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CONSIDERATIONS
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_ _ (*)
Kosmicheskiye TIssledovaniya by V. A. Yegorov
Tom 5, vyp.4, 483 - 493,
Izdatel'stvo '"NAUKA'', 1967
SUMMARY

Considered in this paper are trajectories beginning near the Moon,
emerging from its sphere of action on the first revolution, and approach-
ing the Earth during the first orbit around it. The axial trajectories
of the considered trajectory beams pass through the center of the Earth.
They begin either on the lunar surface or on orbits of artificial satel-
lites of the Moon (AMS).

Possible types of return trajectories are indicated and their evolu-
tion is ascertained with the change of initial velocity modulus. The
influence of initial data scattering is approximately analyzed.

*
* *

The problem of return voyage from the Moon to the Earth was examined
in [1 - 3]. In this work the problem is considered for the case of return
from the surface of the Moon, as well as for that from the orbit of Moon's
artificial satellite (AMS).

This problem has two aspects: one refers to the possibility of return
of automatic devices to Earth as a whole, the other — to the possibility
of return of piloted crafts with flat entry into the dense atmosphere layers
for example, into a preassigned corridor according to the height of a con-
ditional (conventional)perigee.The width of this corridor is small by com-
parison with the radius of the Earth {4, 5], and the requirements of precise
realization of entry trajectory are incomparably higher than for return
trajectory to "Earth in the whole".

(*) O TRAYEKTORIAKH VOZVRASHCHENIYA OT LUNY K ZEMLE




In the problem of return from the surface of the Moon unquestionable
interest is offered by trajectories starting from the region of possible
points of vertical landing. Interesting also are trajectories starting
vertically, or nearly so, relative tc the lunar surface, since for them

the control system by takeoff is simplest.

When considering variants of return to Earth from AMS orbit of the
type "LUNA-10" and '"LUNA-11'", it was assumed that the planes of the consi-
dered AMS orbits pass approximately through one and the same straight line.
This line is the axis of the beam of flight trajectories to the Moon, pas-
sing through its center, with flight time of about 3.5 days.

The return trajectories were analyzed with the aid of an approximate
method based upon the consideration of selenocentrical and geocentric
escape velocities from Moon's sphere of action. This method of study of a
multitude of return trajectories allowed us to obtain a good qualitative
and an approximate quantitative representation on the influence of various
factors and on the basic characteristics of return trajectories.

It is ascertained that there exist only two types of return trajecto-
ries, and that there is. a minimum initial velocity assuring the return in-
to a preassigned region of Earth's surface. At lower velocities there
appears on the Earth's surface a forbidden region into which the return is
impossible.

A return with least initial velocities (about 2.58 km/sec) takes place
at start from AMS orbit. For a return journey from the Moon's surface with
vertical start lower initial velocities are required than for an inclined
start, but these velocities are found to be only by a few tens of meters per
second greater than the minimum, and this on condition of sufficiently good
visibility of the point of start from Earth. When starting from the region
of vertical landing, the horizontal direction of the initial velocity is
found to be the most advantageous from the standpoint of energy, whereupon
its magnitude constitutes ~ 2.65 km/sec.

The approximate method allows us to obtain a representation on the in-
fluence of initial data scattering on the return trajectory. The fundamental
factors influencing the deviation of the return trajectory from the nominal
arc the initial velocity and the angular flight range within the sphere of
action of the Moon.

1. GENERAL CHARACTERISTIC OF THE MULTITUDE
OF _RETURN TRAJECTORIES

Let us call return trajectories those which begin near the Moon, escape
its sphere of action over the first orbit around the Moon and then approach
the Earth after having complete around it no more than one revolution.




All trajectories 'Moon-Earth" satisfy this definition on the condition
"that for them the value of Jacobi integration constant in a cicrular restrict-
ed three-body problem ''Earth-Moon-device' exceed sufficiently its first cri-
tical value h; (see [6], pp.160-173). Trajectories 'Moon-Earth" with values
of h only little exceeding h: , perform numerous revolutions about the Moon

and then around the Earth. Thet are extremely sensitive to the scattering
of initial data, the corresponding flight times are quite great [6], and in
the following these trajectories will not be considered. We shall limit our-
selves to the study of return trajectories with flight times of the order of
a few days.

An approximate analysis of return trajectories may be conducted within
the framework of the two-body problem: in the sphere of action of the Moon
we neglect the perturbations due to Earth, and outisde the sphere of action
of the Moon we disregard the perturbations due to the latter. Then the re-
turn trajectory may be approximated by two arcs of conical cross-sections: the
selenocentrical arc with focus at the center of the Moon and the geocentric
one with focus at the center of the Earth. The initial geocentric velocity
~which we shall call escape velocity, is equal in the sphere of action of the'
Moon to the sum of selenocentric escape velocity and of the geocentric velo-
city of Moon's motion. The Moon's orbit may be apprpximately considered as
circular, and this is why the velocity of the Moon (V),) will have a constant
value (about 1 km/sec).

Let the multitude of return trajectories from Moon to Earth by bounded
by the combination of trajectories passing at a preassigned limit distance
ry from the center of the Earth. For the case of return to Earth's surface
' the quantity ry is equal to the radius of the upper boundary of the terres-
trial atmosphere; for the case of return to AES orbit r, is equal to apogee
distance of the satellite. Obviously, Ty Ty, where 1y = 384,400 km is the
major semiaxis of lunar orbit. For example, in the first case we have

T / ™ = 1/60.

For limit return trajectories radius r, is the perigee distance, so that

y

r2V2T = r.YV.Y, ’ (l)

where Vy is the velocity in perigee, r2, V21 are respectively the gebcentric
radius and the transverse velocity at the time t, of device's escape from
the sphere of action of the Moon.

From the energy integral we have

2
sz__2_2= sz———u‘»,
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V! ; nvi + [32 "V’ ‘32 \\ Iﬂ(rv) ) e (2)




Here Vy =V_(r ) — V2 u/ r, is the parabolic velocity at the distance r .
From (1) ang (2) we "have
Vor = VVH(I‘.Y,) vl + By — v, (3)

whereupon v =Ty / Ty. For the case of return to Earth's surface v 1/60.
By order of magnltude quantity B, cannot notably exceed (Vy / VH) for on
account of the rise of energy expenditures it i1s not advantageous to emerge
from a sphere of action with selenocentrical velocity U, compensating with

great excess the velocity Vy of Moon's motion. For the problem of return to
Earth we have 8, ~ 10 2,

Conseuuently, by virtue of (3) for the trajectories considered the trans-
verse escape velocity V,. V.*, where V:* = wp(r, ), i.e. it constitutes only
about 0.2 km/sec. This takes place for any limit return trajectories. For
the remaining ones

Vor < V. * (4)
independently of the initial data (the equality here may obviously take place
also for all trajectories with 8, = v (see (3)). For the return trajectory
passing throughvthe center of the Earth, V,; = 0. It is not difficult to
establish that the value of the selenocentrlcal escape velocity U ig not less
than Uy =Vy —V* 0.8 km/sec, for otherwise the projection (U + VM)T> (e
contrary to (4). The quantity U* is more than twice the selenocentrical
parabolic velocity at the boundary of Moon's sphere of action (constituting
no less than 0.4 km/sec). This is why the arc of return trajectory in the
sphere of action of the Moon is inescapably a hyperbola.

As for any hyperbolic trajectories at disgance from the focus, the di-
rections of escape selenocentrical velocities U and radius 3B, for the return
trajectories are quite close. Let us estimate the angle between these direc-
tions. From selenocentrical energy and area integrals we have

2 |
vz -2 —y2 o 2 p,Visin a,=p4U sin « (5)

Py P

where p1, Vi, a) are the initial senenocentrical radius, velocity and angle

between them, u' is the product of the gravitational constant by the mass of
the Moon, px = 66,000 kmn is the radlus of Moon's sphere of action, o, is the
angle be tween the escape velocity U and the escape radius-vector 3* . From

(5) we have

(6)

where




Since in (6) ax decreases monotonically with the rise of 8; , it results
that the greatest a, will occur for the smallest B8;, i. e. for the smallest
U = Ug. If we then take p; of the order of the Moon's radius, we shall ob-
tain A, < 1/30 and a, of the order of a few degrees.

Let us consider now the geometrically escape selenocentrical velocities
7 of a single value U and all possible directions at the moment of time t, of
missile emergence from the sphere of action in a nonrotating system of coordi-
nates u, v, w, of which the axis u at the moment of time t, is dllthed from
Moon to Earth the axis v is directed against the Moon's VGIOthy (t,), and
the axis E_complementq axes u, v to the right-hand set of three. e con-
junction of the ends of the considered selenocentrical velocities forms a
sphere of radius U (see the dotted line of Fig.l). The corresponding conjunc-
tion of escape geocentric velocities 72 forms by their ends a sphere of radius
U (solid line in Fig.l).
_~U-sphere
T T Let us separate on this last
sphere the regions of directed V
satisfying congition (4). It is
obvious that these regions are cut
out from the sphere by a straight
circular cylinder of radius V. *
of which the axis coincides with
axis u. As may be seen from Fig.l,
for U > U* = Vy + Vi* these parcels
do not merge and have a slightly
v,-sphere  oval shape. As U U* (U > U*),
they stretch and approach one ano-

AN
N ther. At U = U* they are tangent
\ S — at the point (0, V. *, 0). If
A
\ U, < U < Uk, (7)
\\\\\\\\\‘“—’///////// region (4) on the sphere already is
singly connected (Fig.2). It is
Fig.1* quite stretched for values of U ap-

proaching the right-hand boundary of
the interval (7) and constricts at a point with U approximation to its left-

hand boundary. If U < U, the return traject- et
R~ = 11 km/sec

ories are absent. N\\\ ////
/
It is obvious that in the case U > U* /w]\\$\\

the limit trajectories of return encompass *
the geocentric sphere r = ry from all sides.
As U decreases from its value U* on the geo-
centric sphere r -- r, a forbidden zone ap-
pears (from the side approximately opposite
to Moon's velocity direction), symmetrical
reaative to lunar orbit plane. It no longer
is encompasscd by return trajectories. As

U decreases to Uy, this zone spreads over
the entire sphere r — T Note that the points of region (4) on the V,-sphere

* In all figures V  stands for Vy



for which V;,; < 0 correspond to the drifting away of the device from Earth.
Indeed, the corresponding points on the U-sphere are located in its upper
left-hand part (Figs. 1 and 2). Since it was shown above that the emer-
gent selenocentrical radius constitutes a small angle with the velocity U,
the points of emergence are also located in the upper left-hand half of the
sphere of action. If a geocentrig radius r 1is drawn into such a point, its
angle with the respective vector V,, satisfying condition (4}, will be sharp
(Figs.l and 2). Thus, for V,, < 0 we have V,,. > 0.

We shall call the motions with V2uy < 0 ascending, and those with Vou > 0
descending.

If the velocity V does not exceed the geocentric parabolic velocity
Vy(r,) = v 7r2, the device will turn toward the Earth after a certain time
past its escgpe from the sphere of action of the Moon. In the opposite case
it will drift to infinity and the trajectory will not be a return trajectory.
This is only possible when U > V(rz), whereupon we have

1.56 km/sec ==Vn(rM —pg) > Vn(rz) > Vﬁ(rM + p,) = 1.32 km/sec, (8)
where ™™ is the radius of the lunar orbit.

Since for the singly connected region (4) U < U* X 1.2 km/sec < Vp(r, + px),
all points of this region do indeed correspond to return trajectories. However,
greater flight times and a greater scattering of geographic coordinates of the
landing point will correspond to ascending return trajectories than to descend-
ing ones. That is why the decsending return trajectories offer greater interest.

2. NOMINAL RETURN TRAJECTORIES OF VARIOUS FORMS

1. We shall classify the nominal return trajectories by initial data.
We shall refer to the first type the return trajectories from the lunar sur-
face and to the second type those from the orbit of an AMS.

It is appropriate to subdivide the trajectories of return from lunar sur-
face into two forms: trajectory with vertical start and those with inclined
start (

For the determination of initial nominal trajectory data with vertical
start we shall gonsider the spheres of escape velocities, selenocentrical
and geocentric V, (Fig.1l) at a fixed initial velocity Vi, for which E?e escape
velocity U > U*, Then there will be on the V,-sphere two vectors Vz( and 2(H)
respectively for the ascending and the descending motion by trajectories hit-
ting the center of the Earth or a preassigned point of the Earth's surface.
We shall denote thg respective vectors of the escape selenocentrical velocity
by symbols Uy and Ug. The angle y of these vectors' projections on the Moon'
orbit plane (Figs 1 and 3) with direction £(t) from Moon to Larth will be
respectively denoted by ¢y and yp. When hitting the center of the Earth, vec
tors %2 and U lie in the lunar orbit plane; when hitting the point of the
ground surface located under the lunar orbit plane, vectors VE
rise above that plane.

and U also



The angle ¢ of vector U's rise above the lunar orbit plane at vertical
start evidently is the selenocentrical latitude ¢1 of the starting point.
The selenocentrical longitude x; of the point of start (counted from meridian

| Y

of the direction Moon-Earth) on the angle ¢M = wT] ,sexceeds (Fig.3)

Ay = b+ Wl 2, o (9)
where w is the mean motion of the Moon, and T, , is the flight time from the
Moon's surface to its sphere of action. For the problem considered T,., < 17h
(see [6], Fig.12 ), so that Tj > < 9°,

In the following we shall take for the nominal trajectory the descending
one. It is interesting in that for it the point of start is visible from the
Earth, while the flight times and the influence of errors in the initial data
are less than for the ascending trajectory. The point of start for the des-
cending trajectory will be so much the nearer the center of the visible Moon's
disk as the initial velocity is greater. For infinitely great initial veloci-
tieis it coincides with the indicated center (A; = 0), and as the velocity
decreases to the value Vi, corresponding to the selenocentrical velocity on
the sphere of action U = Vy (so as to hit the cewnter of the Earth), the point
of start reaches the limb of the visible disk of the Moon (* X 90°). For ini-
tial velocities of the order of 1 km/sec angles A = 55° — 65° are obtained.

This follows also from properties of motion reversibility [7] by symmetrical
trajectories relative to the plane £z (axis ¢ being directed toward the north-
ern hemisphere orthogonally to lunar orbit plane and axis & being constantly
directed from Moon to Earth), if we take into account that for the point of
missile's fall from Earth to Moon with selenocentrical entry velocity into

the sphere of action of the Moon of the order of 1 km/sec we have A;=-55—-65°.
Note that the points of verical start for ascending motions are about symmetric-
al to the nominal ones relative to the plane ng,

2. Let us now examine the return journey to Earth from a preassigned
point of the lunar surface, whereupon we shall limit ourselves only to des-
cending motions. Note that if the given point does not coincide with that
of verical start, the minimum initial velocity exceeds V.. Thus, for in-
stance, for a start with velocity V,, from the landing region of the station
"LUNA-9" ¢, = 10°, A1 = -60° the angular remoteness of the flight in the sphere
of action ¢, (*) does not exceed 135° (**), whereas in order to hit the center
of the EartR the angular velocity %5 = 90° + 60° = 150° > ¢,. is prerequisite.
For th e initial velocity responding to the value U = 1.4 km/sec, we shall ob-
tain (at horizontal start) ¢, » 120°, while from Fig.l we find ¢;=50° + 60°=
= 110°. Now we see that ¢, > ¢5. Consequently, there exists suchan initial
velocity, for which for a horizontal start we have

@p = 01 ; (10)

(*) even when the elevation angle of the initial velocity vector 8, - 0.
(**)  The numerical data used here may be obtained with tine aid of the
graph (Fig.1,4), of the work ref. [0].




This velocity constitutes for A; = 60°, ¢, < 10° about 2.65 km/sec,
corresponding to U X 1.2 km/sec. Note that for it we have °p 2 125°, while
from Fig.1,4 of the work [6], &7 = 65° + 60° = 125°).

N5 solufion exists for lower initial velocities, while for greater velo-
cities the solution exists only for a certain inclined start (0 < 61 < 90°).
The greater the initial elevation angle, the greater the required initial velo-
city for a fixed initial point. Thus, the horizontal start is the most advan-
tageous from the standpoint of energy. i

Note that as the initial point approaches the point ¢ = 0°, A = 90°, the
minimum required initial velocity at vertical start decreases monotonically
to Vlm value,

3. Let us finally consider the
start from AMS orbit of the "'LUNA-10"
- "LUNA-I1'"" type. Assume that the
nominal selenocentrical trajectory
"Earth-Moon'", passing through the cen-
ter of the Moon, with a flight time
of about 3.5 days, is the axis of a
beam of selenocentrical trajectories
that may be used for the creation of
an AMS. At the point of encoun er
with the Moon this axis constitutes
with the direction Moon-Earth an angle
of about 60°. Fron the energetic
standpoint, most advantageous is the

p = Px transition to satellite orbit from
Fig. 3 the line of apsides of selenocentri-
cal trajectory lying in the orbit
plane of the AMS. Below we shall
consider only the transitions (transfers) close to the most advantageous.

Sphere of action

For a photographic AMS the satellite's orbit inclination to the orbit
plane of the Moon of 90° (i~ 90°) may be appropriate. This means that the -
orbit plane of the AMS will canstitute at the time ty of its escape an angle
of about 60° with the direction &(t,) Moon-Earth (Fig.4). Consequently, yhe
longitude of the ascending node of satellite's orbit for a hyperbola passing
to the north of the Moon, will constitute about 300°, and for a hyperbola pas-
sing to the south of the Moon, the indicated longitude will constitute about
120°. Since the angle between hyperbola's asymptotes, with which transfer to
satellite's orbit is materialized is about 90°, the transfer point will not
be visible from Earth for a close photographic AMS.

For the emergence (escape) from the sphere of action with the velocity
U — 1.2 km/sec along the return trajectory it is necessary (Fig.4) that the
asymptote of this trajectory at time of escape constitute, as the axis of a
- beam of possible escape trajectories, an angle of about 60° with the direction
Moon - Earth. For the escape with energy close to minimum the asymptote must
constitute a small angle with the AMS's orbit plane, which takes place twice
a month.
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If we take into account the rotation of the direction Moon-Earth during
flight time from AMS orbit to the boundary of the sphere of action (about
12 hours) and if we neglect the AMS orbit's precession under the action of
perturbing forces, the directions Moon-Earth at the time t,; of transfer to
the AMS orbit and at the time t; of convergence from that same orbit will be
differing by about 50°. Consequently, the minimum waiting time in orbit con-
stitutes about 4 days.

For energy expenditures close to minimum it is possible to return to the
Earth from AMS orbit only at time intervals multiple of a fortnight (half month).
At the same time, for the return trajectory — a hyperbola passing to the south
or to the north of the Moon, we shall obtain respectively a longitude :2." = 250
or v = 70°, (here the angle.§): is counted from the direction Earth-Moon). We
shall correspondingly obtain the longitude of the apside line of the return
trajectory wge" = 225° or wp'=45°, provided we take into account that the
branch of the hyperbola leading toward the Earth is nearly parallel to the lu-
nar orbit plane and constitutes with the other branch an angle of about 90°
(here w, is counted from the Moon's orbit plane, Fig.5). The orbit eccentrici-
ty of the photographic AMS was visibly appropriately being taken as zero, so
that the height of photographic remain constant. Then, the moment of time
of AMS passage through the apside of the return hyperbola obviously is also
the initial moment of motion.

3. [ESTIMATE OF THE REQUIRED PRECISION OF INITIAL DATA

Let us pass to the estimate of the accuracy of initial data required for
the return to Earth in the whole, at start from the surface of the Moon or
from the AMS orbit. It is obvious that for return to Earth along a nonnominal
trajectory the transverse component V,; of the escape geocentric velocity must
satisfy condition (4), which brings to light the admissible regions on the
V,-sphere and consequently also on the U-sphere. The latter regions are pre-
cisely those allowing us to judge about the required precisions of the initial
data. Indeed, because of errors of initial data the factual vector U, deflect-
ing in direction from the nominal, must not emerge from the admissible region.
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The case of vertical start differs essentially from that of the hori-
zontal start by the influence of initial data scattering. Having considered
the extreme cases, we may obtain a representation on the intermediate cases

also.

Lo e AV

As a consequence of the error in the direction of the velocity vector
there will appear during the flight from surface to the sphere of action
an angular remoteness ¢ for a nearly vertical start. We shall determine it
from the hyperbola equation [8] :

pv =1+ (p— 1)cos ¢ — 2Bysin a; COS a;Sin ¢ (11)
where v = 0,/ g_,'§== p/o. is the parameter ratio to the initial radius oy,

B, = [Vl/Vn(p.lY]2 o = 90° — g;; 61 is the elevation angle of the initial
velocity vector above horizon. Substituting

sin¢/2
P = 2B.,sin%q, and A = — 2
P 1 al sin 0‘1’ (1 )
we shall obtain
Bi(v —cos ¢) =X (A —'Zslcoség-cos o). (13)

As o3 > 0, ¢ - 0, and for A we obtain the quadratic equation

A2 — Ba+ (1 —-v)= 0, (14)

x=(1—v)/1+V1— 31\) (15)

From the two solutions we took the one, which , as V1 + «, satisfies the
evident relation

whence

(P —pP1)e =p ¢, whereupon Ao = (1 — V) / 2.

From the determination (12) we have

3¢ ]/’ 1—v
— =2 =2(1—-v 1+ J1-
. ( )/ )

da 8 (16)

Introducing instead of o; the angle 8 = 90° — a;, we shall obtain
3¢ /30, = — 21,
Besides, for the vertical start we have

39
Wy o
90 vy

A4
vy

~ 0. (17
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For a value U~ 1 kmn/sec we have 3¢ 36; = — 0.86. Region (4) on the
U-sphere have dimensions close to relatively greatest for values Uy little
differing from \M. At the same time the regien considered is found to be
simply connected. Its angllar dimensions constitute several tens of degrees
in length, and about 20° in width,

Since 3¢ / 381 < 1, the 1limit errors by angle 6; will be of the order of
+10° in the direction of region (4)'s width, that is along the normal to Moon's
orbit plane. For the nominal value U = V the errors by velocity U (in the
absence of errors by 6) must not exceed 0.2 km/sec so that region (4) still
contain the trajectory considered (for sU < -0.2 km/sec, region (4) is empty,
for 6U > +0.2 km/sec it is doubly connected and the factual vector U will be
situated between parts of region (4), outside it). The corresponding limit
errors §V; of the initial velocity V,, according to energy integral, will sa-
tisfy the condition

V, 8V, = UsU (18)

i.e. the constitute about 0.06 km/sec. Obviously, most harmful here are the
mixed errors, so that the real ones must not exceed values of the order 2°- 3°
by 6 and 15 — 20 m/sec by V;.

In case of inclined start, be varying equation (1) we shall obtain

6p1_‘) 1—cosop
or =P

(Oﬁico;'-;ol — 21 cos 0y sin 01 80;) —

sing i Iy for ~,
ﬁﬁnbei—-[<1—-p)su1w—ktg0ums@J5¢- (19)

cos By

Introducing the longitude of the pericenter w and the eccentricity e
we obtain from (19) with the aid of solutions p —1 =e cos w; p tg 8, =
=—e sin w :

o i die 1 —cosn
U{); Og¢ bi..((:‘.— \,')\/l (/{)4 {jXU:iu((P—(D)
de ) (1 —cosp)sinG; — Picos Bysing (20

o ceoslsin(q — o)

Taking into account of the dependence of 8; on p; we obtain

di (pv +1)y—cos @ .

—(/n: - T sin(p—w) (21)
Jop 2 t—coseo

—(7171:: __.l”'[ﬁ(:.\'in(.(.{;:—(n-)' (22)

For a horizontal start (8, = 0) we have

s SV
89 == — 1,46~ Sy ,p= —3,02-—, (23)
p1 .

.

S0, = — 1,68 0. (24)
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We see that the modulus of the derivative with respect to 9; is almost
twice as great as for the vertical variant.

At a horizontal start from the surface of the Moon from the region of ver-
tical landings we have U 2 1.2 km/sec (see section 2), V, = 2.65 km /sec. The
limit errors are determined by the part of region (4) for which V,r < 0. Its
dimensions are of the order of 50° in length and 20° in width (Fig.4). The
limit (single) errors are obtained by 61 near *10°, by velocity near :150 m/sec
(taking into account (23), (24)). Errors by azimuth must of same order as by ;.

At start from satellite orbit the limit errors will be somewhat greater,
for the region on the U-sphere can be increased at the expense of transition to
lower nominal velocity VM = 1.1 km/sec. This is more advantageous also from
the standpoint of energy. It is not difficult to obtain with the aid of com-
puters the motions inside and outside the sphere of action with more precise
ranges of errors, assuring the return to Earth as a whole, and also to a preas-
signed region of the ground surface.

CONCLUSION

1. The spatial problem of return has the same characteristic singularity
as the other problems of flight into the Earth's gravitational field, or that
of the Moon: the return trajectories that have extreme properties, belong
to lunar orbit plane. Note also that the last of the return trajectories
(with minimum selenocentrical velocity) by-passes the Earth in the direction
of motion of the Moon, lies in the lunar orbit plane and is tangent to the geo-
centric sphere r = r_ at a point opposite to the direction toward the Moon at
time of device's eme%gence from its sphere of action.

2. The approximate method expounded is asymptotic, i.e. it is so much
the more precise as the mass ratio of attracting bodies is lesser. The Moon
to Earth mass ratio (~ 1/80) is already found to be sufficiently small to obtain
a good qualitative and approximate quantitative representation on the different
properties of return trajectories with the help of the analysis of velocity
conjunctions (this is corroborated by computers). The approximate method allows
to rapidly find with the aid of a computer those solutions which have the requi-
red properties and belong to the regions offering the greatest interest. It
allows us to resolve the questions of existence and uniqueness of solutions.
3. The equality condition of the deployed angular range of the flight,
which is geometrically indispensable (formula (10) from section 2) at a given
initial velocity, has the same theoretical significance as the analogous condi-
tion in the problem of hitting the Moon from a preassigned point of the terres-
trial surface (see [6], pp.16-47). For initial velocities insufficient for the
fulfillment of this equality there is no solutions for the problem.

However, the practical significance of of this effect in the problem of
flight from the lunar surface to Earth is notably lesser than in the problem
of hitting the Moon from Earth, for the indicated condition is always satisfied
when the initial velocity is raised above minimum if only by a few meters per
second.
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4. From the analysis conducted on the influence of initial data scat-
tering in the problem of return from the orbit of an AMS it may be concluded
that the optimum value of the escape velocity from the sphere of action of
the Moon constitutes about 1.1 km/sec. Indeed, no escape velocity of 1.2 km/s
is required for the return from AMS orbit as in the case of return from the
landing area of the station "LUNA-9', and the escape selenocentrical velo-
ciry may be decreased to the geocentric velocity of the Moon. However, as is
shown by computations, the influence of initial data scattering then increases
noticeably. But at velocity of about 1.1 km/sec the region on the sphere of
escape velocities (Fig.4) already is simply connected, but still maintains
large angular dimensions (i. e. according to the admissible direction devia-
tions of the velocity vector from nominal, the ranges are still sufficiently
great).
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