NTEGER(13).GT.0) WRITE(6	,1003)				INPUT INPUT	115 116	-
	1003	FORMAT(//20X,19H************************************	**/				INPUT	117	

4.14

4 - 11 - Marine

.

· · · · ·

	2 ZUX, 19H. BE II KNUWN TO	INPUT	113	
	3 20X,19H** THAT THIS RUN **/	INPUT	120	
	4 20X,19H** WAS MADE IN **7	INPUT	12	
	5 20X,19H** AN OBLATE **/	INPUT	12	
	6 20X,19H** ENVIRONMENT **/	INPUT	123	
	7 20X,2H**,15X,2H**/20X,19H**********************	INPUT	124	
		TNPUT	125	
C.		TNPUT	126	
Č	CHECK-TE-NAVICATION-DATA-IS TN TNPHITETLE		127	
U	TE (NPEP EO A) CO TO 155	TNPILT	128	
C-			120	
U U	ACAD AND SUBLE NAVIGATION DATA	TNPUT	170	
			130	
•	PEAU(5, 1004) NE(1), NM(1), UIL(1), UIN(1), UIM(1), USP(1), USV(1) INPUT	131	
	1, UIP(1), UIV(1), SR(1), SRU(1), SU(1), SU(1), SU2(1)		132	
	2,NV(I)	INPUT	133	
	PRINT 460, NE(I), NM(I), DTL(I), OTN(I), OTM(I), USP(I), USV(I)	INPUT	134	
	1, UTP(I), UTV(I), SR(I), SRD(I), SO(I), SC1(I), SC2(I), NW(I)	INPUT	135	
	460 FORMAT(/1X,134H NE NM OTL OTN DTM	USP INPUT	136	
	1 USV UTP UTV SR SRD	SO INPUT	137	
	2 SC1 SC2 NW ,/1X,2I5,3F10.1,9F10.2,I3)	INPUT	138	
c	SCALE DATA	INPUT	139	
	OTL(I)=OTL(I)*60.	INPUT	140	
	DTN(I)=DTN(I)*60.	INPUT	141	
	DTM(I) = OTM(I) * 60.	INPUT	142	
		TNPUT	143	
	UTP(I) = UTP(I) * 1000.	INPUT	144	
	SP(T)=SP(T)*1000-	TNPUT	145	
	S(T) = S(T) / 1000	TNPIIT	146	
	DOV EODWAT(212 357 1 055 2 12)	TNPIIT	147	<u>.</u>
	145 CONTINUE	TNPIIT	148	
		TNDUT	140	
	READ LUDS NALIGNS (TALIGN(LIST-ISNALIGN) E		149	
			150	
	DETAIL ACE MALTON		101	
	PKINI 400, NALIGN		102	
	465 FURMATIVIX, 12,44H ALIGNMENTS ARE SCHEDULED FUR THIS RUN A	T TNPUT	153	
	DU 146 IF1;NALIGN	INPUT	154	<u></u>
	146 PRIN(4/0, TALIGN(1))	INPUT	155	
	470 FORMAT(/44X,F10.1)	INPUT	156	
	150 CONTINUE	INPUT	157	
	155 CONTINUE E	INPUT	158	
C		INPUT	159	
	ICOM = 0	INPUT	160	
	NFAM2=P(297)	INPUT	161	
C	CHECK IF COVARIANCE MATRIX IS TO BE READ IN	INPUT	162	
	IF (NFAM2) 240,250,240	INPUT	163	
	240 CALL INPUTO	INPUT	164	
C	CHECK IF TABLE ENTRIES ARE TO BE MADE	INPUT	165	
	250 15/11740151380.380 260	TNDIT	166	

•

.

260	NT1(1) = NTCR		INPUT	167	
	00 370 M = 1, NIABLE		INPUT	1F	
280	IF (NT (M))290,370,310		INPUT	16	
290	NT1(M+1) = NT1(M)	• •	INPUT	170	
300	GO TO 370	•	INPUT	171	
310	NT1(M+1) = NT1(M) + NT(M)		INPUT	172	
320	NT2(M) = NT1(M) - 1 + NT(M)		INPUT	173	
330	NT11 = NT1(M)		INPUT	174	
340	NT12 = NT2(M)		INPUT	175	
	READ(5,360) (P(J), J=NT11, NT12)		INPUT	176	
360	FORMAT(7E10.7)		INPUT	177	
370	CONTINUE		INPUT	178	
C	CALL INPUT WRITECUT AND IC CALC ROUTINE		INPUT	179	
380	CALL INAID		IŅPUT	180	
C	SET MANEUVER COMPUTATION FLAG		INPUT	181	
	$P(10) = -(P(9) + 1_{*})$		INPUT	182	
	NSTATEU	F	INPUT	183	
	04TA(1)=L00P		INPUT	184	
	DATA(321) = NFAM2		INPUT	185	
	PRINT 450, P(2)		INPUT	186	
450	FORMAT(/1X,5HP(2),E15.6)		INPUT	187	
	NGUIOE=NTEGER(3)	G	INPUT	188	
	LIGN=0		INPUT	189	
	I COMP=1	G	INPUT	1 90	1
, C	SET TPI TIME INTO ERASABLE		INPUT	191	1
	TIG(5)=TTPI		INPUT	192	1
C SE	T BRAKING GATE INDEX TO FIRST GATE		INPUT	193	-
	NGATE=1		INPUT	194	
C	SET BRAKING FLAG TO ZERO		INPUT	195	i.
	NBRFL=0		INPUT	196	(
C	ZERO THE Q AND SET IN IC		INPUT	197	
390	DO 420 J = 1, N		INPUT .	198	5
400	O(J) = 0.0		INPUT	199	1
410	Y(J) = FIRSTY(J)		INPUT	200	5
420	CONTINUE		INPUT	201	1
CIZEPO	THE WE MATRIX	H	INPUT	202	
	00 421 I=1,18		INPUT	203	
	00 421 J=1,27		INPUT	284	
	WE(I,J) = 0.0		INPUT	205	
421	C'IN I INUE		INPUT	206	1
C	SET UP VECTORS AND PERFORM INITIAL ALIGNMENT		INPUT	207	1
	CALL SETY(Y)		INPUT	208	
	CALL ALIGN	H	INPUT	209	
	CONSTRUCT ENVIRONMENT VECTOR		INPUT	210	1
425	GALL ICERR		INPUT	211	1
430	RETURN	·	INPUT	212	1
	1 8111		100 · · · · · · · · · · · · · · · · · ·		

ROUTINE GNEXEC

- AREA A GUIDANCE OVERLAY RETURN CHECK. IF NOVER FLAG IS OTHER THAN ZERO, GNEXEC HAS BEEN CALLED ON RETURN FROM THE GUIDANCE OVERLAY. VALUE OF NOVER (1,2,3,4) INDICATES PLACE IN GNEXEC WHICH CALLED GUIDANCE OVERLAY. EXECU-TION OF THE GO TO STATEMENT RETURNS CONTROL TO STATE-MENT FOLLOWING ONE THAT CALLED OVERLAY.
- AREA B LIGN FLAG IS INCREMENTED EACH TIME A PLATFORM ALIGN-MENT IS PERFORMED. CHECK IS MADE TO DETERMINE IF LIGN IS EQUAL TO NUMBER OF ALIGNMENTS SCHEDULED ON INPUT. CHECK IS THEN MADE TO SEE IF THE NEXT ALIGN IS LESS THAN ONE INTEGRATION STEP AWAY.
- AREA C IF NO NAVIGATION PROCEDURE CARDS WERE READ IN ON IN-PUT, CONTROL IS TRANSFERRED OUT OF THE NAVIGATION CONTROL PORTION.
- AREA D BEGIN DO LOOP WHICH CYCLES THROUGH THE NAVIGATION CONTROL CARDS READ IN ON INPUT. IF CARD IS NOT AC-TIVE, LOOP TURNS TO NEXT CARD.
- AREA E IF CARD IS ACTIVE FOR THIS NGUIDE (NE(I)≠0), CHECK IS MADE TO SEE IF A SENSOR IS ON. IF SENSOR IS OFF, CON-TROL IS TRANSFERRED TO W-MATRIX INITIALIZATION SECTION TO SEE IF THIS CARD IS PRESENT ONLY TO RESET W.
- AREA F IF FIRST RENDEZVOUS MANEUVER IS NCL, TIME SINCE LAST MANEUVER IS DEFINED AS PROGRAM ELAPSED TIME. OTHERWISE, PROGRAM ELAPSED TIME MINUS PREVIOUS TIG.
- AREA G TIME TO NEXT MANEUVER IS TIG FOR CURRENT MANEUVER MINUS PROGRAM ELAPSED TIME.
- AREA H SEE IF TIME SINCE LAST MANEUVER IS GREATER THAN MINIMUM TIME TO BEGIN THIS PROCEDURE.
- AREA I SEE IF TIME TO NEXT MANEUVER IS STILL GREATER THAN MINIMUM TIME TO TERMINATE BEFORE MANEUVER.
- AREA J IF IT IS TIME TO TERMINATE THIS PROCEDURE, MANEUVER COMPUTATION FLAG IS SET = 1 TO INDICATE A MARKING PRO-CEDURE HAS TERMINATED AND THE GUIDANCE CONTROL SECTION CAN CALL THE GUIDANCE OVERLAY TO COMPUTE A BURN. TIME SINCE LAST MARK ON THIS PROCEDURE IS SET TO ZERO FOR NEXT CYCLE ON MONTE-CARLO SET.
- AREA K CHECK TO SEE IF THIS PROCEDURE CALLS FOR W TO BE RESET. OTHERWISE GO DIRECTLY TO MARKING SECTION AREAS M-P.

AREA L

REINITIALIZE W:

SET SENSOR MARK COUNTERS TO ZERO. SET THE CARD INITIALIZATION FLAG TO -1 INDICATING FOR FUTURE PASSES THAT REINITIALIZATION HAS BEEN DONE. THIS FLAG WILL BE RESET IN INPUT ON BEGINNING NEXT MONTE-CARLO CYCLE. DEFINE TIME TAG ON W AS CURRENT ELAPSED PROGRAM TIME.

DEFINE TIME TAG ON WAS CURRENT ELAFSED FROGRAM TIME. SET TIME OF LAST MARK ON THIS PROCEDURE EQUAL O. STORE THE CURRENT CARTESIAN ESTIMATED STATE FOR THE W-MATRIX ADVANCEMENT ROUTINE. ZERO OUT ELEMENTS OF W. CALL FOR BLOCK FRINT AT THE REINITIALIZATION.

- AREA M IF SENSORS WERE OFF AND THIS CARD IS ONLY TO RESET W, TURN TO NEXT CARD.
- AREA N DEFINE THE TIME INTERVAL SINCE LAST MARK ON THIS PRO-CEDURE AS PROGRAM ELAPSED TIME MINUS TIME OF LAST MARK.

AREA O SINCE MARKING IS ABOUT TO TAKE PLACE, MANEUVER COMPU-TATION FLAG IS RESET TO INDICATE THAT ESTIMATED STATE IS GOING TO BE UPDATED AND A NEW MANEUVER COMPUTATION WILL BE NECESSARY.

AREA P TAKING A MARK:

CHECK IF TIME SINCE LAST MARK IS GREATER THAN MINIMUM ALLOWED TIME BETWEEN MARKS ON THIS PROCEDURE. IF NOT, TURN TO NEXT CARD.

CALL P20 WITH CURRENT TIME, CURRENT ESTIMATED CARTESIAN STATE, AND SENSOR TYPE FLAG.

UPDATE THE MARK COUNTER. THE NM(I)=4 OPTION IS A LATE ADDITION COMBINING A RANGE AND OPTICS MARK. FOR THIS OPTION, BOTH THE RANGE AND OPTICS MARK COUNTERS ARE INCREMENTED.

SINCE THE CARTESIAN ESTIMATED STATE IS NOW UPDATED, IT IS NECESSARY TO RECONSTRUCT THE BETELGEUSE ESTIMATED STATE FOR INTEGRATION BY RK.

TRANSFER REVISED ESTIMATES OF SENSOR BIASES TO BETEL-GEUSE ESTIMATED VECTOR.

DEFINE TIME OF LAST MARK ON THIS PROCEDURE AS CURRENT PROGRAM TIME.

AREA Q

IF A MARKING PROCEEDURE HAS JUST TERMINATED, THE ICOMP FLAG IS EQUAL 1. IN THIS CASE, AREA Q COMPUTES A MANEU-VER BASED ON THE VALUE OF NGUIDE, ONCE FOR THE ACTUAL STATES AND ONCE FOR THE ESTIMATED. IF ICOMP#1, CONTROL IS TRANSFERRED TO THE MANEUVER APPLICATION AREA (R) TO SEE IF IT IS TIME FOR A MANEUVER. COMPUTE A MANEUVER (RECYCLE OR FINAL) IOAD ACTUAL BETELGEUSE STATE INTO GUIDANCE OVERLAY LO-

LOAD ACTUAL BETELGEUSE STATE INTO GUIDANCE OVERLAY LC CATIONS AREA Q

SET OVERLAY RETURN FLAG(NOVER) TO 1. CALL GUIDANCE OVERLAY CALL STORE1 TO STORE ACTUAL DELTAV. (CALLS TO THE STORE RESULT IN STORAGE OF INFORMATION ONLY IF NST(NGUIDE)=1 (SEE PAGE 5, CARD #4)). CALL FOR BLOCK PRINT AT MANEUVER COMPUTATION. SET OVERLAY RETURN FLAG, NOVER=2. LOAD ESTIMATED STATES. CALL GUIDANCE OVERLAY. CALL STORE2 TO STORE ESTIMATED DELTAV. RESET OVERLAY RETURN FLAG. SET ICOMP=2 TO ADVERTISE THAT A MANEUVER HAS BEEN COM-PUTED AND IS AVAILABLE.

AREA R

COMPUTE TIME TO GO UNTIL IGNITION. SEE IF TGN IS LESS THAN 1 SECOND. IF IT IS, GO TO AREA RL TO CALCULATE A MANEUVER IF THIS IS NOT ALREADY DONE. IF TGN IS GREATER THAN 1 SECOND, SEE IF IT IS LESS THAN ONE INTEGRATION STEP. IF NOT, EXIT ROUTINE. IF TGN IS LESS THAN 1 INTEGRATION STEP, SAVE THE DIF-FERENCE BETWEEN TON AND STEP FOR USE ON THE NEXT (SYNCH) PASS AFTER THE MANEUVER APPLICATION. ALSO SAVE THE NOMINAL STEP SIZE. DEFINE NEXT INTEGRATION STEP SIZE AS EQUAL TGN. SET STEP SYNCH FLAG (ISTEP=1). EXIT ROUTINE.

AREA RO

ON NEXT PASS AFTER ONE ON WHICH TON WAS LESS THAN STEP, TGN WILL BE ZERO. AREA RO IS THEN VISITED AS A RESULT OF THE INSTRUCTION WHICH ASKS IF TEN IS LESS THAN 1 SECOND. STEP SYNCH FLAG IS INCREMENTED TO INDICATE NEXT PASS IS 'EVENING' STEP. P(1) SET EQUAL TO T2

CHECK IS MADE TO SEE IF MANEUVER HAS BEEN COMPUTED. IF AREA RL SO, PROCEED DIRECTLY TO APPLICATION INSTRUCTIONS. IF MANEUVER HAS NOT BEEN DEFINED, SEQUENCE OF COMPU-TATIONAL INSTRUCTIONS IS PERFORMED IDENTICAL TO AREA Q.

AREA R2

INCREMENT NGUIDE CALL DELTAV APPLICATION ROUTINE. STORE STATES AT MANEUVER EXIT ROUTINE.

p.....

			1		
~	1100	OUT'			VEC
Э.	UER	001.	h hand	GIVE	

.

		SUBROUT INE GNEXEC		GNEXEC	2	
				GNEXEC	3	•••
	С	SUBROUTINE TO CONTROL THE EXECUTION	OF NAVIGATION PROCEDURES,	GNEXEC	4	
	C	GUIDANCE COMPUTATIONS AND MANEUVER A	PPLICATIONS	GNEXEC	5	
	C			GNEXEC	6	
		COMMON VAR		GNEXEC	. 7	
		DIMENSION VAR(5600), Y(100), DYDX(10	0), Q(100), FIRSTY(100)	GNEXEC	8	
		*, NTEGER (100), D(100), P(500	0)	GNEXEC	. 9	
		EQUIVALENCE (VAR(1),Y(1))		GNEXEC	10	
		*, (VAR(101), DYDX(1))		GNEXEC	11	
		*, (VAR(201),Q(1))		GNEXEC	12	
		*, (VAR(301),FIRSTY(1))		GNEXEC	. 13 .	
		*, (VAP.(401),NTEGER(1))		GNEXEC	14	
		*, (VAR (501), D(1))		GNEXEC	15	
		*, (VAR(601),P(1))	· · · · · · · · · · · · · · · · · · ·	GNEXEC	16	
		DIMENSION SAVE (950) , BLK (700) , DATA (350), COV(24,24)	GNEXEC	17	
		EQUIVALENCE (P(350), SAVE(1))		GNEXEC	18	
		*, (P(1300), BLK(1))		GNEXEC	19	
		*, (P(4074), DATA(1))		GNEXEC	20	
		*, (P(4424),COV(1,1))		GNEXEC	21	
,		DIMENSION OQ(4), SIG(4), C(10), REFM	AT (3,3), XNBN (3), YNBN (3)	GNEXEC	22	
		*, ZNBN(3), NE(10), NM(10), D	TL(10), DTN(10), DTM(10)	GNEXEC	23	
		*, USP(10), USV(10), UTP(10),	UTV(10), SR(10), SRD(10)	GNEXEC	24	
		*, SO(10), SC1(10), SC2(10),	NW(10), TLM(10), NS(3)	GNEXEC	25	
		*, ZTZ(4), SZ(4), TALIGN(10),	XNBE(3), YNBE(3), ZNBE(3)	GNEXEC	26	
		*, X(18), WE(18,27)	······································	GNEXEC	27	
		EQUIVALENCE (SAVE(1),QQ(1)),	(SAVE(5),SIG(1))	GNEXEC	28	
		*, (SAVE(9),C(1)),	(SAVE (19), REFMAT(1,1))	GNEXEC	29	
	•	*, (SAVE(28),XNBN(1)),	(SAVE (31), YNBN (1))	GNE XEC	30	
		*, (SAVE(34), ZNBN(1)),	(SAVE (37), NE(1))	GNEXEC	31	
		*, (SAVE(47),NM(1)),	(SAVE (57), DTL(1))	GNEXEC	32	
		*, (SAVE(67),DTN(1)),	(SAVE (77) ,DTM(1))	GNEXEC	33	
		*, (SAVE(87),USP(1)),	(SAVE (97), USV (1))	GNEXEC	34	
		*, (SAVE(107), UTP(1)),	(SAVE (117), UTV (1))	GNEXEC	35	
		*, (SAVE(127), SR(1)),	(SAVE(137), SRD(1))	GNE XEC	36	
		*, (SAVE(147),SO(1)),	(SAVE (157), SC1 (1))	GNEXEC	37	
		*; (SAVE(167),SC2(1)),	(SAVE (177), NW(1))	GNEXEC	38	
		*, (SAVE(187), TLM(1)),	(SAVE (197), NS(1))	GNEXEC	39	
		*, (SAVE(200),ZTZ(1)),	(SAVE (204), SZ (1))	GNEXEC	40	
		*, (SAVE(208), TALIGN(1)),	(SAVE (218), NALIGN)	GNEXEC	41	
		*, (SAVE(229), XNBE(1)),	(SAVE (232), YNBE (1))	GNEXEC	42	
	······	*, (SAVE(235), ZNBE(1)),	(SAVE (258), X(1))	GNEXEC	43	
		* / ()		CNEVEO	1.1	

٢

.

the state of the s	EQUIVALENCE (C(1),TW)	GNEXEU	45
	*, (C(8), STEP)	GNEXEC	46
	+, (C(9),12)	GNEXEC	
	*, (C(10),TGN)	G NE XEC	
	EQUIVALENCE (NTEGER (12) NPER)	GNEXEC	49
	*. (NTEGER(29),NGUIDE)	GNEXEC	50
	(NTEGER (30) , ICOMP)	GNEXEC	51
	*. (NTEGER(31),ISTEP)	GNEXEC	52
	(NTEGER (32) NOVER)	GNEXEC	53
	*. (NTEGER (33), LIGN)	• GNEXEC	54
•	(NT EGER (35) NGATE)	GNEXEC	55
;	*, (NTEGER (36), NBRFL)	GNEXEC	56
		4	
. 5	••	1	
SUBROUTINE	GNEXEC CDC 6600 FTN V3.0-P308 0PT=1	08/29/72	11.32.27.
	DIMENSION DU(15), DV(15), DW(15), TFI(15)	GNEXEC	57
	FOUTVALENCE (P(2141) TEI(1))	GNEXEC	58
	*. (P(2156),DU(1))	GNEXEC	59
	(P(2171), DV(1))	GNEXEC	60
)	*, (P(2186), DW(1))	GNEXEC	61
	A A	GNEXEC	62
C C		GNEXEC	63
· · · · · · · · · · · · · · · · · · ·	CHECK TE TIME TO PERFORM AN ALTENMENT B	GNEXEC	64
,	TE(ITGN.GE.NALIGN) GO TO 5	GNEXEC	65
		GNEXEC	66
	TTTTGN = APS(Y(1) - TALIGN(KLIGN))	GNEXEC	67
	TF(DTITGN-GF-P(1)) G0 T0 5	GNEXEC	68
	CALL ALTEN	GNEXEC	. 69
	B	GNEXEC	7.0
1 (CHECK TE ANY NAVIGATION PROCEDURES CALLED FOR ON THIS RUN	GNEXEC	71
		GNEXEC	72
ſ	CYCLE THROUGH LIST OF DEFINED PROCEDURES D	GNEXEC	73
		GNEXEC	74
1/1 1	CHECK IE PROCEDURE APPLICABLE TO THIS PREMANEUVER PERIOD	GNEXEC	75
5	TECNETTIME NOUTDEN GO TO 90 ES MAN CONO. D	GNEXEC	76
	CHECK IE THIS SENSOR IS OFF	GNEXEC	77
		Δυτον	1
(DEFINE TIME SINCE LAST TIG	GNEXEC	79
	- TE(NGUTDE, ED, 1) TGI = Y(1)	GNEXEC	80
	T. CHACATOCECOLETA LAR LAR	0	

q	G TGN=TFI(NGUIDE) - Y(1)	GNEXEC	82 83
	CHECK IF IT IS TIME TO BEGIN THIS PADURE H	GNEXEC	
-	IF(TGL.LT.DTL(I)) GO TO 90 H	GNEXEC	
. C	CHECK IF THIS PROCEDURE IS TO BE TERMINATED I	GNEXEC	86
	IF (TGN.GT.OTN(I)) GO TO 20	GNEXEC	87
q	SET MANEUVER COMPUTATION FLAG AND RESET W INITIALIZATION FLAG	GNEXEC	88
	IF (ICOMP.NE.2) ICOMP=1 J	GNEXEC	89
	TLM(I)=0.	GNEXEC	90
		GNEXEC	91
	20 CONTINUE K	GNEXEC	92
C	CHECK IF W IS TO BE REINITIALIZED	GNEXEC	93
	IF (NW(I) • NE•0) GO TO 35 K	GNEXEC	. 94
C	ZERO MARK COUNTERS	GNEXEC	95
	NS(1)=0	GNEXEC	96
	NS(2)=0	GNEXEC	97
	NS (3) = 0	GNEXEC	98
· · ·	SEI W REINITIALIZEU FLAG	GNEXEC	99
	NW(I) = -1	GNEXEC	100
C	DEFINE TIME TAG ON W	GNEXEC	101
		GNEXEC	102
	ILM(1)=0.	GNEXEC	103
	STORE INFIAL UNIT VEGIORS FOR ADVW	GNEXEC	104
	CALL UVEC(Y(38), Y(39), Y(40), C(21) NOT USED CATO	GNEXEC	105
	-CAEL - UVEC (Y(44), Y(45), Y(45), G(5)) BE DELETED	GNEXEC	106
· (ZERU THE W-MATRIX	GNEXEC	107
	00 25 J=1,18	GNEXEC	108
(STORE STATE FOR ADVW	GNEXEC	109
	X(J) = Y(37+J)	GNEXEC	110
	U0 25 K=1,27	GNEXEC	111
			····· ·· ··· ··························
			•
			· · · · · · · · · · · · · · · · · · ·
		4 09/20/20	44 22 27
UCRUUTINE		.1 00/29/12	11.32.27.
	25 WE(J,K)=0.	GNEXEC	112
	LOAD THE DIAGONAL ELEMENTS OF W	GNEXEC	113
	00 30 J=1,3	GNEXEC	114
	WE(J,J) = USP(I)	GNEXEC	115
	WE (J+3, J+3)=USV(I)	GNEXEC	116
alan filo ing mu pangapangan na pangapangan na pangapanga	WE (J+6, J+6)=UTP(1)	GNEXEC	117

		$-W_{1}^{+}(J+14) = SO(1)$	GNEXEC	119	
	_	WE(13,13)=SR(I)	GNEXEC	120	
		-WE (14,14)=SRD(1)	GNEXEC	17	
	,	WE(17,17)=SC1(I)	GNEXEC	1	
		WF(18-18)=SC2(T)	GNEXEC	123	
		CALL POPW L	GNEXEC	124	
		CONTINUE	GNEYEC	125	-
	0.0	TE (NM(T), EO, R): CO TO 9R		2	
			CNEVEC	4.26	
Ч		DEFINE VIME SINCE LAST MARK	CNEVEC	120	
				121	
q		SINCE MARKING IN PROGRESS, RESET MANEUVER COMPUTATION FLAG	GNEXEG	120	
			GNEXEL	129	
q		CHECK IF SUFFICIENT TIME HAS ELAPSED FOR ANOTHER MARK	GNEXEC	130	
	l	IF (OTLM.LT.DTM(I)) GO TO 90 P	GNEXEC	131	
d		CALL P20 TAKE AND INCORPORATE MARK	GNEXEC	132	
		CALL P20(Y(1),Y(38),NM(I))	GNEXEC	133	
d		UPOATE MARK COUNTER	GNEXEC	134	Π
		INS=NM(I)	GNEXEC	135	
		IF(NM(I),EQ,4) = NS(3) + 1	GNEXEC	136	
		$IF(NM(I) \cdot EQ \cdot 4) NS(2) = NS(2) + 1$	GNEXEC	1 37	
		$TE(NM(T) \bullet LE \bullet 3)^{T} NS(TNS) = NS(TNS) + 1$	GNE XEC	138	-
d		RECONSTRUCT NAVIGATED BETELGEUSE VECTOR AFTER HAVING TAKEN MAR	K GNEXEC	139	
]		CALL CART2(Y (38) - Y (2))	GNEXEC	140	-
		00 85 J=1-6	GNEXEC	1 4 1	
		V(1+13) = V(1+10)	GNEYEC	142	-
	95	CONTINUE	GNEXEC	4/3	
	- 02			145	_
			CNEXED	144	
		CONTINUE	GNEXED	145	_
4	95		GNEXEL	146	
U		CHECK IF MANEUVER COMPUTATION FLAG IS SET	GNEXEU	147	
		IF (ICOMP.NE.1) GO TO 100	GNEXEC	148	
1		LOAD ENVIRONMENT, CALL COMPUTATIONS, SET RETURN FLAG	GNEXEC	149	
		P(2001) = Y(1)	GNEXEC	150	
	4	00 98 J=1,12	GNEXEC	151	
	98	P(2001+J)=Y(19+J)	GNEXEC	152	
)	NO VER=1	GNEXEC	153	
		CALL DUMMY2	GNEXEC	154	-
	96	CONTINUE	GNEXEC.	155	
		CALL STORE1	GNEXEC	156	
		NOVER=2	GNEXEC	157	
		P(2001) = Y(1)	GNEXEC	158	-
		CALL POPW	GNEXEC	159	
			GNEYEC	160	_
i	00	D(2001+1) = Y(1+1)	GNEXEC	161	
			CNEVEC	162	
	07			167	
				103	_
				104	

•

;

; ;

٦.

t.

•

SUBROUTI	GNEXE	C	FTN V3.0-P308 OPT=1	08/29/72	. 11 27.
C		INCREMENT NGUIDE		GNEXEC	166
C	;	IF(NBRFL.GT.U) NGATE=NGATE + 1 SET COMPUTATIONS PERFORMED FLAG		GNEXEC GNEXEC	167 168
	100	ICOMP=2 CONTINUE	Q	GNEXEC GNEXEC	169 170
(DEFINE TIME TO NEXT BURN TGN=TFI(NGUIDE) - Y(1)	R	GNEXEC GNEXEC	171 172
(CHECK IF FINAL PASS THROUGH MANEUVER APPLIC IF (ISTEP.NE.2) GO TO 105	ATION SEQUENCE	GNEXEC GNEXEC	. 173 174
(RESET ISTEP AND CHANGE TO ORIGINAL STEP-SIZ	2E	GNEXEC GNEXEC	175
	105	P(1)=STEP		GNEXEC	177
. (CHECK IF TIME FOR MANEUVER APPLICATION		GNEXEC	179
(CHECK IF MANEUVER IS LESS THAN ONE STEP AWA	4Y	GNEXEC	181
(SET STEP SIZE EQUAL TIME TO GO, STORE STEP		GNEXEC	183
		STEP=P(1)		GNEXEC	185
•		ISTEP=1		GNEXEC	186
	110	CONTINUE TEATER AN COLTO 445	RO	GNEXEC	188
		ISTEP=2		GNEXEC	190
	115	P(1)=12 CONTINUE		GNEXEC	192
;		CHECK IF MANEUVER HAS BEEN COMPUTED IF(ICOMP.EQ.2) GO TO 120	RO	GNEXEC GNEXEC	<u>194</u> 195
		CALL MANEUVER COMPUTATIONS FOR ENVIRONMEN P(2001)=Y(1)	T AND NAVIGATED STAT	ES GNEXEC GNEXEC	<u> 196</u> 197
	115	0) 116 J=1,12 P(2001+J)=Y(19+J)		GNEXEC GNEXEC	<u>198</u> 199
	d	NOVER=3 LOAD GUIDANCE OVERLAY		GNEXEC GNEXEC	200
	117	CALL DUMMY2		GNEXEC GNEXEC	202
i		CALL STORE1 P(2001)=Y(1)		G NE XEC	204
		CALL POPW 00 118 J=1,12		GNEXEC	206
	118	P/2004+11-V/4+11		CNEVEC	20.9

		NOVER=4		GNEXEC	209	
· C		LOAD GUIDANCE DVERLAY		GNEXEC	210	
		CALL DUMMY2		GNEXEC	2-0-	
	11 9 (CONTINUE		GNEXEC	. 2	
		CALL STORE2		GNEXEC	213	
		NOVER=0 .		GNEXEC	214	
		ICOMP=2		GNEXEC	215	
C		INCREMENT NGUIDE		GNEXEC	216	
*		IF (NBRFL.GT.D) NGATE=NGATE + 1 RL	· · · · · · · · · · · · · · · · · · ·	GNEXEC	217	· · ·
	120	CONTINUE		GNEXEC	218	
C		PERFORM MANEUVER		GNEXEC	219	
	Į	NGUIDE=NGUIDE+1		GNEXEC	220	
				· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
·····						
• •				4		
·····					· · · · · · · · · · · · · · · · · · ·	
					•	
		fill considerations and an an all and an an an and an an		• •		
		•.		/		
		1				
JERDUTINE	GNEX	EC CDC 6600 FTN V3•0-P30	8 OPT=1	08/29/72	11.32.27.	
		NV-NCHTRE - 1				
				GNEXEC	221	
		CALL UELIAV(UU(NV), UV(NV), UW(NV))		GNEXEC	222	
		2000-7-2-2		GNEXEC	223	
	L	TOOMA-D K		GNEXEC	224	
	120			GNEXEC	225	
				GNEXEC	226	
				GNEXEC	227	
		'				
. •						

ROUTINE DELTAV

ROUTINE APPLIES MANEUVER BASED ON ESTIMATED STATE COM-PUTATION TO ESTIMATED S/C STATE. ALSO COMPUTES EFFECT OF ACCELEROMETER SCALE FACTOR ERROR, PLATFORM MISALIGN-MENT AND CUTOFF UNCERTAINTY ON APPLICATION TO ACTUAL STATE. VECTORS AND MATRICES INVOLVED IN THESE CALCULA-TIONS ARE:

- DXD NOMINAL DELTAV IN LOCAL VERTICAL FRAME. THIS DELTAV IS COMPUTED FROM ESTIMATED STATE AND IS THE ONBOARD ESTIMATE OF THE APPLIED BURN.
- SD VECTOR OF ACCELEROMETER SCALE FACTOR ERRORS.
- S SCALE FACTOR DISTURBANCE MATRIX. hold be convoled
- VN VECTOR OF CUTOFF UNCERTAINTY ERROR.
- UX,UY,UZ UNIT VECTORS OF THE ESTIMATED LOCAL VERTICAL FRAME.
- DUM TRANSFORMATION FROM BRF TO ESTIMATED LOCAL VERTICAL FRAME.
- DUMT TRANSFORMATION FROM ESTIMATED LOCAL VERTICAL FRAME TO BRF. (= DUM^T)
- REFMAT TRANSFORMATION FROM BRF TO ESTIMATED PLATFORM AXES.
- DVI NOMINAL DELTAV IN BRF.
- DVSM DELTAV IN ESTIMATED PLATFORM FRAME WITH SCALE FACTOR ERRORS APPLIED.
- DVSME . DVSM + VN

DUM

DUM

GAMD MATRIX OF PLATFORM DRIFT ERROR ANGLES.

- S x REFMAT
- $GAMD \times REFMAT$
- DUMT^2 REFMAT^T x GAMD^T

22

DVIEDELTAV IN BRF DISTURBED BY SCALE FACTOR ERROR,
CUT-OFF UNCERTAINTY AND PLATFORM MISALIGNMENT. $DVIE=REFMAT^T \times GAMD^T \times [S \times REFMAT \times DUMT]$

x DXD + VN]

AREA A READ ARGUMENT DELTAV INTO OPERATING ARRAY.

- AREA B IF NGUIDE IS STILL EQUAL TO ITS STARTING VALUE, THIS IS THE FIRST MANEUVER APPLICATION. IN THIS CASE, VISIT RANDOM NUMBER GENERATOR TO DEFINE SCALE FACTOR ERRORS FOR THIS CYCLE. OTHERWISE, PROCEED TO DEFINE CUTOFF ERROR IN AREA C.
- AREA C DEFINE DIFFERENT RANDOM CUTOFF ERROR FOR EACH MANEUVER.
- AREA D COMPUTE TRANSFORMATION FROM ESTIMATED LOCAL VERTICAL FRAME TO INERTIAL (BRF). TRANSFORM LOCAL VERTICAL DELTAV'S TO BRF.
- AREA E CONSTRUCT SCALE FACTOR MATRIX. THIS IS THE IDENTITY MATRIX WITH SCALE FACTOR ERRORS ADDED TO DIAGONAL.
- AREA F REFMAT MATRIX IS TRANSFORM TO ESTIMATED PLATFORM AXES. EFFECT OF AREA F IS TO CONVERT BRF DELTAV TO ESTIMATED PLATFORM, MULTIPLY BY SCALE FACTOR ERRORS AND ADD CUT-OFF ERROR.
- AREA G PLATFORM DRIFT ANGLES ARE D1,D2,D3. EFFECT OF AREA G IS TO TRANSFORM DELTAV TO ACTUAL PLATFORM FRAME AND RETURN FROM ACTUAL PLATFORM FRAME TO BRF.
- AREA H CONVERT PERTURBED DELTAV TO INERTIAL FRAME.
- AREA I ADVANCE W-MATRIX TO TIME OF BURN. THIS IS NECESSARY BE-CAUSE ESTIMATED STATE IS CHANGED BY APPLICATION OF DELTAV. SINCE ADVW USES PREVIOUS VALUE OF ESTIMATED STATE, THIS STATE MUST REFLECT THE MANEUVER. X, THE ADVW STORED STATE, WILL BE UPDATED IN AREA K.
- AREA J CONSTRUCT A CARTESIAN FORM OF THE ACTUAL STATE. ADD THE ACTUAL APPLIED DELTAV TO ACTUAL STATE. ADD THE NOMINAL APPLIED DELTAV TO ESTIMATED STATE.
- AREA K RECONSTRUCT ACTUAL BETELGEUSE STATE. RECONSTRUCT ESTIMATED BETELGEUSE STATE. UPDATE THE ADVW STORED STATE.
- AREA L CONSTRUCT TRANSFORM TO LOCAL VERTICAL. TRANSFORM ACTUAL APPLIED DELTAV TO LOCAL VERTICAL. PRINT DELTAV APPLIED MESSAGE.

SUEROUTIN DELTAV

i i

		SUBROUTINE DELTAV(DU,DV,DW)	DELTV	2
	-C		DELTV	3
		COMMON VAR	DELTV	4
			DELTV	5
•		DIMENSION VAR(5600), Y(100), DXD(3)	DELTV	6
		+ P(5000), NTEGER(100), BLK(700)	DELTV	7
		*, VN(3),S(3,3)	DELTV	8
		*, UX(3), UY(3), UZ(3), DUM(3,3), DUMT(3,3)	DELTV	. 9
	۰.	*, DVI(3), DVSM(3), DVSME(3), DVIE(3)	DELTV	10
		*, GAMD (3,3), XE(12)	DELTV	11
		*, SAVE(950)	° DELTV	12
· ·	•	*; REFMAT(3,3)	DELTV	13
	С	SUBROUTINE TO APPLY A LOCAL HORIZONTAL DELTA=V TO A BETEL VECTOR	DELTV	14
	<u> </u>		DELTV	15
	С		DELTV	. 16
		EQUIVALENCE (VAR(1), Y(1))	DELTV	17
		*, (VAR(401),NTEGER(1))	DELTV	18
· · · · · ·		*• (VAR (601) •P (1))	DELTV	19
		EQUIVALENCE (P(350), SAVE(1))	DELTV	20
		*, (P(1300),BLK(1))	DELTV	21
		DIMENSION X(18)	DELTV	22
	,	EQUIVALENCE (SAVE(258), X(1))	DELTV	23
	•	EQUIVALENCE (BLK(4),S(1,1)) ,(BLK(13),VN(1))	DELTV	24
		*,(BLK(16),UX(1)), (BLK(19),UY(1)), (BLK(22),UZ(1))	DELTV	25
		*, (BLK(25), DUM(1,1)), (BLK(34), DUMT(1,1)), (BLK(43), GAMO(1,1))	DELTV	26
		*, (3LK (52), DVSM(1)), (BLK (55), DVSME(1)), (BLK (58), DVIE(1))	DELTV	27
		*,(3LK(61),XE(1))	OELTV	28
		*, (NTEGER (29), NGUIDE)	DELTV	29
	4	EQUIVALENCE (SAVE(19), REFMAT(1,1))	DELTV	30
		*, (Y (98), D1), (Y (99), D2), (Y (100), D3)	DELTV	31
	С		DELTV	32
		COMMON/DELV/VARS,VARA,NFAMA,SD(3)	DELTV	33
	С		DELTV	34
		READ IN VELOCITIES A	DELTV	35
		0×0(1)=0U ·	DELTV	36
		0X0(2)=0V	DELTV	37
		DXO(3)=DW.	DELTV	38
			DELTV	39
	C	. CHECK IF THIS IS THE FIRST MANEUVER OF THIS RUN	OELTV	40
		NMAN=NGUIDE + NTEGER(3)	DELTV	41
		IF (NMAN.NE.1) GO TO 5	DELTV	42
	C	CREATE SCALE FACTOR ERRORS FOR THIS RUN	DELTV	43

	SU(2) FUNDARN (U, NF AMA, 1., VARS)	DELTV	45
	SUIST = UNURNUU, NEAMA, 1., VARST		
A	DEETNE ADDITOATION EDDDD		
· · · ·	DEFINE APPLICATION ERROR	UELIV	<u> </u>
	VN(L)=UNURN(U,NFAMA,U.,VARA)	DELIV	49
	VN(2)=UNURN(U,NFAMA,U.,VARA)	DELIV	50
	VN(3) = UNURN(0, NFAMA, 0, VARA)	DELTV	51
C	COMPUTE DELTAV IN ASSUMED REFERENCE FRAME D	DELTV	52
	CALL UVEC(Y(38),Y(39),Y(40),UX)	DELTV	53
P	CALL UCROSS(UX,Y(41),UZ)	DELTV	54
	CALL UCRDSS(UZ,UX,UY)	DELTV	55
	CALL TRN(UX,UY,UZ,DUM,DUMT)	DELTV	56
			•
		4	
			· · · · · · · · · · · · · · · · · · ·
δ κ		province in the second se	
SUBROUTINE	DELTAV CDC 6600 FTN V3.0-P30	OPT=1 08/29/72	11.32.27.
3	CALL MATMUL (DUMT, DXD, DVI, 3, 3, 1) D	DELTV	57
C	COMPUTE ACTUAL DELTAV APPLIED E	DELTV	58
. С	COMPUTE SCALE FACTOR MATRIX	DELTV	59
	00 10 I=1,3	DELTV	60
	00 10 J=1,3	DELTV	61
	$\underline{S(I,J)} = 0.$	DELTV	62
1	IF(I,EQ,J) S(I,J)=SD(I)	DELTV	63
-	E CONTINUE	DELTV	64
	CALL MATMUL(S,REFMAT,DUM, 3, 3, 3)	DELTV	65
<u>.</u>	CALL-MATMUL(DUM, DVI, DVSM, 3, 3, 1)	DELTV	66
	CALL MATADD(DVSM,VN,DVSME,3,1,1)	DELTV	67
C	COMPUTE PLATFORM MISALIGNMENT MATRIX	DELTV	68
	CALL MAT(D3, D2, D1, 1, 3, 2, GAMD)	DELTV	69
	CALL MATMUL (GAMD REEMAT DUM 3-3-31	DELTV	70
ŀ	CALL MATRAN(DUM.3.3.DUMT)		71
· · · · · · · · · · · · · · · · · · ·	CALL MAIMUL COLMI. OVSNE. OVIE. 3.3.10		72
	CALL ADVW(Y(1), Y(38))		73
C	CONSTRUCT CARTESTAN ENVIRONMENT VECTOR		74
Ŭ	CALL CARTI($XF \cdot Y(20)$)		75
			70
	XF(J+3) = XF(J+3) + DVTF(J)		70
	15 Y(1+0) = Y(1+0) T DVT(1)		70
C			70
U	CALL CAPT2 (YE Y (20))		
	CALL CARTZIVIZEN VIZEN		00

,		
	C1 C1 C 11	
V(T) = V(27(T))	UELIV	. 82
$\chi(1) = \Gamma(3)(1)$	DELIV	83
T12 CONTINUE K	DELTV	84
CALL TRN(UX,UY,UZ,DUM,DUMT) T.	. ĎELTV	85
CALL MATMUL(DUM, DVIE, DVI, 3, 3, 1)	DELTV	86
PRINT 100, (DXD(I), I=1,3), (DVI(I), I=1,3)	DELTV	87
100 FORMAT(/1X, 35HTHE NAVIGATION BURN ESTIMATE IS DU=, F10.3, 5	H DV=, DELTV	88
1F13.3, 5H DW=,F10.3,/1X,35HTHE ACTUAL COMPONENTS WERE	DU=, DELTV	89
2F10.3, 5H DV=, F10.3, 5H DW=, F10.3)	DELTV	90
RETURN	DELTV	91
END	DELTV	92

.

·

•

.

.

.

. .

.

.

•

1

•

.

.

•

.

• •

4

•

1

ç

•

.

.

•

ROUTINE STOREL

SUBROUTINE STORES DATA AT TIME OF MANEUVER APPLICATION FOR MANEUVERS SELECTED BY THE DATA STORAGE CONTROL CARD, SEE PAGE 5, CARD #4.

- AREA A IF ROUTINE IS ENTERED AT STOREL, CALL IS FOR THE PURPOSE OF STORING DELTA-V'S FROM ACTUAL STATE COMPUTATION. SET N=26 TO SELECT 25th ELEMENT OF 31 ELEMENT MANEUVER DATA VECTOR. (N=26 SELECTS 25th ELEMENT BECAUSE FIRST 31 ELE-MENT ARRAY STARTS AT DATA(2)).
- AREA B IF ROUTINE IS ENTERED AT STORE2, CALL IS FOR PURPOSE OF STORING DELTA-V'S FROM ESTIMATED STATE COMPUTATION. SET N=29 TO SELECT 28th ELEMENT OF 31 ELEMENT ARRAY.
- AREA C CHECK NST (NGUIDE)=1 TO SEE IF DATA FROM THIS MANEUVER SHOULD BE STORED. IF NOT, EXIT ROUTINE.
- AREA D NSTAT INDEX KEEPS TRACK OF THE NUMBER OF 31-ELEMENT DATA VECTORS SO FAR STORED. THIS NUMBER MAY NOT EXCEED 8. K IS THE STARTING LOCATION IN THE DATA ARRAY FOR THE NEW INFORMATION. CALL TO VEC LOADS DU, DV, DW INTO DATA(K,K+1,K+2).
- AREA E IF ROUTINE IS ENTERED AT STORE3, CALL IS FOR THE PURPOSE OF STORING ACTUAL AND ESTIMATED STATES AT TIME OF BURN APPLICATION. SINCE NGUIDE HAS ALREADY BEEN INCREMENTED IN GNEXEC, DEFINE K AS NGUIDE-1, FOR THE MANEUVER JUST PERFORMED. CHECK IF DATA FROM THIS MANEUVER SHOULD BE STORED. IF NOT, EXIT ROUTINE.
- AREA F CREATE CARTESIAN FORM OF ACTUAL BETELGEUSE STATE. DEFINE STARTING LOCATION IN DATA ARRAY. LOAD ACTUAL AND ESTIMATED CARTESIAN STATES.

AREA G INCREMENT NSTAT TO SHOW ANOTHER STORED MANEUVER.

AREA H STORE TIME OF MANEUVER IN LAST ELEMENT OF 31 ELEMENT ARRAY JUST WRITTEN.

	SUBRDUTINE STORE1	DELTV	93
	SUBRDUTINE TO STORE ASSORTED PARAMENLAS IN THE DATA ARRAY	DELTV	כצ
C		DELTV	96
	COMMON VAR		
C			99
	DIMENSION VAR(5600)		100
	* P(100) * P(508C)	DELTV	101
		DELTV	102
	*_ NATA(350)	DELTV	103
	+. NST(15)	DELTV	104
	*. DU(15).DV(15).DW(15)	DELTV	105
	* XF(12)	DELTV	106
С		DELTV	107
	EQUIVALENCE (VAR(1) . Y(1))	DELTV	108
	*, (VAR(401),NTEGER(1))	DELTV	109
	*, (VAR(601),P(1))	DELTV	110
	*, (VAR (934), NSTAT)	DELTV	111
	*, (VAR(935),NST(1))	DELTV	112
	* [*] , (P(4074),DATA(1))	DELTV	113
	*; (NTEGER (29); NGUIDE)	DELTV	114
	*, (P(2156), DU(1)), (P(2171), DV(1)), (P(2186), DW(1))	DELTV	115
C		DELIV	116
	N=26	DELIV	11/
	GO TO 5	DELIV	118
	ENTRY STORE2	DELIV	420
۲.	N=29		120
	5 CONTINUE	DELIV	122
	IF (NST (NGUIDE) • NE • 1) GU TU 30		122
	K=NSIAI*31 + N		124
	CALL VEC(DUINGUILE), UVINGUIDE), DWINGUIDE), DATAIN)		125
		DELTV	126
	ZHINT STORES	DELTV	127
		DELTV	128
	CALL CAPT1 (YE-Y 120)) F	DELTV	129
		DELTV	130
	$D_{0} = 20$ T=1.12	DELTV	131
		DELTV	1 32
	20 DATA(I+J+12)=Y(I+37)	DELTV	133
	NSTAT=NSTAT + 1 G	DELTV	134
	J=NSTAT*31 + 1 H	DELTV	135
	DATA(J) = Y(1)	DELTV	136
h	30 CONTINUE	DELTV	137
	RETURN	DELTV	138
			470

ROUTINE OUTDAT

THIS ROUTINE DUMPS THE DATA (350) ARRAY AT THE END OF EACH MONTE CARLO CYCLE. THIS PROVIDES A VISUAL INSPEC-TION OF THE DATA BEING WRITTEN ONTO THE LOCAL MASS STORAGE FILE.

- AREA A WRITE OUT THE CURRENT VALUE OF THE MONTE CARLO RUN INDEX.
- AREA B DUMP THE 8 MANEUVER DATA VECTORS.
- AREA C SAME AS AREA A.
- A. 11 D AREA D DUMP THE 10 PLATFORM ALIGNMENT DATA VECTORS.
- AREA E DUMP THE USER SPECIFIED PORTION OF DATA.

IBROUT	т	1	011	τn	Δ٦
	T \$**		00	• 1.4	m 1

.

.

. . . .

20-1

÷.

.

C. 6600 FTN V3.0-P308 DPT=1 08/29/72 11....27.

SUBROUTINE OUTDAT	DELTV	140
C SUBROUTINE TO OUTPUT STORED DATA FROM EACH STATISTICS RUN	DELTV	141
C	DELTV	142
COMMON VAR	DELTV	143
OIMENSION VAR(5600), P(5000), DATA(350)	DELTV	144
EQUIVALENCE (VAR(601), P(1))	DELTV	145
EQUIVALENCE (P(4074),DATA(1))	DELTV	146
	DELTV	147
NRUN=DATA(1) A	DELTV	148
	DELTV	149
C	DELTV	150
B B	DELTV	151
5 WRITE(6,105) OATA(I+ 1), DATA(I+ 32), DATA(I+ 63), DATA(I+ 94)	DELTV	152
5*, DATA(1+125), DATA(1+156), DATA(1+187), DATA(1+218) B	DELTV	153
C	DELTV	154
WRITE (6,110) NRUN C	DELTV	155
C	DELTV	156
0.7 10 I=1,7 D	DELTV	157
10 WRITE(6,115) DATA(I+250), DATA(I+257), DATA(I+264)	OELTV	158
*, DATA(I+271), DATA(I+278), DATA(I+285)	DELTV	159
*, DATA(I+292),OATA(I+299),DATA(I+306)	DELTV	160
*, OATA(I+313)	DELTV	161
C	DELTV	162 .
WRITE(6,120) (DATA(I),I=321,350)	DELTV	163
100 FORMAT(1H1,50X,32HVECTOR/MANEUVER DATA FOR RUN NO.,14,10H FOLLOWS	DELTV	164
×- ,/)	DELTV	165
105 FORMAT(1X,8E15.6)	DELTV	166
110 FORMAT(750X,29HALIGNMENT HISTORY FDR RUN NO.,14,10H FOLLOWS- ,/)	DELTV	167
115 FORMAT(1X, 10E13.4)	DELTV	168
120 FORMAT(744X, 47HASSORTED OTHER JUNK KNOWN ONLY TO USER FOLLOWS-,	DELTV	169
*3(/1X,8E15.6),/1X,6E15.6)	DELTV	170
RETURN	DELTV	171
END ·	DELTV	172

.

ROUTINE POPOUT

ξ.

SUBROUTINE HAS TWO FUNCTIONS:

(1) COMPUTES ACTUAL, ESTIMATED AND MEASURED RELATIVE PARAMETERS. MEASURED RELATIVE PARAMETERS ARE SUPPLIED TO NAVIGATION FILTER DURING MARKING PROCESS. POPOUT MUST BE VISITED PERIODICALL WHENEVER MARKING IS IN PROGRESS. EVEN IF NO PRINTED OUTPUT IS DESIRED. (2) COMPUTES, ORGANIZES AND PRINTS OUT THE AAP STANDARD DATA BLOCK.

IF ENTRY IS THROUGH CALL TO POPOUT, IT IS FOR THE NORMAL AREA A PURPOSES DESCRIBED ABOVE. DEPENDING ON VALUE OF P(9) AND ELAPSED TIME SINCE LAST EXECUTION OF THE PRINT INSTRUC- (TIONS, PRINT MAY OR MAY NOT RESULT. IF ENTRY IS THROUGH CALL TO POPW, IT IS FOR THE PURPOSE OF A BLOCK DATA PRINT AT A TIME OF MANEUVER COMPUTATION OR RESETTING W. IN THIS CASE, PRINT IS DESIRED REGARDLESS OF THE TIME SINCE LAST PRINT. SETTING OF NSKIP=1 CAUSES ELAPSED TIME CHECK AT PRINT INSTRUCTIONS TO BE DISABLED.

- CALLS TO SETUP CREATE AN OUTPUT FORM OF THE BETELGEUSE AREA B VECTOR FOR ESTIMATED AND ACTUAL STATES.
- ERROR IN SENSOR BIAS ESTIMATE IS DEFINED AS ESTIMATED AREA C MINUS ACTUAL, ANGLE BIASE ERRORS ARE CONVERTED TO MILLI-RADIANS BEFORE OUTPUT.
- CREATE A CARTESIAN FORM OF THE ACTUAL BETELGEUSE STATE. AREA D
- MEASUREMENT FRAME IS 'NATURAL GEOMETRY' FRAME OF RELATIVE AREA E MEASUREMENTS.
- MFTMAT IS THE TRANSFORMATION MATRIX FROM BRF CARTESIAN AREA F FRAME TO LINE-OF-SIGHT (MEASUREMENT) FRAME. FOR PUR-POSES OF COORDINATE TRANSFORMATION, THE W-MATRIX TRANS-FORMS AS AN ERROR VECTOR (REFERENCE 1). BY THE DEFINI-TION OF THE ESTIMATED CARTESIAN STATE:

$$\underline{\mathbf{x}}_{\mathrm{N}} = [\underline{\mathbf{R}}_{\mathrm{S/C}}, \underline{\mathbf{V}}_{\mathrm{S/C}}, \underline{\mathbf{R}}_{\mathrm{TGT}}, \underline{\mathbf{V}}_{\mathrm{TGT}}, \underline{\mathbf{K}}_{\mathrm{S}}]$$

 X_{N} = ESTIMATED STATE K_{S} = ESTIMATED SENSOR BIASES

THE ERROR VECTOR IS AN ARRAY OF STATE ERRORS IN THE SAME SEQUENCE. SINCE THE POSITIONS AND VELOCITIES ARE ALL EXPRESSED IN THE SAME BRF FRAME, THEY HAVE THE SAME TRANSFORMATION TO THE MEASUREMENT FRAME:

MFTMAT ⁰3x3 0 3x3 0_{3x3} 0_{3x3} 0_{3x3} 0_{3x3} 0 3x3 ⁰⁵3x3 ⁰3x3 ⁰3x3 ⁰3x3 MFTMAT MFTMAT $^{0}3x3$ $^{0}3x3$ $^{0}3x3$ 0 3x3 MFTMAT 03x3 03x3 0 3x3 0_{3x3} °3x3 ^I3x3 ⁰3x3 °3x3 °3x3 ^I3x3 ⁰3x3 ⁰3x3

WHERE MFTMAT IS THE MATRIX WHOSE ROWS ARE THE UNIT VEC-TORS OF THE MEASUREMENT FRAME IN THE BRF. SINCE MFTRN TRANSFORMS AN ERROR VECTOR, IT TRANSFORMS THE W-MATRIX. ALL SUBSEQUENT COMPUTATIONS INVOLVING THE W-MATRIX WILL USE THE MEASUREMENT FRAME W, DENOTED WM.

AREA G TRANSFORM W TO MEASUREMENT FRAME: WM+= MFTRN X W

AREA H BY THE DEFINITION OF W, WW^T=E, THE COVARIANCE OF STATE ERRORS. AS THE DIAGONAL ELEMENTS OF WM ARE THE VARIANCES OF STATE ERRORS, THEIR SQUARE-ROOT IS THE STANDARD DE-VIATION. AREA H COMPUTES THE DIAGONAL ELEMENTS OF WM WM^T AND FINDS THEIR SQUARE ROOTS.

AREA I

"fe }

MFTRN

COMPUTE THE COVARIANCE OF RELATIVE STATE ERRORS. LET

 $\underline{\mathbf{r}} = \underline{\mathbf{R}}_{\mathrm{TGT}} - \underline{\mathbf{R}}_{\mathrm{S}/\mathrm{C}}$ $\underline{\mathbf{v}} = \underline{\mathbf{V}}_{\mathrm{TGT}} - \underline{\mathbf{V}}_{\mathrm{S}/\mathrm{C}}$

THEN

 $= [OK] X_N$
FROM WHICH IT NECESSARILY FOLLOWS THAT

 $\underline{\text{RWM}}_{6x18} = \underline{\text{OK}}_{6x18} \times \underline{\text{WM}}_{18x18}$

IS THE W-MATRIX OF RELATIVE STATE ERRORS, AND

 $REM = RWM \times RWM^{T}$

IS THE COVARIANCE OF RELATIVE ERRORS.

AREA K

K CURRENT CARTESIAN ERROR VECTOR IS ROTATED TO MEASUREMENT FRAME. CURRENT RELATIVE ERROR VECTOR IS COMPUTED.

AREA L COMPUTES RELATIVE QUANTITIES FOR NAVIGATION AND OUTPUT. CALL REF WITH ESTIMATED CARTESIAN S/C STATE TO DEFINE ACTUAL LOCAL VERTICAL UNIT VECTORS, ACTUAL NAV BASE UNIT VECTORS, ESTIMATED LOCAL VERTICAL VECTORS AND ESTIMATED NAV BASE VECTORS. CURRENT NAV BASE UNIT VECTORS ARE DE-FINED AS THE LINE-OF-SIGHT FRAME UNIT VECTORS (SAME AS MEASUREMENT FRAME).

> CALL REL WITH ACTUAL STATE AND ACTUAL NAV BASE VECTORS TO COMPUTE R, RDOT, AZ, EL, ACTUAL RELATIVE PARAMETERS. AZ, EL ARE ANGLES DEFINED WITH RESPECT TO NAV BASE UNIT VEC-TORS, NOT LOCAL VERTICAL.

CALL GARBAGE TO CREATE MEASURED RELATIVE PARAMETERS FROM ACTUAL RELATIVE PARAMETERS. RQE VECTOR USED FOR THIS COMPUTATION IS OVERWRITTEN WITH NEXT INSTRUCTION. THIS CALL TO GARBAGE ADDS NOISE TO RQE VECTOR AND STORES IT IN QQ.

CALL REL AGAIN WITH ACTUAL STATE AND ACTUAL LOCAL VERTICAL UNIT VECTORS TO DEFINE ACTUAL VALUE OF LOCAL VERTICAL AZ AND EL.

CALL REL AGAIN WITH ESTIMATED STATE AND ESTIMATED LOCAL VERTICAL UNIT VECTORS TO DEFINE ESTIMATED VALUE OF LOCAL VERTICAL AZ AND EL, ESTIMATED R, RDOT. LOAD MEASURED VALUES INTO OUTFUT ARRAY. CONVERT OUTFUT ANGLES TO DEGREES.

AREA M CONVERT BIAS SIGMA FROM AREA H COMPUTATION TO MILLIRADIANS.

AREA N FORGET IT. NOONE SEEMS SURE WHAT THIS MEANS OR IF IT IS CORRECT. IT DOES NOT SEEM TO BEAR ON THE OPERATION OF THE FILTER AND I HAVE BEEN UNABLE TO EXTRACT ANYTHING USEFUL FROM IT.

AREA O ... IF ENTRY WAS THROUGH POPW, GO AROUND PRINT INTERVAL CHECK.

28

1

2 . . .

UEROUTINE POPOUT

COL-0600 FTN V3.0-P308 OPT=1 08/29/72 11.3...27.

		SUBROUTINE POPOUT		POPOUT	2	
			· · · · · · · ·	POPOUT	3	
	С	OUTPUT SUBROUTINE FOR NAVIGATED STATE		POPOUT	4	
	C			POPOUT	5	
	. C	FOLLOWING AREA IS BLANK COMMON FOR BE	TELGEUSE	POPOUT	6	
		COMMON VAR		POPOUT	7	
	С	++++		POPOUT	8	
		REAL METMAT, METRN		POPOUT	. 9	
	С	· +++++		POPOUT	10	
		OIMENSION VAR(5600), Y(100), DYDX(100), Q(100), FIRSTY(100)	POPOUT	11	
		*, NTEGER(100), O(100), P(5000) .	POPOUT	12	
		EQUIVALENCE (VAR (1), Y (1))	· · · · · · · · · · · · · · · · · · ·	POPOUT	13.	
		*, (VAR(101), OYDX(1))		POPOUT	14	•
		*, (VAR (201),Q(1))		POPOUT	15	
		*, (VAR(301),FIRSTY(1))		POPOUT	16	
		*, (VAR(401), NTEGER(1))		POPOUT	17	
		*, (VAR(501),0(1))		POPOUT	18	
		-*, (VAR(601),P(1))	•	POPOUT	19	
		DIMENSION SAVE(950), BLK(700), OATA(3	50), COV(24,24)	POPOUT	20	
		EQUIVALENCE (P(3,50), SAVE(1))	• .	POPOUT	21	
•		*, (P(1300),BLK(1))		POPOUT	22	
		-*, (P(4074), DATA(1))	the second s	POPOUT	23	
		*, (P(4424),COV(1,1))	•	POPOUT	24	
		OIMENSION QO(4), SIG(4), C(10), REFMA	T(3,3), XNBN(3), YNBN(3)	POPOUT	25	
		*, ZNBN(3), NE(10), NM(10), OT	L(10), OTN(10), OTM(10)	POPOUT	26	
		*, USP(10), USV(10), UTP(10),	UTV(10), SR(10), SRD(10)	POPOUT	27	
		*, · . SO(10), SC1(10), SC2(10), N	W(10), TLM(10), NS(3)	POPOUT	28	
		* , ZTZ(4), SZ(4), TALIGN(10),	XNBE(3), YNBE(3), ZNBE(3)	POPOUT	29	
		*, X(18), WE(18,27)	•	POPOUT	30	
		*, XLVE(3),YLVE(3),ZLVE(3),XLV	N(3),YLVN(3),ZLVN(3)	NOSHIT	1	,
		EQUIVALENCE (SAVE(1),00(1)),	(SAVE(5),SIG(1))	POPOUT	31	
		*, (SAVE(9),C(1)),	(SAVE (19), REFMAT(1,1))	POPOUT	32	
		*, (SAVE(28),XNBN(1)),	(SAVE (31), YNBN (1))	POPOUT	33	·
		*, (SAVE(34),ZNBN(1)),	(SAVE (37), NE(1))	POPOUT	34	
		*, (SAVE(47),NM(1)),	(SAVE (57), OTL (1))	POPOUT	35	
		*, (SAVE(67),DTN(1)),	(SAVE (77), DTM (1))	POPOUT	36	
		*, -(SAVE(87), USP(1)),	(SAVE(97), USV(1))	POPOUT	37	
		*, (SAVE(107), UTP(1)),	(SAVE(117), UTV(1))	POPOUT	38	
		*, (SAVE(127), SR(1)),	(SAVE (137), SRO (1))	POPOUT	39	
		*, (SAVE(147), SO(1)),	(SAVE (157), SC1 (1))	POPOUT	40	
		*, (SAVE(167),SC2(1)),	(SAVE(177), NW(1))	POPOUT	41	
		*, (SAVE(187), TLM(1)),	(SAVE (197), NS (1))	POPOUT	42	
					-	

*	(SAVE(208), TALIGN(1)), (SAVE(218), NALIGN) (SAVE(229), XNBE(1)), (SAVE(232), YNBE(1))	POPOUT	44 .
	(SAVE(235), 7NBE(1)), AVE(258), V(1))	POPOLIT	
*	(SAVE(276), WE(1,1))	POPOUT	4,
****	(NTECER(30),ICOMP)	POPOUT	48
	EQUIVALENCE (SAVE(762), XLVE(1))	NOSHIT	2
. *	• (SAVE (765) • YLVE (1))	NOSHIT	3
*	• (SAVE (768), ZLVE (1))	NOSHIT	4
¥	, (SAVE(771), XEVN(1))	NOSHIT	5
*	(SAVE(774),YLVN(1))	NOSHIT	6
*	, (SAVE (777), ZLVN(1))	NOSHIT	7
C		POPOUT	49
	************************************	•	
		•	
	••		•-
SUBROUTINE POPC	OUT CDC 6600 FTN V3.0-P308 OPT=1	08/29/72	11.32.27.
	EQUIVALENCE (C(1),TW)	POPOUT	50
C		POPOUT	51
•	DIMENSION OUT (200)	POPOUT	5 2
Ċ	1	POPOUT	53
	EQUIVALENCE (BLK(1), OUT(1))	POPOUT	54
_	EQUIVALENCE (NTEGER (42), NLINE)	POPOUT	55
C		POPOUT	56
C		POPOUT	57
	EQUIVALENCE (P(7),CGO)	POPOUT	58
	• (P(8),CRO)	POPOUT	59
C '	·	POPOUT	60
	DIMENSION XNB(12), XEB(12), BIASN(6), BIASE(6), DBIAS(6), XSNC(6	POPOUT	61
*	<pre>xTNC(6), XSEC(6), XTEC(6), DXSC(6), DXTC(6), RXEC(6)</pre>	POPOUT	62
· *	DXSM(6), DXTM(6), DRXM(6), SIGEM(18), REM(6,6), RQN(4)	POPOUT	63
*	, RQE(4), RQM(4)	POPOUT	64
C		POPOUT	65
	EQUIVALENCE (OUT(1), XNB(1))	POPOUT	66
*	• (OUT(13),XEB(1))	POPOUT	67
×	, (OUT(25), BIASN(1))	POPOUT	68
*	, (OUT(31), BIASE(1))	POPOUT	69
*	• (OUT(37),OBIAS(1))	POPOUT	70
*	• (OUT (43) • XSNC(1))	POPOUT	71
*	, (OUT(49),XTNC(1))	POPOUT	72
*	, (OUT (55), XSEC(1))	POPOUT	73
×			

	* MELK	N(18,18), WM(18,27), UK(6,18), RWM(6,27)	POPOUT	110	
	DIMENSION XM (3)), YM(3), ZM(3), MFTMAT(3,3), DUM(3,3)	POPOUT	109	
č				108	
C	00+(161-164) 00T(165-168)	RELATIVE QUANTITIES ENVIRONMENT RELATIVE QUANTITIES CRSEPVED	POPOUT	106	
C	OUT(157-160).	RELATIVE QUANTITIES NAVIGATEO	POPOUT	105	
BROUTINE P	0POUT	COC 6600 FTN V3.0-P308 OPT=1	08/29/72	11.32.27.	
		•			
	•				
•		•			
C	OUT(121-156)	RELATIVE COVARIANCE MATRIX MEASUREMENT	POPOUT	104	
<u> </u>	CUT(103-120)	ONE-SIGMA ERRORS MEASUREMENT	POPOUT	103	
č		VECTOR, MEASUREMENT	POPOUT	101	
<u> </u>	OUT (97-102)	NAVIGATED MINUS ENVIRUNMENT MEASUREMENT TOT	POPOUT	100	
	09T(85-90) 09T(91+96)	NAVIGATED MINUS ENVIRONMENT MEASUREMENT S/C	POPOUT	99	-
C	001(79-84)	TGT MINUS S/C ENVIRONMENT CARTESIAN	POPOUT	98	
C	011 (73-78)	NAVIGATED MINUS ENVIRONMENT CARTESIAN TGT	POPOUT	97	_
С	CUT (67-72)	NAVIGATED MINUS ENVIRONMENT CARTESIAN S/C	POPOUT	96	
C	OUT (61-66)	ENVIRONMENT CARTESIAN IGT	POPOUT	95	_
Č	OUT (55-60)	ENVIRONMENT CARTESIAN S/C	POPOUL	93	
C	001(49-54)	NAVIGATED CARTESIAN TOT	POPOUL	92	_
C .	09T(37=42) 09T(43=48)	NAVIGATED MINUS ENVIRONMENT BIASES	POPOUT	91	
	011(31-36)	ENVIKUNMENT BIASES	POPOUT	90	
C	0.01(25-30)	NAVIGATED BIASES	POPOUT	89	
С	0UT(13-24)	ENVIRONMENT BETELGEUSE	POPOUT	88	
C	001(1-12)	NAVIGATED BETELGEUSE	POPOUT	, 87	
С	1	4001	POPOUT	86	
	-*, (0)	UT(165),RQM(1))	POPOUT	85	•
	*, (0)	UT (161), RQE(1))	· POPOUT	84	
	EQUIVALENCE (OL	UT (157), RON (1)		83	
	*, (0)	UT(121).RFM(1.1))	POPOUT	81	
	*		POPOUT	80	
	*, (0)	UI(91), DXTM(1))	POPOUT	79 .	
har -	*, (01	UT (85), DXSM(1))	POPOUT	7.7	
	*, (00	UT(79),RXEC(1))	POPOUT	7-	
	*• (0)	UT (73), OXTC (1))	POPOUT	76	
	*, (0(UI(67), 0XSC(1))	POPOUT	75	

U

	· · ·	POPOOL	112	
G		POPOUT	113	
NSKTP = 0	A	POPOUT	1?	
G0 T0 1		POPOUT	11.	
ENTRY POPW		POPOUT	116	
NSKTP = 1		POPOUT	117	
	A	POPOUT	118	
	В	POPOUT	119	
- C SCT-UD THE NAVIGATED STATE VECTOR TN THE BETELGEUSE ERA	ME	POPOUT	120	
CALL SETURIY (2), XNR(1))		POPOUT	121	
	RAME	POPOLIT	122	
CALL SETURIX(20), YEB(1))	В	POPOUT	123	
COCATE THE NAVIEATED AND ENVIRONMENT PLAS APPAYS AND TH		F POPOLIT	124	
OCENTE THE NAVIGATED AND ENVIRONMENT DIAS ARRATS AND TH		POPOLIT	125	
		POPOLIT	126	
$\frac{31ASN(1)}{2} = \frac{1}{1} \frac{1}{1} \frac{1}{3}$			127	
BLASE(1) = f(1+31)			120	
$U_{3}(4S(1) = BIASN(1) - BIASE(1)$	C		120	
$I^{\mu}(I \cdot EU \cdot 3 \cdot UX \cdot I \cdot EU \cdot 4) UBIAS(I) = UBIAS(I) \cdot IUUU \cdot U$		POPOUI	470	
5 CONTINUE 	(C	POPOUL	130	
C GREATE THE NAVIGATED STATE VEGTOR IN THE CARTESTAN FRAM	16	POPOUT	131	
$D_{10} I_{10} I_{10} I_{10}$		POPOUT	132	
XSNC(1) = Y(1+37)			133	
XTNC(I) = Y(I+43)		PUPUUI	134	
10 CONTINUE		POPOUT	135	
CROTATE ENVIRONMENT STATE VECTOR FROM THE BETELGEUSE TO	CARTESIAN FRA	ME POPOUT	136	
CALL CART1 (OUT(55), Y(20))	D	POPOUT	137	
C CALCULATE THE ERROR VECTOR BETWEEN THE NAVIGATED AND EN	VVIRONMENT STA	TE POPOUT	138	
C VECTORS IN THE CARTESIAN FRAME		POPOUT	139	
00 15 I=1,6		POPOUT	140	
OXSC(I) = XSNC(I) - XSEC(I)		POPOUT	141	
DXTC(I) = XINC(I) - XTEC(I)		POPOUT	142	
15 CONTINUE		POPOUT	143	
C IN THE CARTESIAN FRAME CALCULATE THE RELATIVE STATE VE	CTOR BETWEEN	THE POPOUT	144	
C ENVIRONMENT STATES OF THE S/C ANO TGT		POPOUT	145	
0) 20 I=1,6		POPOUT	146	
RXEC(I) = XTEC(I) - XSEC(I)	•	POPOUT	147	
20 CONTINUE		POPOUT	148	
C		POPOUT	149	
	******	*** POPOUT	150	
c .	E	POPOUT	151	
CICREATE THE TRANSFORMATION MATRIX WHICH ROTATES A VECTO	R FROM THE	POPOUT	152	
C CARTESTAN TO THE MEASUREMENT FRAME		POPOUT	153	
		POPOUT	154	
C_{1} $Y'_{1} = UNTT(RANGE)$		POPOLIT	155	
		POPOUT	156	
$C = YM = HNTT(YM \times 7M)$		POPOLIT	157	
			158	
		00001	400	

•

-ROUTINE POPOUT CO- 0600 FTN V3.0-P308 OF	T=1 08/29/72	11.327.
CALL UCROSS(XSEC(1), YM, ZM)	POPOUT	160
CALL UCROSS(YM, ZM, XM)	POPOUT	161
<u>CALL TRN(XM, YM, ZM, MFTMAT, DUM)</u>	POPOUT	162
FF	POPOUT	163
C CREATE THE MATRIX METRN WHICH ROTATES THE W MATRIX FROM THE CART	ESIAN POPOUT	164
C TO THE MEASUREMENT FRAME	POPOUT	165
C	POPOUT	166
C ZERO THE LOCATIONS FOR THE MATRIX METRN	POPOUT	.167
00 25 I=1,18	. POPOUT	168
00 25 J=1,18	POPOUT	169
MFTRN(I,J) = 0.0	. POPOUT	170
25 CONTINUE	POPOUT	171
C SET UP METRN AS AN (18 X 18) MATRIX COMPOSED OF 4 (3 X 3) METMA	IS AND POPOUT	172
C 2-(3-X-3)-IDENTITY-MATRICES ALONG THE DIAGONAL	POPOUT	173
03 30 I=3,12,3	POPOUT	174
	POPOUT	175
00 30 J=1,3	POPOUT	176
00-30-K=1;3	POPOUT	177
MFTRN((J+L), (K+L)) = MFTMAT(J,K)	POPOUT	178
30 CONTINUE	POPOLIT	179
00 35 I=13,18	POPOUT	180
MFTRN(I,I) = 1.0	POPOUT	181
35 CONTINUE	POPOLIT	182
C ROTATE THE W MATRIX INTO THE MEASUREMENT FRAME	POPOÜT	183
CALL MATMUL(MFTRN, WE, WM, 18, 18, 27) G	POPOLIT	184
C CALCULATE THE ONE-SIGMA POSTTION AND VELOCITY ERRORS OF THE DOV	ARTANCE POPOLIT	1.85
C MATRIX E IN THE MEASUREMENT FRAME	POPOLIT	186
00 40 I=1.18	POPOLIT	187
$\Xi D = 0.0$		188
09-40 J=1.27	POPOUT	189
ED = EO + WM(I,J) * 2	POPOUT	191
IF(J = 0.27) = SORT(FO)	POPOLIT	1 9 1
40 CONTINUE H	POPOLIT	192
C	POPOLIT	103
C CREATE THE OK MATRIX TO BE USED IN CALCULATING THE RELATIVE W M.		195
CIN THE MEASUREMENT FRAME		195
00 45 I=1.6.	POPOUT	195
01 50 1=1.18	POPOUT	107
OK(I,J) = 0.0		198
50 CONTINUE		100
0K(I,I) = 1.0	POPOUT	200
OK(T,(T+6)) = -1-0		200
	PUPUUI	201

C	POPOUT	203
C ORFATE THE RELATIVE W MATRIX IN THE MEASUREMENT FRAME J	POPOUT	204
CALL MATMUL(OK, WM, RWM, 6, 18, 27)	POPOUT	21
COREATE THE RELATIVE COVARIANCE MATRIX IN THE MEASUREMENT FRAME	POPOUT	265
CALL MATRAN(RWM, 5,27, RWMT)	POPOUT	207
CALL MATMUL(RWM, RWMT, REM. 6, 27, 6) J	POPOUT	208
C REPLACE THE VARIANCES ALONG THE DIAGONAL OF THE RELATIVE COVARIAN	CE POPOUT	209
C MATRIX WITH THEIR ONE-SIGMAS	POPOUT	210
00 55 1=1,6	POPOUT	211
REM(I,I) = SQRT(ABS(REM(I,I))).	POPOUT	212
55 CONTINUE	POPOUT	213
C CALCULATE THE CORRELATION COEFFICIENTS AND PLACE THEM IN THE LOWER	R POPOUT	214
		•
	*	
		a - a - a - a - a - a - a - a - a - a -
PROUTINE POPOUT CDC 6600 FTN V3.0-P308 OPT	=1 08/29/72	11.32.27.
C TRIANGLE OF THE SYMMETRIC COVARIANCE MATRIX	POPOUT	215
00 60 I=1,6	POPOLIT	216
IF (REM(I,I).EQ.0.0) GO TO 60	POPOUT	217
D0-59-J=1,6	POPOUT	218
IF (J.GE.I) GO TO 59	POPOUT	219
REM(I,J) = REM(J,I) / (REM(I,I) * REM(J,J))	POPOUT	220
59 CONTINUE	POPOUT	221
60 CONTINUE	POPOUT	222
C K	POPOUT	223
C ROTATE THE ERROR VECTOR BETWEEN THE NAVIGATED AND ENVIRONMENT	POPOUŢ	224 .
C TRAJECTORIES FROM THE CARTESIAN TO THE MEASUREMENT FRAME	POPOUT	225
GALL MATHUL(MFTRN; OUT(67); OUT(85); 18; 18; 1)	POPOUT	226
C IN THE MEASUREMENT FRAME, CALCULATE THE DIFFERENCE BETWEEN THE	POPOUT	227
CRELATIVE STATE VECTORS OF THE NAVIGATED AND ENVIRONMENT TRAJECTOR	IES POPOUT	228
00 61 I=1,6	POPOUT	229
$\frac{\partial RXM(I)}{\partial r} = 0XTM(I) = 0XSM(I)$	POPOUT	230
61 GUNTINUE K	POPOUT	231
	POPOUT	232
······································	***** POPOUT	233
COFFINE THE CURRENT NAVICATION DACE ATTITUCE FOR THE	POPOUT	234
C ELEVATION AND E CONDUTATION BASE ATTITUDE FUR THE AZIMUTH AND	POPOUT	235
CALL REF (OUT (A3))	POPOUT	236
	POPOUT	237
CALL REL (OUT (55) - ROE, YNRE, ZNRE)	POPOUT	238

su

C	ADD NCISE TO ENVIRONMENT OBSERVABLES	POPOUT	240
	CALL GAPBAGE (ROE)	POPOUT	241
	CALL PEE (OUT (55), RQE, XLVE, YLVE, ZLV	NOSHIT	
. ~	COMPUTE THE NAVIGATED RELATIVE OUANTITIES	POPOUT	24-
	CALL REL (OUT (43) , RON, XLVN, YLVN, ZLVN)	NOSHIT	9
	RADEG = 57.2957795	POPOUT	244
	D1 65 I=1,4	POPOUT	245
С	A00 BIASES TO NAVIGATEO RELATIVE OUANTITIES	POPOUT	246
	R2N(I) = RON(I) + BIASN(I)	POPOUT	247
С	SET UP THE MEASURED RELATIVE QUANTITIES FOR OUTPUT	POPOUT	248 .
	RUM(I) = 00(I)	POPOUT	249
C	CONVERT AXIMUTH AND ELEVATION ANGLES TO DEGREES	POPOUT	250
	IF(1.LT.3) G0 T0 65	POPOUT	251
	ROM(I) = ROM(I) * RADEG	POPOUT	252
	RON(I) = RON(I) * RADEG	POPOUT	253
· · ·	ROE(I) = ROE(I) * RAOEG	POPOUT	254
·····	65 CONTINUE	POPOUT	255
C	OUTPUT UNE-SIGMA ERRORS IN THE AZIMUTH AND ELEVATION ANGLES AS	POPOUT	256
C	MILLERADIANS	POPOUT	257
	SIGEM(15) = SIGEM(15)*1000.	POPOUT	258
	SIGFM(16) = SIGFM(16) *1000	POPOUT	259
C	N	POPOUT	260
	**************************************	******* POPOUT	261
С		POPOUT	262
C	CALCULATE THE PRODUCT OF THE UNIVERSAL GRAVITY CONSTANT WITH T	TE MASS POPOUT	263
· Č	OF THE EARTH	POPOUT	264
	G-1 == CG 0 * C R0 * * 2	POPOUT	265
C	ADVANCE ESTIMATED TARGET TO ENVIRONMENT TARGET	POPOUT	266
	CALL OPENI (XINC XIEC SIT)	POPOUT	267
	GALL OPEN2 (XINC. GM STT. RTT. RDTT. VHTT)	POPOUT	268
	· · · · · · · · · · · · · · · · · · ·		
	•	*	
	·		
		*	
OUTINE	POPOUT COC 6600 FTN V3.0-P308	OPT=1 08/29/72	11.32.27.
C	•	POPOUT	269
C	ADVANCE ESTIMATED SPACECRAFT TO ENVIRONMENT TARGET	POPOUT	270
	CALL OPEN1 (XSNC, XTEC, STS)	POPOUT	271
	CALL OPEN2 (XSNC, GM, -STS, RTS, RDTS, VHTS)	POPOUT	272
C		POPOUT	273
C	ADVANCE ENVIRONMENT SPACECRAFT TO ENVIRONMENT TARGET	POPOUT	274

ÊR

	CALL OPENZIXSEC, GM, -STSA, RTSA, RDTSA, VHTSA)	POPDUT	276	
C	COMPUTE CURVILINEAR ERRORS	POPDUT	277	
	RTE = RSS(XTEC(1), XTEC(2), XTEC(3))	POPOUT	2-0-	
-	RDTE = DDT (XTEC(1), XTEC(4))/RTE	POPOUT	21 -	•
	VTE = RSS(XTEC(4), XTEC(5), XTEC(6))	POPOUT	280	
	VHTE = SGRT(VTE**2 - RDTE**2)	PDPDUT	281	
		POPOUT.	282	
	SE = (STSA - STS + STT) *RTE	PDPDUT	283	
	RTE = (RTE - RTSA) - (RTT - RTS)	POPOUT	284	
6	VHE = (VHTE - VHTSA) - (VHTT - VHTS)	POPOUT	285	
	RDE = (RDTE - RDTSA) - (RDTT - RDTS)	POPDUT	286	
	PHID = VHTE/RTE	POPDUT	287	
· · ·	DVDH = 1.5*PHID*PE	POPOUT	288	
	VCE = VHE + DVDH N	PDPDUT	289	
	TF(NSKIP.ED,1) GC TD 9 0	POPOUT	290	
C		POPDUT	291	
<u> </u>	CHECK IF SUFFICIENT TIME HAS ELAPSED FOR A PRINT	PDPOUT	292	
	TLP=Y(1) - P(10)	PDPDUT	293	
	IF(TLP.LT.P(9)) GO TO 200	PAPAUT	294	••••••••••
	P(10)=Y(1)	POPDUT	295	
. C		POPOUT	296	· · · · · ·
	9 CONTINUE	POPDUT	297	
C	CHECK FOR TIME TO PAGEHEAD	POPDUT	298	
	IF(NLINE.LT.58) GD TD 11	POPDUT	299	
	PRINT 95	PAPAUT	300	<u> </u>
	NUINE=0	POPDUT	301	•
·	11 CONTINUE	PAPAUT	302	
С	· · ·	POPDUT	303	
*:	*********************	* PAPAUT	304	
С		POPOUT	305	
C	PRINT OUT THE GOODTES	PAPALIT	306	<u> </u>
С		POPOUT	307	
	IF (NLINE.EQ.29) PPINT 90	PAPALIT	308	
C	DUTPUT THE NAVIGATED AND ENVIRONMENT BETELGEUSE STATES	POPOUT	319	
	PRINT 100, Y(1)	PAPALIT	310	·
	PRINT 105	POPDUT	311	
	PRINT 110+ (XNB(I)+I=1+12)+ (XFB(I)+I=1+12)	PAPALIT	312	
C	OUTPUT THE NAVIGATED AND ENVIRONMENT CARTESIAN STATES	PAPALIT	313	
	PRINT 115, Y(1)	PhPhilt	314	
•	PRINT 120	PAPALIT	315	
	PRINT 125, (XSNC(I), I=1.6), (XTNC(I), I=1.6)	POPOLIT	316	
	*, (XSEC(I), I=1,6), (XTEC(I), I=1.6)	POPOLIT	317	
C	OUTPUT CARTESIAN STATE ERRORS IN THE MEASUREMENT FRAME	PAPALIT	318	
	PRINT 130	POPOUT	319	
	PRINT 135		320	
	PRINT 140, (DXSM(I), I=1,6), (DXTM(I), I=1.6)	POPOLIT	321	1
C	OUTPUT RELATIVE STATE ERRORS, RELATIVE PARAMETERS, MARKS, COMAPTANCE	PAPALIT	322	
C	OF RELATIVE ERRORS IN THE MEASUREMENT ERAME AND INCOTAGO OF ANOTAL	DODOUT	707	

SUEROUTINE POPOUT

COL-0600 FTN V3.0-P308 OPT=1 08/29/72 11.3.27.

C OEVIATIONS	POPOUT	. 324
P2TNT 145	POPOUT	325
PRINT 150, (OBIAS(I), I=1,6), (ORXM(I), I=1,6)	POPOUT	326
PRINT 155	POPOUT	327
PRINT 160, SE, VHE, VCE, RE, RDE	POPOUT	328
	POPOUT	329
*. (RON(T).I=1.4). NS(1). ZTZ(2)	POPOUT	330
(ROF(1), 1=1.4), NS(2), ZTZ(3), (REM(1.1), 1=1.6	POPOUT	331
*. (ROM(T), T=1,4), NS(3), ZTZ(4), (REM(2,I), I=1,6)	POPOUT	332
(REM(3,I),I=1,6	POPOUT	333
*- S7(1) . (RFM(4.1).I=1.6) . POPOU	T 334
	POPOUT	335
*. $(SIGEM(1), I=7, 12), S7(3), (RFM(6,I), I=1, 6)$) POPOU	T 336
	POPOU	337
$\frac{1}{10000000000000000000000000000000000$	POPOU	r 338
	POPOU	339
******	******* POPOU	T 340
ρρ	POPOU	1 341
C EODMAT STATEMENTS	POPOU	T 342
6 FURIAL STATEMENTS	POPOL	343
	POPOU	т 344
	POPOU	1 345
400 FORMATIEZY 4ZUPETELCEUSE STATE (E8.4)	POPOU	т 346
	VEL HEA POPOLI	T 347
105 FURMAT(12X,117HRAD VEC LONGTIOUE CATTIOUE ACT RATE HOR	W-BA POPOLI	T 348
TUING X-BAR T-BAR Z-BAR U-BAR U-BAR		T 349
	- 3E10.2. POPOU	T 350
110 FURMAI(1, 100 MAY 9F9.092F9.39F9.29F10.29F5.395111.0	7548 21 DOPOLI	T 751
* /1X,1UHACI ,F9.0,2F9.3,F9.2,F10.2,F9.3,3F11.0	93F10+21 P0F00	T 352
115 FORMAT(/53X,1/HUARTESTAN STATE (FO.1)		T 353
120 FORMAT(7X, 123HXS(BRF) YS(BRF) ZS(BRF) XSU(BRF) T	DDEN 7T DOPOL	T 354
* ZSU(BRF) XI(BRF) YI(BRF) ZI(BRF) XIU(BRF) IIU(BRFJ ZT FOTOU	
*0(RRF))		1 300 IT 356
125 FORMAT(1X, SHNAV, 3F11.U, 3F1U.2, 3F11.U, 3F1U.2/		1 350
* 1X, 3HACT, 3F11.0, 3F10.2, 3F11.0, 3F10.2)		1 357 . IT 759
130 FORMAT(742X,43HCARTESIAN STATE ERRORS IN MEASUREMENT FRAM		T 350
135 FORMAT(7X,123HXSE(MF) YSE(MF) ZSE(MF) XSOE(MF) Y	SOE(ME) POPOU	1 359 T 700
* ZSOE(MF) XTE(MF) YTE(MF) ZIE(MF) XTUE(MF) YTUE	. (MF) ZI PUPUU	1 300
*DE(MF))	POPOL	11 361 IT 362
140 FORMAT(4X,3F11.0.3F10.2,3F11.0,3F10.2)	PUPUL	302
145 FORMAT(756X,21HRELATIVE STATE ERRORS,/6X,124H====================================	:======= POPOU	11 363 IT 764
*=====BIAS ESTIMATION====================================		JI 304
*ON AND VELOCITY************************************	C-RALE POPUL	JI 305

150 FORMAT(5x, F9.2, 2f11.3, 3, 3F10.5, 3F11.0, 3f10.2) POPOUT 368 100 FORMAT(16x, 52H8CLATIVE PARAMFTERS MARKS POPOUT 3.1 111 FORMAT(16x, 52H8CLATIVE PARAMFTERS MARKS POPOUT 3.1 113 FORMAT(10x, 52H7CL, 510.3, 56H RAD T(1276H RES, 1513X, FOPOUT 373 3.3 3.1 POPOUT 3.7 12.2, 279.3, 56H OPT, 12.46H UAZ, 17.65, 13H7, X; 56EL0.3, 71X; 6HEAS, 159.0, FOPOUT 375 7.5 7.6 7.1 7.6 7.6 7.7 7.6 7.7 7.7 7.7 7.7 7.6 7.7 7.7 7.7 7.7 7.6 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7			and an a mouth	/ ZRUCTHOUT		PUPUUI	367	
OPD FORMAT(74X,49H0-F S=00T SD="1" DELTA-H		150 FORMAT(6X,F9.2,2F11.3,3	F10.3,3F11.0,3F <u>1</u> 0.2)		POPOUT	368	
International Construction MARKS POPOUT 3.1 1.55 F7RMATI10X,40HRANGE R=RATE AZIMUTH REL ELEV MELS,1E3,6H UR POPOUT 372 1.55 F7RMATI10X,40HRANGE R=RATE AZIMUTH REL ELEV MELS,1E3,6H UR POPOUT 372 1.55 F3HCOVARIANCE OF RELATIVE ERRORS (MF) ./1X,6HACT .90,0,710.2,790,710,710,710,710,710,710,710,710,710,71		FORMATC	74X,49H0-P	S-DOT SD-	DELTA-H DELH-DOT) POPOUT	31-1	· · · · · ·
*,10.0,F10.3,F11.3,F11.0,F10.3) POPOUT 371 165 FPRMAT10X,+0HRANGE R=RATE AZIMUTH REL ELEV MFLG, I2,6H UR OPPOUT 372 * 55.171X,56HAU +50.1710.22,259.356H RAD +12.5H UPD.+65.1.13X, POPOUT 373 * 53HOUVARIANCE OF PELATIVE ERRORS (MF) +/1X,6HACT +9.0,710.2, POPOUT 374 * 259.356H VHF +12.5H UPD.+65.1.13X, POPOUT 374 * 710.2,279.354H VCF +5.1.3H X,6EU0.37/1X,6HHEAS, F9.0, POPOUT 375 * 710.2,279.354H VHF 12,6H UAX,78X,59HLHNEHTIAL STANDARD DEVITIONS POPOUT 376 * 7.22F10.5, * EE0.3,74X,54HHX04,78X,59HLHNEHTIAL STANDARD DEVITIONS POPOUT 377 * 7.3F8.0,3F7.2,8H X0, 3F10.5, 3E10.3/1X,4HS/C POPOUT 379 *1X,4H16T -3F8.0,2F6.3,3F7.2,8H Y0, 4F10.5, 2E10.3,/ POPOUT 381 200 CONTINUE POPOUT 379 *1X,4H16T,5,6E.0,2F8.3,3F7.2,8H SEL ,F5.3) POPOUT 383 200 CONTINUE POPOUT 384 POPOUT 384 END POPOUT 384	6	JION FORMAT(16X,52HRELATIVE	PARAMETERS	MARKS	POPOUT	3.	
145 FORMATIIDX,400RANGE R=RATE AZIMUTH REL ELEV WFLG,12,6H UR POPOUT 373 * 75,171X5HNAW FSULTID:2,279,3,6H RAD PFG,17,2X,F PPOPOUT 374 * 259,3,6H VFF,12,6H VR POPOUT 375 * * PPOPOUT 374 * 259,3,6H VFF,12,6H VR Q2,765,13H VFE10,3,74,6HMEAS, F90,0, POPOUT 376 * 2,2710.5, * 4E10,3,74,84,90HNEPTIAL STAL0,3,64X,3H POPOUT 376 * 5R ,F5,3,4H X0,3,5F10.5, * 3E10,3/1X,445/C POPOUT 378 * 5R ,F5,3,4H Y0,4510.5, * 2E10,3,7 POPOUT 378 * SR ,F5,3,4H Y0,4510.5, * 2E10,3,7 POPOUT 378 * Y,4H16T ,3F8,0,3F7.2,8H SR2 ,F5.3,4H Z0,5F10.5, * POPOUT 381 * Y,4H16T ,3F8,0,2F6.3,3F7.2,8H SEL ,F5.3 POPOUT 382 * 200 CONTINE POPOUT 382 POPOUT 384 * END		* ,F10.0,	F10.3, F11.3, F11.	0,F10.3)		POPOUT	371	•
**5:1/1X:binAv :F9:0.F10:2:2:93:36H RAD :F2:0.1:3:3X POPOUT 374 * 336C0VARIANCE OF RELATIVE ERRORS (MP) ./1X:6HADT :F9:0.2: POPOUT 375 **10:2:2:P3:3:5H OPI:13:6H UAZ :F6:1:3H :X:6HADT :F9:0.7: POPOUT 375 **10:2:2:P3:3:5H OPI:13:6H UAZ :F6:1:3H :X:6HADT :F9:0.7: POPOUT 375 **10:2:2:P3:3:5H OPI:13:6H UAZ :F6:1:3H :X:6HADT :P0:0.7: POPOUT 376 **2:2:P1:0:5: :E10:3:7:E3:5H :F1:0:5: :E10:3:7: POPOUT 378 **10:3:F1:2:2:P1 :SR :F5:3:4H X0; 3F10:5; :SE10:3:/1X:4HS/C POPOUT 378 **200TINE POPOUT COC 6600 FTN V3:0-P308 OPT=1 08/29/72 11:32:27 *:3:6:0:3:F7:2:8H SR0; :F5:3:4H Y0; 4F10:5; :E10:3; / POPOUT 381 **1:1:3:7:1:4:4HS:7:2:8H SR0; :F5:3; 4H Y0; 4F10:5; :E10:3; / POPOUT 381 **10:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1	•	165 FORMAT(10X,40HRANGE	R-RATE AZIMUTH REL	ELEV MELG. 12.6H UF	POPOUT	372	
* 33HOOVARIANCE OF RELATIVE ERRORS (MF) ,/LX,6HAGT ,F3,0,F10.2, POPOUT 375 * 2703.54H VHF, 12,6H UAZ, F6.21,3H Y,F10.5, 5E10.3,/64X,3H POPOUT 375 * 2,2210.5, 4E10.3,72X,50HINERTIAL STANDARD DEVIATIONS POPOUT 377 * SR ,F5.3,4H X0, 3F10.5, 3E10.3/1X,4HS/C POPOUT 378 BEROUTINE POPOUT COC 6600 FTN V3.0-F308 OPT=1 08/29/72 11.32.27 *,578.0,377.2,8H SR0,F5.3,4H Y0,4F10.5, 2E10.3,7 POPOUT 379 *1X,74H0GT,5F6.0,377.2,8H SR0,F5.3,4H Y0,4F10.5, POPOUT 379 *E13.3,71X,4H0GT,5F6.0,3F7.2,8H SZ,753.34H ZD,5F10.5, POPOUT 379 *E13.3,71X,4H0GT,5F6.0,3F7.2,8H SZ,753.34H ZD,5F10.5, POPOUT 360 POPOUT 850 RETURN POPOUT 838 END POPOUT 384		* F5.171X	•6HNAV •F9.0.F	10.2.2F9.3.6H RAD	12.6H URD .E6.1.13X	POPOLIT	373	
* 2F9.3;6H VHF ;12;6H UAZ ;F6.1;3H X,6E10:3;71X;6HMEAS.;F9.0; POPOUT 375 *F13.2;2F9.3;5H OPT,13;6H UEL;F6.1;3H Y;F10.5; 5E10:3;74X;5H POPOUT 376 * 2;2F10:5, 4E10:5; 4E10:5; 3E10:371X;4HS/C POPOUT 377 * SR ;F5:3;4H X0; 3F10:5; 3E10:371X;4HS/C POPOUT 378 BROUTINE POPOUT COC 6600 FTN V3:0-P308 oPT=1 08/29/72 11.32;27 *,3F8:0,3F7.2;8H SR0;F5:3;4H Y0;4F10:5; 2E10:3;7 POPOUT 379 *1X;4H16T;3F8:0;3F7.2;8H SA2;F5:3;4H ZD;5F10:5; POPOUT 379 *E11:3;71X;4HD12A;F8:0;2F8:3;3F7.2;8H SEL;F5:3] POPOUT 380 *E11:3;71X;4HD12A;F8:0;2F8:3;3F7.2;8H SEL;F5:3] POPOUT 381 200 GONTINUE RETURN POPOUT 883 END POPOUT 384		* 35HCOVA	RIANCE OF RELATI	VE ERRORS (MF) ./1)	•6HACT •F9.0.F10.2	POPOUT	374	
*F10.2, 2F9.3,5H OPT.I3.6H UEL F6.1,3H Y,F10.5, 5E10.3,/64X,3H POPOUT 376 *Z,2F10.5, 4E10.3,78X,50HINERTIAL STANDARD DEVIATIONS POPOUT 377 * SR ,F5.3,4H X0, 3F10.5, 3E10.3/1X,4HS/C POPOUT 378 POPOUT COC 6600 FTN V3.0-P308 OPT=1 08/29/72 11.32.27 *,578.0,3F7.2,8H SR0, F5.3,4H Y0, 4F10.5, 2E10.3,7 POPOUT 379 *1X,4H16T ,5F8.0,3F7.2,8H SR0, F5.3,4H Y0, 4F10.5, POPOUT 360 *E10.3,7X,4HBIAS,F6.0,2F8.3,3F7.2,8H SEL ,F5.31 POPOUT 361 200 CONTINUE POPOUT RETURN POPOUT 384 RETURN POPOUT 384		* 2F9-3-6	H VHF .12.6H U	A7 . F 5 . 1 . 3H X . 5F 1 .	3-/1X-6HMEAS E9-0-	POPOLIT	375	
* 2,2F10.5, * 2,2F10.5, * SR ,F5.3,4H X0, 3F10.5, SR ,F5.3,4H X0, 3F10.5, BEROUTINE POPOUT COC 6600 FTN V3.0-P308 0PT=1 08/29/72 11.32.27 *,3F8.0,3F7.2,8H SR0 ,F5.3,4H Y0, 4F10.5, *E10.3,/1X,4H0IAS,F6.0,2F8.3,3F7.2,8H SEL ,F5.3) POPOUT 380 *E11.3,/1X,4H0IAS,F6.0,2F8.3,3F7.2,8H SEL ,F5.3) POPOUT 381 200 CONTINUE RETURN END POPOUT 384 POPOUT 384		*F10.2,2F	9.3,5H OPT, 13.6	H UEL .F6.1.3H Y.F	10.5.5510.3.764X.3		376	
* SR ,F5.3,4H X0, 3F10.5, 3E10.3/1X,4HS/C POPOUT 378 * .378 .378 .378 .378 .378 .378 * .378 .378 .378 .378 .378 .378 * .378 .378 .378 .378 .378 .378 * .378 .378 .378 .378 .378 .378 * .378 .378 .378 .378 .378 .378 * .378 .377 .378 .378 .379 .379 .379 .3717 .318 .317 .318 .317 .318 .318 .318 .318 .318 .318	·····	* 7,2F10.	5. 4F10-	3-78X-50HINERITAL ST	ANDARD DEVIATIONS	POPOUT	777	
IEROUTINE POPOUT COC 6600 FTN V3.0-P308 OPT=1 08/29/72 11.32.27 *,3F8.0,3F7.2,8H SP0,F5.3,4H Y0,4F10.5, 2E10.3,/ POPOUT 379 *13,4H1G1 ,3F8.0,3F7.2,8H SP2,F5.3,4H Z0,5F10.5, POPOUT 381 200 CONTINUE POPOUT 381 POPOUT 381 200 CONTINUE POPOUT 383 POPOUT 383 END POPOUT 384 POPOUT 384		. *	SR .F5.3.4	H X0. 3F10.5.	3F10-3/1X-4HS/		378	
IPROUTINE POPOUT COC 6600 FTN V3.0-F308 OPT=1 08/29/72 11.32.27 *,3F8.0,3F7.2,8H SR0,F5.3,4H Y0,4F10.5, 2E10.3,/ POPOUT 379 *1X,4HTGT,3F8.0,3F7.2,8H SAZ,F5.3,4H Z0,F5.3,4H Z0,F5.3,4H POPOUT 381 200 CONTINUE POPOUT S81 POPOUT 382 RETURN POPOUT S83 POPOUT 383 END POPOUT 384 POPOUT 384	·····						010	
DEROUTINE POPOUT COC 6600 FTN V3.0-P308 0PT=1 08/29/72 11.32.27 *,356.0,357.2,8H SR0,55.3,4H Y0,4510.5, 2E10.3,7 P0POUT 379 *1X,4H161,356.0,357.2,8H SR2,55.3,4H Z0.557,2001 380 *610.3,71X,4H81AS,F8.0,278.3,377.2,8H SEL,F5.33 P0POUT 381 200 CONTINUE P0POUT 382 END P0POUT 383							•	
Image: Decourt intermediate Coc 6600 FTN V3.0-p308 opt=1 08/29/72 11.32.27 *,3F8.0,3F7.2,8H SR0,F5.3,4H Y0,4F10.5, 2E10.3,/ POPOUT 379 *1X;4HTGT,3F8.0,3F7.2,8H SAZ,F5.3,4H Z0,5F10.5, POPOUT 381 *E10.3,/1X,4HBIAS,F8.0,2F8.3,3F7.2,8H SEL,F5.3) POPOUT 381 200 CONTINUE PCPOUT 383 END POPOUT 384		· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·			·····
PEROUTINE POPOUT COC 6600 FTN V3.0-P308 0PT=1 08/29/72 11.32.27 *,3F8.0,3F7.2,8H SR0,F5.3,4H Y0,4F10.5, 2E10.3,7 POPOUT 379 *1X;4H161,3F8.0,3F7.2,8H SR2,F5.3,4H Y0,4F10.5, 2E10.3,7 POPOUT 380 *E10.3,7IX;4HB1AS,F6.0,2F8.3,3F7.2,8H SEL,F5.3 POPOUT 381 200" CONTINUE POPOUT 382 POPOUT 384 END POPOUT 384 POPOUT 384						4		
VEROUTINE POPOUT COC 6600 FTN V3.0-P308 0PT=1 08/29/72 11.32.27 *,3F8.0,3F7.2,8H SR0,F5.3,4H Y0,4F10.5, 2E10.3,7 POPOUT 379 *1X;4H161,3F8.0,3F7.2,8H SR2,F5.3,4H ZD,5F10.5, POPOUT 380 *610.3,7/X;4H51AS,F6.0,2F8.3,3F7.2,8H SEL,F5.3) POPOUT 381 200 CONTINUE POPOUT 382 RETURN YOPOUT 383 END POPOUT 384			r					
IBROUTINE POPOUT COC 6600 FTN V3.0-p308 OPT=1 08/29/72 11.32.27 *,358.0,357.2,8H SR0,F5.3,4H Y0,4510.5, 2E10.3,7 POPOUT 379 *12,34H1G1,358.0,357.2,8H SAZ,75.3,4H Z0,5510.5, POPOUT 380 *E11.3,7/1X,44BIAS,F8.0,258.3,357.2,8H SEL,F5.3) POPOUT 381 200 CONTINUE POPOUT 383 END POPOUT 384				-				
EROUTINE POPOUT COC 6600 FTN V3.0-P308 OPT=1 08/29/72 11.32.27 *,358.0,357.2,8H SR0 ,F5.3,4H Y0, 4F10.5, 2E10.3,7 POPOUT 379 *1,1,4HTGT ,3F8.0,357.2,8H SZ ,F5.3,4H ZD, 5F10.5, POPOUT 380 *E10.3,71X,4HBIAS,F6.0,2F8.3,357.2,8H SEL ,F5.3) 200 CONTINUE POPOUT 381 RETURN POPOUT 383 END POPOUT 384		-						
POPOWT COC 6600 FTN V3.0-P308 OPT=1 08/29/72 11.32.27 *,3F8.0,3F7.2,8H SR0 ,F5.3,4H Y0,4F10.5, 2E10.3,7 POPOUT 379 *1X,4HTGT ,3F8.0,3F7.2,8H SAZ ,F5.3,4H Z0,5F10.5, POPOUT 380 *E10.3,71X,4HB1AS,F6.0,2F8.3,3F7.2,8H SEL ,F5.3) POPOUT 381 200 GONTINUE POPOUT 383 RETURN POPOUT 383 END POPOUT 384			•.					
PROUTINE POPOUT COC 6600 FTN V3.0-p308 opt=1 08/29/72 11.32.27 *,378.0,377.2,8H SR0, F5.3,4H Y0, 4F10.5, 2E10.3,/ POPOUT 379 *1X,4H1G1 3F8.0,3F7.2,8H SR2,F5.3,4H Y0, 4F10.5, POPOUT 379 *1X,4H1G1 3F8.0,3F7.2,8H SAZ,F5.3,4H ZD, 5F10.5, POPOUT 380 *E19.3,/1X,4H81AS,F8.0,2F8.3,3F7.2,8H SEL,F5.3) POPOUT 381 200*CONTINUE POPOUT 382 POPOUT 383 END POPOUT 384 POPOUT 384				<u> </u>		J.		
*,3F8.0,3F7.2,8H SR0,F5.3,4H Y0,4F10.5, 2E10.3,/ POPOUT 379 *1X,4H161,3F8.0,3F7.2,8H SAZ,F5.3,4H Z0,5F10.5, POPOUT 380 *E10.3,/1X,44BIAS,F8.0,2F8.3,3F7.2,8H SEL,F5.3) POPOUT 381 200 CONTINUE POPOUT 382 RETURN POPOUT 383 END POPOUT 384	BROUTINE	POPOUT		COC 6600	FTN V3.0-P308 OPT=1	08/29/72	11.32.27.	
*1X,4HTG1 ,3F8.0,3F7.2,8H SAZ ,F5.3,4H ZD, 5F10.5, POPOUT 380 *E10.3,/1X,4HBIAS,F8.0,2F8.3,3F7.2,8H SEL ,F5.3) POPOUT 381 200 CONTINUE POPOUT 382 RETURN END POPOUT 383 END POPOUT 384		*,3F8.0,3	F7.2,8H SR0,	F5.3,4H Y0, 4F10.5,	2E10.3,/	POPOUT 367 POPOUT 368 LH-DOT) POPOUT 371 POPOUT 371 I2,6H UR POPOUT 372 F6.1,13X, POPOUT 373 .0,F10.2, POPOUT 374 .,F9.0, POPOUT 375 3,764X,3H POPOUT 376 TIONS POPOUT 377 /1X,4HS/C POPOUT 378 8 OPT=1 08/29/72 11.32.27. 2E10.3,/ POPOUT 380 POPOUT 381 POPOUT 382 POPOUT 384 		
*E11.3,/1X,4HBIAS,F8.0,2F8.3,3F7.2,8H SEL ,F5.3) POPOUT 381 POPOUT 382 RETURN END POPOUT 384 POPOUT 384		*1X,4HIGT	,3F8.0,3F7.2,8H	SAZ , F5.3,4H ZL	, 5F10.5.	POPOUT	380	
200 CONTINUE RETURN END POPOUT 383 POPOUT 384 POPOUT 384 POPOUT 384	۰.	*E19.3,/1	X,4HBIAS,F8.0,2F	8.3,3F7.2,8H SEL	,F5.3)	POPOUT	381	
RETURN POPOUT 383 END P0POUT 384		200 CONTINU	E			POPOUT	382	
END POPOUT 384			RETURN	1		PCPOUT	383	
	·····		END		· · · · · · · · · · · · · · · · · · ·	POPOUT	384	<u> </u>
		·		· · · · · · · · · · · · · · · · · · ·				
						<u>_</u>	 	
					· · · · · · · · · · · · · · · · · · ·			
								·
						•		
					······			
			· · ·					
			•					
			·····					
		······						
		·						
						·····		

ROUTINE CARTL

ENTRY CARTL CONVERTS A STANDARD BETELGEUSE VECTOR (S/C AND TGT) TO A STANDARD CARTESIAN VECTOR IN THE BRF FRAME (NORTH POINTING, EARTH CENTERED, INERTIAL). AS USUAL, BETELGEUSE LONGITUDE IS A POSITIVE ROTATION ABOUT THE SOUTH POLE.

ENTRY CART2 IS THE FUNCTIONAL INVERSE OF CARTL.

UBROUTINE	CART1 COC 5600 FTN V3.0-P308 OPT=1	08/29/72	11.32 27.
	SUBROUTINE CART1(X,Y)	CART	
· · · · · · · · · · · · · · · · · · ·		CART	3.
0	OIMENSION X(12),Y(12)	CART	4
C		CART	5
Ċ	SUBROUTINE TO CONVERT A BETEL VECTOR TO PLANET CENTERED INERTIAL	CART	6
C	Y=BETELGEUSE X=CARTESIAN	CART	7
	C4U=COS (Y(2))	CART	8
		CART	9
	CLA=COS(Y(3))	CART	10
		CART	. 11
С		CART	12
	X(1) = Y(1) * CLA * CMU	CART	13
	X(2) = -Y(1) * CLA * SMU	CÁRT	14
	X(3) = Y(1) * S(4)	CART	15
	X(4) = Y(7) * CLA * CMU - Y(8) * SMU + Y(9) * SLA * CMU	CART	, 16
		CART	17
	X(6) = Y(7) * SLA - Y(9) * CLA	CART	18
		CART	19
	X(8) = -(Y(1) + Y(4)) + CLA + SMU - Y(5) + CMU - Y(6) + SLA + SMU	CART	20
	$x_{191} = (y_{111} + y_{141}) + x_{161} + x_{161} + x_{161}$	CART	21
	X(10) = (Y(7) + Y(10)) * CLA * CMU - (Y(8) + Y(11)) * SMU + (Y(9) + Y(12)) * SLA* CM	1U CART	22
	X(11) =- (Y(7) + Y(10)) *CLA*SMU- (Y(8) + Y(11))*CMU- (Y(9) + Y(12))*SLA*St	U CART	23
•	X(12) = (Y(7) + Y(10)) + SLA - (Y(9) + Y(12)) + CLA	CART	24
· · · · · · · · · · · · · · · · · · ·	RETURN	CART	25
	ENTRY CART2	CART	26
<u>_</u>	SUBROUTINE TO CONVERT PLANET CENTERED INERTIAL TO A BETEL VECTOR	CART	27
0 C		CART	28
	Y(1) = PSS(X(1), X(2), X(3))	CART	29
	Y(2) = -ATAN2(X(2), X(1))	CART	30
	Y(3) = ASTN(X(3)/Y(1))	CART	31
	CMU=COS(Y(2))	CART	32
	SMU= STN (Y(2))	CART	33
	CLA=COS(Y(3))	CART	34
	SIA=STN(Y(3))	CART	35
•	Y(4) = (X(7) - X(1)) * CLA * CMU - (X(8) - X(2)) * CLA * SMU + (X(9) - X(3)) * SLA	CART	36
	Y(5) = -(X(7) - X(1)) + SMU - (X(8) - X(2)) + CMU	CART	37
	Y(6) = (X(7) - X(1)) * SLA*CMU - (X(8) - X(2)) * SLA*SMU - (X(9) - X(3)) * CLA	CART	38
	Y(7) = Y(4) * C(4) * C(4) + Y(5) * C(4) * S(4) + Y(6) * S(4)	CART	39
	Y(8) = -X(4) * SMU - X(5) * CMU	CART	40
	Y(9) = X(4) + S(4 + CMU - X(5) + S(4 + SMU - X(6) + C(4))	CART	41
	Y(10) = (X(10) - X(4)) * CLA*CMU - (X(11) - X(5)) * CLA*SMU + (X(12) - X(6)) * S	LA CART	42
•	Y(11) == (X(10) - X(4)) *SMU - (X(11) - X(5)) *CMU	CART	43
	Y(12) = (X(10) - X(4)) + SLA + CMU - (X(11) - X(5)) + SLA + SMU - (X(12) - X(6)) + C	LA CART	44 ,
	DETTION	CART	45
		CAPT	4.6

COS REAL	L CLIDRART 1 LIBRARY	2 9 7	9	31	33		en en en binner agate vanner en en en en binner
PSS SIN ZAI	L 3 L 1 LIBRARY	28 8	10	32	34		
ICS		•					
AM LENGTH	430B 280						<u></u>
					· · · · · · · · · · · · · · · · · · ·	· ·	
			•				
							•
	•			<u></u>			
· ·	1					•	
·	•	1				•	
	۰.	·····					
	•	1				·	
•				•		·····	
		1					
	· · · · · · · · · · · · · · · · · · ·					· · · · · · · · · · · · · · · · · · ·	
	··· ·		• • •		• • • • • • • • • • • • • •	· ··· ·	· · · · · · · · · · · · · · ·
SUCKOUTINE SE	_1Υ			COC 6600	FTN V3.0-P308	OPT=1 08/29/	72 11.32.27.
	SUBROUTIN	E SETY(Y)				SET	. 2
C	SUBROUT INE TO COM	PUTE STA	TE VECTO	ORS OF INT	EREST-	SET	3
C C	Y(1)=FIME Y(2)-Y(19) NAVIG	ATEO BETE	LGEUSE	STATE -		SET	5
сСС	Y(20) -Y(37) ENVIR	ONMENT BE	TELGEUSI	STATE		SET	7
<u> </u>	Y(56) -Y(67) L.T.	STC ERROR	STATE			SET	8 9
C		SIAN OEVIA	STATE ATION VE	CTOR		SET	
U	OIMENSION	"Y(100).)	(E(12))	(CS (12) - XC	[(12) - RXVT (3-	SET Y	12
	1 . YS(12) . Y	T (12)			. (TC) 2 (VAL (0)	56.11	13

ROUTINE SETY

.

THIS ROUTINE IS LEFT OVER FROM AN EARLY VERSION OF THE NAVIGATION PROGRAM. IT HAS ONLY ONE OPERATIVE INSTRUC-TION AND CALLS TO SETY MAY BE REPLACED BY THAT INSTRUC-TION WHEREVER THEY ARE FOUND IN THE PROGRAM.

AREA A CALL TO CARTL IS ONLY OPERATIVE INSTRUCTION IN ROUTINE. LOADS BETELGEUSE ESTIMATED STATE INTO Y(38)-Y(49) AS CARTESIAN VECTOR.

C C			SETY	15
U			SETY	15
	CONSTRUCT CAREFORNA MEDICARD FOR MAN		SETY	1
	CALL CARTESIAN VECTORS FOR NAV ATU ENV STATES	A	SETY	16
	DETION		SETY	19
		A	AUTOW	3
			AUTOW	4
			SETY	20
U	CALL MATAOD (NE MATAON MADA)	•	SETY	21
	$\frac{1}{1}$		SETY	22
C C	CONSTRUCT DESIGN DEV. VECTOR WITH ESTIMATED CONSTANTS		SETY	23
U	CONSTRUCT PSEUDU-BETELGEUSE VECTORS FOR NAV ANO ENV		SETY	24
•.			SETY	. 25
· · · · · · · · · · · · · · · · · · ·	Y(1+91) = Y(1+31) - Y(1+13)		SETY	26
			SETY	27
	- XS(1+6) = XE(1)		SETY	28
	XT(1) - Y(1+40)		SETY	29
********	X1 (1+6) = XE (1+6)		SETY	30
TU			SETY	31
	··· GALL GARTZ(XS,XGS)		SETY	32
C	CONSTRUCT TRANSFORM TO LOOM TANGENT FOR THE		SETY	33
<u> </u>	CONSTRUCT TRANSFORM TO LUCAL TANGENT FOR S/C		SETY	34
	CALL TBG (XCS (7) χ CS (8) χ CS (9) χ CVT)		SETY	35
	CALL MATTUL (RXV1, XUS(4), Y(62), 3, 3, 1)		SETY	36
	CALL MATMUL $(RXV1, XCS(7), Y(59), 3, 3, 1)$		SETY	37
	CALL MATFUL (RXVI, XUS(10), Y(65), 3, 3, 1)	•	SETY	38
C	CONSTRUCT TRANSFORM TO LOGAL TANGENT FOR TGT		SETY	39
•	CALL 100 (XU1(7), XU1(8), XU1(9), RXVI)		SETY	40
	CALL MATHUL (RXVI, XUI (4), Y(68), 3, 3, 1) CALL MATHUL (DYUT YOT (7) M(77), 7 , 7 , 1		SETY	41
·····	CALL MATMUL (RXV1, XCI(7), Y(77), 3, 3, 1)		SETY	42
	(ALL MAIMUL (RXV1, XCI (10), Y(71), 3, 3, 1))		SETY	43
			SETY	44
	Y(1+55) = XCS(1)		SETY	45
	Y(1+75) = XU(1)		SETY	46
30			SETY	47
	KETUKN .		SETY	48
	LNU		SETY	49
		•		

•

.

.

6422 REL 1 14 1 2 1 2 4-

ROUTINE REL

SUBROUTINE REL COMPUTES RANGE, R-RATE, AZIMUTH AND ELE-VATION FROM A TWO-VEHICLE CARTESIAN VECTOR AND THREE ORTHONORMAL VECTORS. CONTRARY TO COMMENT CARD, UNIT VECTORS NEED NOT BE NAV BASE VECTORS (SEE AREA L, ROU-TINE POPOUT).

.

.

•

.

1.

.

.

	SUBROUTINE REL(Y,S,REF1,REF2,REF3)	REL	2
c	DIMENSION Y(12), S(4)	REL REL	3 4
с	COMMON VAR	REL REL	5 6
	DIMENSION-VAR(5600), P(5000), SAVE(950), BLK(700)	REL	7
	EQUIVALENCE (P(350), SAVE(1))	REL	. 9
	OIMENSION REF1(3), REF2(3), REF3(3)	REL	11
0 	DIMENSION DX (6), OXNB (6), UR (3)	REL	13
ն Շ Շ	SUBROUTINE TO COMPUTE RANGE, RANGE RATE, AZIMUTH AND ELEVATION I	N REL REL	15 16
<u><u>c</u></u>	00 5 I=1,6	REL REL	17 18
	-5 - OX (I)=Y (I+6) -Y (I) C4LL UVEC(OX(1), CX(2), DX(3), UR)	REL REL	19 20
	S(1)=DOT(UR,DX(1)) S(2)=OOT(UR,DX(4))	REL REL	21 22
	S(3) = ATAN(OOT(UR, REF3)/DO(T(UR, REF2)) S(4) = ASIN(DOT(UR, REF1))	REL REL	23 . 24
	RETURN	REL	25 26

.•

.

. .

ROUTINE SETUP

•

SETS UP OUTPUT FORM OF BETELGEUSE STATE. CONVERTS LONGITUDE AND LATITUDE TO DEGREES. COMPUTES S/C HORIZONTAL SPEED. DEFINES HEADING ANGLE AS A POSITIVE ROTATION ABOUT S/C RADIUS VECTOR FROM DUE WEST.

	()		
IEROUTI	1	SET	UP

.

.

•.

•

 \mathcal{P}^{*}

I.

· -

.

.

N.

.*

,

.

CL 6600 FTN V3.0-P308 OPT=1 08/29/72 11....27.

1.1

•

	SUBROUTINE SETUP(Y,OUT)	SETUP	2	
- <u>c</u>	•	SETUP .	3	
С	SETS UP A STANDARD BETEL OUTPUT	SETUP	4	
		SETUP	5	
	DIMENSION Y(12), OUT(12)	SETUP	б	
		SETUP		
	$0 \cup T(1) = Y(1)$	SETUP	8	
	OUT(2)=Y(2)*57.2957795	SETUP	. 9	
	0UT(3)=Y(3)*57.2957795	SETUP	10	
	0! T(-4) = Y(7)	SETUP	11	
	OUT(5) = FSS(Y(8), Y(9), 0.)	. SETUP	12	
	OUT(6)=ATAN2(Y(9),Y(8))*57.2957795	SETUP	13	
	no 5 I=1,3	SETUP	14	
	01)T(I+6)=Y(I+3)	SETUP	15	
	5 OUT(I+9)=Y(I+9)	SETUP	16	
_	RETURN	SETUP	17	
	"END	SETUP	18	

. -

ROUTINE GARBAGE

SENSOR NOISE MODEL. CALCULATES BIASES AND NOISE FROM A A PREUDO-RANDOM NORMAL DISTRIBUTION. LOADS RELATIVE PARAMETER MEASURED VALUE LOCATION FOR BVEC.

- AREA A CHECK TO SEE IF THIS IS FIRST PASS THROUGH THIS ROUTINE ON THIS MONTE-CARLO CYCLE. IF NOT, GO TO NOISE COMPUTA-TIONS. OTHERWISE, COMPUTE VALUES FOR RANGE, R-RATE, AZ AND EL BIASES. LOAD BIASES INTO ACTUAL BETELGEUSE STATE, Y(32)-Y(35).
- AREA B STANDARD DEVIATION COMPUTATIONS. FOR RANGE AND R-RATE, SIGMA IS A FRACTION OF THE PARAMETER VALUE, DOWN TO A MINIMUM. AREA B SELECTS MAX OF PARAMETER FRACTION AND ITS MINIMUM. THIS COMPUTATION IS PERFORMED EACH PASS THROUGH GARBAGE.
- AREA C THIS INSTRUCTION ASSURES THAT THE RANGE MEASUREMENT IS A POSITIVE NUMBER. AT SMALL RANGES, QQ(1) COULD BECOME NEGATIVE AFTER THE ADDITION OF NOISE AND BLASES TO S(1).

r	IBRC	111	ттı			Ά	P	8	٨	Ċ2
L.	IERU	JU	1 ± 1	Λ	10	м	175	0	м	· 7 · ·

	SUBRDUTINE GARBAGE(S)	GARBAGE	2	
		GARBAGE	3	
	DIMENSION S(4)	GARBAGE	4	
		GARBAGE	5	
	COMMON VAR	GARBAGE	6	
	DIMENSION VAR (5600), NTEGER (100), P(5000), SAVE (950), BLK (700)	GARBAGE	7	
	*, Y(100)	GARBAGE	8	,
	EQUIVALENCE (VAR(1), Y(1))	GARBAGE	. 9	
	*, (VAR(401),NTEGER(1))	GARBAGE	10	
	*, (VAR(601),P(1))	GARBAGE	11	
	EQUIVALENCE (NTEGER(29),NGUIDE)	GARBAGE	12	
	EQUIVALENCE (P(350), SAVE(1))	GARBAGE	13	
	*, (P(1300),BLK(1)) -	GARBAGE	14	
	DIMENSION 00(4), SIG(4), C(10), REFMAT(3,3), XNBN(3), YNBN(3)	GARBAGE	15	
	*, ZNBN(3), NE(10), NM(10), OTL(10), DTN(10), OTM(10)	GARBAGE	16	
	*, USP(10), USV(10), UTP(10), UTV(10), SR(10), SRD(10)	GARBAGE	17	_
	*, SD(10), SC1(10), SC2(10), NW(10), TLM(10), NS(3)	GARBAGE	18	
	*, ZTZ(4), SZ(4), TALIGN(10), XNBE(3), YNBE(3), ZNBE(3)	GARBAGE	19	_
·	*, X(18), WE(18,27)	GARBAGE	20	
	EQUIVALENCE (SAVE(1),QQ(1)), (SAVE(5),SIG(1))	GARBAGE	21	
	*, (SAVE(9),C(1)), (SAVE(19),REFMAT(1,1))	GARBAGE	22	
	*, (SAVE(28),XNBN(17), (SAVE(31),YNBN(1))	GARBAGE	23	
	*, (SAVE(34),ZNBN(1)), (SAVE(37),NE(1))	GARBAGE	24	
	*, (SAVE(47), NM(1)), (SAVE(57), DTL(1))	GARBAGE	25	
	*, (SAVE(67),DTN(1)), (SAVE(77),DTM(1))	GARBAGE	26	
	*, (SAVE(87), USP(1)), (SAVE(97), USV(1))	GARBAGE	27	
	*, (SAVE(107), UTP(1)), (SAVE(117), UTV(1))	GARBAGE	28	
	*, (SAVE(127), SR(1)), (SAVE(137), SRD(1))	GARBAGE	29	
	*• (SAVE(147),SO(1)), (SAVE(157),SC1(1))	G AR BAGE	30 .	
	*, (SAVE(167), SC2(1)), (SAVE(177), NW(1))	GARBAGE	31	
	*, (SAVE(187),TLM(1)), (SAVE(197),NS(1))	GARBAGE	32	
	*, (SAVE(200), ZTZ(1)), (SAVE(204), SZ(1))	GARBAGE	33	
	*, (SAVE(208), TALIGN(1)), (SAVE(218), NALIGN)	GARBAGE	34	
	*, (SAVE(229), XNBE(1)), (SAVE(232), YNBE(1))	GARBAGE	35	
	*, (SAVE(235), ZNBE(1)), (SAVE(258), X(1))	GARBAGE	36	
· · · · · · · · · · · · · · · · · · ·	* • (SAVE (276) • WE (1,1))	GARBAGE	37	
C		GARBAGE	38	
	EQUIVALENCE (C(1),TW)	GARBAGE	39	
С		GARBAGE	40	
С		GARBAGE	41	
	COMMON/GARB/RVAR,RVARMIN,VVAR,VVARMIN,VARAZ,VAREL,NFAMV	GARBAGE	42	
	*, BR, BV, BAZ, BEL, NFAHB	GARBAGE	43	
		C 5 (5) 5 (5) 7 (7)		

C		GARBAGE	45
C	CHECK IF INITIAL VALUES FO BIASES HAVE BEEN SET IN A	GARBAGE	46
	IF (VAR(1), GT.1.) GO TO 5	GARBAGE	
	BR=UNURN(0,NFAMB,0.,BRO)	GARBAGE	40
	BV=UNURN(0,NFAMB,0.,BVO)	. GARBAGE	49
	SAZ=UNURN(0,NFAME,0.,BAZO)	GARBAGE	50
	BEL=UNURN(0, NFAME, 0., BELO)	GARBAGE	51
	Y(32) = BR	GARBAGE	52
	Y(33) = BV	GARBAGE	53
	Y(34) = BAZ	GARBAGE	54
	Y(35) = BEL	GARBAGE	55
· [5 CONTINUE	GARBAGE	56
		•	

٢

SUBROUTINE GARBAGE

÷....

2

CDC 6600 FTN V3.0-P308 OPT=1 08/29/72 11.32.27.

.

÷.

C	COMPUTE MEASUREMENT NOISE AND AOD BIASES	В	GARBAGE	57
	SIG(1)=AMAX1(S(1)*RVAR,RVARMIN) SIG(2)=AMAX1(ABS(S(2)*VVAR),VVARMIN)		GARBAGE GARBAGE	58 59
	SIG(3)=VARAZ SIG(4)=VAREL	B .	GARBAGE GARBAGE	60 61
	DO(1) = S(1) + UNURN(0, NFAMV, BR, SIG(1)) $CJ(1) = ABS(QO(1))$	C	GARBAGE GARBAGE	62 63
	$\Omega_{1}(2) = S(2) + UNURN(0, NFAMV, BV, SIG(2))$ $\Omega_{1}(3) = S(3) + UNURN(0, NFAMV, BAZ, SIG(3))$		GARBAGE GARBAGE	64 65
and and the second s	00(4) = S(4) + UNURN(0, NFAMV, BEL, SIG(4))		GARBAGE	66
	1F(VAR(1).LI.5.) PRINT 100,3R,8V,8AZ,EEL,(S1G(1),1: FORMAT(71X.8F15.6)	=1,4)	GARBAGE	67
100	RETURN	•	GARBAGE	69
	END		GARBAGE	70

Sec.

ROUTINE ALIGN

SIMPLE-MINDED PLATFORM MODEL. CREATES DRIFT RATES AT INITIAL PASS, MISALIGNMENT BIASES EVERY ALIGNMENT.

AREA A CHECK THE ALIGNMENT COUNTER TO SEE IF THIS PASS IS FIRST ALIGNMENT. IF IT IS VISIT UNURN TO CREATE INITIAL PLATFORM DRIFT RATES. OTHERWISE, PASS TO MISALIGNMENT COMPUTATION.

- AREA B INCREMENT THE ALIGNMENT COUNTER.
- AREA C CALCULATE THE STARTING LOCATION IN DATA ARRAY FOR DATA FROM THIS ALIGNMENT. STORE THREE RATES AND THREE INITIAL MISALI MENTS.
- AREA D REFER TOTAL PLATFORM DRIFT TO TIME OF ALIGNMENT. ON INPUT, THE FIRST ALIGNMENT MAY BE SPECIFIED AS HAVING OCCURRED AT A TIME PREVIOUS TO THE START OF THE RUN: FOR EXAMPLE, TALIGN(1) = -600.SPECIFIES AN ALIGNMENT 10 MINUTES BE-FORE START OF RUN. AREA D CALCULATES TOTAL DRIFT TO PRESENT TIME.
- AREA E CONVERT DRIFT RATE FROM RAD/SEC TO MR/HR AND INITIAL MISALIGNMENT FROM RAD TO MR FOR OUTPUT.
- AREA F STORE TIME OF ALIGNMENT.
- AREA G COMPUT REFMAT. THIS IS DEFINED AS THE ESTIMATED TRANS-FORMATION MATRIX FROM BRF TO PLATFORM AXES. APOLLO USAGE DEFINES "NOMINAL" ALIGNMENT AS PLATFORM AXES COINCIDENT WITH LOCAL VERTICAL UNIT VECTORS AT TALIGN.

SUBROUTIN ALIGN

	SUBROUTINE ALIGN	ALIGN	2	
C		ALIGN	3	
С	SUBROUTINE TO SIMULATE THE PERFORMANCE OF A PLATFORM ALIGNM	IENT ALIGN	4	
C		ALIGN	5	
	COMMON VAR	ALIGN	6	
	OIMENSION VAR(5600), Y(100), DYDX(100), Q(100), FIRSTY(100)	ALIGN	7	
	*, NTEGER(100), O(100), P(5000)	ALIGN	8	
	EQUIVALENCE (VAR(1), Y(1))	ALIGN	. 9	
	*, (VAR(101),0YOX(1))	ALIGN	10	
	-*, (VAR (201), 0(1))	ALIGN	11	
	*, (VAR(301),FIRSTY(1))	ALIGN	12	
	*, (VAR(401), NTEGER(1))	ALIGN	13	
	*, (VAR(501),0(1))	ALIGN	14	
	*, (VAR(601),P(1))	ALIGN	15	
	DIMENSION SAVE(950), BLK(700), OATA(350), COV(24,24)	ALIGN	16	
	EQUIVALENCE (P(350), SAVE(1))	ALIGN	17	
	*, (P(1300),BLK(1))	ALIGN	18	
	*, (P(4074), OATA(1))	ALIGN	19	
	*, (P(4424),COV(1,1))	ALIGN	20	
	DIMENSION 00(4), SIG(4), C(10), REFMAT(3,3), XNBN(3), YNBN	(3) ALIGN	21	/
	*, ZNBN(3), NE(10), NM(10), OTL(10), OTN(10), OTM(10)	D) ALIGN	22	
	*,USP(10), USV(10), UTP(10), UTV(10), SR(10), SRD(10) ALIGN	23	
	*, SO(10), SC1(10), SC2(10), NW(10), TLM(10), NS(3)	ALIGN	24	
	*, ZTZ(4), SZ(4), TALIGN(10), XNBE(3), YNBE(3), ZNBE	E(3) ALIGN	25	
	*, X(18), WE(18,27)	ALIGN	26	
	EQUIVALENCE (SAVE(1),QQ(1)), (SAVE(5),SIG(1))	ALIGN	27	
	*. (SAVE(9).C(1)). (SAVE(19).REFMAT(1.1))) ALIGN	28	
	*, (SAVE(28), XNBN(1)), (SAVE(31), YNBN(1))	ALIGN	29	
	*• (SAVE (34) • 7NBN (1)) • (SAVE (37) • NE (1))	ALIGN	30	
	*, (SAVE(47), NM(1)), (SAVE(57), DTL(1))	ALIGN	31	
	*, (SAVE (67), OTN(1)), (SAVE (77), OTM(1))	ALIGN	32	
	*, (SAVE(87), USP(1)), (SAVE(97), USV(1))	ALIGN	33	
	*. (SAVE(107).UTP(1)). (SAVE(117).UTV(1))	ALIGN	34	
	* (SAVE (127), SR (1)), (SAVE (137), SRD (1))	ALIGN	35	
	*. (SAVE(147), SO(1)), (SAVE(157), SC1(1))	ALIGN	36	
	* (SAVE(167), SC2(1)), (SAVE(177), NW(1))	ALIGN	37	
	*, (SAVE(187), TLM(1)), (SAVE(197), NS(1))	ALIGN	38	
	*• (SAVE(200) •7T7(1)) • (SAVE(204) • S7(1))	ALTEN	39	
	*, (SAVE(208), TALIGN(1)), (SAVE(218), NALIGN)	ALIGN	40	ء
	*, (SAVE(229), XNBE(1)), (SAVE(232), YNBE(1))	ALIGN	41	
	*, (SAVE(235), ZNBE(1)), (SAVE(258), X(1))	ALIGN	42	
	* • (SAVE(276) • WF(1.1))	ALTEN	43	

			ALIGN	45
		EUOLVALENCE (T(98), URIFT(1))	ALIGN	46
()			ALIGN	
		FOUTVALENCE TRIVIAN DITAN	ALIGN	40
	*	$\frac{(B1K(b), DET(b))}{(B1K(b), DET(b))}$	ALIGN	49
			ALIGN	50
	*		ALIGN	51
•			ALIGN	52
· .		, (DER(13),02(1))	ALIGN	53
č		PLATEORM MODEL TS 3-CTMRAL WITH INTITAL A-STCMA BIASES AND BRIEF	ALIGN	54 .
č		AS DEFINED BEIDW	ALIGN	55
			ALIGN	20
				•
			4	
· ·		and the second	· ·	
		14 · · · · · · · · · · · · · · · · · · ·	,	
	A 1 T C			
OCKOULINE	ALIG	CDC 6600 FTN V3.0-P308 DPT=1	08/29/72	11.32.27.
C			ALIGN	57
		COMMONZALIGZEDR, ALIENB, NFAMB	ALIGN	58
			ALIGN	59
U		CHECK-IF THIS IS FIRST ALIGNMENT A	ALIGN	60
	•	IF (LIGN.GI.U) GO IO 10	ALIGN	61
U		SET UP INTITAL UPIFT RATES FOR THIS RUN	ALIGN	62
		0 5 1=1,3	ALIGN	63
	40	RATE(I)=UNURN(U,NFAMB,U.,GDR)	ALIGN	64
	TU	CONTINUE A	ALIGN	65
		LIGN=LIGN + 1 B	ALIGN.	66
U		CONSTRUCT ALIGNMENT BIASES	ALIGN	67
	4.5		ALIGN	68
	15	URIFICI) = UNURN(U,NFAMB, U, ALIGNB)	ALIGN	69
. U		REFER INTEGRATED DRIFT TO TIME OF ALIGNMENT AND SCAL OUTPUTS	ALIGN	70
		UT=T(1) - TALIGN(LIGN)	ALIGN	71
~			ALIGN	72
		TALGULATE INDEX TO STORE ALIGNMENT DATA IN ARRAY	ALIGN	73
		DATA(MM) - PATE(T)	ALIGN	74
			ALIGN	75
-			ALIGN	76
			ALIGN	77
	20		ALIGN	78
	20		ALIGN	79
		F	ALIGN	80

U		ALIGN	.82	
- C (COMPUTE REFMAT AT TALIGN, DEFINED AS THE NOMINAL- G	ALIGN	83	
° C	SMX= UNIT(R)	ALIGN	. 84	
C	SMY= UNIT(R X V)	ALIGN	85	
- C.	SMZ= UNIT(SMX X SMY)	ALIGN	86	
C		ALIGN	87	
	CALL UVEC(Y(38), Y(39), Y(40), UX)	ALIGN	88	
	CALL UCROSS(UX, Y(41), UY)	ALIGN	89	
	CALL UCROSS(UX, UY, UZ)	ALIGN	90	
	"CALL TRN (UX, UY, UZ, REFMAT, DUMMY) G	ALIGN	91	
	PRINT 100, LIGN, (DRFT(I), I=1, 3), (RT(I), I=1,3)	ALIGN	92	
	100 FORMAT(/14X,24HTHIS IS ALIGNMENT NUMBER,15,23H BIASES AND RATES	ALIGN	93	
	14RE-,6F10.5)	ALIGN	94	
	RETURN	ALIGN	95	
	5VN	ALTGN	. 96	

•

.

÷

•

.

.

.

.

.

•

•

•

a.

•

.

ŕ

•

.

.

.

.

•

.

•

.

•

REF 20 JT 1 3

ROUTINE REF

COMPUTES UNIT VECTORS OF ACTUAL LOCAL VERTICAL, ACTUAL NAV BASE, ESTIMATED LOCAL VERTICAL AND ESTIMATED NAV BASE. ACTUAL AND ESTIMATED QUANTITIES DIFFER BY PLAT-FORM DRIFT. CURRENT NAV BASE VECTORS ARE DEFINED AS THE LINE-OF-SIGHT SYSTEM. SUBROUTINE IS ALWAYS CALLED WITH ESTIMATED CARTESIAN STATE.

- AREA A CALCULATE ESTIMATED LOCAL VERTICAL VECTORS.
- AREA AL CALCULATE ESTIMATED LINE-OF-SIGHT VECTORS.
- AREA B CALCULATE THE TOTAL PLATFORM DRIFT MATRIX, GAMD. GAMD IS THE TRANSFORMATION FROM ACTUAL TO ESTIMATED PLATFORM AXES. LET V BE ANY ESTIMATE OF A VECTOR IN THE BRF FRAME AND V* BE ITS VALUE AFTER APPLICATION OF PLAT-FORM ERRORS:

$\frac{\mathbf{V}}{\mathbf{P}} = \frac{\text{REFMAT}}{\mathbf{X}} \times \mathbf{V}$	VECTOR IN ESTIMATED PLATFORM FRAME
$\underline{\mathbf{V}}_{\underline{\mathbf{P}}}^{\star} = \underline{\mathbf{GAMD}}^{\mathrm{T}} \times \underline{\mathbf{V}}_{\underline{\mathbf{P}}}$	VECTOR IN ACTUAL PLATFORM FRAME
$\underline{\mathbf{V}}^* = \underline{\mathbf{REFMAT}}^{\mathrm{T}} \times \underline{\mathbf{V}}^*_{\mathrm{P}}$	DISTURBED VECTOR IN BRF FRAME
= <u>REFMAT</u> ^T x <u>GAMD</u>	$^{\Gamma} \times \underline{\text{REFMAT}} \times \underline{\text{V}}$
\Rightarrow (<u>GAMD</u> x <u>REFMAT</u>)) ^T x <u>REFMAT</u> x <u>V</u>

CALCULATE <u>GAMD</u> x <u>REFMAT</u>. CALULATE (<u>GAMD</u> x <u>REFMAT</u>)^T. CALCULATE (<u>GAMD</u> x <u>REFMAT</u>)^T x <u>REFMAT</u>.

AREA C

APPLY THE JUST COMPUTED MATRIX TO THE ESTIMATED LOCAL VERTICAL VECTORS TO GET THE ACTUAL VECTORS. APPLY THE SAME MATRIX TO THE ESTIMATED NAV BASE VECTORS TO GET THE ACTUAL NAV BASE VECTORS.
SUEROUTIN PEF

.

.

	SUBROUTINE REF(Y)	REF	2
С С	SUBROUTINE TO COMPUTE THE ACTUAL (YNDE YNDE THE AND ASSUMED	REF	3
_ <u>c</u> _	(XNBN, YNBN, ZNBN) UNIT VECTORS DE THE NAVIGATION BASE AVES IN		
č	THE BASIC REFERENCE FRAME	REF	6
	SUBROUTINE ALSO COMPUTES UNIT VECTORS OF THE ASSUMED (XLVN, YLVN,	NOSHIT	10
C.	ZLVN) AND ACTUAL (XLVE, YLVE, ZLVE) LOCAL VERTICAL IN-PLANE FRAME	NOSHIT	11
С		REF	. 7
~~~	· UIMENSIUN Y(12)		8
U	COMMON VAR	REF	9
	DIMENSION VAR(5600) - P(5000) - SAVE(950) - BLK(700)		10
	EQUIVALENCE (VAR(601),P(1))	REF	12
	EQUIVALENCE (P(350), SAVE(1))	REF	13
	*, (P(1300),BLK(1))	REF	14
	DIMENSION REFMAT(3,3), XNBN(3), YNBN(3), ZNBN(3)	REF	15
	EQUIVALENCE (SAVE(19), REFMAT(1,1))	REF	16
	*, (SAVE (28), XNBN (1))	REF	17
	· · · · · · · · · · · · · · · · · · ·	KEF	18
	DIMENSION OUM $(3,3)$ , OUMT $(3,3)$ , DICKUP $(3,3)$ , GAMD $(3,3)$ , YB $(100)$	REF	19
	*, XLVE(3),YLVE(3),7LVE(3),XLVN(3),YLVN(3),7LVN(3)	NOSHTT	. 12
	EQUIVALENCE (P(1),YB(1))	REF	21
	EQUIVALENCE (YB(98),D1)	REF	22
	*, (YB (99),02)	REF	23
	*, (YB(100),D3)	REF	24
	EUUIVALENCE (BL K (201), DUM (1,1))		25
	(BLK(210),00Ml(1,1))	REF	26
	(BLK(228)_DTCKUP(1-1))	REF	21
	*, (SAVE (762), XLVE(1))	NOSHIT	13
	*, (SAVE (765), YLVE (1))	NOSHIT	14
	*, (SAVE (768), ZLVE(1))	NOSHIT	15
	*, (SAVE(771),XLVN(1))	NOSHIT	16
	*, (SAVE(774),YLVN(1))	NOSHIT	17
C	* (SAVE(777), ZLVN(1))	NOSHIT	18
		REF	29
C	SUBRUUTINE CUMPUTES TRANSFURM FROM B.R.F. IU NAV. BASE FRAME	REF	30
	CURRENT NAV BASE IS LINE-DE-STORT SYSTEM DEETNED BY		31
*		NOSHIT	20
*	UVIT(Y) = UNIT(RT - RS)	NOSHIT	21
	LINE TO TAKE AND THE AND		

,	UNIT(2) = UNIT(XNBN X YNBN)	NOSHIT	23
	CALCULATE LOCAL VERTICAL UNIT VECTOR	NOSHIT	
		NOSHIT	2.4
	CALL UVEC(Y(1),Y(2),Y(3),XLVN)	NOSHIT	27
	CALL UCRDSS (XLVN, Y(4), ZLVN)	NDSHIT	28
	CALL UCROSS (7 LVN, XLVN, YLVN)	NOSHIT	29
·	A	NDSHIT	30
	COMPUT NAV BASE UNIT VECTORS	NOSHIT	31
		NOSHIT	32
	DX1 = -Y(7) - Y(1)	NOSHIT	33
	DX2 = Y(8) - Y(2)	NOSHIT	34
			•
		4	
	1	•	
	N		
	·		
	••		
REF.	COC 6600 FTN V3.0-P308 OPT=	1 08/29/72	11.32.27.
	0X3 = Y(9) - Y(3)	NDSHIT	35
	CALL UVEC(DX1,DX2,DX3,YNBN)	NOSHIT	36
	CALL UCROSS(YNEN, ZLVN, XNBN)	NDSHIT	37
	CALL UCROSS (XNBN, YNBN, ZNBN)	NOSHIT	. 38
	·	NDSHIT	39
		REF	42
	COMPUTE THE ACTUAL VALUES OF THESE UNIT VECTORS IN ERF	REF	43
	В	REF	44
	CALL MAT(D3, D2, D1, 1, 3, 2, GAMD)	REF	45
a an <u>an an a</u>	CALL MATMUL(GAMO, REFMAT, DUM, 3, 3, 3)	REF	46
	CALL MATRANIOUM 3.3 DUMTY	055	47
•	GREE BATRANTOON 5 40 400BT	R L I	
•	CALL MATMUL (DUMT, REFMAT, OICKUP, 3, 3, 3) B	REF	48
*	CALL-MATMUL (DUMT, REFMAT, OICKUP, 3, 3, 3)         B           D) 10 I=1,7,3         C	REF	48 49
*	CALL MATRANCOURT, REFMAT, OICKUP, 3, 3, 3)       B         D) 10 I=1,7,3       C         CALL MATMUL(DICKUP, SAVE(I+770), SAVE(I+761), 3, 3, 1)       C	REF REF NOSHIT	48 49 40
10	CALL MATRANCOURT, REFMAT, OICKUP, 3, 3, 3)       B         D) 10 I=1,7,3       C         CALL MATMUL (DICKUP, SAVE (I+770), SAVE (I+761), 3, 3, 1)       C         CALL MATMUL (DICKUP, SAVE (I+27), SAVE (I+228), 3, 3, 1)       C	REF REF NOSHIT REF	48 49 40 50
10	CALL MATRANCOUNT, REFMAT, OICKUP, 3, 3, 3)       B         D) 10 I=1,7,3       C         CALL MATMUL (DICKUP, SAVE (I+770), SAVE (I+761), 3, 3, 1)       C         CALL MATMUL (DICKUP, SAVE (I+27), SAVE (I+28), 3, 3, 1)       C         RETURN       C	REF REF NOSHIT REF REF	48 49 40 50 51
	REF	UNIT(2) = UNIT(XNBN X YNBN)         CALCULATE LDCAL VERTICAL UNIT VECTO         CALL UCCOSS(XLVN,Y(2),Y(3),XLVN)         CALL UCROSS(ZLVN,XLVN,YLVN)         CALL UCROSS(ZLVN,XLVN,YLVN)         A         COMPUT NAV BASE UNIT VECTORS         0x1 = Y(7) - Y(1)         Dx2 = Y(8) - Y(2)         X         COC 6600 FTN V3.0-P308 OPT=         0x3 = Y(9) - Y(3)         CALL UVEC(DX1,DX2,DX3,YNEN)         CALL UVEC(DX1,DX2,DX3,YNEN)         CALL UCROSS(YNEN,ZLVN,XNEN)         CALL UCROSS(XNEN,YNEN,ZNEN)         CALL UCROSS(XNEN,YNEN,ZNEN)         CALL MAT(03,02,01,1,3,2,GAMD)         CALL MAT(03,02,01,1,3,2,GAMD)         CALL MAT(03,02,01,1,3,2,GAMD)         CALL MAT(03,02,01,1,3,2,GAMD)         CALL MAT(03,02,01,1,3,2,GAMD)         CALL MAT(DANO,REFMAT,DUM,3,3,3)	UNIT(2) = UNIT(XNBN X YNBN).       NOSHIT         CALCULATE LOCAL VERTICAL UNIT VECTOR       A         CALL UVEC(Y(1),Y(2),Y(3),XLVN)       NOSHIT         CALL UVEC(Y(1),Y(2),Y(3),XLVN)       NOSHIT         CALL UCROSS(XLVN,Y(4),ZLVN)       NOSHIT         CALL UCROSS(XLVN,Y(4),ZLVN)       NOSHIT         CALL UCROSS(ZLVN,XLVN,YLVN)       A         NOSHIT       NOSHIT         COMPUT NAV BASE UNIT VECTORS       NOSHIT         DX1 = Y(7) - Y(1)       NOSHIT         DX2 = Y(8) - Y(2)       NOSHIT         OX3 = Y(9) - Y(3)       NOSHIT         CALL UVEC(DX1,DX2,DX3,YNEN)       NOSHIT         CALL UCROSS(YNEN,ZLVN,XNEN)       NOSHIT         CALL UCROSS(YNEN,ZLVN,XNEN)       NOSHIT         CALL UCROSS(XNEN,YNBN,ZNEN)       NOSHIT         CALL UCROSS(XNEN,YNBN,ZNEN)       NOSHIT         CALL MAT(03,02,01,1,3,2,GAMD)       B         REF       CALL MAT(03,02,01,1,3,2,GAMD)       B         CALL MATUUCGAM0,REFMAT,DUM,3,3,3)       REF         CALL MATUUCGAM0,REFMAT,DUM,3,3,3)       REF

•

.

.

. in me

٩ 1., P20 AND FEMALES The Street THE PART Standard Barris

ROUTINE P20

SUBEXECUTIVE FOR NAVIAGATION MARKS. ADVANCES COVARIANCE, TAKES MARK, RETURNS UFDATED STATE.

AREA A THIS AREA IS LEFT OVER FROM THE ORIGINAL VERSION AND WAS NEVER ACTIVE.

AREA B READS UPDATED VECTOR BACK INTO ARGUMANT LOCATIONS.

36

UEROUTI P20

.

.

•

.

SUBROUTINE P20(T,Y,N)	P20	2
COMMON VAR	P20	3
DIMENSION VAR (5600), P(5000), SAVE (950), BLK (700)	P20	5
EQUIVALENCE (VAR (601), P(1))	P20	6
$\frac{P(350)}{SAVE(1)}$	P20	7
ΠΙΜΕΝSTON-REEMAT(3,3) - ΧΓΙΒΙ	P20	
EQUIVALENCE (SAVE(19), REFMAT(1,1))	P20	10
*, (SAVE(258),X(1))	P20	11
	P20	12
C SUBROUTINE TO CONTROL THE TAKING OF A NAVIGATION MARK	P20 P20	13 14
	P20	15
CALL ADVANCE W TO CORRENT TIME	P20	16
C COMPUTE CUPRENT REFMAT	P20	18
C CALL REF(REFMAT)	P20	19
C CALCULATE AND INCORPORATE UPDATE	P20	20
04LL 8VEG(N) 11 30 1=1-18 P	P20 ·	21
30 Y(I) = X(I)	P20	23
RETURN	P20	24
END	P20	25

-

•

.



ROUTINE ADVW

ADVANCES SQUARE-ROOT MATRIX OF THE COVARIANCE. SEE REFERENCE 1 FOR DISCUSSION OF THE METHOD.

- AREA A DEFINE FINAL TIME OF W AS CURRENT TIME. SAVE INPUT VALUE OF NUMBER OF INTEGRATED VARIABLES. SAVE INPUT VALUE OF INTEGRATION STEP SIZE. SET INTEGRATED VARIABLES = 13 FOR RK. SINCE BOTTOM SIX ROWS OF W ARE ASSOCIATED WITH ESTIMATED CONSTANTS, THEY NEED NOT BE INTEGRATED. RK WILL INTEGRATE TIME AND FIRST TWELVE ROWS OF W, ASSOCIATED WITH S/C AND TGT STATES.
- AREA B DEFINE TGO AS CURRENT TIME (TWF) MINUS TIME TAG ON W. IF TGO LESS THAN 1 SECOND, GO TO AREA H. DO NOT INTEGRATE.
- AREA C TAKE EACH COLUMN OF W AND UPDATE IT: DEFINE TGO AS BEFORE. ADD COLUMN TO SAVED VALUE OF ESTIMATED STATE. CONVERT TO BETELGEUSE VECTOR FOR INTEGRATION. ENTER RKW FOR ADVANCEMENT OF ONE STEP.
- AREA D DECREMENT TGO BY ONE STEP. IF TGO LARGER THAN ONE STEP, CALL RKW. IF TGO LESS THAN ONE SECOND, DO NEXT COLUMN.

AREA E SET STEP EQUAL TGO FOR FINAL PASS THROUGH RKW ON THIS COLUMN. CALL RKW TO BRING COLUMN TO TWF.

AREA F RESET STEPSIZE FOR NEXT COLUMN.

AREA G RECONSTRUCT CARTESIAN VECTOR. SUBTRACT OFF CURRENT ESTMATE TO FORM NEW COLUMN OF W. GO ON TO NEXT COLUMN.

AREA H

ALL COLUMNS OF W ARE NOW UPDATED. TO BE ON THE SAFE SIDE, REDEFINE PROGRAM TIME. UPDATE TIME TAG ON W. UPDATE SAVED STATE FOR NEXT PASS THROUGH ADVW. THIS WILL BE UPDATED AGAIN BY THE NAVIGATION MEASUREMENTS.





JEROUTIN HOVW

# CONSCOO FTN V3.0-P308 DPT=1 08/29/72 11.3.27.

C CIMMON VAR CIMMON VAR CIMON		SUBROUTINE ADVW(T,XF)	ADVW	2
COMMON VAR         ADVW         4           OTHENSION VAR(5600), Y(100), NTEGER(100), P(5000); SAVE(950), ADVW         5           *         BLK(700)         ADVW         6           *         BLK(700)         ADVW         6           *         BLK(700)         ADVW         6           *         (VAR(601),NTEGER(1))         ADVW         7           *         (VAR(601),NTEGER(1))         ADVW         8           *         (VAR(601),SAVE(1))         ADVW         9           *         (VAR(601),SAVE(1))         ADVW         10           *         (P(1300),BLK(1))         ADVW         11           C         DIMENSION-URI(3),UP2(3),UP2(3)         ADVW         12           OTMENSION OLOLO,X(13),UP2(3),UP2(3)         ADVW         14           CUIVALENCE (SAVE(9),OLI1)         ADVW         15           *         (SAVE(258),X(1))         ADVW         16           *         (SAVE(258),X(1))         ADVW         16           *         (SAVE(276),WE(1),TOTS),UP2(1))         ADVW         16           *         (SAVE(258),X(1))         ADVW         20           *         (BLK(669),UR2(1)),TOTS),UP2(1))         ADVW         20     <	C		AOVW	3
D1MERNSION-VARTSE00), Y (100), NTEGER(100), P (5000); SAVE (950), ADVW       ADVW       S         *       BLK (700)       ADVW       ADVW       G         *       (VAR (401), NTEGER (1))       ADVW       ADVW       G         *       (VAR (401), NTEGER (1))       ADVW       G       G         *       (VAR (501), P(1))       ADVW       G       G         *       (VAR (501), P(1))       ADVW       G       G         *       (VAR (501), P(1))       ADVW       G       G         *       (P (130), BLK (1))       ADVW       10       G         C       OIMENSION UR1(3), UP (3)       ADVW       12       ADVW       12         OIMENSION UR1(3), UP (3)       ADVW       13       ADVW       14         *       (SAVE (256), X(1))       ADVW       14         *       (SAVE (276), WE (1, 17)       ADVW       16         C       SAVE (276), WE (1, 17)       ADVW       17         C       EDUTVALENCE (00 (1), TH)-       ADVW       20         *       (SAVE (276), WE (1, 1))       ADVW       21         *       (BLK (649), UR (1))       ADVW       22         C       CDUTVALENCE (00 (1), TH)-<		COMMON VAR	ADVW	4
* BEKT700) ADVW 6 EDUTVALENCE (VAR(1)TY(1)) ADVW 7 *, (VAR(401),NTEGER(1)) ADVW 9 EQUIVALENCE (P(150),SAVE(1)) ADVW 9 EQUIVALENCE (P(150),SAVE(1)) ADVW 10 *, (P(1300),BEK(1)) ADVW 11 C OTHENSION U(10), X(18), WE(18,27) ADVW 12 DIMENSION U(10), X(18), WE(18,27) ADVW 13 DIMENSION U(10), X(18), WE(18,27) ADVW 15 *, (SAVE(250),X(1)) ADVW 15 *, (SAVE(276),WE(1,17) ADVW 15 *, (SAVE(276),WE(1,17) ADVW 16 C EDUTVALENCE (D(1),TW) ADVW 16 C EDUTVALENCE (D(1),TW) ADVW 16 C EDUTVALENCE (D(1),TW) ADVW 18 C EDUTVALENCE (D(1),TW) ADVW 21 *, (ELK(649),UR(1)) ADVW 22 C UTMENSION XDP(12),XF(18),XFP(12) ADVW 22 C UTMENSION XDP(12),XF(18),XFP(12) ADVW 25 EDUTVALENCE (OLK(1),XOP(1)),(BEK(13),XFP(1)) ADVW 25 EDUTVALENCE (INTEGER(9),NCOL) ADVW 26 C C DI = NCOL ADVW 26 C C DI = NCOL ADVW 27 C C DI = NCOL ADVW 28 C C MUSALENCE (INTEGER(9),NCOL) ADVW 28 C C MUSALENCE (INT IME NO. INT. VAR. STEP SIZE, SET I.V.=13 ADVW 28 C C MUSALENCE (IS STFP=P(1) ADVW 33 C C MUSALENCE (IS TGOTWF-TW N=NTGEER(6) ADV 33 C C MUSALENCE (IS TGOTWF-TW C MUSALENCE (IS ADVW 33 C MUSALENCE (IS C MUSALENCE C MUSALENCE C MUSALENCE C MUSALENCE C MUSALENCE C M		DIMENSION VAR (5600), Y(100), NTEGER (100), P(5000), SAVE (950),	ADVW	5
EOUTVALENCE (VAR(1), Y(1))     ADVW     7       *, (VAR(601), FRGER(1))     ADVW     8       *, (VAR(601), FRGER(1))     ADVW     9       FOUTVALENCE (P(350), SAVE(1))     ADVW     10       C     ADVW     11       C     ADVW     11       C     ADVW     12       DIMENSION UR1(3), UR2(3), UP(3)     ADVW     13       DIMENSION UR1(3), UR2(3), UP(3)     ADVW     14       C     ADVW     13       DIMENSION UR1(3), UR2(3), UP(3)     ADVW     14       C     SAVE(258), X(1))     ADVW       *     (SAVE(258), X(1))     ADVW       *     (SAVE(276), WE(1, 1))     ADVW       C     COUTVALENCE - (O(1), TW)     ADVW       C     COUTVALENCE (D(2), UP(1)), TO(5), UR2(1))     ADVW       *     (ELK(649), UR(1))     ADVW       C     COUTVALENCE (NTEGER(9), NC(1))     ADVW       C     COUTVALENCE (INTEGER(1), TO(15), UR2(1))     ADVW       *     (ELK(649), UR(1))     ADVW       C     COUTVALENCE (NTEGER(9), NC(1))     ADVW       C     COUTVALENCE (INTEGER(1), TO(15), UR2(1))     ADVW       C     COUTVALENCE (NTEGER(1), NC(1))     ADVW       C     COUTVALENCE (NTEGER(1))     ADVW <t< td=""><td></td><td>* BLK(700)</td><td>ADVW</td><td>6</td></t<>		* BLK(700)	ADVW	6
*, (VAR (401), NTEGER(1)) (VAR (401), NTEGER(1)) ADVW 8 FOUTVALENCE (P(350), SAVE(1)) ADVW 10 ADVW 10 ADVW 11 C DIMENSION U(10), UR2(3), UP(3) OIMENSION U(10), X(13), WE(18,27) C DIMENSION U(10), X(13), WE(18,27) ADVW 13 DIMENSION U(10), X(13), WE(18,27) C C C DIMENSION U(10), X(13), WE(18,27) ADVW 15 *, (SAVE(276), WE(1,1)) C C C C C C C C C DIVALENCE (D(1), TW) C C DIVALENCE (D(1), TW) C C C DIVALENCE (D(1), TW) C C DIVALENCE (D(1), TW) C C DIVALENCE (D(1), TW) C C DIVALENCE (D(1), TW) C C DIVALENCE (D(1), TW) C C DIVALENCE (D(1), TW) C C DIVALENCE (D(1), TW) C C D D D D D D D D D D D D D		EQUIVALENCE (VAR(1), Y(1))	ADVW	7
*.       (VAP(601),P(1))       ADVW       9         FQUIVALENCE (P(650),SAVE(1))       ADVW       10         C       ADVW       11         C       ADVW       12         DIMENSION UR1(3),UR2(3),UP(3)       ADVW       13         DIMENSION UR1(3),UR2(3),UP(3)       ADVW       14         EDUIVALENCE (SAVE(10),X(13), WE(18,27)       ADVW       14         EDUIVALENCE (SAVE(256),X(1))       ADVW       16         *.       (SAVE(276),WE(1,1))       ADVW       16         *.       (SAVE(276),WE(1,1))       ADVW       16         *.       (SAVE(276),WE(1,1))       ADVW       16         C       EOUIVALENCE (D(1),TW)       ADVW       18         C       EOUIVALENCE (D(21),VPI(1)),(D(5),UR2(1))       ADVW       21         *.       (BLK(64,9),UR(1))       ADVW       22         C       EOUIVALENCE (ICER(9),NC01)       ADVW       23         C       DIMENSION XOP(12),XF(18),XFP(17)       ADVW       24         C       EOUIVALENCE (ICER(9),NC01)       ADVW       24         C       EOUIVALENCE (ICER(9),NC01)       ADVW       25         C       SAVE (URENTTIME NO. INT. VAR. STEP SIZE, SET I.V.=13       ADVW		*, (VAR (401), NTEGER (1))	ADVW	8
EOUIVALENCE (P(350),SAVE(1))       ADVW       10         c       (P(1300),GLK(1))       ADVW       11         DIMENSION UR1(3),UR2(3),UP(3)       ADVW       12         DIMENSION UR1(3),UR2(3),UP(3)       ADVW       13         DIMENSION UR1(3),VR2(3),UP(3)       ADVW       13         DIMENSION UR1(3),X(13), WE(18,27)       ADVW       14         FUIVALENCE (SAVE(9),D(1))       ADVW       15         *,       (SAVE(256),X(1))       ADVW       16         *,       (SAVE(256),X(1))       ADVW       16         *,       (SAVE(256),X(1))       ADVW       16         *,       (SAVE(276),WE(1,1))       ADVW       16         *,       (SAVE(276),WE(1,1))       ADVW       17         C       EDUIVALENCE (D(1),TW)       ADVW       18         C       EDUIVALENCE (D(12),UPI(1)),(D(5),UPZ(1))       ADVW       20         *,       (BLK(64.9),UR2(1)),(GLK(13),XFP(1))       ADVW       22         C       COLIVALENCE (DEC (SIL),XOP(1)),(GLK(13),XFP(1))       ADVW       24         C       COLVALENCE (NTEGER(6),NCOL)       ADVW       25         C       SAVE (CURRENT TIME NO. INT. VAR. STEP SIZE, SET T.V.=13       ADVW       30		*, (VAR(601),P(1))	ADVW	9
*.       (P(1300)_6LK(1))       ADVW       11         C       DIMENSION UR1(3), UR2(3), UP(3)       ADVW       12         DIMENSION UR1(3), UR2(3), UP(3)       ADVW       13         DIMENSION UR1(3), UR2(3), UP(3)       ADVW       14         DIMENSION UR1(3), UR2(3), UP(3)       ADVW       14         DIMENSION UR1(3), UR2(3), UP(3)       ADVW       14         C       (SAVE(258), X(1))       ADVW       14         *.       (SAVE(258), X(1))       ADVW       15         *.       (SAVE(276), WE(1, 1))       ADVW       16         *.       (SAVE(276), WE(1, 1))       ADVW       16         *.       (SAVE(276), WE(1, 1))       ADVW       17         ADVW       (SAVE(276), WE(1, 1))       ADVW       18         C       EOUTVALENCE (D(2), UP1(1)), (D(5), UR2(1))       ADVW       20         C       UTMENSION XOP(12), XF(18), XFP(12)       ADVW       23         C       OTMENSION XOP(12), XF(18), XFP(12)       ADVW       25         CUIVALENCE (BLK(1), XOP(1)), (BLK(13), XFP(1))       ADVW       26         C       COL       ADVW       26         C       COL       ADVW       28         C       Ster		EQUIVALENCE (P(350),SAVE(1))	ADVW	10
C     ADVW     12       DIMENSION-UR1(3),UR2(3),UP(3)     ADVW     13       DIMENSION D(10), X(13), WE(18,27)     ADVW     14       EJUIVALENCE (SAVE(97,D(11))     ADVW     15       *.     (SAVE(258),X(1))     ADVW     15       *.     (SAVE(258),X(1))     ADVW     16       *.     (SAVE(258),X(1))     ADVW     16       *.     (SAVE(258),X(1))     ADVW     17       C     ADVW     18       C     EJUIVALENCE-(D(1),TW)     ADVW     19       C     EJUIVALENCE (D(2),UPI(11),(D(5),URZ(1))     ADVW     20       *,     (BEX(649),UR(1))     ADVW     21       *,     (BEX(649),UR(1))     ADVW     22       C     DIMENSION XOP(12),XF(18),XFP(12)     ADVW     23       C     DIMENSION XOP(12),XF(18),XFP(1))     ADVW     24       C     EJUIVALENCE (NTEGER(9),NCOL)     ADVW     25       EJUIVALENCE (NTEGER(1),NCOL)     ADVW     26       C     SAVE CURRENT TIME NO. INT. VAR. STEP SIZE, SET I.V.=13     ADVW     29       IMFET     ADVW     31     ADVW     33       C     CHECK 160     B     ADVW     33       C     CHECK 160     B     ADVW     33 <td></td> <td>(P(1300),BLK(1))</td> <td>ADVW</td> <td>11</td>		(P(1300),BLK(1))	ADVW	11
DIMENSION UR1(3), UR2(3), UR2(3)       ADVW       13         DIMENSION D(10), X(18), WE(18,27)       ADVW       14         ENUTALENCE (SAVE(3), SA(1))       ADVW       15         *.       (SAVE(258), X(1))       ADVW       16         *.       (SAVE(258), X(1))       ADVW       16         *.       (SAVE(276), WE(1; 1))       ADVW       18         C       E3UIVALENCE-(D(1), TW)       ADVW       20         C       COUVALENCE (D(2), VF(10), (D(5), UR2(1))       ADVW       21         *.       (GLK(649), UR(1))       ADVW       22         C       DIMENSION XOP(12), XF(18), XFP(12)       ADVW       23         C       DIMENSION XOP(12), XF(18), XFP(12)       ADVW       24         C       EQUIVALENCE (GLK(1), XOP(1)), (GLK(13), XFP(1))       ADVW       25         C       COL       ADVW       26       ADVW       27         C       COL       ADVW       28 <td>C</td> <td></td> <td>ADVW</td> <td>12</td>	C		ADVW	12
DIMENSION D(10), X(13), WE (18,27)       ADVW       14         EDUIVALENCE (SAVE(97,D(1))       ADVW       15         *.       (SAVE(276),WE(1,1))       ADVW       16         *.       (SAVE(276),WE(1,1))       ADVW       17         C       EDUIVALENCE-(D(1),TW)       ADVW       17         C       EDUIVALENCE-(D(1),TW)       ADVW       19         C       EDUIVALENCE (D(2),UPI(1)),(D(5)+UR2(1))       ADVW       20         *.       (BLK(649),UR(1))       ADVW       22         C       C       ADVW       22         C       UIVALENCE (D(2),XF(18),XFP(12)       ADVW       22         C       C       ADVW       23         C       EQUIVALENCE (BLK(1),XOP(1)), (BLK(13),XFP(1))       ADVW       25         EQUIVALENCE (UREGER(9),NCOL)       ADVW       25         EQUIVALENCE (UREGER(9),NCOL)       ADVW       26         C       COL       ADVW       26         C       SAVE CURRENT TIME NO. INT. VAR. STEP SIZE, SET I.V.=13       ADVW       28         C       SAVE CURRENT TIME NO. INT. VAR. STEP SIZE, SET I.V.=13       ADVW       30         NV=NTEGER(6)       A       ADVW       30         STPP=P1()		DIMENSION UR1(3), UR2(3), UR(3)	ADVW	13
ETULVALENCE (SAVE(29),D(1))       ADVW       15         *.       (SAVE(250),X(1))       ADVW       16         *.       (SAVE(276),WE(1,1))       ADVW       16         C       *.       (SAVE(276),WE(1,1))       ADVW       17         C       ADVW       18       ADVW       19         C       EDULVALENCE (D(1),TW)       ADVW       20         EDULVALENCE (D(2),UPI(1)),(D(5),UPZ(1))       ADVW       21         *.       (BLK(649),UR(1))       ADVW       22         C       OTMENSION XOP(12),XF(18),XFP(12)       ADVW       23         C       OTMENSION XOP(12),XF(18),XFP(12)       ADVW       24         C       EQUIVALENCE (BLK(1),XOP(1)),(BLK(13),XFP(1))       ADVW       25         EQUIVALENCE (NTEGER(9),NCOL)       AOVW       26       ADVW       27         C       CDL = NCOL       ADVW       27       ADVW       28         C       SIVE CURRENT TIME NO. INT. VAR. STEP SIZE, SET I.V.=13       ADVW       29         VFF=       NV=NTEGER(6)       A       ADVW       32         C       SIVE CURRENT TIME NO. INT. VAR. STEP SIZE, SET I.V.=13       ADVW       32         C       MVENT GER(6)       ADVW <td< td=""><td></td><td>DIMENSION D(10), X(18), WE(18,27)</td><td>ADVW</td><td>14</td></td<>		DIMENSION D(10), X(18), WE(18,27)	ADVW	14
*.       (SAVE(256),X(1))       ADVW       16         *.       (SAVE(276),WE(1,1))       ADVW       17         C       ADVW       17         C       ADVW       18         C       ADVW       19         C       ADVW       20         C       ADVW       21         *.       (BLK(649),UR(1)),(D(5),UR2(1))       ADVW       22         C       ADVW       22       ADVW       23         C       OTMENSION XOP(12),XF(18),XFP(12)       ADVW       24         C       EQUIVALENCE (BLK(1),XOP(1)),(GLK(13),XFP(1))       ADVW       24         C       EQUIVALENCE (INTEGER(9),NCOL)       ADVW       25         EQUIVALENCE (UNTEGER(9),NCOL)       ADVW       26         C       COL = NCOL       ADVW       26         C       SIVF CURRENT TIME NO. INT. VAR. STEP SIZE, SET I.V.=13       ADVW       28         C       SIVF CURRENT TIME NO. INT. VAR. STEP SIZE, SET I.V.=13       ADVW       31         SIFP=P(1)       ADVW       31       ADVW       32         C       HEGER(6)       ADVW       33       ADVW       33         C       CHECK TGO       B       ADVW		EJUIVALENCE (SAVE(9), D(1))		15
*.       (SAVE(276),WE(1,1))       ADVW       17         C       ADVW       18         PC       ADVW       18         C       ADVW       20         *.       (BLK(649),UR(1))       ADVW       21         *.       (BLK(649),UR(1))       ADVW       22         C       C       ADVW       23         C       C       ADVW       23         C       C       ADVW       24         C       C       ADVW       23         C       C       ADVW       24         C       C       ADVW       24         C       C       ADVW       25         EQUIVALENCE (BLK(11),XPP(11))       ADVW       26         C       COL       ADVW       26         C       COL       ADVW       27         C       COL       ADVW       28         C       SAVE CURRENT TIME NO. INT. VAR. STEP SIZE, SET I.V.=13       ADVW       29         INFET       ADVW       30       ADVW       31         STEP=P(1)       ADVW       33       ADVW       34         C       CHECK 160       A       ADVW		*, '' (SAVE(258),X(1))		16
C       AOVW       18         C       AOVW       19         C       AOVW       19         C       AOVW       19         C       AOVW       19         *,       (BLK(649),UR(1))       ADVW       20         *,       (BLK(649),UR(1))       ADVW       21         *,       (BLK(649),UR(1))       ADVW       22         C       OIMENSION XOP(12),XF(18),XFP(12)       ADVW       23         C       EQUIVALENCE (BLK(1),XOP(1)),(BLK(13),XFP(1))       ADVW       24         C       EQUIVALENCE (NTEGER(9),NCOL)       AOVW       25         C       COL = NCOL       AOVW       26         C       SAVE CURRENT TIME NO. INT. VAR. STEP SIZE, SET I.V.=13       AOVW       29         TW=NTEGER(6)       A       AOVW       30         STEP=P1(1)       AOVW       31       AOVW       32         C       CHCK TGO       B       ADVW       33         C       CHCK TGO       B       ADVW       35         C       CHCK TGO       B       ADVW       35         C       CHCK TGO       B       ADVW       36         C       TGO=TW		*, (SAVE(276), WE(1,1))		17
ENUIVALENCE (D(1),TW)       AOVW       19         C       ADVW       20         *,       (BLK(649),UR(1))       ADVW       21         *,       (BLK(649),UR(1))       ADVW       22         C       ADVW       22         C       ADVW       23         DIMENSION XOP(12),XF(18),XFP(12)       ADVW       24         C       EQUIVALENCE (BLK(1),XOP(1)),(BLK(13),XFP(1))       ADVW       25         EQUIVALENCE (NTEGER(9),NCOL)       ADVW       25         C       COL       ADVW       26         C       COL       ADVW       27         GOL = NCOL       ADVW       28       ADVW       29         THF=T       ADVW       27       ADVW       28         C       SAVE CURRENT TIME NO. INT. VAR. STEP SIZE, SET I.V.=13       ADVW       29         THF=T       ADVW       30       ADVW       31         STEP=P(1)       AOVW       32       ADVW       33         C       CHECK TGO       B       ADVW       33         C       CHECK TGO       B       ADVW       35         C       CHECK TGO       B       ADVW       35	С			18
C     ADVW     20       *,     (BLK(649),UR(1)); (D(5),UR2(1))     ADVW     21       *,     (BLK(649),UR(1))     ADVW     22       C     DIMENSION XOP(12),XF(18),XFP(12)     ADVW     23       C     EQUIVALENCE (BLK(1),XOP(1)); (BLK(13);XFP(1))     ADVW     24       C     EQUIVALENCE (INTEGER(9),NCOL)     ADVW     25       C     COL     EQUIVALENCE (INTEGER(9),NCOL)     ADVW     26       C     COL     NOVW     26       C     COL     ADVW     27       C     SAVE-CURRENT TIME NO. INT. VAR. STEP SIZE, SET I.V.=13     ADVW     29       NTEFT     ADVW     30       NV=NTEGER(6)     ADVW     31       STEP=P(1)     ADVW     32       C     CHLCK TGO     B     ADVW       IF (ABS(TGO).LT.1.)     GO TO 105     B     ADVW       IF (ABS(TGO).LT.1.)     GO TO 105     B     ADVW       C     CADVW     32     C       C     CLCK TGO     ADVW     35       C     CADVW     36     C       C     CHCK TGO     B     ADVW       C     CHLCK TGO     C     ADVW       C     CHLCK TGO     C     ADVW <tr< td=""><td>· · · · · · · · · · · · · · · · · · ·</td><td>EQUIVALENCE (D(1),TW)</td><td>A NV W</td><td>19</td></tr<>	· · · · · · · · · · · · · · · · · · ·	EQUIVALENCE (D(1),TW)	A NV W	19
EDUTVALENCE (D(2); UP1(1)); (D(5); UR2(1))       AOVW       21         *,       (BLK(649), UR(1))       AOVW       22         C       OIMENSION XOP(12), XF(18), XFP(12)       AOVW       23         C       EQUIVALENCE (BLK(1), XOP(1)), (BLK(13), XFP(1))       AOVW       24         C       EQUIVALENCE (BLK(1), XOP(1)), (BLK(13), XFP(1))       AOVW       25         EQUIVALENCE (NTEGER(9), NCOL)       AOVW       26         C       COL = NCOL       AOVW       26         C       COL = NCOL       AOVW       26         C       COL = NCOL       AOVW       27         C       SIVE CURRENT TIME NO. INT. VAR. STEP SIZE, SET I.V.=13       AOVW       29         NFET       AOVW       28       AOVW       30         C       SIEP=P(1)       AOVW       30         NV=NIEGER(6)=13       A       AOVW       32         C       CHECK IGO       B       AOVW       33         C       CHECK IGO.LIT.1.) GO IO 105       B       AOVW       34         IF (ABS(IGO).LIT.1.) GO IO 105       B       AOVW       35         C       ADVANCE W GY COLUMNS       C       AOVW       36         OD IO I=1.NCOL       AO	С		ADVW	21
*,       (BLK(649),UR(1))       ADVW       22         C       OIMENSION XOP(12),XF(18),XFP(12)       ADVW       23         C       EQUIVALENCE (BLK(1),XOP(1)), (BLK(13),XFP(1))       ADVW       24         C       EQUIVALENCE (INTEGER(9),NCOL)       ADVW       25         C       COL = NCOL       ADVW       26         C       COL = NCOL       ADVW       26         C       COL = NCOL       ADVW       28         C       SAVE CURRENT TIME NO. INT. VAR. STEP SIZE, SET I.V.=13       ADVW       29         THF=T       A       ADVW       30         NV=NIEGER(6)       A       ADVW       31         STEP=P(1)       AOVW       32         NV=NIEGER(6)=13       A       ADVW       33         C       CHECK TGO       B       ADVW       33         C       CHECK TGO       B       ADVW       35         C       ADVANCE N BY COLUMNS       C       C       ADVW       36         O       100 I=1,NCOL       B       ADVW       37       39       30       37         C       CASTWARCE N BY COLUMNS       C       C       ADVW       38       38       38	······	EQUIVALENCE (0(2), UR1(1)), (0(5), UR2(1))		24
C       ADVW       22         DIMENSION XOP(12), XF(18), XFP(12)       ADVW       24         C       EQUIVALENCE (BLK(1), XOP(1)), (BLK(13), XFP(1))       ADVW       25         EQUIVALENCE (INTEGER(9), NCOL)       AOVW       26         C       COL       AOVW       26         C       COL       AOVW       26         C       COL       AOVW       27         C       SAVE CURRENT TIME NO. INT. VAR. STEP SIZE, SET I.V.=13       ADVW       29         TWFET       A       ADVW       29         TWFT       A       ADVW       30         NV=NTEGER(6)       A       ADVW       31         STEP=P(1)       AOVW       32         NTEGFR(6)=13       A       ADVW       33         C       CHECK TGO       B       ADVW       34         G       GOTWF-TW       B       ADVW       35         C       ADVANCE W BY COLUMNS       C       ADVW       36         G       ADVNCE W BY COLUMNS       C       ADVW       39         C       ADVW       ADVW       38       ADVW       39         C       ADVWNCE W BY COLUMNS       C       ADVW		*, (BLK(649),UR(1))		22
DIMENSION XOP(12), xF(18), xFP(12)       ADVW       24         C       EQUIVALENCE (BLK(1), XOP(1)), (BLK(13), XFP(1))       ADVW       25         EQUIVALENCE (INTEGER(9), NCOL)       AOVW       26         C       COL = NCOL       ADVW       26         C       SAVE CURRENT TIME NO. INT. VAR. STEP SIZE, SET I.V.=13       ADVW       29         TWF=T       ADVW       29         TWF=T       ADVW       30         NV=NTEGER(6)       ADVW       31         STEP=P(1)       AOVW       32         C       CHECK TGO       B       ADVW         STEP=P(1)       ADVW       33         C       CHECK TGO       B       ADVW         IF (ABS(TGO).LT.1.)       GO TO 105       B       ADVW         C       ADVANCE W BY COLUMNS       C       ADVW         DO 100 I=1,NCOL       ADVW       35         C       CREATE PERTURBED STATE       ADVW       38         OO 5 J=1,12       AOVW       AOVW       40         OO 5 J=1,12       AOVW       AOVW       41         SOP(J) = X(J) + WE(J,I) *SORT(COL)       ADVW       42	C			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		DIMENSION XOP(12), XF(18), XPP(12)		25
EQUIVALENCE (NTEGER(9),NCOL)       AOVW       26         C       ADVW       27         COL = NCOL       AOVW       28         C       Sive CURRENT TIME NO. INT. VAR. STEP SIZE, SET I.V.=13       ADVW       29         THF=T       A       ADVW       29         NV=NTEGER(6)       A       ADVW       30         STEP=P(1)       A       ADVW       32         NTEGER(6)=13       A       ADVW       32         C       CHECK TGO       B       ADVW       33         C       CHECK TGO       B       ADVW       35         C       GOTUFF-TW       A       ADVW       35         C       GOTUFF-TW       A       ADVW       36         C       ADVANCE W BY COLUMNS       C       ADVW       36         C       ADVW       S8       C       ADVW       38         C       CAFATE PERTURBED STATE       ADVW       39       ADVW       39         C       CAFATE PERTURBED STATE       ADVW       40       40         O 0 5 J=1,12       ADVW       40       42         C       COVWEDEL       COVWEDEL       ADVW       42	⁻ C	EQUIVALENCE (BLK (1) XOP (1)) - (BLK (13) - XEP (1))		25
C       ADVW       27         COL = NCOL       ADVW       28         C       SAVE CURRENT TIME NO. INT. VAR. STEP SIZE, SET I.V.=13       ADVW       29         TWF=T       A       ADVW       30         NV=NIEGER(6)       A       ADVW       30         SIEP=P(1)       A       ADVW       31         NIEGFR(6)=13       A       ADVW       32         C       CHECK TGO       B       ADVW       33         C       CHECK TGO       B       ADVW       34         IF (ABS(IGO).LT.1.) GO TO 105       B       ADVW       35         C       ADVANCE W BY COLUMNS       C       ADVW       37         DO 100 I=1,NCOL       C       ADVW       38       37         C       CREATE PERIURBED STATE       ADVW       39       38         C       CREATE PERIURBED STATE       ADVW       40         DO 5 J=1,12       AOVW       41       40VW       42		EQUIVALENCE (NTEGER(9) • NCOL)	ADVW	25
COL = NCOL       ADVW       27         C       SAVE CURRENT TIME NO. INT. VAR. STEP SIZE, SET I.V.=13       ADVW       29         THF=T       A       ADVW       30         NV=NTEGER(6)       A       ADVW       31         STEP=P(1)       AOVW       32         NTEGER(6)=13       A       ADVW       33         C       CHECK TGO       B       ADVW       33         C       CHECK TGO       B       ADVW       34         TGO=TWF-TW       A       ADVW       35         IF (ABS(TGO).LT.1.) GO TO 105       B       ADVW       36         C       ADVANCE W BY COLUMNS       C       ADVW       37         DO 100 I=1,NCOL       ADVW       38       ADVW       38         C       CREATE PERTURBED STATE       ADVW       39         C       CREATE PERTURBED STATE       ADVW       40         OO 5 J=1,12       AOVW       41       ADVW       42         C       CONVEDET TO BETEL CEUSE EVENTY       ADVW       42	<u> </u>		AOVN	20
C       SAVE CURRENT TIME NO. INT. VAR. STEP SIZE, SET I.V.=13       ADVW       29         INF=T       ADVW       30         NV=NTEGER(6)       A       ADVW       31         STEP=P(1)       AOVW       32         NTEGFR(6)=13       A       ADVW       32         C       CHECK TGO       B       ADVW       33         C       CHECK TGO       B       ADVW       34         TGO=TWF-TW       ADVW       35       35         IF (ABS(TGO).LT.1.) GO TO 105       B       ADVW       36         C       ADVANCE W BY COLUMNS       C       ADVW       38         C       ADVW       38       39       39         C       CRFATE PERTURBED STATE       ADVW       39         O O 5 J=1,12       AOVW       40       40         S XOP(J) = X(J) + WE(J,I)*SQRT(COL)       ADVW       42	-	COL = NCOL		28
Image: Network and the trace of trace of the trace of trac	c	SAVE CURRENT TIME NO. INT. VAR. STEP STZE. SET TV +13		20
NV=NTEGER(6)       A       AOVW       31         STEP=P(1)       AOVW       32         NTEGER(6)=13       A       ADVW       32         C       CHECK TGO       B       ADVW       33         C       CHECK TGO       B       ADVW       34         IGO=TWF+TW       ADVW       35         IF (ABS(TGO).LT.1.) GO TO 105       B       ADVW       36         C       ADVANCE W BY COLUMNS       C       ADVW       36         C       ADVANCE W BY COLUMNS       C       ADVW       37         D0 100 I=1.NCOL       ADVW       38       38         C       CREATE PERTURBED STATE       ADVW       39         C       CREATE PERTURBED STATE       ADVW       40         OO 5 J=1,12       AOVW       41         S XOP(J) = X(J) + WE(J,I)*SQRT(COL)       ADVW       42		WET	ADVW	29
STEP=P(1)AOVW31NTEGFR(6)=13AAOVW32CCHECK TGOBADVW33TGO=TWF-TWADVW34IF (ABS(TGO).LT.1.) GO TO 105BADVW35CABVANCE W BY COLUMNSCADVW36CADVW3736CADVW38CCRFATE PERTURBED STATEADVW39CCRFATE PERTURBED STATEADVW39CCONVERT TO PETEL CEUSE OVERTADVW41ADVW42ADVW42		A NV=NTEGER(6)		
NFEGER(6)=13       A       ADVW       32         C       CHECK TGO       B       ADVW       33         TGO=TWF-TW       ADVW       34         TGO=TWF-TW       ADVW       35         LF (ABS(TGO).LT.1.) GO TO 105       B       ADVW       36         C       ADVANCE W BY COLUMNS       C       ADVW       36         C       ADVANCE W BY COLUMNS       C       ADVW       37         DO 100 I=1.NCOL       ADVW       38       39         C       CRFATE PERTURBED STATE       ADVW       39         C       CRFATE PERTURBED STATE       ADVW       40         OO 5 J=1,12       AOVW       41         5       XOP(J) = X(J) + WE(J,I)*SQRT(COL)       ADVW       42		STEP=P(1)	AOVU	20
C       C       C       ADVW       33         TGO=TWF+TW       B       ADVW       34         TGO=TWF+TW       ADVW       35         IF (ABS(IGO).LT.1.) GO TO 105       B       ADVW       35         C       ADVANCE W BY COLUMNS       C       ADVW       36         C       ADVW       36       37       30       100 I=1,NCOL       37         D0 100 I=1,NCOL       C       ADVW       38       38         C       CRFATE PERTURBED STATE       ADVW       39         C       CRFATE PERTURBED STATE       ADVW       40         00 5 J=1,12       ADVW       41       40         S XOP(J) = X(J) + WE(J,I)*SQRT(COL)       ADVW       42		NEEGER(B)=13	AUVW	<u>کک</u>
IGO = TWF - TW       ADVW       34         IGO = TWF - TW       ADVW       35         IF (ABS(TGO).LT.1.) GO TO 105       B       ADVW       36         C       ADVANCE W BY COLUMNS       C       ADVW       36         C       ADVW       36       37       30         DO 100 I=1,NCOL       C       ADVW       38         C       CRFATE PERTURBED STATE       ADVW       39         C       CRFATE PERTURBED STATE       ADVW       40         OO 5 J=1,12       AOVW       41         5       XOP(J) = X(J) + WE(J,I)*SQRT(COL)       ADVW       42	c H	CHECK IGO R	ADVW	33
IF (ABS(TGO).LT.1.) GO TO 105       B       ADVW       36         C       ADVANCE W BY COLUMNS       C       ADVW       36         DO 100 I=1,NCOL       C       ADVW       37         DO 100 I=1,NCOL       ADVW       38         C       CRFATE PERTURBED STATE       ADVW       39         C       CRFATE PERTURBED STATE       ADVW       40         DO 5 J=1,12       AOVW       41         5       XOP(J) = X(J) + WE(J,I)*SQRT(COL)       ADVW       42			AUVW	34
CADVW36CADVANCE W BY COLUMNSCADVW37D0 100 I=1,NCOLADVW38TG0=TWF - TWADVW39CCRFATE PERTURBED STATEADVW3900 5 J=1,12ADVW405 XOP(J) = X(J) + WE(J,I) *SQRT(COL)ADVW41CCONVERT TO RETE:ADVW42			AUVW	35
C     ADVW     37       D0 100 I=1,NCOL     ADVW     38       C     CREATE PERTURBED STATE     ADVW     39       C     CREATE PERTURBED STATE     ADVW     40       D0 5 J=1,12     ADVW     41       5 XOP(J) = X(J) + WE(J,I)*SQRT(COL)     ADVW     42	c		AUVW	36
C     ADVW     38       C     TG0=TWF - TW     ADVW     39       C     CRFATE PERTURBED STATE     ADVW     40       00 5 J=1,12     ADVW     40       5 XOP(J) = X(J) + WE(J,I)*SQRT(COL)     ADVW     41       C     CONVERT TO RETE: CEUSE EXETENT     ADVW		DO 100 T=1-NCD	AUVW	51
CADVW39 ADVW $CRFATE PERTURBED STATEADVW4000.5 J=1,12ADVW405 XOP(J) = X(J) + WE(J,I) *SQRT(COL)ADVW41ADVW42$			AUVW	38
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C	CPEATE PERTURBED STATE	ADVW	39
$5 \times OP(J) = X(J) + WE(J,I) * SQRT(COL) $ $AOVW 41$ $ADVW 42$			WVUA	40
ADVW 42		5 - YOP(1) = Y(0) + WE(1, T) * COPT(COL)	AOVW	41
		CONVERT TO RETER CEUSE EVETEN	AUVW	42
ADVW 43		CALL CART2 (YOP, Y (2))	AUVW	43

south to the fill of the fill	D CALL RKW	C	ADVW	45	
	IGO=IGO - P(1)	D	- ADVW	46	
	IF (TGO.GE.P(1)) GO TO 10		ADVW	4	
	IF (ABS(TGO).LT.1.) GO TO 15	D	ADVW	4	
	2(1) = TG0	E	ADVW	49	
	CALL PKW .	E	ADVW	50	
	5 P(1)=STEP	F	ADVW	51	
c 🗖	RECTIFY RESULTING STATE AND COMPUTE NEW COLUMN OF W	G	ADVW	52	
	CALL CARTITYFP, Y(Z))		ADVW	53	
	00 20 J=1,12		ADVW	54	
	WE(J,I) = (XFP(J) - XF(J))/SORT(COL)	G	AOVW	55	
10	OCONTINUE		AOVW	- 56	
					_

UBROUTINE ADVW

1

1

pi -

λ.

CDC 6600 FTN V3.0-P308 OPT=1 08/29/72 11.32.27.

.

×.

1

.

. ..

.

.

	105 CONTINUE	ADVW	57
	Y(1)=TWF	AO V W	58
	T'=TWF	A D V W	59
•	NTESER(6)=NV	ADVW	60
	DO 110 I=1,18	ADVW	61
	110 X(I)=XF(I)	A D V W	62
	RETURN	A O V W	63
	END	ADVW	64

•



ROUTINE BVEC

COMPUTES GEOMETRY VECTORS AS SPECIFIED BY CALLING ROU-TINE. CALLS FILTER TO UPDATE STATE AND COVARIANCE. SEE REFERENCE 1 FOR DISCUSSION.

AREA RR COMPUTES RANGE RATE MEASUREMENT GEOMETRY VECTOR:

 $\underline{\mathbf{r}} = [DX(1), DX(2), DX(3)] RELATIVE POSITION$ VECTOR $<math display="block">\underline{\mathbf{v}} = [DX(4), DX(5), DX(6)] RELATIVE VELOCITY$ VECTOR

 $\frac{\text{UR}}{\text{MR}} = \text{UNIT}(\underline{\mathbf{r}})$ RC = RANGE



AREA A CALCULATE THE ESTIMATED RELATIVE POSITION VECTOR.

- AREA B DEFINE CURRENT ESTIMATED RANGE-RATE AS UR^T PLUS RANGE-RATE BLAS ESTIMATE.
- AREA C DEFINE CURRENT ESTIMATED RANGE AS  $\underline{ur}^{T}\underline{r}$  PLUS RANGE BIAS ESTIMATE.
- AREA D COMPUTE UR x  $(v \times UR)$  USING PORTIONS OF GEOMETRY VECTOR AS SCRATCH PAD.
- AREA E LOAD B AS DEFINED ABOVE (AREA RR). B(14) IS THE PARTIAL OF R-RATE MEASUREMENT WITH RESPECT TO A BIAS ESTIMATE ERROR: SET EQUAL TO 1.
- AREA F DEFINE MEASUREMENT RESIDUAL (DQ) AS MEASURED R-RATE MINUS ESTIMATED. DEFINE R-RATE SIGMA AS MAX OF R-RATE FRACTION AND MINIMUM VALUE.



AREA R COMPUTES RANGE MEASUREMENT GEOMETRY VECTOR:



AREA A COMPUTE CURRENT RANGE UNIT VECTOR.

AREA B DEFINE ESTIMATED RANGE AS IN AREA RR(C)

AREA C LOAD B AS DEFINED ABOVE. B(13) IS THE PARTIAL OF A RANGE MEASUREMENT WITH RESPECT TO A RANGE BIAS ESTIMATE ERROR: SET EQUAL TO 1.

AREA D DEFINE MEASUREMENT RESIDUAL AS MEASURED RANGE MINUS ESTIMATED RANGE. DEFINE RANGE SIGMA AS MAX OF RANGE FRACTION AND MINIMUM VALUE. SET MEASUREMENT TYPE FLAG FOR FILTER. UPDATE STATE WITH RANGE MEASUREMENT (CALL FILTER)

AREA E IF THIS IS A RANGE-ONLY (VHF) MARK, EXIT ROUTINE.

AREA OP COMPUTES AZIMUTH AND ELEVATION MEASUREMENT GEOMETRY VECTORS:

REF1, REF2, REF3 ESTIMATED NAV BASE UNIT VECTORS.

$$AZ = ATAN[(urTREF3)/(urTREF2)]$$
  
EL = ASIN[ur^TREF1]

THESE DEFINITIONS ARE NOT UNIQUE, BUT THEY MUST BE THE SAME AS THOSE IN SUBROUTINE REL.

AREA OP



FOR EL: RCEL =  $\underline{UR}^{T}\underline{r}$ 

RANGE MAGNITUDE

-UNIT[UR x (REFL x UR)]/RCEL 03  $\underline{\mathbf{B}}_{\mathrm{EL}}$ UNIT[UR x (REFL x UR)]/RCEL

AREA A COMPUTE THE CURRENT ESTIMATES OF AZ AND EL AS DEFINED ABOVE, INCLUDING CURRENT ESTIMATES OF BIASES X(15), X(16).

AREA B IF ELEVATION COMPONENT OF OPTICS MARK, GO TO AREA F TO COMPUTE GEOMETRY VECTOR.

AREA C COMPUTE AZIMUTH GEOMETRY VECTOR AS ABOVE.

- AREA D DEFINE MEASUREMENT RESIDUAL. DEFINE AZ SIGMA
- AREA E DEFINE RANGE PROJECTION TERM. GO TO AREA I TO LOAD B AND TAKE MARK.
- AREA F DEFINE ELEVATION GEOMETRY VECTOR AS DESCRIBED ABOVE.

40

- AREA G DEFINE ELEVATION MEASUREMENT RESIDUAL. DEFINE ELEVATION SIGMA.
- AREA H DEFINE RANGE PROJECTION TERM.

.

AREA I LOAD B WITH GEOMETRY VECTOR AS DESCRIBED ABOVE.

- AREA J B(16) IS PARTIAL OF ELEVATION ANGLE MEASUREMENT WITH RESPECT TO BIAS ESTIMATE ERROR. IF THIS IS ELEVATION COMPONENT, SET B(16)=1. B(15) IS PARTIAL OF AZIMUTH ANGLE MEASUREMENT WITH RESPECT TO BIAS ESTIMATE ERROR. IF THIS IS AZIMUTH COMPONENT, SET B(15)=1.
- AREA K SET APPROPRIATE MEASUREMENT TYPE FLAG FOR FILTER. CALL FILTER TO TAKE MARK.
- AREA L IF ELEVATION MARK HAS JUST BEEN PROCESSED, EXIT ROUTINE. LOPT FLAG WILL BE RESET ON NEXT ENTRY TO BVEC. IF THIS WAS NOT AN ELEVATION MARK, GO TO AREA OP TO PERFORM THIS MEASUREMENT.





UBROUTI BVEC

ramain a sette

	SUBROUTINE BVEC(N)	BVEC	2
<del>.</del>		BVEC	3
С	SUBROUTINE TO COMPUTE GEOMETRY VECTORS FOR NAVIGATION MARKS	BVEC	4
C		BVEC	5
	COMMON VAR	BVEC	6
	OIMENSION VAR (5600), NTEGER (100), P(5000), SAVE (950), BLK(700)	BVEC	7
	EQUIVALENCE (VAR(401), NTEGER(1))	BVEC	8
	*, (VAR(601),P(1))	BVEC	. 9
	EQUIVALENCE (NTEGER (29), NGUIDE)	BVEC	10
	EQUIVALENCE (P(350), SAVE(1))	BVEC	11
	*, (P(1300),BLK(1))	BVEC	12 .
•	DIMENSION OQ(4) - SIG(4) - C(10) - REFMAT(3,3) - XNBN(3) - YNBN(3)	BVEC	13
	*, ZNBN(3), NE(10), NM(10), DTL(10), OTN(10), OTM(10)	BVEC	14
	*, USP(10), USV(10), UTP(10), UTV(10), SR(10), SRD(10)	BVEC	15
	*, SO(10), SC1(10), SC2(10), NW(10), TLM(10), NS(3)	BVEC	-16
	-*, ZTZ(4), SZ(4), TALIGN(10), XNBE(3), YNBE(3), ZNBE(3)	BVEC	17
	*, X(18), WE(18,27)	BVEC	18
-	EQUIVALENCE (SAVE(1),00(1)), (SAVE(5),SIG(1))	BVEC	19
	*, (SAVE(9),C(1)), (SAVE(19),REFMAT(1,1))	BVEC	20
	*, (SAVE(28), XNBN(1)), (SAVE(31), YNBN(1))	BVEC	21
	*, (SAVE(34),ZNBN(1)), (SAVE(37),NE(1))	BVEC	22
	*, (SAVE(47), NM(1)), (SAVE(57), DTL(1))	BVEC	23
	*, (SAVE(67),OTN(1)), (SAVE(77),DTM(1))	BVEC	24
	*, (SAVE(87), USP(1)), (SAVE(97), USV(1))	BVEC	25
	*, (SAVE(107),UTP(1)), (SAVE(117),UTV(1))	BVEC	26
	*, (SAVE(127), SR(1)), (SAVE(137), SRD(1))	BVEC	27
	*, (SAVE(147), SO(1)), (SAVE(157), SC1(1))	BVEC	28
	*, (SAVE(167), SC2(1)), (SAVE(177), NW(1))	BVEC	29
	*, (SAVE(187),TLM(1)), (SAVE(197),NS(1))	BVEC	30
	*, (SAVE(200),ZTZ(1)), (SAVE(204),SZ(1))	BVEC	31
	*, (SAVE(208), TALIGN(1)), (SAVE(218), NALIGN)	BVEC	32
	*, (SAVE(229), XNBE(1)), (SAVE(232), YNBE(1))	BVEC	33
	*, (SAVE(235),ZNBE(1)), (SAVE(258),X(1))	BVEC	34 .
	*, (SAVE(276), WE(1,1))	BVEC	35
	DIMENSION REF1(3), REF2(3), REF3(3)	BVEC	36
	EQUIVALENCE (XNBN(1), REF1(1))	BVEC	37
	*, (YNBN(1), REF2(1))	BVEC	38
	*, (ZNEN(1), REF3(1))	BVEC	39
С		BVEC	40
	EQUIVALENCE (C(1),TW)	BVEC	41
С		BVEC	42
	DIMENSION B(18), DX(6), UR(3), WV(18), BZ(27), WS(27,18)	BVEC	43

in a state in the	high a bit a maximum and and and and and and a state of the state of t	and the second s			
	EQUIVALENCE (BLK(1), B(1))		BVEC	45	l
	, (BLK(19), UX(1))		BVEC	46	
() *	(BLK (25), UR (1))		BVEC		
· · · · · · · · · · · · · · · · · · ·	(DLV(20),VARU)		BVED	40	
*	(BLK (30) - NTNS)	1	BVEC	49	
			OVEC	50	-
¥	(B1 K (49), B7 (1))		BVEC	52 52	
*	(B[K(76)-WS(1))		BVEC	53	ł
С			BVEC	54	
	COMMON/BV/RVAR, RVARMIN, VVAR, VVARMIN, VARAZ, VAREL	· · · · · · · · · · · · · · · · · · ·	BVEC	55	-
С			BVEC	56	
	Entr			•	I
			4		ľ
	1				_
	N		1		
BROUTINE BVEC	CDC 6600 FTN V3.0-P30	8 OPT=1	08/29/72	11.32.27.	
	LOPT=0		BVEC	57	
· C	CHECK IF RADAR (N=1), VHF (N=2), OR OPTICS (N=3) MARK I	S TO DONE	BVEC	58	İ
	G7 T0(5,35,65,35) N		BVEC	59	
C [	PR	ד	BVEC	60	I
5			BVEC	61	
U T	COMPUTE RELATIVE STATE		BVEC	. 62	
	9/ IU I=1,0		BVEC	63	
	UX(1) = X(1+b) = X(1)	4	BVEC	64	
······································		-	BVEC	65	-
c ·	COMPUTE CUPPENT ESTIMATED DANCE DATE		BVEC	00	
	$\frac{1}{2} = \frac{1}{2} = \frac{1}$			69	
c	COMPUTE CURRENT ESTIMATED PANGE	-		60	
	$R_{0} = R_{0} T (R_{0} R_{1}			07 0	
c ——	COMPUTE RANGE RATE GEOMETRY VECTOR	-	BVEC	71	
			BVEC	72	
	CALL CROSS(UR, B(4), B(1))		BVEC	73	
c			BVEC	74	
	DO 15 I=1,3 ·		BVEC	75	
	B(I) = -B(I)/RC	-	BVEC	76	-
	B(I+3) = -UR(I)		BVEC	77	
	3(I+5)=+8(I)		BVEC	78	ļ
	B(I+9)=UR(I)		BVEC	79	
and a second sec	3(1+12)=0.		OVER	0.0	ł

11(14)=1.       P       BVEC       BVEC         01 = CO(2) - RDC       WARD=AMAX1(ABS(RDC*VVAR), VVARMIN)**2.       BVEC       BVEC         VARD=AMAX1(ABS(RDC*VVAR), VVARMIN)**2.       BVEC       BVEC       B         VARD=AMAX1(ABS(RDC*VVAR), VVARMIN)**2.       BVEC       B       BVEC       B         C       CALCULATE AND INCORPORATE UPDATE       BVEC       B       BVEC       B         C       CALULFILTER       P       BVEC       B       B       BVEC       B         C       CALUTIVE STATE FOR VHF MEASUREMENT       BVEC       B       BVEC       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B<	and ere this		BVEC	82	
C       J=FINE VARUARD AND UU       P       BVEC       BVEC         D3 = COT27 - ROC       BVEC       BVEC       6.         VARQ=AMAX1 (ABS (RDC*VVAR), VVARMIN)**2.       BVEC       8.         NINS=2       BVEC       86         CALL FILTER       P       BVEC       86         35       CONTINUE       R       BVEC       89         C       COMPUTE RELATIVE STATE FOR VHF MEASUREMENT       BVEC       90         D0 4 0 1=1,6       BVEC       91       BVEC       92         C       COMPUTE RELATIVE STATE FOR VHF MEASUREMENT       BVEC       92         C       COMPUTE CREAT UNIT RANGE VECTOR       A       BVEC       93         C       COMPUTE CURRENT WARGE VECTOR       A       BVEC       94         C       COMPUTE CURRENT RANGE VECTOR       A       BVEC       95         C       COMPUTE CURRENT RANGE VECTOR       A       BVEC       95         C       COMPUTE CURRENT RANGE VECTOR       A       BVEC       96         C       COMPUTE CURRENT RANGE VECTOR       A       BVEC       96         C       COMPUTE CURRENT RANGE VECTOR       A       BVEC       96         C       DOT (01, VL1)*<		3(14)=1.	BVEC	83	
D3 = COT27 - RDC     BVEC     BVEC       VAR0=AMAX1 (ABS (RDC*VVAR), VVARMIN)**2     BVEC     86       VAR0=AMAX1 (ABS (RDC*VVAR), VVARMIN)**2     BVEC     87       VAR0=AMAX1 (ABS (RDC*VVAR), VVARMIN)**2     BVEC     87       VAR0=AMAX1 (RC*RVAR, RVARMIN)**2     BVEC     87       VAR0=AMAX1 (RC*RVAR, RVARMIN)**2     BVEC     100       VAR0=AMAX1 (RC*RVAR, RVARMIN)**2     BVEC     100       BVEC     100     BVEC     97       C     DFFINE VARO, DO     BVEC     98       C     DFFINE VARO, DO     BVEC     103       C     DEFINE VARO, DO     D     BVEC       D     G     CACLULATER AND INCORPORATE MARK     BVEC       C     DEFINE VARO, DO     D     BVEC       D     G     G     BVEC     106       C     DEFINE VARO, DO     D     BVEC     106       C     DEFINE VARO, DO     D     BVEC     106       C     DEFINE VARO, DO     D     BVEC     107       C     DEFINE VARO, DO     D     BVEC<	C	JEFINE VARU AND DU	PVEC		
VARC=AMAX1 (ABS (RDC*VVAR), VVARMIN)**2-     BVEC     BVEC     86       NINS=2     BVEC     87       CALCULATE AND INCORPORATE UPDATE     P     BVEC     87       CALU FILTER     P     BVEC     89       COMPUTE RELATIVE STATE FOR VHF MEASUREMENT     BVEC     90       D0 40 I=1,6     BVEC     91       COMPUTE RELATIVE STATE FOR VHF MEASUREMENT     BVEC     92       C     COMPUTE CURRENT UNIT RANGE VECTOR     A     BVEC       C     COMPUTE CURRENT NAME VECTOR     A     BVEC       C     COMPUTE CURRENT RANGE ESTIMATE     B     BVEC       C     COMPUTE CURRENT RANGE ESTIMATE     B     BVEC       C     LOAD P     C     BVEC     96       C     LOAD P     C     BVEC     97       D0 45 I=1,3     B     BVEC     98       G(I+3)=0.     BVEC     BVEC     101       G(I+3)=0.     BVEC     BVEC     102       B     BVEC     BVEC     104       G(I+12)=0.     BVEC     BVEC     1		DQ = QQ(2) - RDC	BVEG		
NINS=2       BVEC       87         CALGULATE AND INCORPORATE UPDATE       P       BVEC       87         CALCULFILTER       P       BVEC       88         35       CONFTINUE       R       BVEC       89         C       COMPUTE RELATIVE STATE FOR VHF MEASUREMENT       BVEC       90         C       COMPUTE CURRENT UNIT RANGE VECTOR       A       BVEC       91         40       DX(1)=X(1+6)=X(1)       BVEC       92       93         C       COMPUTE CURRENT UNIT RANGE VECTOR       A       BVEC       93         C       CALL UVEC(DX(1)_TX(2),DX(3),UR)       BVEC       94         C       COMPUTE CURRENT RANGE ESTIMATE       A       BVEC       95         C       COMPUTE CURRENT RANGE ESTIMATE       A       BVEC       95         C       COMPUTE CURRENT RANGE ESTIMATE       A       BVEC       96         C       DOT 45 I=1,3       BVEC       96       97         D 03 45 I=1,3       BVEC       100       BVEC       101         SIT+3)=0.       BVEC       BVEC       101         SIT+43)=0.       BVEC       102       BVEC       103         SIT+15)=0.       BVEC       BVEC <td>1</td> <td>VARQ=AMAX1 (ABS(RDC*VVAR), VVARMIN)**2</td> <td>BVEU</td> <td></td> <td></td>	1	VARQ=AMAX1 (ABS(RDC*VVAR), VVARMIN)**2	BVEU		
C       CALCULATE AND INCORPORATE UPDATE       BVEC       87         CALL FILTER       P       BVEC       88         35       CONFUTE RELATIVE STATE FOR VHF MEASUREMENT       BVEC       89         C       COMPUTE RELATIVE STATE FOR VHF MEASUREMENT       BVEC       90         00       40       I=1,6       BVEC       92         C       COMPUTE CURRENT UNIT RANGE VECTOR       A       BVEC       93         C       COMPUTE CURRENT NIT RANGE VECTOR       A       BVEC       94         C       COMPUTE CURRENT RANGE ESTIMATE       B       BVEC       94         C       COMPUTE CURRENT RANGE ESTIMATE       B       BVEC       96         C       COMPUTE CURRENT RANGE ESTIMATE       B       BVEC       97         D0 45 I=1,3       B       BVEC       98       98       98       91         GITATITE		NINS=2	BVEC	86	
CALL FILTER       P       BVEC       88         35       CONTINUE       R       BVEC       89         C       COMPUTE RELATIVE STATE FOR VHF MEASUREMENT       BVEC       90         D0 40 I=1,6       BVEC       91         C       COMPUTE CURRENT UNIT RANGE VECTOR       A       BVEC       92         C       CALL UVECIOX(1), DX(2), DX(3), UR)       BVEC       93         C       CALL UVECIOX(1), DX(2), DX(3), UR)       A       BVEC       94         C       COMPUTE CURRENT RANGE ESTIMATE       A       BVEC       95         C       COMPUTE CURRENT RANGE ESTIMATE       B       BVEC       96         C       DO 45 TET,3       BVEC       96       BVEC       97         D0 45 TET,3       B       BVEC       100       BVEC       101         State       B       BVEC       100 <t< td=""><td>C</td><td>CALCULATE AND INCORPORATE UPDATE</td><td>BVEC</td><td>87</td><td></td></t<>	C	CALCULATE AND INCORPORATE UPDATE	BVEC	87	
35         CONFLINUE         R         BVEC         69           C         COMPUTE RELATIVE STATE FOR VHF MEASUREMENT         BVEC         90           00         40         I=1,6         BVEC         91           40         0x(1)=x(1+6)=x(1)         BVEC         92           C         COMPUTE CURRENT UNIT RANGE VECTOR         A         BVEC         93           C         COMPUTE CURRENT RANGE ESTIMATE         A         BVEC         94           C         COMPUTE CURRENT RANGE ESTIMATE         A         BVEC         95           C         COMPUTE CURRENT RANGE ESTIMATE         B         BVEC         96           C         COMPUTE CURRENT RANGE ESTIMATE         B         BVEC         96           C         COMPUTE CURRENT RANGE ESTIMATE         B         BVEC         96           C         DAD P         C         BVEC         96           C         LDAD P         C         BVEC         96           G         LDAD P         C         BVEC         97           D3         45         I=1,3         BVEC         100           G         I=1,3         BVEC         100           G         I=1,0		CALL FILTER	BVEC	88	
C       COMPUTE RELATIVE STATE FOR VHF MEASUREMENT       BVEC       90         O       40       1=1,6       BVEC       91         C       DX(I)=X(I+6)=X(I)       BVEC       92         C       COMPUTE CURRENT UNIT RANGE VECTOR       A       BVEC       92         C       COMPUTE CURRENT UNIT RANGE VECTOR       A       BVEC       94         C       COMPUTE CURRENT RANGE ESTIMATE       A       BVEC       94         C       COMPUTE CURRENT RANGE ESTIMATE       A       BVEC       96         C       COMPUTE CURRENT RANGE ESTIMATE       A       BVEC       96         C       COMPUTE CURRENT RANGE ESTIMATE       B       BVEC       96         C       COMPUTE CURRENT RANGE ESTIMATE       B       BVEC       96         C       DO 45 I = 1,3       B       BVEC       96         B (I) = -UR (I)       BVEC       BVEC       98         B (I) = -UR (I)       BVEC       BVEC       100         B (I + 6) = UR (I)       BVEC       102       BVEC       102         B (I + 12) = 0.       BVEC       102       BVEC       103         C       D.       BVEC       104       BVEC       105		R	BVEC	. 89	
By an of the left and the second state of the second st		COMPUTE RELATIVE STATE FOR VHE MEASUREMENT	BVEC	90	
-40       OX(I)=X(I6)-X(I)       BVEC       92         C       COMPUTE CURRENT UNIT RANGE VECTOR       A       BVEC       93         C       CALL UVEC(DX(I), DX(2), DX(3), UR)       A       BVEC       94         C       COMPUTE CURRENT RANGE ESTIMATE       A       BVEC       94         C       COMPUTE CURRENT RANGE ESTIMATE       A       BVEC       96         C       COMPUTE CURRENT RANGE ESTIMATE       B       BVEC       96         C       COMPUTE CURRENT RANGE ESTIMATE       B       BVEC       96         C       DOD 45 [1=1,3       B       BVEC       97         DO 45 [1=1,3       BVEC       98       BVEC       98         B(I)=-UR(I)       BVEC       BVEC       100         BVEC       BVEC       100       BVEC       101         S(I+3)=0.       BVEC       BVEC       102         B(I+12)=0.       BVEC       BVEC       103         C       DEFINE VARG, DO       BVEC       104         BVEC       105       BVEC       106         D0 = SO(1) - RC       BVEC       107         VARD=AMAX1(RC*RVAR, RVARMIN)**2       BVEC       108         NINS=1 <td>0</td> <td></td> <td>BVEC</td> <td>91</td> <td></td>	0		BVEC	91	
C       COMPUTE CURRENT UNIT RANGE VECTOR       A       BVEC       93         C       CALL UVEC(DX(1), DX(2), DX(3), UR)       A       BVEC       94         C       COMPUTE CURRENT RANGE ESTIMATE       A       BVEC       94         C       COMPUTE CURRENT RANGE ESTIMATE       A       BVEC       95         C       COMPUTE CURRENT RANGE ESTIMATE       A       BVEC       96         C       COMPUTE CURRENT RANGE ESTIMATE       A       BVEC       96         C       DATE       BVEC       96       97         D       C       BVEC       97       97         D       BVEC       98       97       98       97         D       BVEC       98       97       98       97         D       BVEC       100       97       98       97         D       BVEC       100       98       98       98       98       98       98       98 <td></td> <td></td> <td>BVEC</td> <td>92</td> <td></td>			BVEC	92	
C       C(MPOTE CONCENT ONT CANGE CLORE       BUEC       94         C       CALL UVEC(DX(1), DX(2), DX(3), UR)       A       BVEC       95         C       COMPUTE CURRENT RANGE ESTIMATE       A       BVEC       95         C       LOAD P       C       BVEC       96         C       LOAD P       C       BVEC       97         D       BVEC       97       BVEC       98         BVEC       D       BVEC       97         D       BVEC       98       BVEC       97         D       BVEC       100       BVEC       98         BVEC       101       BVEC       100       BVEC       101         BVEC       101       BVEC       102       BVEC       102         BVEC       101       BVEC       103       BVEC       103         BVEC       101       BVEC       103       BVEC       104         BVEC		$40  9\sqrt{(17 - x(170) - x(17))}$	BVEC	93	
CALL OVECTOX(1), DX(2), DX(3), DX1       A       BVEC       95         COMPUTE CURRENT RANGE ESTIMATE       B       BVEC       96         C       BVEC       96         C       DO1 45 [1,3]       C       BVEC       97         D0 45 [1,3]       C       BVEC       97         D1 45 [1,3]       C       BVEC       98         B(1)=-UR(1)       BVEC       99       BVEC       99         3(1+3)=0.       BVEC       100       BVEC       101         B(1+2)=0.       BVEC       102       BVEC       102         B(1+12)=0.       BVEC       BVEC       103       BVEC       103         G(1+5)=0.       BVEC       BVEC       104       BVEC       104         B(1+12)=0.       BVEC       BVEC       103       BVEC       104         B(13)=1.       C       BVEC       105       BVEC       106         D       BVEC       107       BVEC       107       BVEC       107         VAR0=AMAX1(RC*RVAR, RVAR, RVARMIN)**2       BVEC       BVEC       108       BVEC       109         NINS=1       C       C       C       BVEC       110       BVEC	G	LINPOTE GURRENT UNIT RANGE VEGTOR	BVEC	94	
C       COMPUTE CORRENT RANGE ESTIMATE       B       BVEC       96         RC=00T(UR,DX(1)) + X(13)       C       BVEC       97         C       LOAD R       C       BVEC       97         DO 45 I=1,3       BVEC       98       BVEC       98         B(I) = -UR(I)       BVEC       100       BVEC       99         3(I+3)=0.       BVEC       100       BVEC       101         3(I+2)=0.       BVEC       102       BVEC       102         B(I+12)=0.       BVEC       103       BVEC       104         G(13)=1.       C       BVEC       105       BVEC       105         C       DEFINE VARO, DO       D       BVEC       106       BVEC       107         VARD=AMAX1(RC*RVAR,RVARMIN)**2       BVEC       108       BVEC       109         VARD=AMAX1(RC*RVAR,RVARMIN)**2       BVEC       108       BVEC       109         C       CALCULATE AND INCORPORATE MARK       D       BVEC       111		CALL OVECTOX(1), DX(2), DX(3), OR	BVE	95	
C       C       DOT (UP, DX (1)) + X(13)       C       BVEC       97         DO 45 I=1,3       BVEC       98       BVEC       98         B(I) = -UR(I)       BVEC       99       BVEC       99         G(I+3)=0.       BVEC       100       BVEC       101         G(I+9)=0.       BVEC       101       BVEC       102         B(I+12)=0.       BVEC       102       BVEC       103         G(I+3)=1.       BVEC       103       BVEC       104         G(I) =	C_	COMPUTE CURRENT RANGE ESTIMATE		96	
C       LOAD R       BVEC       97         DO 45 I=1,3       BVEC       98         B(I)=-UR(I)       BVEC       99         3(I+3)=0.       BVEC       100         3(I+6)=UR(I)       BVEC       101         3(I+2)=0.       BVEC       102         B(I+12)=0.       BVEC       102         S(I+5)=0.       BVEC       103         S(I+15)=0.       BVEC       104         B(I)=1.       C       BVEC       105         C       DEFINE VAR0, D0       D       BVEC       106         D0 = 00(1) - RC       D       BVEC       107         VARD=AMAX1(RC*RVAR, RVARMIN)**2       BVEC       108         NINS=1       BVEC       109         C       CALCULATE AND INCORPORATE MARK       BVEC       110         GALL FILTER       D       BVEC       111		$R_{0}=0.0T(UR, DX(1)) + X(13)$		. 90 97	
D0 45 I=1,3       BVEC 90         B(I)=-UR(I)       BVEC 100         3(I+3)=0.       BVEC 101         3(I+6)=UR(I)       BVEC 102         B(I+2)=0.       BVEC 103         45 3(I+15)=0.       BVEC 105         C       DEFINE VARO, D0         D0 = 00(1) - RC       BVEC 106         VARD=AMAX1(RC*RVAR,RVARMIN)**2       BVEC 108         NINS=1       BVEC 109         C       CALCULATE AND INCORPORATE MARK       BVEC 110         CALL FILTER       D       BVEC 111	C	LOAD R	BVE		
B(I) = -UR(I)       BVEC       99         3(I+3) = 0.       BVEC       100         3(I+6) = UR(I)       BVEC       101         3(I+9) = 0.       BVEC       102         B(I+12) = 0.       BVEC       103         45       3(I+15) = 0.       BVEC       104         5(I3) = 1.       C       BVEC       105         C       DEFINE VARO, DO       D       BVEC       106         D       BVEC       107       BVEC       108         VARD = AMAX1(RC*RVAR, RVARMIN)**2       BVEC       108         NINS = 1       C       BVEC       109         C       C4LCULATE AND INCORPORATE MARK       BVEC       110         GALL FILTER       D       BVEC       111		00 45 I=1,3	BVE	, 90	
3(I+3)=0.       BVEC       100         B(I+6)=UR(I)       BVEC       101         3(I+9)=0.       BVEC       102         B(I+12)=0.       BVEC       103         45       3(I+15)=0.       BVEC       104         G(13)=1.       C       BVEC       105         C       DEFINE VARO, DO       D       BVEC       106         D       BVEC       107       BVEC       107         VARD=AMAX1(RC*RVAR,RVARMIN)**2       BVEC       108       BVEC       109         NINS=1       C       CALCULATE AND INCORPORATE MARK       BVEC       110         CALL FILTER       D       BVEC       111		B(I) = -UR(I)	BVE	, 99	
B(I+6)=UR(I)       BVEC       101         B(I+9)=0.       BVEC       102         B(I+12)=0.       BVEC       103         45       3(I+15)=0.       BVEC       104         B(13)=1.       C       BVEC       105         C       DEFINE VARO, DO       D       BVEC       106         D0 = 00(1) - RC       D       BVEC       107         VARD=AMAX1(RC*RVAR,RVARMIN)**2       BVEC       108         NINS=1       BVEC       109         C       CALCULATE AND INCORPORATE MARK       D       BVEC       110         CALL FILTER       D       BVEC       111		3(1+3)=0.	BVE	; 100	
B(I+9)=0.       BVEC       102         B(I+12)=0.       BVEC       103         45 3(I+15)=0.       BVEC       104         B(13)=1.       C       BVEC       105         C       DEFINE VARO, DO       D       BVEC       106         D0 = 3Q(1) - RC       D       BVEC       107         VARD=AMAX1(RC*RVAR,RVARMIN)**2       BVEC       108         NINS=1       BVEC       109         C       CALCULATE AND INCORPORATE MARK       BVEC       110         GALL FILTER       D       BVEC       111		B(I+6)=UR(I)	BVE	; 101	
B(I+12)=0.       BVEC       103         45 3(I+15)=0.       BVEC       104         B(I3)=1.       C       BVEC       105         C       DEFINE VARO, DO       D       BVEC       106         D0 = 30(1) - RC       D       BVEC       107         VARD=AMAX1(RC*RVAR,RVARMIN)**2       BVEC       108         NINS=1       C       C4LCULATE AND INCORPORATE MARK       BVEC       110         CALL FILTER       D       BVEC       111			BVE	102	
45       3(I+15)=0.       BVEC       104         B(13)=1.       C       BVEC       105         C       DEFINE VARO, DO       D       BVEC       106         D0 = 3Q(1) - RC       D       BVEC       107         VARD=AMAX1(RC*RVAR,RVARMIN)**2       BVEC       108         NINS=1       C       C       109         C       CALCULATE AND INCORPORATE MARK       D       BVEC       110         BVEC       111       EVEC       111		B(T+12) = 0	BVE	C 103	
C       BVEC       105         B(13)=1.       D       BVEC       105         C       DEFINE VARO, DO       D       BVEC       106         D0 = 0Q(1) - RC       BVEC       107         VARD=AMAX1(RC*RVAR,RVARMIN)**2       BVEC       108         NINS=1       BVEC       109         C       CALCULATE AND INCORPORATE MARK       D       BVEC       110         GALL FILTER       D       BVEC       111		75 3(T+15)=0.	BVE	104	
CDEFINE VARO, DO DO = OQ(1) - RCDBVEC106 BVECVARD=AMAX1(RC*RVAR,RVARMIN)**2BVEC107VARD=AMAX1(RC*RVAR,RVARMIN)**2BVEC108 BVECNINS=1BVEC109CCALCULATE AND INCORPORATE MARK 			C BVE	C 105	
CDEFINE VARG, DO DO = OQ(1) - RCBVEC107VARD=AMAX1(RC*RVAR,RVARMIN)**2BVEC108NINS=1BVEC109CCALCULATE AND INCORPORATE MARK CALL FILTERDBVECDBVEC110			D-BVE	2 106	
VARD=AMAX1 (RC*RVAR,RVARMIN)**2     BVEC     108       NINS=1     BVEC     109       C     CALCULATE AND INCORPORATE MARK     BVEC     110       CALL FILTER     D     BVEC     111		DO = OO(4) = BO	BVE	G 107	
VAR0=AMAX1 (RC*RVAR,RVARMIN) + 2     BVEC     109       NINS=1     BVEC     109       C     CALCULATE AND INCORPORATE MARK     BVEC     110       GALL FILTER     D     BVEC     111	•		BVE	C 108	
C CALCULATE AND INCORPORATE MARK CALL FILTER D BVEC 110 BVEC 111		VARU=AMAX1 (RC*RVAR, RVARMIN) ++2	DVL DVE	c 109	
C CALCULATE AND INCORPORATE MARK D BVEC 110 GALL FILTER D BVEC 111	•	NINS=1		<u> </u>	
CALL FILTER .	C	CALCULATE AND INCORPORATE MARK	D DUC	C 111	
		GALL FILTER .	BAF BAF		<u> </u>

SUBROUTINE	BVEC	CDC 6600 FT	V3.0-P308 OPT=1	08/29/72	11.32.27.
C		CHECK IF THIS WAS A VHF MARK OR SECOND PART O	E RADAR MARK	BVEC	112
	65	IF (N.EQ.2) GO TO 100 CINTINUE	OP	BVEC BVEC	113 114
C		COMPUTE RELATIVE STATE FOR OPTICS MARK		BVEC BVEC	116 117
	70	DX(I) = X(I+6) - X(I)		BVEC	118

•

.

.

•

· · · · · · · · · · · ·

____. .

-----

		CALL UVEC(DX(1), DX(2), DX(3), UR)	BVEC	120
cĺ		COMPUTE CURRENT AZIMUTH ESTIMATE	BVEC	121
-		AZC=ATAN (OOT (UR, REF3) / OOT (UR, REF2)) / (15)	BVEC	17
		COMPUTE CURRENT ESTIMATED ELEVATION	BVEC	120
	······································	ELC=ASIN(DOT(UR, REF1)) + X(16)	BVEC	124
cl		CHECK IF. ELEVATION COMPONENT IS CURRENTLY BEING PROCESSED	BVEC	125
		TF(LOPT-E0-1) GO TO 80 B	BVEC	126
c		COMPUTE AZIMUTH GEOMETRY VECTOR C	BVEC	127
		CALL UCROSS(REF1, UR, B(1))	BVEC	128
c		DEFINE VARO, OO ANO PROJECTION TERM D	BVEC	129
		00 = 00(3) - AZC	BVEC	130
		VARQ=VARAZ**2 D	BVEC	131
ł		RCEL=DOT(UR,OX(1))*COS(ELC) E	BVEC .	132
c		LOAD & AND INCORFORATE MARK	BVEC	133
		GO TO-90-	BVEC	134
· •	80	CONTINUE	BVEC	135
-c		DEFINE ELEVATION GEOMETRY VECTOR	BVEC	136
		CALL UCROSS(RFF1,UR,B(4))	BVEC	137
	•	$-CALT UCROSS(UR \cdot R(4) \cdot B(1)) F$	BVEC	138
c		OFFINE VARD, DO AND PROJECTION TERM G	BVEC	139
ĭ		12 = -20(4) - ELC	BVEC	140
		VARO=VAPEL**2 G	BVEC	141
	<u> </u>	RCEL=00T(UR, 0X(1))	BVEC	142
	90	CONTINUE	BVEC	143
<u> </u>		LOAD B	BVEC	144
Ť		D7 95 I=1,3	BVEC	145
		3(I) = -B(I)/RCEL	BVEC	· 146
		B(I+3)=0	BVEC	147
	·	3(1+6) = -B(1)	BVEC	148
		B(1+9)=0,	BVEC	149
		B(T+12)=0.	BVEC	. 150
	95	E(I+15)=0. I	BVEC	151
		$J = (L OPT \cdot EC \cdot 1) B (16) = 1$ .	BVEC	152
	•	IF(LOPT,E0.0) B(15)=1. J	BVEC	153
		IF (LOPT, EO.1) NINS=4 K	BVEC	154
		IF (LOPT.EQ.0) NINS=3 K	BVEC	155
		CAIT FILTER	BVEC	156
c		CHECK IF THIS WAS THE AZIMUTH COMPONENT OF THE OPTICS MARK	BVEC	157
		IF (LOPT.EQ.1) GQ TO 100	BVEC	158
		LOPT=1	BVEC	159
		GO TO 65	BVEC	160
	100	CONTINUE	BVEC	161
		RETURN	BVEC	162
		ENO	BVEC	163

.

•

•

**N** •



ROUTINE FILTER

COMPUTES OPTIMAL WEIGHTING VECTOR FOR MEASUREMENT, UPDATES STATE AND COVARIANCE. FOR DISCUSSION, SEE REFERENCE 1.

- WE = COVARIANCE SQUARE-ROOT MATRIX  $WS = WE^T$ BZ = WS x B  $A = VARQ + BZ^{T}BZ$ TOTAL A PRIORI UN-CERTAINTY IN MEASUREMENT.  $ZTZ = BZ^{T}BZ$ TOTAL A PRIORI UNCER-TAINTY IN MEASUREMENT DUE TO STATE UNCER-TAINTY.  $SZ = [VARQ/A]^{2}$ CONFIDENCE LEVEL OF A PRIORI ESTIMATE OF MEASUREMENT.
- $\frac{WV}{W} = WE \times \underline{BZ}$   $\frac{WEIGHTING VECTOR}{WE = WE (1/VARB)WV}$   $WE = WE (1/VARB)WV \underline{BZ}^{T}$  WEIGHTING VECTOR. STATE UPDATE EQUATION.

VARB = A(1. + SZ)

- AREA A CALCULATE TRANSPOSE OF W. CALCULATE Z-VECTOR.
- AREA B CALCULATE A.
- AREA C CALCULATE ZTZ FOR THIS MARK COMPONENT (FOR POPOUT)
- AREA D CONVERT ZTZ TO MR IF ANGLE MARK. CALCULATE SZ FOR POPOUT.
- AREA E CALCULATE WEIGHTING VECTOR.
- AREA F CALCULATE COVARIANCE UPDATE FACTOR.
- AREA G UPDATE STATE AND COVARIANCE.

42

SUBROUTI ... FILTER

## CL. 600 FTN V3.0-P308 OPT=1 08/29/72 11.02.27.

	SUBROUTINE FILTER	FILTER	2	
C		FILTER	3	
	SUBRUUTINE TU PRUCESS A NAVIGATION MARK	FILTER	4	
U	COMMON VAD	FILTER	5	
		FILTER	6	
	DIFENSION VAR(5600), P(5000), SAVE(950), BLK(700)	FILTER	7	
		FILTER	. 8	
•	ENDIVALENCE (VARTEUT), P(1))	FILTER	. 9	
	= (VAR(401), NTEGER(1))	FILTER	10	
	E (UIVALENCE" (P(350); SAVE(1))	FILTER	11	
	(P(1300), BLK(1))	FILTER	12	
	$\frac{1}{1000} = \frac{1}{1000} = 1$	FILTER	13	
	ENULVALENCE (SAVE(200),ZTZ(1))	FILTER	14	
	(SAVE(204), S2(1))	FILTER	15	
	T, (SAVE(258), X(1))	FILTER	16	
	(SAVE(276), WE(1,1))	FILTER	17	
	(NIEGER(9), NCOL)	FILTER	18	
U C	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	FILTER	19	
<u>ل</u>		FILTER	20	
	ULMENSION U(18), DX(6), UR(3), WV(18), BZ(27), WS(27,18)	FILTER	21	
	* • EBAR(18)	FILTER	22	
		FILTER	23	
•	EQUIVALENCE (BLK(1), B(1))	FILTER	24	
	(BLK(19), DX(1))	FILTER	25	
	*• (ELK(25),UR(1))	FILTER	26	
	*, (BLK(28),VAR0)	FILTER	27	
	(BLK(29),00)	FILTER	28	
	*, (BLK (30), NINS)	FILTER	29	
	(BLK(31),WV(1))	FILTER	30	
	(BLK(49), BZ(1))	FILTER	31	
	(BLK (76), WS (1))	FILTER	32	
0	*, (BLK(562),EBAR(1))	FILTER	33	
6		FILTER	34	
C	COMPUTE Z-VECTOR	FILTER	35	
	GALL MATRAN(WE, 18, 27, WS)	FILTER	36	
	CALL MATMUL(WS, B, BZ, 27, 18, 1) A	FILTER	37	
	A=VARQ B	FILTER	38	
	0) 5 1=1,27	FILTER	39	
	5 A=A + BZ(1)+BZ(1)	FILTER	40	
C	COMPUTE STATE UNCERTAINTY OF OBSERVABLE AND REDUCTION FACTOR	FILTER	41	
	C = C	FILTER	42	
	$D = \frac{1}{2} (NINS) = ZTZ(NINS) = ZTZ(NINS) + 1000.$	FILTER	43	

<b></b>	CALL MATMUL(WE, DZ, WV, 18, 27, 1)	E	FILTER	45	
	VARB=A*(1. + SORT(VARO/A))	F	FILTER	46	
· ·	<b>DT 10 I=1,18</b>	G	FILTER	47	
	X(1) = X(1) + WV(1) + UU/A		FILTER	48	
1.0	WE(I,J)=WE(I,J) - WV(I)*BZ(J)/VARB	G	FILTER	49 50	
	END		FILTER FILTER	51 52	

.

	x		
			· · · ·
. *		•	

.

÷.



.

<u>.</u>.

-

•

 $\bigcirc$ 

.

· .

4

.

. .

. ______

1



### 6.0 REFERENCES

EVERYTHING YOU ALWAYS WANTED TO KNOW... (ENCLOSURE)
 BATTIN, R. H., ASTRONAUTICAL GUIDANCE, NEW YORK, 1964

EVERYTHING YOU ALWAYS WANTED TO KNOW ABOUT KALMAN FILTERING (AREN'T YOU GLAD YOU ASKED)

I. Fundamental definitions and important properties of vectors and matrices A matrix A is said to be an nxm array when it has <u>n rows</u> and <u>m columns</u>. An nxl matrix is called a (column) vector A lxn matrix is called a (row) vector

If n = m, A is square.

 $a_{ij}$  is a representative element of A from the  $i\frac{th}{t}$  row and  $j\frac{th}{t}$  column Define <u>b</u> an arbritrary nxl (vector)

A an arbritrary nxn (square)

B an arbritrary nxm (rectangular)

Further

er  

$$\underbrace{0}_{-} = \begin{bmatrix} 0\\ 0\\ -\\ -\\ 0 \end{bmatrix} \quad (nx1) \qquad I = \begin{bmatrix} 1 & 0 & 0 & - & - & 0\\ 0 & 1 & 0 & - & - & 0\\ 0 & 0 & 1 & - & - & 0\\ -& - & - & -\\ 0 & 0 & 0 & - & - & 1 \end{bmatrix} \quad (nxn)$$

$$A\underline{O} = \underline{O}$$
 .  $AI = A$ 

For  $A = \begin{bmatrix} a_{ij} \end{bmatrix}$ ,  $A^{T} = \begin{bmatrix} a_{ji} \end{bmatrix} \underline{\text{transpose}}$  of A $A^{-1}$  is the matrix, if it exists, which has the property that  $A^{-1}A = AA^{-1} = I$ , <u>inverse</u> of A

#### Properties of Matrices

If A is a square matrix, and if for <u>all  $b \neq 0$ </u>,

$\underline{b}^{T}A\underline{b} > 0$	A is positive definite (p.d.)
^b ^T Ab <0	A is <u>negative definite</u> (n.d.)

If, for any  $\underline{b} \neq \underline{0}$ ,

 $\underline{b}^{T}A\underline{b} = 0$  A is <u>indefinite</u>

 $A^{T} = A^{-1}$  A is <u>orthogonal</u>

If A, B are square

$$(AB)^{T} = B^{T}A^{T}$$
  
 $(AB)^{-1} = B^{-1}A^{-1}$ 

#### Properties of Vectors

If

If for a set  $\{\underline{b}_i\}$  of nxl vectors

$$\sum_{i} c_{i \xrightarrow{b} i} = \underline{0} \implies c_{i} = 0$$

The  $\underline{b}_i$  are said to be <u>linearly independent</u>. If there are n members of the set  $\{\underline{b}_i\}$ , the set is <u>complete</u> with respect to the space of nxl vectors. If the set  $\{\underline{b}_i\}$  is independent and complete, any arbitrary nxl vector,  $\underline{e}$ , may be expressed as

$$\underline{\mathbf{e}} = \sum_{i} \mathbf{c}_{i} \underline{\mathbf{b}}_{i}$$

Given two vectors,  $\underline{b} \neq \underline{0}$ ,  $\underline{c} \neq \underline{0}$ , if

 $\underline{b}^{T}\underline{c} = 0$  <u>b</u> and <u>c</u> are <u>orthogonal</u>

If

#### Eigenvalues, eigenvectors, functions of a matrix

If there exists a set of vectors  $\ \underline{L}_i$  and corresponding numbers  $\ \lambda_i$  such that

$$AL_{i} = \lambda_{j}L_{i}$$

 $\underline{L}_i$  is said to be an eigenvector of A corresponding to eigenvalve  $\lambda_i$ .

If A is definite  $(\underline{b}^{\prime}A\underline{b} \neq 0 \text{ for all } \underline{b} \neq \underline{0})$  it has no  $\lambda_i = 0$ :

Suppose for some  $\underline{b}_i$ ,  $\lambda_i = 0$ 

$$\underline{\mathbf{b}}_{\mathbf{i}}^{\mathsf{T}} \mathbf{A} \underline{\mathbf{b}}_{\mathbf{i}} = \lambda_{\mathbf{i}} \underline{\mathbf{b}}_{\mathbf{i}}^{\mathsf{T}} \underline{\mathbf{b}}_{\mathbf{i}}$$
$$= 0$$

contrary to the assumption.

In addition, if A is definite, its eigenvectors are a complete linearly independent set. In this case, A may be represented as

0

0

$$P = \begin{bmatrix} \underline{L}_1 & \underline{L}_2 & - & \underline{L}_n \end{bmatrix} \qquad A = \begin{bmatrix} \lambda_1 & 0 & - & 0 \\ 0 & \lambda_2 & - & 0 \\ - & - & 1 \end{bmatrix}$$

 $A = PAP^{-1}$ 

square matrix of eigenvectors

Furthermore, the function

$$f(A) = \sum_{i} c_{i} A^{i}$$

exists and converges to

$$f(A) = P \begin{bmatrix} \sum_{i=1}^{n} \sum_{j=1}^{n} 0 & - & - & 0 \\ 0 & \sum_{i=1}^{n} \sum_{j=1}^{n} - & 0 \\ - & - & - & - \\ - & - & - & - \\ 0 & - & 0 & - & - & \sum_{i=1}^{n} \sum_{j=1}^{n} p^{-1} \end{bmatrix} P^{-1}$$
$$= P f(\Lambda) P^{-1}$$

diagonal matrix of eigenvalues This may be demonstrated by noting that

$$AP = \begin{bmatrix} \lambda_{1} \underline{L}_{1} & \lambda_{2} \underline{L}_{2} & -\lambda_{n} \underline{L}_{n} \end{bmatrix} = P\Lambda$$

$$A^{i}P = \begin{bmatrix} \lambda_{1}^{i} \underline{L}_{1} \lambda_{2}^{i} \underline{L}_{2} & -\lambda_{n}^{i} \underline{L}_{n} \end{bmatrix} = P\Lambda^{i}$$

$$A^{i} = P\Lambda^{i}P^{-1}$$

The normalized eigenvectors of a symmetric matrix are orthonormal. Let  $\{\underline{e}_i\}$  be the normalized e. v. of E, a symmetric matrix 4

$$\underline{e}_{j}^{T} \underline{E} \underline{e}_{i} = \lambda_{i} \underline{e}_{j}^{T} \underline{e}_{i}$$

$$e_{j}^{T} \underline{E} \underline{e}_{i} = (\underline{E}^{T} \underline{e}_{j})^{T} \underline{e}_{i}$$

$$= (\underline{E} \underline{e}_{j})^{T} \underline{e}_{i}$$

$$= \lambda_{j} \underline{e}_{j}^{T} \underline{e}_{i}$$

$$e_{i}^{T} \underline{E} \underline{e}_{i} - \underline{e}_{i}^{T} \underline{E} \underline{e}_{i} = 0 = (\lambda_{i} - \lambda_{i}) \underline{e}_{i}^{T} \underline{e}_{i}$$

If  $\lambda_i \neq \lambda_j$  it is seen that  $\underline{e_j}^T \underline{e_i} = 0$ . If  $\lambda_i = \lambda_j$ , one may construct a new vector,  $\underline{e_j}^*$  which has an eigenvalue  $\lambda_i$  and is orthogonal to  $\underline{e_i}$ :

$$\underline{e_{j}}^{*} = \underbrace{(\underline{e_{j}}^{-} (\underline{e_{i}}^{T} \underline{e_{j}}) \underline{e_{i}}}_{\underline{e_{i}}^{T} \underline{e_{j}}^{*}} = \underline{e_{i}}^{T} \underline{e_{j}} - (\underline{e_{i}}^{T} \underline{e_{j}}) \underline{e_{i}}^{T} \underline{e_{i}}$$
$$= \underline{e_{i}}^{T} \underline{e_{j}} - (\underline{e_{i}}^{T} \underline{e_{j}}) = 0$$

Since  $\underline{e_i}^T \underline{e_i} = 1$  (normalized). This may be done for every repeated eigenvalue until a complete orthonormal set is constructed.

II. <u>Conventional usages in vector and matrix calculus</u> <u>Differentiation</u> with respect to a scalar:

$$\frac{d}{dt}A = \dot{A} = \left[\frac{d}{dt}a_{ij}\right]$$

Differentiation with respect to a vector:

 $\underline{X} = \{X_i\}$  nxl vector  $\Phi = \Phi(\underline{X})$  a scalar  $\underline{A} = \{X_i\}$  a scalar  $\underline{\Phi} = \Phi(\underline{X})$  a scalar  $\underline{A} = \begin{bmatrix}\underline{\partial} \Phi \\ \overline{\partial} X_1 \end{bmatrix} = \begin{bmatrix}\underline{\partial} \Phi \\ \overline{\partial} X_2 \\ - \\ - \\ \underline{\partial} \Phi \\ \overline{\partial} X_n \end{bmatrix}$ 

9 <u>K</u> 9 <u>K</u>	=	<u>ar</u> ax	$\frac{\partial R}{\partial X_1^2}$	-	-	-	$\frac{\partial X_{n}^{1}}{\partial R}$
		$\frac{\partial R}{\partial X_2}$	$\frac{\partial R}{\partial X_2^2}$	-	-	-	$\frac{\partial R}{\partial X_2^n}$
		-	-	-	-	-	-
		-	· _			-	-
		$\frac{\partial R}{\partial X_n}$	$\frac{\partial R}{\partial X^2}$ n			·	$\frac{\partial R}{\partial X_n}$
		$\frac{\partial R}{\partial X_1}$	$\frac{\partial R}{\partial X_1^2}$	-	-	-	$\frac{\partial R_1}{\partial X_n}$
	=	$\frac{\partial R}{\partial X_1^2}$	$\frac{\partial R_2}{\partial X_2}$	-	-	-	$\frac{\partial R_2}{\partial X_n}$
		-	-				·
		-	-				
		-					
		$\frac{\partial R}{\partial X_1}$	$\frac{\partial R}{\partial X_2^n}$	-	-	-	$\frac{\partial R}{\partial X_n^n}$
	=	$\begin{cases} \frac{\partial}{\partial X} (R^{T}) \\ \frac{\partial}{\partial X} \end{cases}$	) <b>T</b>				

Integration of a matrix:

$$\int Adt = \left[ \int a_{ij} dt \right]$$

;

Differentials:

$$\delta() = \frac{\partial()}{\partial X} \delta \frac{X}{X}$$

Examples:

$$\delta \Phi = \frac{\partial \Phi}{\partial \underline{X}} \delta \underline{X}$$
$$\delta R = \frac{\partial \underline{R}}{\partial \underline{X}} \delta \underline{X}$$
$$= \left\{ \frac{\partial}{\partial \underline{X}} \underline{R}^{\mathsf{T}} \right\}^{\mathsf{T}} \delta \underline{X}$$

III. Eyeball statistics

Let X be a discrete random variable with sample described by the distribution  $\{X_i\}$ 

Average of X = 
$$\overline{X} = \frac{1}{N} \sum_{i} X_{i}$$
  
Variance of X = var (X) =  $\sigma_{X}^{2} = \frac{1}{N} \sum_{i} (X_{i} - \overline{X})^{2} = \overline{(X_{i} - \overline{X})^{2}}$   
i  
Standard deviation of X =  $\sigma_{X} = \left[ var(X) \right]^{1/2}$ 

If X is a continuous variable, the distribution is characterized by  $f(\xi)$ , the probability per unit interval that  $X = \xi$ . In this case,

$$\overline{X} = \int_{-\infty}^{\infty} \xi f(\xi) d\xi$$
$$Var(X) = \int_{-\infty}^{\infty} (\xi - \overline{X})^2 f(\xi) d\xi$$

ż

$$\overline{\underline{X}} = \int_{V} \underline{\underline{\xi}} f(\underline{\underline{\xi}}) d\underline{\xi}_{1} d\underline{\xi}_{2} - d\underline{\xi}_{n}$$

$$COV(\underline{X}) = \left[ \underbrace{(\underline{X} - \overline{\underline{X}}) (\underline{X} - \overline{\underline{X}})^{T}}_{V} \right] \text{ covariance matrix of } X$$

$$= \int \underbrace{(\underline{\xi} - \overline{\underline{X}}) (\underline{\xi} - \overline{\underline{X}})^{T} f(\underline{\xi}) d\underline{\xi}_{1} d\underline{\xi}_{2} - d\underline{\xi}_{n}}_{V}$$

$$= \begin{bmatrix} \sigma_{X_{1}}^{2} \sigma_{X_{1}} x_{2} & - \sigma_{X_{1}} x_{n} \\ \sigma_{X_{2}} x_{1} \sigma_{X_{2}}^{2} & - \sigma_{X_{2}} x_{n} \\ \sigma_{X_{2}} x_{1} \sigma_{X_{2}}^{2} & - \sigma_{X_{2}} x_{n} \\ \sigma_{X_{1}} \sigma_{X_{1}} \sigma_{X_{1}} x_{2} & \sigma_{X_{1}} \sigma_{X_{1}} \end{bmatrix}$$

where  $\sigma_{x_i x_j} = \text{covariance of } x_i, x_j$ =  $\int (\xi_i - \bar{x}_i) (\xi_j - \bar{x}_j) f(\underline{\xi}) d\xi_1 d\xi_2 - d\xi_n$ 

\$

If  $\sigma_{x_i x_j} = 0$ ,  $x_i$  and  $x_j$  are said to be linearly independent in the statistical sense. It does not imply general functional independence.

The function

$$\rho_{ij} = \sqrt{\sigma_{x_i}^2 \sqrt{\sigma_{x_j}^2}}$$

is called the correlation coefficient of  $x_i$  to  $x_j$ .
For physical systems, covariance matrices are virtually always positive definite.

# Let $\underline{e} = \underline{X} - \overline{\underline{X}}$ and $E = \underline{ee}^{\overline{T}} = COV (X)$

E is symmetric:

T

$$E^{T} = \underbrace{ee}_{T} T \underbrace{-}_{T} T \underbrace{-}_{T} = \underbrace{-}_{ee}_{T} = E$$

The matrix of normalized eigenvectors of E is orthogonal, i.e.  $P^{T} = P^{-1}$ :

Since E is symmetric, its eigenvectors are orthogonal.

Some properties of determinants thrown in for good measure.

$$\begin{vmatrix} A & \neq & 0 & \text{if } \underline{b}^{T}A\underline{b} \neq 0 & \text{for all } \underline{b} \neq \underline{0} \\ \begin{vmatrix} A^{T} & = & |A| \\ |A^{-1}| = & |A|^{-1} \end{vmatrix}$$
$$f \quad \begin{vmatrix} AB \\ = & |A| | B \\ f P & \text{is orthogonal, } |P| = \pm 1$$
$$1 \quad = \quad |I| = \quad |P^{T} P| = \quad |P^{T}| |P| = |P|^{2}$$

 $P = \pm 1$ 

The determinant of a matrix is the product of its eigenvalues:

$$A = P \wedge P^{-1}$$

$$|A| = |P \wedge P^{-1}|$$

$$= |P| | \wedge | |P^{-1}|$$

$$= |P| | P|^{-1} | \wedge |$$

$$= |\Lambda|$$

$$= \lambda_1 \lambda_2 - - - \lambda_n$$

IV. Statistical State Estimation

# Some Philosophical Remarks on the Nature of the Problem

It is worth noting that from a physical measurement point of view, such quantities as the position and velocity of a particle are not available to direct observation. They are abstract mathematical constructs, evolving according to an empirically developed law and should not be confused with "real" aspects of the system. They are useful only in so far as they serve to predict the observables of the system, i.e. scalar quantities such as distance, angular measure and speed; the <u>only</u> aspects of the system to which the measurement process has direct access.

Mechanics considers a system "noise free" if it is possible to argue that, in principle, all that is needed for a perfect state determination is a perfect sensor. In addition, the assumption is usually made in solving particular problems that the "equations of motion" are perfectly known. In most engineering problems, neither of these assumptions is true. Even were they true, a further practical difficulty arises in the attempt to find the "state" variables as a function of the observables, as the observables are generally transcendental functions of the state variables and time, and therefore not amenable to algebraic solution.

The problem in state estimation is therefore two-fold:

1. Circumvent the mathematical difficulties associated with determination of the system state in terms of the observables, and (2) do so in a manner with reflects the imperfect character of the measurements and knowledge of the system law of motion. In order to do this, the attitude will be adopted that the measuring device is an inseparable part of the system in the dynamic sense: its properties effect the determination of the system state. The system under study will be taken as two particles in orbit around a planet, between which measurements of range, range rate, and relative direction may be made with an appropriate sensor. Any biases which may effect a sensor measurement are classified as state variables. Otherwise, all noise on the system (state as well as sensor) will be considered as random with zero mean. No assumption about its statistical distribution will be made (Fig. I). Also, for purposes of specific treatment, a measurement coordinate frame is depicted in Fig. II:





FIGURE I  $\underline{R}_{S}$  = spacecraft position vector  $\underline{\dot{R}}_{S}$  = spacecraft velocity vector  $\underline{R}_{T}$  = target position vector  $\underline{\dot{R}}_{T}$  = target velocity vector  $\underline{\dot{r}}_{T}$  = relative position vector  $\underline{\dot{r}}_{T}$  = relative velocity vector FIGURE II  $\hat{X} = unit (\underline{R}_{S})$   $\hat{Y} = unit \underline{R}_{S} \times (\underline{R}_{S} \times \underline{R}_{S})$  $\hat{Z} = unit (\underline{R}_{S} \times \underline{R}_{S})$ 

Total state of system



 $\underline{\beta}$  estimated constants

11

In order to solve for the state in terms of observable quantities, a method of differential corrections will be devised. Consider an observable of the system,  ${\tt Q}$ 

$$Q = Q(\underline{X})$$

and its expansion about a reference state,  $X_R$ :

$$Q(\underline{X}) = Q(\underline{X}_{R}) + \frac{\partial Q}{\partial \underline{X}} \Big|_{\underline{X}_{R}}^{T} (\underline{X} - \underline{X}_{R}) + (\underline{X} - \underline{X}_{R})^{T} \Big\{ \frac{\partial}{\partial \underline{X}} (\frac{\partial Q}{\partial \underline{X}})^{T} \Big\}_{\underline{X}_{R}}^{T} (\underline{X} - \underline{X}_{R}) + \cdots$$

assume that  $\underline{X}_R$  is chosen sufficiently close to  $\underline{X}$  that derivative terms higher than first are neglible:

$$\delta(\overline{X}) = \delta(\overline{X}^{\mathrm{B}}) + \frac{\Im \overline{X}}{\Im \overline{X}} \Big|_{\mathrm{L}}^{\overline{X}} (\overline{X} - \overline{X}^{\mathrm{B}})$$

defining  $\delta Q = Q(\underline{X}) - Q(\underline{X}_R)$ ,  $\delta \underline{X} = (\underline{X} - \underline{X}_R)$ 

4.

1 
$$\delta Q = \frac{\partial Q}{\partial X} \begin{vmatrix} I \\ X_R \\ X_R \end{vmatrix} \delta \frac{X}{\Delta X}$$

Conventional usage will now be followed and such variations will be considered as truncated expansions, whenever the notation  $\delta($ ) is used. The quantity

$$\frac{9\overline{X}}{90}$$

is called the geometry vector or mapping vector and will henceforth be denoted

$$\underline{b}_{Q} = \frac{\partial Q}{\partial \underline{X}} \left| \underline{X}_{R} \right| = \frac{\underline{b}_{Q}}{\underline{b}_{Q}} (nx1)$$

so that 4.1 becomes

4.2  $\delta Q = \underline{b}_{Q}^{T} \delta \underline{X}$ 

Equation 4.2 is the desired linear relationship between the observable Q and the state  $\underline{X}$ . As there are n elements of  $\delta \underline{X}$  to determine, n independent measurements,  $\delta Q$ , will be required. Since these cannot normally be simulateneously obtained, it will be necessary to investigate the time history of  $\delta \underline{X}$ . For gravitational field, the derivative,  $\underline{X}$  is a vector function of X:

4.3 
$$\frac{d}{dt} \underline{X} = \underline{f}(\underline{X}) \qquad \underline{f}_{nx1}$$

for example, in the Keplerian case with X as previously defined

$$4.4 \quad \frac{d}{dt} \underbrace{\mathbf{x}}_{\mathbf{x}} = \frac{d}{dt} \quad \begin{bmatrix} \mathbf{R}_{\mathbf{S}} \\ \vdots \\ \mathbf{R}_{\mathbf{S}} \\ \mathbf{R}_{\mathbf{S}} \end{bmatrix} = \begin{bmatrix} \emptyset & \mathbf{I} & \emptyset & \emptyset & \emptyset \\ -\frac{\mu}{R_{\mathbf{S}}^{3}} \mathbf{I} & \emptyset & \emptyset & \emptyset \\ -\frac{\mu}{R_{\mathbf{S}}^{3}} \mathbf{I} & \emptyset & \emptyset & \emptyset & \emptyset \\ -\frac{\mu}{R_{\mathbf{S}}^{3}} \mathbf{I} & \emptyset & \emptyset & \emptyset & \emptyset \\ -\frac{\mu}{R_{\mathbf{S}}^{3}} \mathbf{I} & 0 & \emptyset & \emptyset & \emptyset \\ -\frac{\mu}{R_{\mathbf{S}}^{3}} \mathbf{I} & 0 & \emptyset & 0 \\ -\frac{\mu}{R_{\mathbf{S}}^{3}} \mathbf{I} & 0 & 0 \\ 0 & 0 & -\frac{\mu}{R_{\mathbf{T}}^{3}} \mathbf{I} & 0 & 0 \\ 0 & 0 & -\frac{\mu}{R_{\mathbf{T}}^{3}} \mathbf{I} & 0 & 0 \\ -\frac{\mu}{R_{\mathbf{S}}^{3}} \mathbf{I} \\ -\frac{\mu}{R$$

If <u>X</u> and its derivatives with respect to state elements and time are continuous, the operations  $\frac{d}{dt}$  and  $\delta$ ( ) are interchangeable, i.e.

$$\frac{d}{dt}\delta() = \delta \frac{d}{dt}()$$

Taking the variation of 4.3

4.5a 
$$\delta\left(\frac{d}{dt}\underline{X}\right) = \frac{d}{dt}\delta\underline{X} = \delta\left(\underline{f}(\underline{X})\right) = \left\{\frac{\partial}{\partial\underline{X}}\underline{f}^{T}\right\}\delta\underline{X} = \underline{F}\delta\underline{X}$$

For the Keplerian field of 4.4

$$F = \left\{ \frac{\partial}{\partial X} f^{\mathsf{T}} \right\}^{\mathsf{T}} = \begin{bmatrix} \emptyset & I & \emptyset & \emptyset & \emptyset \\ [G]_{\mathsf{S}} & \emptyset & \emptyset & \emptyset & \emptyset \\ \emptyset & \emptyset & \emptyset & I & \emptyset \\ \emptyset & \emptyset & [G]_{\mathsf{T}} & \emptyset & \emptyset \\ \emptyset & \emptyset & \emptyset & \emptyset & \emptyset \end{bmatrix} \begin{bmatrix} [G]_{\mathsf{S}} = \frac{\mu}{\underline{R}_{\mathsf{S}}^{\mathsf{S}}} (3\underline{R}_{\mathsf{S}} \underline{R}_{\mathsf{S}}^{\mathsf{T}} - \underline{R}_{\mathsf{S}}^{\mathsf{2}} I) \\ [G]_{\mathsf{T}} = \frac{\mu}{\underline{R}_{\mathsf{T}}^{\mathsf{S}}} (3\underline{R}_{\mathsf{T}} \underline{R}_{\mathsf{T}}^{\mathsf{T}} - \underline{R}_{\mathsf{T}}^{\mathsf{2}} I) \\ [G]_{\mathsf{T}} = \frac{\mu}{\underline{R}_{\mathsf{T}}^{\mathsf{S}}} (3\underline{R}_{\mathsf{T}} \underline{R}_{\mathsf{T}}^{\mathsf{T}} - \underline{R}_{\mathsf{T}}^{\mathsf{2}} I) \\ [G]_{\mathsf{T}} = \frac{\mu}{\underline{R}_{\mathsf{T}}^{\mathsf{S}}} (3\underline{R}_{\mathsf{T}} \underline{R}_{\mathsf{T}}^{\mathsf{T}} - \underline{R}_{\mathsf{T}}^{\mathsf{2}} I) \\ [G]_{\mathsf{T}} = \frac{\mu}{\underline{R}_{\mathsf{T}}^{\mathsf{S}}} (3\underline{R}_{\mathsf{T}} \underline{R}_{\mathsf{T}}^{\mathsf{T}} - \underline{R}_{\mathsf{T}}^{\mathsf{2}} I) \\ [G]_{\mathsf{T}} = \frac{\mu}{\underline{R}_{\mathsf{T}}^{\mathsf{S}}} (3\underline{R}_{\mathsf{T}} \underline{R}_{\mathsf{T}}^{\mathsf{T}} - \underline{R}_{\mathsf{T}}^{\mathsf{2}} I) \\ [G]_{\mathsf{T}} = \frac{\mu}{\underline{R}_{\mathsf{T}}^{\mathsf{S}}} (3\underline{R}_{\mathsf{T}} \underline{R}_{\mathsf{T}}^{\mathsf{T}} - \underline{R}_{\mathsf{T}}^{\mathsf{2}} I) \\ [G]_{\mathsf{T}} = \frac{\mu}{\underline{R}_{\mathsf{T}}^{\mathsf{S}}} (3\underline{R}_{\mathsf{T}} \underline{R}_{\mathsf{T}}^{\mathsf{T}} - \underline{R}_{\mathsf{T}}^{\mathsf{T}} I) \\ [G]_{\mathsf{T}} = \frac{\mu}{\underline{R}_{\mathsf{T}}^{\mathsf{S}}} (3\underline{R}_{\mathsf{T}} \underline{R}_{\mathsf{T}}^{\mathsf{T}} - \underline{R}_{\mathsf{T}}^{\mathsf{T}} I) \\ [G]_{\mathsf{T}} = \frac{\mu}{\underline{R}_{\mathsf{T}}^{\mathsf{S}}} (3\underline{R}_{\mathsf{T}} \underline{R}_{\mathsf{T}}^{\mathsf{T}} - \underline{R}_{\mathsf{T}}^{\mathsf{T}} I) \\ [G]_{\mathsf{T}} = \frac{\mu}{\underline{R}_{\mathsf{T}}^{\mathsf{S}}} (3\underline{R}_{\mathsf{T}} \underline{R}_{\mathsf{T}}^{\mathsf{T}} - \underline{R}_{\mathsf{T}}^{\mathsf{T}} I) \\ [G]_{\mathsf{T}} = \frac{\mu}{\underline{R}_{\mathsf{T}}^{\mathsf{S}}} (3\underline{R}_{\mathsf{T}} \underline{R}_{\mathsf{T}}^{\mathsf{T}} - \underline{R}_{\mathsf{T}}^{\mathsf{T}} I) \\ [G]_{\mathsf{T}} = \frac{\mu}{\underline{R}_{\mathsf{T}}^{\mathsf{S}}} (3\underline{R}_{\mathsf{T}} \underline{R}_{\mathsf{T}}^{\mathsf{T}} - \underline{R}_{\mathsf{T}}^{\mathsf{T}} I) \\ [G]_{\mathsf{T}} = \frac{\mu}{\underline{R}_{\mathsf{T}}^{\mathsf{S}}} (3\underline{R}_{\mathsf{T}} \underline{R}_{\mathsf{T}}^{\mathsf{T}} - \underline{R}_{\mathsf{T}}^{\mathsf{T}} I) \\ [G]_{\mathsf{T}} = \frac{\mu}{\underline{R}_{\mathsf{T}}^{\mathsf{S}}} (3\underline{R}_{\mathsf{T}} \underline{R}_{\mathsf{T}}^{\mathsf{T}} - \underline{R}_{\mathsf{T}}^{\mathsf{T}} I) \\ [G]_{\mathsf{T}} = \frac{\mu}{\underline{R}_{\mathsf{T}}^{\mathsf{T}}} (3\underline{R}_{\mathsf{T}} \underline{R}_{\mathsf{T}}^{\mathsf{T}} - \underline{R}_{\mathsf{T}}^{\mathsf{T}} I) \\ [G]_{\mathsf{T}} = \frac{\mu}{\underline{R}_{\mathsf{T}}^{\mathsf{T}}} (3\underline{R}_{\mathsf{T}} \underline{R}_{\mathsf{T}}^{\mathsf{T}} - \underline{R}_{\mathsf{T}}^{\mathsf{T}} I) \\ [G]_{\mathsf{T}} = \frac{\mu}{\underline{R}_{\mathsf{T}}^{\mathsf{T}}} (3\underline{R}_{\mathsf{T}} \underline{R}_{\mathsf{T}}^{\mathsf{T}} - \underline{R}_{\mathsf{T}}^{\mathsf{T}} I) \\ [G]_{\mathsf{T}} = \frac{\mu}{\underline{R}_{\mathsf{T}}^{\mathsf{T}}} (3\underline{R}_{\mathsf{T}} \underline{R}_{\mathsf{T}}^{\mathsf{T}} - \underline{R}_{\mathsf{T}}^{\mathsf{T}} I) \\ [G]_{\mathsf{T}} = \frac{\mu}{\underline{R}_{\mathsf{T}}^{\mathsf{T}}} (3\underline$$

Therefore

4.5b 
$$\delta \underline{X} = F \delta \underline{X}$$

This equation may be integrated numerically. A more useful solution takes the form of

4.6 
$$\delta \underline{X}(t) = \Phi(t,t_0) \delta \underline{X}(t_0) \Phi_{nxn}$$

 $\Phi$  is called the state transition matrix. Differentiating 4.6 and substituting for  $\delta X$  and  $\delta X$  in 4.5b:

$$\delta \underline{X} = \Phi \delta \underline{X}(t_0) = F \Phi \delta \underline{X}_0$$

By inspection then

4.7  $\dot{\Phi} = F\Phi$ , subject to  $\Phi(t_0, t_0) = I$ 

For a noise-free system, the problem is now solved. A deviation at t can be referenced to any other time. Suppose a set of n measurements has been made times  $t_1$ ,  $t_2 - t_n$ .

4.8a

Let

$$\delta Q_n = \underline{b}^T_Q(t_n) \ \delta \underline{X}(t_n) = \underline{b}^T_Q(t_n) \ \Phi \ (t_n, t_n) \ \delta \underline{X}_n$$

then

 $\underline{\mathbf{h}}^{\mathsf{T}}_{\mathbf{i}} = \underline{\mathbf{b}}_{\mathbf{0}}^{\mathsf{T}} \Phi(\mathbf{t}_{\mathbf{i}}, \mathbf{t}_{\mathbf{n}}),$ 

h n

 $h_{n}^{T}$ 

nxn

 $\begin{bmatrix} \underline{h}_{1}^{T} & -1 & \delta Q_{1} \\ \underline{h}_{2}^{T} & \delta Q_{2} \\ - & - & - \\ - & - & - \end{bmatrix}$ 

 $\delta Q_n \rfloor_{n \ge 1}$ 

 $\delta \underline{X}(t_n) =$ 

4.8b

4.9a

If more than n measurements are made, say m (>n), the solution has the form

δQn

 $\delta \underline{X}(t_{m}) = \left\{ \begin{bmatrix} \underline{h}_{i}^{T} \end{bmatrix}^{T} \begin{bmatrix} \underline{h}_{i}^{T} \end{bmatrix}^{-1} \begin{bmatrix} \underline{h}_{i}^{T} \end{bmatrix}^{T} \begin{bmatrix} \delta Q_{i} \end{bmatrix} \right\}$ 

4.9b

Equation 4.9a is called the deterministic solution of  $\delta \underline{X}(t_n)$ , 4.9b is the unweighted least squares solution of  $\delta \underline{X}(t_n)$ . If statistical information on the relative quality of various measurements is available, a more virtuous estimate might be obtained by multiplying each side of 4.8 by the relative weights; customarily used is the covariance of measurement noise for the m measurements, C :

4.9c 
$$\delta \underline{X}(t_n) = \left[ H^T[C]H \right]^{-1} H^T[C] \underbrace{\delta Q}_{\cdot} H = \begin{bmatrix} \underline{h}_1 \\ \underline{h}_2 \\ - \\ - \\ \underline{h}_n \end{bmatrix}$$

This is called the weighted least squares estimate of  $\delta X(t_n)$ . An estimator of the type 4.9c is also called a batch estimator. Normally, a set of data  $\overline{\delta Q}$  will be processed several times, each time using the estimate,  $\delta \underline{X}$ , to compute a new  $\underline{X}_R^*$ :

$$\frac{\chi_{R}^{*}}{R} = \chi_{R} + \delta \chi$$

whereupon new values of  $Q(\underline{X}_R)$  and hence  $\delta Q(t_i)$ ,  $\underline{b}_Q(t_i)$  and  $\Phi(t_i, t_n)$  are computed and used in the next pass.  $\delta \underline{X}$  converges to near zero and the assumption that higher order derivatives are negligible is accurately fullfilled. A number of defects with the technique make it unsuitable for many applications: all data from a set of measurements must be stored, as well as the H matrix, which may become quite large; a large matrix inversion is required which is slow and sometimes numerically difficult or inaccurate; in most cases, several "passes" are needed for complete convergence. For these reasons, a technique of sequential estimation has been developed, which avoids these problems, as will be seen. First, an investigation into the propagation of state errors is required.

Let  $\frac{X_{E}}{E}$  be an estimate of X. Then

$$\delta \underline{X}_{E} = \underline{X}_{E} - \underline{X}_{R}$$

Since it has been found that

 $\delta \underline{X}(t) = \Phi \delta \underline{X}(t_0)$ 

then

$$\delta \underline{X}_{F}(t) = \Phi \delta \underline{X}_{E}(t_{o})$$

and

$$\underline{\mathbf{e}}(t) = \delta \underline{\mathbf{X}}_{\mathrm{E}}(t) - \delta \underline{\mathbf{X}}(t) = \Phi \left[ \delta \underline{\mathbf{X}}_{\mathrm{E}}(t_{\mathrm{o}}) - \delta \underline{\mathbf{X}}(t_{\mathrm{o}}) \right]$$
$$= \Phi \underline{\mathbf{e}}_{\mathrm{o}}$$

Furthermore

4.10 
$$E(t) = \underline{\underline{e}(t)\underline{e}(t)^{\mathsf{T}}} = \overline{\underline{\Phi}\underline{e}(t_0)\underline{e}(t_0)^{\mathsf{T}}\Phi^{\mathsf{T}}} = \Phi E(t_0) \Phi^{\mathsf{T}}$$

Demonstrating the evolution of the covariance of state errors. An nxn symmetric matrix may be expressed as the sum of n linearly independent forms of the kind

$$E = \frac{1}{n} \left[ \underbrace{e_1 e_1}^T + \underbrace{e_2 e_2}^T = - - + \underbrace{e_n e_n}^T \right] = \frac{1}{\sqrt{n}} \left[ \underbrace{e_1}_{e_1} \underbrace{e_2}_{e_2} - - \underbrace{e_n}_{e_n} \right] \left[ \underbrace{e_1}_{e_2}^T + \underbrace{e_2 e_2}_{e_1}^T + \underbrace{e_2 e_2}_{e_2}^T + \underbrace{e_1}_{e_2}^T + \underbrace{e_1}_{e_2}^T + \underbrace{e_1}_{e_1}^T + \underbrace{e_2 e_2}_{e_1}^T + \underbrace{e_2 e_2}_{e_1}^T + \underbrace{e_2 e_2}_{e_1}^T + \underbrace{e_1}_{e_2}^T + \underbrace{e_1}_{e_1}^T + \underbrace{e_2 e_2}_{e_1}^T + \underbrace{e_1}_{e_1}^T + \underbrace{e_2 e_2}_{e_1}^T + \underbrace{e_1}_{e_1}^T + \underbrace{e_2 e_2}_{e_1}^T + \underbrace{e_1}_{e_2}^T + \underbrace{e_1}_{e_1}^T + \underbrace{e_1}_{e_2}^T + \underbrace{e_1}_{e_1}^T + \underbrace{e_1}_{e_1}^T + \underbrace{e_2 e_2}_{e_1}^T + \underbrace{e_1}_{e_2}^T + \underbrace{e_1}_{e_1}^T + \underbrace{e_1}_{e_1}^T + \underbrace{e_1}_{e_2}^T + \underbrace{e_1}_{e_1}^T + \underbrace{e_1}$$

By inspection of 4.10,

$$E(t) = W(t)W(t)^{T} = \Phi E(t_{0}) \Phi^{T} = \Phi W(t_{0})W(t_{0})^{T} \Phi^{T}$$
4.11
$$W(t) = \Phi W(t_{0}) \qquad \cdot \qquad \cdot$$

Physically, W is a set of linearly independent vectors drawn from the sample space of E which have the property that

$$\frac{1}{n} \sum_{i=1}^{n} \frac{e_i e_i}{i}^{T} = \int \frac{\xi}{\xi} \frac{\xi}{\xi} f(\underline{\xi}) d\xi_1 d\xi_2 - d\xi_n$$

That is, a finite, discrete sample from a continuous distribution, having the particular property that their simple average produces the covariance defined by the distribution function  $f(\xi)$ . They "typify" the distribution. <u>Sequential Estimator (Kalman Filter</u>)

The sequential estimator has the form

4.12 
$$\delta \underline{\hat{X}}(t_n) = \delta \underline{\hat{X}}'(t_n) + \underline{w}_n (\delta Q(t_n) - \delta Q'(t_n))$$

where

4.13

 $\delta \underline{\widehat{X}}'(t_n) = \Phi(t_n, t_{n-1}) \quad \delta \underline{\widehat{X}}(t_{n-1})$   $\delta \overline{Q}' = \underline{b}_{\overline{Q}}^{\mathsf{T}}(t_n) \quad \delta \underline{\widehat{X}}'$   $\delta \overline{Q} = \overline{Q} - Q(\underline{X}_R)$   $\widetilde{Q} = \text{measured value of } Q$ w an nxl vector to be determined

Equation 4.12 proposes that if  $\delta \widehat{X}'$  is an estimate of  $\delta \underline{X}$ , a better estimate of  $\delta \underline{X}$  is the liner combination of  $\delta \widehat{X}'$  with a weighting vector,  $\underline{w}$ , multiplied by the difference between the measured value of  $\delta Q$  ( $\delta \widehat{Q}$ ) and the expected value of  $\delta Q$  ( $\delta \widehat{Q}'$ ) based on  $\delta \widehat{X}'$ . To determine  $\underline{w}$ , it is necessary to consider what constitutes a "better" estimate of  $\delta \underline{X}$ . Clearly, in a particular circumstance, no direct knowledge of the existing error is possible, and it will be necessary to deal with some average function of the error. Since in general the state error distribution is unknown, one must work with the mean error and the covariance of errors. Minimizing the average squared error seems to be the most physically meaningful objective. To this end, use 4.12 to construct an expression for the state error:

$$\underline{\mathbf{e}}(\mathbf{t}_{n}) = \delta \underline{\mathbf{X}}_{n} - \delta \underline{\mathbf{X}}_{n} = \delta \underline{\mathbf{X}}_{n} - \delta \underline{\mathbf{X}}_{n}^{\prime} - \underline{\mathbf{w}}_{n} (\delta \mathbf{Q}_{n}^{\prime} - \delta \mathbf{Q}_{n}^{\prime})$$

$$= \underline{\mathbf{e}}_{n}^{\prime} - \underline{\mathbf{w}}_{n} (\underline{\mathbf{b}}_{Q}^{\mathsf{T}} \delta \underline{\mathbf{X}} + \alpha_{Q} - \underline{\mathbf{b}}_{Q}^{\mathsf{T}} \delta \underline{\mathbf{X}}_{n}^{\prime})$$

$$= \underline{\mathbf{e}}_{n}^{\prime} - \underline{\mathbf{w}}_{n} \underline{\mathbf{b}}_{Q}^{\mathsf{T}} (\delta \underline{\mathbf{X}} - \delta \underline{\mathbf{X}}_{n}^{\prime}) - \alpha_{Q\underline{\mathbf{w}}_{n}}$$

$$= \underline{\mathbf{e}}_{n}^{\prime} - \underline{\mathbf{w}}_{n} \underline{\mathbf{b}}_{Q}^{\mathsf{T}} (\underline{\mathbf{b}}_{n}^{\mathsf{T}} - \delta \underline{\mathbf{X}}_{n}^{\prime}) - \alpha_{Q\underline{\mathbf{w}}_{n}}$$

$$= (\mathbf{I} - \underline{\mathbf{w}} \underline{\mathbf{b}}_{Q}^{\mathsf{T}}) \underline{\mathbf{e}}_{n}^{\prime} - \alpha_{Q} \underline{\mathbf{w}}_{n}$$

Where

$$\delta Q = Q(\underline{X}) - Q(\underline{X}_{R})$$
$$= Q(\underline{X}) + \alpha_{Q} - Q(\underline{X}_{R})$$
$$= measured value of \delta Q$$

and

$$\alpha_{Q}$$
 = random measurement noise

.

By direct calculation, the covariance of state errors E is

4.14a 
$$E = \underline{ee^{\mathsf{T}}} = (\mathbf{I} - \underline{wb}_{\mathsf{Q}}^{\mathsf{T}}) \underbrace{e_{\mathsf{n}} e_{\mathsf{n}}^{\mathsf{T}} (\mathbf{I} - \underline{wb}_{\mathsf{Q}}^{\mathsf{T}})^{\mathsf{T}}}_{- (\mathbf{I} - \underline{wb}_{\mathsf{Q}}^{\mathsf{T}}) \underbrace{e_{\mathsf{n}} w_{\mathsf{Q}}^{\mathsf{T}} (\mathbf{I} - \underline{wb}_{\mathsf{Q}}^{\mathsf{T}})^{\mathsf{T}}}_{- \alpha q \underline{we}_{\mathsf{n}}^{\mathsf{T}} (\mathbf{I} - \underline{b}_{\mathsf{Q}} \underline{w}^{\mathsf{T}})^{\mathsf{T}}}$$

ł

Since previous state errors are uncorrelated with current measurement errors, the terms involving

$$\underline{\underline{e}}_{n}^{\alpha} Q, \quad \alpha Q \underline{\underline{e}}_{n}^{\mathsf{T}},$$

average to zero. Hence the expression for the covariance is

14b 
$$E = (I - \underline{w} \underline{b}_{Q}^{T}) E_{r}' (I - \underline{w} \underline{b}_{Q}^{T})^{T} + \alpha_{Q}^{2} \underline{w} \underline{w}^{T}$$

The diagonal elements of E, E' are the respective average squared errors in the components of  $\underline{X}_E$ . Hence, by calculus of variations  $\underline{w}$  will be chosen so as to minimize the elements of E, including its diagonal: For an extremum of E with respect to  $\underline{w}$ 

...

$$\delta E = \left[ \left( -\delta \underline{w} \underline{b}_{Q}^{T} E^{\dagger} \left( \mathbf{I} - \underline{w} \underline{b}_{Q}^{T} \right) \right] + \overline{\alpha}_{Q}^{2} \delta \underline{w} \underline{w}^{T} + \left[ \left( \mathbf{I} - \underline{w} \underline{b}_{Q}^{T} \right)^{T} E^{\dagger} \underline{b}_{Q} \left( -\delta \underline{w}^{T} \right) \right] + \overline{\alpha}_{Q}^{2} \underline{\omega} \delta \underline{w}^{T} + \left[ \left( \mathbf{I} - \underline{w} \underline{b}_{Q}^{T} \right)^{T} E^{\dagger} \underline{b}_{Q} \left( -\delta \underline{w}^{T} \right) \right] + \overline{\alpha}_{Q}^{2} \underline{w} \delta \underline{w}^{T} + \left[ -E^{\dagger} \underline{b}_{Q} + \left( \underline{b}_{Q}^{T} E_{n}^{\dagger} \underline{b}_{Q} + \overline{\alpha}_{Q}^{2} \right) \underline{w} \right] \delta \underline{w}^{T} + \left[ -E^{\dagger} \underline{b}_{Q} + \left( \underline{b}_{Q}^{T} E_{n}^{\dagger} \underline{b}_{Q} + \overline{\alpha}_{Q}^{2} \right) \underline{w} \right] \delta \underline{w}^{T}$$

= [0] for an extremum

This condition will apparently be met if

$$\left[-E'\underline{b}_{Q} + (\underline{b}_{Q}^{\mathsf{T}} E'\underline{b}_{Q} + \overline{\alpha_{Q}^{2}}) \underline{w}\right] = \underline{0}$$

which implies

$$\underline{W} = \frac{\underline{E' \underline{b}_{Q}}}{\alpha_{Q}^{2} + \underline{b}^{T} \underline{E' \underline{b}}}$$

4.15

4.

This is the Kalman Filter. It remains to show that extremum of E for which w has this value is a minimum:

Using the expression for  $\delta E$ :

$$\delta^{2} E = (\underline{\mathbf{b}}_{Q}^{\mathsf{T}} E' \underline{\mathbf{b}}_{Q} + \overline{\alpha}_{Q}^{2}) (\delta \underline{w} \delta \underline{w}^{\mathsf{T}} + \delta \underline{w} \delta \underline{w}^{\mathsf{T}})$$

It is clearly apparent that

$$(\underline{\mathbf{b}}_{\mathbf{Q}}^{\mathsf{T}}, \mathbb{E}' \underline{\mathbf{b}}_{\mathbf{Q}} + \overline{\alpha_{\mathbf{Q}}^2}) > 0$$

always since E' is positive definite. Further more, the diagonal terms of  $\delta \underline{w} \ \delta \underline{w}^{T}$  are positive for all real variations,  $\delta \underline{w}$ . The corresponding second variations of E, those of the mean squared error, are therefore positive and minimum. Figure III presents an operational flow chart of the filter.

$$\underline{X}_{E}(t), \underline{X}_{E}(t), E(t_{0})$$

$$E'(t) = \Phi(t, t_{0})E(t_{0})\Phi^{T}(t, t_{0})$$

$$\underline{b}_{Q} = \frac{\partial Q}{\partial X_{R}}(t)$$

$$\underline{w} = \frac{E'(t) \underline{b}_{Q}}{\alpha \overline{Q}^{2} + \underline{b}^{T}E'\underline{b}}$$

$$\delta \underline{\hat{X}'} = \underline{X'}_{E} - \underline{X}_{R}$$

$$\delta \widehat{Q}' = \underline{b}^{T}\delta \underline{\hat{X}'}$$

update covariance to present time

compute geometry vector

compute weighting vector

compute estimated deviation

compute estimated  $\delta Q$ 

$$\delta \hat{Q} = \hat{Q} - Q(\underline{X}_{R})$$
compute measured  $\delta Q$ 

$$\delta \underline{\hat{X}} = \delta \hat{X}' + \underline{w}(\delta \hat{Q} - \delta \hat{Q}')$$

$$\underline{X}_{E} = \underline{X}_{E}' + \delta \hat{X}$$

$$E = (\mathbf{I} - \underline{w} \ \underline{b}_{Q}^{T})E'(\mathbf{I} - \underline{w} \ \underline{b}_{Q}^{T})^{T} + \underline{w} \ \underline{w}^{T} \ \alpha^{\overline{2}}Q$$
update E
$$update E$$

Figure III.

V. Further development and insights.

#### Propagation of Errors

For a Keplerian force field, the state transition matrix, which is a solution to the equation.

$$\Phi(t,t_0) = [F]\Phi(t,t_0) \qquad \Phi(t_0,t_0) = I$$

has the property that

. '

$$\Phi^{T} J \Phi = J \qquad J = \begin{bmatrix} 0 & I \\ -I & 0 \end{bmatrix} \quad J^{T} J = I \\ J^{2} = -I$$

For as single vehicle,  $\Phi$  is '6x6 and from 4.5b

$$\underline{F} = \begin{bmatrix} \phi & \mathbf{I} \\ \mathbf{G} & \mathbf{0} \end{bmatrix} \quad \mathbf{G} = \frac{\mu}{R^5} \quad (3\underline{R} \ \underline{R}^T - R^2 \mathbf{I})$$

To prove this property, note that at  $t_0$ 

$$\Phi^{I} J^{\Phi} = \underline{I} \underline{J} \underline{I} = \underline{J} \qquad \Phi(t_{0}, t_{0}) = \underline{I}$$

Evaluating

$$\frac{d}{dt} (\Phi^{T} \underline{J} \Phi) = \Phi^{T} \underline{J} \Phi + \Phi^{T} \underline{J} \Phi$$

$$= \Phi^{T} F^{T} \underline{J} \Phi + \Phi^{T} \underline{J} F \Phi$$

$$= \Phi^{T} \left[ \underline{F}^{T} \underline{J} + \underline{J} \underline{F} \right] \Phi$$

$$\underline{F}^{T} \underline{J} = - \begin{bmatrix} 0 & I \\ G & 0 \end{bmatrix} \begin{bmatrix} 0 & I \\ -I & 0 \end{bmatrix} = - \begin{bmatrix} -I & 0 \\ 0 & G \end{bmatrix} = - \underline{J} F$$

Therefore  $\underline{F}^{\mathsf{T}}\underline{J} + \underline{J} \underline{F} = [0]$  and

$$\frac{d}{dt} (\Phi^{T} J \Phi) = [0] \Rightarrow \Phi^{T} J \Phi = \text{constant} = J$$

Now note that  $|\underline{J}| = 1$ , and therefore

$$\begin{vmatrix} \phi & T \\ \phi & \underline{J} \end{vmatrix} = \begin{bmatrix} \phi & T \\ \phi & \underline{J} \end{bmatrix} \begin{bmatrix} \underline{J} \\ \phi \end{bmatrix}$$
$$= \begin{vmatrix} \phi \end{vmatrix}^2 \mathbf{1}$$
$$= \begin{vmatrix} J \end{vmatrix} = \mathbf{1}$$

For a Keplerian field the propagation of E is described by

$$E(t) = \Phi E(t_0) \Phi$$

and its determinant by

$$\left|\underline{E}(t)\right| = \left|\Phi E(t_{0}) \Phi^{\mathsf{T}}\right|$$
$$:= \left|\Phi\right|^{2} \left|E(t_{0})\right|$$
$$= \left|E(t_{0})\right|$$

The physical interpretation of this fact is taken to be that the total "amount" of error in the system remains bounded in time for a Keplerian force field.

#### Practical Computational Techniques

It usually happens that operations performed on E by virtue of equation 4.10 or 4.14b will cause it to be no longer symmetric due to computational inaccuracies. Should this happen, it no longer represents a covariance matrix and something must be done. One method is to perform the replacement operation

$$E = \frac{1}{2}(E + E^{T})$$

which will symmetrize E in any digital computer worthy of the name. An alternative approach, which offers considerable other computational advantages will be constructed. Making use of the fact that any co-.variance matrix may be represented as a linear combination of product transposes, define

$$E' = \frac{1}{N} \left[ \underline{e}_1 \underline{e}_1^T + \underline{e}_2 \underline{e}_2^T - - \underline{e}_N \underline{e}_N^T \right]$$
$$= \frac{1}{\sqrt{N}} \left[ \underline{e}_1 \underline{e}_2 - - \underline{e}_N \right] \qquad \left[ \underline{e}_1 \underline{e}_2 - \underline{e}_N \right]^T \frac{1}{\sqrt{N}}$$
$$= W'W'^T$$
$$W = \frac{1}{\sqrt{N}} \left[ \underline{e}_1 \underline{e}_2 - - \underline{e}_N \right]$$

Let

$$\underline{z}_{Q} = W'^{\mathsf{T}}\underline{b}_{Q}$$

and rewrite equation 4.15 as

5.1 
$$\underline{W} = (\underbrace{\frac{W} \underline{z}_Q}{\alpha_Q^2 + \underline{z}_Q^T})$$

Equation 4.14b, the update equation for E, requires careful consideration:

Substituting for  $\underline{w}$ :

$$WW^{\mathsf{T}} = (\mathsf{I} - \frac{\mathsf{W}'\underline{z} \ \underline{b}^{\mathsf{T}}}{\alpha_{\mathsf{Q}}^{2} + \underline{z}^{\mathsf{T}}\underline{z}}) W'W'^{\mathsf{T}} (\mathsf{I} - \frac{\mathsf{W}'\underline{z} \ \underline{b}^{\mathsf{T}}}{\alpha_{\mathsf{Q}}^{2} + \underline{z}^{\mathsf{T}}\underline{z}})^{\mathsf{T}} + \frac{\mathsf{W}'\underline{z} \ \underline{z}^{\mathsf{T}}W'^{\mathsf{T}}}{(\alpha_{\mathsf{Q}}^{2} + \underline{z}^{\mathsf{T}}\underline{z})^{2}} \alpha_{\mathsf{Q}}^{2}$$
$$= (\mathsf{W}' - \frac{\mathsf{W}'\underline{z} \ \underline{z}^{\mathsf{T}}}{\alpha_{\mathsf{Q}}^{2} + \underline{z}^{\mathsf{T}}\underline{z}}) (\mathsf{W}'^{\mathsf{T}} - \frac{\underline{z} \ \underline{z}^{\mathsf{T}}W'^{\mathsf{T}}}{\alpha_{\mathsf{Q}}^{2} + \underline{z}^{\mathsf{T}}\underline{z}}) + \frac{\mathsf{W}'\underline{z} \ \underline{z}^{\mathsf{T}}W'^{\mathsf{T}}}{(\alpha_{\mathsf{Q}}^{2} + \underline{z}^{\mathsf{T}}\underline{z})^{2}} \alpha_{\mathsf{Q}}^{2}$$

$$= W' \left[ \left( \mathbf{I} - \frac{z \ z^{\mathsf{T}}}{\alpha_{\mathsf{Q}}^{2} + z^{\mathsf{T}} \underline{z}} \right) \left( \mathbf{I} - \frac{z \ z^{\mathsf{T}}}{\alpha_{\mathsf{Q}}^{2} + z^{\mathsf{T}} \underline{z}} \right) + \frac{z \ z^{\mathsf{T}} \overline{\alpha_{\mathsf{Q}}^{2}}}{\alpha_{\mathsf{Q}}^{2} + z^{\mathsf{T}} \underline{z}} \right] W'^{\mathsf{T}} \\ = W' \left[ \left( \mathbf{I} - \frac{z^{\mathsf{Z}} \ z^{\mathsf{T}}}{\alpha_{\mathsf{Q}}^{2} + z^{\mathsf{T}} \underline{z}} + \frac{z \ z^{\mathsf{T}} (z^{\mathsf{T}} \underline{z})}{\alpha_{\mathsf{Q}}^{2} + z^{\mathsf{T}} \underline{z}} + \frac{z \ z^{\mathsf{T}} (\overline{\alpha_{\mathsf{Q}}^{2}} - z^{\mathsf{T}} \underline{z})}{(\alpha_{\mathsf{Q}}^{2} + z^{\mathsf{T}} \underline{z})^{2}} + \frac{z \ z^{\mathsf{T}} (\overline{\alpha_{\mathsf{Q}}^{2}} - z^{\mathsf{T}} \underline{z})}{(\alpha_{\mathsf{Q}}^{2} + z^{\mathsf{T}} \underline{z})^{2}} + \frac{z \ z^{\mathsf{T}} (\overline{\alpha_{\mathsf{Q}}^{2}} - z^{\mathsf{T}} \underline{z})}{(\alpha_{\mathsf{Q}}^{2} + z^{\mathsf{T}} \underline{z})^{2}} \right] W'^{\mathsf{T}} \right]$$

J

$$= W' \left( I - \frac{\underline{z} \ \underline{z}^{\mathsf{T}}}{\alpha_{\mathsf{Q}}^{2} + \underline{z}^{\mathsf{T}} \underline{z}} \right) W'^{\mathsf{T}}$$

Look for a matrix of the form

$$(I - \frac{K \underline{z} \underline{z}^{\mathsf{T}}}{\frac{\alpha_0^2}{\alpha_0^2} + \underline{z}^{\mathsf{T}} \underline{z}}$$

such that

$$(I - \frac{K\underline{z} \underline{z}^{\mathsf{T}}}{\alpha_{\mathsf{Q}}^{2} + \underline{z}^{\mathsf{T}}\underline{z}})^{2} = (I - \frac{\underline{z} \underline{z}^{\mathsf{T}}}{\alpha_{\mathsf{Q}}^{2} + \underline{z}^{\mathsf{T}}\underline{z}})$$

$$I - \frac{2K\underline{z} \ \underline{z}^{\mathsf{T}}}{\frac{2}{\alpha_{\mathsf{Q}}^{2}} + \underline{z}^{\mathsf{T}}\underline{z}} + \frac{(K^{2}\underline{z}^{\mathsf{T}}\underline{z}) \ \underline{z} \ \underline{z}^{\mathsf{T}}}{(\frac{2}{\alpha_{\mathsf{Q}}^{2}} + \underline{z}^{\mathsf{T}}\underline{z})^{2}} = I - \frac{\underline{z} \ \underline{z}^{\mathsf{T}}}{\frac{2}{\alpha_{\mathsf{Q}}^{2}} + \underline{z}^{\mathsf{T}}\underline{z}}$$

$$\left(-\frac{2K}{a}+\frac{1}{a}+\frac{K^{2}\underline{z}'\underline{z}}{a^{2}}\right) \underline{z} \underline{z}^{\mathsf{T}} = \begin{bmatrix} 0 \end{bmatrix}$$

$$\kappa^2 - \frac{2a}{z}K + \frac{a}{z} = 0$$

$$\kappa = \frac{\frac{2}{z} \frac{a}{z}}{2} - \frac{\sqrt{\frac{4a^2}{(z^T z)^2}} - \frac{4a}{z^T z}}{2}$$

÷

$$= \frac{a}{\underline{z}^{\mathsf{T}}\underline{z}} \left( 1 - \sqrt{1 - \frac{z^{\mathsf{T}}\underline{z}}{a}} \right)$$

where a =  $\underline{z}^{T}\underline{z} + \alpha_{Q}^{2}$ . This may be simplified by letting

$$c = \frac{1}{K} = \frac{\frac{z}{a} \frac{z}{a}}{(1 + \sqrt{1 - \frac{z}{a} \frac{z}{a}})} = \frac{\frac{z}{a} \frac{z}{a}}{(1 + \sqrt{1 - \frac{z}{a} \frac{z}{a}})}{(1)^{2} - (\sqrt{1 - \frac{z}{a} \frac{z}{a}})^{2}}$$
$$= 1 + \sqrt{1 - \frac{z}{a} \frac{z}{a}}$$
$$= 1 + \sqrt{\frac{z}{a} \frac{z}{a}}$$

5.2

Putting 1/c in for K

$$WW^{T} = W'(I - \frac{z z^{T}}{a}) W'^{T}$$
$$= W'(I - \frac{z z^{T}}{ca})^{2} W'^{T}$$

Therefore

5.3 
$$W = W'(I - \frac{z}{ca})$$

The advantages to working with W rather than E are several:

(1) Since  $WW^T = E$ , any function of W of the form  $\underline{z}^T \underline{z}$  or  $W\underline{z}$  implies a symmetric (positive definite) E.

- (2) The updating equation for W is simpler than that for E and involves fewer computations.
- (3) Since W is a construction of representative error vectors  $\{\underline{e}_i\}$ , its propagation in time is more easily discussed. Noting that  $E(t) = \Phi(t,t_0) E_0 \Phi^{T}(t,t_0)$ , it is found that

$$E(t) = W(t)W(t) = \Phi W_0 W_0^T \Phi^T$$
$$W(t) = \Phi(t, t_0) W(t_0)$$

Also

$$W(t) = \Phi W_0 = F \Phi W_0$$

5.4b

5.4a

A third method of advancing W is to note that by definition

≃ FW

$$\underline{e}_{i}(t_{o}) = \underline{X}_{E}^{i}(t_{o}) - \underline{X}(t_{o}) \qquad \underline{X}_{E} = \text{estimated state}$$

$$\underline{X} = \text{actual state}$$

therefore

$$\underline{e}_{i}(t) = \underline{X}_{E}^{1}(t) - \underline{X}(t)$$

Let

$$\underline{X}_{E}^{i}(t_{o}) = \underline{X}_{E}(t_{o}) + \underline{e}_{i}(t_{o})$$

$$\underline{e}_{i}(t) = \underline{X}_{E}^{i}(t) - \underline{X}_{E}(t)$$

where  $\underline{X}_{E}^{i}(t)$  and  $\underline{X}_{E}(t)$  are the respective vectors at to integrated to time t. This constitutes a more exact solution to the problem of propagating E and makes no linearizing assumptions as were made to obtain 4.5b, which is the basis for equations 5.4a and 5.4b.

# Definition of the Reference State

For practical purposes, the reference state is generally taken to be the estimated state at each instant. In this case

$\delta \underline{\hat{X}}^{\dagger} = \underline{\hat{X}}^{\dagger} - \underline{X}_{R}$
$= \underline{\widehat{X}}^{\dagger} - \underline{\widehat{X}}^{\dagger} = \underline{0}$
$\delta \widehat{Q}^{i} = \underline{b}_{Q}^{\dagger} \delta \widehat{\underline{X}}^{i} = 0$
$\delta \hat{Q} = \hat{Q} - Q (\underline{X}_R)$
$= \hat{Q} - Q(\hat{X})$
$\delta \underline{\widehat{X}} = \underline{w} \ \delta \underline{\widehat{Q}} = \underline{w} \ (\underline{\widehat{Q}} - \underline{Q} \ (\underline{\widehat{X}}^{\dagger}))$
$\underline{\widehat{\chi}} = \underline{\widehat{\chi}}^{\dagger} + \delta \underline{\widehat{\chi}}$

This definition guarantees that as the differential correction process occurs,  $\underline{X}_R$  is sufficiently close to  $\underline{X}$  so that the linearizing assumptions of Sec. IV are valid.

Computation of the Geometry (b) Vecter

For a range measurement

 $r = \left[\underline{r}^{T}\underline{r}\right]^{1/2} = \left[\left(\underline{R}_{T} - \underline{R}_{S}\right)^{T}\left(\underline{R}_{T} - \underline{R}_{S}\right)\right]^{1/2}$ 

$$\delta \mathbf{r} = \frac{1}{2} \left[ \underline{\mathbf{r}}^{\mathrm{T}} \underline{\mathbf{r}} \right]^{-\frac{1}{2}} \left( \delta \underline{\mathbf{r}}^{\mathrm{T}} \underline{\mathbf{r}} \right) + \frac{1}{2} \left[ \underline{\mathbf{r}}^{\mathrm{T}} \underline{\mathbf{r}} \right]^{-\frac{1}{2}} \left( \underline{\mathbf{r}}^{\mathrm{T}} \delta \underline{\mathbf{r}} \right) + \beta_{\mathrm{r}}$$
$$= \left[ \underline{\mathbf{r}}^{\mathrm{T}} \underline{\mathbf{r}} \right]^{-\frac{1}{2}} \frac{\mathbf{r}^{\mathrm{T}}}{\mathbf{r}} \delta \underline{\mathbf{r}} + \beta_{\mathrm{r}}$$
$$= \underline{\hat{\mathbf{r}}}^{\mathrm{T}} \delta \underline{\mathbf{r}} = \underline{\hat{\mathbf{r}}}^{\mathrm{T}} \left[ \delta \underline{\mathbf{x}}_{\mathrm{T}} - \delta \underline{\mathbf{x}}_{\mathrm{S}} \right] + \beta_{\mathrm{r}}$$

Where  $\beta_r$  is the range measurement bias, and  $\hat{r} = unit (\underline{r})$ . Therefore,

$$\underline{b}_{r} = \begin{bmatrix} -\hat{r} \\ \underline{0} \\ \hat{r} \\ \underline{0} \\ \underline{0} \\ \underline{k}_{r} \end{bmatrix} \quad \text{for } \underline{k}_{r} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ \underline{0} \end{bmatrix}.$$

For a range-rate measurement

$$\dot{\mathbf{r}} = \hat{\mathbf{r}} \stackrel{\mathbf{r}}{\mathbf{r}} = \frac{\mathbf{r}}{\mathbf{r}} \stackrel{\mathbf{r}}{\mathbf{r}} = \frac{\mathbf{r}}{\mathbf{r}} \stackrel{\mathbf{r}}{\mathbf{r}} \\ \delta \dot{\mathbf{r}} = \frac{\delta \frac{\mathbf{r}}{\mathbf{r}}}{\mathbf{r}} \stackrel{\mathbf{r}}{\mathbf{r}} - \frac{\mathbf{r}}{\mathbf{r}^{2}} \stackrel{\mathbf{r}}{\mathbf{r}} + \frac{\mathbf{r}}{\mathbf{r}} \stackrel{\mathbf{r}}{\mathbf{r}} + \beta \stackrel{\mathbf{r}}{\mathbf{r}} \\ = \frac{\delta \frac{\mathbf{r}}{\mathbf{r}}}{\mathbf{r}} \stackrel{\mathbf{r}}{\mathbf{r}} - \frac{\mathbf{r}}{\mathbf{r}^{2}} \stackrel{\mathbf{r}}{\mathbf{r}} \stackrel{\mathbf{r}}{\mathbf{r}} + \frac{\mathbf{r}}{\mathbf{r}} \stackrel{\mathbf{r}}{\mathbf{r}} + \beta \stackrel{\mathbf{r}}{\mathbf{r}} \\ = \frac{1}{\mathbf{r}} \left[ \frac{\dot{\mathbf{r}}}{\mathbf{r}} - (\hat{\mathbf{r}} \stackrel{\mathbf{r}}{\mathbf{r}}) \stackrel{\mathbf{r}}{\mathbf{r}} \right]^{\mathsf{T}} \delta \stackrel{\mathbf{r}}{\mathbf{r}} + \hat{\mathbf{r}} \stackrel{\mathbf{r}}{\mathbf{r}} \stackrel{\mathbf{r}}{\mathbf{r}} + \beta \stackrel{\mathbf{r}}{\mathbf{r}} \\ = -\frac{1}{\mathbf{r}} \left[ \frac{\hat{\mathbf{r}}}{\mathbf{r}} \times (\hat{\mathbf{r}} \times \frac{\mathbf{r}}{\mathbf{r}}) \right]^{\mathsf{T}} \delta \stackrel{\mathbf{r}}{\mathbf{r}} + \hat{\mathbf{r}} \stackrel{\mathbf{r}}{\mathbf{r}} \stackrel{\mathbf{r}}{\mathbf{r}} + \beta \stackrel{\mathbf{r}}{\mathbf{r}} \\ = -\frac{1}{\mathbf{r}} \left[ \frac{\hat{\mathbf{r}}}{\mathbf{r}} \times (\hat{\mathbf{r}} \times \frac{\mathbf{r}}{\mathbf{r}}) \right]^{\mathsf{T}} \delta \stackrel{\mathbf{r}}{\mathbf{r}} + \hat{\mathbf{r}} \stackrel{\mathbf{r}}{\mathbf{r}} + \beta \stackrel{\mathbf{r}}{\mathbf{r}} \\ = -\frac{1}{\mathbf{r}} \left[ \frac{\hat{\mathbf{r}}}{\mathbf{r}} \times (\hat{\mathbf{r}} \times \frac{\mathbf{r}}{\mathbf{r}}) \right]^{\mathsf{T}} \delta \stackrel{\mathbf{r}}{\mathbf{r}} + \hat{\mathbf{r}} \stackrel{\mathbf{r}}{\mathbf{r}} \delta \stackrel{\mathbf{r}}{\mathbf{r}} + \beta \stackrel{\mathbf{r}}{\mathbf{r}} \\ = -\frac{1}{\mathbf{r}} \left[ \frac{\hat{\mathbf{r}}}{\mathbf{r}} \times (\hat{\mathbf{r}} \times \frac{\mathbf{r}}{\mathbf{r}}) \right]^{\mathsf{T}} \delta \stackrel{\mathbf{r}}{\mathbf{r}} + \hat{\mathbf{r}} \stackrel{\mathbf{r}}{\mathbf{r}} \\ = -\frac{1}{\mathbf{r}} \left[ \frac{\hat{\mathbf{r}}}{\mathbf{r}} \times (\hat{\mathbf{r}} \times \frac{\mathbf{r}}{\mathbf{r}}) \right]^{\mathsf{T}} \delta \stackrel{\mathbf{r}}{\mathbf{r}} + \hat{\mathbf{r}} \delta \stackrel{\mathbf{r}}{\mathbf{r}} + \beta \stackrel{\mathbf{r}}{\mathbf{r}} \\ = -\frac{1}{\mathbf{r}} \left[ \frac{\hat{\mathbf{r}}}{\mathbf{r}} \times (\hat{\mathbf{r}} \times \frac{\mathbf{r}}{\mathbf{r}}) \right]^{\mathsf{T}} \delta \stackrel{\mathbf{r}}{\mathbf{r}} + \hat{\mathbf{r}} \cdot \hat{\mathbf{r}} \\ = -\frac{1}{\mathbf{r}} \left[ \frac{\hat{\mathbf{r}}}{\mathbf{r}} \times (\hat{\mathbf{r}} \times \frac{\mathbf{r}}{\mathbf{r}}) \right]^{\mathsf{T}} \delta \stackrel{\mathbf{r}}{\mathbf{r}} + \hat{\mathbf{r}} \cdot \hat{\mathbf{r}} + \beta \stackrel{\mathbf{r}}{\mathbf{r}} \\ = -\frac{1}{\mathbf{r}} \left[ \frac{\hat{\mathbf{r}}}{\mathbf{r}} + \frac{\hat{\mathbf{r}}}{\mathbf{r}} \right] \left[ \frac{\hat{\mathbf{r}}}{\mathbf{r}} + \hat{\mathbf{r}} + \hat{\mathbf{r}} \cdot \frac{\hat{\mathbf{r}}}{\mathbf{r}} \right]$$

The geometry vector for range-rate is accordingly

$$\underline{b}_{r}^{\cdot} = \begin{bmatrix} \frac{1}{r} \left[ \underline{\hat{r}} \times (\underline{\hat{r}} \times \underline{r}) \right] \\ -\underline{\hat{r}} \\ \frac{1}{r} \left[ \underline{\hat{r}} \times (\underline{\hat{r}} \times \underline{r}) \right] \\ +\underline{\hat{r}} \\ \underline{k}_{r}^{\cdot} \end{bmatrix} \qquad \underline{k}_{r}^{-} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$

For azimuth and altitude measurements, defined according to Fig. II as

$$AZ = TAN^{-1} \left(\frac{\hat{z} \cdot \hat{r}}{\hat{Y} \cdot \hat{r}}\right)$$
$$EL = SIN^{-1} \left(\hat{x} \cdot \hat{r}\right)$$

Some tedious algebraic hack produces

$$\underline{\mathbf{b}}_{AZ} = \begin{bmatrix} -(\widehat{\mathbf{x}} \times \underline{\mathbf{r}}) / |\widehat{\mathbf{x}} \times \underline{\mathbf{r}}|^{2} \\ \underline{\mathbf{0}} \\ (\widehat{\mathbf{x}} \times \underline{\widehat{\mathbf{r}}}) / |\widehat{\mathbf{x}} \times \underline{\mathbf{r}}|^{2} \\ \underline{\mathbf{0}} \\ \underline{\mathbf{0}} \\ \underline{\mathbf{k}}_{AZ} \end{bmatrix} \qquad \underline{\mathbf{k}}_{AZ} = \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \\ \mathbf{1} \\ \mathbf{0} \end{bmatrix}$$

$$\underline{\mathbf{b}}_{EL} = \begin{bmatrix} -\frac{|\hat{\mathbf{x}} \times \hat{\mathbf{r}}|}{r} & (\hat{\mathbf{r}} \times \underline{\mathbf{b}}_{AZ}) \\ & \underline{\mathbf{0}} \\ |\hat{\mathbf{x}} \times \hat{\mathbf{r}}| & (\hat{\mathbf{r}} \times \underline{\mathbf{b}}_{AZ}) \\ & \underline{\mathbf{r}} \\ & \underline{\mathbf{0}} \\ & \underline{\mathbf{k}}_{EL} \end{bmatrix} \qquad \underline{\mathbf{k}}_{EL} = \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \\ \mathbf{1} \end{bmatrix}$$

For these specific cases, the bias sub-vector of the state is defined as

$$\frac{\beta}{\beta} = \begin{bmatrix} \beta r \\ \dot{\beta} r \\ \beta R \\ \beta R \\ \beta E \\ \beta E \\ . \end{cases}$$

Assorted comments about the weighting vector,  $\underline{w}.$ 

$$\underline{W} = \frac{\underline{E'\underline{b}}}{\alpha_{Q}^{2} + \underline{b}^{T}\underline{E'\underline{b}}} = \frac{\underline{W'\underline{z}}}{\alpha_{Q}^{2} + \underline{z}^{T}\underline{z}}$$

Examine  $\underline{b}^{\mathsf{T}}\underline{E}'\underline{b}$ :

$$\underline{b}^{\mathsf{T}}\underline{E}'\underline{b} = \mathbf{b}^{\mathsf{T}} \overline{E'E'}\mathbf{b}$$
$$= \underline{b}^{\mathsf{T}}\underline{e'e}\mathbf{b}$$

 $= \overline{U_Q^2}$ 

where  $\underline{b}^{T}\underline{e} = U_{Q}$ , the a' priori uncertainty in Q due to state errors. Since  $\overline{\alpha_{Q}}^{2}$  is the variance of Q due to measurement noise, the term

$$\overline{\alpha_{Q}^{2}} + \underline{b}^{\mathsf{T}} \mathbf{E}' \underline{b} = \overline{\alpha_{Q}^{2}} + \underline{z}^{\mathsf{T}} \underline{z}$$
$$= \overline{\alpha_{Q}^{2}} + \overline{U_{Q}^{2}}'$$

is the total variance of Q due to measurement noise and state uncertainty. Now compute the estimate  $\delta \hat{Q}$ , the estimate of  $\delta Q$  based on  $\delta \hat{\underline{x}}$ :

$$\delta \underline{\hat{X}} = \delta \underline{\hat{X}}' + \underline{w} \ (\delta \widetilde{Q} - \delta \widehat{Q}')$$
  
$$\delta \widehat{Q} = \underline{b}^{\mathsf{T}} \ \delta \underline{\hat{X}}' + \underline{b}^{\mathsf{T}} \underline{w} \ (\delta \widetilde{Q} - \delta \widehat{Q}')$$

$$= \delta \hat{Q}' + \frac{b^{T}Wz}{\frac{2}{\alpha_{Q}} + U_{Q}^{2'}} (\delta \hat{Q} - \delta \hat{Q}')$$

$$= \delta \hat{Q}' + \frac{\underline{z}^{\mathsf{T}} \underline{z}}{\frac{2}{\alpha_{\mathsf{Q}}^{\mathsf{Q}}} + \overline{\mathsf{U}_{\mathsf{Q}}^{\mathsf{Z}}}} (\delta \hat{Q} - \delta \hat{Q}')$$

$$= \hat{\delta Q'} + \frac{\overline{U_Q^2}}{\frac{2}{\alpha_Q} + \overline{U_Q^2}} \qquad (\delta \tilde{Q} - \hat{\delta Q'})$$

Finally

$$\hat{\delta Q} = \hat{\delta Q}, \quad (\frac{\alpha_Q^2}{\alpha_Q^2} + \overline{U_Q^2}) + \delta \hat{Q} \quad (\frac{\overline{U_Q^2}}{\alpha_Q^2} + \overline{U_Q^2})$$

Let the ratio of measurement noise to state uncertainty be denoted

$$\rho^{I} = \overline{\alpha_{Q}^{2}} / \overline{U_{Q}^{2}}$$

so that

$$\hat{\delta Q} = \hat{\delta Q}' \left( \frac{\rho'}{1+\rho'} \right) + \hat{\delta Q} \left( \frac{1}{1+\rho'} \right)$$

. Obviously if measurement noise variance,  $\overline{\alpha_Q^2}$ , is very small .compared to the state uncertainty of  $\delta Q$ ,  $U_Q^2$ , we have  $\rho' \sim 0$  and

 $\hat{\delta Q} \simeq \delta Q$  estimate equal to measured

On the other hand, if the measurement noise is large compared to the state uncertainty  $1/\rho'\,\sim\,0$  and

 $\delta \hat{Q} \sim \delta \hat{Q}'$ . estimate equal to previous estimate

Now look at the reduction of the state uncertainty of  $\delta Q, ~\overline{U_Q^2}$  , resulting from a measurement. From 5.3

$$W = W' \quad (I - \underline{z} \underline{z}^{T}) \qquad a = \overline{\alpha_{Q}^{2}} + \overline{U_{Q}^{2}}$$

$$c = 1 - \sqrt{\overline{\alpha_{Q}^{2}/a}}$$

$$\overline{U_{Q}^{2}} = \underline{z}^{T} \underline{z} = \underline{b}^{T} W W^{T} \underline{b}$$

$$= \underline{b}^{T} W' \quad (I - \underline{z} \underline{z}^{T}) \quad (I - \underline{z} \underline{z}^{T}) W'^{T} \underline{b}$$

$$= \underline{b}^{T} W' \quad (I - \underline{z} \underline{z}^{T}) \quad W'^{T} \underline{b}$$

$$= \underline{b}^{T} W' \quad (I - \underline{z} \underline{z}^{T}) \quad W'^{T} \underline{b}$$

$$= \overline{U_{Q}^{2}} \quad (I - \underline{z} \underline{z}^{T}) \quad \underline{z}$$

$$= \overline{U_{Q}^{2}} \quad (I - \underline{U_{Q}^{2}})^{2}$$

$$= \overline{U_{Q}^{2}} \quad (I - \underline{U_{Q}^{2}})$$

$$= \overline{U_{Q}^{2}} \quad (\frac{\overline{\alpha_{Q}^{2}}}{a})$$

$$= \overline{U_{Q}^{2}} \quad (\frac{\overline{\alpha_{Q}^{2}}}{a} + \overline{U_{Q}^{2}})$$

 $= \overline{U_Q^{2^t}} \left( \frac{\rho^t}{1 + \rho^t} \right)$ 

by definition

Again, as noted before, if  $\rho' \simeq 0$ ,

$$\overline{U_Q^2} \simeq 0$$

 $\overline{U_Q^2} \simeq \overline{U_Q^2}'$ 

i.e. the state uncertainty of  $\delta Q$  is greatly reduced. If the measurement noise is large compared to the state uncertainty,  $\rho'/(1 + \rho') \sim 1$  and

This tallies with the expectation that if the measurement process is very noisy compared to the state errors, the average state errors are little reduced by the fixes. The case of a range measurement is particularly illustrative: The form

$$\overline{U_{r}^{2}} = Z^{T}Z = \underline{b}_{r}^{T} WW^{T} \underline{b}_{r} = \underline{b}_{r}^{T} E \underline{b}_{r} = \overline{\underline{b}_{r}^{T}} \underline{e} \underline{e}^{T}\underline{b}_{r}$$

is the average squared state error along the line of sight. Typically, a good range sensor has 1 at random noise of about 10 feet on a measurement, thus

$$\overline{\alpha^2_r}$$
 = 100 ft²

If as is typical, the line of sight relative state errors are on the order of 5000 ft, we have

$$\overline{U_{\Gamma}^{2}} = 2:5 \times 10^{7} \text{ ft}^{2}$$

$$\rho \simeq 4 \times 10^{-6}$$

$$\rho/1 + \rho \simeq (1 - \rho) = \rho - \rho^{2}$$

$$\rho \simeq \rho$$

$$= 4 \times 10^{-6}$$

Across a mark, therefore

$$\hat{\delta Q} = \hat{\delta Q}' \left( \frac{\rho'}{1 + \rho'} \right) + \hat{\delta Q} \left( \frac{1}{1 + \rho'} \right)$$

$$\stackrel{\sim}{=} \hat{\delta Q}' \left( 4 \times 10^{-6} \right) + \hat{\delta Q} \left( 1 - 4 \times 10^{-6} \right)$$

$$= \hat{\delta Q}' \left( .000004 \right) + \hat{\delta Q} \left( .999996 \right)$$

The state uncertainty is reduced to

$$\overline{y_{r}^{2}} = \overline{y_{r}^{2}} \left( \frac{\rho'}{1 + \rho'} \right)$$

$$\frac{\gamma}{2} \overline{y_{r}^{2}} \left( 4 \times 10^{-6} \right)$$

$$= 2.5 \times 10^{7} \left( 4 \times 10^{-6} \right)$$

$$= 100 \text{ ft}^{2}$$

$$\frac{\gamma}{\alpha \frac{2}{q}}$$

Note that the reduction coefficient,

W

$$\left( \begin{array}{c} \rho \\ \hline 1 + \rho \end{array} \right)$$

is always  $\leq 1$  which guarantees that the measurement process never results in a greater  $U_Q^2$  after a mark than before it. Suppose in the interval between marks  $\overline{U_Q^2}$  does not change much. Then given  $\overline{U_Q^2}$  (t_o) we have

$$\rho(t_{0}) = \frac{\overline{\alpha_{0}^{2}}}{\overline{U_{0}^{2}}(t_{0})} = \frac{\overline{\alpha_{0}^{2}}}{\overline{U_{0}^{2}}(t_{0})(\frac{\rho'}{1+\rho'})} = \frac{\rho'}{\rho'/(1+\rho')} = 1 + \rho'$$
  
here  $\rho'(t_{0}) = \frac{\overline{\alpha_{0}^{2}}}{\overline{U_{0}^{2}}(t_{0})}$ 

$$\rho(t_{i}) \stackrel{\sim}{-} \rho(t_{0}) = 1 + \rho'(t_{0})$$

$$\rho(t_{i}) \stackrel{\sim}{-} 1 + \rho'(t_{i}) = 1 + 1 + \rho' = 2 + \rho'(t_{0})$$

$$\rho(t_{n}) \stackrel{\sim}{-} (n + 1) + \rho'(t_{0})$$

thus

$$\frac{\rho(t_n)}{1 + \rho(t_0)} = \frac{(n+1) + \rho'(t_0)}{1 + n+1 + \rho'(t_0)}$$

$$\frac{\sim}{1 + n+1} = \frac{n+1}{1 + n+1} = n + 1 >> \rho'$$

$$\sim 1 = n + 1 >> 1$$

And

$$\overline{U_Q^2}$$
 (t_n)  $\sim \overline{U_Q^2}$  (t_n)

I.e. the uncertainty in the direction of  $\underline{b}_{Q}$  is not much reduced after a large number of marks. When this condition has occured, the filter is said to be "saturated". Since E is a real symmetric matrix, it eigenvectors are orthogonal, and the matrix of its normalized eigenvectors is an orthonormal matrix. Hence, as noted in Sec. I, E has a diagonal representation in terms of its eigenvalues as

$$E = P \Lambda P^T \quad P P^T = P^T P = I$$

The matrix of orthonormal vectors,  $\rho$ , may be considered as defining a co-ordinate rotation in the space of n dimensions; or alternatively, a change of variable in that space, to a new set

 $\xi = P^{\mathsf{T}} \delta X$ 

Cast  $\underline{w}$  into the new variables

$$\underline{W}_{\xi} = P^{T}\underline{W}_{\underline{X}} = \frac{P^{T}\underline{E}\underline{b}}{\overline{\alpha_{Q}^{2}} + \overline{U_{Q}^{2}}}$$
$$= \frac{P^{T}\underline{E} P P^{T}\underline{b}}{\overline{\alpha_{Q}^{2}} + \overline{U_{Q}^{2}}}$$
$$= \frac{\Lambda \ \underline{b}_{\xi}}{\overline{\alpha_{Q}^{2}} + \overline{U_{Q}^{2}}} \qquad \underline{b}_{\xi} = P^{T}\underline{a}$$

. Note that

$$\overline{p^{\xi}} = b_{\text{L}} = \frac{90}{90} = \frac{90}{30}$$

Also

$$\overline{U_Q^2} = \underline{b}^{\mathsf{T}} \underline{E} \underline{b} = \underline{b}_{\xi}^{\mathsf{T}} \wedge \underline{b}_{\xi}^{\mathsf{T}} = \sum_{i} (\frac{\partial Q}{\partial \xi})^2 \sigma_i^2 =$$

$$(\underline{w}_{\underline{\xi}})_{i} = \frac{\frac{\partial Q}{\partial \underline{\xi} i} \sigma^{2}_{i}}{\frac{\sigma^{2}}{\alpha_{Q}^{2}} + \sum (\frac{\partial Q}{\partial \underline{\xi}})^{2}_{j}} \sigma_{j}$$

$$= \frac{\partial Q}{\partial \xi_{i}} \left[ \frac{\overline{\alpha}_{Q}^{2}}{\sigma_{i}^{2}} + \left( \frac{\partial Q}{\partial \xi_{i}} \right)^{2} + \sum_{j \neq i} \left( \frac{\partial Q}{\partial \xi_{j}} \right)^{2} \left( \frac{\sigma_{j}}{\sigma_{i}} \right)^{2} \right]^{-1}$$

$$= \left( \frac{\partial Q}{\partial \xi_{i}} \right)^{-1} \left\{ 1 + \left( \frac{\partial Q}{\partial \xi_{i}} \right)^{2} - 2 \left[ \frac{\overline{\alpha}_{Q}^{2}}{\sigma_{i}^{2}} + \sum_{j \neq i} \left( \frac{\partial Q}{\partial \xi_{j}} \right)^{2} \left( \frac{\sigma_{j}}{\sigma_{i}} \right)^{2} \right]^{-1}$$

$$= \left( \frac{\partial \xi_{i}}{\partial Q} \right) \left\{ 1 + \left( \frac{\partial \xi_{i}}{\partial Q} \right)^{2} \left[ \frac{\overline{\alpha}_{Q}^{2}}{\sigma_{i}^{2}} + \sum_{j \neq i} \left( \frac{\partial Q}{\partial \xi_{j}} - \frac{\sigma_{j}^{2}}{\sigma_{i}^{2}} \right)^{2} \right]^{-1}$$

Where  $\sigma_i^2$  is the ith eigenvalue of <u>E</u>, the variance of  $\xi_i$ . In the event that  $\sigma_i >> \sigma_j$  for all j and  $\sigma_i >> \alpha_Q^2$  the inverse in brackets approximates 1:

$$\underline{w}_{\underline{\xi}}$$
)  $\sim \frac{\partial \xi_i}{\partial Q}$ 

The updating equation in terms of the new variables is

$$\delta \hat{\underline{\xi}} = p^{\mathsf{T}} \delta \hat{\underline{\chi}} = p^{\mathsf{T}} \delta \hat{\underline{\chi}}' + p^{\mathsf{T}} \underline{w} (\delta \hat{Q} - \delta \hat{Q}')$$
$$= \delta \hat{\underline{\xi}}' + \underline{w} (\delta \hat{Q} - \delta \hat{Q}')$$

For the case where  $\delta \hat{\xi}' = 0$  as described previously, the update for the  $i\frac{th}{t}$  component of  $\delta \hat{\xi}$  is

$$(\delta \hat{\underline{\xi}})_{i} \stackrel{\sim}{\to} \left(\frac{\partial \underline{\xi}}{\partial Q}\right)_{i} \delta \hat{Q}$$

as expected. Thus thus true meaning of w is this:

It's sort of the inverse partial of  $\underline{X}$  with respect to Q, weighted by assorted variances of the measurement and state uncertainties, and conditioned by the extent to which  $\underline{b}$  is in the direction of the expected error; sort of . . .

### 2.9 Rendezvous Analysis

#### 2.9.1 Introduction

Concentric Flight Plan is the name given to the technique of rendezvous developed during Program Gemini and now in use for Apollo. It is the fruition of attempts to construct a plan which offers simplicity of operation, high reliability of achievement and fuel economy. As a matter of basic philosophy, it has been assumed that the spacecraft crew would participate in the rendezvous activities to the extent of flying the vehicle, evaluating the progress of the trajectory and (when necessary ) computing backup solutions for the maneuvers.

Early studies by Flight Procedures Branch and others resulted in the identification of transfer elevation angle  $(\eta_{_{TPI}})$  and transfer interval  $(\overline{\omega t})$  as critical parameters characterizing the shape of various intercept trajectories. Further work resulted in choices of  $\omega t$  and  $\eta_{TPI}$  to reconcile conflicting requirements of fuel economy, error propagation and ease of operation. As a logical extension of this work, the coelliptical trajectory was settled on as the standard pre-transfer condition. Since the time of arrival at a given elevation angle can be varied by changing differential altitude in the coelliptical phase, it is possible to control the transfer time for a given  $\eta_{_{\rm TPI}}$  , placing it so as to satisfy requirements of lighting, navigation, and ground tracking. By fixing  $\eta_{1Pl}$  and  $\overline{\omega t}$  in advance and choosing a coelliptical pre-transfer condition, the shape of the rendezvous trajectory is held constant throughout from various approaches, so that the crew can hope to become familiar with its development during training. Such familiarity enables them to monitor its progress, detect off-nominal conditions and develop a high degree of proficiency in execution. The predictions of digital analysis and simulation with regard to trajectory behavior and fuel consumption appear to have been borne out in detail on the Gemini and Apollo programs.

A principle activity of Flight Procedures Branch during Projects Gemini and Apollo has been the construction and testing of rendezvous maneuver charts. These are provided as an independent source of rendezvous maneuver solutions, requiring only the most fundamental information - range, range rate, elevation angle - available directly from the radar and platform. In order to perform the required analysis and verification, several large


digital programs capable of solving for various maneuvers and providing dispersed trajectories have been constructed. Among the original techniques developed may be noted the derivation of maneuver functions for TPT and CDH, and the iterative use of the Clohessy-Wiltshire equations to compute transfer maneuver.

2.9.2 Development of Concentric Flight Plan

2.9.2.1 Transfer Phase

In order to clearly display the relative motion of the rendezvous trajectory, solve the linearized equations of relative motion (Eq. 4.1 - 9) for the required relative velocity

$$\dot{\mathcal{A}}_{TPI} = -B^{-1}(\omega t) A^{-1}(\omega t) \dot{\mathcal{A}}_{TPI}$$
2.1 - 1

therefore, in the intercept

$$\mathscr{L}(t) = \left[ A(\omega t) - B(\omega t) B^{-1}(\omega t) A(\omega t) \right] \cdot \mathscr{L}_{TP1}$$
 2.1 - 2

These equations have the form

Since the shape of the trajectory in time is characterized by the ratio of x to z (Figure I),

$$\frac{\mathbf{x}(t)}{\mathbf{z}(t)} = \cot(\eta) = \frac{\mathbf{k}_1 \mathbf{x}_{\text{TPI}} + \mathbf{k}_2 \mathbf{z}_{\text{TPI}}}{\mathbf{h}_1 \mathbf{x}_{\text{TPI}} + \mathbf{h}_2 \mathbf{z}_{\text{TPI}}} = \frac{\mathbf{k}_1 \cot(\eta_{\text{TPI}}) + \mathbf{k}_2}{\mathbf{h}_1 \cot(\eta_{\text{TPI}}) + \mathbf{h}_2}$$
2.1 - 4

This equation clearly shows that the shape of an intercept is completely specified by choosing  $\overline{\omega t}$  and  $\eta_{\rm JPI}$ . By defining the parameters in advance for all intercepts, the shape is thus fixed, and learning is facilitated.

Practical choices of  $\vec{\omega t}$  and  $\eta_{TPI}$  must reconcile fuel economy and ease of control. Actual simulation and flight experience has resulted in a choice of  $\vec{\omega t}$  at about 130°. Shorter transfer intervals tend to be more

costly in terms of transfer and braking  $\Delta V$  and longer ones suffer from deleterious propagation of initial errors in estimate of transfer  $\Delta V$  into miss distances at intercept. It also has proven possible to pick  $\eta_{\rm TP1}$  such that the apparent inertial motion of the target in the latter part of the intercept is near zero and so that the transfer from a coelliptical orbit is along the line of sight. For lunar orbit, this is about 26.6° and for earth-orbit 27.5°. The practical advantage of this choice is that the terminal braking procedure is particularly simple: the pilot thrusts so as to null any apparent inertial motion of the target normal to the line of sight. 2.9.2.2 Coelliptical Phase

It is generally desired to constrain the time of transfer so as to satisfy operational constraints such as lighting and tracking. For given  $\eta_{\rm IPI}$ , this reduces to the problem of bringing about the appearance of this angle at a selected instant. By far the simplest pre-transfer condition (with standard approach conditions) which allows this is the co-elliptical trajectory, wherein the differential altitude is constant throughout the phase. Again, from the equations 4.1 - 8a, for coellipticity

$\mathbf{x}(\dagger) = \mathbf{x}_0 + \frac{3}{2}\mathbf{z}_0\omega^{\dagger}$	- '	· · ·
$z(t)=z_o=\Delta h$		2.2 - 1

 $\operatorname{or}$ 

 $\cot(\eta) = \cot(\eta_0) + \frac{3}{2}\omega^{\dagger}$ 

2.2 - 2

Since at transfer  $\eta\left(t\right)$  =  $\eta_{\mathrm{TPI}}$  , it is required that

$$\cot \eta_{o} = \cot \eta_{\text{TPI}} - \frac{3}{2} \omega_{\text{TPI}}^{\dagger}$$

The  $\eta_o$  point at which a maneuver is performed to bring about the coelliptical condition is customarily designated CDH (Constant Delta-H). It is here implied that some maneuver(s) has been performed prior to CDH so as to bring about the required  $\cot(\eta_o) = x_{CDH}/z_{CDH}$ . In the Apollo program, this maneuver is called CSI (Concentric Sequence Initiation) and is customarily performed  $\frac{1}{2}$  revolution before the CDH point. One should note that at first order, the appropriate value of  $\eta_o$  is a function only of the time from CDH to TPI.

The values of  $\eta_{\text{TPI}}$  and  $\overline{\omega t}$  now in use represent compromise choices and may be inappropriate under some special conditions. If, for example, it is desired to rendezvous under circumstances where the transfer maneuver is subject to errors, the effect of these may be minimized by shortening  $\overline{\omega t}$ , as was done for the GT-10 passive rendezvous. 2.9.2.3 Targeting Phase

For a given approximate time of CDH, it is necessary to arrange

 $x_{CDH}$ ,  $z_{CDH}$  such that their ratio (cot ( $\eta_{CDH}$ )) has the correct value. As there are two degrees of freedom and only one condition to he satisfied, the restriction can be made in several ways. If a value of  $z_{CDH}$  is given and the time of CSI fixed, the value of  $x_{CDH}$  is constrained and can be obtained by one two-axis maneuver at CSI or two single-axis maneuvers at different times. Alternatively, by letting  $z_{CDH}$  go unrestrained, the ratio can be obtained by means of a single one-axis maneuver. For reasons of efficiency, this is currently defined to be a horizontal maneuver n/2 periods before CDH. Under this plan, the value of  $\Delta h$  is a variable. A maneuver added to the sequence which has as its objective changing the trajectory so as to bring about a certain value of  $\Delta h$  is called a height adjust ( $N_{\rm H}$ ) maneuver.

It may be here noted that the out-of-plane problem can be shown to be uncoupled (to second order) from the in-plane rendezvous problem. Therefore, out-of-plane solutions may be handled separately in computation and application. In practice, as soon as the out-of-plane motion has been established, a maneuver is performed in conjunction with a scheduled in-plane maneuver (such as CSI) which has the effect of mulling the current out-of-plane rate, thus forcing a node to occur  $\frac{1}{4}$  rev later. On arrival at this node, the velocity is again nulled, placing the active vehicle in-plane. This sequence may be repeatedly performed as better information is obtained until a satisfactory condition exists. Small residual errors in the out-of-plane direction are easily handled during terminal braking. 2.9.2.4 Operational Constraints

Considerations which determine the timing and arrangement of maneuvers are ground tracking, spacecraft-target visibility and maintenance of the trajectory plan. The most critical of these requirements constrain the time of transfer, which must occur so that the target is visible during tracking, and so that suitable tracking periods are available to each vehicle. A detailed analysis of the requirements is contained in MSC Internal Note CF-R-69-6. In order to maintain the accuracy of the TPI maneuver and minimize the effects



of trajectory estimation errors, it is generally undesirable for  $\Delta h$  to be smaller than some value. If an analysis of the likely trajectory dispersions indicates this may happen, or that it may grow unacceptably large, an  $N_{\rm H}$  maneuver may be inserted into the flight plan to minimize these effects.

## 2.9.3 Backup Charts

2.9.3.1 TPI Backups

The method employed in computing a backup TPI solution is that of differencing the actual conditions observed just prior to TPI from the conditions required at TPI to achieve rendezvous  $\omega t$  of orbit travel later. The observables required for this technique are range (R) and range rate (R) at a fixed time before TPI and two measurements of relative elevation angle ( $\Theta$ ) at fixed times before TPI. The solution obtained is resolved into a velocity component along the line-of-sight ( $\Delta V_{LOS}$ ) at TPI and a velocity component normal to the line-of-sight ( $\Delta V_{NOR}$ ) at TPI. Figure II shows the measurement geometry.

The algorithms used to compute the velocity along the line-ofsight and the velocity normal to the line-of-sight are

$$\Delta V_{\text{LOS}} = \left[\frac{\dot{R}_{B(N)} + \Delta V_{\text{LOS}(N)}}{R_{B(N)}}\right] R_{B} - \dot{R}_{B}$$

$$\Delta V_{\text{NOR}} = \left[\frac{\Delta V_{\text{NOR}(N)}}{R_{B(N)}} - \frac{\Delta \theta(N) - \Delta \theta}{\Delta t}\right] R_{B}$$
3/1 - 1

where

$$\Delta \theta_{(\bar{N})} = \theta_{B(N)} - \theta_{A(N)}$$
$$\Delta \theta = \theta_{B} - \theta_{A}$$

and  $\Delta t$  is the time between points A and B. The subscripts A and B indicate the time at which an observable was measured, A being at a time earlier than B. The subscripts N indicate those quantities which are referenced to the nominal trajectory.

This approach depends on the fact that the catchup rate (X) of the active vehicle with respect to the passive vehicle is very nearly constant for coelliptic orbits, and is given by

$$\ddot{x} = \frac{3}{2} \omega z_{0}$$

where  $\omega$  is orbital angular rate and  $z_{o}$  is the differential altitude between the two vehicles (see the derivation in section 2.9.4). It can be shown in the following manner that range rate is a function of catchup rate and relative elevation angle.

Letting

 $R = \sqrt{x^2 + z^2}$ 

and differentiating, we get

$$\dot{\mathbf{x}} = [\dot{\mathbf{x}}\mathbf{x} + \dot{\mathbf{z}}\mathbf{z}] / \mathbf{R}$$
 3.1 - 2

But, under the assumption that we are coelliptic,  $\dot{z} = 0$  and  $x/R \simeq \cos\theta$  so

$$\dot{R} = \dot{x} \cos \theta$$
 3.1 - 3

Similarly, one can show that  $\theta$  is a function of elevation angle:

$$\theta = \tan \left[\frac{1}{2}x\right]$$
$$\dot{\theta} = \left[x\dot{z} - z\dot{x}\right]/R^2 \qquad 3.1 - 4$$

But z=0, x=3/wz, z=z, so

$$\dot{\theta} = -\frac{3}{2}\omega \left(\frac{z_0}{R}\right)^2 = -\frac{3}{2}\omega \sin^2(\dot{\theta}) \qquad 3.1 - 5$$

Hence, the values of  $\theta$ ,  $\hat{R}$ , and  $\hat{\theta}$  at B can be used to infer  $\hat{R}$  and  $\hat{\theta}$  at TPI. These predicted values can thus be differenced from the required values to get a TPI solution.

The backup chart is graphical in nature and the data used to plot it are computed using a digital routine which generates the orbital parameters for a set of trajectories covering the region of expected dispersions about the nominal trajectory. The outputs of the routine are  $(\dot{R}/R)_{REQ}$  and  $\theta_{REQ}$  as functions of  $\theta_B$  (the subscript  $_{REQ}$  denoting the required values of the variables). For each of the  $\theta_B$ 's under consideration, coelliptic orbits are generated and advanced back in time by the appropriate  $\Delta t$  to get  $\theta_A$  and hence,  $\Delta \theta$ . The trajectories are then advanced to TPI and the transfer maneuver is computed (see section 2.9.4.3),  $\Delta V_{LOS}$  and  $\Delta V_{NOR}$ . Then

$$R/R = [R_{B} + \Delta V_{LOS}]/R_{B}$$
3.1 - 6a

- бъ

and

$$\Delta \theta_{\text{REQ}} = \Delta \theta - \left[\frac{\Delta V_{\text{NOR}}}{R_{\text{B}}}\right] \Delta \dagger$$
 3.1

are computed and stored.



ι_¢,

[₹]/1

10/0

26



20 19 180 3.5 80 90 100 120 130 140 150 160 170 2.5 3.0 4.0 1.0 . 5 2.0110 Δθ ₽ REQ MISSION APOLLO 11, MAY 16, 1969

FIGURE III

Graphically, the solution for  $\Delta V_{LOS}$  is obtained by taking the product of  $(\dot{R}/R)_{REQ}$  and  $R_B$  to get  $\dot{R}_{REQ}$ .  $\dot{R}_B$  is then subtracted from  $\dot{R}_{REQ}$  to get  $\Delta V_{LOS}$ . Likewise,  $\Delta \theta_{REQ}$  is subtracted from the actual  $\Delta \theta$  and multiplied by  $R_B/\Delta t$  to get  $\Delta V_{NOR}$ . Figure III presents the TPI chart as flown on Apollo 11.

It should be noted here that the midcourse correction (MCC) charts are equivalent to TPI charts with the following exceptions:

1. The active vehicle is assumed to be on a collision course with respect to the passive vehicle rather than in a coelliptic orbit as in the nominal case.

2. The MCC burn is assumed to occur at the instant of the second measurement point, rather than a fixed time later.

With the exception of the above assumptions, the MCC charts are generated and used in exactly the same manner as the TPI chart. Later work on this problem has resulted in a TPI table, utilizing R,  $\dot{R}$ ,  $\theta$ , and the interval ( $\Delta t$ ) between the last measurement and TPI.

2.9.3.2 CSI Backups

Since the  $\Delta V$  for CSI is not, (in general) even approximately available as a function of the observables, it is necessary to adopt a somewhat different approach than that of the last section. Of the standard mathematical techniques for approximating an unknown function; the simplest is the Taylor Series. For CSI, only the in-plane problem is to be solved; therefore, four independent measurements will serve to constrain the problem. The simplest possibility is an equation of the form

$$\Delta V_{CSI} = \sum_{n} a_{n} q_{1}^{n} + b_{n} q_{2}^{n} + c_{n} q_{3}^{n} + d_{n} q_{4}^{n} \qquad 3.2 - 1$$

i.e., an uncoupled power series in the observables  $q_i$ . Should this assumption fail, it may be necessary to look for higher order cross terms in particular cases. For the situation where CSI occurs as the result of a nominal ascent from the lunar surface, and similar trajectories, this assumption works well.

To determine the constants a, b, c, d, a set of trajectories

1.1

spanning the envelope of expected dispersions is required, together with the  $\Delta V_{CSI}$  for each case. In the solution of this problem, measurement time is held fixed to remove it as a variable, and the values of the observables, R and/or  $\dot{R}$  are read at each measurement point. When these are substituted into 3.2 - 1, a system of simultaneous algebraic equations result

$\begin{bmatrix} \Delta V_1 \\ \Delta V_2 \end{bmatrix}$	]		2 1	q ₂ q ₂ ²		$q_3^2, q_3^2$	•••	q ₄ c	2. 4	• ]	[	
		:										
•	=			•								
		ŀ									·	•
•												d,
ΔV _K			• •	••	• •	• •	• •	• •	•	•		d ₂

This system is generally well over determined, and writing  $\overline{\Delta V} = Q\overline{C}$ by the usual theory (2.9.4.6)  $\overline{C} = [Q'Q]^{-1}Q'\overline{\Delta V}$ 

is the least squares fit of  $\widehat{C}$  to the system. Having determined these constants, a table of partial sums is constructed where each entry is the partial sum of a particular value of a  $q_i$  for various values. Such a table is presented in Figure IV. For this case, the measurements are  $\widehat{R}$  at CSI -30^m, -20^m, -10^m and a range at -10^m. As each measurement is obtained, its corresponding factor is looked up in the table and logged in the space provided. At the last observation, these factors are summed to give the  $\Delta V_{CSI}$ . 2.9.3.3 CDH Backups

Early work on the CDH problem by Flight Procedures Branch elicited the property that range rate in a near-coelliptical orbit is closely representable by a sinusoid of the form

$$\dot{\mathbf{R}} = \dot{\mathbf{R}}_{o} + \dot{\mathbf{R}}_{m} \cos(\phi + \Delta \omega \mathbf{I})^{-1} \qquad 3.3 - 1$$

By appeal to the linearized relative equation it can also be shown that





FIGURE V

R1	Fl	R2	F2	R3	F3	R3	F4	
-240.0 -241.0 -242.0 -243.0	247.3 248.4 249.4 250.5	-140.0 -141.0 -142.0 -143.0	·254.7 256.6 258.4 260.2	-70.0 -71.0 -72.0 -73.0	72.4 73.4 74.4 75.5	120.0 121.0 122.0 123.0	15.2 15.5 15.7 15.9	CSI BACKUP TABLE MISSION G
-244.0 -245.0 -246.0	251.5 252.5 253.6	-144.0 -145.0 -146.0	262.1 263.9 265.7	-74.0 -75.0 -76.0	76.5 77.5 78.6	124.0 125.0 126.0	16.1 16.3	TIME NOMINAL (Min)
-247.0 -248.0	254.6 255.7	-147.0 -148.0	267.6 269.4	-77.0 -78.0	79.6	127.0	16.7	-30 R1 <u>-278.0</u> (-283.3)
-249.0	256.7 257.8	-149.0 -150.0	271.3 273.1	-79.0 -80.0	81.7 82.7	129.0 130.0	17.1 17.3	-20 R2 <u>-170.0</u> (-173.9)
-251.0	258.8 259.9	-151.0 -152.0	274.9	-81.0	83.7	131.0 132.0	17.5 17.7	-10 R3 <u>-91.0</u> (- 94.0)
-254.0	262.0	-153.0	278.6 280.4 282.3	-83.0	85.8	133.0 134.0	17.9 18.1	$-10 \text{ R3} \underline{749.0}$ (154.1)
-256.0	264.1	-156.0	284.1	-85.0	88.9 90 0	135.0 136.0 137.0	18.4 18.6	+1 - 287.4 (293.0)
-258.0 -259.0	266.2 267.2	-158.0 -159.0	287.8 289.7	-88.0 -89.0	91.0 92.0	- 138.0	19.0	381.5 (390.2)
-260.0	268.3 269.3	-160.0 -161.0	291.5 293.4	<u>-90.0</u> -91.0	<u>93.1</u> 94.1	140.0 141.0	19.4 19.6	-F2 3/0.0 (-317.3)
-262.0	270.4	-162.0	295.2 297.0 298.0	-92.0 -93.0	95.2 96.2	142.0 143.0	19.8 20.0	71.5 ( 72.9)
-265.0	273.5	-165.0	300.7	-94.0 -95.0 -96.0	97.2 98.3	144.0 145.0 146.0	20.2	-F4 <u>21.3</u> (- 22.4)
-267.0 -268.0	275.7 276.7	-167.0 -168.0	304.4 306.3	-97.0 -98.0	100.4	147.0	20.9	<u>50.2</u> ( 50.5)
-269.0	277.8	<u>-169.0</u> <u>-170.0</u>	308.1 310.0	-99.0 -100.0	102.4 103.5	149.0 150.0	21.3	+ $\Delta\Delta VCSI$ 0.0 (0.0)
-2/1.0 -272.0	279.9 281.0 282.0	-1/1.0 -172.0	311.9 313.7 315.6	-101.0 -102.0	104.5 105.6	151.0 152.0	21.7	$\Delta VCSI 50.2 (50.5)$
-274.0	283.1	-174.0	317.4 319.3	-103.0 -104.0	106.6	153.0 154.0	22.1	
-276.0 -277.0	285.2	-176.0	321.1 323.0	-106.0 -107.0	109.7	156.0	22.6 22.8 23.0	
-278.0	287.4	-178.0 -179.0	324.9 326.7	-108.0 -109.0	111.8 112.9	158.0 159.0	23.2 23.4	PREPARED by FPr8/OPS
-280.0	289.5	-180.0	328.6	-110.0 -111.0	113.9 115.0	160.0 161.0	23.6 23.8	MISSION APOLLO 11, MAY 16, 1969
41	$2a_nq_1$	92	$\Sigma b_n q_2^n$	<b>q</b> ₃	$\sum c_n q_3^n$	q,	Ed.a?	,

**x** 1

•

FIGURE IV

where  $A \simeq 4$  and  $\Delta \omega t$  is the interval between measurements, a the interval between the last measurement and CDH. Since the CDH maneuver depends only on the relative velocity and current  $\Delta h$ , 3 independent measurements suffice to solve the problem as reflected by 3.3 - 1. From the equations 3.3 - 1 and 3.3 - 2, a nomographic solution of the CDH problem may be constructed as presented in Figure V. The somewhat lengthy derivation of the actual results is presented in Section 2.9.4.2.

Later analysis directed at the solution of the CSI problem has resulted in the techniques of the last section being applied to the construction of CDH backup tables. Their preparation and use is exactly the same as for CSI.

2.9.3.4 Performance Analysis

Once backup charts have been generated, a statistical analysis is done to determine exactly how well they can be expected to perform. Data for the analysis are generated with a routine which executes a large number of rendezvous, and calculates statistical data on the parameters of interest.

The runs for the analysis generally start approximately 40 minutes prior to CSI, and are run through intercept. A total of 300 runs are generally made, broken up into four groups, each run having randomly dispersed initial conditions. The first of these groups consists of 100 runs, made with all applicable random errors, biases, and drifts. It had previously been determined that 100 runs would yield statistically meaningful results. This was done by plotting some of the randomly distributed variables and noting the shape of the resulting bell curve. Studies of this type also indicated that 50 runs would be the absolute minimum number that could be made, and still yield meaningful results.

A second group also consists of 100 runs. These runs are identical to the first set, except for the fact that braking and line-of-

## TABLE 1

## Differences Between Chart Solutions With and Without Errors and Conic Solutions

Maneuver	Avera	ge	Mean				Standard Deviation		
	Set D ft/sec	Set A ft/sec		Set D ft/sec	Set A ft/sec		Set D ft/sec	Set A ft/sec	
*csi ΔΔV _H	0.0	•77	K	o.o	02		0,0	•95	
CDH $\Delta \Delta V_V$	1.11	1.54		1.11	1.05		1.21	1.83	
CDH $\Delta\Delta V_{H}$	.25	.46		25	33		•34	.60	
TPI $\Delta \Delta V_{LOS}$	1.34	2.40	•	-1.04	76		1.45	3.02	
TPI $\Delta \Delta V_N$	•37	2,41		29	44		•54	3.12	
MCCL $\Delta \Delta v_{LOS}$	1,59	2.65		-1.59	-1.83		.91	2.80	
MCCL $\Delta\Delta V_N$	1.34	2.16		1.3 ¹ 4	1.47		•37	` 2.26	
	. 84	1.48		82	97		•59	1.48	
MCC2 AAV	.50	1.29		.50	.85		.16	1.77	

The data in Table 3-3 listed under Set D represents the theoretical error inherent in the charts, while the data listed under Set A represents the total expected error, including theoretical error, system errors, and execution errors.

*The value for CSI  $\Delta \Delta V$  represents the difference between CSI  $\Delta V$  computed with sensor and reading errors, and the value for CSI  $\Delta V$  computed without sensor and reading errors.

sight control are omitted. This is done in order to obtain data on miss distance at closest approach.

The remaining two sets consist of 50 runs each, and are made without any random errors, biases, or drifts. The purpose of these two sets was to get baseline data on chart performance. Again, the second set was identical to the first, with the exception that braking and line-of-sight control were omitted to establish data on miss distance.

During the analysis, one of the basic parameters which was looked at, was the accuracy of the chart solutions. Table 1¹ is representative of the type of data which were derived. In addition, data concerning miss distance at closest approach, total fuel used in the rendezvous, and arrival time at TPI were also derived. 2.9.3.5 Onboard Rendezvous Evaluation _

Evaluation of the progress of the rendezvous is one of the primary crew functions in manual spaceflight. Much of the analysis done by Flight Procedures Branch has been directed toward the provision of "rule of thumb" statements about the behavior of maneuver solutions following trajectory dispersions. For this purpose, the linearized equations of Section 2.9.4 constitute a powerful analytical tool. Let the coordinate system of Section 2.9.4 be fixed on the nominal spacecraft so that motion of the actual to nominal may be compared. As an example, consider an insertion dispersed behind the nominal phase angle (up range distance). To first order, the equations say that this dispersion will propagate to a similar off-nominal position at each point, in particular at CDH. If the phase angle was too large, the S/C is too far up range and a larger  $\Delta h$  will be necessary to arrive at  $\eta_{rel}$  at the right time. For a nominal rendezvous profile, this will result in a lower  $\Delta V_{CSI}$  , since CSI is raising pericythion from about 10 nm to about 45 nm. Similar remarks apply to a horizontal overspeed at insertion. The equations show that after nearly 1 rev, i.e., at CDH, an overspeed will place the spacecraft up range of its

1. MSC Internal Note No. CF-R-69-20, Apollo Mission F Performance Analysis of Rendezvous Charts, April 29, 1969.



nominal position. Converse statements  $\overline{apply}$  to too small an insertion phase angle or an insertion underspeed. If the insertion error is in altitude rate, the actual spacecraft after one rev is nearly coincidental with the nominal one, but has an altitude rate error nearly equal to that at insertion. Thus the vertical component of the CDH maneuver will be perturbed to remove it, but the resulting  $\Delta h$  will be little affected. Provided the pilot has information on the dispersions resulting from a particular case, he can infer the trend of his maneuver solutions in comparison to nominal.

By similar means, the effect of an incorrect CSI maneuver in arrival time at  $\eta_{\text{TPI}}$  may be gauged. Since CSI is strictly horizontal, one need only consider dispersions in this axis and it is instantly apparent that an overburn causes late arrival and conversely. For lunar orbit, this is about 4 min/fps.

2.9.4 Mathematical and Technical Appendix

2.9.4.1 The Linearized Relative Equations

All rendezvous problems have in common two basic requirements; (1) knowledge of the relative motion between the interceptor and target, and (2) a plan of maneuvers for the interceptor which results in a terminal condition of zero relative velocity at a small distance.

In order to facilitate analysis and understanding of the rendezvous problem, it is useful to develop a set of equations describing the relative motion of one vehicle with respect to another when they are reasonably close. This follows the standard treatment, and two assumptions will be adherred to in the discussion:

1. The orbit of the reference particle is near circular.

2. The distance between them is small compared to the radius vector of the reference particle.

In Fig. IV, construct a coordinate system fixed on the reference particle:  $\hat{k} = \vec{R}_{P} / |\vec{R}_{P}|$ ,  $\hat{j} = \hat{k} \times \vec{\nabla}_{P} / |\hat{k} \times \vec{\nabla}_{P}|$ ,  $\hat{j} = \hat{j} \times \hat{k}$  and defining

 $I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad \Omega = \begin{bmatrix} 0 & -\omega_{x} & \omega_{y} \\ \omega_{z} & 0 & -\omega_{x} \\ -\omega_{y} & \omega_{x} & 0 \end{bmatrix}$ 

and noting  $\Omega\,$  and  $R_{P}$  constant by assumption 1., the derivative operator for such a vector is

$$\frac{d\vec{A}}{dt} = \left[1\frac{\partial}{\partial t} + \Omega\right]\vec{A}$$
$$\frac{d^{2}\vec{A}}{dt^{2}} = \left[1\frac{\partial^{2}}{\partial t^{2}} + 2\Omega\frac{\partial^{2}}{\partial t} + \Omega^{2}\right]\vec{A}$$

Using these equations and writing  $R_s^{\ast}$  with respect to  $R_p$  find Newton's Law for particle S

$$\vec{R}_{s} = \frac{\partial^{2}\vec{R}_{s}}{\partial t^{2}} + 2\Omega \frac{\partial\vec{R}_{s}}{\partial t} + \Omega^{2}\vec{R}_{s} = -\frac{\mu}{R_{s}^{3}}\vec{R}_{s} \qquad \vec{R}_{s} = \begin{bmatrix} x \\ y \\ z + R_{P} \end{bmatrix} \quad 4.1 - 2$$

$$= \begin{bmatrix} \ddot{x} \\ \ddot{y} \\ \ddot{z} \end{bmatrix} + 2\omega \begin{bmatrix} \dot{z} \\ 0 \\ -\dot{x} \end{bmatrix} - \omega^2 \begin{bmatrix} x \\ 0 \\ z+R_P \end{bmatrix} = -\frac{\mu}{R_S^3}R_S = -\frac{\mu}{R_P^3}\left(\frac{R_P}{R_S}\right)^3 \dot{R}_S \quad 4.1 - 3$$

0

$$\left(\frac{R_{s}}{R_{P}}\right)^{3} = \frac{\left[x^{2}+y^{2}+(z+R_{P})^{2}\right]^{\frac{3}{2}}}{R_{P}^{\frac{3}{2}}} = \left[\left(\frac{x}{R_{P}}\right)^{2}+\left(\frac{y}{R_{P}}\right)^{2}+\left(1+\frac{z}{R_{P}}\right)^{2}\right]^{\frac{3}{2}} = 1-\frac{3z}{R_{P}} \qquad 4.1-4$$

if terms of second order are ignored by assumption 2. This is the first of two approximations to be made in the interest of obtaining a linear system. Careful note should be taken of the implied limitations on the result. The second approximation is gotten by assuming terms of the form

$$\frac{3xz}{R_P}, \frac{3yz}{R_P}, \frac{3z^2}{R_P}$$

are also negligble, thus to get

$$\left(\frac{R_{P}}{R_{s}}\right)^{3} \stackrel{\sim}{R}_{s} \simeq \begin{bmatrix} x \\ y \\ R_{P} - 3z \end{bmatrix}$$

4.1 - 5

further identify  $-\frac{\mu}{R_p^3} = -\omega^2$  and write



$$\begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{z} \end{bmatrix} + 2\omega \begin{bmatrix} \dot{x} \\ 0 \\ -\dot{x} \end{bmatrix} + \omega^2 \begin{bmatrix} y & -\lambda \\ \dot{y} & 0 \\ (z+R_p) \end{bmatrix} = -\omega^2 \begin{bmatrix} x \\ y \\ (z+R_p) - 3z \end{bmatrix}$$
 4.1 - 6

13

and finally get the E. of equations

$$\begin{bmatrix} \ddot{x} \\ \ddot{y} \\ \ddot{z} \end{bmatrix} + 2\omega \begin{bmatrix} \dot{z} \\ 0 \\ -\dot{x} \end{bmatrix} + \omega^2 \begin{bmatrix} 0 \\ y \\ -3z \end{bmatrix} = 0$$
4.1 4.7

These simultaneous equations are readily integrated to give

Of immediate interest is the fact that the out-of-plane motions are uneoupled from the in-plane. Thus the out-of-plane problem may be treated separately. Writing equations 4.1 - 8a in the form

$$S = A[\omega t] S_0 + B[\omega t] S_0 \qquad 4.1 - 9$$

and considering two possible initial states for the particle

$$S_{\circ}, \dot{S}_{\circ}$$
 and  $S_{\circ}^{2}, \dot{S}_{\circ}^{2}$ 

it can be shown that because of the linearity of the equations, the state at any time due for a combination of initial perturbations is the same as the sum of the states at that time due to the perturbations applied separately, i.e.:

 $\mathcal{A} = A \left[ \mathcal{A}_{\circ}^{1} + \mathcal{A}_{\circ}^{2} \right] + B \left[ \mathcal{A}_{\circ}^{1} + \mathcal{A}_{\circ}^{2} \right]$  $= \left[ A \mathcal{A}_{\circ}^{1} + B \mathcal{A}_{\circ}^{1} \right] + \left[ A \mathcal{A}_{\circ}^{2} + B \mathcal{A}_{\circ}^{2} \right]$  $= \mathcal{A}^{1} + \mathcal{A}^{2}$ 

It may be guessed from intuition and stated from experience that the requirement that the reference particle orbit be circular may be relaxed somewhat, provided that x is interpreted as down-range curvilinear distance along the orbit arc, and z as normal distance from the point x to the particle  $R_s$ . It should be stressed that even in regions where the assumptions leading to linearity are not strictly true, the equations still provide a useful indication of the relative motion to be expected.

2.9.4.2 CDH Equations

It is desired to relate the velocity maneuvers at CDH to the observable, range rate. This will be measured at selected times before CDH.

From Equation 3.1 - 2 of Section 3.2

 $R = [\dot{x}x + \dot{z}z]/R = \dot{x}\cos\eta + \dot{z}\sin\eta$ Since at large ranges  $\cos\eta \simeq 1$  and  $\sin\eta \simeq 0$ ,  $R \simeq \dot{x}$ 

4.2 - 1

Equations 4.1 - 8a, by defining

 $b = 2[2z_{o} + \dot{x}_{o}/\omega]$   $c = [2\dot{z}_{o}/\omega - x_{o}]$   $\rho = -[(\dot{z}_{o}/\omega)^{2} - (2\dot{x}_{o}/\omega) + 3z_{o})^{2}]$ can be written  $\gamma = \tan^{-1}[\dot{z}_{o}/(2\dot{x}_{o} + 3\omega z_{o})]$   $x = c + \frac{3}{2}b\varphi - 2\rho\sin(\varphi + \gamma)$   $z = b - \rho\cos(\varphi + \gamma)$ 

 $\varphi = \omega t$ 

Therefore,

$$\ddot{\mathbf{x}} = \frac{3}{2} \mathbf{b} \dot{\varphi} - 2\rho \dot{\varphi} \cos(\varphi + \gamma)$$
$$\dot{\mathbf{z}} = \rho \dot{\varphi} \sin(\varphi + \gamma)$$

4.2 - 2

For coellipticity, it is required

 $\ddot{\mathbf{x}} = \frac{3}{2} \omega \mathbf{z}_{0}$ 

ż= 0

So that the components of CDH at any point are

$$\Delta V_x = x_{\text{REQ}} - x_A = \frac{3}{2} \dot{\varphi} z - \frac{3}{2} \dot{\varphi} b + 2\rho \dot{\varphi} \cos(\varphi + \gamma)$$
  
=  $\frac{3}{2} \dot{\varphi} b - \frac{3}{2} \dot{\varphi} \rho \cos(\varphi + \gamma) - \frac{3}{2} b \dot{\varphi} + 2\rho \dot{\varphi} \cos(\varphi + \gamma)$   
=  $\frac{1}{2} \dot{\varphi} \rho \cos(\varphi + \gamma)$ 

4.2 - 3



 $\Delta V_z = z_{REQ} - z_A = -\rho \dot{\varphi} \sin(\varphi + \gamma)$ 

Taking the first equation of 4.2 - 2 and defining *

 $\dot{R}_{c} = \frac{3}{2} b\dot{\varphi}$  $\dot{R}_{m} = -2\rho\dot{\varphi}$ 

have

 $\dot{R} = \dot{R}_{c} + \dot{R}_{m} \sin(\varphi + \gamma)$ 

as the equation to be solved. Taking t=0 at the first measurement noting that three will be required to determine  $\dot{R}_c$ ,  $\dot{R}_m$ ,  $\gamma$ :

$$\dot{R}_{o} = \dot{R}_{c} + \dot{R}_{m} \sin(\gamma)$$

$$\dot{R}_{1} = \dot{R}_{c} + \dot{R}_{m} \sin(\varphi + \gamma)$$

$$\dot{R}_{2} = \dot{R}_{c} + \dot{R}_{m} \sin(2\varphi + \gamma)$$

After considerable manipulation, the solution of this simultaneous set can be obtained as  $\sin \gamma = (\dot{R}_o - \dot{R}_c) / \dot{R}_m$ 

 $\dot{R}_{c} = [\dot{R}_{o} + \dot{R}_{2} - 2\dot{R}_{1}\cos\varphi]/2(1 - \cos\varphi) \qquad \dot{R}_{E_{o}} = \dot{R}_{o} - \dot{R}_{c}$  $\dot{R}_{m} = [\dot{R}_{E_{o}}^{2} + \dot{R}_{E_{2}}^{2} - 2\dot{R}_{E_{2}}\dot{R}_{E_{o}}\cos2\varphi]/\sin2\varphi \qquad \dot{R}_{E_{2}} = \dot{R}_{2} - \dot{R}_{c}$ 

Therefore, if  $\alpha$  is the elapsed central angle between the last measurement and the time of CDH, the maneuvers are given by

 $\Delta V_{x} = -\frac{1}{4} \ddot{R}_{m} \cos(2\varphi + \gamma + \alpha)$  $\Delta V_{z} = -\frac{1}{2} \ddot{R}_{m} \sin(2\varphi + \gamma + \alpha)$ 

2.9.4.3 Digital Computation of Transfer

In general, a transfer problem consists of finding the velocity maneuver required to go between given points subject to various constraints.

It is desired to solve the time of flight problem, in a manner appropriate for use with a digital computer.

As in figure VIII, let a Clohessy-Wiltshire (C-W) frame be attached to the passive particle, with  $\omega$ ,  $\dot{X}_{o}$ ,  $X_{o}$  given. Then from the last section

$$X(t) = A(\omega t)X_{o} + B(\omega t)\dot{X}_{o} \qquad 4.3 - 1$$

4.2. - 4

Where  $A(\omega t)$ ,  $B(\omega t)$  are the C-W matrix functions of time. For intercept require X(t) = 0 after a time t:

$$A(\omega t)X_{o}+B(\omega t)\dot{X}_{r} = 0$$

$$\dot{X}_{r} = -B^{-1}(\omega t)A(\omega t)X_{o}$$

$$4.3 - 2$$

$$4.3 - 3$$

Since maneuvers will be done in the active vehicle local vertical frame, compute

$$\begin{split} \dot{\vec{R}_{s}} &= \partial/\partial t(R_{t} + X_{o}) + \omega x(R_{t} + X_{o}) \\ &= \dot{\vec{R}_{t}} \cdot \dot{\vec{R}_{t}} + \dot{\vec{X}_{r}} + \omega x(\vec{R}_{t} + X_{r}) \\ &= \begin{bmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{bmatrix} \quad \dot{\vec{R}_{s}} \quad \phi = \text{Central angle at intercept.} \end{split}$$

in the local vertical frame of the active vehicle.

If this  $\dot{X}_{\star}$  is applied, and the active vehicle precisely advanced along the resulting orbit, it will not, in general, intercept the origin. This is due to the approximate nature of the C-W equations, which results in an  $X_{\epsilon}$  residual at the time for intercept. At this juncture, one may proceed in two similar but slightly different ways, both of which will be discussed.

1. Offset Targeting

Note that the general solution of the C-W equations for  $X_{\mbox{\scriptsize r}}^-$  is

 $\dot{X}_{r}^{\dagger} = B^{-1} (\omega t) X(t) - B^{-1} (\omega t) A(\omega t) X_{o} \qquad 4.3 - 4$ 

In which X(t) was set equal to zero for intercept. Since the solution obtained is known to miss by  $X_{\epsilon}$ , retarget for  $-X_{\epsilon}$  and reasonably expect to hit in between  $X_{\epsilon}$  and  $-X_{\epsilon}$ , i.e., near the origin:

 $\tilde{X}_{r}^{2} = -B^{-1} (\omega t) X_{\epsilon}^{1} - B(\omega t) A(\omega t) X_{o} \qquad 4.3 - 5$ 

This may again miss by  $X_{\epsilon}^2$  say, and a better solution may be obtained as before by aiming for  $-X_{\epsilon}^2$ :

$$\dot{X}_{\ell}^{3} = -B^{-1} (\omega t) [X_{\ell}^{1} + X_{\ell}^{2}] - B^{-1} (\omega t) A(\omega t) X_{o} \quad 4.3 - 6$$
  
and so on  

$$\dot{X}_{r}^{n} = -B^{-1} (\omega t) \sum_{i=0}^{n=1} X_{\ell}^{i} \quad -B^{-1} (\omega t) A(\omega t) X_{o} \quad 4.3 - 7$$
  
where  $X_{\ell}^{0} = 0$ 

one may consider this an iteration on initial displacement by noting that the operation A(wt) transforms an initial displacement into a final displacement:

$$X_{f} = A(\omega t) X_{i'} \qquad 4.3 - 8$$

thus targeting for  $\sum X_{\epsilon}^{i}$  is the same as perturbing  $X_{\bullet}$  by  $A^{-1}(\omega t) \sum X_{\epsilon}^{i}$  and leads to the equation

$$\dot{X}_{r}^{n} = -B^{-1}(\omega t)A(\omega t)[X_{o}+A^{-1}\sum_{i=0}^{n-1}X_{e}^{i}]$$
 4.3 - 9

where  $A^{-1}$  may be considered a matrix gain factor determining how an intercept error should perturb the initial displacement to effect convergence.

## 2. Successive C-W Frames

2

Attach a C-W frame to the active particle and imagine that at intercept, the passive vehicle has a position  $-X_{\epsilon}$  in this frame. Then in this frame compute a velocity maneuver which would send a particle to this point from its origin in an  $(\omega t)' = \Delta v_s$ . Where  $\Delta v_s$  is the change in the true anomaly of this new frame from transfer to intercept:

$$\dot{X}_{\epsilon} = -B^{-1} (\omega t) X_{\epsilon}$$

Add this correction to the initial guess and proceed as before:

 $\dot{X}_{r}^{n} = -\sum_{i=0}^{n-1} B^{-1} (\omega t)'_{i} X_{\epsilon}^{i} - B^{-1} (\omega t) A(\omega t) X_{o}$ 

in effect constituting a new C-W frame at  $X_{\epsilon}$  for each attempt, computing a solution to drive a particle to  $-X_{\epsilon}$  and summing these.

Note that the propriety of these two methods lies in the tendency of the C-W equations to give exact results as the distance between the particles approaches zero. 2.9.4.5 CSI/CDH

Considering first the CDH maneuver, there are several ways to rigorously define coellipticity. The one in use for Apollo results in alignment of the semi-major axes and no variation in  $\Delta$ h to first order. In terms of the eccentric anomoly for each vehicle

 $R_1 = a_1 (1 - e_1 \cos E_1)$  $R_2 = a_2 (1 - e_2 \cos E_2)$ 

therefore

 $\Delta h = R_2 - R_1 = a_2 - a_1 + a_1 w_1 \cos E_1 - a_2 e_2 \cos E_2$  $= \Delta h_0 + (a_1 e_1 \cos E_1 - a_2 e_2 \cos E_2)$ 

In order for there to be no variation in Ah, it must be true that  $E_1 = E_2 - \phi$ . ( $\phi$  = phase angle) so that when the vehicle radius vectors are coincident  $E_2 = E_1$ :

 $\Delta h_{CDH} = \Delta h_0 + (a_1 e_1 - a_2 e_2) \cos E_{CDH}$ 

Then if  $a_1 e_1 = a_2 e_2$ , h will be constant. It can be shown that for given true anomoly of both vehicles the same, the variation in  $\Delta h$  is the order of  $e_1^2 - e_2^2$ .

For CSI, a straight iterative procedure is used wherein a trial velocity for a CSI is varied to compute a numerical partial derivative of change in  $\eta_{\rm TPI}$  with respect to change in  $\Delta Y_{\rm CSI}$ .

2.9.4.6 Multiple Linear Regression

Let an over-determined system of equations be given

$$RC = \Delta V + \epsilon$$

where R is an m x n m > n known matrix and C is an n-row by 1-column. Since the system is overdetermined,  $\vec{\epsilon}$  will not in general by zero, hence let us seek to minimize its magnitude:  $\vec{\epsilon} = R\vec{C} - \Delta \vec{V}$   $\epsilon^2 = \vec{\epsilon}' \vec{\epsilon} = (\vec{C}'R' - \Delta \vec{V}')(R\vec{C} - \Delta \vec{V})$ 4.6 - 3a

$$= \vec{C}^{\dagger} R^{\dagger} R \vec{C} + (\vec{C}^{\dagger} R^{\dagger} \Delta \vec{V} + \Delta \vec{V}^{\dagger} R \vec{C}) + \Delta \vec{V}^{\dagger} \Delta \vec{V} \qquad 4, 6 - 3b$$

An extremum (hopefully minimum) of  $\epsilon^2$  will be found when the variation  $\delta \epsilon^2$  consequent upon a variation  $\delta C$  is zero. i.e. require:

$$\delta \epsilon^2 = 2 \left[ \delta C' R' R C - \delta C' R' \Delta V \right] = 0 \qquad 4.6 - 1$$

since  $\delta \Delta \vec{V} = \delta R = 0$ . Now note that if  $\alpha$ , a scalar is  $\alpha = \vec{K}^{\dagger} \vec{K} = (\vec{K}^{\dagger} \vec{K})^{\dagger} = \alpha^{\dagger}$ 

Since  $\delta \epsilon^2$  is a scalar conclude that each term of 4.6 - 4 is scalar and substitute for  $\vec{C}^{\dagger}R^{\dagger}R\delta\vec{C}$  and  $\Delta\vec{V}^{\dagger}R\delta\vec{C}$  their transposes.

Since the variations  $\delta C$  are arbitrary, we conclude that is minimum if

 $\mathbf{R}^{T}\mathbf{R}^{T}\mathbf{C} - \mathbf{R}^{T}\Delta\mathbf{V}^{T} = \mathbf{0}$   $\mathbf{C}^{T} = (\mathbf{R}^{T}\mathbf{R})^{-1}\mathbf{R}^{T}\Delta\mathbf{V}$  4.6 - 5

2.9.4.7 Digital Programs

Several digital programs have been developed for use in the generation and verification of backup charts and the study of the rendezvous problem. One of these, used for all of the above purposes, is a large multi-purpose Fortran program called Betelgeuse. It has the capability to integrate two vehicles through either Earth or Lunar orbit.

The program utilizes standardized input and output routines. As a normal course of events, approximately 40 different parameters are output at each integration step.

A set of subroutines are available which are designed to solve for each of the maneuvers required in the Concentric Flight Plan. Included in these is the capability to execute externally supplied  $\Delta V$  maneuvers. Taken together, these features provide a flexible tool for the study of rendezvous. Additionally, the program has the capability to generate up to 100 consecutive Monte Carlo runs, each with randomly dispersed initial conditions. This feature is used to make the runs which yield data for the construction of backup charts.

Another set of subroutines in the program represent a mechanization of the backup charts. These routines are capable of sampling data during a run, calculating, and applying the required maneuvers. In addition, there is a routine which executes braking and line-of-sight control during the final phase of the rendezvous. Random errors, biases, and drifts are included in each of these subroutines to make the simulation realistic. These routines are used in conjunction with the above mentioned Monte Carlo generator and a set of statistical analysis routines for performance analyses of backup charts.

A second Fortran program is used to generate the coefficients needed for CSI and CDH backup charts, which are based on Maclaurin expansions. The program takes data derived from Betelgeuse runs, and processes it using a multiple lincar regression technique, yielding the required coefficients.

A third Fortran program is used to generate data for TPI and mid-course backup charts. It has all of the required equations mechanized, and outputs data which can be directly plotted to yield a backup chart.