CLASSIFICATION CHANGE

 Changed by Cl . Shin lay $12 / 3 / 1$ Scientific and Technical Information Facility
\qquad Date $8 / 16 / 63$ \qquad
MILTON B. TRAGESER, DIRECTOR
APOLLO GUIDANCE AND NAVIGATION PROGRAM
(Unclassified Title)

QUARTERLY TECHNICAL PROGRESS REPORT,

Period ended June 1963 []. INSTRUMENTATION LABORATORY
CAMBRIDGE Sq, MASSACHUSETTS

5545009
copy \# 50 of \qquad 215 COPIES THIS DOCUMENT CONTAINS 52 PAGES

ACKNOWLEDGEMENT

This report was prepared under the auspices of DSR Project 55-191, sponsored by the Manned Spacecraft Center of the National Aeronautics and Space Administration through Contract NAS9-153.

PREFACE

This Quarterly Technical Progress Report consists of the Milestone Charts covering the schedules for all components and assemblies of the Apollo Guidance Equipment, together with comments or a discussion for each chart.

There is also a tabulation of all meetings attended by MIT/IL Apollo personne1.

The report concludes with a bibliography listing the reports published by the MIT Instrumentation Laboratory under the Apollo Program.

TABLE OF CONTENTS

Page
PROGRESS SUMMARIES 1
BIBLIOGRAPHY 36

PROGRESS SUMMARIES

Figure I-1 shows the current delivery schedule for guidance and navigation systems to be used in the Command Module. As noted in last month's report, MIT/IL has discussed a proposed change in the composition of Blocks I and II, which would make AGE 13 the first Block II system (Reference MIT/IL letter AG-382-63, dated 23 May 1963). Figure I-1 has not been changed to reflect this proposal, since a formal approval has not been received from NASA.

Figure I-2 shows a proposed flight test schedule for the command module, giving the allocation of AGE systems to airframes. This proposal was presented to NASA in May 1963 by MIT/IL and is documented in Letter AG-382-63, dated 23 May 1963.

The philosophy underlying this proposal is our desire to ship G \& N systems destined to fly on flights SA 111, SA 112, and SA 113, from the factory assembly point directly to AMR without passing these systems through NAA's facility at Downey. Scheduling the delivery of $G \& N$ flight systems in this manner accomplishes two important objectives:
a) It reduces the amount of shipping and handling which flight systems must undergo.
b) It reduces the accumulated AGE operating time prior to flight from approximately 1000 hours to 500 hours.

Figure I-3 shows a proposed LEM flight test schedule, giving the allocation of LEM Guidance and Navigation Systems (LGE) to LEM vehicles. The proposal was presented to NASA by MIT / IL in May, 1963, and is documented in Letter AG-382-63 dated 23 May 1963.

This schedule was derived using the same philosophy as that contained in the Command Module Flight Test Schedule, Figure I-2. The LGE systems destined to fly are shipped from the factory assembly point directly to AMR for installation in the appropriate LEM. To check out the LEM vehicles at Grumman (GAEC), LGE 2, 5, 10, 11 are used. LEM 3 is checked out at GAEC by LGE 2 which then becomes a spare at SWMR. LGE 10 and LGE 11 remain at GAEC for checkout of LEM 5, 6, $7,8,9,10$ and 11.

Figure I-4 shows the delivery schedule for all subsystems contained in AGE 4. The target date for delivery of AGE 4 to Downey by MIT/IL has been changed from 15 October 1963 to 15 November 1963.

The objectives of AGE 4 are as follows: (Reference Apollo Project Memo No. 575, L. S. Wilk)

1. Demonstrating the proper operation of the Apollo $G \& N$ as represented in AGE 4.
2. Demonstrating the proper operation of the G \& N GSE.
3. Proofing of the pre-installation AGE test procedures.
4. Proofing of the MIT System Test Laboratory facilities.
5. Proofing of the MIT G \& N Laboratory at NAA.
6. Proofing of the MIT G \& N Laboratory at AMR.

Figure I-5 shows the schedule for AGE 5 subsystems. A slippage of 3 months is shown in the Wiring Diagram and Flight Test Program caused by lack of a preliminary mission profile from NASA (Reference MIT/LL letter AG-357-63 dated 27 May 1963). AGC 5 is shown 8 weeks behind schedule. The recent mechanical design change if approved immediately will cause no further slip in the delivery of AGC 5 . IMU-5 is shown 6 weeks behind schedule. IMU-5 will be assembled with $16 \times$ resolvers with old stub shafts, and retrofitted when new units are received.

Figure I-6 shows the delivery schedule for AGE 9 subsystems. Under existing plans, AGE 9 is the first G \& N system in Block II. However, MIT/IL has recently discussed with NASA a proposed change to the composition of Blocks I and II, which would make AGE 9 a Block I system and AGE 13 the first Block II system. (Reference MIT/IL letter AG-382-63 dated 23 May 1963).

AGE 9 is considered to be on schedule with the exception of AGC 9 which must lag AGC 5 by at least 4 weeks due to limitations in production and testing.

The schedule for Guidance Theory \& Programming is shown in Fig. I-7. This effort is considered to be on schedule with the exception of the milestone event entitled "Preliminary NASA Mission Profile Required from NASA" which is required by MIT/IL for analysis and preparation of the flight computer programs, but which has not yet been received. This slippage has been reported to MSC in letter AG-357-63 dated 27 May 1963.

Figure I-8 shows the delivery schedule for all guidance computers. As reported in last month's report, a new mechanical design has been proposed for the computer. AGC 4 is functioning as a computer in the laboratory at MIT.

AGC 4B is shown approximately seven weeks behind schedule.

AGC 5 is considered to be approximately eight weeks behind schedule in terms of meeting the schedule delivery date, due to an expected late delivery to MIT/IL of the chassis assembly, drivers, power supply, and miscellaneous components.

The IMU Development Plan is shown in Fig. I-9. Thermal testing is continuing on IMU-1. IMU-2 will be rebuilt with new stub shafts and vibration tests will be rerun. IMU-4 alignment checks are continuing.

IMU-5 will be assembled with $16 \times$ resolvers with old stub shafts, and retrofitted when new units are received.

IMU assembly drawings are approximately 50% released.
Figure 1-10 gives the delivery schedule for all PSA Subsystems. PSA 2 is about 2 weeks behind schedule. PSA 3 (MTT/LL breadboard) is considered to be on schedule. PSA 4 and 5 , under construction by MIT /LL to class B documentation, are four weeks behind schedule. PSA 6, under construction by AC Spark Plug to class B documentation is reported to be 5 weeks behind schedule.

Figure I-11 shows the delivery schedule for CDU subsystems. Six CDU gear boxes from AC Spark Plug are undergoing laboratory tests and checkout at MIT/IL. CDU's for system 5 are reported 2.5 weeks behind schedule.

In May 1963, MIT/IL issued TD A-147 to AC Spark Plug calling for delivery of 15 CDU 's to the schedule shown below. AC Spark Plug's current estimated delivery dates are shown adjacent to the scheduled delivery date.

Quantity	Schedule Delivery Date	ACSP Expected Delivery Date	Documentation	Use
2	8/1/63	8/25/63	Less than Class A	Optics
3	9/15/63	10/16/63	Less than Class A	Inertial
3	10/15/63	10/19/63	Less than Class A	Inertial
2	10/15/63	10/19/63	Less than Class A	Optics
2	11/1/63	11/2/63	Less than Class A	Optics
2	11/1/63	11/2/63	Less than Class A	Optics
1	11/1/63	11/10/63	Class A	Vibration

Figure I-12 gives the delivery schedule for the Navigation Base subsystems. Navigation Base for AGE 2 is about 2 weeks behind schedule, with delivery expected 12 July 1963. Navigation Base for AGE 4 is about 3 weeks behind schedule. Navigation Base for AGE 5 is on schedule.

Figure I-13 shows the delivery schedule for all D \& C Subsystems. The breadboard D \& C panels under construction by AC Spark Plug are about 6 weeks behind schedule due to vendor lead time required for honeycomb panels. The D \& C panels
for systems 1, 2, 4, 5, and 6 are behind schedule. D \& C panels for system 5A are expected to be delivered on schedule (1 August 1963) if a material substitution of aluminum and wood for honeycomb panelling is allowed (for 5A only).

The Optical Subsystem Schedule is shown in Fig. I-14. All systems are considered to be on schedule.

Figure I-15 shows the delivery schedule for all Map and Data Viewers. All systems are shown as being on schedule.

Figure I-16 shows the current schedule for mid-course guidance studies. Additional studies are being considered and will be added to the chart as soon as the initial planning is complete.

Figure I-17 shows the delivery schedule for all Raytheon ground support equipment. The first breadboard computer test set is expected to be delivered to MIT/IL by Raytheon in August 1963. A computer simulator was delivered to MIT/IL by Raytheon on 28 June 1963.

Figure I-18 shows the delivery schedule for all AC Spark Plug ground support equipment. This schedule is in accordance with the AC Spark Plug statement of Work dated 28 January 1963, with appropriate modifications as detailed in the recovery plan authorized by NASA TWX SGC 4-233 dated 11 April 1963.

The breadboard test set scheduled for delivery to MIT/IL by AC Spark Plug on 1 August 1963 is expected to be about 6 weeks late.

Figure I-19 shows the GSE delivery schedule for Kollsman Instrument Corporation. This schedule is in accordance with the Kollsman Statement of Work dated 11 April 1963. with appropriate modifications as listed in the recovery plan authorized by NASA TWX SGC 4-233 dated 11 Apri1 1963.

In June 1963, MIT/IL issued TD K-75 authorizing Kollsman to design and prepare for manufacture optical GSE items listed below:

ITEM

1. Precision Test Fixture
2. Functional Tester
3. 5 inch collimator
4. Mirror alignment fixture
5. 2-1/2 inch collimator
6. Short retroreflecting periscope and alignment equipment

DELIVERY DATE
10/1/63
10/1/63
10/1/63
10/1/63
10/1/63
10/1/63

Figure I-20 shows a PIP delivery schedule. During May and June, seven PIP's were acceptance-tested at Sperry:

PIP No.	Date:
1 AP 15	$5 / 20 / 63$
1 AP 16	$5 / 24 / 63$
1 AP 17	$5 / 24 / 63$
1 AP 18	$5 / 28 / 63$
1 AP 19	$5 / 31 / 63$
1 AP 20	$6 / 14 / 63$
1 AP 21	$6 / 18 / 63$

The following PIP's have been reserved for system AGE 5: 1 AP-15, 1 AP-18, $1 \mathrm{AP}-19,1 \mathrm{AP}-20,1 \mathrm{AP}-21,1 \mathrm{AP}-22$.

Figure I-21 shows an IRIG delivery schedule. During May, two IRIGS were accepted at ACSP by NASA:

IRIG No.
$\begin{array}{ll}1 \mathrm{~A}-9 & 5 / 8 / 63 \\ 1 \mathrm{~A}-10 & 5 / 23 / 63\end{array}$

These are the last of 10 ACSP IRIGS received at MIT /IL. The following IRIGS' are reserved for system AGE 5: $1 \mathrm{~A}-8,1 \mathrm{~A}-10$, MIT-69.

During the interval between 1 June and 30 June, MIT/IL Apollo Project personnel attended meetings as shown on Table I.
APOLLO MILESTONE CHART FOR DELIVERY SCHEDULE FOR GUIDANCE \& NAVIGATION SYSTEMS

APOLLO C/M FLIGHT TEST SCHEDULE

Fig. I-2
APOLLO LEM FLIGHT TEST SCHEDULE

Fig, I~3
APOLLO MILESTONE CHART FOR AGE 4

APOLLO MILESTONE CHART FOR AGE 5

APOLLO MILESTONE CHART FOR AGE 9

APOLLO MILESTONE CHART FOR GUIDANCE THEORY \& PROGRAMMING (EARTH ORBITAL MISSION)

TDR-PERFORM TELEMETRY DATA REDUCTION
APOLLO MILESTONE CHART FOR APOLLO GUIDANCE COMPUTER (AGC)

APOLLO MILESTONE CHART FOR APOLLO GUIDANCE COMPUTER (cont.)

\triangle FLIGHT TEST
(I.S.) INDUSTRIAL SUPPORT
$\nabla_{\text {TEST }}$
∇ LAB TEST
∇ FIELD TEST
Fig. I 8 cont
PROCUREMENT
 \square ASSEMBLY
(o) G 8 N DELIVERY DATE

O delivery date
\bigotimes design release
) mectan
APOLLO MILESTONE CHART FOR IMU DEVELOPMENT PLAN

NOTE 〈E ELECTRICAL DESIGN (M) MECHANICAL DESIGN
\bigcirc DESIGN EFFORT S.A.T. SYSTEM ASSEMBLY 8 TEST
\triangle FLIGHT TEST
(I.S.) INDUSTRIAL SUPPORT

Fig. I-9

- APOLLO MILESTONE CHART FOR IMU DEVELOPMENT PLAN (CONTINUED)

APOLLO MILESTONE CHART FOR POWER AND SERVO ASSEMBLY (PSA)

Fig. I-10
- APOLLO MILESTONE CHART FOR POWER AND SERVO ASSEMBLY cont.

APOLLO MILESTONE CHART FOR CDU GEARBOXES

Fig. I-11
apollo milestone chart for navigation base sub-SYSTEM
 NOTE 〈E ELECTRICAL DESIGN M) MECHANICAL DESIGN人design effort
APOLLO MILESTONE CHART FOR DISPLAY a CONTROL SUBSYSTEMS

APOLLO MILESTONE CHART FOR DISPLAY AND CONTROL SUBSYSTEM

Fig. I- 13 cont.
APOLLO MILESTONE CHART FOR OPTICAL SUBASSEMBLY

APOLLO MILESTONE CHART FOR OPTICAL SUBASSEMBLY (CON'T.)

[^0](○ Gan delivery date
delivery date
\triangle flight test

(ISS.) INDUSTRIAL SUPPORT
test
lab test
field test

Fig. I-14 cont.
APOLLO MILESTONE CHART FOR MAP AND DATA VIEWER SYSTEM

[^1](0) Gan. DELIVERY DATE DELIVERY DATE
\triangle FLIGHT TEST
(I.S.) INDUSTRIAL SUPPORT
APOLLO MILESTONE CHART FOR MAP AND DATA VIEWER SYSTEM (cont.)

© g. an. delivery date
delivery date
\triangle flight test
(I.S.) INDUSTRIAL SUPPORT
test
lab test
field test
$D \mapsto$ IN3W3yn00ud
\bigcirc
z
$\stackrel{0}{6}$
un
0
in
\square
\square

Fig. I-15 cont.

NOTE (E) ELECTRICAL DESIGN
M) mechanical design

Design effort
APOLLO MILESTONE CHART FOR MIDCOURSE GUIDANCE STUDIES

Fig. I-16

APOLLO MILESTONE CHART FOR MIDCOURSE GUIDANCE STUDIES (cont.) - Mation

() G a N DELIVERY DATE
delivery date
\triangle flight test
TP 5924
-
(I.S.) INDUSTRIAL SUPPORT
TEST
LAB TEST
FIELD TEST

Fig. I 16 cont.

[^2]APOLLO MILESTONE CHART FOR SCHEDULE FOR RAYTHEON GSE

[^3]*** NASA TWX SGC-4-233, DATED \|APRIL 1963, PARAGRAPH 3 H .
Fig. I-17
DELIVERED TO MIT $12 / 28 / 62$
DELIVERED TO MIT 4/26/63
DELIVERED TO MIT 6/28/63
\square^{\sim} \qquad
5.9 APOLLO MILESTONE CHART FOR AC SPARK PLUG GSE

[^4](B) DELIVERED TO MIT 12 MARCH 1963
Fig. I-18
APOLLO MILESTONE CHART FOR KOLLSMAN INSTRUMENT CORP. GSE

[^5]APOLLO MILESTONE CHART FOR PIP REQUIREMENTS \& DELIVERY SCHEDULES

APOLLO MILESTONE CHART FOR IRIG REQUIREMENTS AND DELIVERY SCHEDULES

TABLE I

MEETINGS ATTENDED BY MIT/IL APOLLO PERSONNEL

Period 1 June through 30 June 1963

Date	Location
3 June	MrT
3-4 June	GAEC
3-4 June	Raytheon
4 June	MSC
4-5 June	AMR
5 June	Marshall
5 June	MSC
5-6 June	KIC
6 June	MSC
6-7 June	S\&ID
10 June	MSC
10 June	San Francisco
11 June	Ames
11 June	MIT
11 June	MSC
11-12 June	MSC
11-12 June	GAEC
12 June	MSC
12 June	MSC
17-18 June	MIT
18 June	Langley Research Center
18 June	MIT
18 June	MIT
19-20 June	MSC
20 June	MIT
25 June	MIT
25 June	S\&ID
25 June	McDonnell Aircraft Corp.

Subject
In-flight Tests and Failures
LEM Operations and Installation Meeting
Design Status Review
Apollo S/C Mission Trajectories Sub-panel
Check-out Panel
Crew Safety Systems Panel
Crew Safety Systems Panel
Design Status Review
Navigation and Guidance
Computer and Packaging
Apollo Gyro Program Review
NASA/Ames Research Center
G\&N Simulation
Reliability Meeting
GOSS Systems Meeting
Crew Safety and Abort Panel
Design Review/Operations
Apollo Test Systems Meeting
GSE Systems Meeting
Management Practices
LEM Technical Conference
LEM/SCS Interface Meeting
STU Meeting
Documentation
Simulation Committee
G\&N Schedule and Test Planning
STU/Design Review
Project Mercury Reliability \& Control Review Meeting

$\frac{\text { Date }}{}$	Location	
26 June	MSC	Gubject
27 June	MSC	C/M S\&C Meeting \#16
27 June	MSC	LEM W/S

BIBLIOGRAPHY

TECHNICAL PROGRESS REPORTS

No.	Type	Period Covered
E-1067	Monthly	August 11 through September 13, 1961 (C)
E-1068	Monthly	September 13 through October 4, 1961 (C)
E-1099	Monthly	October 4 through November 9, 1961 (C)
E-1116	Quarterly	Period ended December 11, 1961 (C)
E-1117	Monthly	December 11, 1961 through January 16, 1962 (C)
E-1139	Monthly	January 16 through February 1962 (C)
E-1140	Quarterly	Period ended March 11, 1962 (C)
E-1157	Monthly	March 11 through April 11, 1962 (C)
E-1177	Monthly	April 11 through May 1, 1962 (C)
E-1199	Quarterly	Period ended June 11, 1962 (C)
E-1236	Monthly	June 11 through July 17, 1962 (C)
E-1237	Monthly	July 17 through August 21, 1962 (C)
E-1238	Quarterly	Period ended September 11, 1962 (C)
E-1302	Monthly	September 11 through October 11, 1962 (C)
E-1303	Monthly	October 11 through November 13, 1962 (C)
E-1304	Quarterly	Period ended December 11, 1962 (C)
E-1305	Monthly	December 11, 1962 through January 11, 1963 (C)
E-1306	Monthly	January 11 through February 11, 1963 (C)
E-1307	Quarterly	Period ended March 31, 1963 (C)
E-1308	Monthly	Month of April 1963 (C)
E-1378	Monthly	Month of May 1963 (C)
E-1389	Quarterly	Period ented June 1963

BIBLIOGRAPHY (Cont'd)
 TECHNICAL REPORTS

R-339	M. B. Trageser, Guidance and Navigation System Information for Apollo Spacecraft Bidders, September 1961 (C)
R-341	R. H. Battin, Statistical Optimization for Space Flight, September 1961 (Rev. May 1962) (U)
R-342	C. S. Draper, W. G. Denhard, and M. B. Trageser, Development Criteria for Space Navigation Gyroscopes, October 1961 (U)
R-348	E. J. Hall, J. Miller, J. Aronson, and A. Lattanzi, Specification for Procurement of Apollo Inertial Reference Integrating Gyro, Rev. Aug. 1962 (C)
R-349	G. W. Mayo, Guidance and Navigation System Reliability Program, December 1961 (U)
R-353	R. H. Battin and J. S. Miller, Circumlunar Trajectory Calculations, April 1962 (U)
R-358	R. L. Alonso, A. L. Green, H. E. Maurer, and R. E. Oleksiak, A Digital Control Computer Developmental Model IB, April 1962 (U)
R-367	P. H. Gilinson, Jr., C. R. Dauwalter, and J. A. Scoppettuolo, Multirange Precision Torque Measuring Devices, July 1962 (U)
R-368	G. W. Mayo and E. T. Driscoll, Reliability Handbook for Electrical Engineers, August 1962 (Rev. October 1962) (U)
R-372	J. H. Flanders, Velocity Steering Studies for the Apollo Mission, August 1962 (C)
R-373	J. M. Dahlen, P. G. Felleman, R. D. Goss, N. E. Sears, M. B. Trageser, R. L. White, Guidance and Navigation System for Lunar Excursion Module, July 1962 (Rev. August 1962) (C)
R-376	R. Curry (NASA), 2 Impulse Abort Trajectories from Translunar Flight, October 1962 (U)
R-380	Development of High Capacity Heat Storage Material Phase I - Study of
	Materials, July 1962 (U) by Cyro-Therm, Inc.

BIBLIOGRAPHY (Cont'd)
 TECHNICAL REPOR'TS (Cont'd)

R-382	R. H. Battin, Universal Formulae for Conic Trajectory Calculation September 1962 (U)
R-383	G. W. Mayo, Design Review Procedures, September 1962 (U)
R-385	R. C. Hutchinson, Inertial Orientation of the Moon, October 1962 (U)
R-386	Max Petersen, Earth Limb Definition Photography, MA-7 Mercury Flight, Cmdr. Carpenter, (to be published) (U)
R-387	S. J. Madden, Jr., Orbital Element Variation for a Body in Orbit Around the Moon, (to be published) (U)
R-388	D. G. Hoag and M. B. Trageser, Familiarization Manual (Preliminary), December 1962 (C)
R-389	G. W. Mayo, Requirements of and Index to Design Qualification and Reliability Test Program, March 1963 (U)
R-391	D. G. Shepard, The Effect of Retrorocket Exhaust on Visibility during Lunar Touch-down, December 1962 (U)
R-393	R. L. Alonso, A. L. Hopkins, Jr. and H. Blair-Smith, Logic Description for Apollo Guidance Computer AGC 4, March 1963 (C)
R-395	G. W. Mayo and G. Kruszewski, Guidance and Navigation System Reliability Apportionment and Initial Analysis, February 1963 (C)
R-396	E. T. Driscoll and G. W. Mayo, Apollo Guidance and Navigation Quality Assurance Plan, April 1963 (C)
R-399	W. S. Crocker and I. G. McWilliams, Design and Checking of Indexing Volume II - Gear Checking, Apri1 1963 (U)
R-404	N. E. Sears, Radar Requirements for Primary Guidance and Navigation Operation, (to be published) (C)

BIBLIOGRAPHY (Cont'd) TECHNICAL REPORTS (Cont'd)

R-405	E. T. Driscoll, Quarterly Reliability and Quality Assurance Status Report, April 1963 (U)
R-408	Eldon Hall, Design Concept of the Apollo Guidance Computer, (to be published) (C)
R-410	Eldon Hall, General Characteristics of the Apollo Guidance and Navi- gation Computer, May 1963 (C)
R-411	D. G. Hoag, Apollo Guidance and Navigation-A Problem in Man and Machine Integration, April 1963 (C)
R-415	D. J. Lickly, H. R. Morth, B. S. Crawford, Apollo Reentry Guidance, July 1963 (U)

BIBLIOGRAPHY (Cont'd) ENGINEERING REPORTS

E-1054	J. Rocchio, Analysis of the PNP and NPN Latch Circuit, September 1961 (U)
E-1074	D. Shansky, Erasable Ferrite Memory, MOD 3C Computer, October 1961 (U)
E-1077	R. L. Alonso, J. H. Laning, Jr., and H. Blair-Smith, Preliminary MOD 3C Computer Program, November 1961 (U)
E-1073	Development Plan, November 27, 1961 (to be revised) (C)
E-1091	E. J. Hall, Assembly Procedures and Specifications for Apollo 25 IRIG, June 1962 (C)
E-1092	J. H. Flanders, IMU Preliminary Operational Duty Cycle, December 1961 (C)
E-1097	Work Statement for Industrial Support, January 1962 (C) Addendum, February 1962 (C)
E-1190	M. Sappupo, Work Statement for PIP MOD D, December 15, 1961 (C)
E-1101	E. J. Hall, Work Statement for Apollo 25 IRIG, December 15, 1961 (C)
E-1103	E. J. Hall, Assembly Procedures and Specifications for 25 IR MARK 45 MOD 2, December 15, 1961 (C)
E-1104	M. Sappupo, Preliminary Assembly and Test Manual 16 PIP MOD D, January 1962 (C)
E-1106	P. G. Felleman, Analysis of Guidance Techniques for Achieving Orbital Rendezvous, January 1962 (U)
E-1113	System Identification Data List, (SIDL), (issued August 20, 1962) (to be revised and supplemented monthly)
E-1114	J. E. Levy, Glossary of Terms and Symbols, April 1962, (Rev. July 1962) (C)
E-1118	R. A. Scholten and P. J. Philliou, Investigations of Midcourse Maneuver Fuel Requirements, March 1962 (C)
E-1124	J. S. Miller and J. J. Deyst, Preliminary Study of Aborts from Circumlunar Trajectories, March 1962 (U)

BIBLIOGRAPHY (Cont'd) ENGINEERING REPORTS (Cont'd)

E-1125	R. L. Alonso, Preliminary Resolver Angle Measurements, February 1962 (U)
E-1126	A. L. Hopkins, Jr., AGC MOD 3C Computer Circuits-General, February 1962 (U)
E-1130	J. E. Levy, Maintenance Plan, March 1962 (U)
E-1131	J. S. Miller and R. H. Battin, Preliminary Summary of Data for a Variety of Circumlunar Trajectories, February 1962 (U)
E-1134	A. C. Hardy, Photometric Units in the MKS System, March 1962 (U)
E-1142	J. E. Levy, Weight and Balance Report, 15 March 1962, (Revised July 1962) (to be revised monthly) (C)
E-1144	J. E. Levy, Apollo Guidance Navigation Interfaces (to be published) (C)
E-1158	D. Shansky, Erasable Store MOD 3C, July 1962 (U)
E-1161	I. Halzel, Technical Directive Procedures for Apollo G \& N System Participating Contractors, May 1962 (U)
E-1164	F. D. Grant, The Relationship between IMU Drift Misalignments and Target Errors, May 1962 (C)
E-1167	Drawing Standards, 15 June 1962 (U)
E-1172	A. C. Hardy, The Visibility of Stars, June 1962 (U)
E-1173	R. M. Jansson, The Heat Transfer Properties of Structural Elements for Space Environment, June 1962 (U)
E-1179	R. G. Scott, Rope Core Tester, July 1962 (C)
E-1186	Technical Data Release Procedures, August 1962 (U)
E-1195	N. E. Sears, Earth Orbital Rendezvous, May 1962 (C)
E-1196	M. W. Johnston, Analysis of Two Lunar Landing Techniques Providing Direct Landing Site Visibility Prior to Touchdown, July 1962 (U)
E-1203	G. A. Davidson and H. H. Seward, Calibration Techniques for Precision Rotary Components, August 1962 (U)

BIBLIOGRAPHY (Cont'd)

ENGINEERING REPORTS (Cont'd)

E-1212	F. D. Grant, Error Data Summaries for Various Trajectories, (Preliminary), September 1962 (C)
E-1215	T. C. Taylor, Thermal Models for High Density Computer Circuit
	Structure, September 1962 (U)
E-1230	J. E. Miller and J. H. Flanders, Comprehensive Alignment Test for IMU, (to be published) (C)
E-1233	T. C. Taylor, Technique of Circuit Fabrication with State-of-the-Art
	Weldable Multilayer Boards, October 1962 (U)
E-1256	J. W. Hursh, Apollo Midcourse Guidance, November 1962 (C)
E-1257	L. J. Lareau, Atmospheric Refraction as a Means of Horizon Determination,
	December 1962 (U)
E-1260	P. K. Bryant, Procedures of the Apoilo Management, (to be published) (C)
E-1261	G. M. Levine, Application of Midcourse Guidance Techniques to Orbit
	Determination, December 1962 (U)
E-1278	G. Gilbert, MIT Space Implementation, Interim Report, January 1963 (U)
E-1285	A. C. Hardy, Some Luminance Values for Sun, Earth, and Moon, January
	1963 (C)
E-1287	J. M. Dahlen and J. H. Long, Back-up Thrust Vector Control, February 1963 (C)
E-1288	F. D. Grant, Alignment Errors of the IMU Stable Member, February 1963 (C)
E-1293	R. Boyd, AGE Field Operations Program Plan, April 1963 (Preliminary)(U)
E-1297	J. H. Flanders, Inertial Subsystem (ISS) Calibration Tests, (Pre-
	liminary) June 1963 (U)
E-1313	T. C. Taylor, Thermal Grounding Analysis for Circuit Structures, (to be published) (U)
E-1322	G. W. Mayo, Apollo G \& N Failure Reporting and Corrective Action Plan, April 1963 (U)

BIBLIOGRAPHY (Cont'd)
 ENGINEERING REPORTS (Cont'd)

E-1342	Apollo Guidance and Navigation Equipment Familiarization Manual,
	(to be published) (C)
E-1343	G. Oberbeck, Ternary Pulse Torquing, May 1963 (U)
E-1344	D. G. Hoag, Consideration of Apollo IMU Glmbal Lock, April 1963 (U)
E-1350	W. Briggs, Statistical Decision Theory for Logistics Planning, May 1963 (U)
E-1353	E. Copps, D. A. Koso, D. Nordvedt, and M. B. Trageser, Earth Parking Orbit; Guidance and Navigation Measurements, (Preliminary) (to be published) (U)
E-1359	J. Dahlen, T. Heinsheimer, J. Suomala, Flight Test Plan - Apollo G \& N System AGE 5, May 1963 (C)
E-1363	T. Heinsheimer, Status of Apollo Flight Safety System Design and Development, (to be published) (U)
E-1374	J. Sciegienny, Propagation of the Altitude and Altitude Rate Errors during the Suborbital Flight, (to be published) (U)
E-1381	R. Boyd, Data Analysis and Dissemination Instruction, (to be published) (U)
E-1385	(Prof.) Hardy, Visibility Data and the Use of Optical Aids, (to be published) (U)
E-1386	S. Smith, Report on Clear Resins, (to be published) (U)

BIBLIOGRAPHY (Cont'd)

THESIS REPORTS
$\begin{array}{ll}\text { T-351 } & \begin{array}{l}\text { M. A. Lanman, Analysis of a Position Control Servo Incorporating } \\ \text { Quantized Feedback, May } 1963(\mathrm{U})\end{array} \\ \text { T-352 } & \begin{array}{l}\text { R. L. Fortenbaugh, Description and Analysis of the Apollo Space } \\ \\ \\ \text { Sextant Simulator, May } 1963(\mathrm{U})\end{array}\end{array}$

E-1389
 DISTRIBUTION LIST

Internal
R. Alonso
J. Arnow (Lincoln)
R. Battin
W. Bean
E. Berk
P. Bowditch
A. Boyce
R. Boyd
P. Bryant
R. Byers
G. Cherry
E. Copps
W. Crocker
G. Cushman
J. Dahlen
M. Drougas
E. Duggan
J. Dunbar
K. Dunipace (MIT/AMR)
R. Euvrard
P. Felleman
S. Fellx (MIT/S \& ID)
J. Flanders
J. Fleming
L. Gediman
F. Grant

Eldon Hall
I. Halzel
D. Hanley
W. Heintz
E. Hickey
D. Hoag
A. Hopkins
F. Houston
M. Johnston
B. Katz
A. Koso
M. Kramer
W. Kupfer
A. Laats
D. Ladd
T. Lawton
D. Lickly
R. Magee
G. Mayo
J. McNeil
R. McKern

James Miller

John Miller
J. Nevins
G. Nielson
J. Nugent
E. Olsson
C. Parker
J. Potter
K. Samuelian
P. Sarmanian
R. Scholten
J. Sciegienny
N. Sears
D. Shansky
T. Shuck
W. Stameris
E. Stirling
R. Therrien
W. Toth
M. Trageser
R. Weatherbee
L. Wilk
R. Woodbury
W. Wrigley

Apollo Library (2)
MIT /IL Library (6)
External
(ref. APCAN; 2 July 1963)
P. Ebersole (NASA/MSC) (2)
W. Rhine (NASA/RASPO) (1)
S. Gregorek (NAA S \& ID/MIT) (1)
AC Spark Plug (10)
Kollsman (10)
Raytheon (10)
WESCO(2)
Capt. W. Delaney (AFSC/MIT) (1)
NAA RASPO: National Aeronautics and Space Administration Resident Apollo Spacecraft Project Officer (1)North American, Inc.Space and Information Systems Division12214 Lakewood BoulevardDowney, California
CAPE: National Aeronautics and Space Administration Atlantic Missile Range Operations (3)Port Canaveral, FloridaAttn: Mr. B. P. Brown
HDQ: NASA Headquarters (6)
1520 H StreetWashington, D. C.Attn: Mr. G. M. Low, MD(P)
AMES: National Aeronautics and Space Administration (2)Ames Research CenterMoffett Field, CaliforniaAttn: Mr. Matthews
LEWIS: National Aeronautics and Space Administration (2) Lewis Research Center Cleveland, Ohio
FRC: \quad National Aeronautics and Space Administration (2)Flight Research CenterEdwards AFB, California
JPL: National Aeronautics and Space Administration (2)
Jet Propulsion Laboratory
Pasadena, California
Attn: Mr. H. R. Lawrence
LRC: National Aeronautics and Space Administration (2)
Langley Research Center
Langley AFB, Virginia
Attn: Mr. A. T. Mattson
GSFC: National Aeronautics and Space Administration

MSFC:	National Aeronautics and Space Administration George (.. Marshall Space Flight Center Huntsville, Alabama Attn: 1)r. Kuettner	(2)
GALC:	```Grumman Aircrait Engineering Corporation Bethpage, Long Island New York Attn: Mr. A. Whitaker```	(1)
NAA:	North American Aviation, Inc. Space and Information Systems Division 12214 Lakewood Boulevard Downey, California Attn: Mr. R. Berry	(1)
$\begin{aligned} & \text { GAPC } \\ & \text { RASPO: } \end{aligned}$	National Aeronautics and Space Administration Resident Apollo Spacecraft Project Officer Grumman Aircraít Engineering Corporation Bethpage, L.I., New Yurk Attn: Mr. Jack Small	(1)
WSMR:	National Aeronautics and Space Administration Post Office Drawer D White Sands Missile Range White Sands, New Mexico	(2)
MSC:	National Aeronautics and Space Administration Manned Spacecraft Center Apollo Document Control. Group (SDG) IIouston 1, Texas	(60)

[^0]: NOTE ELECTRICAL DESIGN

[^1]: NOTE E ELECTRICAL DESIGN

[^2]: NOTE ELECTRICAL DESIGN
 (M) MECHANICAL DESIGN

 NOTE

[^3]: ** MIT T.D.R-86 DATED 8 APRIL 1963

[^4]: NASA TWX SGC-4-233 DATED II APRIL, PARAGRAPH 2F

[^5]: * K.I.C. STATEMENT OF WORK SGC-100-133, DATED II MARCH, $1963 \quad$ **** TD K-75
 * NASA TWX SGC 4-233, DATED || APRIL 1963, PARAGRAPH 4

 Fig. T. 19

