

 $\frac{\text{COPY} \# _ 41 _ \text{OF} _ 192 _ \text{COPIES}}{\text{THIS DOCUMENT CONTAINS} _ 84 _ PAGES}$

ACKNOWLEDGEMENT

This report was prepared under DSR Project 55-238, sponsored by the Manned Spacecraft Center of the National Aeronautics and Space Administration through Contract NAS 9-4065.

This document contains information affecting the national defense of the United States within the meaning of the Astionage Laws, Title 18, U.S.C., Sections 793 and 794, the transmission or the revelation of thick in any manner to an unauthorized person is prohibited by law.

The publication of this report does not constitute approval by the National Aeronautics and Space Administration of the findings or the conclusions contained therein. It is published only for the exchange and stimulation of ideas.

ii

Table of Contents

Section

- 1 INTRODUCTION
- 2 NOMINAL TIMELINE OF GUIDANCE AND SPACECRAFT CONTROL FUNCTIONS AND TIMING TOLERANCES
- 3 G&N/SPACECRAFT PERFORMANCE ON THE ALL-DIGITAL SIMULATION
- 4 ERROR ANALYSIS
- 5 FAILURE EFFECTS ANALYSIS
- 6 RELIABILITY ASSESSMENT

1.0 INTRODUCTION

The data in this report have been compiled to support the Spacecraft 011 (G&N 017) AS-202 Development Engineering Inspection.

It is intended to describe G&N system functions and performance. G&N functions are defined in the nominal timeline. Performance is defined by the results of an alldigital nominal mission simulation, and a statistical error analysis. Also included are a reliability assessment and an abbreviated failure effects analysis.

Additional data may be found in R-477 Rev. 1, July 1965.

2.0 NOMINAL TIMELINE OF GUIDANCE AND SPACECRAFT CONTROL FUNCTIONS AND TIMING TOLERANCES

2.1 Nominal Timeline

This timeline is an updated version of the one that appeared in R-477 Rev. 1, July 1965.

GROUND	GROUND SYN- CHROUND SYN- OF AGC TIME THRU ACE MISSION DATA VIA ACE
AGC	TURN ON G&N ENABLE UPLINK ENABLE UPLINK "FRESH START" OF AGC AGC CLOCK ALIGNMENT AGC CLOCK ALIGNMENT (A) LAUNCH SITE (B) LAUNCH SITE (C) POWERED FLIGHT (A) LAUNCH SITE (C) POWERED FLIGHT (D) OPTICAL TARGETS (E) BOOST MONITOR POLYNOMIALS (E) BOOST MONITOR POLYNOMIALS (E) BOOST MONITOR ALIGNMENT TO LAUNCH ALIGNMENT TO LAUNCH AZIMUTH, SET FINE ALIGNMENT TO LAUNCH AZIMUTH, SET FINE
MCP	NCH
CSM	PRELA
MESC	
SIB/SIVB	
SUB- EQUENCE SEQUENCE AT	
TIME	To-112.00 To-111.25 To-111.25 To-111.00 To-112.00
G&N WODE SCS WODE	AUDK ALIGA ALIGA

NORMAL SEQUENCE OF EVENTS - MISSION 202 S/C 011/MISSION CONTROL PROGRAMMER/G&N

٠

GROUND	CLOSE OP TICS HATCH GROUND RESET OF MCP
AGC	
МСР	PROGRAMMER RESET ARM GIMBAL MOTOR POWER ON/OFF GAN BACKUP ABORT COMMAND. GAN PAUL COMMAND. GAN FAUL CIGCUTRN ONLY TO DICATION ONLY TO MCP MCP WILL NOT REVERT TO BACKUP MODE UNTIL SIVB/ CSM SEPARATION
CSM	
MESC	
SIB SIVB	
sequence de	
SEQUENCE	
TIME	Го-2. 15-5.00 По-5.00 Пто-5.00
999 A WODE 300W S.SS	

GROUND	START SATURN FIRING SEQUENCE GROUND CON- TROL OF SPS TROL OF SPS TROL OF SPS ON/ OFF
AGC	COMMAND SPS ACC Collink GIMB-L MOTOR ACC Collink POWEL DN
MCP	CRAFT CLOSEOUT OSEOUT COMPLETE START GIMBAL MOTOR START SEQUENCE ENGINE HOLD ENGINE HOLD
CSM	START SPACE START SPACE SPACECRAFT CL SPACECRAFT CL SPACECRAFT CL HOLD SPS ENGINE YI GIMBAL MOTOR START PI GIMBAL MOTOR ON PI GIMBAL MOTOR ON PI GIMBAL MOTOR ON START Y2 GIMBAL MOTOR ON PI GIMBAL MOTOR ON START PI GIMBAL MOTOR ON PI GIMBAL MOTOR ON START P2 GIMBAL MOTOR ON P2 GIMBAL MOTOR ON P2 GIMBAL MOTOR ON P2 GIMBAL MOTOR ON P2 GIMBAL MOTOR ON
MESC	
SIB/SIVB	START SFRIGUENCE SEQUENCE
str- str- sequence	
SEQUENCI	
IME	$\begin{array}{c} T_{0} - \frac{1}{10} \\ T_{0} - \frac{1}{98} \\ T_{0} - \frac{1}{98} \\ T_{0} - \frac{1}{98} \\ T_{0} - \frac{1}{98} \\ T_{0} - \frac{1}{97} \\ T_{0} - \frac{1}{97} \\ T_{0} - \frac{1}{97} \\ \end{array}$
Gev A MODE	- HOOW NOT'T AND
adow sos	

GROUND	C OFF LIFT-
AGC	AGC RECEIVES LIFT-OFF INDICATION. AGC TERMI- AD TES FILE ALIGN MODE DO AND COMMANDS ATT. CONT. MODE IN G&N. CONT. MODE IN G&N. CONPUTATION. AGC TOR- PHASE COMPUTATION. AGC TOR- PHASE COMPUTED ANGLES. ILF QUES CUD'S TO BOOST PHASE COMPUTED ANGLES. ILF METERED TO GROUND-
MCP	MCP RECEIVES LIFTOFF INDICATION
CSM	SIB BC
MESC	
SIB/SIVB	SIB ENGINE IGNITION HIOLD DOWN RELEASE AND LIFT OFF SIGNAL SIGNAL SIGNAL ATED SIGNAL ATED SIGNAL TO 105 T TO 105 T MANETVER
SUB- SEQUENCE	
SUB- SEQUENCE	
TIME	$\begin{array}{c} T_{0}^{-3}\\ T_{0}^{-3}\\ T_{0}^{+5}\\ T_{0}^{+5}\\ T_{0}^{-1}13\\ T_{0}^{-5}1\\ T_{0}^{-7}7\\ T_{0}^{-7}7\\ \end{array}$
HOOM N W	ATTA ADDR
340M CO	
ACOM SO	entry outing to North

<u> </u>	
GROUND	
AGC	+ 136 AGC TERMINATES OST MONITOR PHASE ITATION: AGC STOPS ITATION: AGC STOPS AT CONSTANT ANGLES AT CONSTANT ANGLES AT CONSTANT ANGLES AT CONSTANT ANGLES AT CONSTANT ANGLES CONTOR OF G&N VB BOOST MONITOR VB BOOST MONITOR
	AT T _o SIB BO TORMPI TORMPI THEM AGC C(AGC C(AGC C(AGC C(AGC C(AGC C) FOR SI FOR SI
MCP	ION & SIVB BOOST
CSM	SIB/SIVB SEPARA
MESC	
SIB/SIVB	STOP GRAVITY GRAVITY INBOARD ENGARD ENGRE CUT-OFF CUT-OFF CUT-OFF CUT-OFF CUT-OFF CUT-OFF CUT-OFF SIR SIVB SIR SIVB SIR SIVB SIR SIVB SIR SIVB
sequence Sequence	
SUB- SEQUENCE AT	
TIME	Го-136 Го-140.25 Го-140.25 Го-146.25 Го-148.65
HODE NYD -	
HOOM SOS -	HOW HOLLOW NOU-

True sketcher segentiere segentiere significant in all in		
TME SUB- TME SUB- SEQUENCE SEQUENCE AT 7-111 To-11	GROUND	
TME St.B. St	AGC	AT T _o + 171 AGC COM- MaNDS Cash SYSTEM TO FINE ALIGN MODE IN READINESS FOR POSSIBLE ABONT. AGC COMMENCES MONITOR OF VEHICLE RATES FOR TUMBLING DETECTION BY MONITOR- ING IMU GIMBAL ANGLE RATES OF CHANGE
TIME SECUENCE SEQUENCE SUB- To-131.85 To-131.85 To-131.85 To-131.85 To-131.85 To-131 T	MCP	START LET JETTISON SEQUENCE SEQUENCE SEQUENCE JETTISON JETTISON COMMAND FQ TAPE RECORDER OFF
TIME SEQUENCE SEQUENCE Tooling to the sequence for the sequence of the seque	CSM	
TIME St.B-	MESC	START LET JETTISON JETTISON JETTISON JETTISON JETISON FUNCTION EDS SELECT SPS ABORT MODE LOGIC IN MESC LOGIC IN MESC
FINE ALIGN MODE T → 1 31. 75 T → 1 31. 7	SIB/SIVB	SIVB ENGINE REACHES FULL THRUST SIVB 12 EN- TURE MIX- TURE MIX- SHIFT SHIFT JETTISON JETTISON ULLAGE RKT. CASES
FINE ALIGN MODE → CONT. MODE ATT. P T 0 1111 P T 0 1111	SEQUENCE	
LINE VEIGN WODE → CONL: MODE → CONL: CO	SEQUENCI SEQUENCI	
EINE VEIGN MODE EINE VEIGN MODE EINE VEIGN MODE	ELIM F.	T _o +154.85 T _o +161.75 T _o +171 T _o +171 T _o +171.75
	BRIN WODE	EINE VI'ICN WODE CONL' WODE VIILON WODE

GROUND	GROUND BACK- UP OF SIVB/CSM SEPARATION	GROUND BACK- UP OF SIVB/CSM SEPARATION INDICATION
AGC	MCP Up Data Link	SIVB/CSM SEPARA- AGC TION LOGIC A Downlink Downlink Downlink AGC Uplink COMMAND G&N ATT. CONT LATTON KOT NNHHITTED AS MODE IN SCS AND FTT. CONT LATTON KOT NNHHITTED AS MODE HAS NOT ENABLED AS COM PAND RELAY START V _g , THRUST DIRECTION AND MANEUVER CALCULATION
MCP	ATION & SPS BOOST START SIVB/CSM SEPARATION	COMMAND SIVB/CSM SEPARATE ARM BACKUP MODE SWITCHING FOR G& N FAIL COMMAND FQ TAPE RECORDER ON
CSM	SIVB/CSM SEPAR	ENERGIZE VIA TRANSLA- TION HAND CONTROLLER ABORT POSIT,) DIRECT ULLAGE ON RATE DEAD-FACED RATE DEAD-FACED
MESC		START SIVB (CSM SEPARATE SEQUENCE SEQUENCE START DIRECT ULLAGE FIRE ADAPTER/ CSM CMBILICAL DEADFACE SIVB, CSM SEPA- SIVB, CSM
SIB SIVB	ADAPTER FOLD BACK COMPLETE START SIVB CSM SEP SEQUENCE	SHI TDOM N SIVB: REDUN BANT FOR NORMAL
SUB- SEQUENCE AT		in the the the second s
SEQUENCE AT	r _{co-s} +1. 5 T _{co-s} +8. 3	$T_{co-s+8.3}$ $T_{co-s+8.3}$ $T_{co-s+8.3}$ $T_{co-s+8.3}$ $T_{co-s+8.3}$
TIME	T _o +618. 25	
· G& A WODE	•	EINE FLICH MODE

GROUND		
AGC	COMMAND G&N SYSTEM TO ATTUTUDE CONTROL MODE	TERMINATE CONTROLING, AGC STOP CDU TORQUING, AGC ASSUMES VEHICLE IS AT CORRECT ORIENTATION FOR IST SPS BURN TERMINATE G&N ATTITUDE CONTROL MODE
MCP	(2) COMMAND +X (2) COMMAND +X TRANS ON DISABLE SPS ENGINE BOLD SELECT GIMBAL MOTOR TRIM POSITION #1 ARM SPS SOLONOIDS OPEN SPS PRETHRUST VALVES +X TRANS COMND. (TO TVC LOGIC ONLY)	TERMINATE G&N ATT.
CSM	+X TRANS ON. INHIBITED IF NO RCS ENABLE (ME- SC ORIGINATED AT T ₈ -8.3 AND THEN ALSO BY DI- RECT ULLAGE (MESC TERMINATED AT T ₈ -2.5) DIRECT ULLAGE (MESC TERMINATED AT T ₈ -2.5) DIRECT ULLAGE (MESC TERMINATED AT T ₈ -2.5) DIRECT ULLAGE (MESC YAW ATTITUDE CONT. PITCH & YAW CHNNELS UNDER CONTROL OF FITCH & YAW RATE GYROS. AT PRANE AF LIGN MODE IN GÅN SIGNALS AT OR NEAR NULL DUE TO FINE A- LIGN MODE IN GÅN SPS ENGINE HOLD ORBALS TO TRIM ORBALS TO TRIM PREALS PREALS	TERMINATE G&N ATT.
MESC	DIRECT ULLAGE COMMAND TERMINATED	
SIB/SIV B		
SUQUENCE	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.L. + 12. 2
SEQUENCE		T.g.1.5
TIME		
ee a wode scs wode		MODE MODE G&N G&N C

4

2-12

GROUND	GROUND BACKUP OF SPS ENGINE ON COMMAND AURED BY TRACKING AC- QUIRED BY TRACKING SHIP 1 LAT 90W LOG 41°W OF COMMAND OF COMMAND
AGC	COMMAND G&N AV MODE COMMAND SPS AGC Downlink ENGINE ON MCP Up Data Link CROSS PRODUCT STEERING OF CSM OF CSM COMMAND SPS AGC Downlink ENGINE OFF MCP Up Data Link MCP Up Data Link MCP NP Data Link
MCP	COMMAND G&N AV MODE COMMAND SPS ENGINE ON ENGINE ON COMMAND ENGINE OF ENGINE OF ENGINE OF ENGINE OF TIME DELAY - 3 SEC COMMAND SPS CIMBAL MOTOR POWER OF COMMAND SPS COMMAND SPS COMMA
CSM	SET C&N AV MODE SPS ENGINE ON +X TRANS INHIBIT XFER CDU ERRORS TO SPS +X TRANS CMND. OFF +X TRANS CMND. OFF +X TRANSFER OF F RORS FROM SPS ENGINE GIMBALS TO RCS J ENGINE GIMBALS TO RCS J ENGINE GIMBALS TO RCS J ENGINE FOR FROM SPS ENGINE GIMBALS TO RCS J ENGINE FOR FROM SPS ENGINE GIMBALS TO RCS J ENGINE FOR FROM SPS ENGINE FOR FROM SPS ENGINE GIMBALS TO RCS J ENGINE FOR FROM SPS ENGINE GIMBALS TO RCS J ENGINE FOR FROM SPS ENGINE FOR FROM SPS ENGINE
MESC	
SIB/SIVB	
E SEQUENCE	$\begin{array}{c} T_{s}+12.\ 15\\ T_{s}+12.\ 7\\ T_{s}+12$
St B-St B-St Contended	الجان - 23 الجان - 25 الجان - 2 الجان - 2 الجان - 2 - 23 - 1 - 23 - 23 - 1 - 23 - 1 - 23 - 1 - 25 - 25 - 25 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2
IME	$\Gamma_{0}^{2} - 630.95$ $\Gamma_{0}^{2} - 860$ $\Gamma_{0}^{2} - 865.14$
MODE S SOUDDE	CONLEGE WODE CONLEGE CONLEGE WODE CONLE

÷

.

GROUND	TRACKING AC- QUIRED BY ASCENSION IS. LAT. 07 37'05'' S	LONG, 14 24 45 W TRACKING LOST BY TRACKING SHIP 1	TRACKING LOST BY ASCENSION IS.	120 sec without ground coverage	ACQUIRED BY PRETORIA S. A. LAT. 25 ^{56114"}	WWG. 20 22 07 W TRACKING LOST BY PRETORIA	840 sec without ground coverage
AGC							
MCP							
CSM							
MESC							
SIB/SIVB							
st B- st B- at - at B- at							
st 8- seqt ence a f							
	T +1230	T_0-1460	T, +2200		T +2320	T ₀ +2800	
HOOM N 98)		:	TGOW '.L.	NOO *.I.J.∀		

)

GROUND	TRACKING ACQ. BY CARNARVON BUST. Jat 2 ⁰ 52'00''S LONG. 113'38'00'' LONG. 113'38'00'' EONG. 113'38'00'' AGC UPDATE
AGC	STOP LOCAL VERTICAL MODE AT T _{ed} +2037.2 sec. AGC CALCULATES (A) VEHICLE POSITION AND VELOCITY FOR 2ND BURN (B) VEHICLE ATTITUDE RE- GUIRED FOR 2ND BURN (G) VEHICLE ATTITUDE RE- GUIRED FOR 2ND BURN (C) COMMAND S/C MANEUVER TO THIS ATTITUDE ROW IST SPE BURN CUT- OFF AGC STARTS 2ND SPS BURN ST SPS BURN CUT- OFF AGC STARTS 2ND SPS BURN SEQUENCE COMMAND +X TRANS.
MCP	BURN COMMAND +X TRANS.
CSM	24S CUS *X TRANS. ON
MESC	
SIB/SIVB	
SUB- SUB- SUB-	T _{co1} +2036.86
SEQUENCE	Completed at least by Tg2-50 Tg2-30
LIME	$T_{o}^{+2:002.34}$ $T_{o}^{+2:002.34}$ T_{o}^{+3640} $T_{o}^{-3:998.82}$
HOOM NAD	ATT, CONT, MODE
SCS NODE	

GROUND	GND. BACKUP OF SPS ENGINE ON COMMAND OF SPS ENGINE OF SPS ENGINE
AGC	COMMAND GIMBAL MOTOR POWER ON TERMINATE G&N ATT. CONT. MODE COMMAND G&N AV MODE COMMAND SPS AGC Downlink ENGINE ON RCP Up Data Link MCP Up Data Link MCP Up Data Link MCP Up Data Link MCP Up Data Link TITUDE UNTL COMPLE- TION OF ATH BURN COMMAND SPS AGC Downlink CROSS PRODUCT STEERING OF CSM
MCP	START GIMBAL MOTOR START SEQUENCE (3 SEC DETALLED FOR PRE- LAUNCH ONLY) OPEN SPS PRETHRUST VALVES START FQ TAPE RECONDER START FQ TAPE RECONDER TERMINATE G&N ATT. CONT. MODE COMMAND SPS ENGINE ON ENGINE OF F
CSM	GIMBAL MOTORS SEQUENCED ON PRETHRUST VALVES OPENED ATT. CONT. MODE SPS ENGINE ON +X TRANS INHIBIT XFER CDU ERRORS TO SPS ENGINE OF SPS ENGINE OF
MESC	
SIB_SIVB	
SEQUENCE AT	[
SUB-SUB-SUB-SUQUENCE	Tig2 - + Tig2 - + Tig2 Tig2 Tig2 Tig2 Tig2
LINE	0. 4025. u2 11114. u2
HON CAD	

GROUND					
AGC	SUBTRACT THE DIFFERENCE BETWEEN THE Z AND #3 PITCH AND YAW GIMBAL MOTOR THIM ANGLES FROM CDU'S TO ENSURE CONSTANT CSM ATTITUDE CSM ATTITUDE COMMAND GIMBAL MOTOR POWER OFF	BASED ON ELAPSED TIME FROM 2ND SPS BURN CUT- DEF AGC STARTS 3RD SPS BURN SEQUENCE			
MCP	TIME DELAY - 3 SEC COMMAND GIMBAL MOTOR PWR. OFF	L VALVES PRETHRUST VALVES PRETHRUST S BURN			
CSM	RELEASE +X TRANS INHIBIT TRANSFER OF CDU ER- TRANSFER OF CDU ER- GIMBALS FROM SPS BUGINE GIMBALS FROM SPS BUGINE GIMBALL MOTOR POWER OFF	PRETHRUST VALVES			
MESC					
SIB _/ SIVB					
SUB- SUB- AT	$\begin{array}{c} T_{co2}^{-}\cdot 7_{5}^{-}\\ T_{co2}^{-}+\cdot 2_{5}^{-}\\ T_{co2}^{-}+\cdot 2_{5}^{-}\\ T_{co2}^{-}+2^{-}\\ T_{co2}^{-}+5^{-}\\ T_{co2}^$	r c 02 + 5			
SEQUENCE SUB- SEQUENCE					
TIME					
→ VLL' COAL' MODE					
AGOM SOS					

GROUND	GROUND BACKUP OF SPS ENGINE ON COMMAND GROUND BACKUP OF SPS ENGINE OF COMMAND
AGC	BASED ON ELAPSED TIME BASED ON ELAPSED TIME FROM 3RD SPS BURN CUT- OFF AGC STARTS 4TH SPS BURN SEQUENCE BURN SEQUENCE COMMAND SPS AGC Downlink FIXED ATTITUDE STEERING OF CSM COMMAND SPS AGC Downlink ENGINE OFF MCP UD Data Link ENGINE OFF MCP UD Data Link
мсР	S BURN COMMAND SPS ENGINE ON ENGINE OF ENGINE OF TERMINATE +X TRANS
CSM	4TH SP 4TH SP
MESC	
SIB/SIVB	
SUB- SEQUENCE SEQUENCE AT	$\begin{array}{c c} T_{g4} & T_{co3+10} \\ T_{g4+1}^{2} + 25 & T_{co3+10} \\ T_{g4+1}^{2} + 25 & T_{co4} \\ T_{g4+1}^{2} + 25 & T_{co4} \\ T_{co4}^{2} + 1^{2} + 25 & T_{co4+1}^{2} + 25 \\ T_{co4+1}^{2} + 7 & T_{co4+1}^{2} \end{array}$
IIWE	→ → → → → → → → → → → → → → → → → → →

,

GROUND		
AGC	AGC ASSUMES COMMANDED AGC ASSUMES COMMANDED CALCULATES ATTITUDE MANEUYER START VEHICLE REORIENTA- TION:COMMAND ROLL IF NECESSARY (FROM GIMBAL LOCK CALCULATION) NECESSARY (FROM GIMBAL LOCK CALCULATION) TIME DELAY FOR CSM RE- SPONSE 5 SEC COMMAND ROLL TIME DELAY FOR CSM RESPONSE 5 SEC COMMAND ROLL TIME DELAY FOR CSM RESPONSE 5 SEC FOMMAND TO BE KEYED ON FREE FALL TIME TO 400,000' CALCU- LATION	FREE FALL TIME TO 400,000 ¹ IS LESS THAN 85 SEC
MCP		EPARATION
CM		CM/SM S
CSM		
WS		
MESC		
SEQUENCE		
SUB- SEQUENCE		
IIMJ.		
HODE N 99	← → ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	
HOOM SOS		

i

i

2.2 Timing Tolerances:

Tolerances on the sequential timing of discrete events are listed below. Certain of these may change if the AGC program changes. The times are to receipt of the signal by the interfacing system (usually the DSKY), and are quoted from the preceding event unless otherwise noted. Times T_1 - T_7 are not, as yet, specified as they are especially program dependent and difficult to predict.

S4BSMSEP

AGC

1

Interfacing Systems

Set S4BSMSEP Discrete (From MESC)			
	+120 ms	+ 249	
Read S4BSMSEP Discrete Set SCS +x Trans. ON Set SCS Att. Cont. ON Call ABRTWAIT		ms + 4	
	1.7 Sec $\frac{+10}{-0}$ ms		SCS +x Trans. ON SCS Att. Cont. ON
ABRTWAIT Call SCS Att. Cont. OFF		T ₅ 73.7 Sec	(From S4BSMSEP)
	10.5 Sec $^{+10}_{-0}$ ms		- Start Attn. Maneuver For SPS 1
Set SCS Attn Cont. OFF Call SPS ΔV Mode ON	•		
	0.25 Sec $^{+10}_{-0}$ ms		SCS Att. Cont. OFF
Set SCS $\triangle V$ Mode ON Call SPS 1 Engine ON		240 or ±6 ms 360	
	0.25 Sec $\frac{+10}{-0}$ ms	240 -9	- SCS ΔV Mode ON
Set SPS 1 Engine ON Call SCS +x Trans. OFF		360	SPS 1 Engine ON
	15 Sec ⁺¹⁰ ms - 0	15000 + 139 + 4ms	
Set SCS +x Trans. OFF			
		l <u></u>	- SCS +x Trans. OFF

SPS1 ENGINE OFF AGC Interfacing Systems SPS1 Engine OFF Set SPS 1 Engine OFF Call SCS Gim. Mtr. Powr. OFF 7 Sec $\frac{+10}{-0}$ ms 7000 + 139 + 4ms Set SCS Gim. Mtr. Powr. OFF Call SCS $\triangle V$ Mode OFF 3.5 Sec $\frac{+10}{-0}$ ms SCS Gim. Mtr. Powr. OFF 3480 Set SCS $\triangle V$ Mode OFF <u>+</u> 6 ms or Call SCS Att. Cont. ON 3600 $0.25 \text{ Sec}^{+10}_{-0} \text{ ms}$ SCS ΔV Mode OFF 240 Set SCS Att. Cont. ON + 6 ms or 360 SCS Att. Cont. ON SPS1 ENGINE OFF Set SPS 1 Engine OFF SPS 1 Engine OFF Call COASTPHS 10 Sec $\frac{+10}{-0}$ ms T₆ > 10 Sec COASTPHS Call FDA I Align ON 290 Sec⁺¹⁰ - 0 ms Start Att. Maneuver to Vertical Set FDA I Align ON 300,000 +149 ms(From SPS1 Engine OFF) Call FDA I Align OFF 10 Sec $^{+10}_{-0}$ ms - FDA I Align ON 9960 Set FDA I Align OFF <u>+</u> 6 ms \mathbf{or} Call Uptask 10080 Tcoast $\frac{+10}{-0}$ ms - FDA I Align OFF Sec Uptask Call SCS +x Trans. ON $20 \operatorname{Sec} \frac{+10}{-0} \operatorname{ms}$ f (TCOAST + 20 Sec) \pm 6 ms she

,

i.

2 - 34

3.0 G&N/SPACECRAFT PERFORMANCE ON THE ALL-DIGITAL SIMULATION

The following summary of results was taken from an all-digital simulation of a nominal SA-202 trajectory. The simulation starts at the instant of SIVB booster cut-off. The initial conditions corresponding to this time were taken from the MSC-MSFC Joint Reference Trajectory No. 65-FMP-1, dated April 12, 1965.

_ ___

3-1

TIME FROM LIFT-OFF	ACTION	PEF	RFORMANCE	RESULT						
609.96	Start of S imulation	Time corresponds to 8.3 secs follows till sequence.	SIVB booster start of SIV	shut-dowr B/CSM Sep	n. Delay of aration					
618.26	Receipt of SIVB/CSM Separation Discrete	AGC will delay any ac for VERB 77 Abort (etion for -1.7 Command.	secs whil	e waiting					
618.28	Command SCS G&N Att. Control Mode and TX Translation	See Note 1.								
619.96	Start AGC SPS1 Thrust Attitude Computation	AGC received No. VERB77. Computes two consecutive values of required velocity for computation of SPS1 initial thrust attitude.								
622.97	Command IMU to Att. Control Mode	IMU in Fine Align Mode up to this time. AGC now com- putes maneuver sequence.								
623.50	Start of Vehicle Pitch/Yaw Maneuver.	Maneuver angle 9.85 ⁰ (Includes nominal SPS1 c. g. Off-set)								
630. 53	Command SCS G&N Mon- itor Mode.	AGC removes SCS G&N Att. Control Mode Command prior to commanding ΔV Mode. (See Note 1)								
630.77	Command SCS G&N ΔV Mode.	See Note 1.								
630. 97	Command SPS Engine On	Engine On 12.7 $^{-0.0 \text{ Secs}}_{+0.1}$ after SIVB/CSM Sep. discrete. Attitude maneuver not yet complete. AGC will not issue steering commands until two consecutive required velocity values have been computed. Thrust ΔV monitoring com- mences.								
631.00	Vehicle pitch/yaw maneu- ver completed (Roll man- euver inhibited for pre- SPS1).	Initial euler ² set Desired euler ² set Final euler ² set Jet - Secs RCS Fuel used 3		Y 75.98 ⁰ 83.98 ⁰ 83.99 ⁰ 3.64 95						
624.6		Maneuver Time"	7.50 se							
034, 0	mands.	steering with C = 1/	ng commands 2.	s, using er	oss-product					
860.6	Last Steering Update	At next velocity-to-ge mine that less than 4	o (Vg) compu secs to engli	tation, AGG he-off.	C will deter-					
864.75	Command SPS Engine OFF	Vg remaining after th used during SPS1 bur	rust tail-off n = 15,816	= 0.30 ft, lbs.	sec. Fuel					
871.85	Command SCS Gimbal Motor Power OFF	See Note 1.								
875.33	Command SCS G&N Moni- tor Mode.	See Note 1.								
875.57	Command SCS G&N Att. Control Mode.	See Note 1.								
875.93	Start of Vehicle Pitch/Yaw Maneuver.	At 10.5 -0.0 At 10.5 -2.0 Secs afte AGC freezes R, V, 7 tion point. AGC error $_4^4$ in R = 55 AGC error in V = 0. AGC also initiates ma attitude. Maneuver a	r SPS1 Cut-c for orbital i oft. (See 19 ft/sec (Se aneuver to no angle = 123.0	off. ntegration 2 Note 4). 20 Note 4). 20 Note 4). 20 Note 40 Note	to SPS 2 igni-					

TIME FROM				TE DECUI	
LIFI-OFF	ACTION				7
911. 93	Vehicle Pitch/Yaw Maneu- ver completed. Start of vehicle roll maneuver.	Initial euler ² set Desired euler ² set Final Jet - Secs Fuel used Maneuver Time ³		$\begin{array}{r} \mathbf{Y} \\ 87.88^{\circ} \\ -32.45^{\circ} \\ -32.01^{\circ} \\ 5.32 \\ \hline \mathbf{4.54 \ lbs} \\ 36.0 \ \text{secs} \end{array}$	$ \begin{array}{r} 2 \\ 77.77^{0} \\ -178.19^{0} \\ -177.92^{0} \\ 0.48 \\ \end{array} $
		Maneuver 11me		36.0 secs	
917.43	Vehicle roll maneuver completed.	Initial euler" set Desired euler" set Final euler ² set Jet - Sec Fuel used	4.10 ⁰ 0.88 ⁰ -0.68 ⁰ 0.89	-32.01 -32.50 -36.35 2.33 3.20 lbs	-177.92° 179.88° 178.65° 0.42
		Maneuver Time ³		5.5 secs	
		Vehicle now in local	vertical con	trol.	
1164.77	Command FDAI Align ON			·	
1165.96		At this time the IMU (AOG = 179.9° AIG = 96.3° AMG = 0.8°	Gimbal Angl	es are as fo	bllows:
1174.85	Command FDAI Align OFF				
2903.0	Terminate local vertical	Summary of local ver	tical phase:		
(approx.)	control.	Jet Secs	0.88	1.39	4.68
		Fuel used Max. deviation		4.92 lbs	
		AGC now performs of and establishes initia is approx. 40 secs.	rbital integr l thrust atti	ation to SPS tude. Time	52 ignition point, taken for this
2944.19	Start vehicle pitch/yaw maneuver.	Maneuver angle = 5.7	12 ⁰		
2950. 69	Vehicle maneuver com- pleted.	Initial euler ² set Desired euler ² set Final Jet - Sec Fuel used	-179.24° -178.86° -178.30° 0.22	$ \begin{array}{c} -35.15^{\circ}\\ -31.63^{\circ}\\ -31.61^{\circ}\\ \hline 1.56\\ \hline 2.77 lbs \end{array} $	0,09 ⁰ -4.19 ⁰ -3.93 ⁰ 1.91
		Maneuver Time ³		6.50 secs	·····
		AGC now in idling sta holds attitude.	ate till recei	pt of update	. Vehicle
3998.45	Command SCS + X Trans-	No update simulated.			
	lation	AGC error in	R = 1125 V = 1.07	feet (S ft/sec	ee Note 4).
4024,49	Command SCS Gimbal Motor Power ON	(See Note 1)			
4027.97	Command SCS G&N Monitor Mode	(See Note 1)			
4028.21	Command SCS G&N ΔV Mode	(See Note 1)			
4028.43	Command SPS Engine ON	AGC action basically	similar to S	Start of SPS	1 burn.
4111.0 (Approx)	Last Steering Update.	At next V computat: 10 secs to engine-off	ion. AGC d	etermines t	hat less than

TIME FROM LIFT-OFF	ACTION	PERFORMANCE RESULT
4113.90	Command SPS Engine OFF	AGC cuts off burn six seconds early to allow for SPS3.4, by subtracting the expected thrust ΔV from Vg.
4114.7 (Approx.)	Command CDU's to SPS3 trim position.	AGC subtracts stored nominal value of SPS2 c.g. change from CDU's $\Delta CDUX = -1.02^{\circ}$ $\Delta CDUY = -0.81^{\circ}$ $\Delta CDUZ = -1.57^{\circ}$
4115,93	Command SCS Gimbal Motor Power OFF	See Note 1
4120.01	Command SCS Gimbal Motor Power ON	See Note 1
4123.90	Command SPS Engine ON	Start of timed SPS3 burn.
4126,90	Command SPS Engine OFF	
4136.90	Command SPS Engine ON	Start of timed SPS 4 burn.
4139.90	Command SPS Engine OFF	· · · · · · · · · · · · · · · · · · ·
4139.93	Command SCS +X Trans- lation OFF	Vg remaining after SPS tail-off =14.35 ft/sec. (The 11.63 ft/sec which is due to +X Translation ΔV , has been accomodated by perturbing the SPS2 aim point). Fuel used during SPS2, 3, 4 = 6187.3 lbs. Error in R = 1254 ft V = 1.27 ft/sec (see Note 4)
4147.01	Command SCS Gimbal Motor Power OFF	(See Note 1)
4150.49	Command SCS G&N Mon- itor Mode	(See Note 1.)
4150.73	Command SCS G&N Att. Control Mode	(See Note 1).
		AGC now commands a fixed inertial attitude, waiting for the computed time of free-fall to 400,000 ft to fall below 160 secs.
4246.42		AGC computed free-fall time = 158.31 Actual computed free-fall time = 160.73
4247.54	Start Vehicle Pitch/Yaw Maneuver.	Maneuver angle = 69.22° This is maneuver to the CM/SM separation attitude.
4270.04	Maneuver Completed	Initial euler 2 set Desired euler 2 set Final euler 2 set Jet-Secs -177.55°_{\circ} -0.48°_{\circ} -80.10°_{\circ} -80.10°_{\circ} -80.13°_{\circ} $178.60^{\circ}_{\circ}_{\circ}$ $179.53^{\circ}_{\circ}_{\circ}_{\circ}$ $179.53^{\circ}_{\circ}_{\circ}_{\circ}_{\circ}_{\circ}$ Fuel used Maneuver Time 3 22.50 secs $0.71^{\circ}_{\circ}_{\circ}_{\circ}_{\circ}_{\circ}_{\circ}_{\circ}_{\circ}_{\circ}_$
4322.20		AGC computed free-fall time = 84.10 Actual computed free fall time = 84.52
4322.81	Command SCS CM/SM Separation	After issuing command, AGC waits 5 secs before switching to 16X resolver on IMU.
4327.85	Command SCS G&N Mon- itor Mode.	AGC now computes new CDU position to align 16X resolver to present 1X position. Monitor mode inhibits response to resulting large attitude error signals.

TIME FROM LIFT-OFF	ACTUAL	PE	RFORMANC	E RESULT					
4327.97	Command IMU to Recentry Mode.	AGC now allows 5 sees for CDUX to settle to new positic							
4332.89	Command SCS G&N Entry Mode.	AGC now computes m	aneuver to j	pre-entry att	itude.				
4333.74	Start CM Pitch/Yaw Maneuver	Maneuver engle = 1	35.04 ⁰		······································				
4372.74	CM Maneuver Complete	Initial culer ² set Desired culer ² set Final culer ² set Jet-Sec Fuel used Maneuver time ³	X 0.82 ⁰ 7.71 ⁰ 2.35 ⁰ 0.00 0.44 1 39.0 sec	Y -79.98° 54.65° 56.35° 0.66 bs	Z 179.94 ⁰ 172.85 ⁰ 177.92 ⁰ 0.00				
4378.24	CM Roll Maneuver Compl Complete	Initial euler ² set Desired euler ² set Final euler ² set Jet - Sec Fuel used Maneuver time ³	$ \begin{array}{r} 2.35^{\circ} \\ 1.71^{\circ} \\ 2.14^{\circ} \\ \hline 0.00 \\ \hline 1.21 \\ 5.5 set \end{array} $	56.35 ⁰ 54.93 ⁰ 59.63 ⁰ 0.18 lbs	$ \begin{array}{r} 177.92^{0} \\ 177.76^{0} \\ 177.81^{0} \\ \hline 0.00 \\ \end{array} $				
4407.4	Arrive at 400,000 ft al- titude above Fischer ellipsoid.	Inertial velocity mag Inertial flight path an	nitude = 2, agle = 3.	8697.2 ft/se 5740	c				
4483.01	Send . 05G Indication								
4560.42	First Peak Heat Rate (at least 75 BTU/sqft/sec)	Heat rate (total) = 8	3.9 BTU/sq	ft/sec)					
4968.42	Second Peak Heat Rate (at least 60 BTU/sq ft/sec).	Heat rate (total) = 5	53.61 BTU/s	aqft/sec.					
5226.42	End of simulation (inaccurate below MACH2) Mission objective total heat load = $20 - 40,000 \text{ BTU/ft}^2$ Target 17.25°N 170.00°E	Altitude above Fisch Inertial velocity mag Latitude = 17.2570 Longitude = 169.98 Total Heat Load = 2 Miss Distance = 1 AGC error in R = 1 V = 1	er ellipsoid nitude 2 ⁰ E 21,931 BTU/ 1,12 n.m. 527 ft 1,77 ft/sec (= $39,503$ ft = $1,544.7$ ft ² See Note 4).	ft/sec				

- NOTE 1 Variations in timing intervals between discrete commands is explained in Section 2.2. Another 5-10 ms for relay delays must be added to the command times to obtain the signals that actually cross the AGC-MCP interface.
- <u>NOTE 2</u> The culer set is x, y, z from lift-off axes (x along local vertical, z in direction of down-range at 105° E of N, and y along z * x).
- NOTE 3 Maneuver time is quantized to 0.5 sec. The angle is metered out exactly, however. Each maneuver is followed by a five second setting period before the next commences.
- <u>NOTE 4</u> Position and velocity errors are due to algorithim and round-off only. No inertial errors are simulated. Also errors are assumed zero at the start of the simulation.

4.0 G&N ERROR ANALYSIS

This section provides the results of G&N Error Analysis. Table 4-1 summarizes the one-sigma total error at each major event time and breaks these down into the contributions of IMU errors accumulated during each powered phase. Tables 4-2 through 4-10 break down each line of Table 4-1 into the contributions of each IMU sensor error term.

On the basis of these data the following key errors are estimated.

	With no navigational update	With perfect navi- gational update at time of SPS 2nd Burn ignition
Entry γ_i (one sigma)	0.128	0.004 degree
Entry V_i (one sigma)	9.3	0.3 ft/sec
CEP at Pacific Recovery Point:	9.9	1.0 nm

These error tables assume that IMU System No. 017 will be used for the 202 flight. The AGC will have the capability of providing compensation for the measured average values of the following IMU errors: accelerometer bias errors, accelerometer scale factor errors, gyro bias drift, and gyro acceleration sensitive drift errors. Since the average IMU errors will be compensated for during both pre-launch and in-flight phases, it is the deviation from the measured average errors that will cause the indication errors during flight. Based on System 017 test measurements the anticipated one-sigma IMU error uncertainties relative to average values at time of actual 202 launch are as follows:

One-Sigma IMU Error Uncer	tainties	(System	017)	
		Input Ax	is	
	X	Y	<u>Z</u>	0
Accelerometer bias (ACB)	0.071	0.230	0.111	cm/sec^2
Accelerometer scale factor (SFE)	34	57	109	ppm
Accelerometer non-linearity	10	10	10	$\mu g/g^2$
Gyro bias drift (BD)	2.0	2.3	1.3	meru
Gyro input axis accel. sens. drift (ADIA)	2.5	6,7	6.5	meru/g
Gyro spin ref. axis accel. sens. drift (ADSRA)	4.8	1.8	1.2	meru/g
Gyro acceleration squared sens. drift	0.3	0.3	0.3	$meru/\tilde{g^2}$
Accelerometer IA misalignments				•
Non-orthogonality X to Y	0.265	-	-	mr
Non-orthogonality X to Z	0.146	-	-	\mathbf{mr}
Y about X _{SM}	-	0.034	-	mr

The average errors, as well as the rms error deviations from the average, were computed on the basis of test measurements made after the G&N system had been assembled and checked out. The error data given for accelerometer nonlinearity and for gyro acceleration squared sensitive drift were not obtained from IMU test measurements but rather from general tests made of IMU components of identical design.

All tables, except 4-6, 4-8, and 4-10, assume no navigational update at any phase of flight. Tables 4-6, 4-8, and 4-10 assume perfect navigation update at time of SPS 2nd Burn ignition.

The following comments explain the terminology, method of analysis and the basic assumptions used.

- 1) The IMU Stable Member axes are aligned prior to launch relative to local vertical axes as indicated in sketch. X_{SM} is up along local vertical at instant of launch, while Z_{SM} is along local horizontal pointed down-range at an azimuth of 105 degrees.
- 2) The data in the error tables are given relative to local vertical axes (altitude, track, range) at the paricular event designated.
- 3) Only the significant error figures have been listed in the error tables.
- 4) No realignment of the Stable Member was assumed.
- 5) Accelerometer bias errors affect indication errors in two ways. First, they affect the initial pre-launch alignment of the Stable Member. Second, they affect the in-flight computation of position and velocity. The two effects are summed in the tables, since the accelerometer bias error prior to launch is assumed to be correlated with the bias error during flight.
- 6) Accelerometer inputs to the AGC are not used during the free-fall phases of the trajectory.
- 7) The item "Uncorrelated SM Alignment Errors" in the error tables do not include the alignment errors due to accelerometer bias errors or to gyro bias and acceleration sensitive drift. Since, for these particular IMU errors, the pre-launch error is assumed correlated with the in-flight error, the two effects are algebraically summed in the tables. Note that the azimuth alignment error is affected primarily by the Z gyro bias drift effect on the gyro-compassing loop

4-2

during pre-launch alignment. The RSS azimuth alignment error due to all IMU errors is 1.60 mr., of which the Z gyro bias drift error of 1.3 meru is responsible for 1.43 mr.

The uncorrelated SM alignment error about azimuth of 0.50 mr. is caused primarily by misalignment of the Z gyro input axis relative to the Z stable member axis. The 0.5 mr. figure is an estimate based on specifications, since specific measurement data was not available for System 017.

8) The position and velocity errors given in the tables were computed as follows. Approximate error equations were derived for the effect of each IMU component error on indication of trajectory position and velocity. The basic assumptions were: 1. that the errors were small relative to the parameters being measured, and 2. that the IMU component errors were statistically independent of each other. The equations took into account the effect of the platform error on the gravity vector computation. The error equations required as inputs acceleration and position vectors. These were generated at each time step by a reference trajectory. At important times, such as SIVB cutoff, detailed printouts were made giving the position and velocity errors due to each IMU error together with the RSS of these errors relative to desired coordinate axes.

202 Trajectory Errors (Sammary,									
Event	Time From	Type of Error	Pos	Velocity Error ft/sec					
	Start mins		Position Error Velocity Er Alt Track Range Alt Track I 0.20 1.48 0.12 5.2 34.3 2 0.43 2.98 0.29 7.4 37.4 3 2.61 2.71 8.75 54.2 33.7 9 2.52 3.22 9.09 56.8 33.0 9 0.01 0.01 0.01 1.7 1.9 9 1.90 4.62 10.14 64.1 23.0 9 0.11 0.10 0.02 2.1 1.7 0	Range					
SIVB Cutoff	10.17	1) Total Indication Errors	0.20	1.48	0.12	5.2	34.3	2.7	
SPS 1st Burn Cutoff	14.41	1) Total Indication Errors	0.43	2.98	0.29	7.4	37.4	3.7	
Coast End (SPS 2nd Burn Igni- tion)	67.14	1) Total Indication Errors	2.61	2.71	8.75	54.2	33.7	9.1	
SPS 2nd Burn Cutoff	68.56	 1) Total Indication Errors 2) Effect of IMU Errors during SPS 2nd Burn 	2.52 0.01	3.22 0.01	9.09 0.01	56.8 1.7	33.0 1.9	9.4 0.8	
Entry Start (at altitude of 400, 000 ft)	73.37	 1) Total Indication Errors 2) Effect of IMU Errors during SPS 2nd Burn 	1.90 0.11	4.62 0.10	10.14 0.02	64.1 2.1	23.0	9.3 0.3	
Entry End (at alti- tude of 24,000 ft)	87.33	 1) Total Indication Errors 2) Effect of IMU Errors during SPS 2nd Burn & Entry 	3.41 0.81	6.04 1.34	10.74 0.33	85.3 23.0	19. 4 32.2	24.4 6.7	

<u>Table 4-1</u> 202 Trajectory Errors (Summary)

Note: "Total Indication Errors" refers to the difference between indicated and actual spacecraft position and velocity where the indicated trajectory is in error because of the presence of IMU errors since trajectory start.

Error T Alt Track Range Alt Alt Alt Track Range Alt Alt Track Range Alt Alt Alt Track Range Alt			A	R	RMS Erro	r	Final I in L (in	Position ocalAx feet)	Error	Final Velocity Error in Local Axes (in ft/sec)		
Age Uncorrelated Algement Error About X ₁ (Asimuth) 050 mr -2677 0 -108 Algement Error About X ₁ (Asimuth) 000 mr 216 -269 0.78 -0.72 Accel IA Nonorthogonality X v 0.04 mr 214 0 0 0 0 Accel IA Nonorthogonality X v U 0.034 mr 182 0 0.69 Accel IA Mim Y about X ₁ 0.034 mr 182 0 0 0 0 Accel IA Mim Y about X ₁ 0.034 mr 182 125 1.61 0.41 Bise Eff on Init Mim -07 ten/sec ² -1334 -4.13 0.41 Bise Eff on Init Mim -1334 -4.13 0.12 2.02 1.04 Bise SEX Seale SFEX -334 mr -4.13 0.01 1.12 Fror SFEX 34 PPM -137 -0.60 0.14 Pactor SFEX 10 gef/g ²		Error	Т				Alt	Track	Range	Alt	Track	Range
Bits About Y1 0.04 m 167 -269 0.72 Accel IA X to Y 0.04 mr 214 0.04 0.07 Nonorthegonality X to Z 0.146 mr 844 -233 3.50 -0.9 Accel IA Milm Y about X1 0.034 mr 182 0.66 -233 3.50 -0.9 Accel IA Milm Y about X1 0.034 mr 182 0.66 -235 -1.61 0.41 Accel IA Milm Y about X1 0.71 cm/sec ² -1.62 1.25 -1.61 0.41 Bias Eff on Pwr Fit .071 cm/sec ² -161 -61 -4.18 Bias Eff on Pwr Fit .11 lem/sec ² -161 -617 -1.93 Combined Eff -664 144 2.80 0.12 - - Scale SFEZ 57 PPM 0 -0 - - Scale SFEZ 10 µg/g ² -33 -627 -2.13 -0.05 <td>មក</td> <td>Uncorrelated</td> <td>About</td> <td>X_I (Azimuth)</td> <td>0.50</td> <td>mr</td> <td></td> <td>-2677</td> <td></td> <td></td> <td>-10.1</td> <td>9</td>	មក	Uncorrelated	About	X _I (Azimuth)	0.50	mr		-2677			-10.1	9
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	BL.	SM Alignment	About	Y _I	0.04	l mr	167	-	-269	0.78		-0.72
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	STA MEN	Errors	About	z ₁	0.04	mr		214			0.50	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Accel IA	X to Y		0.26	55 m r	0		0	0		0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Nonorthogonality	X to Z		0.14	16 mr	844		-235	3, 50		-0.91
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Accel. IA Mim	Y abou	t X _I	0.03	34 mr		182			0.69	
Bias ACBX Eff on Pwr Fit Combined Eff .071cm/sec ² -452 125 -1.61 0.41 Bias Eff on Init Mim ACBY Eff on Init Mim ACBY .2.92 1254 2.92 2.93 Error ACBY Eff on Pwr Fit Combined Eff .330cm/sec ² -1334 -4.19 -4.19 Bias ACBY Eff on Init Mim ACBZ .111em/sec ² -473 761 -2.22 2.05 Scale SFEX 34 PPM -01 -664 144 -2.89 0.12 Scale SFEX 57 PPM 0 0 0 -2.13 Accel, Sq. Sensitive Indication NCXX 100 µg/g ² 0 -1.09 -0.2 Bias Drift BDX Eff on Pwr Fit Combined Eff 2.0 meru 597 -1.18 0.02 -1.3.8 -0.83 Drift BDX Eff on Init Mim Combined Eff 2.3 meru 597 -1.8.8 -0.63 Drift BDX Eff on Init Mim Sensitive Drift BDX				Eff on Init Mlm			0		0	0		0
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$			ACBX	Eff on Pwr Flt	. 071 ^{cr}	n/sec ²	-452		125	-1.61		0.41
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$				Combined Eff			-452		125	-1.61		0.41.
Bits Bit Eff on Pwr Fit .230cm/wer2 -1334		Bias		Eff on Init Mlm				1254			2.92	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Error	ACBY	Eff on Pwr Flt	. 230cr	n/sec ²		-1334			-4.19	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	TEF			Combined Eff		i		-80			-1.27	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	ME,	· ·		Eff on Init Mlm			-473		761	-2.22		2.05
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	RO		ACBZ	Eff on Pwr Flt	. 111er	n/sec ²	-191		-617	-0.67		-1.93
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	ELE			Combined Eff	1	•	-664		144	-2.89		0.12
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	CC	Scale	SFEX		34	РРМ	-207		57	-0.60		0.14
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	A	Factor	SFEY		57	РРМ		0			0	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Error	SFEZ		109	PPM	-172		- 5 5 9	-0.71		-2 13
Sensitive Indication NCYY 10 $\mu g/g^2$ 0 0 0 Error NCYY 10 $\mu g/g^2$ -23 -73 -0.09 -0.28 Bias BDX Eff on Init MIm 781 2.97 1.88 Drift BDY Eff on Init MIm 3 -3627 0 0.02 -13.8 0 Bias Drift BDY Eff on Pwr Fit 2.3 meru -164 -1.09 Bias Drift BDY Eff on Pwr Fit 2.3 meru -183 0 -179 1.88 0 BDY Eff on Init MIm 2.3 meru -5 7652 1 -0.04 29.13 0 BDZ Eff on Init MIm -5 7721 1 -0.04 29.40 0 -1.22 -0.122 Acceleration Sensitive Drift Eff on Init MIm 2.5 -1.22 -0.60 0 0 0 0 0 0 0		Accel So	NCXX		10	ug/g2	-83		23	-0.21		0.05
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Sensitive Indication	NCYY		10	ug/g ²		0			0	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Error	NCZZ	·····	10	ua/a ²	-23		-73	-0 09		-0.28
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			BDX	Fff on Init Mim		<u>r5/5</u>		791		0.00	2 07	0.20
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1			Eff on Pwr Fit	20	meru		-19/			-1 00	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				Combined Eff	2.0	meru		507			1 00	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Biae	BDY	Eff on Init Mim	2 3 meru		3	3627	0	0.02	-12 0	0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				Eff on Pwr Flt			183	0021	-170	1 18	13.0	-0.93
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Drift		Combined Eff	0.0	2.3 meru		3627	170	1.10	13 9	-0.03
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				Eff on Init Min	<u> </u>		100	7669	110	0.04	20.10	0.03
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			BDZ	Eff on Pwr Fit	1 . 2	meru		60		0.04	69.13	0
G_{C} Acceleration Sensitive Drift Eff on Init Mlm ADIAX Eff on Init Mlm Eff on Pwr Flt 2.5 meru/g 976 3.72 $A cceleration$ Sensitive Drift Eff on Init Mlm ADSRAV 2.5 meru/g -252 -1.22 $A cceleration$ Squared Sensitive Drift Eff on Init Mlm ADIAZ 0 0 0 0 $A cceleration$ Squared Sensitive Drift Eff on Init Mlm ADIAZ 0 0 0 0.60 $A cceleration$ Squared Sensitive Drift $A^2 D_{(LA)(LA)X}$ 0.3 meru/g -43 -0.16 $A^{2D}_{(LA)(LA)Z}$ 0.3 meru/g 31 -28 0.21 -0.14 $A^{2D}_{(LA)(LA)Z}$ 0.3 meru/g 18 0.08 0.08 Root Sum Square Error (in ft and ft/sec) 1232 9008 729 5.20 34.25 2.68 Root Sum Square Error (in nm and ft/sec) 0.20 1.48 0.12 5.2 34.3 2.7				Combined Eff	1 1.0		-5	7791	1	-0.04	20 40	0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		· · · · · · · · · · · · · · · · · · ·		Eff on Init Mire	<u> </u>			076	1	-0.04	2 72	
	RO		ADIAX	Eff on Pwr Flt	2 5	meru/ø	<u> </u>	-252			-1 22	
Acceleration Sensitive Drift Eff on Init Mlm ADSRA y Eff on Pwr Flt Eff on Pwr Flt 0 <th< td=""><td>GY</td><td></td><td></td><td>Combined Eff</td><td>1</td><td></td><td></td><td>724</td><td></td><td></td><td>2 50</td><td></td></th<>	GY			Combined Eff	1			724			2 50	
Sensitive Drift ADSRA Y Eff on Pwr Flt Combined Eff 1.8 meru/g -129 113 -0.89 0.60 ADSRA Y Eff on Pwr Flt 1.8 meru/g -129 113 -0.89 0.60 ADSRA Y Eff on Pwr Flt 6.5 meru/g 266 1.22 ADSRA Y Eff on Pwr Flt 6.5 meru/g 266 1.22 ADSRA Y O.3 meru/g -43 -0.19 Acceleration Squared Sensitive Drift $A^2D_{(IA)(IA)X}$ 0.3 meru/g 31 -28 0.21 -0.14 A^2D_{(IA)(IA)Z} 0.3 meru/g 18 0.08 0.08 Root Sum Square Error (in ft and ft/sec) 1232 9008 729 5.20 34.25 2.68 Root Sum Square Error (in nm and ft/sec) 0.20 1.48 0.12 5.2 34.3 2.7		Acceleration		Eff on Init Mim			0		0	0	2.00	0
Acceleration Squared Bensitive Drift $A^2D_{(IA)(IA)X}$ 0.3 meru/g^2 -43 -0.19 1.22 Acceleration Squared Bensitive Drift $A^2D_{(IA)(IA)X}$ 0.3 meru/g^2 -43 -0.19 Acceleration Squared Bensitive Drift $A^2D_{(IA)(IA)X}$ 0.3 meru/g^2 -43 -0.19 Acceleration Squared Bensitive Drift $A^2D_{(IA)(IA)X}$ 0.3 meru/g^2 -43 -0.19 Acceleration Squared Bensitive Drift $A^2D_{(IA)(IA)X}$ 0.3 meru/g^2 118 0.08 Root Sum Square Error (in ft and ft/sec) 1232 9008 729 5.20 34.25 2.68 Root Sum Square Error (in nm and ft/sec) 0.20 1.48 0.12 5.2 34.3 2.7		Drift	ADSRA	Eff on Pwr Flt	1 8	meru/g	-129		113	-0.89		0 60
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Dim		Combined Eff	1	, a	-129		113	-0.89		0.60
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				Eff on Init Mlm				0.			10	0100
Combined Eff 266 1.22 Acceleration Squared Sensitive Drift $A^{2}D_{(IA)(IA)X}$ $0.3 meru/g^{2}$ -43 -0.16 $A^{2}D_{(IA)(IA)X}$ $0.3 meru/g^{2}$ 31 -28 0.21 -0.14 $A^{2}D_{(IA)(IA)Z}$ $0.3 meru/g^{2}$ 18 0.08 Root Sum Square Error (in ft and ft/sec) Root Sum Square Error (in nm and ft/sec) 0.20 1.48 0.12 5.2 34.25 2.68			ADIA Z	Eff on Pwr Flt	6.5	me ru/g	-	266			1.22	
Acceleration Squared Sensitive Drift $A^{2}D_{(IA)(IA)X}$ 0.3 meru/g ² -43 -0.15 $A^{2}D_{(SRA)(SRA)Y}$ 0.3 meru/g ² 31 -28 0.21 -0.14 $A^{2}D_{(IA)(IA)Z}$ 0.3 meru/g ² 18 0.08 Root Sum Square Error (in ft and ft/sec) Root Sum Square Error (in nm and ft/sec) 0.20 0.20 0.20 0.20 0.21 0.08				Combined Eff	1			266			1.22	
Acceleration Squared Sensitive Drift (IA)(IA)/A 0.3 meru/g -43 -0.19 $A^2D_{(SRA)(SRA)Y}$ $0.3 meru/g^2$ 31 -28 0.21 -0.14 $A^2D_{(IA)(IA)Z}$ $0.3 meru/g^2$ 18 0.08 Root Sum Square Error (in ft and ft/sec) Root Sum Square Error (in nm and ft/sec) 0.20 1.48 0.12 5.2 34.25 2.68			A ² D		0.0	, 2	1	40		 		
Sensitive Drift $\sim \sim (SRA)(SRA)Y$ 0.3 meru/g 31 -28 0.21 -0.14 Sensitive Drift $A^2D_{(IA)(IA)Z}$ 0.3 meru/g 18 0.08 Root Sum Square Error (in ft and ft/sec) 1232 9008 729 5.20 34.25 2.68 Root Sum Square Error (in nm and ft/sec) 0.20 1.48 0.12 5.2 34.35 2.7		Acceleration	A^2D		0.3	merwg		-43			-0.19	
Britt A O(IA)(IA)Z 0.3 meru/g 18 0.08 Root Sum Square Error (in ft and ft/sec) 1232 9008 729 5.20 34.25 2.68 Root Sum Square Error (in nm and ft/sec) 0.20 1.48 0.12 5.2 34.3 2.7		Sensitive	(S)	RA)(SRA)Y	0.3	meru/g	31		-28	0.21		-0.14
Root Sum Square Error (in ft and ft/sec) 1232 9008 729 5.20 34.25 2.68 Root Sum Square Error (in nm and ft/sec) 0.20 1.48 0.12 5.2 34.3 2.7		$\frac{\text{Drift}}{\text{A}^{2D}(IA)(IA)Z}$				me ru/g		18		·	0.08	
Root Sum Square Error (in nm and ft/sec) 0.20 1.48 0.12 5.2 34.3 2.7		Root Sum Square Ei	rror (in f	and ft/sec)			1232	9008	729	5.20	34.25	2.68
		Root Sum Square	Error	(in nm and ft/sec)			0.20	1.48	0.12	5.2	34.3	2.7

Table 4-2 Total Indication Errors at SIVB Cutoff (202)

	A			RMS		Final Position Error in I ocal Axes (in feet)			Final Velocity Error in Local Axes (in ft/sec)			
	Error	Т	÷	Ęrro	t.	Alt	Track	Range	Alt	Track	Range	
	Uncorrelated	About 2	(Azimuth)	0.50	mr		-5,394			-11.1	:	
BLE	SM	About 3	4 (₁	0.04	mr	270		-539	0.88		-0.90	
STAI	Errors	About 2	ι γ ₁	0.04	mr		333			0,41		
		X to X	*	0.26	<u>а</u> п	0		0	0		0	
ļ	Nonorthogonality	X to 7	X to 7		3 mm	1721		-961	4.60		-2.10	
	Accel, IA Mim	Y abou	t X,	0.034	4 mr	1,121	367			0.76		
ľ			Eff on Init Mlm			0		0	0		0	
		ACBX	Eff on Pwr Flt	071cr	n/sec ²	-882		490	-2.37		1.08	
			Combined Eff	1.0.1		-882		490	-2.37		1.08	
	Bias		Eff on Init Mlm				1952			8.43		
	Error	ACBY	Eff on Pwr Flt	. 230cr	n/sec ²		-2549			-5, 32	•	
LEH			Combined Eff]			-597			-2,89		
MEJ			Eff on Init Mlm			-762		1524	-2.49		2.55	
ROI		ACBZ	Eff on Pwr Flt	. 111 cr	n/sec ²	-728		-1023	-1.87		-2.10	
ELE			Combined Eff			1490		501	-4.36		0.45	
l S	Scale	SFEX		34	РРМ	-349		189	-0.75		0.29	
◄	Factor			57	РРМ		0			Q	·	
	Error	SFEZ		109	РРМ	-692		-980.	-1.76		-1.98	
	Accel. Sq.	NCXX		10	$\mu g/g^2$	-132		71	-0.27		0.10	
	Sensitive Indication	NCYY		10	$\mu g/g^2$		0			0		
	Error	NCZZ		10	μg/g ²	-90		-126	-0.22		-0.23	
			Eff on Init Mlm				1573			3,24		
		BDX	Eff on Pwr Flt	2.0	meru	L	-506			-1.49		
			Combined Eff				1067			1.75		
	Bias		Eff on Init Mim		14	-7309	-4	0.07	-15.0	6-0.01		
	Drift	BDY	Eff on Pwr Flt	2.3 meru		438	-1	-539	1.63	0	-1.37	
			Combined Eff	_	_	452	-7310	-543	1.70	-15,0	6-1.38	
			Eff on Init Mim	. 		-29	15418	9	-0.16	31.77	0.03	
		BDZ	Eff on Pwr Flt	1.3	meru	0	139	0	0	0.25	0	
1.			Combined Eff	 		-29	15557	9.	-0.16	32.02	9.03	
0			Eff on Init Mlm	1_			1967		 	4.05		
YR		A DIA X	Eff on Pwr Flt	2.5	meru/g		- 591			-1.46		
	Acceleration		Combined Eff	+			1 376			2.59		
	Sensitive		Eff on Init Mlm	-		0	 	270	1 92			
	Drift	ADSHAD	Ell on Pwr Fit	1.0	meruyg	- 320	+	379	$\begin{bmatrix} 1.23\\ 1.23 \end{bmatrix}$		1.02	
			Combined Eff		·····	-320	0	310	-1.23		1.02	
			Eff on Pwr Flt	6.5	meru/g	ļ	583		i	1.17	+	
		1	Combined Eff	1	10		583		†	1.17		
		A ² D.	Combined Lin			2	0.5	†		0.99		
	Acceleration		(A)(IA)X	0.3	meru/g	2 00	-95		0.00	-0.22		
	Sensitive	² ² ² ² ²	RA)(SRA)Y	0.3	meru/g	1 78	+	-92	0.29		-0, 34	
			A)(LA)Z	0.3	meru/g	1	40		L	0.08		
	Root Sum Square E	rror (in f	t and ft/sec)			2642	18126	1780	7.41	37.37	3.70	
	Root Sum Squar	e Error	(in nm and ft/sec)			0.43	2.98	0.29	7.4	37.4	3.7	

Table 4-3	Total Indication	Frrors a	at SPS	1st	Burn	Cutoff
-----------	------------------	----------	--------	-----	------	--------

TF 138 4 8

-

		A	R	RMS Error		Fina) Position Error in Local Axes (in feet)			Final Velocity Error in Local Axes (in ft/sec)		
	Error	Т		Error		Alt	Track	Range	Alt	Frack	Range
ыщ	Uncorrelated	About	X _I (Azimuth)	0.50	mr		4913			10.03	
BLI	SM	About	Υ _I	0.04	mr	-2574		3320	-4.06		1.92
STA MEN	Errors	About	z ₁	0.04	mr		-319			-0.35	
	Accel IA	X to Y		0.265	mr	0		0	0		0
	Nonorthogonality	X to Z		0.146	mr	163		-17056	15.49		1.90
	Accel, IA Mim	Y abou	t X _I	0.034	mr		-334			-0.08	
			Eff on Init Mlm			0		0	0		0
		ACBX	Eff on Pwr Flt	.071 cm	$/sec^2$	-80		8803	-7,99		-0.98
			Combined Eff			- 80		8803	- 7.99		-0.98
1	Bias		Eff on Init Mlm			-42	-1864	299	-0.29	-2.05	0.01
	Error	ACBY	Eff on Pwr Flt	. 230 cm	/sec ²	28	2318	-376	0.32	4.80	0.02
TER			Combined Eff	1		-14	454	-77	0.03	2.75	0.03
AE1			Eff on Init Mlm			7282	101	-9395	11.53	0.14	-5.45
BO		ACBZ	Eff on Pwr Flt	.111cm	$/sec^2$	-14034	-238	40205	- 42, 32	-0.39	7.85
LE			Combined Eff			-6752	-137	30810	-30,7	0.25	2.40
CCE	Scale	SFEX		34	РРМ	- 557		3929	-3.86		0
A(Factor	SEEV		57	PPM		0			0	
	Error	SFE7		109 PPM		13286	- ·	38062	-40.0	6	7.43
		NOVY		10		-256		1529	-1.53		0.03
	Sensitive	NCVV		10	$\frac{\mu g}{g}$		0	10-0		0	
	Indication Error	NOT		10	<u>мв/в</u>	1602	-27	4630	-4 97		0 80
		INC22		10	10 μ <u>g</u> /g		1422	1000	1.07	2 02	0.00
		BDX	Eff on Init Mlm				-1433			-2.95	
			Eff on Pwr Fit	2.0	meru		437			1.38	
			Combined Eff	ł			-990	1001	0.00	-1.55	0.04
	Bias	DDV	Eff on Init Mim	2.3 meru		84	6657	-1001	0.92	13. 59	0.04
	Drift	BDY	Enon Fwe Fit			- 3596	-43	2533	-3,98	12 52	2.89
			Combined Eff	<u> </u>			14045	1472	-3.06	13. 53	2.93
			Eff on Init Mlm			-113	14042	2230	-1.93	- <u>40.0</u>	-0.0
		BDZ	EII on Pwr Fit	1.3	meru	- 2	-128	20	-0.02	-0.23	
			Combined Eff			-175	-14170	2258	-1,95	- 28, 9	<u>-0.0</u>
0			Eff on Init Mlm	-			-1791	ļ		- 3. 00	
YR		A DIA 3	Eff on Pwr Flt	- 2.5	ne ru/g		545	<u> </u>		1.33	
	Acceleration		Combined Eff				-12,00	-	· •	-4.33	
	Sensitive		Eff on Init Mlm	- 1.0	,	2001	+	1717	2 02		
	Drift	ADSHA	Eff on Pwr Fit		neruyg	2001		-1717	2.04		-2.1
			Combined Eff	+		2661		-1717	2.84		-2.1
			Eff on Init Mlm		1		- U		ļ	1 05	<u> </u>
		ADIA 2	Eff on Pwr Fit	- 0.01	nerwg		- 533	+	 	-1.05	<u> </u>
			Combined Eff	+		<u> </u>	- 555	+	 	-1.03	
	Acceleration	A ^{°D} (L	A)(IA)X	0.3	neru/g	1	86	_	L	0.20	
	Squared	A ² D _{(S}	RA)(SRA)Y	0.3	nerw/g	-621		406	-0,65		0.50
	Drift	A ² D(L	A)(IA)Z	0.3	neru∕g	4	-36			-0.07	
						1	1.0.10.4	- 1170	54 10	22 70	0 1 1
	Th . A 1	Caracter and Adam of A	t and ft (corr)			11 5306 3	116494	1 3 3 1 7 5	11/3/4 1.5	11.5.5 (**	1 21 14
	Root Sum Square F	<u>o Elemen</u>	$\frac{t \text{ and } ft/sec}{(in mm and ft/cost}$			15863 9 6	1 2 71	9 75	54.1	22 7	0 1

Table 4-4 Total Indication Errors at Coast End (SPS 2nd Burn Ignition)

	A				RMS		Final Position Error in Local Axes (in feet)			Final Velocity Error in Local Axes (in ft/sec)			
	Error	Т		Erro		Alt	Track	Range	Alt	Track	Range		
., ж	Uncorrelated	About 2	(Azimuth)	0.50	mr		5833			10.0	\$		
BLE	SM	About 1	· <u>·</u> ··································	0.04	mr	-2580		3778	-4.36		2.01		
STA MEN	Errors	About 2		0.04	mr		-344			-0.2			
	Accel IA	K to Y		0.26	5 m r	0		0	0		0		
	Nonorthogonality	X to Z		0.14	6 m r	-221		- 16869	15.86		2.09		
	Accel, IA Mlm	Y about	x	0.03	4 mr		- 397			-0.68			
			Eff on Init Mlm			0		0	0		0		
		ACBX	Eff on Pwr Flt	. 071 ,	n/sec ²	130		8698	-7.92		-1.26		
			Combined Eff			130		8698	-7.92		-1,26		
	Bias		Eff on Init Mlm				-2019			-1.3)		
	Error	ACBY	Eff on Pwr Flt	. 230 ci	n/вес ²		2713			3.82			
TEF			Combined Eff	ļ			694			2.52			
ME			Eff on Init Mlm			7 300	114	10690	12.36	0.15	-5.71		
ERO		ACBZ	Eff on Pwr Flt	. 111 cı	m/sec²	-13580	-275	42415	-44.50	-0.4	8.01		
ELI			Combined Eff	ļ		-6280	-161	31725	- 32.14	-0.2	5 2.30		
CC	Scale	SFEX		34	РРМ	-490		3982	-3.92		-0.08		
	Factor	SFEY	·	57	РРМ		0			0			
	Error	SFEZ		109	РРМ	-1286		40137	-42.3	9	7.21		
	Accel. Sq.	NCXX		10	$\mu g/g^2$	-232	-7	1558	-1.57	-0.01	0.01		
	Indication Error	NCYY		10	$\mu g/g^2$		0			0			
	Error	NCZZ		10	$\mu g/g^2$	-1550	- 32	4883	-5.1	1 0	0.88		
		l l	Eff on Init Mlm	1			-1701			-2.93			
		BDX	Eff on Pwr Flt	2.0	meru		595		····-	2.10			
			Combined Eff	ļ	<u>.</u>		-1106			-0.83			
	Bias		Eff on Init Mlm	2.3	meru	54	7904	-1063	0.96	13.63	0.06		
	Drift	BDY	Eff on Pwr Flt			- 3607	- 49	3226	-2.89	-0.06	3.77		
			Combined Eff	ļ		- 3553	7855	2163	-1.93	13.57	3.83		
			Eff on Init Mira	4		-114	-1667	2243	-2.03	-28.76	-0.14		
		BDZ	Eff on Pwr Flt	1.3	meru	-1	-110	20	-0.02	0.66	0		
			Combined Eff	 	·····	-115	-1678	2 2263	-2.05	-28.1	0 -0.1		
			Eff on Init Mlm	4			-2127			- 3, 61	ļ		
YR		A DIA X	Eff on Pwr Flt	2.5	meru/g		649	ļ	L	1.38			
0	Acceleration		Combined Eff				-1478			-2.29			
	Sensitive		Eff on Init Mlm	4		0		0	0		0		
	Drift	ADSRA Y	Eff on Pwr Flt	1.8	me ru/g	2716		-2213	2.96.		-2.36		
1	-		Combined Eff			2716		-2213	2,96		-2.36		
		4014 -	Eff on Init Mlm		m		0				<u> </u>		
		ADIA Z	EII on Pwr Fit	0.0	meru∕g		- 588		┠───	-0.1	<u> </u>		
		.2	Combined Eff	+		<u> </u>	- 588		 	-0.1	ļ		
1	Acceleration	A D(IA	.)(IA)X	0.3	meru/g	1	104	ļ	ļ	0.20	1		
	Squared Sensitive	A ² D(SI	RA)(SRA)Y	0.3	meru/g	-634	ļ	521	-0.7	¢	0.54		
	Drift	A ^{2D} (IA)(IA)Z	0.3	meru/g	1	-40			-0.01			
	Root Sum Square E	rror (in ft	and ft/sec)			15327	19545	55225	56.79	32,98	9.42		
	Root Sum Squar	e Erior	(am and ft/sec)			2.52	3.22	9.09	56.8	33.0	9.4		
701354	7					A	···	<u> </u>	*				

Table 4-5 Total Indication Errors at SPS 2nd Burn Cutoff

4**-**8

CONTRENT

-

A			RM	RMS Error		Final Position Error in Local Axes (in feet)			Final Velocity Error in Local Axes (in ft/sec)		
ļ	Error	T		Erre)r	Alt	Track	Range	Alt	Track	Range
щщ	Uncorrelated	About	X _I (Azimuth)	0.50	mr		29			0.65	
MBE	SM Alignment	About	YI	0.04	mr	4		2	0.09		0.04
STA	Errors	About	z _I	0.04	mr		4			0.09	
	Accel IA	X to Y	X to Y		mr	0		0			
	Nonorthogonality	X to Z		0.146	mr	7		- 5	0.16		-0.11
	Accel, IA Mim	Y abou	t X _I	0.034	mr		2			0.05	
			Eff on Init Mlm		0		0	0		0	
		ACBX	Eff on Pwr Flt	. 071 ci	n∕sec ²	8		- 5	0.18		-0.12
			Combined Eff			8		~ 5	0.18		-0.12
	Bias		Eff on Init Mlm				23			0.53	
E E	Error	ACBY	Eff on Pwr Flt	. 230 cı	n/sec ²		-31			-0.69	
Ш			Combined Eff				-8			-0.16	
OME			Eff on Init Mlm			-12		~5	-0.27		-0.12
ERC		ACBZ	Eff on Pwr Flt	.111cm/sec ²		8		12	0.19		0.27
EL			Combined Eff	·	-4		7	-0.08		0.15	
ACC	Scale	Scale SFEX		34	РРМ	3		-2	0.06		-0.04
	Factor	SFEY	AT-1	57	РРМ		0			0	
	Error	SFEZ		109	РРМ	-4		- 5	-0.08		-0.11
	Accel. Sq.	NCXX		10	$\mu g/g^2$	1		0	0.01		-0.01
	Indication	NCYY	······································	10	µg/g ²		0			0	
	ETTOP.	NCZZ		10	$\mu g/g^2$	0		0	0	_	0
	Bias Drift	BDX BDY	Eff on Init Mlm				-8		1	-0.19	
			Eff on Pwr Flt	2.0	meru		34			0.78	
			Combined Eff				26			0.59	
			Eff on Init Mlm	2.3 meru		0	-46	0	0	-1.05	0
			Eff on Pwr Flt		70	0	33	1.62	0	0.75	
			Combined Eff			70	-46	33	1.62	-1.05	0.75
			Eff on Init Mlm				-81			-1.83	<u> </u>
		BDZ	Eff on Pwr Fit	1.3	meru		38			0.87	
			Combined Eff				-43			-0.96	<u>i. </u>
Ç			Eff on Init Mlm				-10			-0.24	
671		ADIAX	Ell on Pwr Fit	2.5	meru/g		5			0.12	·
	Acceleration		Combined Eff	·			-5			-0.12	
İ	Sensitive	ADSBAN	Eff on Init Mim	1.8	merula	- 11			0.95		0
	Dim		Combined Eff	1.0		-11		-5	0.25		0.11
			Eff on Init Mim				0		0.23		-0.11
		ADIA Z	Eff on Pwr Flt	6 5 meru/e		37			0 86		
			Combined Eff				37			0.86	
		A ² D		0.2						0.00	
	Acceleration Squared	$A^2 D$			meru/g		- 1			0.02	
	Sensitive Drift	1 2 D.	CA J(SKA JY		meru/g	4		1	0.06		0.03
)(IA)Z	0.3	meru/g	ومحمل ومشجة كشاك	2			0.05	
ļ	Root Sum Square Er	ror (in ft	and ft/sec)			72	83	35	1.67	1.89	0.80
	Root Sum Siguare Error (in nm and ft/sec)							0.01	1.7	1.9	0.8

Table 4-6 Effect of IMU Errors during SPS 2nd Burn at SPS 2nd Burn Cutoff

4-9

L. L. C. M. C. M. L. L. A. J

-Setting

A			RMS Error		Final I in Lo (in	Position DealAx feet)	Error es	Final Velocity Error in Local Axes (in ft/sec)			
	Error	T	-	Erro	r	Alt	Track	Range	Alt	Track	Range
ы ж	Uncorrelated	About X, (Azimuth)		0.50	mr		8,440			7.06	
BLF	SM	About 1	About Y,		mr	-2.296		5, 359	- 5, 61		2.07
STA MEN	Errors	About 2	About Z ₁		, mr		- 380			-0.07	
	Accel IA	X to Y		0.04	5 mr	0	000	0		-0.01	0
	Nonorthogonality	X to Z		0:146	i mr	-1.795		-15.760	15.95		2 64
	Accel, IA Mlm	Y abou	t X _I	0.034	1 mr		-574	20,100	10.00	-0.48	2.01
			Eff on Init Mlm			0	0	0	0	0	0
		ACBX	Eff on Pwr Flt	. 071 cn	n/sec ²	996	- 37	8,041	-8,01	-0.03	-1.61
			Combined Eff			996	- 37	8,041	-8.01	-0.03	-1,61
	Bias		Eff on Init Mlm			-12	2,280	314	-0.34	-0.40	0
	Error	ACBY	Eff on Pwr Flt	. 230 cm	n/sec ²	-18	3,672	-367	0.39	2.48	0.04
TER			Combined Eff				1,392	-53	0.05	2.08	0.04
ME.			Eff on Init Mlm			6,496	162	15,16	15.87	0.17	-5.85
ERO		ACBZ	Eff on Pwr Flt	. 111 cr	.111 cm/sec ²		- 398 -	49,458	-51.33	-0.40	7.66
ELI			Combined Eff			3,573	-236	84,295	-35.46	-0.23	1.81
CC	Scale	SFEX		34	РРМ	-147		4,072	-4.24		-0.15
	Factor	SFEY		57	PPM		0			0	
	Error	SFEZ		109	РРМ	-9,670		46,740	49.03		7.03
	Accel, Sq. NCXX			10	$\mu g/g^2$	-103		1,625	-1.70	0	0
	Sensitive Indication NCY	NCYY		10	$\mu g/g^2$		0			0	
	Error	NCZZ		·10	$\mu g/g^2$	-1,154		5,678	-5.93		0.85
	Bias	BDX	Eff on Init Mlm				-2,462			2.06	
			Eff on Pwr Flt	2.0	meru		1,177			1.73	
			Combined Eff				-1,285			0.33	
		BDY	Eff on Init Mlm	4		-47	11,436	-1,038	1.10	9.57	0.10
	Drift		Eff on Pwr Flt	2.3	meru	2,948	-70	5,600	4.25	-0.08	3.32
			Combined Eff	ļ		2,995	11,366	4, 562	3.15	9.49	3.42
			Eff on Init Mlm	1		100	24,124	2,190	-2.32	20.19	-0,20
1		BDZ	Eff on Pwr Flt	1.3	meru	0	90	20	0.02	0.66	0
		_ _	Combined Eff	ļ		100	24,034	2,210	-2.34	19.53	-0.20
0			Eff on Init Mlm			L	-3,077		 	-2.58	
YR		ADIAX	Eff on Pwr Flt	2.5	meru/g		1,016		_	1.03	
	Acceleration	·	Combined Eff				2,061			1.55	ļ
1	Sensitive		Eff on Init Mlm	-	,	0		0	0		0
	Drift	ADS RA Y	Eff on Pwr Flt	1.8	meru∕g	<u>2.583</u>		3,992	4.23		2.48
			Combined Eff			2,583		3,992	4.23		2.48
			Eff on Init Mim		monula		0	<u> </u>	<u> </u>	0	ļ
		ADIA 2	Cambined Eff	6.5	meruyg	-	-591		 	0.12	
	. 2		Compined Eff	<u> </u>			- 291	ł	<u> </u>	U.12	<u> </u>
	Acceleration)(IA)X	.3	meru/g]	156		 	0.15	<u> </u>
	Squared Sensitive	A D(SI	RA)(SRA)Y	.3	meru/g	-603	ļ	936	-0.99	ļ	0.58
	Drift	A ^{²D} (LA)(IA)Z	. 3	meru/g	1	-41			0.01	
	Root Sum Square Er	ror (in ft	and ft/sec)			1,542	28.05	61.622	64.05	23.00	9,25
	Root Sum Square I	Error (i	n nm and ft/sec)			1.90	4.62	10.14	64.1	23.0	9.3
+++1384	1.50 4.02 10.14 04.1 25.0 5.5										

Table 4~7 Total Indication Errors at Entry Start

.....

-

	Error R			RI	RMS Error		Final Position Error in Local Axes (in feet)			Final Velocity Error in Local Axes (in ft/sec)		
						Alt	Track	Range	Alt	Track	Range	
a B	Uncorrelated	About	X _I (Azimuth)	0.	50 mr		219	ŀ		0.60		
V BL	SM Alignment	About	Υ _I	0.	04, mr	38		1	0.12		0	
ST/ ME	Errors	About	z _I	0.	04 mr		30		1	0.08		
	Accel IA	X to Y		0,26	5 mr	0	<u> </u>	0				
	Nonorthogonality	X to Z		0.14	6 mr	39	1	-55	0 13		-0.15	
	Accel. IA Mim	Y abou	it X _I	0.03	4 mr		15		0.10	0.04	-0.15	
1			Eff on Init Mlm			0		0	0		0	
		ACBX	Eff on Pwr Flt]. 071	cm/sec ²	43	1	-61	0.14		-0.17	
			Combined Eff			43		-61	0.14		-0.17	
	Bias		Eff on Init Mlm				176			0.49	,	
6	Error	ACBY	Eff on Pwr Flt	. 230	cm/sec ²		-233			-0.64		
TEI			Combined Eff				- 57			-0.15		
ME			Eff on Init Mlm			-106	·	- 3	-0.34		0	
ERC		ACBZ	Eff on Pwr Flt	. 111	cm/sec ²	101		60	0.32		0.16	
EL			Combined Eff			- 5		57	-0.02		0.16	
ACC	Scale	SFEX		34	РРМ	15		-22	0.05		-0.06	
14	Factor	SFEY		57	РРМ		0			0	0.00	
	Error			109	РРМ	-43	[-26	-0.14		-0.07	
	Accel. Sq. NCXX Sensitive Indication NCYY		10	$\mu g/g^2$	3		- 5	0.01		-0.01		
		NCYY	NCYY		$\mu g/g^2$		0			0		
	Error	NCZZ		10	$\mu g/g^2$	2		1	0.01		0	
	Bias Drift B	BDX	Eff on Init Mlm				-64			-0 18		
			Eff on Pwr Flt	2.0	meru		260			0.72		
			Combined Eff				196			0.54		
		BDY	Eff on Init Mlm	2.3		0	-353	0	0	-0.97	0	
			Eff on Pwr Flt		meru	642	0	19	2.06	0	0.02	
			Combined Eff			642	-353	19	2,06	-0.97	0.02	
1			Eff on Init Mlm				-615			-1.68		
}		BDZ	Eff on Pwr Flt	1.3	meru		291			0.80		
			Combined Eff				-324			-0.88		
0			Eff on Init Mlm				-80			-0,22		
YR		A DIA X	Eff on Pwr Flt	2.5	meru/g		39			0.11		
	Acceleration		Combined Eff				-41			-0.11		
	Sensitive		Eff on Init Mlm	4		0		0	0		0	
	Drift	ADSRA Y	Eff on Pwr Flt	1.8	me ru/g	-99		-29	-0,32		0	
			Combined Eff	_		-99		-29	-0.32		0	
			Eff on Init Milm	4			0			0	· · · · · · · · · · · · · · · · · · ·	
		ADIA Z	Eff on Pwr Flt	6.5	meru/g		287			0.79		
		.2	Combined Eff	<u> </u>			287			0.79		
	Acceleration	A D(IA)(IA)X	.3	meru/g ²		5			0.01		
	Squared Sensitive	A ^{-D} (SF	A ² D(SRA)(SRA)Y		meru/g ²	22		1	0.07		0	
	Drift	A ^{2D} (IA)(IA)Z	.3:	meru/g		18			0,05		
	Root Sum Square Er	ror (in ft	and ft/sec)			655	636	111	2,10	1.74	0.00	
	Root Sum Square	Error (in nm and ft/sec)			0,11	0.10	0 02	9 1	1 -	<u> </u>	
TP 138 4	0.11 0.10 0.02 2.1 1.7 0.3											

Table 4-8 Lfft	ct of IMU	Errors	During	SPS 2	nd	Burn	at	Entry	Start
the second se			<u> </u>						

A R					RMS Error		Final Position Error inLocal Axes (in feet)			Final Velocity Error in Local Axes (in ft/sec)		
	Error					Alt.	Track	Range	Alt.	Track	Range	
_т е	Uncorrelated	About 3	(Azimuth)	0.50	mr		10,024			0.22		
BLI	SM Alignment	About Y	۲. ۲	0.04	mr	-3,490		7, 745	-10.66		-1.70	
STA	Errors	About 2		0.04	mr		- 545			-0.58		
	Accel IA	X to Y		0.26	5 mr	0		0	0		0	
	Nonorthogonality	X to Z		0.14	6 mr	- 533		-10.703	12.46		6.24	
	Accel, IA Mim	Y abou	x _I	0.03	4 mr	3	682	-40	0.04	0.02	0,02	
	· · · · · · · · · · · · · · · · · · ·		Eff on Init Mlm			0		0	0		0	
		ACBX	Eff on Pwr Flt	.071c	m/sec ²	168		4,237	-6.68		-5.65	
			Combined Eff			168		4,237	-6.68		-5,65	
	Bias		Eff on Init Mlm				-3,196			-3.41		
-	Error	ACBY	Eff on Pwr Flt	.230c	m/sec ²		1,226			-7.82		
TEF			Combined Eff				-1,970			-11.23		
ME			Eff on Init Mlm	ļ		9.874		21,917	30.17		4.83	
ERC		ACBZ	Eff on Pwr Flt	,111 c	, 111 cm/sec ²			55,021	-63.25		-18,46	
ELI			Combined Eff			-5,298		33,104	-33,08		-13.63	
ACC	Scale	SFEX		34	РРМ	-651		3,796	-4.37		-0.93	
	Factor	SFEY		57	РРМ		0			-0.03		
	Error	SFEZ		109	PPM	-16,755		<u>52, 656</u>	-66.50		-16,41	
	Accel. Sq.	Sq. NCXX		10	$\mu g/g^2$	-366		1.353	-2.04		-1,22	
	Sensitive Indication	NCYY	·····	10	$\mu g/g^2$		-11_			-0.05		
	Error	NCZZ		10	μg/g ²	-1,935		6,350	-7.68	ļ	-2.07	
		BDX	Eff on Init Mim	4			-2,924			-0.06		
			Eff on Pwr Flt	2.0	meru		2,843			7.72		
			Combined Eff	ļ			-81			7.66		
	Bias	BDY	Eff on Init Mlm	2.3		-113	-16,194	967	~0.68	-0.35	-0.64	
	Drift		Eff on Pwr Flt		meru	<u>-9,109</u>	- 82	8,330	-34.31	0.06	-6.95	
1			Combined Eff	ļ		9,222	-16,276	9,297	- 34, 99	-0.29	-7.59	
			Eff on Init Mlm	4		-195	28,17	1,682	-1.18	-0.61	-1.12	
		BDZ	Eff on Pwr Flt	1.3	meru		-2,878	10	-0.07	-11.01	-0.35	
		_	Combined Eff			-194	-31,048	1692	-1.25	-11.62	-1.47	
0			Eff on Init Mlm		,		-3.655			-0,08		
5YR		ADIAX	Eff on Pwr Fit	2.5	meru/g		1,227			-0.76		
Ĭ	Acceleration		Combined Eff	<u> </u>			-2,428			-0.84		
	Sensitive	ADERAN	Eff on Init Mlm	-	manula	0			11 55		1 12	
	Drift	ADSIN I		1.8	meruyg	4,155	61	7,096	11.52	-0.05	1 1 2	
			Combined Eff	+		4,155	61	-7,096	11, 52	-0.05	1.13	
1		ADIA Z	Eff on Pwr Elt	6.5	meru/ø		-2 83			-7.31	 	
			Combined Eff	1			-2 92		 	-7 21		
		A ² D.		-		1		1				
	Acceleration Squared	A ² D _{co}		$+ \frac{3}{2}$	meru/g	0.01	241	1 050	-2 04	0.39	-0.36	
	Squared Sensitive Drift	A ² D ₍₁₁₎		.3	meru/g	- 991	0.04	1, 052	-2.84		-0.30	
						 	-204			-0.98		
<u> </u>	Root Sum Square E	rror (in f	and ft/sec)		<u> </u>	20,710	36,716	65,268	85.31	19.36	24.43	
	Root Sum Square Error (in nm and ft/sec) 3.41 6.04 10.74 85.3 19.4 24.4										24.4	

Table 4-9 Total Indication Errors at Entry End (24,000 ft)

4-12

A			RMS Error		Final I in Lo (in	Position Dcal Ax feet)	Error	Final Velocity Error in Local Axes (in ft/sec)			
					Alt.	Track	Range	Alt.	Track	Range	
ួដ	Uncorrelated	About	X _I (Azimuth)	0.50) mr		1,210			5.46	
BL.) ABE	· SM Alignment	About	Υ _I	0.04	1 mr	-173		- 95	-0.99		-0.29
STA MEN	Errors	About	z ₁	0.04	nr mr		-220		0.00	-0 94	0.20
	Accel IA	X to Y		0.96	e mr				0	0.01	
	Nonorthogonality	X to Z		0 14	16 mm	-9		- 396	-0 22		-1 64
	Accel. IA Mlm	Y abou	t X _I	0.03	34 mr		82	000	0,00	0.37	1,01
			Eff on Init Mlm			0		0	0		0
		АСВХ	Eff on Pwr Fit	.071 cı	m/sec ²	-112		-958	-0.30		-1.67
			Combined Eff			-112		- <u>95</u> 8	-0.30		-1,67
	Bias		Eff on Init Mlm				-1,292			- 5, 52	
	Error	ACBY	Eff on Pwr Flt	. 230 ci	m/sec ²		-2,990			-5.34	
TEI			Combined Eff				-4,282			-10.86	
OME			Eff on Init Mlm			489		270	5.26		-0,81
ERC		ACBZ	Eff on Pwr Flt	. 111 ci	m/sec ²	2,101		-481	2.80		0.82
EL			Combined Eff			2, 590		-211	8.06		0.01
ACC	Scale	SFEX		34	РРМ	61		168	0.23		0.77
	Factor	Factor SFEY Error SFEZ		57	РРМ		0		·	-0,04	
	Error			109	ррм	-401		110 .	-1.64		0.31
	Accel. Sq. Sensitive Indication	NCXX	NCXX		$\mu g/g^2$	-26		-158	-0.12		-0,57
		NCYY	NCYY		µg/g ²		-11			-0,05	
<u> </u>	Error	NCZZ		10	$\mu g/g^2$	33		- 8	0.17		-0.03
1	Bias Drift	BDX BDY	Eff on Init Mlm				-353			-1.59	
			Eff on Pwr Flt	2.0	meru		1,655			8.15	
1			Combined Eff				1,302			6,56	
			Eff on Init Mlm			- 51	-1,954	8	0.38	-8.81	-0.10
			Eff on Pwr Flt	2.3	meru	-4,073	2	-1670	-21.69	0	-6.06
			Combined Eff			-4,124	-1,952	-16 6 2	-21.31	-8.81	-6.16
			Eff on Init Mlm	. .			- 3, 399			-15,34	
		BDZ	Eff on Pwr Flt	1.3	meru	L	-2,677			-11, 15	
			Combined Eff			ļ	-6,076			-26.49	
Q			Eff on Init Mlm				-441			-1.99	
GYB		ADIAX	Eff on Pwr Fit	2.5	meru/g		70			-0.22	
	Acceleration		Combined Eff				- 371			-2.21	
	Sensitive	ADEDAN	Eff on Init Mim			0		0	0		0
	Drift	ADOURI	Ell on Pwr Pit	1.8	meruyg	396		235	2.24		0.56
			Combined Ell			396		235	2.24		0.56
		ADIA Z	Eff on Pwr Flt	6.5	meru/ø		-1.909			-7.89	
			Combined Eff	1		 	-1,909	<u> </u>		-7.89	t
1		A ² D		<u> </u>	. 2			<u>†</u>			
	Acceleration Souared	$A^2 D.$	(IA)X	<u> 3</u>	meru/g	110	69			0.48	
	Sensitive Drift	A ² D.	RA)(SRA)Y	.3	meru/g	-116	<u> </u>	-60	-0.67		-0.22
		^ ⁰ (IA)(IA)Z	. 3	meru/g	ļ	-143		L	-0.63	
ļ	Root Sum Square Ei	rror (in ft	and ft/sec)			4,908	8,129	2,003	23.00	32.23	6.70
	Root Sum Square Error (in nm and ft/sec) 0.81 1.34 0.33 23.0 32.2 6.7										

Table 4-10 Effect of IMU Errors during SPS 2nd Burn and Entry at Entry End (24,000 ft)

5.0 FAILURE EFFECTS ANALYSIS

5.1 Summary

Catastrophic failures are considered as to their effect on the S/C. Other possible failures are less serious, and their effect is assumed to be such as to degrade the nominal terminal dispersion. The effect of serious failure is discussed for each appropriate time interval and G&N configuration.

Most failures would be detected by the failure monitor circuits, however a significant delay time is accumulated between the occurrence of a failure and removal of the G&N steering signals. The effects of failures integrated over the associated delay time to steering signal removal is not assessed. Such assessment on final disposition of the S/C is best done through simulation effort.

5.2 G&N Configurations for this Mission

5.2.1 Pre LET Jetison Boost Monitor

The AGC computes a nominal attitude reference and drives the CDU's. Steering error signals are sent to the FDAI and are used as a monitor signal along with position and velocity obtained from accelerometer information. The functions required are listed below.

- a. CDU D/A (Attitude Error Signals)
- b. STABILIZATION
- c. ACCEL. MEASUREMENT
- d. AGC
 - 1. LIFT OFF
 - 2. READACC1
 - 3. SERVICER (CALCRVG, CALCTFF)

5.2.2 Post LET Jetison Boost Monitor

After LET jettison the G&N is switched to Fine Align so as to detect tumbling by tracking the gimbal angles. At SIVB-CSM separation the G&N tests for tumbling and, if it is present arrests it. The functions required through and including tumble arrest are listed below.

- a. CDU A/D (Gimbal Angle read in to AGC)
- b. STABILIZATION
- c. ACCEL. MEASUREMENT
- d. AGC
 - 1. TUMBLTSK1
 - 2. READACC1
 - 3. SERVICER
 - 4. S4BSMSEP

5.2.3 Attitude Maneuver and SPS 1 Burn

After separation (and tumble arrest if applicable) the G&N orients the S/C properly and guides (cross product steering) either abort or first SPS burn. Abort burn occurs if tumbling or the UPLINK ABORT signal were present at separation. The functions required are listed below.

a. CDU D/A

b. STABILIZATION

c. ACCEL! MEASUREMENT

- d. AGC
 - 1. READACC1
 - 2. SERVICER (STEER LAW)
 - 3. ATTIJOB
 - 4. DOMANU
 - 5. ENGINEON (ROLL JOB)
 - 6. ENGINEOFF

5.2.4 COAST PHASE to SPS 2 BURN

After SPS 1 cutoff the G&N controls a local vertical attitude for part of the free-fall interval and then holds the S/C at the orientation for the second SPS burn. The functions required are listed below. The accelerometer measurement function is operative but ignored during this free-fall interval.

- a. CDU D/A
- b. STABILIZATION
- c. AGC
 - 1. COASTPHS
 - 2. VERTASK (VERTJOB, CALCRVG)
 - 3. ATTIJOB
 - 4. DOMANU

5.2.5 SPS 2 BURN

This is the same as SPS 1 Burn (5.2.3), except the AGC does not do ATTIJOB or DOMANU.

5.2.6 SPS 3 and SPS 4 BURN

This is nearly the same as (5.2, 5). The difference is that the steering law and acceleration measurement are not used. The S/C is held to a fixed attitude and thrust is turned on and off on time bases.

5.2.7 Separation and Entry

After SPS 4 cutoff the G&N controls proper attitude for CM/SM separation. The G&N then reorients the CM for Entry. After .05G's the G&N controls a lifting entry. The G&N functions are still as for (5.2.3), except the AGC does:

- a. READACC1
- b. SERVICER
- c. SEPMANU
- d. ENTAJOB
- e. REENTRY CONTROL

The above configurations are summarized in Table 5-1.

5.3 G&N Failures

5.3.1 CDU D/A

Through the CDU the AGC indicates to the S/C the desired orientation with respect to the stable platform.

- a. Failures accepted as normal dispersions are increased RMS read-in or readout and acceptable bias read errors.
- b. Failures considered catastrophic as to their effect on the S/C are (1) No change in commanded angle and (2) saturated rate of change of angle.
- c. There is no internal CDU failure indication used. The G&N is removed from operation (if necessary) by detecting the failure from telemetered data and sending G&N fail via the UPLINK. (Refer to Par 5.5). There is a delay of approximately 20 seconds from the time of failure in the G&N to the time the G&N is removed from operation.

5.3.2 CDU A/D

The AGC reads the orientation of the S/C with respect to the stable platform via the CDU's.

5.3.3 Stabilization

This loop isolates the stable platform from S/C motion.

- a. Failures accepted as normal dispersion are increased platform drift, and dynamic degradation other than loss of the platform.
- b. Failure considered as catastrophic is loss of stabilization. (i.e. loss of the guidance reference.)
- c. The above failures inherently include the effects of failures in the temperature control system and the power distribution system.
- d. The considered failure will provide an internal G&N failure signal and automatic removal of the G&N from operation.
- e. There is a time lag of 2 seconds from loop failure to removal of the G&N.

Summary of G&N Configuration

5-4

5.3.4 Acceleration Measurement

For this function the system senses acceleration, integrates it and provides the ΔV indications to the AGC.

- a. Failures accepted as normal dispersion are changes in flight of the accelerometer bias level and scale factor.
- b. Failures considered catastrophic are (1) saturated ΔV outputs and (2) no ΔV output to the AGC.
- c. The above failures inherently include the effects of failures in the temp. control and power systems.
- d. Failures that cause saturated ΔV outputs are internally detected and provide an automatic indication and removal of the G&N.
- e. Failures that cause no ΔV output may not be detected internally and must be detected on the ground from telemetry data.
- f. There is a time delay of 5 seconds from loop failure to removal of the G&N for internally detected failures. For those detected from telemetry the time delay is approximately 20 seconds.
- 5.3.5 AGC

The AGC has an internal failure detection system. Most failures of the AGC will be temporary and the AGC will restart the programs running at some convenient point. If the AGC fails catastrophically the G&N fail signal will occur and remove the G&N from operation.

5.3.6 Summary of Considered Failure Modes

CDU D/A

- A-1. No change in angle
- A-2. Maximum rate of change

CDU A/D

- B-1. No change in angle
- B-2. Maximum rate of change

STA BILIZATION

C-1. Total loss (tumble)

ACCELERATION MEASUREMENT

- D-1. No ΔV output
- D-2. Maximum ΔV output

5.4 Effect of Failures on S/C

In this section the effects of the described failures will be discussed for each mission interval. Refer to 5.3.6 for failure mode symbol definitions.

5.4.1 From L/O to LET JETTISON

This interval includes the S-1 burn and part of the SIV Burn. The G&N acts as a guidance monitor. During SI flight the CDU's are driven in a programmed fashion. During SIV flight they are held fixed at the final S-1 orientation.

FAILURE S/C EFFECT

- A-1 (a) The ground will detect these failures from T/M data and may remove
- A-2 the G&N outputs by using the UPLINK G&N FAIL signal.
 - (b) The ground can continue the boost attitude monitor function by observing S/C attitude by means of the gimbal 1X Resolver T/M data.
 - (c) The G&N cannot be used beyond this interval
 - (d) The S/C will see no effect.
 - (e) The computation of position and velocity will be valid
- B-1 DO NOT APPLY FOR THIS INTERVAL
- B-2
- C-1 (a) The G&N will automatically provide the G&N FAIL signal to the MCP.
 - (b) The G&N cannot continue a guidance monitor function of any kind.
 - (c) The G&N cannot be used beyond this point.
 - (d) The S/C will see no effect.
 - (e) The computation of position and velocity will be wrong.
- D-1 (a) The ground will detect this failure from T/M data and may remove the G&N outputs.
 - (b) The attitude error data for guidance monitor will be correct.
 - (c) The computation of position and velocity will be wrong.
 - (d) The G&N will provide attitude data but cannot provide steering control beyond this point.
- D-2 (a) The G&N will automatically provide the G&N FAIL signal.
 - (b) The attitude error data for guidance monitor will be correct.
 - (c) The computation of position and velocity will be wrong.
 - (d) The G&N will provide attitude data but cannot provide steering control beyond this point.

5.4.2 From LET JETTISON to SIVB-CSM Separation and TUMBLE ARREST (if needed)

After LET Jettison the G&N is moded to fine align. The function of the G&N is to determine if the S/C is tumbling by reading and differentiating the CDU angular output. In addition the G&N computes position and velocity.

FAILURE S/C EFFECT

DO NOT APPLY FOR THIS INTERVAL

- A-1 A-2
- B-1 (a) The G&N will indicate no tumbling when there really may be tumbling.
 - (b) The ground will detect this failure and may remove the G&N outputs.
 - (c) The ground can detect the presence of tumbling from the gimbal 1X Resolver $T/\,M.$
 - (d) The computation of position and velocity is valid.
- B-2 (a) The G&N will indicate tumbling when there really may not be tumbling.
 - (b) After SIV-CSM Separation the G&N will cause the SPS to ignite at SEP + 3.0 secs. for tumble arrest and will not shut down the SPS.
 - (c) The ground will detect this failure and remove the G&N outputs. The G&N FAIL signal will automatically cause shut down of SPS thrust.
 - (d) The ground can verify tumbling from the gimbal 1X Resolver T/M.(i.e. platform is good.)
 - (e) The computation of position and velocity is valid.
- C-1 (a) The G&N will automatically provide the G&N FAIL signal to the MCP.
 - (b) This failure will cause a false tumbling indication.
 - (c) The G&N cannot be used beyond this point.
 - (d) The computation of position and velocity is wrong.
- D-1 (a) The ground will detect this failure from T/M data and may remove the G&N outputs.
 - (b) The attitude data is correct so tumbling arrest and the abort decision will proceed normally.
 - (c) The computation of position and velocity is wrong.
 - (d) The G&N cannot provide steering control beyond this point.
- D-2 (a) The G&N will automatically provide the G&N FAIL signal.
 - (b) The attitude data is correct so tumble arrest and abort decision will proceed normally.
 - (c) The G&N cannot provide steering control beyond this point.
 - (d) The computation of position and velocity is wrong.
- 5.4.3 From TUMBLE ARREST (or no TUMBLE G&N TAKEOVER) to end of SPS1 BURN

The G&N assumes steering control, orients the CSM properly and provides steering control for SPS1 burn or for ABORT burn.

FAILURE S/C EFFECT

- A-1 (a) The ground will detect this failure from T/M data and may remove the G&N outputs.
 - (b) Before SPS ignition this failure will result in incorrect initial thrust orientation. After SPS ignition the steering loop will get no response in the failed axes.

- (c) Position and velocity will be computed correctly.
- (d) The attitude reference is correct and such data is available from the gimbal 1X Resolver T/M.
- A-2 (a) The ground will detect this failure from T/M data and remove the G&N outputs.
 - (b) The commanded S/C attitude will continually change at a high rate.
 - (c) Position and velocity will be correct unless gimbal lock occurs and the gimbals tumble.
 - (d) The attitude reference will be correct unless gimbal lock occurs and this data is available from the gimbal 1X Resolver T/M.
- B-1 DO NOT APPLY FOR THIS INTERVAL
- в-2
- C-1 (a) The G&N will automatically provide the G&N FAIL signal.
 - (b) The attitude reference for steering is lost.
 - (c) Position and velocity are wrong.
 - (d) The S/C orientation or steering will be uncontrolled for two (2) seconds and then the SPS will shut down.
- D-1 (a) The ground will detect this failure from T/M and may remove the G&N outputs.
 - (b) The steering signals computed will be incorrect and the G&N should not be used for steering beyond this interval.
 - (c) The attitude reference is correct.
 - (d) The computation of position and velocity is wrong.
- D-2 (a) The G&N will automatically provide the G&N FAIL signal.
 - (b) The S/C will be incorrectly steered for five (5) seconds and then the SPS will be shut down.
 - (c) Position and velocity data are wrong.
 - (d) The attitude reference is correct.

5.4.4 From SPS1 CUTOFF to SPS2 IGNITION

The G&N provides attitude control. After SPS 1 C/O the CSM is held in local vertical (x-axis down) attitude until the CSM is approximately oriented for second burn. The attitude for second burn ignition is then achieved and held. For much of this time interval ground communication is lost.

FAILURE S/C EFFECT

A - 1

- (a) The ground will detect this failure and may remove the G&N outputs when ground communication is obtained.
 - (b) The CSM Attitude will be incorrect if failure occurs before assuming fixed attitude.
 - (c) The G&N cannot be used for steering control.

- (d) Position and velocity are correct.
- (e) The platform is correct and CSM attitude can be obtained from gimbal 1X Resolver T/M output.
- A-2 (a) The ground will detect this failure and remove G&N outputs when ground communication is obtained.
 - (b) The CSM attitude will be incorrect.
 - (c) The G&N cannot be used for steering control.
 - (d) Position and velocity are correct unless gimbal lock occurs.
 - (e) The platform is correct unless gimbal lock occurs and CSM attitude can be obtained from gimbal 1X Resolver T/M output.
- B-1 DO NOT APPLY FOR THIS INTERVAL
- B-2
- C-1 (a) This failure will cause the G&N outputs to be removed automatically after two (2) seconds.
 - (b) The S/C attitude will be incorrect.
 - (c) The G&N cannot be used for steering control.
 - (d) Position and velocity are correct since no computation is made in this interval.
- D-1 DO NOT APPLY FOR THIS INTERVAL
- D-2
- NOTE: If failure A-1, A-2 or C-1 occur prior to the 10 second FDAI align interval it would result in loss of the SCS backup reference.
- 5.4.5 SPS2 BURN

The G&N controls steering during this interval, just as it did for SPS1 burn.

- FAILURE S/C EFFECT
 - A-1 (a) The ground will detect this failure from T/M data and may remove the G&N outputs.
 - (b) The steering loop will get no response in the failed axes.
 - (c) Position and velocity will be computed correctly.
 - (d) The attitude reference is correct and such data is available from the gimbal 1X Resolver T/M.
 - A-2 (a) The ground will detect this failure from T/M data and remove the G&N outputs.
 - (b) The commanded S/C attitude will continually change at a high rate.
 - (c) Position and velocity will be correct unless gimbal lock occurs and the gimbals tumble.
 - (d) The attitude reference will be correct unless gimbal lock occurs and this data is available from the gimbal 1X Resolver T/M.

B-1 DO NOT APPLY FOR THIS INTERVAL

B-2

- C-1 (a) The G&N will automatically provide the G&N FAIL signal.
 - (b) The attitude reference for steering is lost.
 - (c) Position and velocity are wrong.
 - (d) The S/C orientation or steering will be uncontrolled for two (2) seconds and then the SPS will shut down.
- D-1 (a) The ground will detect this failure from T/M data and remove the G&N outputs.
 - (b) The steering signals computed will be incorrect.
 - (c) The G&N should not be used for steering beyond this failure.
 - (d) The attitude reference is correct.
 - (e) The computation of position and velocity is wrong.
- D-2 (a) The G&N will automatically provide the G&N FAIL signal.
 - (b) The S/C will be incorrectly steered for five (5) sec onds and then the SPS will be shut down.
 - (c) Position and velocity data are wrong.
 - (d) The attitude reference is correct.

5.4.6 SPS3 and SPS 4 BURN

After SPS 2 C/O a fixed attitude is held and these short burns are accomplished on time bases.

- FAILURE S/C EFFECT
 - A-1 (a) Since attitude is fixed this failure will have no effect during this interval.
 - (b) The G&N cannot be used for subsequent operations.
 - A-2 (a) The ground will detect this failure from T/M, however the operation most likely will be finished before the G&N outputs can be removed.
 - (b) Position and velocity are correct unless gimbal lock occurs.
 - (c) The small velocity gained by one or both of these burns will be in undesired direction.
 - (d) Unless gimbal lock occurs the platform is correct and attitude information is available from 1X gimbal resolver T/M.
 - (e) The G&N cannot be used for subsequent operation.
 - B-1 DO NOT APPLY FOR THIS INTERVAL
 - в-2
 - C-1 (a) The G&N will automatically provide the G&N FAIL signal after two (2) seconds. The SPS is inhibited from ignition following this signal.
 - (b) The small velocity gained will be in an undesired direction.

- (c) The G&N cannot be used to control subsequent operations.
- (d) Position and velocity change due to this burn will be measured incorrectly.
- D-1 (a) The ground will detect this failure and should not send the G&N FAIL signal until the start of entry.
 - (b) Position and velocity change due to this burn will be measured incorrectly.
 - (c) The G&N can control orientation for CM/SM Separation and ENTRY.
- D-2 (a) The G&N will provide the G FAIL signal after five (5) seconds.
 - (b) Position and vecloity are wrong.
 - (c) The G&N cannot be used for ENTRY control.
 - (d) The G&N may be used for orientation for CM/SM Separation and Entry by a ground G&N FAIL INHIBIT signal.
 - (e) There will be errors in computation of T_{FF} because of the incorrect position and velocity data.
- 5.4.7 Pre-Entry

After SPS 4 C/O the CSM is oriented for separation. After CM-SM separation the CM is orientated for ENTRY.

FAILURE S/C EFFECT

- A-1 (a) The ground will detect these failures and remove G&N outputs.
- A-2 (b) The two orientation maneuvers and CM-SM separation (or some part of this operation) will have to be controlled from the ground.
 - (c) Position and velocity are correct.
 - (d) The platform is correct and attitude is available from gimbal 1X Resolver $T/\mathrm{M}.$
 - (e) ENTRY will be done by back-up system.
- B-1 DO NOT APPLY
- B-2
- C-1 (a) The G&N will automatically provide the G&N FAIL signal after two (2) seconds.
 - (b) Orientation for Separation and ENTRY will have to be controlled from
 - th the ground.
 - (c) ENTRY will be done on back-up.
 - (d) Position and velocity and T_{FF} will be in error.
- D-1 (a) The ground will detect this failure and should provide the G&N FAIL signal at ENTRY start.
 - (b) The platform is correct.
 - (c) Position and velocity and T_{FF} are correct until Entry start.

- D-2 (a) The G&N will automatically provide the G&N FAIL signal.
 - (b) Position, velocity and T_{FF} will be wrong.
 - (c) The orientation will have to be done from the ground.
 - (d) ENTRY will be done on back-up.
 - (e) The platform altitude is correct and the ground can use 1X gimbal Resolver T/M to aid in ground orientation process.
- 5.4.8 Entry

The G&N provides lifting control during ENTRY. During ENTRY there is no ground communication.

- FAILURE S/C EFFECT
 - A-1 (a) This failure will not be detected.
 - (b) The steering loop will get no response on the failed axis.
 - (c) Position and velocity are correct.
 - (d) The platform attitude is correct.
 - A-2 (a) This failure will not be detected
 - (b) The G&N will cause continuous roll steering of CM.
 - (c) Position and velocity will be correct.
 - (d) The platform altitude is correct.
 - B-1 DO NOT APPLY
 - B-2
 - C-1 (a) The G&N will provide the G&N FAIL signal after two (2) seconds.
 - (b) Position and velocity will be wrong.
 - (c) The platform is lost.
 - (d) The SCS back-up will control ENTRY with I.C. errors due to two(2) second delay in G&N removal.
 - D-1 (a) This failure will not be detected.
 - (b) Entry steering will be incorrect.
 - (c) The platform attitude is correct.
 - (d) Position and velocity will be wrong.
 - D-2 (a) The G&N will automatically provide the G&N FAIL signal after five (5) seconds.
 - (b) Position and velocity are wrong.
 - (c) The platform attitude is correct.
 - (d) The SCS back-up will control ENTRY with I.C. errors due to five (5) second delay in G&N removal.

5.5 Ground Failure Detection

5.5.1 <u>CDU D/A</u>

In reference to figure 1 there are four loops operative in the CDU D/A operation. Of these four, loops A and B as shown in the figure are of primary interest.

Loop A includes the AGC, DAC, Motor-tach, MDA, CDU 1X Res, and the Digital Encoder. Loop B includes the CDU 1X Res, the Co-ord Tran. Resolver Chain, SCS, S/C, IMU Gimbals, and the IMU Resolvers.

The outputs of the starred items will be telemetered. The resolver outputs appear on PCM at 10 samples/sec. The AGC registers appear on the digital down-link at 1 sample/2 seconds. In summary the four available signals are:

NAI	ME	T/M	DATA
1.	CDU Ref.	DWNLNK (1SPS2)	AGC computed - Desired CDU Pos.
2.	CDU Reg.	DWNLNK (1SPS2)	Actual CDU Pos. as seen by AGC
3.	CDU 1X Res.	PCM (10 SPS)	Error Signal - Approx ($\alpha_{CDU} - \alpha_{IMU}$)
4.	IMU 1X Res.	PCM (10 SPS)	Two signals (Sine & Cosine) that can be used to R/O actual gimbal angles.

On the ground it will be appropriate to compare, after appropriate data reduction; signals (1) and (4). For proper system operation these angles will be nearly equal, in fact the difference should be equivalent (in angle) to signal (3). Unless the above conditions are maintained the G&N fail signal should be transmitted via the UPLINK.

5.5.2 CDU A/D

In reference to figure 2 there are two loops operative on the CDU A/D operation. Of these two the outer loop is of primary interest.

This loop includes the IMU 1X Res., CDU 1X Res, MDA, Motor-Tach, Digital Encoder, and AGC-CDU register.

The outputs of the starred items will be telemetered. The resolver outputs appear on PCM at 10 SPS. The AGC register appears on the Digital Downlink at 1 sample/2 seconds. In summary the three signals available are:

NA	ME	T/M	DATA
1.	CDU Reg.	DWNLNK (1SPS2)	Actual CDU Pos. as seen by AGC
2.	CDU 1X Res.	PCM (10 SPS)	Error Signal - Approx. $\alpha_{CDU} - \alpha_{IMU}$
3.	IMU 1X Res.	PCM (10 SPS)	Two signals (Sine & Cosine) that can be used to R/O actual gimbal angles.

Fig. 5-1 CDU D/A attitude error signals.

5-14

Fig. 5-3 Acceleration measurement loop.

5-16

On the ground it will be appropriate to compare, after reduction, signals (1) and (3). For proper operation, these angles will be nearly equal in fact the difference should be equivalent (in angle) to signal (2). Unless the above conditions are maintained the G&N fail should be transmitted via the UPLNK.

5.5.3 Acceleration Measurement

In reference to figure 5-3, the signals telemetered are indicated by stars.

The AGC ΔV COUNTER appears at 1 sample/2 seconds. The signal generator output appears at 10 SPS.

The loop includes the PIP, Pre-Amp, AC DiffAmp, Interrogator, Current Switch, Forward-Backward Counter, Calibration Module, DCAmp & PRR, and AGC Register.

In summary the available signals are:

NAME		T/M	DATA
1.	$\Delta V CTR$	1 SP 2 sec	AGC velocity increments
2.	S.G. Output	10 SPS	Demodulated 3200 cps output indicative of float motion

On the ground it will be appropriate to watch signal (1) and see that the incrementing does not stop while signal (2) indicates an acceleration level. If signal (2) should disappear this also indicates failure.

The large majority of loop failures will cause signal (2) to saturate. In this event the G&N will automatically provide the G&N FAIL signal after a 5 sec delay.

6.0 G&N RELIABILITY ASSESSMENT

Using predicted failure rates the G&N assembly breakdown for AGE 017 is as follows:

Assembly	<u>λ</u>	Operating Time	λt
IMU	170	1.4	
ISS Elec.	224	1.4	
IMU CDU (3)	111	1.4	
AGC	342	1.4	
DSKY	12	1.4	
D&C	6	1.4	
TOTAL			1211 failures per million missions

Prob. Success = $1 - 1211 \times 10^{-6} = .9988$

E-1828 DISTRIBUTION LIST

Internal

A. Hopkins R. Alonso R. Arrufo F. Houston R. Baker L. B. Johnson M. Johnston R. Battin (5) P. Bowditch A. Kosmala (3) D. Bowler A. Koso R. Boyd M. Kramer E. Copps A. Laats L. Larson R. Crisp J. Dahlen (15) J. Lawrence (MIT/GAEC) E. Duggan T. J. Lawton (2) K. Dunipace (MIT/AMR) (3) T. M. Lawton (MIT/MSC) J. B. Feldman D. Lickly S. Felix (MIT/S&ID) (3) H. Little J. Flanders G. Mayo J. Fleming (4) J. McNeil G. Fujimoto H. McOuat F. Grant R. Morth Eldon Hall James Miller (2) Edward Hall John Miller E. Hickey J. Nevins D. Hoag J. Nugent J. Dunbar

F. Olsson J. Rhode M. Richter M. Sanders M. Sapuppo R. Scholten E. Schwarm J. Shillingford (3) W. Shotwell (MIT/ACSP) J. Sitomer B. Sokappa M. Sullivan J. Suomala R. Therrien W. Toth M. Trageser R. Weatherbee L. Wilk R. Woodbury W. Wrigley Apollo Library (2) MIT/IL Library (6)

E-1828

— .	-
Hytern	21.
	<u>ar</u> ,

W. RI	hine (NASA/MSC)	(2)
NASA	/RASPO	(1)
L. Ho	oldridge (NAA/MIT)	(1)
Т. Н€	euermann (GAEC/MIT)	(1)
AC E	lectronics	(10)
Kolls	man	(10)
Rayth	eon	(10)
Majoı	r H. Wheeler (AFSC/MIT)	(1)
MSC:		(25 + 1R)
-	National Aeronautics and Space Administration Manned Spacecraft Center Apollo Document Distribution Office (PA2) Houston, Texas 77058	
LRC		(2)
	National Aeronautics and Space Administration Langley Research Center Hampton, Virginia Attn: Mr. A. T. Mattson	
GAEC	C:	(1)
	Grumman Aircraft Engineering Corporation Bethpage, Long Island, New York Attn: Plant 1	
NAA:		(18 + 1R)
	North American Aviation, Inc. Space and Information Systems Division 12214 Lakewood Boulevard	

Downey, California Attn: Apollo Data Requirements AE99 Dept. 41-096-704 (Bldg 6)	
NAA RASPO:	(1)
NASA Resident Apollo Spacecraft Program Office North American Aviation, Inc. Space and Information Systems Division Downey, California 90241	
ACSP RASPO:	(1)
National Aeronautics and Space Administration Resident Apollo Spacecraft Program Officer Dept. 32-31 AC Electronics Division of General Motors Milwaukee 1, Wisconsin Attn: Mr. W. Swingle	
Mr. H. Peterson Bureau of Naval Weapons c/o Raytheon Company Foundry Avenue Waltham, Massachusetts	(1)
Queens Material Quality Section c/o Kollsman Instrument Corporation Building A 80-08 45th Avenue Elmhurst, New York 11373 Attn: Mr. S. Schwartz	(1)
Mr. H. Anschuetz USAF Contract Management District AC Electronics Division of General Motors Milwaukee 1, Wisconsin 53201	(1)

___ .

• ^•