CLASSIFICATION CHANGE UNCLASSIFIED y authority of 60 hanged by a Shrley Date_ lassified Document Naster Control Station. NASA cientific and Technical formation Facility T Ĭ 0 NAVIGATION GUIDANCE AND ir Approved Date <u>28</u> JOMN E. MILLER, SYSTEMS GROUP LEADER L V V I POLLO GUIDANCE AND NAVIGATION PROGRAM Date 18 Set 62 Approved RALPH'R. RAGAN, DIRECTOR SI INERTIAL MEASUREMENT DIVISION APOLLO GUIDANCE AND NAVIGATION PROGRAM EISUHDASSA Date 862 Approved_ MILTON B. TRAGÉSER, DERECTOR APQLLO GUIDANCE AND NAVIGATION PROGRAM Date // 8/67 Approved 4 WOODBURY, ASSOCIATE DIRECTOR ROGER B. INSTRUMENTATION LABORATORY (Title Unclassified) REPORT E-1212 (Preliminar, IMU ERROR DATA FOR APOLLO TRAJECTORI by

Frederic D. Grant, Jr. September 1962

X

71

COPY # $-\frac{93}{-}$ OF $-\frac{325}{-}$ COPIES THIS DOCUMENT CONTAINS $-\frac{1}{25}$ PAGES

-CONFIDENTIAL

TABLE OF CONTENTS

Error Data Summaries for Various Trajectories	1
Assumed RMS IMU Errors for System Error Studies	2
Section A - Earth Launch into Orbit Trajectory	3
Section B - Translunar Injection	17
Section C - Lunar Deboost to Orbit $\ldots \ldots \ldots \ldots \ldots \ldots 3$	31
Section D - Lunar Landing	16
Section E - Lunar Takeoff \ldots \ldots \ldots \ldots \ldots \ldots \ldots 6	;0
Section F - Transearth Injection	'5
Section G - Earth Reentry Trajectories	0

(Preliminary)

IMU ERROR DATA FOR APOLLO TRAJECTORIES

This report contains summaries of position, velocity, and orientation errors due to IMU errors for seven trajectories of interest. The error data presented herein are purely preliminary.

For example, the trajectories used in this study represent simple first-order approximations to thrusting and reentry phases typical to but not necessarily matching those of the Apollo mission.

The data presented for each trajectory are as follows:

- 1) Trajectory description & data
- 2) Over-all system studies of position and velocity errors
- 3) Over-all system study of stable member drift angles
- 4) Graphs showing RSS position and velocity errors and stable member drift angle vs. stable member orientation angle
- 5) Graphs showing RSS position and velocity errors vs. time from last IMU stable member alignment to trajectory start
- 6) Tables for position and velocity error coefficients and for SM drift angle coefficient

The trajectories covered in this preliminary report are as follows:

- A) Earth launch into orbit
- B) Translunar injection
- C) Lunar deboost to orbit
- D) Lunar landing
- E) Lunar takeoff
- F) Transearth injection
- G) Earth reentry (4 trajectories)

ASSUMED RMS IMU ERRORS FOR

SYSTEM ERROR STUDIES

Nonorthogonali	ty of	acc	elerc	me	ter	inp	out	axe	es	•	•	٠	•	é	•	•	•	•	0.1	mr
Accelerometer	bias	err	rors	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	0.2	$\mathrm{cm/sec}^2$
Accelerometer	scal	e-fa	lctor	erı	rors	5.	•	•	•	•	•	٠	•	•	•	٠	•	•	110	PPM
Accelerometer	acce	elera	ation	-se	nsit	ive	sc	ale	e-fa	cto	r	erro	ors	•	•	•	•	•	10	PPM/g
Gyro bias drift	•	•	•••	•	•	•	•	•	•	•	•	٠	•	•	•	٠	•	•	10	m eru
Gyro accelerat	ion-s	sens	itive	dri	ft	•	•	•	•	•	•	•	•	•	•	•	•		10	m eru/g
Gyro accelerat	ion-s	squa	red-	sen	siti	ve	dri	ft	•	•	•	٠	•		•	•	•		1	$meru/g^2$

SECTION A

EARTH LAUNCH INTO ORBIT TRAJECTORY

Trajectory Description & Data

1) Description = Launch from earth into parking orbit with 127 n mile cut off altitude. 2) Total trajectory time: 857.1 seconds 3) Total earth angle, $\theta_{\rm R}$, subtended by trajectory : 30.75 degrees 4) Initial & final altitudes: 0 and 127.3 n miles 5) Initial & final velocities: 1,250 and 25,344 ft/sec 6) Initial & final velocity angles relative to Z_{I} axis : _____ and ____30.6___ degrees 7) Initial & final thrust acceleration: 47.9 and 44.9 ft/sec² 8) Initial & final pitch angle relative to X_{f} axis: _____ and _____ and _____ degrees 9) Thrust acceleration history in ft/sec^2 : $a_{T} = 47.9 + 0.41t - 0.0103t^{2}$ for 0<t<126.3 sec $a_{T} = 15.6 + 0.0096t + 0.000038t^{2}$ for 126.3<t<522.3 sec $a_{T} = 0.00705t + 0.00024t^{2}$ for 522.3<t<857.1 sec 10) Pitch angle history in degrees relative to X axis: $\theta = 0.096t + 0.0155t^2$ for 0<t<126.3 sec $\theta = 52.5 + 0.048t$ for 126.3<t<522.3 sec $\theta = 43.7 + 0.038t$ for 522.3<t<857.1 sec Trajectory Figure Altitude X_{S₩} X_I Track SM Range Start of Trajectory End of Trajectory ('target') Earth

<u>Note:</u> For all tabular error studies the IMU stable member coordinates, X_{SM} , Y_{SM} , Z_{SM} are <u>colinear</u> with inertial coordinates, X_I , Y_I , Z_I .

nponent	Error		R MS Error	RMS E A:	error in xes in F	Inertial eet	RMS E Ax	error in es in Fe	Target eet	
Con				(E)XI	(E)YI	(E)Z _I	Range	Track	Altitude	
E I	Initial	(E)X _{IO}	0 ft	0	0	0	0	0	0	
itic	Position	(E)Y _{IO}	0 ft	0	0	0	0	0	0	
ond	Error	(E)Z _{IO}	0 ft	0	0	0	0	0	0	
D L	Initial	(E)V _{XI0}	0 ft/sec	0	0	0	0	0	0	
tia. F	Velocity	(E)V _{YI0}	0 ft/sec	0	0	0	0	0	0	
Ini	Error	(E)V _{ZI0}	0 ft/sec	0	0	0	0	0	0	
k Jal	Initial	A _{(SM)XI}	0.206 mr	0	2,088	0	0	2,088	0	
U &	Alignment	A _{(SM)YI}	0.206 mr	2,566	0	1,503	2,603	0	1,437	
Ext	Errors	A(SM)ZI	0.206 mr	0	1,611	0	0	1,611	0	
	Accel. IA	X to Y	0.1 mr	0	0	0	0	0	0	
M	Non-ortho-	X to Z	0.1 mr	1,311	0	72	608	0	1,163	
v	gonality	Y to Z	0.1 mr	0	0	0	0	0	0	
		ACBX	$0.2 \mathrm{cm/sec}^2$	2,804	0	146	1,308	0	2,484	
8	Bias	ACBY	$0.2 \mathrm{cm/sec}^2$	0	2,215	0	0	2,215	0	
E		ACBZ	$0.2 \mathrm{cm/sec}^2$	135	0	2,257	1,871	0	1,270	
ME	Scale	SFEX	100 PPM	105 و1	0	72	503	0	987	
l Og	Factor	SFEY	100 PPM	0	0	0	0	0	0	
Ē	Error	SFEZ	100 PPM	66	0	1,034	854	0	585	
E E	Accel. Sens	SFNCX	10 PPM/g	189	0	13	85	0	169	
AC	Scale	SFNCY	10 PP M /g	0	0	0	0	0	0	
	Error	SFNCZ	10 PPM/g	14	0	184	151	0	106	
	Biag	BDX	10 meru	0	1,975	0	0	1,975	0	
	Drift	BDY	10 meru	2,250	0	740	1,786	0	1,556	
		BDZ	10 meru	0	813	0	0	813	0	
		ADIAX	10 meru/g	0	1,968	0	0	1,968	0	
	Acceler-	ADIAY	10 meru/g	0	0	0	0	0	0	
0	ation	ADIAZ	10 meru/g	0	808	0	0	808	0	
YR	Sensitive	ADSRAX	10 meru/g	0	0	0	0	0	0	
G	Drift	ADSRAY	10 meru/g	2,266	0	729	1,785	0	1,575	
		ADSRAZ	10 meru/g	0	0	0	0	0	0	
	Acceler-	A ² D(IA)(IA)X	1 meru/g ²	0	351	0	0	351	0	
	Squared	A ² D(SRA)(SRA)Y	1 meru/g^2	465	0	156	371	0	320	
	Drift	A ² D(IA)(IA)Z	1 meru/g^2	0	173	0	0	173	0	
	Root Sum Square Error			5,278 4,594 3,097			4,459 4,594 4,191		4,191	
L	·			7,652			7,652			

Earth Launch into Orbit Trajectory OVERALL SYSTEM STUDY OF RMS POSITION ERRORS

TP 6254

nponent	Er	ror	RMS Error	RMS E Axe	Crror in s in ft/s	Inertial Sec	RMS I Axe	Error in s in ft/s	Target
Cor				(E)V _{XI}	(e)v _{yi}	(E)V _{ZI}	Range	Track	Altitude
R	Initial	(E)X _{I0}	0 ft	0	0	0	0	0	0
ltic	Position	(E)Y _{IO}	0 ft	0	0	0	0	0	0
ond	Error	(E)Z _{IO}	0 ft	0	0	0	0	0	0
D L L	Initial	(E)V _{XI0}	0 ft/sec	0	0	0	0	0	0
tia	Velocity	(E)V _{YI0}	0 ft/sec	0	0	0	0	0	0
Ini	Error	(E)V _{ZI0}	0 ft/sec	0	0	0	0	0	0
k Jal	Initial	A _{(SM)XI}	0.206 mr	0	4.35	0	0	4.35	0
U 8 eri	Alignment	A(SM)YI	0.206 mr	6.22	0	1.04	4.08	0	4.81
Ext	Errors	^A (SM)ZI	0.206 mr	0	1.68	0	0	1.68	0
	Accel. IA	X to Y	0.1 mr	0	0	0	0	0	0
N.	Non-ortho-	X to Z	0.1 mr	3.39	0	0.46	1.34	0	3.14
S	gonality	Y to Z	0.1 mr	0	0	0	0	0	0
		ACBX	0.2 cm/sec^2	7.35	0	0.95	2.94	0	6.80
2	Bias	ACBY	0.2 cm/sec^2	0	4.73	0	0	4.73	0
L L		ACBZ	0.2 cm/sec^2	0.86	0	5 . 0 8	3.93	0	3.34
ME	Scale	SFEX	100 PPM	2.07	0	0.43	0.69	0	2.00
RO	Factor	SFEY	100 PPM	0	0	0	0	0	0
E .	Error	SFEZ	100 PPM	0.41	0	2,28	1.75	0	1.52
GEI	Accel. Sens	SFNCX	10 PPM/g	0.35	0	0.07	0.12	0	0.34
AC	Scale Factor	SFNCY	10 PPM/g	0	0	0	0	0	υ
	Error	SFNCZ	10 PPM/g	0.08	0	0.31	0.23	0	0.23
	Biag	BDX	10 meru	0	7.19	0	0	7.19	0
	Drift	BDY	10 meru	8.56	0	0.34	4.67	0	7.19
	21111	BDZ	10 meru	0	0.87	0	0	0.87	0
		ADIAX	10 meru/g	0	5.12	0	0	5.12	0
ť	Acceler-	ADIAY	10 meru/g	0	0	0	0	0	0
0	ation	ADIAZ	10 meru/g	0	0.88	0	0	0.88	0
YR	Sensitive	ADSRAX	10 meru/g	0	0	0	0	0	0
5	Drift	ADSRAY	10 meru/g	8.17	0	0.33	4.46	0	6.85
		ADSRAZ	10 meru/g	0	0	0	0	0	0
	Acceler-	A ² D(IA)(IA)X	1 meru/g ²	0	0.84	0	0	0.84	0
	Squared	A ² D(SRA)(SRA)Y	1 meru/g^2	1.48	0	0.09	0.84	0	1.23
	Drift	A ² D(IA)(IA)Z	1 meru/g^2	0	0.12	0	0	0.12	0
	Root Sum Square Error			15.87 11.15 5.81			9.41	11.15	14.03
L					20,24			20.24	

Earth Launch into Orbit Trajectory OVERALL SYSTEM STUDY OF RMS VELOCITY ERRORS

Earth Launch into Orbit Trajectory OVERALL SYSTEM STUDY OF RMS PLATFORM DRIFT ANGLES (SM axes colinear with inertial axes)

	Error	RMS Error	Drift A Inertia (in mi	Angle ab al Axes lliradian	oout ns)	Drift Targo (in m	Angle al et Axes illiradia	oout ns)
			[¢] XI	φ _{YI}	ϕ_{ZI}	ϕ_{Range}	$\phi_{ m Track}$	[¢] Altitude
Gyro	BDX	10 meru	0.625	0	0	0.320	0	0.537
Bias	BDY	10 meru	0	0.625	0	0	0.625	0
Drift	BDZ	10 meru	0	0	0.625	0.537	0	0.320
Crimo	ADIAX	10 meru/g	0.278	0	0	0.142	0	0.239
Accele	ADIAY	10 meru/g	0	0	0	0	0	0
ration	ADIAZ	10 meru/g	0	0	0.577	0.496	0	0.295
Sensitivo	ADSRAX	10 meru/g	0	0	0	0	0	0
Drift	ADSRAY	10 meru/g	0	0.577	0	0	0.577	0
Difft	ADSRAZ	10 meru/g	0	0	0	0	0	0
Guro	^{A²D} (IA)(IA)X	l meru/g ²	0.045	0	0	0.023	0	0.039
Accele-	A ² D(IA)(IA)Y	l meru/g ²	0	0	0	0	0	0
ration	A ² D(IA)(IA)Z	l meru/g ²	0	0	0.084	0.072	0	0.043
Squared	A ² D(SRA)(SRA)X	1 meru/g ²	0	0	0	0	0	0
Sensitive	A ² D(SRA)(SRA)Y	1 meru/ g^2	0	0.084	0	0	0.084	0
Drift	A ² D _(SRA) (SRA)Z	1 meru/g^2	0	0	0	0	0	0
	A ² D(IA)(SRA)X	1 meru/ g^2	0	0	0	0	0	0
	A ² D(IA)(SRA)Y	1 meru/g^2	0	0	0	0	0	0
	A ² D _(IA) (SRA)Z	l meru/g ²	0	0	0	0	0	0
Root Sum Square Error			0.686	0.854	0,854	0.814	0.854	0.734
		1.389		1. 389				

Earth Launch into Orbit Trajectory IMU POSITION ERROR COEFFICIENTS (PART I) (SM axes colinear with inertial axes)

			Unit Error	Error in In in feet per	ertial Axe unit error	8	Er ro r in in feet p	Target Ax er unit err	es or
]]	Error		Dimension	(E)X _I	(E)Y ₁	(E)Z _T	Range	Track	Altitude
A. Ini	itial C	ondition E	rrors along I	nertial Axe	3	t*			<u> </u>
Initial		E)X _{IO}	foot	+2.199	0	+0.217	-0.938	0	+2.001
Positio	on (E)Y _{IO}	foot	0	+0.517	0	0	+0.517	0
Error		E)Z _{IO}	foot	+0.138	0	+0.548	+0.400	0	+0.399
Initial (E)		E)VXIO	ft/sec	+1,158	0	+86	- 518	0	+1,039
Velocity (E)V _{YI}		E)V _{YIO}	ft/sec	0	+718	0	0	+718	0
Error		E)VZIO	ft/sec	+74	0	+738	+597	0	+441
B. Ac	B. Accelerometer E		rors (In-flig	ht Effect on	ly)				
r -	4	ACBX	cm/sec^2	-14,020	0	-728	+6,543	0	-12, 421
Bias		ACBY	cm/sec^2	0	-11,076	0	0	-11,076	0
		ACBZ	cm/sec^2	-676	0	-11, 286	-9,354	0	-6,352
Scale	¢,	SFEX	PPM	-11,055	0	-0.720	+5.034	0	-9.869
Factor		SFEY	РРМ	0	0	0	0	0	0
Error	2	SFEZ	РРМ	-0.663	0	-10.34	-8,544	0	-5.855
Accel.	5	SFNCX	PPM/g	-18.90	0	-1,30	+8.543	0	-16.91
Sens. Scale	ŝ	SFNCY	PPM/g	0	0	0	0	0	0
Factor Error		SFNCZ	PPM/g	-1.41	0	-18.40	-15.09	0	-10.61
С. Мі	isalign	ments of A	Acceleromete	r Input Axe	s			L	
Accel.	Abou	t							
x	Y _{SM}	A _{(X)Y}	milliradian	+13, 106	0	+718	-6,085	0	+11,631
	^Z SM	A _{(X)Z}	milliradian	0	0	0	0	0	0
	X _{SM}	A _{(Y)X}	milliradian	-	-	-	-	-	-
Y	^Z SM	A _{(Y)Z}	milliradian	-	-	-	-	-	-
	х _{sm}	A _{(Z)X}	milliradian	-	-	-	-	-	-
Z	^Y SM	$A_{(Z)Y}$	milliradian	0	0	0	0	0	0

Earth Launch into Orbit Trajectory IMU POSITION ERROR COEFFICIENTS (PART II) (SM axes colinear with inertial axes)

		Unit	Error in 1	Inertial A	xes	Error in Target Axes in feet per unit error			
	.	Error				in feet p	per unit e	rror	
r	.rror	Dimension	(E)X	(E)Y	(E)Z _I	Range	Track	Altitude	
D. Init	ial Platform Misal	gnments abou	t Inertial	Axes					
A _{(S}	M)XI	'milliradian	0	-10,134	0	0	-10,134	0	
A _{(SM)YI}		milliradian	+12,456	0	-7,294	-12,637	0	+6,976	
A _{(S}	M)ZI	milliradian	0	+7,823	0	0	+7,823	0	
E. Gyr	o Drift Errors					*			
D :	BDX	meru	0	-197.5	0	0	-197.5	0	
Bias	BDY	meru	+225.0	0	-74.0	-178.6	0	+155.5	
Drift	BDZ	meru	0	+81.3	0	0	+81.3	0	
A	ADIAX	meru/g	0	-196.8	0	0	-196.8	0	
Accele-	ADIAY	meru/g	0	0	0	0	0	0	
ration	ADIAZ	meru/g	0	+80.8	0	0	+80.8	0	
Sensi-	ADSRAX	meru/g	0	0	0	0	0	0	
tive	ADSRAY	meru/g	-226.6	0	+72.9	+178.4	0	-157.5	
	ADSRAZ	meru/g	0	0	0	0	0	0	
A	A ² D _{(IA)(IA)X}	meru/g ²	0	-351.4	0	0	-351.4	0	
ration	A ² D(IA)(IA)Y	meru/g ²	0	0	0	0	0	0	
Squared	A ² D(IA)(IA)Z	meru/g ²	0	+173.3	0	0	<u>+173.3</u>	0	
Sensi-	A ² D(SRA)(SRA)X	$meru/g^2$	0	0	0	0	0	0	
tive	A ² D(SRA)(SRA)Y	meru/g ²	+464.9	0	-155.5	-371.4	0	+320.0	
Drift	A ² D(SRA)(SRA)Z	meru/g ²	0	0	0	0	0	0	
	A ² D _(IA) (SRA)X	meru/g ²	0	0	0	0	0	0	
	A ² D(IA)(SRA)Y	meru/g ²	0	0	0	0	0	0	
	A ² D(IA)(SRA)Z	meru/g ²	0	0	0	0	0	0	

Earth Launch into Orbit Trajectory IMU VELOCITY ERROR COEFFICIENTS (PART I) (SM axes colinear with inertial axes)

			Unit Error	Error in In	ertial Axe	S	Error in Target Axes in ft/sec per unit error			
	Error		Dimension	$(E)V_{vr}$	(E)V _{vv}	(E)V	Range	per unit e Track	Altitude	
A. In	itial C	Condition E	rrors along 1	nertial Ave	<u> </u>					
Initial		/F)Y	fact	10.005/10-3			-3	r		
Intia		IO	100t	+4,995(10)	0	+1,037(10 °)	-0.640(10)	0	+3,104(10 ⁻³)	
Positi	on	(E)Y _{IO}	foot	0	-1008(10 ⁻³)	0	0	-1.008(10 ⁻³)	0	
Error		(E)Z _{IO}	foot	+0.530(10 ⁻³)	0	-0.830(10 ⁻³)	-0.984(10 ⁻³)	0	+0.031(10 ⁻³)	
Initial		(E)VXIO	ft/sec	+2.026	0	+0.475	-0.627	0	+1.984	
Veloc	ity	(E)V _{YIO}	ft/sec	0	+0.534	0	0	+0.534	0	
Error		(E)VZIO	ft/sec	+0.382	0	+0.682	+0.391	0	+0.677	
B. A.	cceler	ometer Er	rors (In-flig	ht Effect on	ly)				<u> </u>	
1	-	ACBX	cm/sec^2	-36.73	0	-4.76	+14,69	0	-34,00	
Bias		ACBY	cm/sec^2	0	-23.64	0	0	-23.64	0	
Scale		ACBZ	cm/sec^2	-4.29	0	-25.42	-19.65	0	-16.69	
Scale	-	SFEX	РРМ	-0.02069	0	-0.00426	+0.00692	0	-0.01996	
Factor	r	SFEY	РРМ	0	0	0	0	0	0	
Error		SFEZ	PPM	-0.00408	0	-0.02279	-0.01750	0	-0.01516	
Accel.		SFNCX	PPM/g	-0.0351	0	-0.0075	+0.0115	0	-0.0340	
Scale		SFNCY	PPM/g	0	0	0	0	0	0	
Factor Error	-	SFNCZ	PPM/g	-0.0081	0	-0.0313	-0.0227	0	-0.0229	
С. М	isaligr	iments of A	Acceleromete	r Input Axe	5					
Accel.	Abou	t		-						
x	Y _{SM}	A _{(X)Y}	milliradian	+33,88	0	+4.56	-13.40	0	+31. 45	
	z _{sm}	A _{(X)Z}	milliradian	0	0	0	0	0	0	
	\mathbf{x}_{SM}	A _{(Y)X}	milliradian	-	-	-	-	-	-	
Ŷ	^Z SM	$A_{(Y)Z}$	milliradian	-	-	-	-	-	-	
7	\mathbf{x}_{SM}	A _{(Z)X}	milliradian	-	-	-	-	-	-	
2	Y _{SM}	A _{(Z)Y}	milliradian	0	0	0	0	0	0	

Earth Launch into Orbit Trajectory IMU VELOCITY ERROR COEFFICIENTS (PART II) (SM axes colinear with inertial axes)

		Unit	Error in 1	inertial A	xes	Error in	Target A	xes
		Error	in ft/sec	per unit d	error	in ft/sec	per unit	error
I	Error	Dimension	(E)V _{XT}	(E)V _{VI}	(E)V _{ZI}	Range	Track	Altitude
D. Init	ial Platform Misal	ignments abou	t Inertial	Axes			<u>t===</u>	
A _{(S}	M)XI	'milliradian	0	-21.11	0	0	-21.11	0
A _{(SM)YI}		milliradian	+30.21	0	-5,07	-19.80	0	+23.37
A(S	M)ZI	milliradian	0	+8.17	0	0	+8.17	0
E. Gyr	o Drift Errors		1.			<u></u>		
	BDX	meru	0	-0,719	0	0	-0.719	0
Bias	BDY	meru	+0.856	0	-0.034	-0.467	0	+0 719
Drift	BDZ	meru	0	+0.087	0	0	+0.087	0
A	ADIAX	meru/g	0	-0.512	0	0	-0, 512	0
Accele-	ADIAY	meru/g	0	0	0	0	0	0
ration	ADIAZ	meru/g	0	+0.088	0	0	+0.088	0
Sensi-	ADSRAX	meru/g	0	0	0	0	0	0
tive	ADSRAY	meru/g	-0.817	0	+0.033	+0.446	0	-0.685
ration Sensi- tive Drift Accele-	ADSRAZ	meru/g	0	0	0	0	0	0
	A ² D _{(IA)(IA)X}	meru/g ²	0	-0.844	0	0	-0.844	0
ration	A ² D _{(IA)(IA)Y}	$meru/g^2$	0	0	0	0	0	0
Squared	A ² D _{(IA)(IA)Z}	meru/g ²	0	+0,209	0	0	+0.209	0
Sensi-	A ² D _(SRA) (SRA)X	meru/g ²	0	0	0	0	0	0
tive	A ² D _(SRA) (SRA)Y	meru/g ²	+1.482	0	-0,090	-0.835	0	+1.228
Drift	$A^{2}D_{(SRA)(SRA)Z}$	me <i>r</i> u/g ²	0	0	0	0	0	0
	A ² D _(IA) (SRA)X	meru/g ²	0	0	0	0	0	0
-	A ² D _(IA) (SRA)Y	meru/g ²	0	0	0	0	0	0
	A ² D(IA)(SRA)Z	meru/g ²	0	0	0	0	0	0

Earth Launch into Orbit Trajectory IMU SM DRIFT ANGLE COEFFICIENTS (SM axes colinear with inertial axes)

			During	· · · · · · · · · · · · · · · · · · ·		Drift Angle about			
		DMC		angle at	out	Drift	Angle a	bout	
	Error	Ennon	inertia	ALAXES	D 0 P	Targ	et Axes		
	BIIOI	Error	in mi un	il error	h per	in m	illiradia nit erro	n per r	
		Dimension	$\phi_{\rm XI}$	φ _{YI}	^φ ZI	[¢] Rang€	ϕ_{Track}	$\phi_{Altitude}$	
	BDX	meru	+0.0625	0	0	-0.0320	0	+0.0537	
Bias	BDY	meru	0	+0.0625	0	0	+0.0625	0	
Drift	BDZ	meru	0	0	+0.0625	+0.0537	0	+0.0320	
	ADIAX	meru/g	+0.0278	0	0	-0.0142	0	+0.0239	
A	ADIAY	meru/g	0	0	0	0	0	0	
Accele-	ADIAZ	meru/g	0	0	+0.0577	+0.0496	0	+0.0295	
Songitivo	ADSRAX	meru/g	0	0	0	0	0	0	
Drift	ADSRAY	meru/g	0	-0.0577	0	0	-0.0577	0	
Drift ADSRAZ		meru/g	0	0	0	0	0	0	
	A ² D _{(IA)(IA)X}	meru/g ²	+0.0452	0	0	-0.0231	0	+0.0389	
Accele-	A ² D(IA)(IA)Y	$meru/g^2$	0	0	0	0	0	0	
ration	A ² D _{(IA)(IA)Z}	meru/g ²	0	0	+0.0836	+0.0719	0	+0.0428	
Squared	A ² D(SRA)(SRA)X	$meru/g^2$	0	0	0	0	0	0	
Sensitive	A ² D(SRA)(SRA)Y	meru/g ²	0	+0.0836	0	0	+0,0836	0	
Drift	$A^2 D_{(SRA)(SRA)Z}$	meru/g ²	0	0	0	0	0	0	
	A ² D(IA)(SRA)X	$meru/g^2$	0	0	0	0	0	0	
	A ² D(IA)(SRA)Y	$meru/g^2$	0	0	0	0	0	0	
	A ² D(IA)(SRA)Z	meru/g ²	0	0	0	0	0	0	
Root Sum Sq	Root Sum Square Error								
· · · · · · · · · · · · · · · · · · ·	• • • •								

12

Fig. A-1

Fig. A-2

Fig. A-3

EARTH LAUNCH INTO ORBIT TRAJECTORY

RSS TRACK ERRORS VS. TIME FROM LAST IMU S.M. ALIGNMENT TO START OF TRAJECTORY WITH AZIMUTH GYRO BIAS AND ACCELERATION SENSITIVE DRIFT OF I MERU

Fig. A-4

ELE ENTLAI

SECTION B TRANSLUNAR INJECTION

CONTRACTOR

Trajectory Description & Data

1) Description = Powered injection into free-fall translunar trajectory from 100 n mile circular earth parking orbit.

2)	Total trajectory time	:	361.25	secor	nds	
3)	Total earth angle, $\theta_{\rm R}$,			-		
	subtended by trajectory	:	28.785	degre	es	
4)	Initial & final altitudes	:	100.0	and	187.9	n mi les
5)	Initial & final velocities	:	25,557	and	35,776	ft/sec
6)	Initial & final velocity angles					
	relative to +X _I axis	:	0	and	-21.3	degrees
7)	Initial & final thrust acceleration	:	19.1	and	40.1	ft/sec^2
8)	Initial & final pitch angle					
	relative to $-Z_{T}$ axis	:	0	and	24,6	degrees
9)	Thrust acceleration history in					
	ft/sec ²	: a	·	+ 0.05	8t) for 0<1	t<361 sec
10)	Pitch angle history in degrees		1			
	relative to -Z _I axis	: <i>θ</i>	= (0.0681	t)	for 0<	K<361 sec
Tr	ajectory Figure Start of Trajectory ^Y I' ^Y SM	ZI	X _I Track Z _{SM}	A	ltitude inge End of ir	vication
			Earth	tr	ajectory ('	ijection target')

<u>Note:</u> For all tabular error studies the IMU stable member coordinates, X_{SM} , Y_{SM} , Z_{SM} are <u>colinear</u> with inertial coordinates, X_{I} , Y_{I} , Z_{I} .

ponent	Error		RMS	RMS E	Crror in Kes in F	Inertial eet	RMS E Axe	Error in s in Fee	Target et	
Com			EIIOI	(E)X _I	(E)Y	(E)Z _I	Range	Track	Altitude	
ų	Initial	(E)X _{IO}	0 ft	0	0	0	0	0	0	
itic	Position	(E)Y _{IO}	0 ft	0	0	0	0	0	0	
ond	Error	(E)Z _{IO}	0 ft	0	0	0	0	0	0	
ĽČ	Initial	(E)V _{XI0}	0 ft/sec	0	0	0	0	0	0	
tia] E	Velocity	(E)V _{YI0}	0 ft/sec	0	0	0	0	0	0	
Ini	Error	(E)V _{ZI0}	0 ft/sec	0	0	0	0	0	0	
r Jal	Initial	A _{(SM)XI}	0.206 mr	0	55.8	0	0	55.8	0	
U & err	S. M. Alignment	A(SM)YI	0.206 mr	59.8	0	352.7	115.2	0	337.0	
Ext	Errors	A(SM)ZI	0.206 mr	0	339.4	0	0	339.4	0	
	Accel. IA	X to Y	0.1 mr	0	0	0	0	0	0	
М	Non-ortho-	X to Z	0.1 mr	27.2	0	0.2	23.7	0	13.1	
S	gonality	Y to Z	0.1 mr	0	0	0	0	0	0	
		ACBX	$0.2 \mathrm{cm/sec}^2$	423.8	0	5.1	368.4	0	205.8	
В	Bias	ACBY	$0.2 \mathrm{cm/sec}^2$	0	422.1	0	0	422.1	0	
LE		ACBZ	$0.2 \mathrm{cm/sec}^2$	5.2	0	440.0	204.4	0	387.4	
ME'	Scale	SFEX	100 PPM	165.4	0	1.8	143.8	0	80.2	
IO2	Factor	SFEY	100 PPM	0	0	0	0	0	0	
E	Error	SFEZ	100 PPM	0.2	0	27.7	13.0	0	24.3	
E	Accel. Sens.	SFNCX	10 PPM/g	13.5	0	0.1	11.8	0	6,6	
AC(Scale	SFNCY	10 PPM/g	0	0	0	0	0	0	
	Error	SFNCZ	10 PPM/g	0	0	0.6	0.3	0	0.5	
	Biog	BDX	10 meru	0	38.2	0	0	38.2	0	
	Drift	BDY	10 meru	39.5	0	166.7	44,6	0	164.6	
		BDZ	10 meru	0	162.9	0	0	162.9	0	
		ADIAX	10 meru/g	0	30.0	0	0	30.0	0	
	Acceler-	ADIAY	10 meru/g	0	0	0	0	0	0	
0	ation	ADIAZ	10 meru/g	0	15.9	0	0	15.9	0	
YR(Sensitive	ADSRAX	10 meru/g	0	0	0	0	0	0	
5	Drift	ADSRAY	10 meru/g	4.6	0	16.2	3.7	0	16.4	
		ADSRAZ	10 meru/g	0	0	0	0	0	0	
	Acceler-	A ² D(IA)(IA)X	1 meru/g^2	0	2.4	0	0	2.4	0	
	Squared	A ² D(SRA)(SRA)Y	1 meru/g^2	0.1	0	0.3	0,1	0	0, 3	
	Drift	A ² D(IA)(IA)Z	1 meru/g ²	0	0.3	0	0	0, 3	0	
	Root Sum Square Error			461.6 570.6 588.9		462.9	570.6	583.6		
				941.0			941.0			

Translunar Injection Trajectory OVERALL SYSTEM STUDY OF RMS POSITION ERRORS

CONFLOREN

ponent	Error		RMS Error	RMS E Ax	rror in es in ft/	Inertial sec	RMS E Axe	Crror in s in ft/s	Target ec
Com			LITOI	(E)V _{XI}	(E)V _{YI}	(E)V _{ZI}	Range	Track	Altitude
я	Initial	(E)X _{Io}	0 ft	0	0	0	0	0	0
itic	Position	(E)Y _{I0}	0 ft	0	0	0	0	0	0
ond	Error	(E)Z _{Io}	0 ft	0	0	0	0	0	0
ŬĽ	Initial	(E)V _{XI0}	0 ft/sec	0	0	0	0	0	0
tia. E	Velocity	(E)V _{YI0}	0 ft/sec	0	0	0	0	0	0
Ini	Error	(E)V _{ZIO}	0 ft/sec	0	0	0	0	0	0
[a]	Initial	A _{(SM)XI}	0.206 mr	0	0.51	0	0	0.51	0
U &	Alignment	A _{(SM)YI}	0.206 mr	0.57	0	2.21	0.57	0	2.21
N H	Errors	A(SM)ZI	0.206 mr	0	2.07	0	0	2.07	0
	Accel. IA	X to Y	0.1 mr	0	0	0	0	0	0
X	Non-ortho-	X to Z	0.1 mr	0.25	0	0	0.22	0	0,12
s.	gonality	Y to Z	0.1 mr	0	0	0	0	0	0
	Bias	ACBX	$0.2 \mathrm{cm/sec}^2$	2,33	0	0,07	2.01	0	1.17
		ACBY	$0.2 \mathrm{cm/sec}^2$	0	2,30	0	0	2,30	0
Ē		ACBZ	$0.2 \mathrm{cm/sec}^2$	0.07	0	2.49	1.12	0	2,21
E	Scale	SFEX	100 PPM	1.02	0	0,03	0.88	0	0.50
Ő	Factor	SFEY	100 PPM	0	0	0	0	0	0
Ē	Error	SFEZ	100 PPM	0	0	0.26	0.12	0	0,23
I I I I	Accel. Sens Scale	SFNCX	10 PPM/g	0.09	0	0	0.08	0	0.05
ACC		SFNCY	10 PPM/g	0	0	0	0	0	0
	Error	SFNCZ	10 PPM/g	0	0	0.01	0	0	0.01
	Diag	BDX	10 meru	0	0.46	0	0	0.46	0
	Dias	BDY	10 meru	0.48	0	1.53	0.30	0	1.57
	Drift	BDZ	10 meru	0	1.48	0	0	1.48	0
		ADIAX	10 meru/g	0	0,38	0	0	0.38	0
	Acceler-	ADIAY	10 meru/g	0	0	0	0	0	0
	ation	ADIAZ	10 meru/g	0	0.20	0	0	0.20	0
RC	Sensitive	ADSRAX	10 meru/g	0	0	0	0	0	0
6	Drift	ADSRAY	10 meru/g	0.07	0	0.21	0.04	0	0.22
		ADSRAZ	10 meru/g	0	0	0	0	0	0
	Acceler-	A ² D(IA)(IA)X	1 meru/g^2	0	0.03	0	0	0.03	0
	Squared	A ² D(SRA)(SRA)Y	1 meru/g^2	0.002	0	0.005	0	0	0.005
	Drift	A ² D(IA)(IA)Z	1 meru/g^2	0	0,005	0	0	0.005	0
	Root Sum Square Error			2.67	3.53	3.68	2.56	3,53	3.74
		5.76			5.76				

Translunar Injection Trajectory OVERALL SYSTEM STUDY OF RMS VELOCITY ERRORS

ð

Translunar Injection Trajectory OVERALL SYSTEM STUDY OF RMS PLATFORM DRIFT ANGLES (SM axes colinear with inertial axes)

	Error	RMS Error	Drift A Inertia (in mil	Angle ab 11 Axes 11 iradian	out ns)	Drift Angle about Target Axes (in milliradians)			
			[¢] x₁	φ _{YI}	^φ ZI	ϕ_{Range}	ϕ_{Track}	$\phi_{Altitude}$	
Gyro	BDX	10 meru	0.263	0	0	0.230	0	0.125	
Bias	BDY	10 meru	0	0.263	0	0	0.263	0	
Drift	BDZ	10 meru	0	0	0.263	0.125	0	0.230	
Guno	ADIAX	10 meru/g	0.233	0	0	0.204	0	0.111	
Gyro	ADIAY	10 meru/g	0	0	0	0	0	0	
ration	ADIAZ	10 meru/g	0	0	0.057	0.027	0	0.050	
Sensitive	ADSRAX	10 meru/g	0	0	0	0	0	0	
Drift	ADSRAY	10 meru/g	0	0.057	0	0	0.057	0	
	ADSRAZ	10 meru/g	0	0	0	0	0	0	
Guno	A ² D(IA)(IA)X	1 meru/g^2	0.021	0	0	0.019	0	0.010	
Accele-	A ² D _{(IA)(IA)Y}	¹ meru/g ²	0	0	0	0	0	0	
ration	A ² D(IA)(IA)Z	1 meru/g^2	0	0	0.002	0.001	0	0.002	
Squared	A ² D(SRA)(SRA)X	1 meru/g^2	0	0	0	С	0	0	
Sensitive	A ² D(SRA)(SRA)Y	1 meru/g^2	0	0.002	0	0	0.002	0	
Drift	A ² D _(SRA) (SRA)Z	1 meru/g^2	0	0	0	0	0	0	
	A ² D(IA)(SRA)X	1 meru/g^2	0	0	0	0	0	0	
	A ² D _{(IA)(SRA)Y}	1 meru/g 2	0	0	0	0	0	0	
	A ² D(IA)(SRA)Z	1 meru/g^2	0	0	0	0	0	0	
Root Sum Square Error				0.270	0.270	0.335	0,270	0.291	
				0.519			0.519		

CONTRACT

Translunar Injection Trajectory IMU POSITION ERROR COEFFICIENTS (PART I) (SM axes colinear with inertial axes)

			Unit Error	Error in In in feet per	ertial Axe r unit erro	s r	Error in Target Axes in feet per unit error				
	Error		Dimension	(E)X _I	(E)Y _I	(E)Z _I	Range	Track	Altitude		
A. In	itial C	ondition E	rrors along I	nertial Axe	s			i''			
Initial		(E)X _{IO}	foot	+0.919	0	-0.040	+0.787	0	+0.478		
Positi	on	(E)Y _{IO}	foot	0	+0.910	0	0	+0.910	0		
Error		(E)Z _{IO}	foot	-0.042	0	+1.179	+0.531	0	-1.054		
Initial	(^{(E)V} XIO	ft/sec	+353	0	-7	+306	0	+176		
Veloci	ty (E)V _{YIO}	ft/sec	0	+350	0	0	+350	0		
Error		^{(E)V} ZIO	ft/sec	-7	0	+381	+177	0	-338		
B. Ac	B. Accelerometer Errors (In-flight Effect only)										
Bias		ACBX	cm/sec^2	-2,119	0	+26	-1, 845	0	-1, 043		
		ACBY	cm/sec^2	0	-2,110	0	0	-2,110	0		
		ACBZ	$\mathrm{cm/sec}^2$	+26	0	-2,199	-1,036	0	+1,940		
Scale		SFEX	РРМ	-1,654	0	+0.018	-1.441	0	-0.812		
Factor		SFEY	РРМ	0	0	0	0	0	0		
Error		SFEZ	РРМ	+0,002	0	-0.277	-0.132	0	+0.244		
Accel.	4	SFNCX	PPM/g	-1.354	0	+0.014	-1.180	0	-0.664		
Sens.	2	SFNCY	PPM/g	0	0	0	0	0	0		
Factor		SFNCZ	PPM/g	0	0	-0.062	-0.030	0	+0.055		
С. М	isalign	ments of A	Acceleromete	r Input Axe	s			<u> </u>	<u></u>		
Accel.	Abou	t									
v	Y _{SM}	A _{(X)Y}	milliradian	+272	0	-2	+237	0	+131		
	Z _{SM}	A _{(X)Z}	milliradian	0	0	0	0	0	0		
	x _{sm}	A _{(Y)X}	milliradian	-	-	-	-		-		
Y	z_{SM}	A _{(Y)Z}	milliradian	-	-	-	-	-	-		
	x _{sm}	A _{(Z)X}	milliradian	-	-	-	-	-	-		
Z	Y _{SM}	A _{(Z)Y}	milliradian	0	0	0	0	0	0		

Translunar Injection Trajectory IMU POSITION ERROR COEFFICIENTS (PART II) (SM axes colinear with inertial axes)

		Unit	Error in 1	Inertial A	xes	Error in	Target A	хев
		Error	in feet p	oer unit e	rror	in feet	per unit e	error
]	Error	Dimension	(E)X _I	(E)YI	(E)Z _I	Range	Track	Altitude
D. Init	ial Platform Misal	ignments abou	t Inertial	Axes		·		
A _{(S}	SM)XI	'milliradian	0	-271	0	0	-271	0
A _{(S}	SM)YI	milliradian	+290	0	-1, 712	-559	0	+1,63 6
A _{(S}	M)ZI	milliradian	0	+1,648	0	0	+1,648	0
E. Gyr	o Drift Errors							L
Die	BDX	meru	0	-3.82	0	0	-3.82	0
Drift	BDY	meru	+3.95	0	-16.67	-4.46	0	+16.46
	BDZ	meru	0	+16.29	0	0	+16,29	0
Accolo	ADIAX	meru/g	0	-3.00	0	0	-3.00	0
notion	ADIAY	meru/g	0	0	0	0	0	0
Sonai	ADIAZ	meru/g	0	+1.59	0	0	+1.59	0
Sensi-	ADSRAX	meru/g	0	0	0	0	0	0
Dwift	ADSRAY	meru/g	-0.46	0	+1.62	-0.37	0	-1.64
Drift	ADSRAZ	meru/g	0	0	0	0	0	0
A	A ² D(IA)(IA)X	meru/g ²	0	-2.41	0	0	-2.41	0
ration	A ² D(IA)(IA)Y	meru/g ²	0	0	0	0	0	0
Squared	A ² D(IA)(IA)Z	meru/g ²	0	+0.28	0	0	+0.28	0
Sensi-	A ² D(SRA)(SRA)X	meru/g ²	0	0	0	0	0	0
tive	A ² D(SRA)(SRA)Y	meru/g ²	+0.09	0	-0.29	-0.06	0	+0.29
Drift	A ² D(SRA)(SRA)Z	meru/g ²	0	0	0	0	0	0
	A ² D(IA)(SRA)X	meru/g ²	0	0	0	0	0	0
	A ² D(IA)(SRA)Y	meru/g ²	0	0	0	0	0	0
	A ² D(IA)(SRA)Z	meru/g ²	0	0	0	0	0	0

LTI

.

Translunar Injection Trajectory IMU VELOCITY ERROR COEFFICIENTS (PART I) (SM axes colinear with inertial axes)

			Unit Error	Error in In in ft/sec p	ertial Axe er unit err	s ror	Error in Target Axes in ft/sec per unit error				
	Error		Dimension	(E)V _{XI}	(E)V _{YI}	(E)V _{ZI}	Range	Track	Altitude		
A. In	itial C	ondition E	rrors along I	nertial Axe	S						
Initial		(E)X _{IO}	foot	-0.379(10 ⁻³)	0	-0.322(10 ⁻³)	-0,488(10 ⁻³)	0	+0.099(10 ⁻³		
Positi	on	(E)Y _{IO}	foot	0	-0.488(10-3)	0	0	-0,488(10-3)	0		
Error		(E)Z _{IO}	foot	-0.354(10 ⁻³)	0	+0.949(10 ⁻³)	+0.147(10 ⁻³)	0	-1.002(10 ⁻³)		
Initial	1	(E)V _{XIO}	ft/sec	+0.941	0	-0.078	+0.788	0	+0.522		
Veloci	ty [(E)V _{YIO}	ft/sec	0	+0.912	0	0	+0.912	0		
Error	Error (E		ft/sec	-0.080	0	+1,155	+0.486	0	-1.051		
B. Ac	B. Accelerometer Errors (In-flight Effect only)										
Bias		ACBX	cm/sec^2	-11.65	0	+0.34	-10.05	0	-5.91		
		ACBY	cm/sec^2	0	-11.51	0	0	-11, 51	0		
		ACBZ	cm/sec^2	+0.35	0	-12,44	-5.60	0	+11.05		
Scale		SFEX	РРМ	-0.01015	0	+0.00026	-0.00876	0	-0.00505		
Factor		SFEY	РРМ	0	0	0	0	0	0		
Error	-	SFEZ	PPM	+0,00003	0	-0.00257	-0.00119	0	+0,00226		
Accel.		SFNCX	PPM/g	-0,0093	0	+0,0002	-0.00804	0	-0,00459		
Sens. Scale		SFNCY	PPM/g	0	0	0	0	0	0		
Factor Error	- !	SFNCZ	PPM/g	0	0	-0.008	-0,00038	0	+0,00072		
С. Мі	isalign	ments of A	Acceleromete	r Input Axe	s		<u> </u>				
Accel.	Abou	t									
x	Y _{SM}	A _{(X)Y}	milliradian	+2.50	0	-0,03	+2,18	0	+1.22		
	z_{SM}	A _{(X)Z}	milliradian	0	0	0	0	0	0		
	\mathbf{x}_{SM}	A _{(Y)X}	milliradian	-	-	-	-	-	-		
Y	Z _{SM}	A _{(Y)Z}	milliradian	-	-	-	-	-	-		
~	х _{sm}	A _{(Z)X}	milliradian	-	-	-	-	-	-		
Z	^Y SM	A _{(Z)Y}	milliradian		0	0	0	0	0		

CONTRACT

Translunar Injection Trajectory IMU VELOCITY ERROR COEFFICIENTS (PART II) (SM axes colinear with inertial axes)

		Unit	Error in 1	Inertial A	xes	Error in Target Axes			
		Error	in ft/sec	per unit	error	in ft/pe	r unit err	or	
1	Error	Dimension	(E)¥ _{XI}	(E)V _{YI}	(E)V _{ZI}	Range	Track	Altitude	
D. Init	ial Platform Misal	ignments abou	t Inertial	Axes			ŧ	hi sa <u>a</u> com e	
A _{(S}	IX(M	'milliradian	0	-2.49	0	0	-2.49	0	
A _{(S}	M)YI	milliradian	+2.76	0	-10.75	-2.69	0	+10.72	
A _{(S}	M)ZI	milliradian	0	+10.04	0	0	+10.04	0	
E. Gyr	o Drift Errors								
Biog	BDX	meru	0	-0.0461	0	0	-0,0461	0	
Duift	BDY	meru	+0.0483	0	-0.1529	-0.0303	0	+0.1567	
	BDZ	meru	0	+0,1477	0	0	+0.1477	0	
Acceler	ADIAX	meru/g	0	-0.0381	0	0	-0.0381	0	
ration	ADIAY	meru/g	0	0	0	0	0	0	
Songi	ADIAZ	meru/g	0	+0.0203	0	0	+0.0203	0	
tive	ADSRAX	meru/g	0	0	0	0	0	0	
Drift	ADSRAY	meru/g	-0.0073	0	+0,0207	+0.0035	0	-0.0217	
Drift	ADSRAZ	meru/g	0	0	0	0	0	0	
A	A ² D(IA)(IA)X	$meru/g^2$	0	-0.0323	0	0	-0.0323	0	
ration	A ² D _{(IA)(IA)Y}	meru/g ²	0	0	0	0	0	0	
Squared	A ² D(IA)(IA)Z	meru/g ²	0	+0.0047	0	0	+0.0047	0	
Sensi-	A ² D(SRA)(SRA)X	meru/g ²	0	0	0	0	0	0	
tive	A ² D(SRA)(SRA)Y	meru/g ²	+0.0018	0	-0,0048	-0.007	0	+0.0051	
Drift	A ² D(SRA)(SRA)Z	meru/g ²	0	0	0	0	0	0	
	A ² D(IA)(SRA)X	meru/g ²	0	0	0	0	0	0	
	A ² D(IA)(SRA)Y	meru/g ²	0	0	0	0	0	0	
	A ² D(IA)(SRA)Z	meru/g ²	0	0	0	0	0	С	

Translunar Injection Trajectory IMU SM DRIFT ANGLE COEFFICIENTS (SM axes colinear with inertial axes)

		DIG	Drift A	Angle ab	out	Drift	Angle a	bout
	Frances	RMS	Inertia	l Axes		Targ	et Axes	
	Error	Error	in mil	lliradia: <u>t error</u>	ns per	in m	illiradia	nsper
		Dimension	[¢] xı	φ _{YI}	¢ΖΙ	[¢] Rang	e^{ϕ} Tracl	[¢] Altitude
	BDX	meru	+0.0263	0	0	+0.0230	0	+0.0125
Bias	BDY	meru	0	+0.0263	0	0	+0.0263	0
Drift	BDZ	meru	0	0	+0,0263	+0.0125	0	-0.0230
	ADIAX	meru/g	+0.0233	0	0	+0.0204	0	+0.0111
	ADIAY	meru/g	0	0	0	0	0	0
Accele-	ADIAZ	meru/g	0	0	+0.0057	+0.0027	0	-0.0050
Pation	ADSRAX	meru/g	0	0	0	0	0	0
Drift	ADSRAY	meru/g	0	-0,0057	0	0	-0.0057	0
Drift	ADSRAZ	meru/g	0	0	0	0	0	0
	A ² D(IA)(IA)X	meru/g ²	+0, 0213	0	0	+0.019	0	+0,010
Accele-	A ² D(IA)(IA)Y	$meru/g^2$	0	0	0	0	0	0
ration	A ² D(IA)(IA)Z	meru/g ²	0	0	+0.0018	+0.001	0	-0,002
Squared	A ² D(SRA)(SRA)X	$meru/g^2$	0	0	0	0	0	0
Sensitive	A ² D(SRA)(SRA)Y	meru/g ²	0	+0.0018	0	0	+0.0018	0
Drift	A ² D _(SRA) (SRA)Z	meru/g ²	0	0	0	0	0	0
	A ² D(IA)(SRA)X	meru/g ²	0	0	0	0	0	0
	A ² D(IA)(SRA)Y	meru/g ²	0	0	0	0	0	0
	A ² D(IA)(SRA)Z	meru/g ²	0	0	0	0	0	0
Root Sum Square Error								
			<u> </u>		·			
			L			L	_	

4-5

Fig. B-1

.

Fig. B-2

Fig. B-3

SECTION C LUNAR DEBOOST TO ORBIT

1.7.1

Trajectory Description & Data

- 1) Description: Lunar approach trajectory putting spaceship into 100 n. mile circular orbit around moon.
- 2) Total trajectory time: <u>245.15</u> seconds
- 3) Total earth angle, θ_{R} , subtended by trajectory: 15.02 degrees
- 4) Initial & final altitudes: 121.3 and 98.1 n. miles
- 5) Initial & final velocities: 8,218 and 5,253 ft/sec.
- 6) Initial & final velocity angles relative to Z_I axis: <u>-9.0</u> and <u>-17.6</u> degrees
- 7) Initial & final thrust acceleration: 10.73 and 14.46 ft/sec^2
- Initial & final pitch angle relative to X_I axis: <u>-76</u> and <u>-76</u> degrees
- 9) Thrust acceleration history in ft/sec^2 : $a_T = 10.73 + 0.01173t + 1.414(10^{-5})t^2$ for 0 < t < 245.15 secs.
- 10) Pitch angle history in degree relative to X_{I} axis: θ = -76.0 for 0 < t < 245.15 secs.

Note: For all tabular error studies the IMU stable member coordinates, X_{SM} , Y_{SM} , Z_{SM} are <u>colinear</u> with inertial coordinates, X_I , Y_I , Z_I .

iponent	Error		RMS Error	RMS E Axes	Fror in in feet	Inertial	RMS E Axes	rror in in feet	Target	
CO				(E)X _I	(E)Y _I	$(E)Z_{I}$	Range	Track	Altitude	
g	Initial	(E)X _{Io}	0 ft	0	0	0	0	0	0	
Iŧ	Position	(E)Y _{IO}	0 ft	0	0	0	0	0	0	
ond	Error	(E)Z _{IO}	0 ft	0	0	0	Ō	0	0	
ŭĭ	Initial	(E)V _{XI0}	0 ft/sec	0	0	0	0	0	0	
tia] E	Velocity	(E)V _{YI0}	0 ft/sec	0	0	0	0	0	0	
Ini	Error	(E)V _{ZIO}	0 ft/sec	0	0	0	0	0	0	
la.	Initial	A _{(SM)XI}	0.206 mr	0	70.8	0	0	70.8	0	
U & err	Alignment	A _{(SM)YI}	0.206 mr	71.5	0	17.8	1,4	0	73.7	
Ext	Errors	A(SM)ZI	0.206 mr	0	17.7	0	0	17.7	0	
	Accel. IA	X to Y	0.1 mr	0	0	0	0	0	0	
W	Non-ortho-	X to Z	0.1 mr	34.7	0	0.1	8.9	0	33.5	
ŝ	gonality	Y to Z	0.1 mr	0	0	0	0	0	0	
8	Bias	ACBX	$0.2 \mathrm{cm/sec}^2$	198.6	0	0.3	51.2	0	191.9	
		ACBY	$0.2 \mathrm{cm/sec}^2$	0	196.7	0	0	196.7	0	
TE		ACBZ	$0.2 \mathrm{cm/sec}^2$	0.3	0	196.7	189.9	0	51.3	
ME	Scale	SFEX	100 PPM	8.7	0	0	2.2	0	8.4	
ß	Factor	SFEY	100 PPM	0	0	0	0	0	0	
E E	Error	SFEZ	100 PPM	0.1	0	34.4	33.2	0	9.0	
CE	Accel. Sens. Scale	SFNCX	10 PPM/g	0.1	0	0	0	0	0.1	
AC		SFNCY	10 PPM/g	0	0	0	0	0	0	
	Error	SFNCZ	10 PPM/g	0	0	1.2	1, 2	0	0	
	Bias	BDX	10 meru	0	21.5	0	0	21.5	0	
	Drift	BDY	10 meru	21.7	0	0.5	0.4	0	22.3	
		BDZ	10 meru	0	5.4	0	0	5.4	0	
		ADIAX	10 meru/g	0	1.9	0	0	1.9	0	
	Acceler-	ADIAY	10 meru/g	0	0	0	0	0	0	
0	ation	ADIAZ	10 meru/g	0	1.9	0	0	1.9	0	
YR	Sensitive	ADSRAX	10 meru/g	0	0	0	0	0	0	
5	Drift	ADSRAY	10 meru/g	7.5	0	1. 9	0.1	0	7.8	
		ADSRAZ	10 meru/g	0	0	0	0	0	0	
	Acceler-	A ² D(IA)(IA)X	1 meru/g ²	0	0	0	0	0	0	
	ation Squared Sensitive	A ² D(SRA)(SRA)Y	1 meru/g ²	0.3	0	0.1	0	0	0.3	
	Drift	A ² D(IA)(IA)Z	1 meru/g ²	0	0.1	0	0	0.1	0	
	Root Sum Square Error			215.3	211.0	200.6	199.7	211.0	216.2	
					362.1		362.1			

Lunar Deboost to Orbit Trajectory OVERALL SYSTEM STUDY OF RMS POSITION ERRORS

LD EMTLAI

aponent	Error		RMS Error	RMS E Axes i	Error in in ft/sec	Inertial	RMS E Axes i	Error in In ft/sec	Target
Соп	i			(E)V _{XI}	(E)V _{YI}	(E)V _{ZI}	Range	Track	Altitude
ç	Initial	(E)X _{Io}	0 ft	0	0	0	0	0	0
itic	Position	(E)Y _{IO}	0 ft	0	0	0	0	0	0
ors	Error	(E)Z _{IO}	0 ft	0	0	0	0	0	0
LI C	Initial	(E)V _{XI0}	0 ft/sec	0	0	0	0	0	0
[E	Velocity	(E)V _{YI0}	0 ft/sec	0	0	0	0	0	0
Ini	Error	(E)V _{ZIo}	0 ft/sec	0	0	0	0	0	0
hal k	Initial S M	A(SM)XI	0.206 mr	0	0.606	0	0	0.606	0
IU &	Alignment	A(SM)YI	0.206 mr	0.618	0	0.154	0.012	0	0.637
N H	Errors	A(SM)ZI	0.206 mr	0	0.151	0	0	0.151	0
	Accel. IA	X to Y	0.1 mr	0	0	0	0	0	0
W	Non-ortho-	X to Z	0.1 mr	0.300	0	0.001	0.077	0	0.290
S	gonality	Y to Z	0.1 mr	0	0	0	0	0	0
	Bias	ACBX	$0.2 \mathrm{cm/sec}^2$	1.631	0	0.007	0.416	0	1.577
R		ACBY	$0.2 \mathrm{cm/sec}^2$	0	1.599	0	0	1.599	0
LE		ACBZ	$0.2 \mathrm{cm/sec}^2$	0.007	0	1.600	1.544	0	0.421
ME	Scale	SFEX	100 PPM	0.075	0	0	0.019	0	0.072
RO	Factor	SFEY	100 PPM	0	0	0	0	0	0
LE	Error	SFEZ	100 PPM	0.001	0	0.295	0.284	0	0.077
CE	Accel. Sens Scale Factor	SFNCX	10 PPM/g	0.001	0	0	0	0	0.001
AC		SFNCY	10 PP M /g	0	0	0	0	0	0
	Error	SFNCZ	10 PPM/g	0	0	0.011	0.011	0	0
	Bias	BDX	10 meru	0	0.277	0	0	0.277	0
	Drift	BDY	10 meru	0.280	0	0.070	0.005	0	0.288
		BDZ	10 meru	0	0.069	0	0	0.069	0
	A - color-	ADIAX	10 meru/g	0	0.025	0	0	0.025	0
	Acceler-	ADIAY	10 meru/g	0	0	0	0	0	0
0	ation	ADIAZ	10 meru/g	0	0.025	0	0	0,025	0
YR	Sensitive	ADSRAX	10 meru/g	0	0	0	0	0	0
0	Dritt	ADSRAY	10 meru/g	0.100	0	0.025	0.002	0	0.103
		ADSRAZ	10 meru/g	0	0	0	0	0	0
	Acceler-	A ² D(IA)(IA)X	1 meru/g ⁻	0	0	0	0	0	0
	Squared Sensitive	A ² D _(SRA) (SRA)Y	1 meru/g ²	0.036	0	0.009	0.001	0	0.037
	Drift	A ² D(IA)(IA)Z	1 meru/g ⁴	0	0	0	0	0	0
	Root Sum Square Error				1.741	1,636	1.626	1.741	1.805
		2.988			2.988				

Lunar Deboost to Orbit Trajectory OVERALL SYSTEM STUDY OF RMS VELOCITY ERRORS

.....

	Error	RMS Error	Drift Angle about Inertial Axes (in milliradians)			Drift Targ (in m	Drift Angle about Target Axes (in milliradians)		
	1		· X1	Y YI	* 21	* Range	*Track	Altitude	
Gyro	BDX	10 meru	0.179	0	0	0.046	0	0.173	
Bias	BDY	10 meru	0	0.179	0	0	0.179	0	
Drift	BDZ	10 meru	0	0	0.179	0.173	0	0.046	
Gyro	ADIAX	10 meru/g	0.017	0	0	0.004	0	0.016	
Accele-	ADIAY	10 meru/g	0	0	0	0	0	0	
ration	ADIAZ	10 meru/g	0	0	0.067	0.065	0	0.017	
Sensitive	ADSRAZ	10 meru/g	0	0	0	0	0	0	
Drift	ADSRAY	10 meru/g	0	0.067	0	0	0.067	0	
	ADSRAZ	10 meru/g	0	0	0	0	0	0	
Gyro	A ² D(IA)(IA)X	1 meru/g ²	0	0	0	0	0	0	
Accele-	Accele-		0	0	0	0	0	0	
ration	A ² D _{(IA)(IA)Z}	1 meru/g^2	0	0	0.003	0.002	0	0.001	
Squared	A ² D(SRA)(SRA)X	$1 \cdot \text{meru/g}^2$	0	0	0	0	0	0	
Sensitive	A ² D(SRA)(SRA)Y	1 meru/g ²	0	0.003	0	0	0.003	0	
Drift	$A^2 D_{(SRA)(SRA)Z}$	1 meru/g ²	0	0	0	0	0	0	
	A ² D _(IA) (SRA)X	1 meru/g^2	0	0	0	0	0	0	
	A ² D(IA)(SRA)Y	1 meru/g ²	0	0	0	0	0	0	
	A ² D _(IA) (SRA)Z	1 meru/g ²	0	0	0	0	0	0	
Root Sum Square Error			0.180	0.191	0.191	0.190	0.191	0.180	
				0.324			0.324		

Lunar Deboost to Orbit Trajectory OVER-ALL SYSTEM STUDY OF RMS PLATFORM DRIFT ANGLES (SM axes colinear with inertial axes)

Lunar Deboost to Orbit Trajectory IMU POSITION ERROR COEFFICIENTS (PART I) (SM axes colinear with inertial axes)

1

			Unit Error	Error in In in feet per	ertial Axe unit error	8	Er ro r in in feet pe	Target Ax er unit err	es or
	Error		Dimension	(E)X _I	(E)Y _I	(E)Z _I	Range	Track	Altitude
A. In	itial C	ondition E	rrors along I	nertial Axe	S	r			
Initial	(E)X _{IO}	foot	+1.040	0	+0.006	-0.264	0	+1.006
Positi	on (E)Y _{IO}	foot	0	+0.980	0	0	+0.980	0
Error	(E)Z _{IO}	foot	+0.006	0	+0.981	+0.946 0		+0.260
Initial	(E)VXIO	ft/sec	+248.4	0	+0.7	7 -63.7 0		+240.1
Veloci	.ty (E)V _{YIO}	ft/sec	0	+243.5	0	0 + 243.5		0
Error	(E)VZIO	ft/sec	+0.7	0	+243.6	+235.1	0	+63.8
B. Ac	ccelerc	ometer Er	rors (In-flig	ht Effect on	ly)				
	4	ACBX	cm/sec^2	-993.1	0	-1.7	+255.8	0	-959.6
Bias	A	ACBY	cm/sec^2	0	-983.3	0	0	-983.3	0
		ACBZ	$\mathrm{cm/sec}^2$	-1.7	0	-983.6	-949.6	0	-256.6
Scale S		SFEX	PPM	-0.087	0	0	+0.022	0	-0.084
Factor	· [SFEY	PPM	0	0	0	0	0	0
Error		SFEZ	РРМ	+0.001	0	+0.344	+0.332	0	+0.090
Accel.	2	SFNCX	PPM/g	-0.008	0	0	+0.002	0	-0.007
Sens.	5	SFNCY	PPM/g	0	0	0	0	0	0
Factor Error		SFNCZ	PPM/g	0	0	-0.123	-0.119	0	-0.032
С. М	isalign	ments of .	Acceleromete	r Input Axe	s				
Accel.	About Axis			-247 1	0	0.1	100.4	•	0.05
x	^Y SM	A(X)Y	milliradian	-341.1		-0,1	+89.4	0	-335.4
ļ	^Z SM	A(X)Z	milliradian	0	0	0	0	0	0
v	х _{sm}	A _{(Y)X}	milliradian						
	^Z SM	A _{(Y)Z}	milliradian						
-	х _{sm}	A _{(Z)X}	milliradian	0	0	0	0	0	0
Z	^Ү SM	A _{(Z)Y}	milliradian						

C-1

Contract of

DE

Lunar Deboost to Orbit Trajectory IMU POSITION ERROR COEFFICIENTS (PART 2) (SM axes colinear with inertial axes)

		Unit Error	Error in I in feet pe	Inertial A r unit er:	xes ror	Error in in feet p	Target A er unit er	xes ror
]	Error	Dimension	(E)X _I	(E)Y _I	(E)Z _ĭ	Range	Track	Altitude
D. Init	ial Platform Misal	ignments abou	t Inertial	Axes			•	
A _{(S}	SM)XI	'milliradian	0	+343.8	0	0	+343.8	0
A _{(S}	SM)YI	milliradian	-347.2	0	-86.3	+6.7	0	-357.7
A _{(S}	SM)ZI	milliradian	0	+85.7	0	0	+85.7	0
E. Gyr	o Drift Errors		· · · · · · · · · · · · · · · · · · ·			I 		<u> </u>
Dian	BDX	meru	0	+2.154	0	0	+2,154	0
Bias	BDY	meru	-2.167	0	-0.540	+0.041	0	-2.233
Drift	BDZ	meru	0	+0.537	0	0	+0.537	0
1	ADIAX	meru/g	0	+0.187	0	0	+0.187	0
Accele-	ADIAY	meru/g	0	0	0	0	0	0
Fation	ration ADIAZ		0	-0.187	0	0	-0.187	0
Sensi-	ADSRAX	meru/g	0	0	0	0	0	0
Duift	ADSRAY	meru/g	-0.755	0	-0.188	+0.014	0	-0.778
Drift	ADSRAZ	meru/g	0	0	0	0	0	0
Accele	A ² D(IA)(IA)X	meru/g ²	0	+0.016	0	0	+0.016	0
ration	A ² D(IA)(IA)Y	meru/g ²	0	0	0	0	0	0
Squared	A ² D(IA)(IA)Z	meru/g ²	0	+0.065	0	0	+0.065	0
Sensi-	A ² D(SRA)(SRA)X	meru/g ²	0	0	0	0	0	0
tive	A ² D(SRA)(SRA)Y	$meru/g^2$	-0.264	0	-0.066	+0.005	0	-0.272
Drift	A ² D(SRA)(SRA)Z	meru/g ²	0	0	0	0	0	0
	A ² D(IA)(SRA)X	meru/g ²	0	0	0	0	0	0
	A ² D(IA)(SRA)Y	meru/g ²	0	0	0	0	0	0
	A ² D(IA)(SRA)Z	meru/g ²	0	0	0	0	0	0

THE LOCALTIAL

T 1

Lunar Deboost to Orbit Trajectory IMU VELOCITY ERROR COEFFICIENTS (PART 1) (SM axes colinear with inertial axes)

			Unit Error	Error in In in ft/sec pe	ertial Axe er unit erre	e or	Er ro r in in ft/sec	Target Ax per unit e	es rror
	Error		Dimension	(E)VXI	(E)V _{YI}	(E)VZI	Range	Track	Altitude
A. In	itial C	ondition E	rrors along I	nertial Axe	S	L	·		
Initial		(E)X _{IO}	foot	+0.323 0 0 ⁻³)	0	+0.07α10 ⁻³)	-0.016(10 ⁻³	0 -	+0330(10 ⁻³)
Positi	on (^{(E)Y} IO	foot	0	-0165(10 ⁻³)	0	0	-0165(10 ⁻³)	0
Error		(E)Z _{IO}	foot	+0.068(10 ⁻³)	0	-0152(10 ⁻³)	-0165(10 ⁻³)	0	+0.027(103)
Initial		E)VXIO	ft/sec	+1.039	0	+0.011	-0.259	0	+1.006
Veloci	ty (E)V _{YIO}	ft/sec	0	+0.980	0	0	+0.980	0
Error		^{(E)V} ZIO	ft/sec	+0.011	0	+0.982	+0.945	0	+0.265
B. Ac	celer	ometer Er	rors (In-flig	ht Effect on	ly)				
	4	ACBX	cm/sec^2	-8.154	0	-0.033	+2.082	0	-7.883
Bias		ACBY	cm/sec^2	0	-7.994	0	0	-7.994	0
A		ACBZ	cm/sec^2	-0.033	0	-8.002	-7.720	0	-2.106
Scale	2	SFEX	РРМ	-0.00075	0	0	+0.00019	0	-0,00072
Factor	· [SFEY	РРМ	0	0	0	0	0	0
Error	Ę	SFEZ	РРМ	0.00001	0	+0.00295	+0.00284	0	+0.00077
Accel.	2	SFNCX	PPM/g	-0.00007	0	0	+0.00002	0	-0.00006
Sens. Scale	2	SFNCY	PPM/g	0	0	0	0	0	0
Factor Error	. 9	SFNCZ	PPM/g	0	0	-0.00111	-0.00107	0	-0.00029
C. Mi	isalign	ments of A	Acceleromete	r Input Axe	s				<u></u>
Accel.	About	t							
x	Y _{SM}	A _{(X)Y}	milliradian	-2,997	0	-0.011	+0.766	0	-2.898
	^Z SM	A _{(X)Z}	milliradian	0	0	0	0	0	0
	X _{SM}	A _{(Y)X}	milliradian						
Y	z _{sm}	A _{(Y)Z}	milliradian						
	х _{sм}	A _{(Z)X}	milliradian	0	0	0	0	0	0
Z	^Y SM	A _{(Z)Y}	milliradian						

-CCIVITED

Lunar Deboost to Orbit Trajectory IMU VELOCITY ERROR COEFFICIENTS (PART 1) (SM axes colinear with inertial axes)

		Unit	Error in 3	Inertial A	xes	Error in	Target A	xes
		Error	in ft/sec	per unit e	rror	in ft/sec	per unit	error
I	Error	Dimension	(E)V _{XI}	(E)V _{YI}	(E)V _{ZI}	Range	Track	Altitude
D. Init	ial Platform Misal	ignments abou	t Inertial	Axes				
A _{(S}	M)XI	milliradian	0	+2.943	0	0	+2.943	0
A _{(S}	SM)YI	milliradian	-3,000	0	-0.746	+0.057	0	-3.091
A _{(S}	M)ZI	milliradian	0	+0.734	0	0	+0.734	0
E. Gyr	o Drift Errors					h		
D'	BDX	meru	0	+0.0277	0	0	+0.0277	0
Duift	BDY	meru	-0.0280	0	-0.0070	+0.0005	0	-0.0288
Drift	BDZ	meru	0	+0.0069	0	0	+0.0069	0
Accelo	ADIAX	meru/g	0	+0.0025	0	0	+0.0025	0
Accele- ADIAY		meru/g	0	0	0	0	0	0
Fation	ADIAZ	meru/g	0	-0.0025	0	0	-0.0025	0
Sensi-	ADSRAX	meru/g	0	0	0	0	0	0
tive	ADSRAY	meru/g	-0.0100	0	-0.0025	+0.0002	0	-0.0103
Drift	ADSRAZ	meru/g	0	0	0	0	0	0
A	A ² D(IA)(IA)X	meru/g ²	0	+0.0002	0	0	+0.0002	0
ration	A ² D _{(IA)(IA)Y}	meru/g ²	0	0	0	0	0	0
Squared	A ² D _(IA) (IA)Z	meru/g ²	0	+0.0009	0	0	+0.0009	0
Sensi-	A ² D(SRA)(SRA)X	meru/g ²	0	0	0	0	0	0
tive	A ² D(SRA)(SRA)Y	meru/g ²	-0.0036	0	-0.0009	+0.0001	0	-0.0037
Drift	A ² D _{(SRA)(SRA)Z}	meru/g ²	0	0	0	0	0	0
	A ² D _(IA) (SRA)X	meru/g ²	0	0	0	0	0	0
A ² D(IA)(SRA)Y		meru/g ²	0	0	0	0	0	0
	A ² D(IA)(SRA)Z	meru/g ²	0	0	0	0	0	0

Lunar Deboost to Orbit Trajectory IMU S. M. DRIFT ANGLE COEFFICIENTS (SM axes colinear with inertial axes)

	Error	RMS Error Dimension	Drift A Inertia millira unit er	Angle ab 1 Axes adian pe ror	oout in er	Drift Angle about Target Axes in milliradian per unit error			
			• _{XI}	φ _{YI}	¢ΖΙ	[¢] Range	• Track	ϕ Altitude	
	BDX	meru	+0.0179	0	0	-0.0046	0	+0.0173	
Bias	BDY	meru	0	+0.0179	0	0	+0.0179	0	
Drift	BDZ	meru	0	0	+0.0179	+0.0173	0	+0.0046	
	ADIAX	meru/g	+0.0017	0	0	-0.000	<u>4</u> 0	+0.0016	
	ADIAY	meru/g	0	0	0	0	0	0	
ration	ADIAZ	meru/g	0	0	-0.0067	-0.0065	0	-0.0017	
Sensitivo	ADSRAX	meru/g	0	0	0	0	0	0	
Sensitive ADSRAY		meru/g	0	+0.006	0	0	+0.006	0	
Dim	ADSRAZ	meru/g	0	0	0	0	0	0	
	A ² D(IA)(IA)X	$meru/g^2$	+0.0002	0	0	0	0	+0.0002	
Accele-	A ² D _{(IA)(IA)Y}	meru/g ²	0	0	0	0	0	0	
ration	A ² D _(IA) (IA)Z	meru/g ²	0	0	+0.0025	+0,0024	0	+0.0007	
Squared	A ² D(SRA)(SRA)X	$meru/g^2$	0	0	0	0	0	0	
Sensitive	A ² D(SRA)(SRA)Y	$meru/g^2$	0	+0,0025	0	0	+0,0025	0	
Drift	A ² D(SRA)(SRA)Z	$meru/g^2$	0	0	0	0	0	0	
	A ² D(IA)(SRA)X	$meru/g^2$	0	0	0	0	0	0	
	A ² D(IA)(SRA)Y	$meru/g^2$	0	0	0	0	0	0	
	A ² D _(IA) (SRA)Z	meru/g ²	0	0	0	0	0	0	

T.

Fig. C-1

Fig. C-2

Fig. C-3

SECTION D

LUNAR LANDING

LUNAR LANDING TRAJECTORY

Trajectory Description & Data

1)	Description = Descent to Moon Surface	from Initial Altitude of 50,000 ft
2)	Total trajectory time	:375seconds
3)	Total earth angle, θ_{R} ,	
	subtended by trajectory	: <u>11.0</u> degrees
4)	Initial & final altitudes	: 50,000 and 0 ft
5)	Initial & final velocities	: <u>5,607.5 and</u> 0 ft/sec
6)	Initial & final velocity angles	
	rel a tive to Z _I axis	: 0 and -14.5 degrees
7)	Initial & final thrust acceleration	: 12.9 and 17.2 ft/sec ²
8)	Inital & final pitch angle	
	relative to X _T axis	: 91.5 and 57.5 degrees
9)	Thrust acceleration history in	
	ft/sec^2 : $a_T = 12.9 + 1.80(10^{-3})t$	$+2.04(10^{-5})t^2$ for 0 <t<180 sec<="" td=""></t<180>
	$a_{T} = 17.2$	for 180 <t<375 sec<="" td=""></t<375>
10)	Pitch angle history in degrees	
/	relative to X _z axis : $\theta = 91.5-0.056t$	$+ 0.69(10^{-4})t^2$ for 0 <t<180 sec<="" td=""></t<180>
	$\theta = 57.5$	for 180 <t<375 sec<="" td=""></t<375>
Tr	ajectory Figure	SM 201 200 0000 200
<u> </u>	41	5141
	Start of	ZI
	Trajectory I' SM	Altitude
	character and char	
		Find of Trajectory
	(Let	Range ('target')
)
		Moon

<u>Note</u>: For all tabular error studies the IMU stable member coordinates, X_{SM} , Y_{SM} , Z_{SM} are <u>colinear</u> with inertial coordinates, X_I , Y_I , Z_I .

COMPEN

ТР, - ---

Iponent	Er	ror	RMS Error	RMS E	Error in xes in F	Inertial Feet	RMS E A:	rror in xes in F	T arget eet
Con				(E)XI	(E)Y _I	(E)Z _I	Range	Track	Altitude
g	Initial	(E)X _{IO}	0 ft	0	0	0	0	0	0
itic	Position	(E)Y _{IO}	0 ft	0	0	0	0	0	0
ond	Error	(E)Z _{IO}	0 ft	0	0	0	0	0	0
ŬĽ	Initial	(E)V _{XI0}	0 ft/sec	0	0	0	0	0	0
tia. F	Velocity	(E)V _{YI0}	0 ft/sec	0	0	0	0	0	0
Ini	Error	(E)V _{ZI0}	0 ft/sec	0	0	0	0	0	0
al "	Initial	A(SM)XI	0.206 mr	0	194	0	0	194	0
U & er	Alignment	A(SM)YI	0.206 mr	201	0	43	4	0	205
Ext	Errors	A(SM)ZI	0.206 mr	0	42	0	0	42	0
	Accel. IA	X to Y	0.1 mr	0	0	0	0	0	0
W.	Non-ortho-	X to Z	0.1 mr	97	0	46	18	0	96
S	gonality	Y to Z	0.1 mr	0	0	0	0	0	0
		ACBX	$0.2 \mathrm{cm/sec}^2$	471	0	2	88	0	463
R	Bias	ACBY	$0.2 \mathrm{cm/sec}^2$	0	457	0	0	457	0
TE		ACBZ	$0.2 \mathrm{cm/sec}^2$	2	0	457	448	0	89
ME	Scale	SFEX	100 PPM	21	0	0	4	0	20
RO	Factor	SFEY	100 PPM	0	0	0	0	0	0
LEI	Error	SFEZ	100 PPM	0	0	94	93	0	18
CE	Accel, Sens	SFNCX	10 PPM/g	1	0	0	0	0	1
AC	Scale Factor	SFNCY	10 PPM/g	0	0	0	0	0	0
	Error	SFNCZ	10 PPM/g	0	0	4	4	0	1
	Biag	BDX	10 meru	0	89	0	0	89	0
	Drift	BDY	10 meru	91	0	34	16	0	96
		BDZ	10 meru	0	34	0	0	34	0
		ADIAX	10 meru/g	0	5	0	0	5	0
	Acceler-	ADIAY	10 meru/g	0	0	0	0	0	0
0	ation	ADIAZ	10 meru/g	0	14	0	0	14	0
YR	Sensitive	ADSRAX	10 meru/g	0	0	0	0	0	0
5	Drift	ADSRAY	10 meru/g	38	0	14	7	0	40
		ADSRAZ	10 meru/g	0	0	0	0	0	0
	Acceler-	A ² D(IA)(IA)X	1 meru/g^2	0	0	0	0	0	0
	Squared	A ² D(SRA)(SRA)Y	1 meru/g^2	2	0	1	0	0	2
	Drift	A ² D(IA)(IA)Z	1 meru/g^2	0	1	0	0	1	0
1	Root Sum Square Error			531	507	470	467	507	534
				ļ	872			872	

Lunar Landing Trajectory OVERALL SYSTEM STUDY OF RMS POSITION ERRORS

LT.

.

mponent	E	rror	RMS Error	RMS I	Error in xes in ft	Inertia /sec	RMS I Ax	Er ror in es in ft/	Target sec
<u> </u>		7		(E)V _{XI}	(E)V _{YI}	(E)V _{ZI}	Range	Track	Altitude
Б Б	Initial	(E)X _{Io}	0 ft	0	0	0	0	0	0
litti	Position	(E)Y _{Io}	0 ft	0	0	0	0	0	0
or	Error	(E)Z _{Io}	0 ft	0	0	0	0	0	0
	Initial	(E)V _{XI0}	0 ft/sec	0	0	0	0	0	0
ltia	Velocity	(E)V _{YI0}	0 ft/sec	0	0	0	0	0	0
Ч	Error	(E)V _{ZIo}	0 ft/sec	0	0	0	0	0	0
k nal	Initial S M	A(SM)XI	0.206 mr	0	1.052	0	0	1.052	0
ter	Alignment	A(SM)YI	0.206 mr	1.119	0	0.405	0.184	0	1.176
N H	Errors	A(SM)ZI	0.206 mr	0	0.393	0	0	0.393	0
	Accel. IA	X to Y	0.1 mr	0	0	0	0	0	0
N N	Non-ortho-	X to Z	0.1 mr	0.542	0	0.006	0.098	0	0.534
	gonality	Y to Z	0.1 mr	0	0	0	0	0	0
		ACBX	$0.2 \mathrm{cm/sec}^2$	2.566	0	0.028	0.462	0	2,524
щ	Bi as	ACBY	$0.2 \mathrm{cm/sec}^2$	0	2,409	0	0	2.409	0
E.		ACBZ	$0.2 \mathrm{cm/sec}^2$	0.028	0	2,414	2.365	0	0,488
ME	Scale	SFEX	100 PPM	0.195	0	0.001	0.036	0	0.191
RO	Factor	SFEY	100 PPM	0	0	0	0	0	0
LE	Error	SFEZ	100 PPM	0.006	0	0.512	0.501	0	0,103
CE	Accel. Sens	SFNCX	10 PPM/g	0.005	0	0	0,001	0	0,005
AC	Scale Factor	SFNCY	10 PPM/g	0	0	0	0	0	0
	Error	SFNCZ	10 PPM/g	0	0	0.022	0.022	0	0.004
	Bias	BDX	10 meru	0	0.723	0	0	0.723	0
	Drift	BDY	10 meru	0.747	0	0.378	0.229	0	0.805
		BDZ	10 meru	0	0.374	0	0	0.374	0
		ADIAX	10 meru/g	0	0.067	0	0	0.067	0
	Acceler-	ADIAY	10 meru/g	0	0	0	0	0	0
0	ation	ADIAZ	10 meru/g	0	0.159	0	0	0.159	0
YR	Sensitive	ADSRAX	10 meru/g	0	0	0	0	0	0
6	Drift	ADSRAY	10 meru/g	0.314	0	0.161	0.098	0	0.339
		ADSRAZ	10 meru/g	0	0	0	0	0	0
	Acceler-	A ² D(IA)(IA)X	1 meru/g^2	0	0.002	0	0	0.002	0
	Squared Sensitive	A ² D(SRA)(SRA)Y	1 meru/g^2	0.013	0	0.007	0.004	0	0.014
	Drift	A ² D(IA)(IA)Z	1 meru/g ²	0	0.007	0	0	0,007	0
E	Root Sum Square Error			2.971	2.785	2.535	2,483	2.785	3.015
	-				4.797			4.797	

Lunar Landing Trajectory OVERALL SYSTEM STUDY OF RMS VELOCITY ERRORS

.

Lunar Landing Trajectory									
OVER-ALL SYSTEM STUDY OF RMS PLATFORM DRIFT ANGLES									
(SM axes colinear with inertial axes)									

	Error	RMS Error	Drift A Inertia (in mil	Angle ab 1 Axes liradiar \$\vert\$	out ns) Ø _{ZI}	Drift Angle about Target Axes (in milliradians) Bange			
						Italige	TIACK	Altitude	
Gyro	BDX	10 meru	0.273	0	0	0.052	0	0.268	
Bias	BDY	10 meru	0	0.273	0	0	0.273	0	
Drift	BDZ	10meru	0	0	0.273	0.268	0	0.052	
Guro	ADIAX	10meru/g	0.043	0	0	0.008	0	0.043	
Assola	ADIAY	10meru/g	0	0	0	0	0	0	
Accele-	ADIAZ	10meru/g	0	0	0.118	0,116	0	0.023	
Songitime	ADSRAX	10 meru/g	0	0	0	0	0	0	
Drift	ADSRAY	10meru/g	0	0,118	0	0	0.118	0	
	ADSRAZ	10meru/g	0	0	0	0	0	0	
Curre	A ² D _{(IA)(IA)X}	1 meru/g^2	0.001	0	0	0	0	0.001	
Accele-	A ² D _{(IA)(IA)Y}	1 meru/g^2	0	0	0	0	0	0	
ration	A ² D(IA)(IA)Z	1 meru/g^2	0	0	0.005	0.005	0	0.001	
Squared	A ² D(SRA)(SRA)X	1 meru/g^2	0	0	0	0	0	0	
Sensitive	A ² D(SRA)(SRA)Y	1 meru/g^2	0	0.005	0	0	0.005	0	
Drift	A ² D _{(SRA)(SRA)Z}	1 meru/g^2	0	0	0	0	0	0	
	A ² D(IA)(SRA)X	1 meru/g^2	0	0	0	0	0	0	
	A ² D(IA)(SRA)Y	1 meru/g^2	0	0	0	0	0	0	
	A ² D(IA)(SRA)Z	1 meru/g ²	0	0	0	0	0	0	
Root Sum Square Error			0,277	0.298	0.298	0.297	0. 298	0.278	
				0.504			0.504		

Lunar Landing Trajectory IMU POSITION ERROR COEFFICIENTS (PART 1) (SM axes colinear with inertial axes)

			Unit Error	Error in In in feet per	ertial Axe unit error	8	Er ro r in in feet pe	Target Ax r unit err	es or
	Error		Dimension	(E)XI	(E)Y I	(E)Z _I	Range	Track	Altitude
A. In	itial C	ondition E	rrors along I	nertial Axe	5	· · · · · · · · · · · · · · · · · · ·			
Initial	ļ	(E)X _{IO}	foot	+1.129	0	+0.019	-0.197	0	+1.112
Positio	on [(E)Y _{IO}	foot	0	+0.936	0	0	+0.936	0
Error		(E)Z _{IO}	foot	+0.018	0	+0,939	+0.918	0	+0.197
Initial	ľ	(E)V _{XIO} ft/sec +391 0 +3		-71	0	+384			
Veloci	ty	(E)V _{YIO}	ft/sec	0	+367	0	0	+367	0
Error (E)VZIO		ft/sec	+3	0	+367	+360	0	+73	
B. Ac	celer	ometer Er	rors (In-flig	ht Effect on	ly)				
		ACBX	cm/sec^2	-2,357	0	-11	+439	0	-2,316
Bias ACE		ACBY	cm/sec^2	0	-2,284	0	0	-2,284	0
AC		ACBZ	$\mathrm{cm/sec}^2$	-11	0	-2,286	-2,242	0	-447
Scale SFEX		PPM	-0.2059	0	-0.0004	+0.0389	0	-0,2022	
Factor	· [SFEY	РРМ	0	0	0	0	0	0
Error		SFEZ	РРМ	+0.0046	0	+0.9441	+0.9258	0	+0.1846
Accel.		SFNCX	PPM/g	-0,0517	0	-0,0001	+0.0098	0	-0,0507
Sens. Scale		SFNCY	PPM/g	0	0	0	0	0	0
Factor Error	•	SFNCZ	PPM/g	-0.0019	0	-0,3985	-0,3908	0	-0.0779
С. Мі	isaligr	ments of a	Acceleromete	er Input Axe	s				
Accel.	Abou	t							
	Axis Y _{SM}	A _{(X)Y}	milliradian	-972,9	0	-4.6	+181.1	0	-955.9
А	z _{sm}	A _{(X)Z}	milliradian	0	0	0	0	0	0
	\mathbf{x}_{SM}	A _{(Y)X}	milliradian						
Y	Z _{SM}	A _{(Y)Z}	milliradian						
	х _{sm}	A _{(Z)X}	milliradian					er tr	
Z	^Ү SM	A _{(Z)Y}	milliradian	0	0	0	0	0	0

Lunar Landing Trajectory IMU POSITION ERROR COEFFICIENTS (PART II) (SM axes colinear with inertial axes)

		Unit	Error in	Inertial A	xes	Error in Target Axes		
	_	Error	in feet p	per unit e	rror	in feet p	per unit e	rror
]	Error	Dimension	(E)X _I	(E)Y _I	(E)Z _I	Range	Track	Altitude
D. Init	ial Platform Misal	ignments abou	t Inertial	Axes	-		•	±
A(5	SM)XI	'milliradian	0	+943.3	0	0	+943.3	0
A	SM)YI	milliradian	-973.3	0	-208.3	-18.8	0	-995.1
A(5	SM)ZI	milliradian	0	+203.6	0	0	+203.6	0
E. Gyr	o Drift Errors					<u></u>		
Diag	BDX	meru	0	+8.896	0	0	+8.896	0
Drift	BDY	meru	-9.067	0	-3.427	-1.634	0	-9.554
	BDZ	meru	0	+3.398	0	0	+3.396	0
A	ADIAX	meru/g	0	+0.487	0	0	+0.487	0
notion	ADIAY	meru/g	0	0	0	0	0	0
Somai	ADIAZ	meru/g	0	-1.430		0	+1.430	0
tive Drift	ADSRAX	meru/g	0	0	0	0	0	0
	ADSRAY	meru/g	-3,763	0	-1.442	- 0 . 698	0	-3.969
	ADSRAZ	meru/g	0	0	0	0	0	0
A 1 .	A ² D(IA)(IA)X	meru/g ²	0	+0.111	0	0	+0.111	0
ration	A ² D _{(IA)(IA)Y}	meru/g ²	0	0	0	0	0	0
Squared	A ² D _{(IA)(IA)Z}	meru/g ²	0	+0.603	0	0	+ 0. 603	0
Sensi-	A ² D(SRA)(SRA)X	meru/g ²	0	0	0	0	0	0
tive	A ² D(SRA)(SRA)Y	meru/g ²	-1. 564	0	-0.608	-0.298	0	-1.651
DIM	A ² D(SRA)(SRA)Z	meru/g ²	0	0	0	0	0	0
	A ² D(IA)(SRA)X	meru/g ²	0	0	0	0	0	0
	A ² D(IA)(SRA)Y	meru/g ²	0	0	0	0	0	0
	A ² D(IA)(SRA)Z	meru/g ²	0	0	0	0	0	0

Lunar Landing Trajectory IMU VELOCITY ERROR COEFFICIENTS (PART 1) (SM axes colinear with inertial axes)

			Unit Error	Error in In in ft/sec p	ertial Axe er unit err	s or	Error in Target Axes in ft/sec per unit error			
	Error		Dimension	(E)V _{XI}	(E)V _{YI}	(E)V _{ZI}	Range	Track	Altitude	
A. In	itial C	ondition E	rrors along I	nertial Axe	s			<u>I</u>	*	
Initial		(E)X _{IO}	foot							
Positi	on	(E)Y _{IO}	foot							
Error		(E)Z _{IO}	foot				· · · ·			
Initial	1	(E)VXIO	ft/sec							
Veloci	ty	(E)V _{YIO}	ft/sec							
Error		(E)V _{ZIO}	ft/sec							
B. Ac	celer	ometer Er	rors (In-flig	ht Effect on	1y)					
	4	ACBX	cm/sec^2	-12.831	0	-0.139	+2.312	0	-12,622	
Bias		ACBY	cm/sec^2	0	-12.407	0	0	-12.047	0	
		ACBZ	cm/sec^2	-0.138	0	-12.072	-11,824	0	-2.439	
Scale		SFEX	РРМ	-0.00195	0	-0,00001	+0.00036	0	-0.00191	
Factor	- 1	SFEY	PPM	0	0	0	0	0	0	
Error		SFEZ	PPM	+0.00006	0	+0.00512	+0.00501	0	+0.00103	
Accel.	5	SFNCX	PPM/g	-0,00053	0	0	+0.00010	0	-0.00052	
Sens. Scale	5	SFNCY	PPM/g	0	0	0	0	0	0	
Factor Error		SFNCZ	PPM/g	-0,00002	0	-0.00022	-0,00217	0	-0.00045	
C. Mi	isalign	ments of A	Acceleromete	r Input Axe	s	<u> </u>				
Accel.	Abou	t								
x	Y _{SM}	A _{(X)Y}	milliradian	-5.425	0	-0.057	+0.979	0	-5.336	
	z_{SM}	A _{(X)Z}	milliradian	0	0	0	0	0	0	
v	х _{sm}	A _{(Y)X}	milliradian							
х —	z _{sm}	A _{(Y)Z}	milliradian							
7	x _{sm}	A _{(Z)X}	milliradian							
4	^Y SM	A _{(Z)Y}	milliradian	0	0	0	0	0	0	

Lunar Landing Trajectory IMU VELOCITY ERROR COEFFICIENTS (PART 2) (SM axes colinear with inertial axes)

		Unit	Error in J	nertial A	xes	Error in	Target A	xes
		Error	in ft/sec j	per unit e	rror	in ft/sec	per unit	error
E	rror	Dimension	(E)V _{XI}	(E)V _{YI}	(E)V _{ZI}	Range	Track	Altitude
D. Init:	ial Platform Misali	gnments abou	t Inertial .	Axes				
A _{(S}	M)XI	milliradian	0	+5.106	0	0	+5.106	0
A _{(S}	M)YI	milliradian	-5.433	0	-1.964	-0.892	0	-5.707
A _{(S}	M)ZI	milliradian	0	+1.906	0	0	+1.906	0
E. Gyr	o Drift Errors		·					
BDX		meru	0	+0,07230	0	0	+0.07230	0
Blas	BDY	meru	-0.07465	0	-0.03783	-0.02289	0	-0.08049
Drift	BDZ	meru	0	+0.03740	0	0	+0.03740	0
A	ADIAX	meru/g	0	+0.00668	0	0	+0.00668	0
Accele-	ADIAY	meru/g	0	0	0	0	0	0
ration	ADIAZ	meru/g	0	-0,01589	0	0	-0,01589	0
tive	ADSRAX	meru/g	0	0	0	0	U	Û
	ADSRAY	meru/g	-0.03144	0	-0.01606	-0.00977	0	-0,03392
Drift	ADSRAZ	meru/g	0	0	0	0	0	0
	A ² D _{(IA)(IA)X}	$meru/g^2$	0	+0.00168	0	0	+0.00168	0
Accele-	A ² D _{(IA)(IA)Y}	meru/g ²	0	0	0	0	0	0
Squared	A ² D _(IA) (IA)Z	$meru/g^2$	0	+0.00676	0	0	+0.00676	0
Sensi-	A ² D _(SRA) (SRA)X	meru/g ²	0	0	0	0	0	0
tive	A ² D(SRA)(SRA)Y	meru/g ²	-0.01327	0	-0.00684	-0.00418	0	-0.01433
Drift	A ² D _(SRA) (SRA)Z	meru/g ²	0	0	0	0	0	0
	A ² D _{(IA)(SRA)X}	meru/g ²	0	0	0	0	0	0
	A ² D _(IA) (SRA)Y	$meru/g^2$	0	0	0	0	0	0
	A ² D(IA)(SRA)Z	meru/g ²	0	0	0	0	0	0

CONFIDENTAL

Lunar Landing Trajectory IMU SM DRIFT ANGLE COEFFICIENTS (SM axes colinear with inertial axes)

	Error	RMS Error	Drift A Inertia in mill uni	ngle ab 1 Axes iradian t error	out per	Drift Angle about Target Axes in millirdian per unit error			
		Dimension	^{\$} XI	φ _{YI}	¢ΖΙ	ϕ_{Range}	ϕ_{Track}	[¢] Altitud	
	BDX	meru	+0.0273	0	0	-0.0052	0 -	-0.0268	
Biac	BDY	meru	0	+0.0273	0	0	+0.0273	0	
Druc	BDZ	meru	0.	0	+0.0273	+0.0268	0	+0.0052	
	ADIAX	meru/g	+0.0043	0	0	-0.0008	0	+0.0043	
A	ADIAY	meru/g	0	0	0	0	0	0	
Accele-	ADIAZ	meru/g	0	0	-0.0118	-0,0116	0	-0.0023	
Songitivo	ADSRAX	meru/g	0	0	0	0	0	0	
Deit	ADSRAY	meru/g	0	+0.0118	0	0	+0.0118	0	
Drift	ADSRAZ	meru/g	0	0	0	0	0	0	
	A ² D _{(IA)(IA)X}	meru/g ²	+0.0012	0	0	-0.0002	0	+0.0012	
Accele-	A ² D _{(IA)(IA)Y}	meru/g ²	0	0	0	0	0	0	
ration	A ² D _(IA) (IA)Z	meru/g ²	0	0	+0.0051	+0.0050	0	+0.0010	
Squared	A ² D(SRA)(SRA)X	meru/g ²	0	0	0	0	0	0	
Sensitive	A ² D(SRA)(SRA)Y	meru/g ²	0	+0.0051	0	0	+0.0051	0	
Drift	A ² D _{(SRA)(SRA)Z}	$meru/g^2$	0	0	0	0	0	0	
	A ² D _(IA) (SRA)X	meru/g ²	0	0	0	0	0	0	
	A ² D _(IA) (SRA)Y	$meru/g^2$	0	0	0	0	0	0	
	A ² D _{(IA)(SRA)Z}	$meru/g^2$	0	0	0	0	0	0	
Root Sum Sq	uare Error								
				•	.		• <u>•</u> ••••••••••••••••••••••••••••••••••		

Fig. D-2

Fig. D-3

CONFIDENTIAL-

SECTION E

LUNAR TAKEOFF

60

CONFIDEN

LUNAR TAKEOFF TRAJECTORY

Trajectory Description & Data

Note: For all tabular error studies the IMU stable member coordinates, X_{SM} , Y_{SM} , Z_{SM} are <u>colinear</u> with inertial coordinates, X_{I} , Y_{I} , Z_{I} .

mponent	Er	ror	RMS Error	RMS H	Error in es in Fe	Inertial et	RMS E Ax	Error in es in Fe	Target eet
<u>ů</u>		T			I (E)	(E) ^Z I	Range	Track	Altitude
u	Initial	(E)X _{Io}	0 ft	0	0	0	0	0	0
diti	Position	(E)Y _{IO}	0 ft	0	0	0	0	0	0
ono	Error	(E)Z _{Io}	0 ft	0	0	0	0	0	0
	Initial	(E)V _{XI0}	0 ft/sec	0	0	0	0	0	0
ltia	Velocity	(E)V _{YI0}	0 ft/sec	0	0	0	0	0	0
1	Error	(E)V _{ZIo}	0 ft/sec	0	0	0	0	0	0
& nal	Initial S. M.	^A (SM)XI	0.206 mr	0	63.5	0	0	63,5	0
fer	Alignment	A(SM)YI	0.206 mr	63.8	0	18.6	22.0	0	62.7
EXE	Errors	A(SM)ZI	0.206 mr	0	18.6	0	0	18.6	0
	Accel. IA	X to Y	0.1 mr	0	0	0	0	0	0
X	Non-ortho-	X to Z	0.1 mr	31.0	0	0	1.7	0	30.9
S	gonality	Y to Z	0.1 mr	0	0	0	0	0	0
		ACBX	$0.2 \mathrm{cm/sec}^2$	61.2	0	0	3.3	0	61.1
Я	Bias	ACBY	$0.2 \mathrm{cm/sec}^2$	0	60.9	0	0	60.9	0
Ц		ACBZ	$0.2 \mathrm{cm/sec}^2$	0	0	60.9	60.8	0	3.3
ME	Scale	SFEX	100 PPM	9.1	0	0	0.5	0	9.1
ß	Factor	SFEY	100 PPM	0	0	0	0	0	0
EE	Error	SFEZ	100 PPM	0	0	30.8	30.8	0	1.7
CE	Accel. Sens	SFNCX	10 PPM/g	0.5	0	0	0	0	0.5
AC	Scale Factor	SFNCY	10 PPM/g	0	0	Û	0	0	0
	Error	SFNCZ	10 PPM/g	0	0	3.4	3.4	0	0.2
	Bias	BDX	10 meru	0	11.7	0	0	11.7	0
	Drift	BDY	10 meru	11.7	0	1.3	2.0	0	11.6
		BDZ	10 meru	0	1.3	0	0	1.3	0
		ADIAX	10 meru/g	0	4.3	0	0	4.3	0
	Acceler-	ADIAY	10 meru/g	0	0	0	0	0	0
0	ation	ADIAZ	10 meru/g	0	1.0	0	0	1.0	0
YR	Sensitive	ADSRAX	10 meru/g	0	0	0	0	0	0
U	Drift	ADSRAY	10 meru/g	11.4	0	1.0	1.6	0	11.3
		ADSRAZ	10 meru/g	0	0	0	0	0	0
	Acceler-	A ² D _{(IA)(IA)X}	1 meru/g^2	0	0.2	0	0	0,2	0
	ation Squared Sensitive	A ² D _(SRA) (SRA)Y	1 meru/g ²	1.2	0	0.1	0.2	0	1.2
	Drift	A ² D(IA)(IA)Z	1 meru/g ²	0	0.1	0	0	0.1	0
1	Root Sum Squ	are Error		95.5	90.8	70.9	71.9	90.8	94.7
1					149.6			149.6	

Lunar Takeoff Trajectory OVERALL SYSTEM STUDY OF RMS POSITION ERRORS

<u>Filipt</u>

CONFIDEN

nponent	Er	ror	RMS Error	RMS E Axe	Crror in s in ft/s	Inertial ec	RMS Error in Target Axes in ft/sec		
Con				(E)V _{XI}	(E)V _{YI}	(E) V_{ZI}	Range	Track	Altitude
g	Initial	(E)X _{IO}	0 ft	0	0	0	0	0	0
litic	Position	(E)Y _{IO}	0 ft	0	0	0	0	0	0
ond ors	Error	(E)Z _{IO}	0 ft	0	0	0	0	0	0
L C	Initial	(E)V _{XI0}	0 ft/sec	0	0	0	0	0	0
tia	Velocity	(E)V _{YI0}	0 ft/sec	0	0	0	0	0	0
Ini	Error	(E)V _{ZIo}	0 ft/sec	0	0	0	0	0	0
al Jal	Initial	A _{(SM)XI}	0.206 mr	0	1.033	0	0	1.033	0
U eri	Alignment	A _{(SM)YI}	0.206 mr	1.041	0	0.119	0.175	0	1,033
IM Ext	Errors	A(SM)ZI	0.206 mr	0	0.119	0	0	0.119	0
	Accel. IA	X to Y	0.1 mr	0	0	0	0	0	0
N.	Non-ortho-	X to Z	0.1 mr	0.505	0	0	0.027	0	0,505
S	gonality	Y to Z	0.1 mr	0	0	0	0	0	0
İ		ACBX	$0.2 \mathrm{cm/sec}^2$	0.900	0	0	0.048	0	0,899
ы	Bias	ACBY	$0.2 \mathrm{cm/sec}^2$	0	0.893	0	0	0.893	0
LE		ACBZ	$0.2 \mathrm{cm/sec}^2$	0	0	0.893	0.891	0	0.049
ME'	Scale	SFEX	100 PPM	0.059	0	0	0.003	0	0,059
IO2	Factor	SFEY	100 PPM	0	0	0	0	0	0
E	Error	SFEZ	100 PPM	0	0	0,502	0.501	0	0.027
E	Accel. Sens.	SFNCX	10 PPM/g	0.005	0	0	0	0	0.005
ACC	Scale	SFNCY	10 PPM/g	0	0	0	0	0	0
1	Error	SFNCZ	10 PPM/g	0	0	0,060	0.060	0	0,003
	Ping	BDX	10 meru	0	0.274	0	0	0.274	0
	Drift	BDY	10 meru	0.275	0	0,008	0.007	0	0.275
	Dim	BDZ	10 meru	0	0.008	0	0	0,008	0
		ADIAX	10 meru/g	0	0.080	0	0	0.080	0
	Acceler-	ADIAY	10 meru/g	0	0	0	0	0	0
0	ation	ADIAZ	10 meru/g	0	0.014	0	0	0.014	0
ζR(Sensitive	ADSRAX	10 meru/g	0	0	0	0	0	0
6	Drift	ADSRAY	10 meru/g	0.287	0	0.014	0.002	0	0.287
		ADSRAZ	10 meru/g	0	0	0	0	0	0
	Acceler-	A ² D _{(IA)(IA)X}	1 meru/g^2	0	0.004	0	0	0,004	0
	ation Squared Songitive	A ² D(SRA)(SRA)Y	1 meru/g^2	0,032	0	0.002	0	0	0.032
	Drift	A ² D(IA)(IA)Z	1 meru/g^2	0	0.002	0	0	0.002	0
	Root Sum Square Error			1.520	1.400	1.033	1.040	1.400	1.515
					2.311			2.311	

Lunar Takeoff Trajectory OVERALL SYSTEM STUDY OF RMS VELOCITY ERRORS

	Error	RMS Error	Drift Angle about Inertial Axes (in milliradians)			Drift Angle about Target Axes (in milliradians)			
			φ _{XI}	$\phi_{\rm YI}$	ϕ_{ZI}	[¢] Range	ϕ_{Track}	$\phi_{Altitude}$	
Gyro	BDX	10 meru	0.0994	0	0	0.0054	0	0.0992	
Bias	BDY	10 meru	0	0.0994	0	0	0.0994	0	
Drift	BDZ	10 meru	0	0	0,0994	0.0992	0	0.0054	
Cumo	ADIAX	10 meru/g	0.0132	0	0	0.0007	0	0.0132	
Gyro	ADIAY	10 meru/g	0	0	0	0	0	0	
Accele=	ADIAZ	10 meru/g	0	0	0.1139	0.1137	0	0.0062	
Songitivo	ADSRAX	10 meru/g	0	0	0	0	0	0	
Drift	ADSRAY	10 meru/g	0	0.1139	0	0	0.1139	0	
	ADSRAZ	10 meru/g	0	0	0	0	0	0	
Guno	A ² D(IA)(IA)X	l meru/g ²	0.0011	0	0	0	0	0.0011	
Accele-	A ² D(IA)(IA)Y	l meru/g ²	0	0	0	0	0	0	
ration	A ² D(IA)(IA)Z	l meru/g ²	0	0	0,0136	0.0136	0	0.0007	
Squared	A ² D(SRA)(SRA)X	1 meru/g ²	0	0	0	0	0	0	
Sensitive	A ² D(SRA)(SRA)Y	1 meru/g^2	0	0.0136	0	0	0.0136	0	
Drift	A ² D _(SRA) (SRA)Z	1 meru/g ²	0	_0	0	0	0	0	
	A ² D(IA)(SRA)X	1 meru/g ²	0	0	0	0	0	0	
	A ² D(IA)(SRA)Y	l meru/g ²	0	0	0	0	0	0	
	A ² D(IA)(SRA)Z	l meru/g ²	0	0	0	0	0	0	
Root Sum So	Root Sum Square Error			0.1518	0.1518	0.1516	0.1518	0.1005	
				0.2369			0.2369		

Lunar Takeoff Trajectory OVER-ALL SYSTEM STUDY OF RMS PLATFORM DRIFT ANGLES (SM axes colinear with inertial axes)

Lunar Takeoff Trajectory IMU POSITION ERROR COEFFICIENTS (PART I) (SM axes colinear with inertial axes)

1									
			Unit	Error in In	ertial Axe	8	Er ro r in	Target Ax	es
			Error	in feet per	unit error		in feet	per unit e	rror
	Error		Dimension	(E)X _I	(E)Y _I	(E)Z _I	Range	Track	Altitude
A. In	itial C	ondition E	rrors along I	nertial Axe	S				<u> </u>
Initial	(E)X _{IO}	foot	+1.0172	0	+0.0002	-0.0548	0	+1.0157
Positi	on (E)Y _{IO}	foot	0	+0.9914	+0.9899	0	+0.9914	0
Error	(E)Z _{IO}	foot	+0.0002	0	+0.9914	+0.9899	0	+0.0538
Initial	(E)VXIO	ft/sec	+137.08	0	+0.02	-7.40	0	+136.87
Veloci	.ty (E)V _{YIO}	ft/sec	0	+135.91	0	0	+135.91	0
Error	(E)VZIO	ft/sec	+0.02	0	+135.91	+135.71	0	+7.37
B. Ac	ccelero	meter Er	rors (In-flig	ht Effect on	ly)				
		ACBX	cm/sec^2	-305.9	0	0	+16.5	0	-305.4
Bias	I	АСВУ	cm/sec^2	0	-304.5	0	0	-304.6	0
	4	ACBZ	cm/sec^2	0	0	-304.5	-304.1	0	-16.5
Scale		SFEX	РРМ	-0.091	0	0	+0.005	0	-0.091
Factor	. 5	SFEY	РРМ	0	0	0	0	0	0
Error	5	SFEZ	PPM	0	0	-0.308	-0.308	0	-0.017
Accel.	S	SFNCX	PPM/g	-0.05	0	0	0	0	-0.047
Sens.	2	SFNCY	РРМ/ g	0	0	0	0	0	0
Factor	. 5	SFNCZ	PPM/g	0	0	-0.342	-0.342	0	-0.019
С. М	isalign	ments of A	Acceleromete	r Input Axe	s		H		
Accel.	About	:							
	Axis Y _{SM}	A _{(X)Y}	milliradian	+309.5	0	0	-16.7	0	+309.1
X	Z _{SM}	A _{(X)Z}	milliradian	0	0	0	0	0	0
	X _{SM}	A _{(Y)X}	milliradian						
Y	Z _{SM}	A _{(Y)Z}	milliradian						
	х _{sm}	A _{(Z)X}	milliradian						
Z	^Ү SM	A _{(Z)Y}	milliradian	0	0	0	0	0	0

Lunar Takeoff Trajectory IMU POSITION ERROR COEFFICIENTS (PART 2) (SM axes colinear with inertial axes)

		Unit	Error in I	nertial A	VAG	Error in Tonget Auge		
		Error	in feet p	oer unit e	rror	in feet	per unit e	xes error
I	Error	Dimension	(E)X _T	(E)Y	(E)Z _T			
D. Init	ial Platform Misal	ignments abou	t Inertial	Avec	<u> </u>	_ nange	1 rack	Altitude
A		'milliradian		-308 4	0		-200 4	
(2	SM)XI	inititi autan		- J UU, I		0	-308.4	0
A(S	SM)YI	milliradian	+309.5	0	-90,1	-106.7	0	+304.2
A _{(SM)ZI}		milliradian	0	+90.2	0	0	+90.2	0
E. Gyr	o Drift Errors							
.	BDX	meru	0	-1.17	0	0	-1.17	0
Bias	BDY	meru	+1.17	0	-0.13	-0.20	0	+1.16
Drift	BDZ	meru	0	+0.13	0	0	+0.13	0
	ADIAX	meru/g	0	-0.43	0	0	-0.43	0
Accele-	ADIAY	meru/g	0	0	0	0	0	
ration	ADIAZ	meru/g	0	+0.10	0	0	+0,10	0
Sensi- tive Drift	ADSRAX	meru/g	0	Û	0	0	0	0
	ADSRAY	meru/g	-1.14	0	+0.10	+0.16	Q	-1.13
	ADSRAZ	meru/g	0	0	0	0	0	0
A 1 .	A ² D _{(IA)(IA)X}	meru/g ²	0	-0.22	0	0	-0,22	0
ration	A ² D _{(IA)(IA)Y}	meru/g ²	0	0	0	0	0	0
Squared	A ² D _{(IA)(IA)Z}	_meru/g ²	0	+0.09	0	0	+0.09	0
Sensi-	A ² D(SRA)(SRA)X	meru/g ²	0	0	0	0	0	0
tive Drift	A ² D(SRA)(SRA)Y	meru/g ²	+1.21	0	-0.09	-0,16	0	+1.20
Drift	A ² D(SRA)(SRA)Z	meru/g ²	0	0	0	0	0	0
	A ² D(IA)(SRA)X	meru/g ²	0	0	0	0	0	0
	A ² D(IA)(SRA)Y	$meru/g^2$	0	0	0	0	0	0
	A ² D(IA)(SRA)Z	$meru/g^2$	0	0	0	0	0	0

66

Lunar Takeoff Trajectory IMU VELOCITY ERROR COEFFICIENTS (PART I) (SM axes colinear with inertial axes)

			Unit Error	Error in In in ft/sec p	ertial Axe per unit er:	s ror	Error in Target Axes in ft/sec per unit error			
	Error		Dimension	(E)V _{XI}	(E)V _{YI}	(E)V _{ZI}	Range	Track	Altitude	
A. In	itial C	ondition E	rrors along I	nertial Axe	S		3		•	
Initial		(E)X _{IO}	foot							
Positi	on	(E)Y _{IO}	foot							
Error		(E)Z _{IO}	foot							
Initial		(E)V _{XIO}	ft/sec							
Veloci	ty	(E)V _{YIO}	ft/sec					· · · · · · · · · · · · · · · · · · ·		
Error		^{(E)V} ZIO	ft/sec							
B. Ac	celer	ometer Er	rors (In-flig	ht Effect on	ly)		<u>+</u>			
		ACBX	cm/sec^2	-4.50	0	0	+0.242	0	-4.494	
Bias		ACBY	cm/sec^2	0	-4.463	0	0	-4.463	0	
		ACBZ	$\rm cm/sec^2$	0	0	-4.46	-4.456	0	-0.243	
Scale		SFEX	РРМ	-0.00059	0	0	+0.00003	0	-0.00059	
Factor		SFEY	РРМ	0	0	0	0	0	0	
Error		SFEZ	РРМ	0	0	-0.00502	-0.0050	0	-0.00027	
Accel.	-	SFNCX	PPM/g	-0.0005	0	0	+ 0	0	-0.0005	
Sens. Scale		SFNCY	PPM/g	0	0	0	0	0	0	
Factor Error		SFNCZ	PPM/g	0	0	-0.0060	-0.0060	0	-0.0003	
C. Mi	isalign	ments of a	Acceleromete	r Input Axe	s		<u> </u>			
Accel.	Abou	t								
v	Axis Y _{SM}	A _{(X)Y}	milliradian	+5.05	0	0	-0.27	0	+5.05	
Α	z _{sm}	A _{(X)Z}	milliradian	0	0	0	0	0	0	
	х _{sm}	A _{(Y)X}	milliradian							
Y	^Z SM	A _{(Y)Z}	milliradian	بع ة بيد دي						
_	х _{sm}	A _{(Z)X}	milliradian							
Z	^Y sм	A _{(Z)Y}	milliradian	0	0	0	0	0	0	

and the second se

Lunar Takeoff Trajectory IMU VELOCITY ERROR COEFFICIENTS (PART 2) (SM axes colinear with inertial axes)

		Unit	Error in I	nertial A	xes	Error in	Target A	xes
		Error	in ft/sec	per unit	error	in ft/sec	e per unit	error
E	Crror	Dimension	(E)V _{XI}	(E)V _{YI}	(E)V _{ZI}	Range	Track	Altitude
D. Init:	ial Platform Misali	gnments abou	t Inertial .	Axes		<u></u>		
A _{(S}	M)XI	'milliradian	0	-5.017	0	0	-5.017	0
A _{(S}	M)YI	milliradian	+5.052	0	-0.577	-0.850	0	+5.014
A _{(S}	M)ZI	milliradian	0	+0.578	0	0	+0.578	0
E. Gyr	o Drift Errors							
D .	BDX	meru	0	-0.0274	0	0	-0.0274	0
Bias	BDY	meru	+0.0275	0	+0.0008	-0.0007	0	+0.0275
Drift	BDZ	meru	0	-0.0008	0	0	-0.0008	0
A	ADIAX	meru/g	0	-0.0080	0	0	-0.0080	0
Accele-	ADIAY	meru/g	0	0	0	0	0	0
ration	ADIAZ	meru/g	0	-0.0014	0	0	-0.0014	0
tive Drift	ADSRAX	meru/g	0	0	0	0	0	0
	ADSRAY	meru/g	-0.0287	0	-0.0014	+0.0002	0	-0.0287
	ADSRAZ	meru/g	0	0	0	0	0	0
	A ² D _{(IA)(IA)X}	meru/g ²	0	-0.0041	0	0	-0.0041	0
ration	A ² D(IA)(IA)Y	meru/g ²	0	0	0	0	0	0
Squared	A ² D _{(IA)(IA)Z}	meru/g ²	0	-0.0019	0	0	-0.0019	0
Sensi-	A ² D(SRA)(SRA)X	meru/g ²	0	0	0	0	0	0
tive	A ² D(SRA)(SRA)Y	meru/g ²	+0.0320	0	+0.0019	0	0	+0.0321
Drift	A ² D(SRA)(SRA)Z	meru/g ²	0	0	0	0	0	0
	A ² D _(IA) (SRA)X	meru/g ²	0	0	0	0	0	0
	A ² D _(IA) (SRA)Y	meru/g ²	0	0	0	0	0	0
	A ² D(IA)(SRA)Z	meru/g ²	0	0	0	0	0	0

Lunar Takeoff Trajectory IMU S. M. DRIFT ANGLE COEFFICIENTS (SM axes colinear with inertial axes)

Error		Unit Error	Drift A Inertia millir unit en	Angle at al Axes adian pe rror	oout in er	Drift Angle about Target Axes in milliradian per unit error			
		Dimension	\$ VII	φ _{YI}	[¢] ZI	[¢] Range	ϕ_{Track}	$^{\phi}$ Altitude	
	BDX	meru	0.00994	0	0	-0.00054	¥ 0	0.00992	
Bias	BDY	meru	0	0.00994	0	0	0.00994	0	
Drift	BDZ	meru	0	0	0.00994	0.00992	0	0,00054	
	ADIAX	meru/g	0.01320	0	0	-0.0000'	0	0,00132	
A	ADIAY	meru/g	0	0	0	0	0	0	
Accele-	ADIAZ	meru/g	0	0	0.01139	0.01137	0	0.00062	
Songitivo	ADSRAX	meru/g	0	0	0	0	0	0	
Drift	ADSRAY	meru/g	0	-0.01139	0	0	-0,01139	0	
	ADSRAZ	meru/g	0	0	0	0	0	0	
	^{A²D} (IA)(IA)X	$meru/g^2$	0.0011	0	0	0	0	0.00011	
Accele-	A ² D _{(IA)(IA)Y}	$meru/g^2$	0	0	0	0	0	0	
ration	A ² D(IA)(IA)Z	$meru/g^2$	0	0	0.0136	0.0136	0	0.0007	
Squared	A ² D(SRA)(SRA)X	$meru/g^2$	0	0	0	0	0	0	
Sensitive	A ² D(SRA)(SRA)Y	$meru/g^2$	0	+0,0136	0	0	+0,0136	0	
Drift	$A^2 D_{(SRA)(SRA)Z}$	$meru/g^2$	0	0	0	0	0	0	
	A ² D(IA)(SRA)X	$meru/g^2$	0	0	0	0	0	0	
	A ² D(IA)(SRA)Y	$meru/g^2$	0	0	0	0	0	0	
	A ² D _(IA) (SRA)Z	$meru/g^2$	0	0	0	0	0	0	

Fig. E-1

Fig. E-2

Fig. E-3

Fig. E-4

1.7×

SECTION F

TRANSEARTH INJECTION

Trajectory Description & Data

- 1) Description: Powered injection into free-fall transearth trajectory from 100 n. mile circular lunar parking orbit.
- 2) Total trajectory time: <u>103.5</u> seconds
- 3) Total earth angle, $\theta_{\mathbf{R}}$, subtended by trajectory: <u>6.28</u> degrees
- 4) Initial & final altitudes 100.0 and 102.4 n. miles
- 5) Initial & final velocities: 5,234 and 8,278 ft/sec.
- 6) Initial & final velocity angles relative to Z₁ axis: <u>0</u> and <u>-3.10</u> degrees
- 7) Initial & final thrust acceleration: 25.76 and 33.28 ft/sec^2
- 8) Initial & final pitch angle relative to Z_I axis: <u>0</u> and <u>0</u> degrees
- 9) Thrust acceleration history in ft/sec^2 : $a_T = 25.76 + 0.0724t + 2.4 (10^{-6})t^2$ for 0 < t < 103.5 secs.
- 10) Pitch angle history in degrees relative to Z_{T} axis: $\theta = 0$ for 0 < t < 103.5 secs.

Trajectory Figure

Note: For all tabular error studies the IMU stable member coordinates, X_{SM} , Y_{SM} , Z_{SM} are <u>colinear</u> with inertial coordinates, X_{I} , Y_{I} , Z_{I} .

nponent	Er	ror	R M S Error	RMS E Ax	Error in es in fee	Inertial et	R MS I Axe	E rror in es in fee	Target t
Con				(E)X _I	(E)Y _I	(E)Z _I	Range	Track	Altitude
g	Initial	(E)X _{IO}	0 ft	0	0	0	0	0	0
Ħ	Position	(E)Y _{IO}	0 ft	0	0	0	0	0	0
ond	Error	(E)Z _{IO}	0 ft	0	0	0	0	0	0
U L	Initial	(E)V _{XI0}	0 ft/sec	0	0	0	0	0	0
H	Velocity	(E)V _{YI0}	0 ft/sec	0	0	0	0	0	0
[]	Error	(E)V _{ZIO}	0 ft/sec	0	0	0	0	0	0
al la	Initial	A(SM)XI	0.206 mr	0	31.2	0	C	31, 2	0
U 8	Alignment	A _{(SM)YI}	0.206 mr	31.2	0	0	3.4	0	31.0
EX IN	Errors	A(SM)ZI	0.206 mr	0	0	0	0	0	0
	Accel. IA	X to Y	0.1 mr	0	0	0	0	0	0
N.	Non-ortho-X to Z		0.1 mr	15.2	0	0	1.7	0	15.1
N N	gonality	Y to Z	0.1 mr	0	0	0	0	0	0
		ACBX	$0.2 \mathrm{cm/sec}^2$	35.2	0	0	3.9	0	35.0
ж	H Bias	ACBY	$0.2 \mathrm{cm/sec}^2$	0	35.2	0	0	35.2	0
TE		ACBZ	$0.2 \mathrm{cm/sec}^2$	0	0	35.2	34.9	0	3.9
ME'	Scale	SFEX	100 PPM	0	0	0	0	0	0
RO.	Factor	SFEY	100 PPM	0	0	0	0	0	0
E	Error	SFEZ	100 PPM	0	0	15.1	15.0	0	1.7
UE U	Accel. Sens.	SFNCX	10 PPM/g	0	0	0	0	0	0
AC	Scale Factor	SFNCY	10 PPM/g	0	0	0	0	0	0
	Error	SFNCZ	10 PPM/g	0	0	1.3	1, 3	0	0.1
	Bias	BDX	10 meru	0	4.0	0	0	4.0	0
	Drift	BDY	10 meru	4.0	0	0	0	0	4.0
		BDZ	10 meru	0	0	0	0	0	0
		ADIAX	10 meru/g	0	0	0	0	0	0
	Acceler-	ADIAY	10 meru/g	0	0	0	0	0	0
0	ation	ADIAZ	10 meru/g	0	0	0	0	0	0
YR	Sensitive	ADSRAX	10 meru/g	0	0	0	0	0	0
U	Drift	ADSRAY	10 meru/g	3,4	0	0	0.4	0	3.4
		ADSRAZ	10 meru/g	0	0	0	0	0	0
	Acceler-	A ² D(IA)(IA)X	1 meru/g ²	0	0	0	0	0	0
	Squared Sensitive	A ² D(SRA)(SRA)Y	1 meru/g ²	0.3	0	0	0	0	0.3
	Drift	A ² D(IA)(IA)Z	1 meru/g ²	0	0	0	0	0	0
1 1	Root Sum Square Error			49.7	47.1	38.3	38.4	47.1	49.6
					78.5			78.5	

Transearth Injection Trajectory OVERALL SYSTEM STUDY OF RMS POSITION ERRORS

-

ponent	Er	ror	R MS Error	RMS E Axe	Error in s in ft/s	Inertial sec	RMS E Axe	Crror in s in ft/s	Target sec	
Соп				(E)V _{XI}	(E)V _{YI}	$(E)V_{ZI}$	Range	Track	Altitude	
g	Initial	(E)X _{Io}	0 ft	0	0	0	0	0	0	
Itio	Position	(E)Y _{I0}	0 ft	0	0	0	0	0	0	
ond	Error	(E)Z _{Io}	0 ft	0	0	0	0	0	0	
ŬĔ	Initial	(E)V _{XI0}	0 ft/sec	0	0	0	0	0	0	
tia.	Velocity	(E)V _{YI0}	0 ft/sec	0	0	0	0	0	0	
E.	Error	(E)V _{ZIo}	0 ft/sec	0	0	0	0	0	0	
Ja]	Initial	A(SM)XI	0.206 mr	0	0.629	0	0	0.629	0	
U 8	Alignment	A(SM)YI	0.206 mr	0,631	0	0	0.069	0	0.627	
N H	Errors	A(SM)ZI	0.206 mr	0	0	0	0	0	0	
	Accel. IA	X to Y	0.1 mr	0	0	0	0	0	0	
N.	Non-ortho-	X to Z	0.1 mr	0.306	0	0	0.033	0	0.304	
S	gonality	Y to Z	0.1 mr	0	0	0	0	0	0	
	а. -	ACBX	$0.2 \mathrm{cm/sec}^2$	0.681	0	0	0.074	0	0.677	
8	Bias	ACBY	$0.2 \mathrm{cm/sec}^2$	0	0.679	0	0	0.679	0	
E		ACBZ	$0.2 \mathrm{cm/sec}^2$	0	0	0.679	0.675	0	0.075	
ME	Scale	SFEX	100 PPM	0	0	0	0	0	0	
L OS	Factor	SFEY	100 PPM	0	0	0	0	0	0	
E E	Error	SFEZ	100 PPM	0	0	0.305	0.303	0	0.033	
GE	Accel. Sens	SFNCX	10 PPM/g	0	0	0	0	0	0	
AC	Scale Factor	SFNCY	10 PPM/g	0	0	0	0	0	0	
	Error	SFNCZ	10 PPM/g	0	0	0.028	0.028	0	0	
	Bias	BDX	10 meru	0	0.120	0	0	0.120	0	
	Drift	BDY	10 meru	0.120	0	0	0.013	0	0.120	
		BDZ	10 meru	0	0	0	0	0	0	
		ADIAX	10 meru/g	0	0	0	0	0	0	
	Acceler-	ADIAY	10 meru/g	0	0	0	0	0	0	
0	ation	ADIAZ	10 meru/g	0	0	0	0	0	0	
YR	Sensitive	ADSRAX	10 meru/g	0	0	0	0	0	0	
G	Drift	ADSRAY	10 meru/g	0.106	0	0	0.012	0	0.105	
		ADSRAZ	10 meru/g	0	0	0	0	0	0	
	Acceler-	A ² D(IA)(IA)X	1 meru/g ²	0	0	0	0	0	0	
	Squared Sensitive	A ² D(SRA)(SRA)Y	1 meru/g^2	0.009	0	0	0.001	0	0.009	
	Drift	A ² D(IA)(IA)Z	1 meru/g ²	0	0	0	0	0	0	
1	Root Sum Square Error			0,991	0.933	0.745	0.748	0.933	0.988	
					1.551			1,551		

Transearth Injection Trajectory OVERALL SYSTEM STUDY OF RMS VELOCITY ERRORS

	Error	RMS Error	Drift A Inertia (in mil	Angle ab 1 Axes 11 iradiar	out 1s)	Drift Targe (in m	Angle a et Axes illiradia	bout ns)
			^φ XI	φ _{YI}	¢ΖΙ	^{\$} Range	^{\$} Track	[♥] Altitude
Gyro	BDX	10 meru	0.075	0	0	0.008	0	0.075
Bias	BDY	10 meru	0	0.075	0	0	0.075	0
Drift	BDZ	10 meru	0	0	0.075	0.075	0	0.008
Curro	ADIAX	10 meru/g	0	0	0	0	0	0
Gyro	ADIAY	10 meru/g	0	0	0	0	0	0
Accele-	ADIAZ	10 meru/g	0	0	0.069	0.069	0	0.008
Songitivo	ADSRAX	10 meru/g	0	0	0	0	0	0
Drift	ADSRAY	10 meru/g	0	0.069	0	0	0.069	0
	ADSRAZ	10 meru/g	0	0	0	0	0	0
Curro	A ² D(IA)(IA)X	1 meru/g^2	0	0	0	0	0	0
Accele-	A ² D(IA)(IA)Y	1 meru/g^2	0	0	0	0	0	0
ration	A ² D(IA)(IA)Z	l meru/g ²	0	0	0.006	0.006	0	0.001
Squared	A ² D(SRA)(SRA)X	1 meru/g^2	0	0	0	0	0	0
Sensitive	A ² D(SRA)(SRA)Y	1 meru/g 2	0	0.006	0	0	0.006	0
Drift	$A^2 D_{(SRA)(SRA)Z}$	l meru/g ²	0	0	0	0	0	0
	A ² D _{(IA)(SRA)X}	1 meru/g ²	0	0	0	0	0	0
	A ² D(IA)(SRA)Y	l meru/g ²	0	0	0	0	0	0
	A ² D _(IA) (SRA)Z	1 meru/g^2	0	0	0	0	0	0
Root Sum Square Error			0.075	0.103	0.103	0.102	0.103	0.076
			0.164		0.164			

Transearth Injection Trajectory OVER-ALL SYSTEM STUDY OF RMS PLATFORM DRIFT ANGLES (SM axes colinear with inertial axes)

CONFIDENT

Transearth Injection Trajectory IMU POSITION ERROR COEFFICIENTS (PART 1) (SM axes colinear with inertial axes)

			Unit Error	Error in In in feet per	ertial Axes unit error	3	Error in in feet pe	Target Ax er unit err	es or
:	Error		Dimension	(E)XI	(E)YI	(E)Z _I	Range	Track	Altitude
A. In	itial C	ondition E	rrors along I	nertial Axe	S				
Initial	ľ	(E)X _{IO}	foot	+1.007	0	0	-0.110	0	+1.001
Positi	on [E)Y _{IO}	foot	0	+0.996	0	0	+0.996	0
Error		(E)Z _{IO}	foot	0	0	+0.996	+0.990	0	+0.109
Initial	(E)VXIO	ft/sec	+103.8	0	0	-11.3	0	+103.1
Velocity (E)V _{YIO}		E)V _{YIO}	ft/sec	0	+103.4	0	0	+103.4	0
Error		E)VZIO	ft/sec	0	0	+103.4	+102.8	0	+11.3
B. Ac	celer	ometer Er	rors (In-flig	ht Effect on	ly)				
		ACBX	cm/sec^2	-176.1	0	0	+19.3	0	-175.0
Bias		ACBY	$\mathrm{cm/sec}^2$	0	-175.8	0	0	-175.8	0
		ACBZ	cm/sec^2	0	0	-175.8	-174.7	0	-19.3
Scale S		SFEX	PPM	0	0	0	0	0	0
Factor	- 6	SFEY	РРМ	0	0	0	0	0	0
Error		SFEZ	РРМ	0	0	-0.151	-0.151	0	-0.017
Accel.		SFNCX	PPM/g	0	0	0	0	0	0
Sens. Scale		SFNCY	PPM/g	0	0	0	0	0	0
Factor Error	· [SFNCZ	PPM/g	0	0	-0.133	-0.133	0	-0.015
С. М	isalign	ments of .	Acceleromete	r Input Axe	s				
Accel.	Abou	t							
	Axis Y SM	A _{(X)Y}	milliradian	+151.6	0	0	-16.6	0	+150.6
^	^Z SM	A _{(X)Z}	milliradian	0	0	0	0	0	0
	x _{sm}	A _{(Y)X}	milliradian						
Y	z _{sm}	A _{(Y)Z}	milliradian						
	\mathbf{x}_{SM}	A _{(Z)X}	milliradian	0	0	0	0	0	0
Z	^Ү SM	A _{(Z)Y}	milliradian						

Transearth Injection Trajectory IMU POSITION ERROR COEFFICIENTS (PART 2) (SM axes colinear with inertial axes)

		Unit Error	Error in 1 in feet pe	Inertial A r unit err	xes or	Error in in feet pe	Target A er unit er	ror
I	Error	Dimension	(E)X _I	(E)Y _I	(E)Z _I	Range	Track	Altitude
D. Init	ial Platform Misal	ignments abou	t Inertial	Axes				
A(5	SM)XI	'milliradian	0	-151.3	0	0	- 151.3	0
A _{(S}	SM)YI	milliradian	+151.6	0	0	-16.6	0	+150.6
A _{(S}	SM)ZI	milliradian	0	0	0	0	0	0
E. Gyr	o Drift Errors				·····			
Die	BDX	meru	0	-0.398	0	0	-0.398	0
Dias	BDY	meru	+0.398	0	0	-0.044	0	+0.396
Drift	BDZ	meru	0	0	0	0	0	0
A] .	ADIAX	meru/g	0	0	0	0	0	0
Accele-	ADIAY	meru/g	0	0	0	0	0	0
ration	ADIAZ	meru/g	0	0	0	0	0	0
Sensi-	ADSRAX	meru/g	0	0	0	0	0	0
Tive	ADSRAY	meru/g	-0.342	0	0	+0.037	0	-0.340
Drift	ADSRAZ	meru/g	0	0	0	0	0	0
A	A ² D(IA)(IA)X	meru/g ²	0	0	0	0	0	0
ration	A ² D(IA)(IA)Y	meru/g ²	0	0	0	0	0	0
Squared	A ² D(IA)(IA)Z	meru/g ²	0	0	0	0	0	0
Sensi-	A ² D(SRA)(SRA)X	$meru/g^2$	0	0	0	0	0	0
tive Drift	A ² D(SRA)(SRA)Y	meru/g ²	+0.295	0	0	-0.032	0	+0.293
Dim	A ² D(SRA)(SRA)Z	meru/g ²	0	0	0	0	0	0
	A ² D(IA)(SRA)X	meru/g ²	0	0	0	0	0	0
	A ² D(IA)(SRA)Y	$meru/g^2$	0	0	0	0	0	0
	A ² D(IA)(SRA)Z	$meru/g^2$	0	0	0	0	0	0

Transearth Injection Trajectory IMU VELOCITY ERROR COEFFICIENTS (PART 1) (SM axes colinear with inertial axes)

			Unit Error	Error in In in ft/sec pe	ertial Axe er unit err	s or	Er ro r in in ft/sec	Target Ax per unit e	es rror
	Error		Dimension	(E)V _{XI}	(E)V _{VI}	(E)V _{ZI}	Range	Track	Altitude
A. In	itial C	ondition E	rrors along I	nertial Axe	s		l	<u> </u>	<u></u>
Initial		(E)X _{IO}	foot	-0142(10 ⁻³)	0	+0.011(10 ⁻³	-0.005(10 ⁻³	0	+0,142(10 ⁻³)
Positi	on	(E)Y _{IO}	foot	0	-0.071(10 ⁻³)	0	0	-0.071(10 ⁻³)	0
Error		(E)Z _{IO}	foot	+0,011(10 ⁻³)	0	-0.070(10 ⁻³	-0.071(10-3) 0	+0.003(10-3
Initial		(E)V _{XIO}	ft/sec	+1.007	0	+0.001	-0.110	0	+1.001
Veloci	ty [(E)V _{YIO}	ft/sec	0	+0.996	0	0	+0.996	0
Error		(E)VZIO	ft/sec	+0.001	0	+0.996	+0.990	0	+0.110
B. Ac	celer	ometer Er	rors (In-flig	ht Effect on	ly)				
	ļ	ACBX	cm/sec^2	-3.407	0	-0,001	+0.372	0	-3.386
Bias		ACBY	${ m cm/sec}^2$	0	-3.394	0	0	-3,394	0
- 10		ACBZ	$\mathrm{cm/sec}^2$	-0.001	0	-3.394	-3.374	0	-0.373
Scale		SFEX	РРМ	0	0	0.	0	0	0
Factor	. [SFEY	РРМ	0	0	0	0	0	0
Error		SFEZ	РРМ	0	0	-0,0031	-0.0030	0	-0.0003
Accel.	1	SFNCX	PPM/g	0	0	0	0	0	0
Sens.	1	SFNCY	PPM/g	0	0	0	0	0	0
Factor Error	•	SFNCZ	PPM/g	0	0	-0.0028	-0.0028	0	-0.0003
C. Mi	isaligr	ments of A	Acceleromete	r Input Axe	s				
Accel.	Abou Axis	t		+3,062	0	0	-0.334	0	+3 043
x	Y _{SM}	A(X)Y	milliradian				0.001		
	^Z SM	A(X)Z	milliradian	0	0	0	0	0	0
	х _{sm}	A _{(Y)X}	milliradian						
Y	Z _{SM}	A _{(Y)Z}	milliradian						
	\mathbf{x}_{SM}	A _{(Z)X}	milliradian	0	0	0	0	0	0
Z	Y _{SM}	A _{(Z)Y}	milliradian						

SONIELD GNUTLAL

Transearth Injection Trajectory IMU VELOCITY ERROR COEFFICIENTS (PART 2) (SM axes colinear with inertial axes)

		Unit	Error in 1	Inertial A	xes	Error in	Target A	xes
		Error	in ft/sec	per unit o	error	in ft/sec	per unit	error
I	Error	Dimension	(E)V _{XI}	(E)V _{YI}	(E)V _{ZI}	Range	Track	Altitude
D. Init	ial Platform Misal	ignments abou	t Inertial	Axes	·			
A _{(S}	SM)XI	'milliradian	0	-3.051	0	0	-3.051	0
A _{(S}	M)YI	milliradian	+3.062	0	+0.008	-0.334	0	+3.043
A _{(S}	SM)ZI	milliradian	0	0	0	0	0	0
E. Gyr	o Drift Errors							
Bing	BDX	meru	0	-0.0120	0	0	-0.0120	0
Drift	BDY	meru	+0.0120	0	0	-0.0013	0	+0.0120
	BDZ	meru	0	0	0	0	0	0
Accele	ADIAX	meru/g	0	0	0	0	0	0
Accele-	ADIAY	meru/g	0	0	0	0	0	0
Fation	ADIAZ	meru/g	0	0	0	0	0	0
Sensi-	ADSRAX	meru/g	0	0	0	0	0	0
Duist	ADSRAY	meru/g	-0.0106	0	0	+0.0012	0	-0.0105
Drift	ADSRAZ	meru/g	0	0	0	0	0	0
A	A ² D(IA)(IA)X	$meru/g^2$	0	0	0	0	0	0
ration	A ² D _{(IA)(IA)Y}	$meru/g^2$	0	0	0	0	0	0
Squared	A ² D(IA)(IA)Z	meru/g ²	0	0	0	0	0	0
Sensi-	A ² D(SRA)(SRA)X	meru/g ²	0	0	0	0	0	0
tive	A ² D(SRA)(SRA)Y	meru/g ²	+0.0093	0	0	-0.0010	0	+0.0093
Drift	A ² D(SRA)(SRA)Z	$meru/g^2$	0	0	0	0	0	0
	A ² D _(IA) (SRA)X	meru/g ²	0	0	0	0	0	0
	A ² D(IA)(SRA)Y	meru/g ²	0	0	0	0	0	0
	A ² D(IA)(SRA)Z	$meru/g^2$	0	0	0	0	0	0

Transearth Injection Trajectory IMU S. M. DRIFT ANGLE COEFFICIENTS (SM axes colinear with inertial axes)

	Error	RMS Error	Drift A Inertia in mill unit en	Angle ab al axes liradian rror	out per	Drift Angle about Target Axes in milliradian per unit error			
		Dimension	[¢] XI	φ _{YI}	φ _{ZI}	ϕ_{Range}	ϕ_{Track}	[∲] Altitude	
	BDX	meru	0,0075	0	0	-0.000	0	+0.0075	
Bias	BDY	meru	0	+0.0075	0	0	+0.0075	0	
Drift	BDZ	meru	0	0	+0.0075	+0.007	50	+0.0008	
	ADIAX	meru/g	0	0	0	0	0	0	
A = + =] =	ADIAY	meru/g	0	0	0	0	0	0	
Accele-	ADIAZ	meru/g	0	0	+0.0069	+0,0069	0	+0.0008	
Samaitian	ADSRAX	meru/g	0	0	0	0	0	0	
Densitive	ADSRAY	meru/g	0	-0.0069	0	0	-0,0069	0	
Drift	ADSRAZ	meru/g	0	0	0	0	0	0	
	A ² D(IA)(IA)X	meru/g ²	0	0	0	0	0	0	
Accele-	A ² D(IA)(IA)Y	$meru/g^2$	0	0	0	0	0	0	
ration	A ² D(IA)(IA)Z	meru/g ²	0	0	+0.0064	+0,006	0	+0.0007	
Squared	A ² D(SRA)(SRA)X	meru/g ²	0	0	0	0	0	0	
Sensitive	A ² D(SRA)(SRA)Y	meru/g ²	0	+0.0064	¥ 0	0	+0.0064	0	
Drift	$A^2 D_{(SRA)(SRA)Z}$	$meru/g^2$	0	0	0	0	0	0	
	A ² D(IA)(SRA)X	meru/g ²	0	0	0	0	0	0	
	A ² D(IA)(SRA)Y	$meru/g^2$	0	0	0	0	0	0	
	A ² D(IA)(SRA)Z	$meru/g^2$	0	0	0	0	0	0	

Fig. F-2

CONTRACT IN

Fig. F-3

0

0

TRANSEARTH INJECTION TRAJECTORY

RSS VELOCITY ERRORS VS. TIME FROM LAST IMU S.M. ALIGNMENT

TO START OF TRAJECTORY WITH X,Y,Z RMS GYRO BIAS DRIFTS OF IO MERU EACH

89

40

вояяз

2.0

RSS VELOCITY

6.0

Fig. F-5

NI

8.0

FT/SEC

CONCIDENTI

SECTION G

EARTH REENTRY TRAJECTORIES

Trajectory Description	Peak acceleration for trajectory G's	Total Trajectory time seconds	Total Earth Angle, θ _R , subtended by Trajectory degrees naut. miles			
High G	10.3	599	21.32	1,279		
Medium G	5.6	733	29.85	1,791		
Low G	3.1	1,154	58.18	3,491		
Low G (Ext. Rge.)	?	?	150.00	9,000		

Other trajectory data:

Altitude at start of reentry trajectory	:	400,000 ft
Altitude at end of reentry trajectory	:	50,000 ft
Velocity at start of reentry trajectory	:	36,800 ft/sec

Note: For all tabular error studies the IMU stable member coordinates, X_{SM} , Y_{SM} , Z_{SM} are <u>colinear</u> with inertial coordinates, X_{I} , Y_{I} , Z_{I} .

ponent	Er	ror	RMS Error	RMS E A	rror in xes in F	Inertial ^F eet	RMS E A	rror in xes in F	T arget 'eet
Con				(E)X _I	(E)YI	(E)Z _I	Range	Track	Altitude
g	Initial	(E)X _{Io}	0 ft	0	0	0	0	0	0
itio	Position	(E)Y _{I0}	0 ft	0	0	0	0	0	0
ond	Error	(E)Z _{I0}	0 ft	0	0	0	0	0	0
ŬĔ	Initial	(E)V _{XI0}	0 ft/sec	0	0	0	0	0	0
tia]	Velocity	(E)V _{YI0}	0 ft/sec	0	0	0	0	0	0
Ĩ	Error	(E)V _{ZI0}	0 ft/sec	0	0	0	0	0	0
a,	Initial	A(SM)XI	0.1 mr	0	1,229	2	2	1,229	1
U å er	Alignment	A(SM)YI	0.1 mr	1,449	0	702	127	0	1,605
EXT	Errors	A(SM)ZI	0.1 mr	2	628	0	1	628	2
	Accel. IA	X to Y	0.1 mr	2	0	0	1	0	2
M	Non-ortho-	X to Z	0.1 mr	1,423	0	65	457	0	1,350
N.	gonality	Y to Z	0.1 mr	0	0	2	2	0	1
Í		ACBX	0.2 cm/sec^2	1,270	0	49	41 6	0	1,200
8	Bias	ACBY	0.2 cm/sec^2	0	1,124	0	0	1,124	0
METE		ACBZ	0.2 cm/sec^2	48	0	1,141	1,045	0	460
	Scale	SFEX	100 PPM	706	0	26	232	0	668
02	Factor	SFEY	100 PPM	0	2	0	0	2	0
E	Error	SFEZ	100 PPM	64	0	1,251	1,142	0	514
E	Accel. Sens	SFNCX	10 PPM/g	208	0	10	66	0	197
AC	Scale Factor	SFNCY	10 PPM/g	0	23	0	0	23	0
	Error	SFNCZ	10 PPM/g	30	0	499	454	0	209
	Bias	BDX	10 meru	1	1,312	7	6	1,312	3
1	Drift	BDY	10 meru	1,487	0	1,023	413	0	1,757
		BDZ	10 meru	8	963	0	3	963	8
		ADIAX	10 meru/g	0	1,533	4	4	1,533	2
	Acceler-	ADIAY	10 meru/g	24	0	11	19	0	19
0	ation	ADIAZ	10 meru/g	43	2,357	2	14	2,357	41
Y.B.	Sensitive	ADSRAX	10 meru/g	0	20	0	0	20	0
5	Drift	ADSRAY	10 meru/g	4,166	0	2,530	842	0	4,801
		ADSRAZ	10 meru/g	0	13	0	0	13	0
	Acceler-	·A ² D _{(IA)(IA)X}	1 meru/g ²	0	613	3	2	613	1
	Squared	A ² D(SRA)(SRA)Y	1 meru/g^2	2,082	0	1,101	268	0	2,339
	Drift	A ² D(IA)(IA)Z	1 meru/g^2	21	1,009	1	7	1,009	20
	Root Sum Square Error			5,496	3,889	3,504	2,003	3,889	6,202
	•				7,590			7,590	

High G Earth Re-entry Trajectory OVERALL SYSTEM STUDY OF RMS POSITION ERRORS

ICHF.

Iponent	Er	ror	RMS Error	RMS E	Error in Axes in 1	Inertial Feet	RMS E A	Irror in xes in F	T arget Teet
Con				(E)XI	(E)Y _I	(E)Z _I	Range	Track	Altitude
F	Initial	(E)X _{Io}	0 ft	0	0	0	0	0	0
itic	Position	(E)Y _{IO}	0 ft	0	0	0	0	0	0
ond	Error	(E)Z _{IO}	0 ft	0	0	0	0	0	0
ŬĽ	Initial	(E)V _{XI0}	0 ft/sec	0	0	0	0	0	0
tia. E	Velocity	(E)V _{YI0}	0 ft/sec	0	0	0	0	0	0
Ini	Error	(E)V _{ZI0}	0 ft/sec	0	0	0	0	0	0
al .	Initial	A(SM)XI	0.1 mr	0	1,291	3	3	1,291	1
U &	Alignment	A _{(SM)YI}	0.1 mr	1,614	0	899	24	0	1,848
EXT	Errors	A(SM)ZI	0.1 mr	2	743	0	1	743	2
	Accel. IA	X to Y	0.1 mr	2	0	0	1	0	2
X	Non-ortho-	X to Z	0.1 mr	1,564	0	130	665	0	1,421
N N	gonality	Y to Z	0.1 mr	0	0	3	3	0	1
		ACBX	$0.2 \mathrm{cm/sec}^2$	1,948	0	142	846	0	1,760
~	Bias	ACBY	$0.2 \mathrm{cm/sec}^2$	0	1,650	0	0	1,650	0
LEI		ACBZ	$0.2 \mathrm{cm/sec}^2$	139	0	1,719	1,422	0	976
MET	Scale	SFEX	100 PPM	849	0	51	378	0	762
02	Factor	SFEY	100 PPM	0	3	0	0	3	0
E	Error	SFEZ	100 PPM	127	0	1.354	1.111	0	784
E E	Accel. Sens	SFNCX	10 PPM/g	157	0	11	68	0	142
AC	Scale	SFNCY	10 PPM/g	0	21	0	0	21	0
	Error	SFNCZ	10 PPM/g	36	0	334	271	0	198
	Biag	BDX	10 meru	1	1.838	12	9	1,838	7
	Drift	BDY	10 meru	2,181	0	1.846	516	0	2,811
		BDZ	10 meru	13	1,675	1	6	1,675	12
		ADIAX	10 meru/g	0	1,378	3	3	1,378	1
	Acceler-	ADIAY	10 meru/g	20	0	13	21	0	11
0	ation	ADIAZ	10 meru/g	41	2,880	3	18	2,880	38
YR	Sensitive	ADSRAX	10 meru/g	0	15	0	0	15	0
5	Drift	ADSRAY	10 meru/g	4,131	0	3,210	728	0	5,181
		ADSRAZ	10 meru/g	0	15	0	0	15	0
	Acceler-	A ² D(IA)(IA)X	1 meru/g ²	0	316	1	1	316	1
	Squared	A ² D(SRA)(SRA)Y	1 meru/g ²	1,230	0	843	119	0	1,487
	Drift	A ² D(IA)(IA)Z	1 meru/g ²	13	740	1	6	740	12
	Root Sum Square Error			5,742	4,688	4,491	2,334	4,688	6,907
					8,667			8,667	

Medium G Earth Re-entry Trajectory OVERALL SYSTEM STUDY OF RMS POSITION ERRORS

25

nponent	Er	ror	R M S Error	RMS E	Error in Axes in	Inertial Feet	RMS I A	Error in xes in F	T arget Teet
Col		*		(E)XI	(E)YI	(E)Z _I	Range	Track	Altitude
ч	Initial	(E)X _{Io}	0 ft	0	0	0	0	0	0
liti	Position	(E)Y Io	0 ft	0	0	0	0	0	0
ono	Error	(E)Z _{I0}	0 ft	0	0	0	0	0	0
1 C	Initial	(E)V _{XI0}	0 ft/sec	0	0	0	0	0	0
ltia	Velocity	(E)V _{YI0}	0 ft/sec	0	0	0	0	0	0
In	Error	(E)V _{ZIo}	0 ft/sec	0	0	0	0	0	0
& nal	Initial S M	^A (SM)XI	0.1 mr	6	1,174	12	1	1,174	13
IU ter	Alignment	A(SM)YI	0.1 mr	1,830	2	1,750	632	2	2,451
ы на На На На На На На На На На На На На На	Errors	A(SM)ZI	0.1 mr	11	1,046	5	7	1,046	10
	Accel. IA	X to Y	0.1 mr	11	0	5	7	0	10
N N	Non-ortho-	X to Z	0.1 mr	1,681	2	516	1,156	2	1,324
0	gonality	Y to Z	0.1 mr	4	0	10	2	0	11
		ACBX	$0.2 \mathrm{cm/sec}^2$	4,779	4	1,142	3,459	4	3,490
В	Bias	ACBY	0.2 cm/sec^2	3	3,693	4	1	3,693	5
METE		ACBZ	0.2 cm/sec^2	1,032	4	4,906	1,709	4	4,713
	Scale	SFEX	100 PPM	1,185	1	159	923	1	760
RO	Factor	SFEY	100 PPM	0	6	0	0	6	0
E	Error	SFEZ	100 PPM	461	2	1,698	504	2	1,685
GE	Accel. Sens.	SFNCX	10 PPM/g	156	0	24	120	0	102
AC	Scale Factor	SFNCY	10 PPM/g	0	6	0	0	6	0
	Error	SFNCZ	10 PPM/g	67	0	220	59	0	222
	Bias	BDX	10 meru	2	2,093	5	4	2,093	3
	Drift	BDY	10 meru	3,099	4	6,059	561	4	6,782
		BDZ	10 meru	7	4,847	1	5	4,847	5
		ADIAX	10 meru/g	2	537	5	1	537	6
	Acceler-	ADIAY	10 meru/g	38	0	24	20	0	41
0	ation	ADIAZ	10 meru/g	10	3,353	2	7	3,353	7
YR	Sensitive	ADSRAX	10 meru/g	0	26	0	0	26	0
U	Drift	ADSRAY	10 meru/g	3,009	4	4,480	195	4	-5,393
		ADSRAZ	10 meru/g	0	12	0	0	12	0
	Acceler-	A ² D(IA)(IA)X	1 meru/g^2	0	87	0	0	87	0
	Squared Sensitive	A ² D(SRA)(SRA)Y	1 meru/g ²	471	1	580	95	1	741
	Drift	A ² D(IA)(IA)Z	1 meru/g^2	1	407	0	1	407	1
I	Root Sum Square Error			7,114	7,463	9,422	4,255	7,463	11,012
		13,967				13,967			

Low G Earth Re-entry Trajectory OVERALL SYSTEM STUDY OF RMS POSITION ERRORS

94

	OVERALL SYSTEM STUDY OF RMS POSITION ERRORS										
aponent	Er	ror	R MS Error	RMS E	Crror in xes in F	Inertial Teet	RMS E	Error in xes in F	Target ^T eet		
Con				(E)X _I	(E)Y _I	(E)Z _I	Range	Track	Altitude		
g	Initial	(E)X _{IO}	0 ft	0	0	0	0	0	0		
itic	Position	(E)Y _{IO}	0 ft	0	0	0	0	0	0		
ond	Error	(E)Z _{IO}	0 ft	0	0	0	0	0	0		
LL C	Initial	(E)V _{XI0}	0 ft/sec	0	0	0	0	0	0		
tia. E	Velocity	(E)V _{YI0}	0 ft/sec	0	0	0	0	0	0		
Ini	Error	(E)V _{ZI0}	0 ft/sec	0	0	0	0	0	0		
al .	Initial	A(SM)XI	0.1 mr	0	94	0	0	94	0		
U 8 eri	Alignment	A _{(SM)YI}	0.1 mr	62	0	2,669	2,333	0	1,299		
Ext	Errors	A(SM)ZI	0.1 mr	0	282	0	0	282	0		
	Accel. IA	X to Y	0.1 mr	0	0	0	0	0	0		
M	Non-ortho-	X to Z	0.1 mr	327	0	1,597	1,543	0	527		
Š	gonality	Y to Z	0.1 mr	0	0	0	0	0	0		
1		ACBX	0.2 cm/sec^2	13,672	0	227	7,123	0	11,673		
~	Bias	ACBY	$0.2 \mathrm{cm/sec}^2$	0	8,684	0	0	8,684	0		
METEI	_	ACBZ	0.2 cm/sec^2	11,912	0	36,368	25,320	0	28,695		
	Scale	SFEX	100 PPM	358	0	193	348	0	210		
0 0 0	Factor	SFEY	100 PPM	0	0	0	0	0	0		
E	Error	SFEZ	100 PPM	2,075	0	6,356	4,428	0	5,009		
E E	Accel. Sens.	SFNCX	10 PPM/g	37	0	43	56	0	10		
ΡŬ	Scale -	SFNCY	10 PPM/g	0	0	0	0	0	0		
	Error	SFNCZ	10 PPM/g	289	0	1,105	806	0	809		
	Bing	BDX	10 meru	0	7,636	0	0	7,636	0		
	Drift	BDY	10 meru	7,879	0	5,956	1,143	0	9,810		
		BDZ	10 meru	0	3,359	0	0	3,359	0		
		ADIAX	10 meru/g	0	627	0	0	627	0		
	Acceler-	ADIAY	10 meru/g	0	0	0	0	0	0		
0	ation	ADIAZ	10 meru/g	0	365	0	0	365	0		
YR	Sensitive	ADSRAX	10 meru/g	0	0	0	0	0	0		
U	Drift	ADSRAY	10 meru/g	825	0	2,299	2,401	0	453		
		ADSRAZ	10 meru/g	0	0	0	0	0	0		
	Acceler-	A ² D(IA)(IA)X	1 meru/g^2	0	52	0	0	52	0		
	Squared	A ² D(SRA)(SRA)Y	1 meru/g ²	238	0	451	268	0	434		
	Drift	$A^2D_{(IA)(IA)Z}$	1 meru/g ²	0	122	0	0	122	0		
I	Root Sum Square Error				12,068	37,616	26,967	12,068	32,925		
		44,237 44,237									

Low G,	Extended	Range,	Earth	Re-e	entry	Traj	ector	У
OVERAL	L SYSTEN	I STUDY	OF F	RMS H	POSIT	ION	ERRO)R

G

High G Earth Re-entry Trajectory IMU POSITION ERROR COEFFICIENTS (PART I) (SM axes colinear with inertial axes)

	Error		Unit Error	Error in In in feet per	ertial Axe unit error	S	Er ror i n in feet p	Target A	kes ror
	Error		Dimension	(E)X _I	(E)Y	(E)Z _I	Range	Track	Altitude
A. In	itial C	ondition E	rrors along I	nertial Axe	3	<u>i</u>	·	<u></u>	
Initial	ŀ	(E)X _{IO}	foot	+1.536	0	+0.183	-0.388	0	+1.497
Positi	on [^{(E)Y} IO	foot	0	+0.744	0	0	+0.744	0
Error	((E)Z _{IO}	foot	+0,166	0	+0.790	+0.676		+0.442
Initial		(E)V _{XIO}	ft/sec	+697.5	0	+45.7	-211.1	0	+666.4
Velocity (E)V _{YIO}		(E)V _{YIO}	ft/sec	0	+546.2	0	0	+546.2	0
Error (E)V _{ZIO}		(E)VZIO	ft/sec	+44.3	0	+560.5	+506.1	0	+245.0
B. Ac	celer	ometer Er	rors (In-flig	ht Effect on	ly)				±
		ACBX	cm/sec^2	-6,348	+ 0	-243	+2.081	+ 0	-6.002
Bias		ACBY	cm/sec^2	+ 0	-5,622	+0	+0	-5,662	+0
		ACBZ	cm/sec^2	-240	+0	-5,705	-5,227	+0	-2,298
Scale		SFEX	РРМ	-7.063	+0	-0.265	+2.321	σ	-6.676
Factor	-	SFEY	РРМ	0	+0.021	0	0	+0.021	0
Error		SFEZ	РРМ	+0.641	0	+12,510	+11. 421	0	+5.145
Accel.	\$	SFNCX	PPM/g	-20,79	0	-1.00	+6.63	0	-19.73
Sens. Scale	•	SFNCY	PPM/g	0	-2.29	0	0	-2.29	0
Factor Error		SFNCZ	PPM/g	-2,98	0	-49.9	-45.39	0	-20.92
С. Мі	isalign	ments of A	Acceleromete	r Input Axe	s			<u> </u>	<u>+</u>
Accel.	Abou	t							
x	Y _{SM}	A _{(X)Y}	milliradian	-14,233	0	-649	+4,570	0	-13, 495
	^Z SM	A _{(X)Z}	milliradian	+17	0	-1	-7	0	+15
	\mathbf{x}_{SM}	A _{(Y)X}	milliradian		-	-	-	-	-
Y	z _{sm}	A _{(Y)Z}	milliradian	-		-	-	-	-
	\mathbf{x}_{SM}	A _{(Z)X}	milliradian	+1	0	-21	-20	0	-7
Z	^Y SM	A _{(Z)Y}	milliradian	-	-	-	-	-	-

High G Earth Re-entry Trajectory IMU POSITION ERROR COEFFICIENTS (PART II) (SM axes colinear with inertial axes)

[Unit	Error in l	Inertial A	xes	Error in Target Axes			
		Error	in feet p	oer unit e	rror	in feet p	er unit e	rror	
I	Error	Dimension	(E)X _I	(E)Y _I	(E)Z _I	Range	Track	Altitude	
D. Init	ial Platform Misal	ignments abou	t Inertial .	Axes		H	·		
A _{(S}	SM)XI	'milliradian	0	+12, 290	-21	-20	+12,290	-7	
A _{(S}	M)YI	milliradian	+14, 495	- 0	+7,016	+1, 266	-10	+13,053	
A _{(S}	M)ZI	milliradian	-17	-6,276	+1	+7	-6,276	-15	
E. Gyr	o Drift Errors		.				<u></u>		
D .	BDX	meru	-0.1	+131.2	-0.7	-0.6	+131.2	-0.3	
Bias	BDY	meru	-148.7	0	-102.3	-41.3	0	-175.7	
Drift	BDZ	meru	+0.8	+96.3	0	-0.3	+96.3	+0.8	
A] .	ADIAX	meru/g	+0	+153.3	+0.4	+0.4	+153.3	+0.2	
Accele-	ADIAY	meru/g	-2.4	0	+1.1	+1.9	0	-1.9	
ration	ADIAZ	meru/g	-4.3	-235.7	-0.2	+1.4	-235.7	-4.1	
Sensi-	ADSRAX	meru/g	0	-2.0	0	0	-2.0	0	
tive	ADSRAY	meru/g	-416.6	0	-253.0	-84.2	0	-480.1	
Drift	ADSRAZ	meru/g	0	-1.3	0	0	-1.3	0	
	A ² D(IA)(IA)X	$meru/g^2$	0	+613.0	-2,5	-2.3	+613.0	-1. 0	
ration	A ² D(IA)(IA)Y	meru/g ²	-80.2	0	-48.3	-15.8	0	-92.3	
Squared	A ² D(IA)(IA)Z	meru/g ²	+20.6	+1,008.6	+0.8	-6.7	+1,008.6	+19.5	
Sensi-	A ² D(SRA)(SRA)X	meru/g ²	-0.1	+71.0	-1.3	-1.2	+71,0	-0.6	
tive	A ² D(SRA)(SRA)Y	meru/g ²	-2,081.6	+0.1	-1,100.5	-268.4	+0.1	-2,339.2	
Drift	A ² D(SRA)(SRA)Z	meru/g ²	+1.5	+45.0	+0.1	-0.5	+45.0	+1.4	
	A ² D _(IA) (SRA)X	meru/g ²	0	-3.3	0	0	-3.3	0	
	A ² D(IA)(SRA)Y	meru/g ²	-41.0	0	-11.7	+4.0	0	-42.4	
	A ² D(IA)(SRA)Z	meru/g ²	-0.3	-9.8	0	+0.1	-9.8	-0.3	

Medium G Earth Re-entry Trajectory IMU POSITION ERROR COEFFICIENTS (PART I)

(SM axes colinear with inertial axes)

			Unit Error	Error in In	ertial Axe	8	Er ro r in	Target A	ces
i i	Frron		Dimensio	in feet per	unit error		in feet	per unit ei	ror
<u> </u>	EFFOF		Dimension			(E)Z _I	Range	Track	Altitude
A. In	itial C	ondition E	rrors along I	nertial Axe	s				
Initial		(E)X _{IO}	foot	+1.776	0	+0.370	-0,563	0	+1.724
Positi	on ((E)Y _{IO}	foot	0	+0.624	0	0	+0.624	0
Error	(E)Z _{IO}	foot	+0.313	0	+0.749	+0.494	0	+0.644
Initial (E)V _{XIO}		ft/sec	+898.0	0	+109.8	-351.7	0	+833.5	
Veloci	ty (E)V _{YIO}	ft/sec	0	+638.6	0	0	+638.6	0
Error (E)VZ		E)VZIO	ft/sec	+104.1	0	+686.5	+543.7%	0	+431.9
B. A.	celerc	ometer Er	rors (In-flig	ht Effect on	ly)				
	4	ACBX	cm/sec^2	-9,738	+ 0	-710	+4,230	0	-8,800
Bias		ACBY	cm/sec^2	0	-8,249	0	0	-8,249	0
	/	ACBZ	cm/sec^2	-649	0	-8,594	-7,109	0	-4,878
Scale		SFEX	PPM	- 8,489	0	-0.515	+3.777	0	-7.617
Factor		SFEY	PPM	0	+0.029	0	0	+0,029	0
Error	S	SFEZ	РРМ	+1.274	0	+13,536	+11,107	0	+7.841
Accel.	2	SFNCX	PPM/g	-15.72	0	-1.15	+6.83	0	-14.20
Sens. Scale	2	SFNCY	PPM/g	0	-2,09	0	0	-2.09	0
Factor Error	. 5	SFNCZ	PPM/g	-3.64	+0.14	-33.35	-27.12	+0,14	-19.75
С. М	isalign	ments of A	Acceleromete	r Input Axe	s				
Accel.	About	t							
x	Y _{SM}	A _{(X)Y}	milliradian	-15,639	0	-1,303	+6,653	0	-1 4, 2 13
	z_{SM}	A _{(X)Z}	milliradian	+22	0	-2	-12	0	+18
37	X _{SM}	A _{(Y)X}	milliradian	-	-	-	-	-	-
х 	^Z _{SM}	$A_{(Y)Z}$	milliradian	-	-	-	-	-	-
	х _{sm}	A _{(Z)X}	milliradian	+2	0	-28	-25	0	-13
4	^Y SM	A _{(Z)Y}	milliradian	-	-	-	-	-	-

CONTIDENTIAL

Medium G Earth Re-entry Trajectory IMU POSITION ERROR COEFFICIENTS (PART II) (SM axes colinear with inertial axes)

		Unit	Error in	Inertial A	xes	Error in	Target A	xes
		Error	in feet p	oer unit e	rror	in feet	per unit e	rror
]	Error	Dimension	(E)X _I	(E)Y _I	(E)Z _I	Range.	Track	Altitude
D. Init	ial Platform Misal	ignments abou	t Inertial	Axes				
A(5	SM)XI	'milliradian	+1	+12,907	-29	-25	+12,907	-13
A(5	SM)YI	milliradian	+16,144	-1	+8,991	-236	-1	+13,478
A _{(S}	M)ZI	milliradian	-21	-7,433	+2	+12	-7,433	-17
E. Gyr	o Drift Errors		ł			<u> </u>		
Di	BDX	meru	-0.1	+183.8	-1.2	-0.9	+183.8	-0.7
Bias	BDY	meru	-218,1	0	-184.6	-51.6	0	-281.1
Drift	BDZ	meru	+1.3	+167.5	+0.1	-0.6	+167.5	+1.2
A	ADIAX	meru/g	0	+137.8	+0.3	+0.3	+137.8	+0.1
Accele-	ADIAY	meru/g	-2.0	0	+1, 3	+2.1	0	-1.1
ration	ADIAZ	meru/g	-4.1	-288.0	-0.3	+1.8	-288.0	-3.8
tive	ADSRAX	meru/g	0	-1.5	0	0	-1.5	0
	ADSRAY	meru/g	-413.1	0	- 321. 0	-72.8	0	-518.1
Drift	ADSRAZ	meru/g	0	-1.5	0	0	-1.5	0
A 1.	A ² D(IA)(IA)X	$meru/g^2$	-0.1	+315.7	-1.0	-0.8	+315.7	-0.6
ration	A ² D _{(IA)(IA)Y}	$meru/g^2$	-75.9	0	-55.6	-10.4	0	-93.5
Squared	A ² D _{(IA)(IA)Z}	meru/g ²	+13.3	+740.3	+1.0	-0.6	+740.3	+12.1
Sensi-	A ² D _(SRA) (SRA)X	meru/g ²	0	+63.8	+1.0	-0,8	+63.8	-0,6
tive	A ² D(SRA)(SRA)Y	meru/g ²	-1,230.3	+0.1	-843.1	-119.0	+0.1	-1, 486, 8
Drift	A ² D(SRA)(SRA)Z	meru/g ²	+1.1	+49.5	+0.1	-0.5	+49.5	+1.0
	A ² D(IA)(SRA)X	meru/g ²	0	-0.6	0	0	-0.6	0
	A ² D(IA)(SRA)Y	meru/g ²	20.2	0	-6.6	+4.3	0	-20.8
	A ² D(IA)(SRA)Z	meru/g ²	-0.1	-4.8	0	0	-4.8	-0.1

Low G Earth Re-entry Trajectory IMU POSITION ERROR COEFFICIENTS (PART I) (SM axes colinear with inertial axes)

			Unit Error	Error in In in feet per	ertial Axe	8	Er ro r in in feet p	Target An per unit er	kes ror
	Error		Dimension	(E)X ₁	(E)Y _I	(E)Z _I	Range	Track	Altitude
A. In	itial C	ondition E	rrors along I	nertial Axe	s	*** <u></u> *		<u></u>	+··
Initial		(E)X _{IO}	foot	+2.523	0	+1.570	-1.316	0	+2.664
Positi	on	(E)Y _{IO}	foot	0	+0,162	0	0	+0.162	0
Error		(E)Z _{IO}	foot	+0.976	0	+0.982	-0.312	0	+1.348
Initial		(E)V _{XIO}	ft/sec	+1, 504	0	+617	-953	0	+1, 317
Veloci	ity ((E)V _{YIO}	ft/sec	0	+808	0	0	+808	+2
Error (E)V _{ZIO}		^{(E)V} ZIO	ft/sec	+508	0	+1, 337	+273	0	+1, 404
B. Ad	cceler	ometer Er	rors (In-flig	ht Effect on	1y)		1		t <u></u>
ACBX		ACBX	cm/sec^2	-31,063	-18	-5,709	+17,294	-18	-17,449
Bias	4	ACBY	cm/sec^2	-16	-18,466	-19	+4	-18,466	-25
		ACBZ	cm/sec^2	-5,161	-19	-24,529	-8,547	-19	-23, 564
Scale	6	SFEX	PPM	-11.847	-0.005	-1.594	+9.226	-0.005	-7.601
Factor	r k	SFEY	РРМ	-0	-0.056	-0	0	-0.056	0
Error		SFEZ	PPM	+4.607	+0.017	+16.98	+5.037	+0.017	+16.855
Accel.		SFNCX	PPM/g	-15.57	-0.01	-2.36	+11.99	-0,01	-10.21
Sens. Scale	2	SFNCY	PPM/g	0	-0.58	0	0	-0.58	0
Factor Error	- S	SFNCZ	PPM/g	-6.71	-0.02	-21.95	-5.87	-0.02	-22.19
С. М	isalign	ments of .	t de le romete	r Input Axe	s				
Accel.	About	t				······			
x	Y _{SM}	A _{(X)Y}	milliradian	-16,811	-16	-5,156	+11 , 5 66	-16	-13, 245
	Z _{SM}	A _{(X)Z}	milliradian	-113	0	-51	+69	0	-103
	\mathbf{x}_{SM}	A _{(Y)X}	milliradian	-	-	-	-		-
Y	Z _{SM}	A _{(Y)Z}	milliradian	_	-	-	-	-	-
	\mathbf{x}_{SM}	A _{(Z)X}	milliradian	+43	0	+100	+16	0	+108
Z Y _{SM}		A _{(Z)Y}	milliradian	-	-	-	-	_	-

Low G Earth Re-entry Trajectory IMU POSITION ERROR COEFFICIENTS (PART II) (SM axes colinear with inertial axes)

		Unit	Error in 1	Inertial A	xes	Error in	Target A	xes
		Error	in feet p	per unit e	rror	in feet pe	r unit err	or
]	Error	Dimension	(E)X _I	(E)Y _I	(E)Z _I	Range	Track	Altitude
D. Init	ial Platform Misal	ignments abou	t Inertial	Axes	i		<u></u>	<u> </u>
A(5	SM)XI	'milliradian	+58	+11, 744	+117	+13	+11, 744	+130
A(5	SM)YI	milliradian	+18,295	+22	+17,498	-6,320	+22	+24, 514
A _{(SM)ZI}		milliradian	+108	- 10, 459	+45	-68	-10,459	+96
E. Gyr	o Drift Errors		a	<u>+</u>	•	¥		
Dies	BDX	meru	+0.2	+209.3	-0.5	-0.4	+209.3	-0.3
Dias	BDY	meru	-309.9	-0.4	-605.9	-56.1	-0.4	-678 2
	BDZ	meru	+0.7	+484.7	+0.1	+0.5	+484.7	+0.5
Accolo	ADIAX	meru/g	+0.2	+53.7	+0.5	+0.1	+53.7	+0,6
ration	ADIAY	meru/g	-3.8	-0	-2.4	+2.0	-0	-4.1
Sonai	ADIAZ	meru/g	-1.0	-335.3	-0,2	+0.7	- 335, 3	-0.7
Sensi-	ADSRAX	meru/g	0	-2.6	0	0	-2.6	0
Drift	ADSRAY	meru/g	-300.9	-0.4	-448.0	+19.5	-0.4	-539.3
	ADSRAZ	meru/g	0	+1.2	0	0	+1.2	0
A	A ² D(IA)(IA)X	$meru/g^2$	+0.3	+86.7	+0.4	0	+86.7	+0.5
ration	A ² D(IA)(IA)Y	meru/g ²	-14.7	- 0	-22.0	+0.9	0	-26.5
Squared	A ² D(IA)(IA)Z	meru/g ²	+10.6	+407.1	+0.2	-0.8	+417.1	+0.7
Sensi-	A ² D(SRA)(SRA)X	meru/g ²	0	+10.1	0	0	+10.1	0
tive	A ² D(SRA)(SRA)Y	$meru/g^2$	-471. 3	-0.6	-580.1	+94.6	-0.6	-741.5
	A ² D(SRA)(SRA)Z	$meru/g^2$	0	+16,5	0	0	+16.5	0
	A ² D _(IA) (SRA)X	meru/g ²	0	-1.2	0	0	-1.2	0
	A ² D(IA)(SRA)Y	meru/g ²	11.4	0	-10.4	+4.2	0	-14.8
	A ² D(IA)(SRA)Z	$meru/g^2$	0	-6,4	0	0	-6.4	0

Low	G,	Extended Range,	Earth Re-entry	Trajectory
IMU	PO	SITION ERROR C	OEFFICIENTS	(PART I)
		(SM axes colinea	r with inertial a	xes)

	_		Unit Error	Error in In in feet pe	ertial Axe r unit erro	s r	Error in Target Axes in feet per unit error			
	Error		Dimension		(E)YI	(E)Z _I	Range	Track	Altitude	
A. In	itial C	ondition E	rrors along I	nertial Axe	s	· · · · · · · · · · · · · · · · · · ·		1 <u></u>		
Initial		(E)X _{IO}	foot	-1.239	0	+7.918	-6.199	0	+5.080	
Positi	on	(E)Y _{IO}	foot	0	-0,953	0	0	-0.953	0	
Error		(E)Z _{IO}	foot	+0.158	0	+3.501	-3.098	0	+1.637	
Initial (E)V _{XIO}		ft/sec	+570	0	+2,586	-2,518	0	+819		
Velocity (E)V _{YIO}		ft/sec	0	+249	0	0	+249	0		
Error (E)V _{ZIO}		(E)VZIO	ft/sec	-1,892	0	+6,913	-5,002	0	+5,133	
B. Ad	cceler	ometer Er	rors (In-flig	ht Effect on	ly)					
		ACBX	cm/sec^2	-68,362	0	-1,137	+35,615	0	+58, 363	
Bias		ACBY	cm/sec^2	0	-43, 421	0	0	-43, 421	0	
		ACBZ	cm/sec^2	+59,558	0	-181, 840	+126,601	0	-143, 475	
Scale		SFEX	PPM	-3.577	0	-1,943	+3.480	0	+2.104	
Factor	c f	SFEY	PPM	0	0	0	0	0	0	
Error		SFEZ	РРМ	-20.752	0	+63.558	-44.283	0	+50.092	
Accel.		SFNCX	PPM/g	-3.71	0	-4.30	+5.59	0	+1.02	
Scale	2	SFNCY	PPM/g	0	0	0	0	0	0	
Factor Error	- 8	SFNCZ	PPM/g	+28.95	0	-110.47	+80.57	0	-80.92	
С. М	isalign	ments of a	Acceleromete	r Input Axe	s			<u> </u>		
Accel.	Abou Axis	t								
x	Y _{SM}	A _{(X)Y}	milliradian	-3,269	0	-15,972	+15,427	0	-5, 273	
_	z_{SM}	A _{(X)Z}	milliradian	0	0	0	0	0	0	
Ţ	\mathbf{x}_{SM}	A _{(Y)X}	milliradian	-	-	-	-	-	-	
Ŷ	^Z SM	A _{(Y)Z}	milliradian	-	-	-	-	-	-	
_	\mathbf{x}_{SM}	A _{(Z)X}	milliradian	0	0	0	0	0	0	
Z Y _{SM}		A _{(Z)Y}	milliradian	-	-	-	-	-		

Low G, Extended Range, Earth Re-entry Trajectory IMU POSITION ERROR COEFFICIENTS (PART II) (SM axes colinear with inertial axes)

		Unit	Error in I	nertial A	xes	Error in	Target A	xes
		Error	in feet pe	er unit er	ror	in feet pe	er unit er	ror
EE	lrror	Dimension	(E)X _I	(E)Y _I	(E)Z _I	Range	Track	Altitude
D. Initi	ial Platform Misali	gnments abou	t Inertial .	Axes				
A _{(S}	M)XI	milliradian	0	-939	0	0	-939	0
A _{(SM)YI}		milliradian	+624	0	+26,695	-23, 331	0	+12,987
A _{(SM)ZI}		milliradian	0	-2,822	0	0	-2,822	0
E. Gyr	o Drift Errors							
	BDX	meru	0	-763.6	0	0	-763.6	0
Bias	BDY	meru	+787.9	0	-595.6	+114.3	0	-981.0
Drift	BDZ	meru	0	+335.9	0	0	+335.9	0
	ADIAX	meru/g	0	-62.7	0	0	-62.7	0
Accele-	ADIAY	meru/g	0	0	0	0	0	0
ration	ADIAZ	meru/g	0	-36.5	0	0	-36.5	0
Sensi-	ADSRAX	meru/g	0	0	0	0	0	0
tive	ADSRAY	meru/g	-82.5	0	-229.9	+240.1	0	-45,3
Drift	ADSRAZ	meru/g	0	0	0	0	0	00
	A ² D _{(IA)(IA)X}	meru/g ²	0	~51.7	0	0	-51.7	0
Accele-	A ² D(IA)(IA)Y	$meru/g^2$	0	0	0	0	0	0
Squared	A ² D(IA)(IA)Z	meru/g ²	0	+12.2	0	0	+12.2	0
Sensi-	A ² D(SRA)(SRA)X	$meru/g^2$	0	0	0	0	0	0
tive	A ² D(SRA)(SRA)Y	meru/g ²	+238.4	0	-451.0	+268.0	0	-434.0
Drift	A ² D(SRA)(SRA)Z	meru/g ²	0	0	0	0	0	0
	A ² D(IA)(SRA)X	meru/g ²	0	0	0	0	0	0
	A ² D _(IA) (SRA)Y	meru/g ²	0	0	0	0	0	0
	A ² D(IA)(SRA)Z	meru/g ²	0	0	0	0	0	0

Fig. G-1

ւ աստ է ել

COMPENTIAL

Fig. G-3

CONFIDENTIAL

JTI

REENTRY

Fig. G-7

TA

Fig. G-9