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ABSTRACT

A computer routine for numerically integrating
Lagrange's Planetary Equations for lunar satellite orbits
was revised to integrate an alternate set of perturbation
equations which do not have the small eccentricity restric-
tion of Lagrange's Equations. This set of equations was
solved numerically for the time variations of the orbit
elements of circular lunar satellite orbits. Consideration
was given to orbits with near equatorial inclinations and
low altitudes similar to those considered for the Apollo
Project.

The principal perturbing forces acting on the
satellite were assumed to be the triaxiality of the Moon
and the mass of the EBarth. The Earth was considered as a
point mass revolving in an elliptical orbit about the Moon.

The variations with time of the orbit elements
for twelve sets of initial conditions were investigated.
Data showing the results for both short time, three revolu-
~tions of the satellite, and long time, 80 revolutidns of
the satellite, are presented in both tabular and graphical

form.
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I. INTRODUCTION

With the recommendation of the President and the
approval of Congress, the United States of America has
launched the scientific and technicological undertaking
of manned exploration of the Moon. The program has been
assigned to the National Aeronautics and Space Administra-
tion and has been titled "Project Apollo."

One prerequisite to lunar landing is the es-
tablishment of the Apollc spacecraft in a lunar orbit. It
is necessary that the variation of this orbit with time
be known in order;

(1) To effect a landing in a preselected area

of the lunar surface, and

(2) To establish stay times on the lunar sur-

face in order to assure successful comple-
tion of rendezvous with the command module
during the return to lunar orbit.
The necessity of determing the characteristics of Apollo-
type lunar orbits prompted the investigation described here.
The investigation of Earth satellite motion has

been quite thorough, however, a relatively small amount of"
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work has been done in lunar satellite theory because sig-
nificant interest in this area has developed comparatively
recently, There are several reasons why the theory of
terrestrial satellite motion is not directly applicable to
lunar satellites, While'usually the mass of the Moon is
neglected in studies of Earth satellite motion, the greater
mass of the Earth has a significant influence on the motion
of a lunar satellite. Also, one of the first assumptions
in most investigations of ¥arth satellite motion is that
the Earth is a - Spheroid of revolution. The Moon, however,
is best approximated as a triaxial ellipsoid; i.e. the

Moon is not a body of revolution. Therefore, it has no
plane of symmetry. Consequently, the lunar gravitational
field is more complex than the gravitational field of the
Earth. Moreover, its orientation with respect to an in-
ertial coordinate system is changing with time due to the
rotation of the Moon about its axis. Due to these factors,
the problem of describing the motion of a near lunar sat-
ellite is in general a different and more complex problem
than that of describing the motion of a near Barth sat-
ellite. It should be noted that the presence of atmospheric
drag, which gfeatly complicates the motion of near Earth
satellites, is of no consequence in the motion of lunar

satellites.



A survey of the literature concerned with this
problem reveals that the primary effort, thus far, has
been the development of approximate closed form solutions
to Lagrange's Planetary Equations, which are a set of
first order, nonlinear, differential equations for the
time rates of change of the orbit elements. Lass and
Solloway (Reference lO)* have developed approximate solu-
tions to these equations for near circular orbits using
the averaging process of Kryloff-Bogolinboff. For this
analysis the Moon was assumed to be a triaxial ellipsoid
in a circular orbit about a point mass Earth. The effects
of the Sun were neglected after they were shown to be on
the order of 0.005 times the effects of the Earth. Lorell
(Reference 11) presents some of the long term and secular
effects of the Earth, Sun,and lunar gravitational poten-
tial on lunar satellite orbits for the same Earth-Moon
model, Tolson (Reference 15) has developed a first order
approximation to phe motion of a lunar satellite under
the influence of only the Moon's noncentral force field.

A few published results exist which deal with

numerically integrating the perturbation equations. Two

¥References appear on pp. 71-72.



such efforts by Brumberg and Goddard are recorded in
References 3 and 5 respectively. . Brumberg considers the
Earth and Sun to be point masses and the Moon & triaxial
ellipsoid. Goddard neglects the effects of the Sun and
considers the Earth as & point mass in a circular orbit
ebout the Moon. Bach of the authors considers polar and
equatorial orbits of both large and small eccentricity.
The integrations are carried out over a period of 40 revo-
lutions, and both authors conclude that these orbits exhibit
a high degree of stability. However, these investigations
deal with orbits of greater altitude and eccentricity than
the Apollo-type orbits.

The analysis presented here is concerned with the
derivation and numerical integration of a set of differen-
tial equations for the time rate of change of the orbit
elements for circular lunar satellite orbits of low alti-
tude, S0 to 150 miles, and near equatorial inclinations of
0.5° to 20° (direct orbits) and 160° to 179.5° (retrograde
orbits). Integrations were carried out over a period of
80 revolutions of the satellite. This corresponds to a
time interval of 7 to 8 Earth days. The results, indicating
the variation with time of the orbit elements, are pre-

sented in numerical and graphical form.



II. ANALYSIS

A. Motion of the Earth-Moon System

Before formulating the problem, the motion of
the BEarth-Moon system will be reviewed.

The Earth-Moon system revolves about 1its center
of mass, the barycenter, with a period of 27.32 Earth days.
Because of the larger mass of the Earth (%ﬁ = 81.32), the
barycenter lies within the radius of the Earth. The ef-
fects of the Sun and planets as well as the asphericity
of the Earth and Moon result in the Earth-Moon orbit being
a perturbed ellipse with an average orbital eccentricity
of 0.0549. The average distance between mass centers of
‘the Earth and the Moon is 384,000 km (238,600 miles).

As seen from above the Northern hemisphere, the
directions of the Earth's rotation about the Sun and the
Moon's rotation about the Earth are westward or counter-
cl&ckwise.

The line of intersection of the Moon's orbit
plane with the ecliptic (plane of Earth's orbit about the
Sun) is called the line of nodes. Due primarily to the
perturbing influence of the Earth and the Sun, the line
of nodes regresses westward with a period of 18.6 Earth
'years, and the line of apsides, or major aiis of the lunar

orbit, rotates eastward with a period of 8.85 Earth years.

5
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The inclination of the Moon's equatorial plane
to the ecliptic is practically fixed at 1°32', while the
inclination of the plane of the Earth-Moon orbit to the
ecliptic is 5°9! (Figure 1). This accounts for the fact
that an observer on EBarth would at one time see the north
pole of the Moon (position A in Figure 1) and half & month
later see th; south pole (position B in Figure 1). This
apparent oscillation in the Moon's poles is called the
"optical libration in latitude.' Since the Moon moves in
an elliptical orbit and its spin rate is practically con-
stant, to an observer on Earth the Moon would appear to
oscillate about its spln axis. This aepparent oscillation
is called the "optical libration in longitude." These
librations in latitude and longitude result in the even-
tual exposure of 59 per cent of the lunar surface to an

Earth observer.

B. Problem Definition and Assumptions

Since the Moon is not spherical and sdince bodies
of the Solar System exert a mutual influence on each other,
the motion of a lunar satellite is not a simple ellipse
such as that associated with 1deal two-body motion. Its
motion can, however, be described in terms of the so-called

osculating ellipse. The osculating ellipse is an ellipse



Equatorial Plane

Spin Axis
6°40
~ Ecliptic 5°9!
"'; 1°32"
Earth
Moon Orbital Plane of Moon
 Figure 1

Orientation of the Lunar Equatorial Plane
with Respect to the Lunar Orbit Plane.



which at each instant of time is tangent to the satellite

orbit at the point occupied by the satellite. Hence, as

the satellite moves along its path the orbital elements of

the
The
the

ing

osculating ellipse are constantly varying with time.

rate at which they vary'depends on the magnitude of

perturbing force. The limiting case of zero perturb-

force results in simple two-body motion.

In the case of lunar satellites the principal

perturbing forces are:

(1)
(2)
(3)
(¢)
(5)

Triaxality of the Moon

Barth's gravity field

Sun's gravity field

Gravity fields of the planets

Soler radiation pressure (important only

for low density satellites).

The relative importance of these perturbing factors de-

pends on the type of satellite and the nature of 1its orbit.

The perturbing force for this study is obtained

after making the following assumptions:

(1)

(2)

The Moon is & triaxial ellipsoid of uniform
mass distribution.

The Earth is a point mass which moves in an
elliptical orbit abouf the Earth-Moon mass

center. The initial orientation of the



Earth-Moon system is determined from a
truncated set of Brown's ephemeris equations.
The subsequent motion of the Earth relative
to the Moon is approximated by elliptical
two-body motion. For the time periods of
interest here this is a reasonable assump-
tion.
(3) The lunar equatorial plane is inclined 6°40"
to the Barth-Moon orbit plane.
(4) - The mass of the satellite is negligible.
(5) The effects of the Sun are neglected since
it has been shown (Reference 10) that they
are on the order of 0.005 times the effects
of the perturbations due to the Earth.
(6) All other perturbing effects are neglected.
These assumptions must be incorporated into a
system of perturbation equations which describe the time
rates of change of the orbit elements of the osculating
ellipse. Before considering these equations, the ephemeris
equations for locating the relative Earth-Moon position for

the selected epoch date will be discussed.

C. Earth-Moon Ephemeris Equations

In view of the current schedule for project
Apollo, the epoch date of January 29, 1970, was chosen for

this study. At that time the Moon will be entering its
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third quarter, and lighting will be favorable for a lunar
landing. Since published ephemeris data for the Moon are
not available this far in advance, approximate equations
based on Brown's theory were used to establish the relative
Earth-Moon position for this epoch date.

In 1920, E. W. Brown published a set of tables
of motion of the Moon which have subsequently been used
to describe the lunar ephemeris. These tables are the
result of some 1,500 separate terms which account for the
perturbation in the Moon's motion due to such effects as
the presence of the Sun and planets and the ellipsoidal
figure of the Earth.

A truncated form of Brown's series expansions
may be used to determine an approximate position of the
Moon as a function of time. The equations used in this
analysis to approximate the Moon's position were taken
from the appendix of Reference 1 and may also be found in
Reference 8, pages 109-145.

Figure 2 shows the geometry of the Moon relative
to the Esrth. The geocentric mean longitude of the Moon,

its perigee, and its node are represented by Lm’ ® and

m}
m respectively and are measured in the plane of the eclip-
tic. The symbols Lg and ﬁs are the geocentric mean longi-

tudes of the Sun and of its perigee. Further define



Figure 2

Geometry of the Earth-Moon System.
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A' = L - ILg C' = Lg - g
B' = Ly - W D' = Iy - &y .

Now, if A is the true longitude of the Moon
measured in the plane of the ecliptic and B is the true
latitude above the plane of the ecliptic, then M - L, and
B can be expressed by sums of periodic terms whose argu-
ments are algebraic sums of multiples of the four angles
A', B', C', and D'.

In this approximatioh the expressions for longi-
tude and latitude include only the effects of solar per-
turbations on the two-body motion of the Earth-Moon systen,
i.e., the effect of the planets and the oblateness of the
Earth are neglected. Furthermore, only terms whose coef-
ficients exceed 60 seconds of an arc are retained. The
expressions in seconds of arc are as follows:

~
/

Longitude = L, + 22,639.500 sin B' - 4,586.426 sin (B' - 2A')

m
+ 2,369.902 sin 2A' + 769.016 sin 2B'
- 668.111 sin C' - 411.608 sin 2D'
-~ 211.656 sin (2B' - 2A"')
- 205.962 sin (B' + C' - zA')
- 125.154 sin A" ‘+ 191.953 sin (B' + 2A')
- 165.145 sin (C' - 2A")
+ 147.693 sin (B! - C')

- 109.667 sin (B! + C*')
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Latitude = 18,461.480 sin D' + 1,010.180 sin (B' + D!')
- 999.695 sin (D' - B') - 623.658 sin (D' - 2A')
+ 117.262 sin (D' + 2A')
+ 199.485 sin (D' + 2A' - B')
- 166.577 sir (B' + D' - 2A')

+ 61.913 sin (2B' + D')

The fuﬁdamental arguments in these equations are
functions of time and are given in Brown's "Tables of
Motion of the Moon." The equations for these quantities

are:
Ly, = 270°26'11%71 + 1,3367 307°53'26.06 t,
1" 2 - n 3
+ 7.14"t, + 010068 t,

~ o ' 1" r o 1 "
Wy = 334°19'46°40 + 11 109°02'02.52 t,
37717 t2 - 09045 ty
- . tc - . 5 tc
r
Oy = 259°10'59%79 - 5 134°08'31"23 t,

n 2 1" 3
+ 7%48 t, + 01008 t,

r
A' = 350°44'23"67 + 1,236 307°07'17".93 t,

1 2 1 3
+ 6.05 te + 0.0068 te

r
B' = 296°06'25.31 + 1,325 198°51'23.54t,

" 2 1" 3
+ 44.31 t, + 0.0518 t
c c
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C' = 358°28'33900 + 997359°02'59"10 t,
n 2 1" 3
- 0%54 t, - 090120 t,

D' = 11°15'11"92 + 1,342782°1'57"29 to

1"t 2 " R 3
- 0,34 tc - 0.0012 te

Here tc is the tire in Julian centuries which has elapsed
since the epoch, January O, 1900. On this date 2,415,020

Julian days have elapsed, hence

£ = Julian day no. - 2,415,020
c 36,525

It has been shown in Reference 1 that these
equations are accurate to just over 3 minutes of an arc
in longitude and 2 minutes in latitude.

In order to calculate the position of the Moon,
let x,y,z in Figure 2 be a geocentric rectangular ecliptic-
oriented coordinate systeﬁ with the x axis directed toward
the vernal equinox of January O, 1900. Then, if 1,3,k are
unit vectors in the directions of the coordinate axes, the
unit vectecr in the direction of the Moon, Tm’ is given by

i, = cos B cos AT + cos B sinMJ + sin B k

Further, the unit vectors, Tn and Eg’ in the directions of

the ascending node and the lunar perigee are given in the form
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i = cos me + sin me

e
1
—
Q
o
w
QO

B

cos wy - sin Qp sin wy cos ig)1
+ (sin Qp cos wy + cos Qp sin wy cos ig)J

+ (sin wy sin ig)k

where ig is the inclination of the lunar orbit to the
ecliptic and wy is the longitude of lunar perigee meas-
ured from the ascending node. From Figure 2, it is seen

that

cos B sin [N - le

J 1 - coszB cosz(K~- Qp)

7

and tke true anomaly, f, of the Mocn is

cos B cos w, cos (M - Q)

+ cos B sin w, cos iy sin (M - Q

+ sin B sin w, sir i, .
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The sign of f is the same as the sign of 1 x i, * K,

so that

sin f = sign [cos &y sin (M - Q)

7

2
- sin w, cos ig cos (» - Qm)]J>l - cos £

On January 29, 1970, the epoch chosen for this
study, the quantities defining the Earth-Moon orientation

are.

Julian Day number = 2,440,616
L. = 213.488°
Wy, = 305.823°

Q, = 343.776°

A = 205.928°
8 = -3.601°
f = 250.229°

D = 265.153°

The elongation of the Moon, D, 1is the angle
measured in the ecliptic, from the Earth-Sun line, west-
ﬁard, to the projection of the Barth-Moon line on the
ecliptic.

For this analysis the above set of geocentric

orientation angles must be transformed to the selenocentric
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inertial coordinate system described in the next section.
However, transformation is simplified by the fact that the
x axis of the selenocentric system is chosen to be parallel
to the line of ncdes of the geocentric system.

After establishment cf the initial orientation,
subsequent moticn of the Earth-Moon system is approximated
by ideal two-body motion. In Reference 12 on pages 32-53,

derivations of the two-body equations used in this analysis

are presented. The results are summarized below:
el
(1) E=M, + € sin M + 3 sin 2M
ed ‘
+ § (3sin 3M - sin M) + .
- 1
f 1l + ef? B
(2) tan 3 = |T - | ten 3
cos E - e
(3) cos £ = T cos E
a(l - e2)
(4) Te = 1 + e cos f

Here a is *he semi-major axis, e, the eccentricity, and f,
the true anomaly of the Earth-Moon orbit. The mean anomaly,
M, is the product of the mean angular velocity of the Moon

about the Earth, wg, and the time elapsed since previous
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perigee passage. The relationship for E, the eccentric
anomaly, (Equation 1) is a series expansion of Kepler's
Equation

(5) E-esin E=M

Average values for the Earth-Moon orbit elements are

Y
il

384,422 KM

0.0549

[
I

we = 0.266507564 x 10 > rad/sec

D. Coordinate System

Prior to developing the perturbation equations,
the coordinate systems employed for this analysis will be

described (see Figure 3).

(1) Selenocentric "Inertial" Coordinate System

(x,vy,2z). Here the word "inertiasl" is used to indicate

that the ccordinate system does not rotate but translates
only. This system has its origin at the Moon's center of
mass. The x axis lies along the intersection of the lunar
equatorial plane and the Earth-Moon orbit plane and is di-

rected toward the ascending node of the Earth's orbit



Lunar Center

=
(5]
Ie
Te
X 1
Figure 3.

Selenocentric Coordinate Systems.
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relative to the Moon. The z axis is directed along the
Moon's spin axis, and the y axis lies in the equatorial
plane so as to form a& right hand triad. The positive

direction of these axes is shown in Figure 3.

(2) Body Fixed Selenocentric Coordinate System

x',y',2'). The x',y',z' coordinate system corresponds
to the principle axes of inertia and forms a right hand
triad. The x',y' axes lie in the lunar equatorial plane.
The x' axis is directed toward the Earth, and the z' axis
coincides with the Moon's spin axis. This coordinate
system rotates with a constant angular velocity equal to
the Moon's spin rate.

The angle 6 is measured in the lunar equatorial
plane and is the orientation angle between the x,y,z and
x',y',z' axes systems (0 < 9 < 360°). The angle 6, between
the inertial x axis and re, the Earth's radius vector, is
measured in the Earth-Moon orbit plane (O < 6 < 360°) .

The relevant expressions are:

Ge = f+-90

& = M + arc tan(cos I, tan.Go)

where f is the true anomaly, M is the mean anomaly, and
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90 is the phase angle between the x axis and perigee of

the Earthi's orbit relative to the Moon.

E. Perturbation Equations

Fundamentally, six constants or orbit elements
are required to describe a satellite's orbit, four to
describe the orbit in plane and two to orient it with
respect to the coordinate system. The orbit in plane is

described by

P : semi-latus rectum

e eccentricity

w : argument of pericenter

tp : time of perigee passage .

The orbit plane is oriented with reference to the coordinate

system by

€ : longitude of ascending node
I : inclination of the orbital plane to the

equatorial plane

For circular orbits, w and tp have no signifi-

cance since pericenter is undefined. Since in this study
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circular orbits will be of primary interest, these quanti-
ties will ncot be directly considered.

Generally, Lagrange's Planetary Equations are
used to describe the time rates of change of the orbit
elements (Reference 13), however, singularities arise in
this set of equations for zefo eccentricity. To avoid
this difficulty, an alternate set of equations described
in Reference 14 has been adopted for this study. Since
their derivation is not readily available in the literature,
it will bte presented here.

The x,y,2z axis system in Figure 4 is the same
selenocentric inertial system discussed previously. The
unit vectors T,E,E lie along the x,y,z axis respectively.
Two vector combinations of ?, the radius, and V, the velocity,
which will be used in this analysis are the angular momen-

tum and eccentricity vector, defined as:

(6) h=T7TxV

o]
i

(7)

<
=X
=

Here a subscripted € is an unit vector in the subscript

direction, and #m is the Moon's gravitational constant.
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The vector e lies along the major axis always directed

toward periselene.

In Figure 4, ZQ is an unit vector lying along
the line of intersection of the instantaneous orhit plane
and the Moon's equatorial plane and directed toward the
instantaneous ascending node. The inclination angle of
the orbital plane, I, is méasured from 0° to 180°, "right
handed" with respect to ZQ. The angles u and w are meas-
ured from 0° to 360° in the orbital plane from the ascend-
ing node to T and e respectively. The longitude of the
ascending node, 2, is measured from 0° to 360° in the
equatorial plane from the x axis to EQ.

To determine the transformations between T and
V and h, e, w, u, 2, and I, we first write T and V in
terms of Er and Ei’ a lateral unit‘vector in the ?, v

plane ( Zi = € X Er). The radius vector is simply rEr,

in which the magnitude of r may be found by dotting each
side of Equation (7) with T and introducing Equation (86).

That is

Fole+E)=-7 LXRB_ExXT1h B D

m m M
h2

rle cos (u - w) + 1] = —
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2
E"Er
- m
(8) =T+ e cos (u - w)

‘V is solved for from Equation (7) by crossing each side

with h

- - = = _Vxh

h X [e + er] = h X m

m
h X {elcos (u - w)er - sin (u - w)ei] + er}
_ (BB (B -DE_nly
M M M

- Hm - -

(9) vV = 3—{[e cos (u - w) + l]ei + e sin (u - w)er]

The following terms will now be defined to further

simplify computations and to eliminate the small eccentricity

restriction o f Lagrange's Planetary Equations: :

P ==, A = e cos w, B = e sin w

Substituting these expressions into Equations (8) and (9)

yields
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Pe
- r

T 1 + e cos (u - w)

which may be written as

_ Pe |
(10) ' T+ A cos u + B sin u
and
(11) V=—=—1[(1L+A cosu+ B sin u)e
h i

+ (A sin u - B cos u)Er]

The reverse transformation is the determination
of the defined quantities when given T and V. These

quantities follow directly from the definition of the

variables:

E-FxV, p=2PB § - =2,

m +\' h * h
_ py _ EXEh _ _
€r T = ;" € sin T 2 AT ¢g € >
_— _._ —-—.— o

(12) B=¢c¢, Xe-g, cosI=¢ -k, 0<TIc180

cos Q = EQ i, sin Q = Ed 3, 0< Q< 360°
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cos u

il
m
be]
m|
e
w
.
]
o
"
m|
b
X
m|
m
=

The sets of equations for  and u are solved in pairs to
determine the proper quadrant for the angle.

Now consider the equation of motion

gz _ force
dt M

or in alternate form

-— M T
dv _ = m
(13) ax = F - 3

where M is the mass of the satellite.

In the alternate form it may be seen that F is
the perturbing force since the case for F=0 corresponds
to central force field motion.

Equation (13) along with Equation (12) can be
transformed into the derivatives of the six orbit elements,
thus forming the perturbation equations.

Since Equation (12) expresses the orbital ele-

ments most directly as functions of h and E, their deriv-

and e.

).

atives are facilated with expressions for



From Equation (13, it follows that

- —_ -_ - —_ p'm;
(14) h=VXV+rx(F- —;g)

=T X F .

The derivative of any unit vector €4 is

5
U O R -
a—dt—aa- za—-3 a * aja - ala
a a
1

=3 (a X a) X a
8

Using this expression, it follows from Equation (7) and

Equation (14) that

- - Hp -
=Vxh+Vx (rxTF) - -3 (r x V) X r
r
MpT o _
= (V+—3)xh+Vx(rx F)
r

(15) =Fx (rx V) + Vx (rx F)

28

a)l
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The derivative of P, the semi-latus rectum, becomes

P=§_t(h.h)=;q,g=ﬂ.;x'f
“m I-Lm. m
(16) =2‘-x?-§=2§r (g -+ 7).

“m m

From Equation (12) the derivative of I is found to be

: d — -— 1 - - —_ . -
—sinII=R(€h k)=;—3-(h><h)><h-k
1 ,= = - =
=—3(hxh) h X k
h
i - - -
= ——= (h x h) * (-€,h sin I)
N Q
. e.xh . €,X%x €
1= & h= 2B . (FxF
02 h
r— — — —
= £ (eQ X eh) X € F
_r _ _
(17) I'= ¢ cos u (eh F)

Since the remaining orbit elements are expressed in terms
of €gq, éQ will be introduced now, i.e.,
kxh 4

h sin I h2 sinZI dt

(h sin I)



jag ¥ |
n X
s

The derivative

of an unit

unit vector, hence k X h - €, = 0, and /
3 L [Exh -c (Kxh - cy]
Q h sin I Q Q
[EQX(Exh)] _
(18) = h sin I X €q
Then from Equation (12) and Figure 4
. € .
. _'d - - Q - -
- sin 0 0 = 3% (eq + 1) T sin T X (k x h
ZQ — = —
= 551 T X (k x h) - (-k sin Q)
k X € .
. I9) _ K
& = h sin I X h
€
Q - =
“ h sin I (r x F)
_r sin u ,— =
(19) 2=i=mt (0 ° F)

Also,

30

vector is perpendicular to the
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- sin u u

1
m |
be)
m|
+
m
o]
m|

!
)

L2}

[EQ X (k x h)] ¢« [sin u Eh]
+ n sin I

Using the previous relationship for @ it can be seen that

[EQXEXH]
h sin I

= Qk

since it must be in the f k direction. It follows then

that

u = E% - @ cos I
r

Finally, from Equations (12) and (18)

A = EQ e + EQ e
= 0k ZQ X e + EQ e
= Bé cos I + EQ e

B=t, - ExE +eyxs 7
= - Aé cos I + EQ . (: X Eh)
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Using Equations (8) and (9) for r and V and Equation (15)

for e, the following expressions can be obtained

(20) A = BQ cos I

+ % { Vv sin qu + [A + (1 + V) cos u]zi] T
(21) B = - AQ cos I

+ % (- v cos}u?r + [B + (1 + V) sin u]Ei} - F

The collected results, called the perturbation equations,

are the following set of first order nonlinear differential

equations:
p=3%£(zi-§)
m
. r _ _
I = 5 cos u (eh F)

A = B cos I

+ % (¥ sin uEr + [A + (l'+ ¥) cos ul Ei] . F
é = - Aé cos I
(22) + % {- V¥ cos uzr + [B + (1 + V) sin u]Ei} - F
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| r sin u ,— -
Q"'IT.sinI(eh F)
u = R  cos I
2
T
h sin u cos 1 r3 - -
=72 (1 - sin I 2 (eh "Bl
r h
Where
¥ =1 + A cos u + B sin u ,

it is convenient to define

The expressions R, C, and W are the components
of the perturbing acceleration in the radial, circumferen-
tial, and normal directions respectively. They will be
used in a subsequent discussion. An expression for the

perturbing acceleraticn now will be developed.

F. Potential Energy Function

It is known from observations over the past one
hundred years that the Moon can be approximated as a homo-

geneous triaxial ellipsoid, i.e., the Moon has three
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principle axes of inertia. To accurately simulate the
motion of a satellite this triax;alty must be considered
when defining the lunar gravitational potential. For a
derivation of the potential energy function of a triaxial
ellipsoid, see Reference 2, pages 115-125.

The gravitational potential per unit mass of a
point P at a distance r from the center of mass O of any

rigid body of mass M is

A, + B, + C, - 3I'

(23) vV o= - G(z + z )+o(ri4).

Where G is the universal gravitational constant, I' is the
moment of inertia of M about the line segment OP, and Al’

Bl’ Cl are moments of inertia about the three principle

axes of inertia (x',y',z'). Also, in the principle axis
system,
.2 . 12
| - — A —
(24) 1=y E) B+ eg(Z0)
where
r2 = x'z + y'2 + z!

Trhe higher order terms in l/r4 will be neglected.
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The Earth will be treated as & point mass for this
analysis since the distance bet&een the Earth and the satel-
lite remains large. Accordingly, the Earth's gravitational

potential is approximated by the following expression

(25) v = a6M_[ - ]

The total potential energy function is then the sum of
Equations (23) and (25). Using this relationship for the
total potential function, Vt, the equations of motion for

the satellite are given in Reference 7 as:

. GM GM,
(286) X = 3(xe - x) - —% X
r r
es €
+ ol ® - > (Aja,.x' + Bia_.y' + Coa,.z')]
r r5 1711 1721 1731
. GM GM,_
(27) y=— (v, -¥) - —3 v,
r r
es e
7 y 5
Y e — 1 1] 1
+ G[H 2 5 (Alalzx + Bjay,y' + Crag,z )]
. GM_ GM_
(28) z=— (2 - z) - T Zg
r T
es e
+ c[H £ - N (A a, ,x' + Bia,,y' + Cra,.z')]
r r5 71713 1723 133



The radius vector of the satellite,

r =

The components

N
|

From Figure 3

Tre
transformaticn
system ard the

transformation

r,

P/(1 + A cos u + B sin u) .

of the

r(cos u

r{cos u

r(sin u sin I)

the

cos

sin

aij are

between the inertial (x,y,z) coordinate

principle (x',y',z') axis system.

satellite's position vector are:
cos © - sin u sin Q cos I)

sin  + sin u cos Q cos I)

expressions for xe, ye, z

direction cosines which define the

matrix [A] is given by:

cos 6

= - sin @

—

sin 6 0

cos @ 0
0 1

is given by:




The lunar force potential, H, is:

M
My 3 a1+ Bie O
(29) H== -3 ry
r Y
2 2
15 1 X y! z!
YT A (A, (F) + B () + ¢ () 1.

In this study we are interested in only the per-
turbing accelerations which act on the satellites. Since
Ai, By, and C, are zero for a spherical body of uniform
mass distribution it is seen from Equation (29) that g%
is the central force field contribution to the lunar ;orce
potential. If this term is removed, Equations (26), (27),
and (28) will yield the components of the perturbing accel-
eration. The radial, circumferential, and normal components

of the perturbing acceleration, R, C, and W, can be obtained

from a coordinste transformation:

(30) R = $(cos u cos © - sin u sin @ cos I)
+ Y (ccs u sin @ + sin u cos @ cos I)
+ ¥ (sin u sin I)

(31) C =% (- sin u cos @ - cos u sin Q cos I)

¥ (- sin u sin 9 + cos u cos Q cos I)

+

+ % (cos u sin I)
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(32) W =% (sin Q sin I)
- ¥(cos 2 sin I)

+ p(cos I)

Equations (22), (28), (27), (28), (30), (31),
(32), and the two body equations of motion to approximate
the motion of the Earth, Equations (1), (2), (3), and (4),
were programmed for numerical solution with the CDC 1604

digital computer located in the computation center at The

University of Texas.



III. COMPUTATIONAL PROCEDURE

The computations for this analysis were per-
formed on the CDC 1604 digital computer utilizing a routine
originally coded by D. S. Goddard to integrate Lagrange's
Plaretary Equations. This routine was revised to accom-
modate the equations and assumpticns used for this study.

A brief sketch of the routine will be given here; hovwever,
a more detailed description including a listing of the
basic computer program is given in Reference 5.

The numerical integrétion was carried out using
a partial dcuble precision Adams-Moulton integration scheme
with a Runge-Kutta starter. In this scheme an initial
integration interval and one initial condition is supplied
for each orbit element. The Runge-Kutta subroutine cal-
culates three additional values. Control is then shifted
to the Adams-Moulton subroutine which continues the inte-
gretion and calculates the single step error. Then the
single step error is checked against prescribed limits
set by the user, If the error becomes too large the inte-

gration interval is halved, and control is returned to the

39
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Runge-Kutta subroutine for new '

'starting values." If the
error becomes too small the integration interval is doubled,
and control remains with the Adams-Moulton subroutine. 1In
this analysis it was found that an integration step size of
100 seconds resulted ir an error within the bounds of lO-6
to 10‘11. A more complete description of this procedure
is given in Reference 6 or in practically any rumericsal
analysis text.

In order to facilitate integration, all input
data and constants containing a length dimension were
divided by lO'4 to force all independent variables to be
0of the same order of magritude.

Two modes of output were employed for this study.
One prints the values of the orbit elements at specified
time intervals for 3 revolutions and shows the short term
variaticus of the elements., The other prints cnly the
local maximum exnd minimum velues of the elements over &
period of 80 revolutions, The minimum and maximum values
of the elements are obtained by comparing the absolute
velue of each calculated point with the atsolute value of
the two previous points. When & local minimum or maximum
value is detected, it is stored by the computer. These
results can be used to obtain an envelope for the variation

in the orbit elements cover long periods of time,
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On completion of the integration ir both cases
the results of each independent variable are arranged in
column arrays. Each array is scanned for 1its maximum and
minimum values, axnd then each element of the array is
normalized. Hence, the maximum value of the array corre-
sponds to onre and the minimum value to zero. The normalized
values cf each ortit element are then plotted against time

by the digital computer.



IV. RESULTS

A, 'Initial Values of Orbit Elements

As stated previously, this analysis deals with
circular, low altitude satellite orbits of rnear equatorial
inclinations. Table 1¥ presents initial input data for each
of the twelve orbits considered here. Values of the orbit
elements at the end of 80 revolutions are alss shown, how-
ever, these will be discussed later.

Based on current speculation that the Apollo orbit
will be circular, approximately 100 miles in altitude, and
inclired at 170° to the lunar equater, iritial altitudes
of 50 miles (P = 1822.20 KM) and 150 miles (P = 1981.35 KM),
and iritial inclinations of 179.5°, 170°, 160°, .5°, 10°,
ard 20° were chosen for this study. For lack of any de-
figitive information on the initial longitude of the as-
cending ncde for the Apollo orbit, it was chosen arbitrarily
for thisz study to lie on the Earth-Moon lirze on the side of
the Moon opposite the Earth.

Inclinations between O and 90° correspond to

prograde orbits and inclinations of 90° through 180°

¥See page 50,
42
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correspond to retrograde orbits. Although the retrograde
orbit has been confirmed for the Apollo mission, the prograde
orbits were also considered to present a more complete
picture of the orbital characteristics for near equatorial
inclinations in this altitude range.

Subsequently, a specific orbit will be referred
to as orbit type 1 through 12, depending or ifs initial
parameters as shown in Table 1. Note that orbit types 1
through 6 are prograde, and orbit types 7 through 12 are

retrograde.

B. Graphical Results¥*

1. Short Time Variations

The variation with time of the orbit elements for
three (3) revolutions of orbit types 3, 4, 9, and 10 are
presented in Figures 5 through 13. Rather than show the
multitude of plots necessary to present the short time
variations of the elements for all cases, only the results
for inclinations of 10° and 170° are shown since these
results are typical.

It is again pointed out that these are plots of
the normalized velues of the elements. Also note that the
small normalizing difference used for this process results

in a greatly enlarged scale. Consequently, a small change

*¥See pages 51 through 67.
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in the value of the orbit element appears greatly exag-
gerated when plotted on this scale; however, this method of
presenting the data facilitates analysis.

Both the maximum and minimum values of the orbit
element are shown on each plot. The maximum and minimum
values correspond to the ordinate values ¢f one and zero
respectively. Consequently, the value cof the element at
any point on the plot mayAbe determined.

The plots of semi-latus rectum indicate that the
time variation of P is practically independent of rota-
tional direction for a given altitude over a period of
three revolutions, i.e, the variation in P is identical
for both direct and retrograde orbits cf a given altitude,.

It is seen from Figures 5, 7, 9, and 11 that the
oscillations in the inclinaticon of the retrograde orbits
of a givern altitude are displaced bty 90° from those of
the progrede ortits. The amplitude of the oscillations
are greater also for the retrograde crbits. The time
variation for a giver inclination varies oxnly slightly with
altitude changes between £0 ard 150 miles. All orbits
experience a decrease in inclination over a period of three
revolutions.

Figures 6, 8, 10, and 12, which present the time

variation of the longitude of the ascending node, indicate
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that Q increases with time for the retrograde orbits and
decreases with time for the prograde. This is to be ex-
pected since the component of the perturting force normal
to the satellite orbtital plane, which causea thé rotation
of the line of nodes (Equation 22), will be in opposite
directions for the two cases. It 1s noted slsc that the
amplitude of the oscillations of  are considerably smaller
‘than those of P or I. This effect is quite noticeable in
the 80 revolutions plots.

Figures 6, 8, 10, and 12 indicate that the varia-
tion of eccentricity is practically irdependent of altitude
or inclination for three revolutions. Figure 13, which
presents e cos w and e sin w for orbit 10, is shown only
to give an example of their variation with +time since the
argument ¢f perigee, w, is of little significance for nesr
circular orbits.

Tr.e variation with time of the angle u, between
the lire cf nodes and the satellite's radius vecter, was
found to be lirear, irdicating that the perturbing effects
or it are negligible. Therefore, thig angle will not be
further considered.

2. Long Time Variatiomns

Figures 14 through 19 present the envélope of varia-

tion which 2ccurs in the values of the orbit elements for
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orbit types 1 through 12 during a period of 80 satellite
revolutions,. The envelopes shown for each orbit are the
locus of points of the maximum and minimum values of the
oscillations of the orbit elements. These are once again
normalized values so that while the actual magnitude of
the change may be small, it may appear to be quite signif-
icant on the plot. In order to reduce the number of plots
and show more readily the effects of inclination for a
given orbit altitude, the plots of P, {, and e versus number
of satellite revolutions are shown with three wvalues of
inclination on each plot. The maximum and minimum values
of the elements are again shown on each plot as well as
time ticks on the abscissa indicating time in days since
injection into orbit. Figures 14 and 15 present P, Q, and
e for orbit types 1, 3, 5 and 2, 4, 6, respectively,
Figures 17 and 18 show the variations in these elements for
orbits 7, 9, ;l and 8, 10, 12 respectively. Since normalized
values of inclination would appear as three straight lines
if plotted in this manner, this element was plotted using
altituje as the varying parameter. TFigure 16 presents the
three inclinations corresponding to the prograde orbits
(orbit types 1 through 6), and Figure 19 presents the

corresponding retrograde cases (orbit types 7 through 12).
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It has been stated previously that the line of
nodes progresses for retrograde and regresses for prograde
orbits. This trend is again noted in Figures 14, 15, 17,
and 18. The noticeable difference in each case between
the results for the near equatorial inclinations, 0.5° and
179.5°, and those for the two orbits of greater inclinations
are attributed to the effects of the Earth and the sin I
term in the denominator of the relationship for §§ in Equation
22 From the initial orientation of the Earth-Moon system
it can be shown from spherical trigonometry that the latitude
of the Earth with respect to the lunar equator 1is +4.48°.
Moreover, this angle will remain positive for 10.5 additional
days. - Consequently, the component of the perturbing force
of the Earth normal to the orbit plane will be in the same
direction for all prograde orbits throughout 80 revolutions,
but the sin I term will tend tb increase the absolute mag-
nitude of § with decreasing inclination as shown in Figures
14 and 15. However, in the retrograde case the normal com-
ponent of the Earth's perturbing force on the 179.5° in-
clination orbits will be directed opposite to that for the
orbits inclined at 160° and 170° to the lunar equator.
Furthermore, as shown in Figures 17 and 18 this factor is

significant enough to reverse the effect of the decreasing
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value of sin I and results in a smaller change in O for orbit
types 7 and 8 than for orbit types 9, 10, 11, and 12. In
brief the effect of the Earth is to cause a regression of

the node for orbit types 1 through 8 and a progression for
orbit types 9 through 12 throughout the time period considered
here. This effect will be reversed when the latitude of

the Earth with respect to the lunar equatorial plane be-

comes negative. The effects of the Earth are seen to in-
crease with orbit altitude as would be expected.

The results for eccentricity indicate that this
element oscillates in practiéally the same manner and with
the same magnitude for all orbits. Harmonics which appear
in Figures 14, 15, 17, and 18 begin after about 40 revolu-
tions and continue throughout 80 revolutions. Figure 20
presents the variation with time of e cos w and e sin w
for orbit 10.

The component of the perturbing force normal to
the orbit plane also determines the direction of the change
in inclination. Here, as in case of {, the effect of the
Earth on orbit types 1 through 8 is opposite to the effect
on orbit types 9 through 12. This phenomena is shown in

Figures 16 and 19.
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Table 1 presents the initial values of the orbit
elements as well as their values after 80 revolutions,
Since 9 is the only element which varies appreciably with
the inclination, the final value of @ is shown plotted

against I for both orbit altitudes in Figure 21.
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V. CONCLUSION AND RECOMMENDATIONS

A numericael integration scheme was revised to
integrate a set of differential equations which describe
the time rates of change of the sateliite orbit elements
but which does notxhave the small eccentricity restriction
of Lagrange's Planetary Equations. This scheme was used
to predict the variation of the orbit elements of Apollo-
type lunar orbits over a period of 80 satellite revolu-
tions. Computation was carried out on the CDC 1604 digital
computer,

The following conclusions are drawn from the
results obtained from this study.

1. All orbit types considered exhibit a high
degree of stability for a period of 80 revolutions, and
there is no indication of future instability. However, it
should be noted that the time periods considered here are
not suitable for answering questions about the long-term

' /behavior of the satellite.
2. The inclination of the radius vector of the

Earth to the lunar equator is such that the component of the
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Earth's perturbing force normal to the plane of the satel-
lite's orbit on orbit types 1 through 6 (prograde) and 7
and 8 (retrograde) is in the opposite direction from that
on orbi£ types 9 through 12 (retrograde) throughout the
time period considered here. Consequently, the effect of
the Earth is to cause a regression of the node for orbit
types 1 through 8 and a‘progression for orbit types 9
through 12.

3. The line of nodes progresses for retrograde
orbits and regresses for prograde orbits. The rate of
change of ( decreases with altitude for a given inclination.
It also decreases with increasing inclination for a given
altitude.

4. Eccentricity and semi-latus rectum appear to
oscillate with a relatively constant amplitude for all of
the orbit types considered here.

5. A fairly complete picture of the variation
of the orbit elements for an Apollo-type lunar orbit may
be obtained from a study of the results presented here.

Considerable additional work needs to be done
in this area to determine more completely the characteris-

tics of lunar satellite orbits. The areas of interest are:
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1. Since satellites for future lunar exploration
will undoubtedly be placed in orbits of widely varying alti-
tude, inclination and eccentricity, the effects of varying
these parameters over a wider range than was considered
here should be determined.

2. Integration of the perturbation equeations
over a longer time period, preferably an entire month, to
more fully ascertain the effects of the Earth would be
worthwhile. |

3. The expansion of the computer program used
here to include the effects of the Sun would give a positive
indication of their relative importance.

4, Since the amount of computer time required to
integrate the perturbation equations for a given numbef of
revolutions becomes prohibitive for orbits of high altitude,
it is important that more sophisticated analytical solutions
to the perturbation equations be developed. Results for
existing closed form solutions should be compared with
numerical solutions to determine their degree of accuracy

and where needed more exact methods should be determined.
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