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Abstract 

Navigation systems have generally been devel- 
oped using a deterministic approach; i .e.  by solving 
exactly the dynamic equations of motion. In reality 
the navigation problem is a statistical one since 
there a r e  unpredictable e r ro rs  in' the measure- 
ments. The advent of very powerful navigation 
computers makes it possible to retrieve more of the 
information contained in the navigation measure- 
ments using statistical filtering techniques. The 
navigation system is thus developed here as  an infor- 
mation filtering problem rather than a simulation of 
a deterministic physical system. The Kalman 
optimum linear filter is found to apply to the 
navigation problem if some technique is used to 
account fo r  possible non—gaussian maneuver accel- 
erations. A major problem in the application of 
statistical techniques is the tremendous amount of 
computation required. Two methods are  suggested 
which greatly reduce the amount of computation with 
a minimum degradation in the performance of the 
system. In one method, physical considerations are  
used to divide the total filter into smaller, simpler 
filters. In the other method, the optimum gains are  
precomputed and approximated by simple functions 
in the flight computer. The details are given for the 
alignment and calibration of the Apollo inertial 
platform using statistical filtering. 

1. Introduction 

Two recent developments are leading to changes 

in the way navigation systems are formulated. One 
more 

These 

computers make possible much more sophisticated 

of these developments is much smaller, 

powerful, and cheaper flight computers. 

techniques for reducing the navigation information. 
The  other complementary development is new sta- 

tistical -filtering techniques which provide the 

methods for taking advantage of the increased com- 

putational capabilities. There are, however, several 

practical problems encountered when one attempts 

_ t o  apply these techniques to practical systems. One 
i s  the non-gaussian distributions of some of the 

signals encountered. The well-developed linear 

filter theory cannot always be applied directly in 

these cases. Another problem is obtaining an 

adequate statistical model'of the physical systems 

involved inthe navigation filter. A third problem is 

the immense amount of computation that is usually 
required. The last two problems are interrelated 
in that the more accurately the system is statisti- 
cally modeled, the more difficult the computational 
problem becomes. In general, the amount of 
computation increases with the square of the number 
of variables used to describe the system. [This 
paper is concerned primarily with the last problem. 

The plan for this paper is to first briefly show 
the form of anavigation system that uses statistical 
filtering. The basic Kalman linear filter is applied 
to a simple navigation system and the first problem 
of non-gaussian distributions is mentioned but not 
discussed in detail. There is much interest in ap- 
plying Kalman filtering to navigation systems but in 
most cases the statistical filter is used only to apply 
exterpal information such as position fixes and dop- 
pler radar velocities to the basic Schuler tuned 
system.“’ 2’3”” Statistical filtering should be used 
to incorporate all measurements including the ac- 
celerometer inputs. This technique has been sug- 
gested by Astr3m for the vertical control of an 
inertial platform(5’ 6) '  Two methods are then sug- 
gested for simplifying the problem in order that it 
can be‘more easilyfhandled Ona practical computer. 
Details are  then given of the alignment and calibra- 
tion of the inertial platform in a spacecraft that is on 

top of a swaying launch vehicle. One of the simplifi- 
cation techniques is used to obtain a very efficient 
computer program. 

' 2. The Form of a Navigation System 
Using Statistical Filtering 

The basic configuration of a navigation system 
is shown in functional form in Figure 1. The question 
with which we are concerned here is, what should the 

computer program be that converts the measure- 

ments to the desired outputs and generates the com- 

mands to the sensors? ‘ 



The equations to be solved by the computer 
have usually been developed by first devising a 
hypothetical mechanical system that would solve 
the navigation problem. The physical system that 
has the proper characteristics is the Schuler tuned 
pendulum. This pendulum has the property that 
(assuming proper initial conditions) it will always 
indicate the true vertical regardless of the motions 

of the vehicle carrying the pendulum. This indicated 

true vertical can be compared with an inertial refer- 

ence maintained by gyroscopes to produce the posi- 

It is 

virtually impossible to build a physical pendulum 

tion of the vehicle on the earth 's  surface. 

with a reasonable size that would have these charac- 

teristics. In order to obtain the proper characteris- 

t ic frequency for the pendulum, the pivot point center 

of mass separation would have to be on the order of 

one atomic distance. However, it is possible to 

solve the proper equations in the computer shown in 

Figure 1 and produce the proper commands to the 

gyros so that an instrumented platform along with 
the computer simulates the characteristics of the 

hypothetical pendulum. This approach has been very ' 
successful particularly when it was necessary to use 

analog computing techniques. However, with the 
advent of very powerful digital computers, it is 

possible to improve the performance of anavigation 

system by using statistical methods to take advan- 
tage of more of the inherent information provided 
by the sensors. 

The statistical method differs from the con- 

ventional approach in that the equations are not de- 
veloped in order to simulate a physical system but 
a r e  developed as a statistical information filtering 

problem. In other words, given a set of physical 
measurements and some knowledge of the statistical 

characteristic of all the components involved, find 

the best estimate of the desired output quantities. 

For  a navigation system, the physical measurements 

a r e  normally the output of accelerometers which are 

mounted on a gyro stabilized platform and the 

desired output is the position and velocity of the 

vehicle. The problem is statistical because there 

a r e  always unpredictable noises and errors  in the 

measurements. The path of the vehicle is also 

random. (If the position of the vehicle could be 
predicted, there would be no need for  a navigation 

system.) Furthermore, it is usfially necessary to 

incorporate redundant sources of information such 

as  position fixes and doppler velocities. 

The maximum amount of information provided 
by the measurements in a system with unpredictable 
errors is the probability density function p(§). The 
vector: g represents the state of the entire system 
involved including the sensors, the vehicle, and the 
environment. In other words, with the knowledge of 
all past measurements and the a priori assumptions 
of the statistical characteristics of the entire sys- 
tem, the most that can be known about the position 
of a vehicle is the probability that it is in each 
incremental volume of possible positions. 

In most cases the entire probability density 
function is not desired. What is usually wanted is 
some set of values that is, in some respect, the 
"best" estimate of the state of the system. This 
estimate is symbolized byg. The meaning of "best" 
is somewhat arbitrary but, except for the possibility 
of very special situations, the estimate is usually 
chosen so as to minimize the average of some func- 

tion of the error in the estimate g = g - 2;. The 
most obvious estimate and one that minimizes the 
mean-squared error is the expected or mean value 
which is given by 

12> = r £1302 
00 

where p(§_ I Q ..._r§1n) is the probability density 

311. .gnmgg (1) 

function conditioned by all past measurements. 

The solution of equation (1) would require the 
computation of the entire probability density function 

of all the state variables as a function of time. The 
computation would include the changes in the density 
function due to the dynamics of the system and also 
the changes due to the information gained by new 
meagurements. The techniques for accomplishing 
this computation are  not, to the authors‘ knowledge, 

well developed and furthermore would be extremely 

impractical for any computer in the foreseeable 
future. If certain assumptions can be made about 
the system, the computation can be simplified con- 
siderably. The most advantageous assumption is 
that the errors in the estimate can be represented 

by a linear system excited by uncorrelated noise. If 
this assumption is adequate, then the whole process 
represented by equation (1) can be stated concisely 
by equations developed by Kalman.(7’8) The fol- 



lowing section outlines the mathematical develop- 
ment of a navigation system using statistical fil- 

tering assuming a linear error model. 

3. Mathematical Development 

It is assumed that the state of the entire system 
including sensors, vehicle, and environment can be 
describea by differential equations of the form 

gm = _f_(_1_:_(t). gm, gm, t) (2) 

where _(_:_ are known control inputs and Q are white 
noises. For the assumptions to be made here, it ‘can 

be  shown that the control does not affect the form of 
(9’ 10) Thus the control variables the optimum filter. 

5; will not be shown explicitly in - the following 

discussion. It is assumed that measurements are 

made at discrete times according to the relation 

_n3(tm) = _11(§_ (tm), 35(t (3) 
where 1_1_(tm) are‘ errors in the measurements that 
are  uncorrelated between measurements. (Time 
correlated errors in the measurements would have 

to  be included in the state vector 35.) It is further 
assumed that some initial estimate 3; of the state 
variables is known where the error in the estimates 

of the state and the measurements are  

I»
 

|B
> 

635:  -_:_r_ and 6 m :  - m  

By Taylor series expansion, equations (2) and (3) 
can be linearized around a nominal 

532 _ if 53+ 2 52 + 0(52) 
35 nom 33 nom 

and 

6£n_ = 3-1; 635 + 3-2; 62 + 0(62) 
-- nom 82 nom 

If the higher order terms can be neglected, then the 
optimum measurement process is given by 
Kalman‘s optimum linear filter. The derivation of 

these equations are giveninreferences (7), (10) and 
(1 1). The basic equations are summarized as follows 

3 =g'+ E’HT(HE’HT + U)-1(_I£ - yfih» 
at 

E=E’-E’HT(HE'HT+U)"1 HE’ 5‘ 
measurement 

time 

R 
i =36; 1:) between 

T measurements (4) 
é = F E + E F  + N  

In these equations the prime indicates conditions 
that exist just before the measurement. The matrix 

E is called the covariance matrix of measurement 

errors and is defined by 

E = < 6 5  615T) 

where "< >" represents the expected or mean value. 
Other quantities in equation (4) are defined by 

F _  a_f(§:_, t) H_ 3116:, t) 
835 335 

T T 11:61:33.1; 51n 6.: 
82. 82 62. 32 

The matrices R and Q are defined by 

<2“) _1_1_('r)> R6 (t - '1') 

Q5(t - 'r) <_r1(t) 3(7)> 

The optimum filter for a linearized system is shown 

in diagram form in Figure 2 where, at the sample 

times, the estimate of the state 3; is changed by an 

impulse through the weighing factor 

T K = E’HT(HE’H + U)"1 

It has been found that navigation systems can 

usually be fitted into this linearized framework with 

one important exception - the accelerations due to 

the commanded maneuvers of the vehicle. The er- 

rors in the estimates of the state 63; and measure- 

ments 651 are assumed to have gaussian distribu- 

tions. (This follows from the assumptions of linear 

systems with white noise inputs.) The maneuver 

acceleration is approximately zero except for 

certain random times when it is very large. The 

amplitude distribution of this acceleration is far 

from gaussian. Two methods are suggested for 

handling this problem. The simplest and probably 

best solution would be to provide a signal from the 

control system of the vehicle that would inform the 

navigation system when the vehicle is maneuvering. 

The vehicle marieuvering commands would be in- 

cluded in the control variables 3. The optimum 



filter would then be affected only by the inaccuracy 
in predicting the vehicle motions. These inaccura- 
cies are usually described adequately by gaussian 
distributions. If this signal cannot be provided, it 

is suggested that a nonlinear filter be developed that 
takes into account the actual amplitude distribution 

of the acceleration. A method for devising this 

nonlinear filter is suggested in reference (10). For 
the purposes of this paper, it is assumed that the 

problem of maneuvers is solved by some method 
and that statistical filtering takes place only during 

the steady- state cruise conditions between ma- 

neuvers. It is thus assumed that the disturbance 

accelerations are relatively small and have gaussian 

distributions. 

With the assumptions that have been made 

above, it is possible to formulate the statistical 

filter foranavigation system using equation (4). A 
functional diagram of the computational part of the 

system is shown in Figure 3. Measurements such 
as position fixes which are not available at every 

basic measurement time are  incorporated with a 

separate process but the equations are of the same 

form and are based on the same covariance matrix. 
With a-navigation system formulated in this way the 

problems of velocity damping and reset are automat- 

Further- 

more, with minor changes in the content but not the 

ically included in an optimum manner. 

form of the equations, the problems of pre-mission 
alignment, gyrocompassing, and component cali- 

bration can be accomplished in an optimum way. 

4. Illustrative Example 

These ideas can best be illustrated by applying 

filtering to a simple problem. For this example the 

vehicle is constrained to move only along a meridian 
on the surface of a spherical nOnrotating earth. The 

vehicle is disturbed by random accelerations with a 
gaussian distribution and an exponential autocorrel- 

ation function. The navigation is to be performed on 
the basis of the measurements of a single-degree- 

of-  freedom accelerometer that is mounted on a plat- 

form that rotates about an axis perpendicular to the 

meridian plane. The orientation of the platform is 

controlled by a single-degree-of-freedom gyro. 
The platform can be commanded to rotate at a given 
rate bya signal sent to the gyro. The platform will 

. also rotate due to gyro drift. The gyro drift rate is 

assumed to be a random walk function beginning at 

some initial value. The accelerometer measure- 

ments are  fed into a computer which estimates the 

latitude and velocity of the vehicle and also computes 
the command signals to be sent to the gyro. A 

schematic drawing of the navigation system is shown 

in Figure 4. 

The steps for applying a statistical filter 

are: (1) choose the state variables, the set of quanti- 
ties that are needed to describe the complete system; 
(2) determine the dynamic equation that describes 
these state variables; (3) derive the equations that 
relate the measurements to the state variables; (4) 
develop the linearized equations that describe the 

errors inthe estimates; and (5), if it can be assumed 

that the linear approximations of the errors are 

sufficient and that all signals and initial conditions 

have gaussian distributions, apply equation (4). 

The state variables that describe this simplified 

navigation problem are vehicle acceleration 3., ve- 
locity v, latitude L, platofrm misalignment from 

vertical 6!, and gyro drift rate d. The equations 

describing the dynamics of these variables are 

a = - a / ' T + n a  

{rv=a 
L = V / R  (5) 
o A a =v/R-GIR+d-d  

where 'r is the correlation time of the vehicle ac- 

celeration, R is the radius, of the earth and na and n d 
are  the white noise inputs into the models of vehicle 

acceleration and gyro drift rate respectively. The 
Er equation derives from the fact that the platform is 
rotated by (‘r/R in order to keep it aligned with the 
vertical while the true vertical rotates byv/R. The 
platform is also torqued by 3 to compensate for the 

gyro drift rate d. 

The measurement of the accelerometer is given 

by 

m = (5) a c o s a +  (g - v2/R) s i n a + n m  

where g is the acceleration of gravity and nm is 
uncori-elated noise in the measurements. 

The equations for the estimated state variables 

and measurement are the same as equations (5) and 

(6) with the actual state variables replaced by the 



estimated variables and with the noise term deleted. 
The equations for the errors in the estimates and 
measurement are  thus 

P 1 - 1 F 1 r 
6 a  “ 1 / 7  0 0 0 0 6 a  113 

6‘; 1 o o o 0 av o 
5L = o 1/R o o 0 5L - o (7) 
6 -  o 1 / R  o o 1 5 o 

a 0 

ca L o o o o 0 5d :1d 

and .. - 

6 - [ 1  0 0 ( ~ 6 2 / R )  o] 5 ' - n  m " g a m 
' .s 

V 

5L (8) 
6 0  

6d 

The optimum filter for this navigation system is now 
completely defined by equation (4) where the F and 
H matrices are given by equations (7) and (8) 
respectively. The noise matrices are given by 
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where A and D are defined by 

<na(t )  na (7 )>  = A 6(t - 'r) 

<ncl (t) nd ('r)> = D 6(t - 'r) 

and 

2 
U ‘ z  ( H m )  

This system is shown in diagram form in Figure 5. 
The numbers at the output of the gains K mean 
discrete changes are  made at the corresponding 
points in the system at the sample times. 

An example of the response of this meridian 
system to typical inputs is given in Figure 6. The 
three sources of disturbances in the system are the 
random walk gyro drift rate, the disturbance ac- 
celerations, and the random measurement error. 
The random walk gyro drift increases the RMS gyro 
drift rate by . 05 meru IVE—I: . The disturbance accel- 
eration has an RMS value of .003 ftlsec2 and a cor- 
relation-time of one minute. The random error in 

the measurement has an RMS value of .001 f t /  390.2. 

The sampling 'period for the measurement is one 
second. Also shown for the same inputs are the 
responses of a Schuler tuned undamped system and 
a system with lead-lag damping. 

5. Physical Interpretation of Filtering 

Some feeling for how a system with statistical 
filtering is different from a conventional system 
can be gained from the following arguments. The 
basic measurement of an inertial navigation system 
is the measurement of the accelerometer which is 
equal to the acceleration of the vehicle with respect 
to inertial space minus the gravitational accelera- 
tion at the position of the vehicle. For inertial 
navigation in general to be possible (say in space) 
the gravitational acceleration must be known as a 
function of position. However, in a terrestrial sys- 
tem an important piece of information is known 3 
priori, the vehicle is constrained to be near the 
surface of the earth. It is thus known that there 
must be some force on the vehicle (lift. buoyancy) to 
counteract gravity. Thus the accelerometers 
measure the combination of two essentially different 
quantities, acceleration and gravity, which both give 
information about the vehicle's motion. The accel- 
eration can be integrated to obtain the vehicle's 
change in velocity and position. The change in the 
direction of gravity measured with respect to the 
gyro reference also indicates the change in the 
position of the vehicle. The task of the statistical 
filter is to separate these two signals using their 
distinctive statistical characteristics. The vehicle , 

accelerations are primarily high frequency while 
the acceleration of gravity is essentially a slowly 
changing bias. The filter compares the indications 
from these two sources in order to reduce the errors 
in each. 

The improvement made possible by a statistical 
filter can be viewed inanother way. It is known that 
most error sources in an inertial system excite an 
84-minute mode of oscillation. In some conventional 
systems there is damping in order to reduce these 

84-minute oscillations. A system with statistical 
filtering” not only performs this 84-minute damping 
in an optimum way but makes some estimate of the 
sources of these errors. For example, inthe simpli- 

fied meridian navigation system from the previous 

section, if the statistical filter detects an 84-minute 
oscillation, it not only removes this oscillation but 
also determines that this oscillation was caused by 



gyro drift. The filter thus changes the gyro 
compensation reducing the effective gyro drift rate. 

6. Methods for Reducing Computation 

It can be seen from equation (4) that the straight- 
forward application of the optimum linear filter is 

not very practical because of the tremendous amount 
of computation required. The covariance matrix is 

n' x nwheren  is the number of state variables used 

to describe the entire system. Of course, the more 

accurately the system is described, the more state 
variables are required. It has been found that most 
practical systems require at least 20 to 30 variables. 
Since the covariance matrix is symmetric, only half 
the off diagonal terms need be computed, but this 

still gives n(n + 1)/ 2 terms. There are thus approxi- 
mately 400 differential equations which must be 
updated for  each measurement where the measure- 

ment period may need to be as short as 1 to 2 seconds. 

What is needed are  techniques for reducing the 

amount of computation with aminimum degradation 

in performance of the system. Two methods are 
suggested in this section. 

For the first method, it is proposed that the 

computation be reduced by eliminating elements of 
the covariance matrix that have a negligible contri- 

bution to the operation of the system. The linear 

filter given by equation (4) gives the "mathematically 
optimum" filter for the model that was assumed to 
represent the physical system. By"mathematically 
optimum" is meant that terms are included even if 
they would reduce the mean-squared uncertainty 

The 

effect of these terms would be virtually undetectable 
only in the ninth or tenth significant figure. 

in a typical mission. These terms are especially 
insignificant when it is realized that the assumed 
statistical model represents the actual system to no 

The 

problem now is to  locate these negligible parts and 

more  than two or three sigificant figures. 

then to simplify the system without significantly 
degrading the performance. 

One possible method of simplifying the optimum 

filter is to neglect elements of the covariance matrix 

where the cross-correlation between terms is weak 

and thus will make little contribution to the weighting 

coefficients. With some physical insight into the 

nature of the navigation problem, some possible 

areas of weak correlation can be detected. 

One area of possible weak correlation is 

between the errors in the estimates of the ac- 

celeration of the vehicle in the two horizontal 

directions. It can be assumed that the accelerations 

in the two directions themselves are uncorrelated, 

but the errors  in the estimates of the accelerations 

a re  correlated because of the filtering process 

itself. This correlation is due to a sequence of 
relatively weak correlations. Another area where 
the problem could possibly be decoupled is between 
variables with high and low frequency characteris- 

tics. For example, it might be suspected that the 

specific high frequency characteristics of oscil- 

latory vehicle accelerations might have little effect 
on the estimate of gyro drift which is detected 
through 84-minute and 24-hour oscillations in the 

platform misalignment angles. Vice-versa, the 
specific low frequency characteristics of mis- 

alignment angles might have little effect on the 

estimate of high frequency acceleration terms. 

A possible form for the navigation system which 

takes advantage of these weak correlations can be 
found by identifying and separating the principal 

functions of the filter in the navigation problem. 

The measurement of the horizontal accelerometers 

are  primarily a function of vehicle accelerations 

and gravity times the vertical misalignment of the 
platform. The vehicle accelerations can be assumed 

to consist primarily of high frequency disturbances 

plus possible smaller magnitude terms at low fre- 

quencies. The vertical errors have characteristic 

frequencies near 84 minutes and 24 hours. Thus, 

one primary function of the filter is to separate high 

frequency accelerations from what are essentially 

slowly varying bias accelerations. Another major 
task is to separate this bias into actual vehicle ac- 

celerations and accelerations due to vertical misj 
alignment and then to infer the cause of the estimated 

misalignment, e.g., gyro drift. The navigation 

system can be simplified if these functions can be 
decoupled, that is, if the fact that the bias ac- 

celeration is slowly varying does not affect the 
separation of the bias from the high frequency ac- 

celerations and, conversely, if the exact nature of 
the high frequency terms does not affect the 

separation of the low frequency terms. 

If the above assumptions are valid, the optimum 

filter can be approximated by three separate filters. 

One filter in each of the two horizontal directions 

would separate high frequency accelerations from a 



bias acceleration having a slow variation that is 
assumed to be known. The sampling rate for these 
two filters would be about the same as that for  the 
original filter. The output estimates of the bias 

accelerations from the high frequency filters would 
The 

third filter would use these pseudo-measurements 
be pseudo-measurements into a third filter. 

t o  make corrections on the estimates of position and 
velocity that a r e  due to low frequency characteris- 

t ics and also to estimate misalignment angles, gyro 

The 
sampling period for the low frequency filtér would 
drift rates, and long-term accelerations. 

be  long enough that errors  in the measurement of 

the bias acceleration can be assumed to be uncor- 

related. The separated filter is shown in Figure 7. 
In this figure the state variables fix and 5 include the 
bias acceleration, position, velocity, and all the 

variables that describe the high frequency ac- 

The 

variables 5 again include position and velocity and 
celerations in the two horizontal directions. 

also long-term accelerations, misalignment angles, 
and gyro drift rates. 

Since the statistics of the vehicle accelerations 

can usually be assumed to be stationary, the ability 
of the high frequency filters to separate a bias from 

the short correlation time accelerations .quickly 
reaches a steady state. In other words, after two or 

three time constants of the principal high frequency 

terms,  the mean- squared uncertainties in the esti- 

mates of the accelerations become constant. This 
means that the entire covariance matrix and also the 

weighting coefficients become constant. Thus, the 

covariance matrices for  the high frequency filters 

do not have to be computed in real time in the 

navigation system if some satisfactory technique is 

used for the initial transient. If necessary, pre- 
computed gains could be used during the initial 
phase, but it has been found in most cases that the 

steady- state values a r e  also sufficient for the tran- 

sient. The covariance matrix for  the third filter 

must be computed in real time since it has 84-minute 

and 24-hour modes and also depends on the position 

and velocity of the vehicle. For a typical case the 
low frequency filter would involve a 15 x 15 matrix. 
This gives 120 simultaneous differential equations, 
but the sample time can be as  long as three minutes. 

This gives a reduction in the amount of computation 

over the straight forward application of the complete 

This 

computation problem can be easily handled by at 
optimum filter by a factor of about 500. 

practical navigation computer. 
This intuitive reasoning gives a possible form 

for  a simplified system which might operate in a 
near optimum fashion, but the details of the design 

are not specified. For example, the mean- squared 
value -of the errors in the pseudo-measurements 

must be determined. Also the gains in the high 

frequency filter for the estimation of the bias ac- 
celeration, position, and velocity need to be speci- 
fied. The method proposed to specify these gains 

and also to determine how nearly the simplified 
system can be made to approach the optimum system 
is to match typical responses for the two systems. 
A complete optimum system is simulated on a 

The 
simplified system is then simulated for the same 
computer for  a. typical navigation problem. 

conditions, and the arbitrary gains on the system 

a re  adjusted so that the simplified system matches 

as nearly as possible the response of the optimum 
one. There are two sets of signals that should be 
matched. The most important signals are the actual 
discrete outputs of the two systems. The other set 

of signals is 'the estimated mean-squared errors in 
the estimates, i.e., the values of the common 

diagonal elements of the covariance matrices of the 

two systems. 

Computer results are given in Figures 8 and 9 
showing the comparison of a complete and simplified 

navigation system. In this example the navigation 

system is a simplified system that is essentially the 
same as the one described in section 4 except that a 

much more complete model of vehicle motion is 

used. The vehicle model included long and short 

correlation time and oscillatory accelerations. Only 
velocity is shown here as an example. It can be seen 
that the RMS results in Figure 8 can be made to 

match very closely and that the discrete results in 
Figure 9 are similar after the initial transient. 

The second method of simplifying the optimum 

filter is through the use of precomputed gains. If 

the system is linear, the gains at each measurement 
are  only functions of time and the a priori 
assumptions of the statistics of the noises and the 

initial state. By specifying the measurement 
schedule or rate, the gains may be precomputed and 
stored in the vehicle's computer. For a small 

number of measurements this is a practical solution 

to the problem involved inimplementing an optimum 

filter. For a large number of measurements, the 



precomputed gains are  usually smoothly varying 
with respect to time and may be approximated by 
suitable curves (straight lines, exponentials, etc.) 
that give almost identical filter responses as the 
true gains. Some of the minor gains may even be 
neglected completely. This second technique for 
simplification of the computation will be applied to 
the pre-launch calibration and alignment of an 
inertial platform ina spacecraft on top of a swaying 
launch vehicle and is, in fact, the technique used in 
the MIT Apollo Guidance and Navigation System. 

7. Apollo Pre- Launch Calibration and Alignment 

Physical Bases for Aignment and Calibration 
The inertial platform we wish to calibrate and 

align is a three-gimbal stable member with three 
single-degree-of-freedom integrating gyroscopes 
and three pulsed integrating pendulous accelerome- 

ters defining three orthogonal stable member axes. 
The physical basis for alignment and calibration is 
the detection of the gravity reaction acceleration 
and the vector rotation of the gravity vector. The 
direction of these two vectors gives the information 
necessary to align the platform to any orientation. 
The known gravity reaction acceleration is used to 
calibrate the accelerometers; the known vector 
rotation of gravity (earth rate) is used to calibrate 
the gyros. The exact quantities to be measured are 
not considered at this point. W e  will first develop 
the general optimum method of platform alignment 
to a local vertical coordinate system and measure- 
ment of the south and vertical gyro drifts. In this 
procedure, the platform is approximately aligned to 
the local vertical coordinates then it goes inertial. 
The two horizontal accelerometer outputs (south 

and east) are used by the optimum filter to generate 
estimates of the relevant quantities. 

The vertical gyro drift is the most difficult 
quantity to  measure since it causes only a third- 

order effect on the measured acceleration. Gyro 
failures can be closely associated with changes in 
drift due to acceleration of gravity along the input 
axis so the pre-launch calibration of a gyro in a 
vertical position is highly desirable. 

Since the estimates of the alignment and drift 
variables will depend on the measurement of the 

acceleration due to gravity, the primary disturbance 
factor is the wind- induced sway of the launch vehicle. 

The model of the system for the optimum filter 
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must, therefore, also include variables due to the 
wind-induced sway as well as the alignment angles 
and gyro drifts we wish to estimate. 

We will first develop the models for the filter 

and then digitally simulate the complete filter. The 
filter 'will be linear so that by specifying the 
measurement schedule the optimum gains may be 
precomputed. The gains will be approximated by 

functions that will be stored in the flight computer. 
The method for using this simplified filter in other 

platform positions, as well as an illustration of a 
system test program, will then be presented. 

Models 

Launch Vehicle Sway Model. 
the launch vehicle bending dynamics in the north- 

We approximate 

south and east-west directions by identical second- 
order systems. The wind causing the vehicle sway 
is assumed to be exponentially correlated with a 
correlationtime of 1/1 seconds. In Appendix A, we 
show the model and derive the correlation function 
of the white noise n(t) which, if passed through a 
first-order lag, generates an exponentially cor- 
related wind. The wind drives the model of the 
launch vehicle to generate an expected value of 
mean-squared‘sway. The state vector for the sway 
variables in the south direction may be written as 

.. - 1 . . - . 
p s 0 1 0 p s 0 

VS -.= 0 0 1 vS + 0 

£1 -)ua2 -w2-2glw -=2t_,w - A a n(t) s_ . n n n n . _ s_ L _ 

(9) 
where 

p 3’ vs, a s are the horizontal displacement, 

velocity, and acceleration of the launch vehicle 
in the north-south direction, 

(on and g are the natural frequency and damping 
ratio of the second-order approximation to the 

bending dynamics, 

A is the inverse correlation time of the wind, 

and 

n(t) is the white noise generating the expo- 
nentially correlated wind. 

The model for  the sway variables in the east 

direction (pe, v , ae) is the same. 
e 
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Platform Dynamics. 
tation of the platform with respect to a local vertical 

W e  describe the orien- 

coordinate system (vertical, south, and east) by 
three angles (0,3. 7). If the platform axes (x, y, 2) 
were rotated by-a,-B, and ‘7, the axes would coincide 
with the reference coordinates. The state vector 

equation for  this substate is given by 

a 0 0 9h 1 0 a tX-S'Zv 

B 0 0 9v 0 1 B ty+Qh 

d _... 7 = - -S'2 0 0 0 7 + 1; + d  dt "h v . 3 3 
d 0 0 0 0 0 d 0 x x 

d 0 0 0 0 0 d 0 
r— y —  |— _ — y -  I. 

(10) 

where it has been assumed that, for  angle magnitudes 

of interest, the above equation is avaIid representa- 
tion of the general nonlinear platform dyna.mics.(1 1) 

9h and 9 v  are the horizontal and vertical 

components of earth rate at the test site. 

d , a r e  the constant drifts of the x dy’ dz  
vertical, south, and east gyros. 

tx’ ty’ t z are  the torquing rates (if any) applied 
to the gyros. 

W e  will assume that the torquing rates, the 
components of earth rate, and the east gyro drift are 

known perfectly so  that the vector on the right 

represents known forcing (c_:(t)) and is independent 
of the state of the system. 

Accelerometer Outputs. Again, using the 
small angle approximations, the south and east PIPA 

pulse rate outputs due to  platform orientation in the 

gravity field may be written as 

(11) 

where 

poS and p0 e represent the total pulse counts at 

some instant of time, and 

g is the local gravity (cm! secz) 

We have assumed a one cm/sec/pulse PIPA scale 
factor. 

The Measurements. W e  cannot instantane- 

ously measure accelerometer pulse rates but only 
the total pulse count which is made up of the output 
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due to sway velocity and orientation in the gravity 
field. 
quantization errors .  

Inherent in our measurements, then, are 

The measurements a re  

n 
m ll (12) 

I8
 

m 

" represents the quantization The term "1:1m 
error at every sampling of the PIPA pulse count 
registers. Although the measurement noise is not 
normally distributed with zero mean (a  requirement 
for  the optimum filter), and is, in fact, uniformly 
distributed, we will view the quantization operation 
as anormally distributed error. It has been shown 
that this viewpoint does not hinder the optimum 
filter's estimates of the alignment and gyro drift 
variables.( 10’ 1 1) It does degrade the accuracy of 

the sway variable estimates which is "of little 
concern. Also 

<nm (1;) nm (t + 'r)> = re. 6 ('r) (13) 

W e  will assume that the measurements a re  made 

every second. 

The State Vector. 
dimensional; the state vector equation is 

The state vector is thirteen 

dx 

E? F § + £ + £  (14) 

(See Figure 10 for 35, F, E andll). 

The Complete Filter. With the derivation of 

the model for  the system, the complete optimum 
The PIPA pulse count 

The 

estimated state vector is extrapolated between 

linear filter is defined. 
registers will be sampled at constant rates. 

measurements according to 

g !  = 43% + E (15) 

and the covariance matrix according to 

I T E = ¢ E ¢  + S (16) 

where (P and S a re  precomputed constant matrices 

for  the time step between measurements. They 

satisfy the following differential equations: 

is = FS+SFT+N 3(0)=o (17) 
d1: 



95> 
dt = F¢ NO) I!

 H
 

(18) 

which may be integrated ona  digital computer for a 
time step between measurements of one second.(12) 

At the time of a measurement, 2 and E are 
changed according to equation (4). 

(See Figure 10 for H, U, and N). 

Filter Design 

Computer Simulations. A complete nonlinear 
simulation of the inertial platform in a swaying 
launch vehicle was made on a digital computer in 

The initial 
misalignments were one degree on all axes; drifts 

order  to simulate real PIPA outputs. 

were ten meru for the vertical and south gyros and 
zero for the east gyro. The rms sway in both hori- 
zontal directions was 10 cm. The initial conditions 
fo r  the correlation matrix were one degree2 for the 
alignment angles and 100 meru2 for the gyro drifts. 
A11 initial cross correlation terms were assumed 
zero. The initial estimate of the state was a zero 
vector.  

The response of the filter was excellent for 
these conditions. A number of runs were first made 
in which the matrix U was varied so as to cause 
good agreement between the rms error as deter- 
mined by the filter and the actual error. The errors 
between the estimates and the actual values of 
azimuth angle, vertical gyro drift and south gyro 
drift are  shown in Figures 11a, b and c. The errors 
reach small values for the three cases in 15, 40 and 
10 minutes respectively. The errors in the esti- 
mates of the two leveling angles ( B  and 7 )  are 

The 
estimates of the sway variables are not particularly 

negligible after the first few measurements. 

good but this is not important. In these simulation 
runs we have assumed perfect knowledge of east 
gyro drift for  good reason; we could show by using 
the observability concept that east gyro drift cannot 

the 
mechanics of doing this are difficult because of the 

be identified from azimuth error; however, 

large state vector. It is generally easier to synthe- 
size on a digital computer a series of filters in which 
we add one-by-one the state variables we wish to 
estimate. It becomes immediately clear which ones 
cannot be separated out. The fact that east gyro 
drift must be known does not hurt us; as we see from 
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Figure 1 1c, the south gyro can be calibrated in about 
10 minutes and the error is independent of d z' This 
gyro can then be placed east and a complete 

(We discuss the 
question of other platform positions later.) 

calibration and alignment made. 

'Design of the Simplified System. The gains 
for the optimum filter may be precomputed for all 
trials since the measurement times will be the same 
and the a priori assumption for the statistics of the 
initial state vector and noises will not change. The 
question is: how should these gains be stored in the 
flight vehicle's computer? 

For the problem at hand, the implementation 
of the gains into the system involved, first, the design 
of a simplified optimum filter. The minor cross- 
coupling gains were completely neglected; i.e. the 
gains for each state variable depend on both ac- 
celerometer measurements and, in general, one gain 
is much smaller than the other and can be neglected. 
Typically the predominant gains vary as in Figure 
12. The gains can be approximated by exponentials 
and straight-line segments where, at distinct inter- 
vals, the time constants and slopes are changed to 
continually fit the approximate gains to the true 
gains. The gains for the six sway variables quickly 
reach steady- state values and may be approximated 
by three constants. 

The response of a simplified filter is shown in 
Figures 133. through 13c. The process of design 
enters since it required a number of runs using 
different slopes and time constants to get a good 
match with the response of the complete filter. In 
fact, in the end, the same exponential gains were 
used for both p08 and poe; the same exponential 
gains were used for B and 'y . The total number of 
constants that were precomputed was: 

3 sway variable gains 
2 initial conditions for exponentials 

and sets of five numbers which are changed at ten 
discrete times 

2 time constants for exponentials (p08 and B) 
3 slopes for straight-line segments(a, dx’ dy) 

Implementation 

The simplified filter required about 800 
double-precision computer words when it was im- 
plemented inthe Apollo system. Part of the program 



was concerned with initialization for platform 
positions other than the one we have considered. 
The optimum filter once implemented does not 
change for  other platform positions; the measure- 

ments that the filter gets a re  made to  simulate the 
standard platform configuration. For example, if 

the platform axes were  vertical, north and east, the 

sign of the north PIPA output is changed to simulate 
a south PIPA. W e  need only interpret the filter 

output f o r  the variables in the north direction as 

negative of their true values. Similarly, for  some 
platform positions it is necessary to z'resolve the 
PIPA outputs to simulate south and east ac- 

celerometers. 

For  some applications, it may be desirable to 

torque the south gyro at negative horizontal earth 
rate. The form of the filter and the filter gains do 

not change because we assume perfect torquing; we 

just add negative horizontal earth rate to the extra- 

polation of the angle B . We have also found it 
convenient to extrapolate the alignment angles ac- 

cording to simple first order (cr’= a + Er dt, etc.). 
The sway variables are extrapolated according to a 
sway transition matrix whose elements can be 

changed to  compensate for  variations in launch 

vehicle parameters. 

W e  close our discussion with the comment 

that once the optimum filter has been implemented 

according to  the simple method outlined in the paper, 

it is usually quite simple to adapt it to various 

problems of alignment and calibration. For ex- 

ample, consider the following system test procedure 

in which we identify the platform axes as x, y, z. 

1. Run aten-minute test with xup, y south, 
2 east to determine y gyro bias drift. 

2. At ten minutes read out y drift and use 
the angle estimates to align the plat- 

form. Continue to torque the platform 
at earth rate for  90 seconds while 

counting pulses from the x PIPA 

(vertical). 
3. Orient the platform tox  down, y east, 2 

south and run a 10 minute test to deter- 

mine 2 bias drift. 

4. Use the angle estimates at 10 minutes to 

align the platform and then torque for 
90 seconds at earth rate while counting 
x PIPA pulses. 

5. After 90 seconds continue to torque the 

south gyro at horizontal earth rate for  
45 minutes while we determine the ver- 

The Y bias as 

determined in (1) is dz for this run. 
tical drift (x gyro). 

This procedure takes about 68 minutes after 

which we have enough information to determine y 
gyro bias drift, 2 gyro bias, the sum of x gyro bias 

and acceleration sensitive drift, x PIPA bias and 

scale factor. We can readily imagine how an 
automated system test procedure can be set up to 

completely calibrate the system in the swaying 
spacecraft. The last step in the program would be 

an alignment run to ready the system for launch. And 
through all of this, the basic simplified optimum 

filter does not change. 

Errors in the Test. Perhaps the only disad- 

vantage of optimum linear filtering is that it does 
not lend itself to easy analytical study of questions, 

such as, what happens for  variations in the assumed 

natural frequency of the launch vehicle? Questions 
like this must be answered by digital simulation. 
Fortunately, the filter we have designed is, in fact, 

very insensitive to variations inmost quantities that 

we must assume a priori. The assumptions of the 

statistics for the initial state and the noises may 
have variations without degrading the filter 

response. The primary source of azimuth error is 

the uncertaintyineast gyro drift which comes about 
from errors  in the calibration of the gyro in a south 

position or  f rom variations inthe drift during a test. 

If the east gyro has a large drift due to acceleration 
along its input axis, then it is desirable to keep the 

input axis almost horizontal during the test by 

torquing the south gyro at negative earth rate as was- 

previously mentioned. 

8. Conclusion 

The possibility exists for significant reduction 
in the errors of an inertial navigation system by 
using statistical estimation techniques that make 

the most efficient use of all available information. 
It also appears likely that suitable simplifications 
can be made to adapt these techniques to practical 

navigation computers as we have illustrated with a 

real system. The amount of improvement obtained 
from using statistical filtering depends very 

strongly on the statistical characteristics of both 

the particular vehicle and components used. In 



vehicles where the disturbance accelerations are 
high and the mission time short, the improvement 
may not be significant. But for the relatively stable 
vehicles and for long mission times, the 
improvement may be considerable. 
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Appendix A Calculation of nw 3- 

Given the eXpected valué of mean-squared 
launch vehicle sway, it is necessary to calculate the . 4 .  

correlation function of the white noise that is 

assumed to produce the sway. The model for  the 5 
system is ' 

1 1 

s + l s + 2§wns + can 

The correlation function for white noise is 7. 

Mr) = <n(t)n('r)> = nw 6(t - 7) (A-l) 

with a corresponding power spectral density 3. 

mm = nw/wr (A-z) 
. . (13) 9 The mean squared value of sway 13 then g1ven by - 

+yn 
( p 2  > = fl .1...— 1 

27f j  -j00 8 + 1  -S + 1  10. 

1 1 :l 

2 2 2 _ 2 1 1 s +2§wns+wn s Zgwns+wn d5 . 

(A-3) 
. . . (13) Usmg the mtegral tables we determme nw as 

12. 

<p2>4l§w131(w121+21§wn+lz) 
nw = <n(t)  M?) > = (A'4) 

For the computer simulations, the above variables 

have the magnitude 

<p2> = 100 cm2(east and south) 

1 = . 1 sec-1 

“’11 = 2. 09 rad/ sec 

L = . 1 
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