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TO RANDOM EXCITATION 

ABSTRACT 

Vibration isolation systems are often designed so that the rotational and the 

translational modes of vibration of the isolated body will be decoupled. Estimates 

of the system response are then based on a sin'gle-degree-of-freedom model. In 

practice, mode decoupling is only achieved within certain limits. In this report 

the effects of mode coupling are studied by computing the response of a two—degree- 

of-freedom model excited by a random translatory ground motion. Graphical 

response functions are presented from which the angular reSponse, and the trans- 

lational displacement and acceleration, of‘any point on the body can be calculated. 

by G .  Dudley Shepard 

December 1965 
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I .  Introduction 

The coupled response of a resiliently—supported rigid body to a random vibration in-  

put is a common problem in vibration isolation applications. In practice, vibration isola- 

tion systems a r e  often designed so that the rotational modes ofvibration will be decoupled 
f rom the translational modes. Estimates of the system performance are  then based on 

a simple single-degree—of-freedom model of the system. In actual systems, due to the 

ever present tolerances in design and manufacture, the modes a r e  decoupled only within 

certain limits. In some critical applications it is necessary to estimate the effect of 

this coupling. This report considers the simplest case of a coupled system: a two-degree-  

of—freedom, resiliently-supported rigid body excited by a translatory ground vibration. 

The vibration inpfit is assumed to be a stationary random process whose power spectral 

density is constant. Graphical response functions are presented from which the angular 

response, and the relative displacement and absolute acceleration of any point of the body, 

can be calculated. 



II. The System and Its Equations of Motion 

Consider the coupled two-degree-of—freedom system shown in Fig. 1. The support 

has a translational motion u( t )  with respect to  a fixed reference. The body is supported 

by an array of discrete resilient elements each of which possesses both linear velocity 

damping and linear elastic properties, shown as  dash pots and springs, respectively. 

E L 9 

'1‘ T YL ": 
u h )  

//////////////////// 

Fig. 1 

Coupled Two-Degree-of- Freedom System 

The response to the translational input can be described by two coordinates: the abso- 

lute displacement, y L’ of a point L, taken parallel to  the input direction, and a rotation, 

9, about an axis perpendicular to the plane of the paper. 

In order  to formulate the system response in as  general a way as  possible, the 

inertial properties of the body, a s  well as the damping and elastic properties of the 

resil ient elements,  will be described in t e rms  of centers of action termed the mass  

center, the damping center, and the elastic center, respectively. The mass center M, 

a s  is known f rom elementary dynamics, has the property that a unit force directed through 

M will cause the body to translate only with acceleration l / m ;  and that the application of 

a unit couple will cause the body to rotate only about M with angular acceleration 1 /  IM‘ 

The inertial properties of a body which moves in a plane a re  determined when the loca- 

tion of the m a s s  center ,  the body mass,  and the body moment of inertia a r e  known. 

Similarly, (as shown in Appendix A )  a damping center D of an array of damping elements 
can be defined so as  to have the property that a unit force directed through D will cause the 

array to translate only, with a velocity l / C ,  and that a unit couple will cause the array to 

rotate about Dwith angular velocity 1 /C9 '  The properties of the array of damping elements 

a re  then determined when the location of the damping center, the damping constant, and 

the rotational damping constant, a re  specified. Finally, the elastic center E of a n  array 

of elastic elements is defined such that a unit force directed through E will cause the 



a r ray  to translate only, 'with a deflection 1 /  K, and a unit couple will  cause a rotation 

of the array about E, with an angular deflection l / K Q .  A s  before, the elastic properties 

of an array of elastic elements are  defined when the location of the elastic center, the 

elastic constant,  and the rotational elastic constant a r e  known. 

The equation of motion of the body can be written in terms of the body mass m, the 

moment of inertia IM’ the distance of the centers E and D from the mass center M, and 

the resilient element constants C, C9, K, and K9. Although the response of the body is 

determined when the above parameters are fixed, the actual distributions of mass points 

and resilient elements are still somewhat arbitrary in exactly the way that fixing the 

mass and the moment of inertia of a body does not precisely specify its shape. 

When the centers  M, D, and E coincide, the translational and rotational modes of 

vibration a re  decoupled, and a translational input will cause only a translational response. 

In general, the action centers M, D, and E will not coincide and a translational input will  

cause both translation and rotation in the response. In usual design practice the effect 

of the damping forces on coupling is either ignored or assumed to be neglible in compari- 

son with the elastic and mass unbalances. If the elastic and damping centers are dis- 

placed equally from the mass center, the ratio of the damping coupling effect to the elastic 

coupling effect is equal to m C /  K. Thus, the relative effect of the damping to the elastic 

forces on coupling increases with frequency, and the effect of damping on coupling should 

not be ignored in cases of high damping and high frequency. In the present analysis the 

effect of damping on coupling is accounted for in a simple way by assuming that the centers 

E and  D coincide, being displaced a distance 6 from the mass center M. It is shown in 

Appendix A that E and D will coincide if the ratio 

for  each resilient elemént, a condition which is likely to be satisfied when all the elements 

a re  made of the same material and are  of geometrically similar configuration. 

Assumming, then, that centers E and D coincide, the system equations of motion fo r  

6 << 1 can be written as follows: 

K X E + m ( x E + u + E - 9 ) + C X E = O  (1)  

K 9 9 + c e e  + I M 9 - € ( K x E + C x E ) = O  (2) 



Introduce the new parameters can, “’9’ 1;, £ 9  andu .  (defined in glossary). Then Eqs. (1) 

and (2)  become 

. .  . 2 ” o.  

XE + 2 §  w a + w a  + p R 9  = - u (3) 

- ( 2 + 2 § w s )  x + ( s 2 ' + 2 §  w s + w 2 ) R 9 - 0  (4) “’n n “ E  e 9 0 . -  

- 2 x  - 2 1 ; w  5: + R § + 2 § w R é + w 2 R 0 - O  (5) w n u E  n u E  0 0 0 " 

If points E and D are to coincide, then ' 

L9 = I; cue/con = ' Q52 (see Appendix A) 

Then by assuming a unit acceleration input of the form ii = eSt, the transfer functions 
for  XE and R0 can be obtained from Eqs. (3) and (4) as [1] 

HXE (s)  = - [s2 + $22 (21; (ans + (0121)] [A ‘ (6)  

HRQ (s)  = - 430: + 2; wns] I A  ‘ (7)  

where 

A = s4 + 2gwn(1 +u2 + 92)53 +00: [1 +412 + 92(1.+4g2)] s2 

+ 4?; (03928 + (.2i 

and 



Similarly, using the relation that 

- ii + i + MR5 3 M “  E 

transfer functions for 39M and R5 can be obtained as 

H.. (s) = [2g wns3 + ( 1  +44, znzmfisz + 4; sf’ls + «23:92] /A (8) 

- #1 [82(21; wns + 0331)] / A  (9) m
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111. Mean Square Responses 

Of a l l  the possible statistics that could be used to describe the random response of 

the coupled system, the following three  dimensionless mean sqaure quantities have been 

chosen a s  being most valuable to a designer: 

.. 2 
"2 ElyL] Th t' fth — b I t  1 t' f Y = ___2__ e ra 1o 0 e mean square a so u e acce era mu 0 a 

Ely 10 point L on the body to the absolute acceleration of a de- 
coupled system (1; = O). The statistic can be used to esti- 
mate the structural adequacy of the body or of small 
attached components. 

2 R2E[92 . . . (9 = ___2__L This statistic 1s a d1mens1on1ess measure of the mean-squared 
E [ x  1 0  angular displacement which includes a characteristic length 

(the radius of gyration R )  and the mean-squared transla- 
tional displacement of a decoupled system. This statistic 

is of interest when the body is sensitive to rotation. 

2 
2 _ EIXL] . . ' . X L  — ——2— l‘he mean-squared d1sp1acement of a pomt L on the body 

E [ x  ] 0  relative to the input motion, nondimensionalized by the 

mean-squared relative displacement of a decoupled sys- 

tem. This quantity provides an estimate of the sway 

(clearance) space requirements for  the body, and an  esti- 
1te of the onset and severity of nonlinearities in the 

resilient elements due to excessive deflection. 

The above statistics a r e  obtained by f i r s t  calculating the power spectral density 
Sh») of the desired response quantity, and then integrating 8(a)) over all frequencies to  
obtain the  total mean—square  value. Expressions for  S(w) in terms of the input power 

spectrum and the  system function a re  derived in Appendix B. Taking the easiest statistic 
f i r s t ,  f o r  an input power spectrum S0 which is constant with frequency, 

5 (H) (w) = 2 ' (9) 
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Where HR9(jw) is given by Eq. (6), and the normalizing quantity [1]": 

1rS 2 0 
El" 1 0 :  —3' 2 § w  

11 

Finally, 

\ 3 (1' 2 2 §  w 2 
n . ® = ___7r . Y |HR9(Jw)| do: (10) 

' - o r  

Integrals of transfer functions of the form of Eq. (10) have been tabulated, SO that 
Eq. (10) can be written as 

2 G9 = 2 - 2 2§ (bo/ao) (aza3 a ) + a 3 b 1  / D(a) (11) 

where 

_ 2 _ 
8.0 " 9 b0 _ u 

a = 4 § 9 2  b - 2 
1 1 - § M  

a 2  = 1 + “ 2  +522 ( 1 + 4 § 2 )  

a 3  = 2 t  (1 + u 2  + 9 2 )  

_ _ _ 2 D ( a ) - a 1 ( a 2 a 3  a l )  61083 

This function is plotted for various ranges of C ,  M, and Q in Section IV. 

Turning next to the calculation of Xi, w e  follow the above procedure and first 

calculate the power spectral density of the displacement of a point L relative to the 

input motion. See Fig. 2.  Now, for  small 9, 

x ___-x L E + Q Q  

where 0. is a coordinate nominally. perpendicular to the input axis, with origin at E,  

and whose positive direction is toward M from E.  Thus X L  is a linear sum of two 

=sNumbérs in brackets refer to similiarly numbered references in the Bibliography. 

11 
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Fig. 2 

Coupled System, E and D Coincident 

variables, XE and 9, with Q as  a parameter. The power spectral density for such a '  
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function is derived in Appendix B. For the case of constant input spectrum, 80’ the 

spectrum for  XL is given by 

S 2 2 2 
_ O . fl . fl . * . 

SX (w) ‘ *7— 'Hx (Ml + (R) IHR9(J“’" + 2 R We [Hx ‘3‘”) HRe(J“’)] 
L E [ x  ] O  E E 

(12) 

where the * denotes the complex conjugate, and‘Re [ ] denotes real part of. Xi  is 

then obtained by integrating Eq. (12) term by term over all frequencies. Note that the 

integral of the bracketed expression Eq. (12) must equal E [ X i ]  . 

Since 

E[xi] =E [xE+ (R) R9]2 

2 
E[xé] + (1%) E [(R9)2] + 2 ft E[xE R9] 

(13) 

the  integral of the last term in the brackets of Eq. (12) can be interpreted as  

E[XE,  R 9 ] .  Using the tabulations of Ref.  2, Eq. (12) can be integrated over all 

frequencies to give 

2 2 
X ® + 2 1 Z  X ®  (14) i=X123+(-1%) ‘R E 

12 



w h e r e  

Xi: = 2.§' [(bzz/ao) (212a3 - a1) + 213%: - 2b2) + a1 ] / D(a) 

XE® = 2p§ [ a 3  (a2 - b4) - a 1 ]  /D(a) 

and where a ' s  and D(a) are as given following Eq. (11) and 

_ 2 

_ 2 

X123 and XE® are plotted forvarious ranges of C, .u , and $2 in Section IV. 

The calculation of Y: follows thé preceding method very closely. Starting with 
an expression for the absolute displacement y L  of a point L on the body, 

yL= yM+ Il'9 

.. _ ., . ' .. 
:YLJ— ynA-+ 2 9 

where£'= fl - e . (See Fig. 2) 

Following the form of Eq. (12), 

s-~ - ——2——S° |H (jw)|2 + ( “ )z ln (j )|2+2 ’2' ”R [H (' ) H* (‘) — 0 0  . .  w . '  w w YL E['y 10 yM ‘ R Re R e yMJ R6] ] 
(15) 

where the normalizing quantity Ely 210 = 1r Sownh + 4- C2)/2§ 

Again using the tabulations of Ref.  2, Eq. (15) can be integrated over all frequencies 
to give 

2 . . Z  . .. o-z _ " 2  Q: Q: .. YL — YM + (R) (9 + 2R YM ® (16) 

13 



where  

Yi/I = £ 7  [ m g / a 0 )  (a2a3 - a1) + a3 (b: - 2b5b7) 

1 + 4x; - 

-+ a1(b$ - 2b6b8) + b§(a1a2 - a 0 a 3 ) ]  /D(a)  

" 2  35;. 2_ 2 ‘ 
® = (1+ 462) [“ a1 +"’sa(a‘1"“2 " 30513)] /D(a) 

.. .. _ 2C“ - - - 
Y® ' (Ta—E2) [bsas I”10‘5‘1 b11(31‘3‘2 a0853)] /D(a~) 

and where the a ' s  and D(a) are as given after Eq. (11) and 

b 5 = 9 2  b9 = 2 § u '  

b6 = 4§92 b10 = 1 — 4:292 

b 7 = 1 + 4 § 2 9 2  b11 = 4 § 2  

b8 = 2C 

The functions Yill’ @2, and YM® are plotted ifi Section IV. 

14 



IV. A Graphical Results 
I 2 I .  2 . -  

The computer calculations for XE®’ ® , ® and Y (9 are  plotted in Figs. 3 
through 7 ,  respectively. The plots for  X3: and lVI have been combined, since they 
are  approximately equal, and their difference would not be detectable on these plots for  
the ranges of § , u , and S2 presented. 

15 
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IV. B Example 

Consider a body with the following parameters: 

weight = 100 1b 

radius of gyration R = 6 inches 

translational stiffness at elastic 4 
center K 2.  5 X 10 1b/in. 

rotational stiffness at elastic 
center K9 1. 76 x 10,6 in-lbg/rad 

c .  
It is assumed that E:— = g for each resilient element, and that § = 0. 1 for an uncoupled 
system. Such a system, then, has uncoupled natural frequencies 

1/2 
4 

1 [ = 1 2.  5 X 10 X 386 = 
n 2 1r K /m 2 n  |: 100 ] 50 CPS 

H
: 

II
 

1/2 6 9_ 21 Ke/mR = a” [1.76X10 X386] =70cps 
7’ 100x36 

H
 I 

The input vibration level, expressed in the customary engineering units, is 
taken to be WO = . 10 gz/cps,  constant with frequency. This input level WO expresses 
the mean-square value of acceleration per unit cycle per second, assumed constant over 
all positive frequencies, whereas the input level SO used so fa r  in this analysis is the 
mean-square acceleration per unit radian per second assumed constant over both positive 
and negative frequencies. In order that the power included in a bandwidth f - f1  be the 2 
same for  both notations, 

W o ) ( ( f 2  - f1) =SOX2(<»>2 -w1) = S O X 4 1 r ( f 2  - f1) 

o r  

W 0 = S 0  x 4 7 r  

Under decoupled conditions, for  any point on the body, the mean-square displace- 

ment relative to the input would be (See Eq. (9) et seq . )  

1/2 1/2 1 2 
_ ’7 So ._ Wo _ . 10(386)2 / _ . x 10-2 . h 

XRMS ‘ 3 ‘ —'—-3- - 3 - 2 . 4 5  mc e s  
. 2 m m  awn 8(.10)(50x21r) 

21 



and the mean-square absolute acceleration would be (see Eq. (15) et seq . )  

/ 1/2 1/2 ,2 1 2  2 .. _ 7rSO wn(1 + 4; ) _ [Wow fn (1+ 4t) g [,10(507r)(1.04)] = 6 4 ,s 
yRMS ‘ 2: ' 4: 4(. 10) ' g 

Now assume that the center of gravity M of the body is displaced 2. 4 inches from the 
. . _ € _ 2 . 4 _  _ f g _ 7 o _  _ elastlc center E. Then w1th u — _R — -6— - . 4 ,  S2 - f; - _5'D' — 1. 4, and C - . 10, 

the following variables can be evaluated from the graphs: 

X2 a: $52 = 0 862 ~ YM® = o 184 E M ' ' 

X @2 E® = 0.273 = 0.138 
2 

C9 = 0.110 

Substituting into Eq. (14) and (16), 

X .862 + 2 (3R) (0. 273) + (£02 (.110) II
 2 

L 

Y: .862 + 2 (%')(.184) + ($92 (.138) 

These equations are plotted in Fig. 3 for a range o ffl  and fl ' .  
2 In particular, fo r  Q / R  = 2 . 4 ,  X L  = 2 . 8 1 ;  so 

2 2 E [ x 2 . 4 ]  = 1 . 5 8  E [ x  ] 0  

o r  
1/2 _2 - 2  

(X2 .4 )RMS = (2.81) X 2 . 4 5 x  10 = 4 . 1 1  X 10 inches 

I . . 2  
For the same point on the body-£- = 2.  0, and Y L  = 2 .  15. So 

.. _ 1/2» _ : 
(Y2. O ) R M S  " ( 2 .  1 5 )  X 6 . 4  - 9 .  4 g S .  

2 Finally, fromO= .110, 

E["210 1/2 332x2 45x 10"2 -3 = = ' ' = X 
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APPENDIX A 

'V\ \\ \\\\\\\\\\‘J 

Fig. A - l  

Body Supported by Spring Array 

A s  stated aibove in Section II, a unit force directed through the elastic center of E of an 

array of springs will cause‘a linear displacement 11: only. Also, the application of a 

unit couple will cause only a rotation about point E. A demonstration of these properties 

of the elastic center  follows. 

Consider the array of springs in Fig. A-l. If the unit force causes a linear displace— 

ment only, then this displaced position of the body must be at equilibrium. For this 

displacement X ,  the  1th spring force is kix. 

For equilibrium, 
Z F = -  1 +  2 k i X  : 0 ,  

since 
= ‘ _  1 2‘. k1 K and x _ K 

Also 

1 , 2M§=0 K [R151 +k2 §2+...+kn sn]-c1) (£E>=0. 
So 

K ( A - l )  

which defines the  position of point E.  

24  

k
g

-
-

A
L

_
‘

~
4

u
L

M
-

.
_

r
 <

A
A

-l
‘m

‘_
 

m
a
fi

a
—

 
..

J
J
‘.

‘ 
w

l
‘

4
-

#
 

.L
 

4.
 

. 
..

 
A.

__
_ 

“.
2

..
. 

fi
n

i‘
v

s;
g

. 
m

1
.M

-
L

h
.’

£
“

._
_

 
_-

__
-. 

m 
._

 
._ 

J.
.. 

_.
__

 
..

..
..

 
a

u
l

m
c

.
m

.
_

.
u

u
.

n
.

.
.

 
. 

a
n

d
u

‘
 

_
.

.
.

 
. 

i
.

 
- 

‘
_

 



Next, the application of a unit couple is considered. If the couple is to cause only an  

angular displacement about point E, then this position must be an equilibrium position. 

For an angular deflection 9 about point E, the force of the 1th spring is ki(§‘ E— E i )  9 

and the moment of the ith spring about point E is kiflg E — 53 9. For equilibrium, 

- - = - g = Z F -  2 k i ( € E  € 9 9  ( K E E  Z k i i ) 9  0 

which again leads to the elastic centerdefinition given by Eq. ( A - l ) .  
Also, 

. .  _ 2 — = EME-Zki(€E 51) 9 .1 0 

Introduce the definition K9 = 23 ki(§ E - Ei)2.  Then 

9 = K—l 
9 

Thus an elastic center with location 5 E = ~—K—— exists with properties as  described 

in the first paragraph of this appendix, where 

: 2  K ki 

and (A-Z) __ 2 K9 - ‘8‘i - Si) 

The demonstration of the existence of a damping center D of an array of dash pots follows 
in a similar fashion to the elastic center calculations above. The results only are  written 

here :  

)3 ciE 1 Damping center location '5’ D = —-C-—— (A-3)  

Overall damping constant C = 2 Ci ( A - 4 )  

0 11 t t ‘  1 d ' C 2 (A 5) vera ro a 10na ampmg { = c .  g - g . — 
constant 9 Z: 1 ( D 1) 

If centers E and D are  to coincide, SE = SD, o r  

Lkigi = E“1’31 (A-6) T — T —  

25 



When there are only two resilient elements (11 = 2), the relation (A—6) gives rise t o  only 
two equations which have the unique solutions 

0 .  k .  
.i , or _£ .15.. 
C ci C 

— —  
III- - 

k1 _ i = 1,2 (A-7) 
K 

Eq. (A-7)  also satisfies (A-B) when there are three or more resilient elements ( n >  3), 
but these solutions are not unique since the system of equations represented by (A-6)  

is then overdetermined. 

C 0.) 

Finally it remains to show that ~93— = 70—9- ; where g' = —_C__.._ 
S n zJKrT 

, the damping ratios for  uncoupled translational and rotational vibration, 

and 

C 
{9 = ___9.__ 

2. /KGI 

respectively. Now 

1/2 
§9_Ce  ><2«IIErn_Ce K9 m K2 _“’9 Ce K T“ ' '— “—2— “I? “'2— ‘7: “"‘ TC Z J K I  C C m R  K C 9 

9 9 n (A-8) 

But 

‘ 2 
.— Z I 

9 2(gE-gi) ki 

Now if E and D coincide, 3E 2 ED, and if Eq. (A-7) is assumedtobe valid for  n _>_ 3, 

2 
C '5 " E . c .  k .  9 K >3( E 1 )  1 1 t h e n  = X -—-  = 1 ( A ’ g )  
K9. t 2(gE - 50TH Ci 

Combining Eqs. (Av8) and (A-9)  

C to _9_=__9_ 
§ (.0 
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[ APPENDIX B 

Ht) 1 mu A W“) Hfuwl ‘ 12g ’ 
u ( f )  

ha” )  1 V2“) 
H 2 ( j w ) J  

Fig. B- l  

Two Linear Filters in Parallel 

Consider a parallel circuit consisting of two filters, excited by a common input u(t) as  
shown in Fig. B-l. The autocorrelatioh of the sum of their outputs w(t) = v1(t) + v2(t) 

[3] is given by 

R W(-:-) = E [ W u  + T)W*(t) = E { [ v l  (t + 7-) + v2 (t + 7)] [vi‘ (t)  + v: 00]} 

‘ (B-l) 

Multiplying out and noting that the process of taking the expectation is distributive, 
Eq. ( B - l )  becomes 

w(T)  E [v1 (t + T) v: (7)] + E [v2 (’6 + T) v: (1')] 

+ E [v1 (t + ‘1')v:< (til ‘+ E [v2 (t + ‘1')v:< (t)] 

i (T) + RV (r) + R (7') + R (7) (13-2) 
: RV1V1 f V2V2 V1V2 V2V1 . 

Eq. (B- 2 )  can be written in terms of the input autocorrelation function Ru u(’r) and the 

impulSe responses h1('r) and h 2(—;-) a s [  3]  

27 



i: 3': R W('r) = Ruu('r) * h l  (-'r) . h1('r) 

+ Ruu('r) * h2 (-T) * h2(T) (3-3) 

Ruu('r) * hi(‘r) * h: {-7) 

Run”) * h2(T) * hi (-7') 

where * denotes convolution. 

Using the Fourier transform, Eq. (B—3) becomes, in the frequency domain, 

swan): Sunk») [H1 (jw)H (jw)+H* (jw)H2 (jw)+H (jw)H: (3w)+H2 (Jw) H1 gm] 
(13-4) 

The first  two te rms in the brackets of Eq. (B-4)  a re  real. The last two terms will in 

general be complex since the imaginary parts of H 1(jw) and H 2(jw) will be unequal. 

However, when S who) is integrated over all frequencies only the real (even) parts of 

H 1(jw) H2(jw)and H 22(i H: (jw) will contribute to the integral, and the imaginary parts 

can be neglected. Since H11(jw) H: (jw) and H 2(jw) H :(jw) are conjugates of each other, 

their real parts a r e  equal. So Eq2. B- 13 can be written as  

2 2 >:: Sw(w)=Suu(w){|H1(jw)l + [H2(jw)l + 2128 [H1(jw)H2(jw)]} (B—s) 

When there is only one filter, Eq. (B—5) reduces to  the well known relation 

2 
S w ( w )  = Suu(w) l H l ( j w ) |  ( B - 6 )  

28 
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SYMBOLS 

ground motion input displacement 

absolute displacement of points L, M 

displacement of points E, L relative to ground displacement 

angular displacement of body 

general point on resiliently supported body 

mass center of body; also moment (Appendix A )  

damping center of body 

elastic center of body 

mass of body 

mass moment of inertia about point M 

overall translational damping constant 

overall rotational damping constant 

overall translation stiffness constant 

overall rotation stiffness constant 

vibration frequency, rad/sec 

coupling parameter; See Fig. 2 

damping constant of 1th dashpot 

stiffness of 1th spring 

translation natural (radian) frequency of uncoupled system (6 = 6) 

rotational natural (radian) frequency of uncoupled system (6 = 6) 
C 

zJEEI 
Ce 

2 , / K e  M 

translational damping ratio, uncoupled system; § = 

rotational damping ratio, uncoupled system; § 9 = 

dimensionless coupling parameter; H = 16: 

29 



SYMBOLS (Cont'd) 

radius of gyration of body about M 

natural frequency ratio, (2 = we/wn 

dimensionless absolute translational response statistic defined in 
Section III 

dimensionless rotational response statistic defined in Section III 

dimensionless relative translation response statistic defined in Section III 

response power spectral density (power per  rad/sec) ,  defined for  + and - 
frequencies ‘ 

input power spectral density (power per  rad/sec) ,  assumed constant with 
frequency, for  + and - frequencies 

mathematical expectation 

input power spectral density (power per cycle/sec),  assumed constant 
with frequency, for  + frequencies only 

30 
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