’ Massachusetts Institute of Technology
‘ Instrumentation Laboratory
7 October 1963

Critique of IBM Apollo Study Report - IBM #63-928-129 - 1 Oct 1963

The following is a collection of comments on the use of the Saturn
V guidance computer as a back-up for the MIT AGC. Although it is not
intended to be complete, the preliminary evidence presented makes clear
that the IBM computer is neither suitable nor capable of performing the
Apollo mission as it has been defined. It is indeed unfortunate that the
portion of the BELLCOMM staff which has been an enthusiastic supporter
of the IBM computer did not discern these obvious deficiencies in the many
months of their association with the IBM and MIT staffs.

One of the purposes of this critique is to refute the following summa ry
on programming requirements quoted from the IBM report.

"The storage capacities are roughly equivalent, the AGC-4 being
more economical in subroutine linkage and double precision computations,
while the Saturn is more efficient for the following reasons or areas:

(1) nonsubroutine computation
(2) less double precision computations
are required

(3) a larger basic instruction set"

I. PROGRAMMING CONSIDERATIONS
1. Storage Capacity & Organization
(a) Size

The IBM computer memory consists of two sets of three modules each;
the second set is redundant with the first to .gain the required reliability missing
in the erasable ferrite plane used. This leaves three modules of data, each
module containing 4096 words of 28 bits each. Two of these 28 bits are parity
bits and will be ignored in the discussion to follow, This yields an information
content of 319,488 bits.

The AGC computer memory consists of 1024 words of erasable mem-
ory, 2048 words of non-switchable (or fixed-fixed memory), and 24 switchable
banks of 1024 words each. Each word contains 16 bits, one of which is a pz’irity

IFP7Hoo0
bit and will be ignored. This yields a total information content for AGC of 390,216
bits. (About 3?5 066 of these bits are indestructable in a wired rope configuration.)

Comparison of these numbers indicates that the IBM computer has an
information content which is about 20% less than AGC.

(b) Module Organization .

As pointred out above, Ithe IBM computer memory is logically divided into
three dis.tinct modules of 4096 words each, Program control is transferred from
module to module by the HOP order code with an appropriate setting of a- HOP GOl
stant. Data addresses cannot cross module boundaries unless the reference is to
the Accumulator register or location 775, the PQ register (a delay line).

To use subroutines which cross modules, the return address must be passed

over in one of these registers; the other register can be used to pass over a

-2-

single precision argument. Even with the proposed engineering change to
allow automatic generation of HOP constants for return addresses, only a
double precision quantity may be passed over conveniently. Vector sub-
routines, for example, must be duplicated in each module.

No such restrictions apply to the AGC because 3072 words are
addressable from any location in the machine while thé IBM computer
supplies only 2 such.words.

(c) Sector Organization

Each module of the IBM computer memory is further divided into
sectors of 256 words each. At any particular point in time an instruction can
address:

(1) the 256 word residual memory, identical
for all addresses in the same module.
(2) the currently selected 256 word data sector.
(3) the currently selecteci 256 word instruction
sector.
To select a Iocation not contained in these 768 words requires a HOP instruction.

In the case of the AGC, at any particular point in time an iné‘cruction can
address:

(1) the 1024 word erasable memory (including
specials, centrals, I/0O)

(2) the 2042; word fixed-fixed memory, identical
for all addresses.

(3) the currently selected 1024 word switchable bank.

e

To select a location not contained in these 4096 words requires a TS to the
BANK register.

It is not easy to assess the wasted storage required to overcome the
fact that only about 20% as many locations are directly addressable in the
IBM computer as in the AGC. In fact, the 256 words in the instruction
sector can only be addressed by TRA, TMI, and TNZ. Further, the sector
registers are not directly addressable and a subroutine can never HOP without
destroying the present contents of the data sector register,

It is estimated that the duplication of numerical constants, HOP con-
stants, execution of HOP'S to switch data sector, and inability to save sectior

registers will consume 10-15% of the total memory.

3a

2. Subroutine Computations

The principal advantage of performing computer calculations by
means of subroutines is to minimize the amount of storage capacity re-
quired at the expense of some increase in computing time. For example,
if it is required to perform a square root computation more than once, it
is clearly better, from the point of view of conserving storage capacity,
to have only one square root routine in the computer which is called each
time a square root is required than to have a separate copy of the square
root routine each time it is needed.

(a) Because of the nature of the Apollo guidance problem, sub-
routine computation is the only practical method of conserving storage
capacity. Many computations, such as the square root example, just
cited, are required which would consume storage at an exorbitant rate if
they were programmed each time they were used.

On the other hand, subroutine computation is, perhaps, not
needed for the mechanization of the so-called Saturn "'path adaptive' gui-
dance mode for which the IBM computer was designed. The fundamental
computation is simply polynomial evaluation. If an explicit guidance tech-
nique were employed for Saturn, it would be extremely difficult to imple-
ment without the use of subroutines,

(b) Subroutine computation is facilitated in the AGC by means of
a programmed interpreter. For example, the following program will per-
form the vector sum of two double precision vectors A and B to produce a

double precision vector C.

VAD

W e @

STORE C
Required Storage 60 bits

The same computation performed in the IBM computer is programmed

CLA
ADD
STO
CLA
ADD
STO
CLA
ADD
STO

A
B
C
A+1
B+ 1
Co
A+ 2
B+ 2
C+ 2

Required Storage 117 bits

)

The IBM computer is not well adapted to efficient use of sub-

routines. For example, if a subroutine were provided for vector addi-

tion, more storage would be required to call the subroutine then that re-

quired to perform the computation

directly. A program to call a vector

add subroutine, or any vector subroutine for that matter, would be as fol-

lows:

CLA

STO

CLA
HOP
HOPCON
CLA

STO

CLA
HOP
HOPCON
CLA

STO

ADRESA
VCAADR
%+ 9
VCALINK
s+
ADRESB
VADADR
* 4+ 2
VADLINK
s+ 1
CADRES
VTSADR

CLA * 4+ 2
HOP VTSLINK
HOPCON *+ 1

Required storage 312 bits

(d) IBM has recognized their deficiency in efficient subroutine
management and has suggested an engineering change. With this change

implemented, the program to call the vector add routine would be

CLA ADRESA
HOP VCALINK
CLA ADRESB
HOP VADLINK
CLA CADRES
HOP VTSLINK

Required storage 78 bits

It should be noted, however, that because of the modular structure of the
computer, vector subroutines are impractical. A copy of each vector sub-
routine would be required in each module because of the extreme difficulty
of exchanging data between modules. For example, to move a vector across
module boundaries requires 1230 u sec and 156 bits of program storage.

(e) Finally, to complete the comparison, we have programmed for
both the AGC and IBM computers, the integration routine needed to up-date
position and velocity vectors during all phases of powered flight. We have
tried to exploit the characteristics of the IBM computer to produce an efii-
cient program. Therefore, it has been assumed that the components of each
vector are stored in the same relative position of three different memory sec-
tors. The AGC program requires 375 bits of storage while the IBM compu-
ter requires 1001 bits for the same program or 2.7 times the storage re-

quired for the AGC. The AGC computer produces a twenty-eight bit result.

The algorithm for a spherical gravitational field may be summarized

as follows
NAVIGATION EQUATIONS

Spherical Gravitational Field

Quantities in storage:

B |
Sl T S By
Equations:
e B %
Rpy "Ry +hy, + o G ¥ Wiag
2 2
RS B p0® vl g
R = SQRT (RS)
h i n
Flotpg S BRI ES LI g
2 2
- - T h 1 4 h A
Vg * Ve Wi +§9k "y Git1

The programs for the two computers are given below in detail.

IBM Computer Program for Integration During Accelerated Flight

AVERAGEG STO EXITHOP
HOP HOPSET1
AVG1 CLA WK
SHF R1
ADD HGK/ 2
ADD VK
MPH H
ADD R
STO R
MPY R
HOP THISSEC1
AVG4 CLA HOPWD1
ADD ONE
STO HOPWD1
CLA PQ
ADD DOTSUM
STO DOTSUM
HOPWDI HOP HOPSET1
AVG2 GLA DOTSUM
STO SQRTARG
CLA * 4+ 2
HOP SQRTLINK
HOPCON 4 1
CLA SQRTANS
MPY DOTSUM
CLA -MUH/2
NOOP
NOOP
DIV PQ

HOP THISSEC2

AVGH

AVG3

AVGS

HOPSET1

HOPSET?2

EXITHOP

CLA

STO

CLA

STO
NOOP
NOOP
NOOP
CLA

STO

HOP
CLA
MPY
CLA
ADD
ADD

D

CLA

STO
ADD

STO

HOP
CLA
ADD

STO

HOP
HOPCON
HOPCON
HOPCON
HOPCON
HOPCON
HOPCON

(exit hop con

HOPSET1
HOPWDI1
HOPSET2
HOPWD2

PQ
DOTSUM
HOPSET?2
R
DOTSUM
HGK /2

W

\"

'

PQ

HGK /2

%

-
THISSEC3
HOPWD?2
ONE
HOPWD?2
HOPSET2

AVGL, XCOMP

AVG1, YCOMP
AVG1l, ZzCOMP
AVG2, XCOMP
AVG3, YCOMP
AVG3, ZCOMP

)

SQRTLINK HOPCON SQRT, XCOMP

THISSEC1 HOPCON AVG4, AVG4
THISSEC2 HOPCON AVG5, AVGH
THISSEC3 HOPCON AVG6, AVGE

AGC Computer Program for Integration During Acceleration Flight

AVERAGEG VXSC 0
W
SCFTR
NOLOD 1
VAD VAD
HG
\'
NOLOD 1
VXSC VAD
o9
R
STORE R
NOLOD 1
DOT ROUND
R
NOLOD 2
SQRT DMPR
BDDV VXSC
HMUE
R
STORE HG
NOLOD 1
VAD VAD

STORE v

=

3. Double Precision Computations

(a} The basic data word length in the IBM computer is 25 bits plus
sign. However, with overflow protection this precision is automatically
reduced to 24 bits. Also the multiply instruction produces only 23 bit pro-
duct. In contrast, the AGC in the double precision mode has 28 bits plus
sign with automatic overflow protection and produces a full 42 bit product.

To check the adequacy of the IBM word length we have performed
the following experiment. A complete simulation of midcourse guidance
and navigation procedure was made using our Monte Carlo program.

Two trajectories are calculated: the true position and velocity
and the estimated value as computed by the guidance computer. A set of
five circumlunar runs were made all with the same random numbers. At
the end of each integration time step the estimated position and velocity
vectors and the error matrix were fixed-point truncated. All intermediate
calculations were made with full ten digit floating point numbers. Position
and velocity uncertainties at perilune and at entry are shown in the follow -
ing graphs as functions of the number of bits remaining after truncation.

These results are, of course, optimistic since the guidance com-
puter does all computations with the limited word length., In our simula-
tions it should be emphasized that all computations were performed with
the full ten digit floating point and only the results truncated.

Ames Research Center completed a similar analysis two years
ago. Their results are shown also in graphical form. They confirmed the
fact that accuracy is degraded by at least a factor of five from that attainable
with AGC double precision arithmetic. As a result it seems highly unlikely
that entry corridor requirements could be achieved with the IBM computer
in single precision.

Even if the accuracies read from these graphs were folerable it is
extremely dangerous to be operating on the steep part of the curves. A
slight loss of accuracy can result in enormous degradation in performance.

(b) The more frequent need for double precision operations in the
AGC is not necessarily a severe penalty. For instance, the equation A+B=C

is done faster in double precision by AGC than in single precision by the IBM

-11-

=12 -

Sl AP o BRI FL S

et L]

-13-

VELOLH T

CF*v-’/;Ec

o

T RS

e

f

AR

UrE

t
-

FErR

TH KN TY

&e

UNC

1%

-

]
3

& 1771

0

r

-15-

YELO LT

(Fr fsec)

7 v
h

v

YN CER TH 1

o

ReenTRY

200

|
|

]
i

r?:
N

l
e

|

|

|

/

Z?.

.
éqgfi;;;'--“““
.CEEV?QE

i

=7

LA e S

27

W& &
/ié'é_fé:a'

I F3
Lo g 5
! 1

RS
- '.M?"“I-

-16-

S BT

z&

o _ |_ B r | \\\\\\r
i .;wilj.ll e ! Ill.... 4 ol i /\\ : . desnpplepaiinai kol 2 o

Az AN

| AaTua0 HoRA3e3A eama | T T i

S S s ST e B e s s ST ERP RN S B T T e T e S B e o e

N
3

Y N 5 A »
" ; ;
rmmu\k nfuiﬁ_? §.;m

79
44
4c

=/

2e

computer.

AGC (A in fixed) IBM

CAF A+l CLA A

AD B+1 ADD B

TS ik 4 STO C

CAFR ZERO

AD A

AD B

TS C

28 bits of precision 25 bits of precision
in 168 u sec in 246 u sec

Also, the AGC double precision multiply, yleldmg 42 bits in 1 msec, runs
only 20% longer than IBM's double premsmn(addltlon (840 u sec average)
As another example, AGC performs Square root in double precision
(28 bits) in about 2. 4m sec minimum, while the IBM computer performs
square root in single precision (22 or 23 bits) in about 3. 9 msec minimum.
Thus AGC gets 125% of IBM's precision in 60% of the time.
The IBM program developed for this comparison follows:

SQRT STO RETURN
CLA ZERO
STO NORMCNT
CLA ARG
NORMTEST AND HIGH3
TNZ NORMDUN
CLA | NORMCNT
ADD ONE
STO NORMCNT
CLA ARG
SHFE L2
STO ARG
TRA NORMTEST

T

HIGH3

142
SLOPELO
BIASLO
SLOPEHI
BIASHI
NORMDUN

ARGHI

NEWTON

DEC
DEC
DEC
DEC
DEC
DEC
AND
TNZ
CLA
MPY
SHE
STO
CLA
ADD
TRA
CLA
MPY
SHIE
STO
CLA
ADD
STO
CLA
DIV
ADD
ADD
ADD
ADD
ADD
ADD
ADD
CLA
SHE
ADD
STO

-18-

19

.0

. 4162

. 1487

. 2942

. 2046
142
ARGHI
ARG
SLOPELO
R1
ARG
BIASLO
PQ
NEWTON
ARG
SLOPEHI
R1
ARG
BIASHI
PQ
BUF
ARG
BUF
ZERO
ZERO
ZERO
ZERO
ZERO
ZERO
ZERO

Rl
BUFR
BUF

CLA ARG

DIV BUF

ADD ZERO

ADD ZERO

ADD ZERO

ADD ZERO

ADD ZERO

CLA BUF

SHF R1

ADD PQ

STO ARG
CLANORC CLA NORMCNT

TNZ POSTSQRT

CLA ARG

HOP RETURN
POSTSQRT SUB ONE

STO NORMCNT

CLA ARG

SHF R1

STO ARG

TRA CLANORC

The calling sequence for this (and indeed, any unary) subroutine

is:

CLA X

STO ARG

CLA REHOP

HOP SQRTLINK
RETURN CLA ARG

for which two HOP constants are required:

REHOP HOPCON RETURN
SQRTLINK HOPCON SQRT

<8

4. Basic Instruction Set

It is very misleading to judge a computer solely on its ability to
perform arithmetic. In fact, numerical computations generally account
for only a small fraction of the actual program storage and computation
time. When the AGC and IBM instruction set for non-arithmetic opera-
tions are compared as to their versatility and speed, the AGC order code
is far more powerful and can accomplish anything in less time than IBM
computer. In particular, the AGC has indexing capability, easy sub-
routine linkage and complete freedom to interrogate output registers.
None of these features are present in the IBM machine and cannot be pro-
vided without a significant redesign.

In the two tables which follows the AGC and IBM instructions are
compared. It is seen that on the average the AGC counterpari of the IBM
instructions requires 70% of the program executive time. On the other
hand, for the IBM computer to duplicate AGC instructions requires over
13 times the computation time. These facts markedly reduce the feasi-
bility of a programmed interpreter for the IBM computer to conserve
storage in a manner similar to the AGC. Indeed, equivalent coding of
representative sections of a programmed interpreter of the type used in
the AGC indicates a five to one speed disadvantage.

-20~

IBM Operation Code Equivalents

for Non-Arithmetic Operations

IBM_Code IBM AGC e
HOP 82 u sec 60 u sec .73
TRA 82 u sec 12 u sec .15
TMI 82 u sec 72 1 sec .88
TNZ 82 u sec 84 u sec 102
SHE R1, L1 82 u sec 48 u sec . 59
R2, L 2 82 u sec 72 u sec .88
AND 82 u sec 24 .. sec .30
CLA 82 u sec 48 u sec .59
STO 82 u sec 24 4 sec . 50
PIO 82 u sec 24 u sec . 30
XOR 82 u sec 168 u sec 2.05

Table 2

i

AGC Operation Code Equivalents

for Non-Arithmetic Operations

Speed
AGC Code AGC IBM Ratio
6 12 u sec 82 u sec 6.3
CCs 24 u sec 246 u sec 10. 3
INDEX 24 u sec 573 u sec 23.9
XCH 24 u sec 492 u sec 20.5
¢S 24 u sec 164 u sec 6.8
TS (no overflow 24 u sec 82 u sec 3.4
protection)
TS (with overflow 24 u sec 738 u sec 30.8
protection)
MASK 24 u sec 82 u sec 3.4
Table 1

- -22-

II. DATA ADAPTER

The AGC counter registers contain a full 15 bits and the scale factors for
G&N devices have been chosen accordingly. 2715 of a circle is 40 secs of arc;
2713 of a circle is 2.6 min of arc which is inadequate for guidance accuracy
requirements. The IBM data adapter allows only 13 bits. Therefore, in most
cases, the true counters must be kept in memory outside the DA with the 13
bit DA quantities serving as incremental quantities. For example, the CDU
shaft encoder has 215 states and the shaft position can only be stored as a 15
bit quantity in the central processor, This represents a duplication in
storage as well as a programming inconvenience.

‘To change the DA counters from 13 to 15 bits would involve changing
the word length in the IBM computer or almost doubling the number of delay
lines in the DA.

The AGC counters may be read by any instruction which, along with
INHINT and RELINT, eliminates the need for a PIO type instruction. This
counter reading is achieved in 24usec. On the other hand, the IBM computer's
DA takes a number of instructions to do the same task. Thus,-to complete our
example, equivalent programs for reading the CDUX counter into the accumu-

lator is given below:

AGC IBM

CS CDUX PO READCDU
BLE) READFAZE
AND "FAZEMASK
TNZ x = 2
PIO READCOD
ADD GBI
AND LOWI5
STO CDUX

-23-

104 bits
656 u sec.

1

4 .
Storage
Time

15 bits torage
24 u sec. Time

i
1

This procedure is required for CDUX, CDUY, CDUZ, OPTX, OPTY,
TRKRX, and TRKRY. This procedure, 27 times slower than that required
in the AGC, will exert the biggest load during LLEM operations when computa-
tion time is most needed.

\We concur with IBM that Servicing of Telemetry, Displays, Keyboard, etc.
requires about 5% of AGC time vs 25% of IBM time.

III. INTERRUPT

The AGC has 5 distinct interrupt sequences. This allows rapid isolation
of the cause of interrupt. The IBM computer has only one distinct interrupt,
This means a lengthy scan must be performed to determine what has initiated
the interrupt.

The time spent to initiate an interrupt on the IBM computer is about 25%
longer than necessary (cf. Vol. 1, pp. 4-15) because of poor design of the
instruction repertoire. In any case, it is at least 4 times longer than the
corresponding AGC sequence,

The address used to initiate the interrupt program is taLgen from regigter
776 of the module being used when the interrupt occurs. Thus, if the interrupt
address is to be changed, it must be changed in all three modules. This
further duplication of program and increase in execution of interrupt task is

debilitating.

s e

	I. Programming Considerations
	1. Storage Capacity & Organization
	2. Subroutine Computations
	3. Double Precision Computations
	4. Basic Instruction Set

	II. Data Adapter

