

E-2265

ON-LINE LOGICAL SIMULATION (OLLS)

b Y

R.L. Alonso, H.R. Howie,
J. C. Pennypacker, G. Schwartz,

H.A. Thaler

May 1968

INSTRUMENTATION LABORATORY

CAMBRIDGE, MASSACHUSETTS
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Approved: Date: a? p y Lr
ELDON C. HALL, DIRECTOR, DIGITAL DEVELO MENT
APOLLO GUIDANCE AND NAVIGATION PROGRAM

Date: -; $L.. f /,
Approved: / u M 6% 5 LL,-

RALPH R. RAGAN, d&PUTY DIRECTOR
INSTRUMENTATION LABORATORY

Acknowledgment
c

The major part of OLLS has been funded through NASA's Electronics Research
Laboratory, contract NAS 12- 140. Additional non-NASA support has been derived,
from within Instrumentation Laboratory, for the development of the FILLIP list
processing language. FILLIP is not part of OLLS, however.

Authorship of the various portions is a s follows:
Section 2, "OLLS/ 1800" is by H. Robert Howie
Section 3, "OLLS/ 360":

3.1
3.2
3.3
3.4
3.5
3.6

"Data Structure", by James C. Pennypacker.
"Device Definition", by James C. Pennypacker.
"Simulation" by Herbert A. Thaler.
"Drawing Algorithms", by H. Robert Howie.
"Program Structure", by James C. Pennypacker and Gary Schwartz.
"ON-LINE System", by H. Robert Howie and Ramon Alonso.

Ramon Alonso is the OLLS project director.

The publication of this report does not constitute approval by the National
Aeronautics and Space Administration of the findings or the conclusions contained
therein, It is published only for the exchange and stimulation of ideas.

2

E-2265

ON LINE LOGICAL SIMULATION (OLLS)
,

ABSTRACT

This report describes techniques for the simulation of logic circuits, combi-
national and sequential, and for the automatic drawing of circuit schematics. The
first part of the report t reats an initial system which is somewhat limited in scope
in that it is strictly card-oriented and has a selection of logic devices limited to those
assembled into the control program. The last part describes a fully expended system
in which theuser can define and modify his own devices, either owline via a CRT, or
off-line with punched cards. This system enables the designer to perform all phases
of logic design: device definition, test, redesign, and retest, with the aid of a com-
puterto free him of the clerical details of drawings, signal lists, retrofits, and w i r e -
wrap control cards.

by: R. Alonso

May 1968

3

c

TABLE OF CONTENTS

Section Page

. 7 1 Introduction

2 9 The Honeywell 1800 Working System
. 9 2:1 Objective

c 2.2 General Description . 10
2.2.1 DRAWSCHEMATIC 10
2.2.2 SIMSCHEMATIC 15

2.3 Logic-File Organization 16
2.3.1 DRAWSCHEMATIC 16
2.3.2 SIMSCHEMATIC 22

2.4 Example (Westinghouse Circuit) 29
2.5 Drawing Interconnection Algorithm 38

2.5.1 General Procedure 38
2.5.2 Phase I in Greater Detail 41

2.5.5 An Appraisal 43
2.6 Simulation Algorithm 46

3 OLLS/360 . 49

3.1 Data Structure . 49

2.5.3 Phase11 . 43
2.5.4 Phase I11 . 43

3.1.1
3.1.2
3.1.3
3.1.4
3.1.5
3.1.6
3.1.7
3.1.8
3.1.9

Binary Tree 49
196 Structure 52
Classifications of Data 53
Instance Structure 54
Glossary . 57
Signal Structure 6 1
Drawing Structure 63
Data-File Root 65
Integrated Data Structure 67

3.2 Device Definition . 70

3.2.1 Contents of Definition 7 0
3.2.2 Concepts of Definition 7 1
3.2.3 Definition by Terminal Behavior 73

3.3 Simulation . 77

3.3.1 Circuit Formation 77
3.3.2 Desired Capabilities 80
3.3.3 Program Details 89

3.4 The OLLS Drawing Algorithm 103
3.5 Program Structure . 105

3.5.1 Types of Input Cards 105
3.5.2 CARDREAD and Main Program 107

3.2.4 Definition by Circuit Design 73
3.2.5 Impact on Data File 75

5

TABLE OF CONTENTS (cont)

Section Page

3.5.3 DEFINEDEVICE 108
3.5.4 CARDFILE . 108
3.5.5 ADD . 109
3.5.6 C m N G E . 109
3.5.7 SIMULATE . 110
3.5.8 CRT . 110
3.5.9 DELETE . 110
3.5.10 DELETETYPE 111

3.6 On-Line System (CRT) 112
3.6.1 Introduction 112
3.6.2 Physical System 112
3.6.3 Concept of U s e r ' s Role 112
3: 6: 4 Procedures. Setting Up a File 113
3.6.5 Defining a New Device 119
3.6.6 MODIFY DEVICE 126
3.6.7 Functional Definition 131
3.6.8 DRAWINGS . 131

6

.

Section 1

Introduction

The possibility of using computers to aid designers has been recognized and
exploited, invarious ways, for the last several years. Designers can have mechanized
help in small circuit design (ECAP, NET), and in some forms of mechanical design
(SKETCHPAD). A s SKETCHPAD showed, the implications of a Cathode Ray Tube
system whereby the designer and the computer interact, as opposed to the more
prevalent processing systems , are many and exciting.

The possibility of using major data processing aids for logical designs became
an important concern to those who had been engaged, for quite some time, in the
development of medium- sized computer systems, especially i f those systems could
be made interactive. But interactive or not, our accumulated experience in logical
design indicated the near necessity of mechanized files, drafting aids, and simulations.

The initial objective of MIT/IL was not so much to demonstrate the power of a
new approach (Computer Aided Design) a s to develop and implement a practical
system. W e a re still short of that goal in that we do not have an operational interactive
system; we do have a batch system (OLLS/1800) and major portions of the more
ambitious OLLSI360 system. Consequently, the present report is in part a
demonstration of achievement and in part a blueprint of present and future
developments.

The report is divided into two major parts: Section 2, which deals with am
initial, limited, but working system for the Honeywell 1800; and Section 3, which
describes a system that attempts a great deal more, and that is designed for execution
in an IBM 360/75 machine.

OLLS/1800 is a card system, with very limited file capability, wherein the
It w a s written without logical device models a r e an integral part of the program.

recourse to a list-processing language, and has been in use for about six months.
In early 1967 a decision was made by the Digital Computation group (which

runs the data processing system of Instrumentation Laboratory) to implement a
major list-processing language called FILLIP, and it was decided then that OLLS/ 360
should be based on FILLIP. A s of this writing, FILLIP is still under development
for its overall system aspects, and, consequently, most of OLLS/ 360 is untested. The
major features of FILLIP, and its power, a r e described in an a s yet unpublished re -

port by Charles A. Muntz and J. Halcombe Laning, Jr.

7

...

Section 2

The Honeywell 1800 Working System
H. Robert Howie

2.1 Objective

When it became apparent that the IBM 360, the on-line CRT, and the list-
processing language would not be available much before 1968, a more limited system
designed to operate on an available Honeywell 1800 computer w a s developed and
demonstrated in 1967. It was hoped that this system would provide (in addition to an
operating digital simulator) some experience with drawing interconnection
algorithms, simulation algorithms, and, through feedback from in-house users of the
system, a better understanding of what input-output techniques are most acceptable
and convenient to the digital circuit designer.

This chapter describes the concepts and operation of a schematic drawing
program and of a simulation program currently available for the Honeywell 1800
computer.

9

2.2 General Description

Two main programs comprise our system:

a) program DRAWSCHEMATIC which reads cards describing devices and
device interconnections, creates and maintains a logic file, and, through
subroutine DRAWLINES, computes computer interconnection paths and
produces a finished schematic on a CALCOMP plotter.
program SIMSCHEMATIC which reads the logic file created and stored
by DRAWSCHEMATIC and simulates the circuit using input signal values
supplied on cards by the user at execution time. Output traces of the
history of any signals specified a re plotted, oscillograph style, on a
CALCOMP plotter.

b)

Figures 2 -1 and .. 2 -2 a r e typical of the quality and complexity of designs the
programs a re capable of handling. The Arithmetic Unit in Fig. 2-1 contains about
150 gates and required about 20 minutes of computer time to create the logic file and
produce the drawing plot tape. (About 5 minutes a re spent in system management -
rewinding and labeling tapes, etc.) The plotting was done off-line and required about
30 minutes on the CALCOMP plotter. The simulation of the Arithmetic Unit included
testing the ability of the circuit to add, to shift, and to shift-and-add. Five logic-design
e r ro r s were discovered along the way and several clerical e r rors were corrected
before the simulation shown in Fig. 2-2 was successful. The simulation ran for 200
simulation time units (the equivalent of 4 microseconds if a timeunit of 20 nanoseconds
isused a s the typical gate delay), or required 7 minutes of real time on the H1800.

2.2.1 DRAWSCHEMATIC
Program DRAWSCHEMATIC is intended to run under a batch-processing

Its sole input is from cards and its output is written on
(An optional output facility

operating system.
magnetic tape for off-line printout and plotting.
punches a deck of cards for automated wirewrapping.)

The input deck can be in either o r bothof two card formats. The preferred
card format was designed specifically for this program and was intended to be ,
simple, easy to punch, easy to read, and organized the way a circuit designer
would find convenient. For compatibility with wirewrap programs developed 3
years ago, wirewrap cards are also accepted. These cards, although difficult
to punch manuallyor to scan, are logically equivalent to the new card format.
Detailed descriptions of card formats a r e given with the examples in a later
section.

The program operates in three modes: DRAW, REVISE, and REPRINT.
In the DRAW mode, a new logic file is created by the input deck. Cards

which describe devices to be included are read first. The designer may select

10

. , . - , -., . . ., -. -F- , ._ -- , .
r .

e

11

c34 0’

SHIFT N

SHIFTX 4

N16 0
A99 0
A92 0
SUM4
SUM3
SUM2

,c2e 0

.

0
0
0
0
0
0
0
0
0
.o
0
0
0
0 -
0
0
0
0

SUM1
Y47
Y46
Y45
Y44
Y43
Y42
Y59
x21

C24
GO7
GO6
GO5
GO4
GO3
GO2
GO1
DO9
x1
x2
x 3
x 4
Y1
Y 2
Y3
Y4

,Y19

I -

1 n
I \ n n - I L

I
U

n

I . --
--I-

ADD ,
CLOCK

Fig. 2-2

12

from 25 available device types, such as 3 input NOR gate, set-reset flip-flop,
etc., (see Fig. 2-3). He may include up to 400 devices in any one logic file
(drawing). Each device card describes the identification number of the device,
its location on the drawing (optional if no drawing is to be produced), and the
device type.

Cards which describe the logical interconnections a re read next. The
designer may specify the interconnections in either of two ways, depending on
whether or not he wishes to assign a signalname to the connection. He may write:

[connect] signalname [to] devicename devicepin

or he may wri te :

[connect] devicename devicepin [to] devicename devicepin.
I

This provides a convenient way of describing any connection without
cluttering up a drawing with unnecessary signal names, and yet allows con-
nections to be named where desired. The actual path which the signal wi l l take
on the drawing is not specified by the user but rather is computed for him by
subroutine DRAWLINES. This computed path becomes part of the logic file
and is not recomputed for every REVISION or REPRINT.

Some clerical cards mark the beginning and end of the input stream;
give th’e drawing a name, number, and author, and size; and specify what type
of output is desired, i.e. , full listing, e r ro r messages only, a drawing, a wirewrap
deck, etc.

In the REVISE mode, an old logic file created by an earlier run in either
the DRAW or REVISE mode is updated by cards in the input stream. This mode
operates exactly as the DRAW mode with the addition that cards a re accepted
which allow the designer to DELETE or MOVE devices which a r e already in the
file. In both cases, all signals that enter or leave a device which was deleted
or moved a r e themselves deleted or moved automatically, and the logic file is
updated accordingly. Similarly, the designer is allowed to REMOVE signal
interconnections. The operation of this mode saves the time and expense of
resubmitting the entire input deck just to correct minor errors . Only those
signals that a r e directly affected by the change a re recomputed for the file.

In both DRAW and REVISE modes, checks a re made on the validity of the
input stream as much as possible, and diagnostic e r ro r messages a re always
printed when an e r ro r is discovered. This service has been found to be as
valuable to the designer as is the drawing o r the simulation, Examples of such
e r ro r s are finding non-unique device identification numbers or signal names,

13

I I I I I 1 I

(q

14

finding two different signals connected to the same point, or finding a signal
attempting to connect to a non-existent device.

In addition to producing whatever hard copy was specified by the designer,
the logic file is always catalogued and stored on magnetic tape with other logic
files for later REVISION, REPRINTS, or simulation.

The REPRINT mode allows the designer or any interested person to
extract specified information from the file without changing its contents. A
listing or a drawing scaled to any convenient size is made available at minimum
cost.

2.2.2 SIMSCHEMATIC
Program SIMSCHEMATIC enables the designer to simulate the logic file

created and stored by program DRAWSCHEMATIC. Since this step is intended
to replace or augment the laboratory breadboard of the circuit, the designer is
provided with the means of specifying or changing the effective signal delay of
any devices in the file, the input signal timing, and the topology of the circuit
itself without going all the way back to program DRAWSCHEMATIC to test
minor changes.

The input to the program consists of the logic file to be simulated, which
was stored on magnetic tape by DRAWSCHEMATIC, and a short deck of cards
which describe such things as:

a) The list of devices which a re to be considered active for this
portion of the simulation and what the signal delay of each device shall
be. Gates can be activated or deactivated any time during a simulation
run or the delay can be changed to a new value as desired.
b) Theinput waveforms necessary to fully test the circuit and initial
conditions for signals which might otherwise be indeterminate. It is often
desirable in testing a laboratory breadboard to inject inputs to portions
of the circuit which might otherwise be unused or unavailable. The
capability is provided here to PATCH existing or non-existing signals to
any portion of the circuit or to REMOVE undesired connections of existing
signals. Input waveforms can now be injected to the new connections
which exist only for the duration of the simulation and do not affect the
permanent logic file.
c) The list of signals to be traced for output on the CALCOMP plotter.
d) The timing of events to follow, such as a snapshot of the file,
magnification of a certain portion of the output, how long to simulate, and
when to stop or restart.

15

2.3 Logic-File Organization

Figure 2-4 shows the structural organization of the logic file. It consists of
two major parts, the device list and the signal list. A third list, the list of drawing
interconnection points, strictly speaking, does not belong in the logic file. The
interconnection list (produced by subroutine DRAWLINES) is kept to save time on
revisions and reprints. These three lists contain enough information to draw and
simulate a logic diagram. For storage reasons the logic file produced by
DRAWSCHEMATIC does not contain the interlocking pointers necessary for rapid
simulation. These pointers a r e added to the logic file by SIMSCHEMATIC as the
logic file is read in.

2.3.1 DRAWSCHEMATIC
The DEVICE LIST is an alphabetically organized list with each entry

containing the device identification (5 characters), the device coordinates, and
a codenumber which indicates the device type. This code number enables the
program to fetch from a glossary of devices such information a s device shape,
terminal locations, and simulation behavior.

The SIGNAL LIST is an alphabetically organized list with each entry
containing the signal name (8 characters) and a sublist for each connection of
the signal. The sublist contains the device and pin number to which the signal
is connected, the (X,Y) coordinates of the device and the device type code, the
signal load of the device, a flag which indicates whether the signal was affected
by some operation in the REVISE mode (the OLD/NEW entry), and an entry
which either points to the list of drawing interconnection points (if any), or
indicates that the connection is to the signal source (STATUS = 2 or 31, or that
the connection is to be labeled only (STATUS = 1). (A signal which has no
source on the drawing is labeled at each input where it is used and no intercon-
nections a re made on the drawing, although for simulation purposes all inputs
with the same label a r e logically interconnected.

Figure 2-6 shows what the logic file would look like for the sample
circuit shown in Fig. 2- 7. Notice that the logic file is made up of three signals:
"LABEL", "OUTPUT", and "624 0".

The signal named LABEL has no source on this drawing, i.e. it is nowhere
connected to the output of a gate. It therefore has a STATUS = 1 in the logic
file, indicating to the output plotting routine that no interconnection lists a r e to
be found and its name is merely to be labeled where it is used.

The signal named OUTPUT is defined at a source, the output of a gate
1Al. It therefore has a STATUS = 2 for the connection to device 1A1, indicative
that the signal name is to be plotted. The rest of the connections for signal

16

e

.

. . .

.

Y

. .

17

D DR4I.I S C H E M A T I C F I G Z .7

S C A L F T O 09 R Y 0 7

N A M E I T S A M P L E C I R C l l I T

P K O l l l l C F S C H E M A T I C

ATID 1 A l 1

A LI r) 40 1 6

 AD^) 3H7 4

A D D 624 4

Q F F I N E l l l l T P l l T 1 4 1

S I G N A L O I I T P I I T h 24

S I G N A L flLJT POT 3 R -1

S I W A L L b R F L 3R7

S I G N A L L A B E L 6 2 4

C(1NNFCT hZ4 0 h 74

C 0 N N F C T h Z 4 0 40 1

C n h l N F C T 6 7 4 0 1 A 1

P L fl T W W

4

5.5

7

5

0

3

3

R

1

0

0

1

3NOR

I / 0

S F T Q F S

31\1 A 1\1 r)
-30

0 0 5

007

0 0 5

0 0 5

-30

0 0 5

0 0 5

Fig. 2-5 Input Deck to Produce the SAMPLE Circuit in Fig. 2-7.

18

19

Y 8 2

n

i!
n

G

I 1

I I I I I 1 I

20

OUTPUT contain pointers to the drawing interconnection lists produced by
DRAWLINES. The signal at the output of gate 624 pin 0 also has a wel l defined
source; but, because of the way in which it was defined (see below), its signal
name wi l l not appear on the drawing and it is flagged with STATUS = 3.

Figure 2-5 shows the input deck which created this drawing and logic file.
Each card contains a descriptor in column 1 for ease in sorting the deck

if necessary. (D = director card, S = subdirector, G = gate card, W = wiring
card). Director and subdirector cards are clerical and do not affect the logic
file (except toabort the run if incorrectly specified). Gate cards can ADD, or
MOVE gates. The first field after theverb is always the device ID, the second
and third fields are the X and Y position (for ADD and MOVE), and the fourth
field specifies the device type (ADD only). Al l devices except I /O pins and
resistors are placed at X, Y coordinate values of integer + 1 / 2 for ease in
gate-to-gate registration. Gate 624, for example, wi l l be placed at X = 4.5,
Y = 5.5 instead of X = 4, Y = 5 as specified on the ADD card.

Wiring cards are of two varieties: those which concern signals whose
names appear on the drawing and those which concern signals whose names do
not appear. Of the first varietyare cards which specify DEFINE, SIGNAL, or
REMOVE. DEFINE specifies that there exists a source for the signal and its
location and it triggers DRAWLINES to compute interconnection paths for all
SIGNAL cards specifying the same signal name. The DEFINEd source is
flagged in the logic file with STATUS = 2. If no DEFINE card can be found for
a signal, DRAWLINES does not attempt to compute interconnection paths.
Instead, the signals are added to the logic file and flagged as "label only"
(STATUS = 1). REMOVE allows the designer to selectively disconnect signals
as desired. If the DEFINEd source of a signal is REMOVEd and not reDEFINEd,
the remaining connections of the signal revert to the status of labels only
(STATUS = 1). The first field on the card after the verb specifies the signal
name, the second and third specify the device ID and pin number, and the fourth
specifies optional load information. (Loads of -30 and 005 are assumed for
sources and non-sources, respectively, i f this field is left blank.)

Of the second variety of W cards are CONNECT and DELETE cards.
These specify signals which are to be connected in the logic file and which are
to be drawn on the schematic but whose signal names are not to appear. The
intent here is to relieve the designer of the necessity of dreaming up a unique
signal name for an uninteresting connection and allow him to specify the con-
nection by device ID and pin number to device ID and pin number. Each
CONNECT card specifies the connection of one end of an equipotential in the
logic file. Thus the requirement that a device ID and pin number be CONNECTed
to itself to specify a source. See Fig. 2-5.

21

W CONNECT 624 0 624 0 - 30
This card specifies the source for a signal (actually named 624 0) and

flagged it with STATUS = 3 in the logic file toinhibit plotting its signal name.
It also triggers DRAWLINES to compute interconnection paths for all other
occurrences of CONNECTions of the same device ID and pin number. If the
device ID and pin number is not CONNECTed to itself, no source is defined and
all CONNECTions of the signal a r e entered in the logic file and flagged for
label only (STATUS = 1). DELETE acts like REMOVE except that device ID

and pin number a r e specified instead of signal name.

2.3.2 SIMSCHEMATIC
Program SIMSCHEMATIC creates a temporary logic file of its own by

adding information to the logic file produced by DRAWSCHEMATIC. The new
information consists of gate delays, signal values, direct pointers from signals
to devices, and some additional status flag words. Figure 2-8 shows the
general structure of the logic file after modification by SIMSCHEMATIC. The
INPUT LIST and the TRACE LIST a r e expanded a s required by the input deck.

The SIMULATION DEVICE LIST contains a flag which indicates whether
ornot the gateis active. If the gate is active (ACTIVE = l), the TYPE CODE
is used to branch to a section of programmed coding which logically combines
the signal values at P I N O O through PIN12 (most devices only have 3 or 4 pins
and the last 8 or 9 pins a re ignored for those devices) to produce an output
value (SI. This output value (usually P I N O O) is then propagated through the
delay line using the DELAY value and the delay indices for this instance of the
device to produce a final output value which replaces the former output value
(usually P I N O O) .

A true digital delay line should insert new values at one end and, by
shifting the values in the line, extract the value at a later time either at the other
end of the line or at amidpoint. Since shifting is slow for programs written in
a high level language, the index scheme shown in Fig. 2-9 was adopted. Values
a re inserted into the line at index location J and extracted at index location I.
Both indices a re incremented (modulo 16- the maximum delay) but maintain a
constant difference equal to the value specified in DELAY.

Gates a r e activated, inactivated, and delays specified at any time desired
by the designer by cards with a G in Column 1. The four forms of these cards
are:

(See Fig. 2-9.)

G ACTIVE ALLGATES 3

specifies all gates are to be active with a delay of 3

22

c

...

I

....
W
E

23

0

w n

ai
d
J

24

G ACTIVE 624 7

specifies that gate 624 is to be active with a delay of 7

G INACTIVE ALLGATES

specifies that all gates a re to be inactive (not very useful)

G INACTIVE 1 A l

specifies that gate 1 A l is to be considered inactive.
The purpose of providing the capability of inactivating gates is to speed

up the simulation when a designer knows that a certain portion of the circuit is
working correctly and wants to spend time simulating a separate portion of the
same circuit. Gates which have been inactivated can be reactivated in any time
during the run.

The SIMULATION SIGNAL LIST contains the current VALUE of the signal
which was obtained by following the pointer to the device which w a s indicated as
the signal source (by STATUS = 2). The pointer points not only to the device
but also to the source pin on the device so that no computations must be made
in extracting the signal value from the device. The current VALUE of the
signal is then spread to all of the devices which use that signal a s an input
(indicated by STATUS = 1) by following the pointer to those devices.

Any signal may be driven byanexternal input at any time. Whenasignal
is driven byan external input, the status flag of each connection of that signal
is increased by c2 and a pointer to the input list entry is constructed. Connections
which formerly were to the signal source (STATUS = 2) receive a new
STATUS = 4. Connections which formerly were to device inputs (STATUS = 1)
receive a new STATUS = 3. This scheme allows signals to be changed from
free independent signals to signals driven by an external input and back again
to free independent signals with a minimum of computation.

External inputs a r e caused by the following card

T INPUT SIGNALNANLE

The SIGNAL NAME must be a valid signal in the logic file or a temporary
signal created by PATCH explained below. The PERIOD specifies the number

25

of simulation time units over which the signal is periodic. (All inputs must be
periodic but, a s we shall see, this does not present a limitation.) The
GRANULARITY specifies the number of simulation time units per entry in the
WAVESHAPE field of the card. The WAVESHAPE is a field up to 32 characters
long which, by punching 1's or 0'8, specifies the waveshape of the periodic
signal.

input.
Consider the following signal which is desired t9 beused a s an external

This signal could be described in several ways depending on the time
scale desired:

a) T INPUT EXAMPSIG 0 9 1 100 10 1000

after 9 time units the signal would become periodic and each 1 or 0 in the
waveshape lasts 1 time unit.

b) T INPUT EXAMPSIG 0 27 3 100 10 1000

after 27 time units the signal would become periodic and each 1 or 0 in the
waveshape lasts 3 time units.

c) the same result as b) above could be obtained by the following cumbersome
method but the signal would not be periodic.

T INPUT Signal 0 9 3 100

T INPUT Signal 0 12 3 10 10

T INPUT Signal 0 6 3 00

D SWEEP 9

D SWEEP 12

D SWEEP 6

The sweep cards cause the simulation to proceed the number of time units
specified.

26

As each INPUT card is read, a check is made to see if the signal is
already in the EXTERNAL INPUT LIST and a new entry is made if it is not. The
PERIOD, GRANULARITY, and WAVESHAPE fields a r e then filled in for the
entry. An explanation of how the EXTERNAL INPUT LIST signal values are
maintained is postponed until the section on SIMULATION ALGORITHM.

This causes 2 to be
subtracted from each STATUS entry in the SIMULATION SIGNAL LIST thus
restoring the signal to its status before the input w a s applied. Inputs a re
removed by a card which specifies

External inputs may be removed at any time.

T NOINPUT signal

The designer can cause signals to be traced by a card which specifies

T TRACE signal

and, conversely, cause a trace to be turned off by

T NOTRACE signal

Only signals which have a source (STATUS = 2 or 4) can be traced.
In addition to the control cards described above which directly affect the

simulation logic file, there a re director cards (D in column 1) and subdirector
cards (S in column 1) which control the simulation timing and the form of the
output, respectively.

There are four subdirector cards.

S YSIZE number

specifies the finished size of the output plot in inches.

S TSCALE number

specifies the number of simulation time units per horizontal inch of output.

S MAGNIFY number

magnifies the horizontal scale of any portion of the output.

S SNAPSHOT time

takes a snapshot of the file at the time specified.

27

There are four director cards.

D SIMULATE filename

This card must be first. It causes the specified file to be read in, constructs
the necessary pointers, and initializes all signal values of unused inputs as
required.

D SWEEP number of time units

This card causes simulation to proceed using all information previously made
available by control cards described above. Af te r the specified number of time
units has elapsed, control cards are read inagainuntil the next SWEEP card is
encountered. There is no limit to the number of SWEEP cards in a run.

D RESTART

This card clears all input lists, trace lists, and reinitializes the file.

D ENDSIM

This card tells the program that simulation is complete and to begin output plot-
ting.

28

2.4 Example (Westinghouse Circuit)

Presented below is an example of how a very elementary circuit might be
drawn and simulated.

Figure 2-10 shows the input deck required to DRAW the schematic shown in
Fig. 2-11. Notice that only three signal names appear at the output of the devices.
These signals (CLOCKIN, MASTER, and SLAVE) were all DEFINEd as sources and
have a STATUS = 2 in the logic file. The rest of the outputs of devices were all
CONNECTed to themselves to indicate a source but that no signal name is to appear.
These signals have a STATUS = 3 inthe drawing logic file. The two signals ENABLE
and RESET werenot defined as sources anywhere (and in fact they a re not intended
to have sources on this drawing). They appear a s labels only and have a STATUS = 1
in the drawing logic file. All other connections except those mentioned above with a
STATUS = 1, 2, o r 3 have, instead of a status word, a pointer to the list of intercon-
nection points produced by subroutine DRAWLINES.

Figure 2- 1 2 shows the input deck required to REVISE the drawing. The result
of this run is shown in Fig. 2- 13. Notice that the two devices MOVEd and DELETEd
have caused the signals connected to them to be rerouted or deleted as required with
no further information from the designer. One signal was REMOVEd. More devices
could be ADDed or more signals connected, but this would have cluttered up the
schematic which is now ready for simulation.

Figure 2- 14 shows the input deck required for the simulation produced Fig.
2-15 through 2-17, Theinput sequence in this example is a bit unusual from a logic
designer's point of view, but it serves to demonstrate many of the functions available
in program SIMSCHEMATIC.

29

\ ‘

I)
S
S
S
G
I;
G
G
G
G
G
G
G
G
G G

W
W
w
W
w
W

w
kl
Id
1..I
1.1
1.1
‘4
w
W w

w
W
W
b‘
I.r
W W

W
W
W
W
W
1.1
\.I

w
W
o

DRAW S C H E M A T I C D L L S O l f) L I _ S
P K O D l J C F S C H E M A T I C
S C A L E T O 09 H Y 07
N A M E I T 1)FMI)IUSTRAT I O N C IHCIII T
A I)D IIIJFI1 6 5
AI)D . O A O 1 5
A D O 1 A 1 3 A
~ n n l A ? 3 h
Ant) 1 4 3 3 4
A no 1 A 4 1 2
A P D 1 H l 5 h
A D D 1 H? 5 4
A D D 40 1 7 6.5
A D D ? C 1 8 H
AI)P 2 c 7 8 7
A D D 3F 10 8
D F F I N F C L I I C K I N 0 A 0 0
D E F I N F M A S T E R 1 A 2 0
1) F F I N F S L A V E 1 R 1 0
CI IN fVFCT l A l 0 l A l 0
C O N M F C T 1 A 3 0 1 A 3 0
C I I N N E C T 1 P 4 0 1 A 4 n
C O N N F C T 1 R 7 0 1 R 2 0
C.ONNECT 2 C 1 0 2c 1 0
S I G N A L F N A R L O A t l 3
S I G N A L C L n C K 0 A n 1
S I G N A L C L n C K I N 1 4 2 7
S I G N A L CLOCK I N 1 A 3 ?
S I G N A L IVII ISTkK 1 A l 3
S I G N A L MIIS1 E R 1 A 3 1
S I G N A L M A S T F K 1 R 1 7
S I G N A L M A S T E R 2C 1 3
S I G N A L S L A V E 181 1
S I G N A L S L A V E 1 R Z 1
S I G N A L S L A V E 40 1
S I G N A L K F S E T 1 H2 3
S I G N A L R F S E T ? C ? 1
S I G N A L S L A V E zc 1 ?
S I G N A L S L A V F 2c2 7
C O N N E C T 1 A l 0 1 A Z 1
CONh lECT 183 0 l a 2 3
C I I N N E C T 1 A 3 0 1 A 4 1
C O N N E C T l A 3 0 1 R 2 2
C O N N E C T 1 A 4 0 1 A 3 3
C O N N F C T 152 0 181 3
C O N N E C T l R ? 0 1 A 4 3
C O N N E C T 2 C 1 0 2c2 0
C O N N E C T 2 C 1 0 3F 2
P L O T PJ OW

30

12 BY lf’

I I I

31

D R E V I S E S C H E M A T I C O L L S O l n L L S 1 2 R Y 10

S P R O D l J C F S C H E M A T I C

S S C A L E T O 0 9 R Y 07

G MOVE 1A4 3 2

G D E L E T E 2C2

W R E M O V E M 4 S T E R 2c 1 3

D PLOTNOW

Fig. 2-12

32

I I I I I I I

33

S I M U L A T E S C H E M A T I C O L L S O l 7
Y S I Z E
T S C A L E
A L L G A T E S
T R A C E
T K A C F
T R A C E
T K A C F
T R A C E
I N P I I T
I I'd P I J T
S W E F P
M n I NPClT
S 1.1 E F P

4
10

C L n C K IN
M A S T E R
1 A l 0
S L A V E
2 C 1 0
C L O C K
R E S E T
10
R E S E T
60

R E S TA RT
T S C A L E 5 0
A L L G A T E S

T R A C F M A S T E R
T R A C E . 1 A l 0
T R A C E S L A V €
T R A C E 2 c 1 0
I N P U T C L O C K
I N P I I T R E S E T
SWEEP 10
N I I I N P L I T KF-SET

P A T C H (1)
SbJEFP 80
K F r d f l V E (1)
P A T C H 1 A l 0
S'rl E F P 80
kEivlO\lE 1 A l 0
P A T C H (0)
P A T C H C L U C K I N
S U E E P 4 0
R E M O V F C L O C K I N

T R A C E CLOCK Ir\l

SWEEP 8 r)

K F S T A R T
A L L G A T E S
T R A C E
T R A C E
T R A C F
T R A C E
T R A C E
Ih lPLJT
I N P I I T
s Id E E P
hi0 I N P IJT
SWEEP
4 B G N I F Y
S l d E E P
A C T I V E
A C T I V E
A C T I V E
Ivi A 6 N I F Y
S M E E P
MA GN I F Y
SWEFP
ENDS I M

C L (l C K 1 i I
PIAS7 E R
l A l 0
S I . A \I E
2 c 1 0
C L O C K
R F S E T
10
R E S E T
80
5
2 0
1 A l
151
2c 1
1
80
5
7 0

1 A L L G A T E S A C T I V E W I T H D E L A Y O F 1

1 10 5 10
1 16 8 10

T O I N I T I A L I Z E S L A V E F L I P - F L I I P

1 A L L G A T E S A C T I V E W I T - D E L A Y O F 1

1 10 5 10
1 16 R 10

T O I N I T I A L I Z E

2c 1 1

2c 1 1
2c 1 1

2 c 1 1
2c 1 1
2 c 1 3

2 C 1 3

1 ALL G A T E S A C T I V E W I T H D E L A Y O F 1

1 10 5 10
1 l h 8 10

3
2
5

Fig. 2-14

34

.See Fig. 2-16

>See Fig. 2-17

i

35

In
d
I
N

36

4

E:
a .d

4

Y

37

2.5 Drawing Interconnection Algorithm

One very important product of H- 1800 System has been our experience with the
drawing interconnection algorithm used by subroutine DRAWLTNES to produce ac-
curate schematics which a r e fairly pleasing to the logic designer's eye.

Since the goal of any circuit routing algorithm is to combine a very limited set
of input parameters into something which is measured by purely human standards,
any algorithm wi l l naturally have a great many checks and balances or fine tuning
adjustments which can only be described and set by observing a great many examples
and readjusting the algorithm a s necessary.

2.5.1 General Procedure
The input to DRAWLINES consists of the X, Y coordinates of the pin on

the device which is the source of a signal and a list of X, Y coordinates of the
pin on each device which is a connection of that signal. DRAWLTNES works on
each connection (one at a time) trying to find the "best possible" route around
obstacles such as devices, crowded areas of the schematic, or areas reserved
by the designer. To aid in this task, DRAWLINES maintains several maps
which describe in detail the layout of the schematic. When all connections of a
particular signal have been successfully routed, the various maps used a re
updated with the new information, the interconnection points a re written into the
logic file as described above, and control is returned to the main program
DRAW SCHEMATIC.

To keep storage requirements reasonable, a drawing is mapped as a
checkerboard on one-inch squares, and each square contains information about
10 horizontal lines and 10 vertical lines through it. For a 50 x 30-inch
schematic only 1500 words each a r e required for the horizontal and vertical
maps. When a connection has been routed completely or partially through any
square, the line occupied is marked "filled" on the map and no other connection
may be routed through that square on that particular line. Thus connections
may cross other connections anywhere at right angles, but no two colinear
connections may ever use the same line in the same square at any time. It should
benoted that the connection of a signal to one gate does not in any way affect or
impair connections of the same signal to any other gates, since the maps a r e
only updated after all connections of any one signal name a re routed. In the
example below, i f the connection from A were made first, the connection from
B as shown could not occur since segments of different signals would occupy the
same square at the same vertical line number.

38

The one vertical segment of the connection from B would instead be routed at
least l/lO-inch either to the right o r to the left of its present position as
indicated by the dashed lines. The connection from C is permissible, and the
extent of the line segments which are reserved for C and forbidden to any other
signal is shown again by the dotted lines.

Devices as well as segments of connections cause lines to be reserved,
and in the above example the gate shown reserved all 10 of the possible lines
through the square it occupies in both the vertical and the horizontal map.
More maps:

The qualities which we considered most important in finding the "best
possible" route for a connection were long straight runs and minimum number
of line segments in the run. In order to encourage long straight lines, four 50
x 30-square maps were maintained in addition to the layout maps described
above. The additional "look-ahead'# maps, as they a re called, contain
information in each square which describes the map index of the farthest square
which may be reached before an obstacle is encountered in the direction (up,
down, left, o r right depending on which of the four maps is being read). An

obstacle may be either a device o r a square on the layout map which has all 10
lines filled with the routed connections.

Figure 2-18 shows the four look-ahead maps superimposed. The key
shows which map contains the entry shown in each square. For example, if the
algorithm found itself at square (3,1), it would know by asking the appropriate
map that a straight-line path exists up as far as (3,3), down as far as (3,0), right
as far as (5,1), and left as far as (1,l).

The algorithm proceeds to route connections one-at-a-time, using the
maps described above, in three general phases:

a) Phase I tentatively constructs up to seven unique paths emanating
from the source device and up to sevenunique paths emanating backwards from

39

KEY:

4 4 4 4 4

0 2 0 2 0 2 4 5 4 5
2 0 3 3 1

4 4 4 3 4 4

UP
left right

down

0 1 2 3 4 5

Fig. 2-18

The four look-ahead maps would be constructed as shown for
a 5 X 3 square drawing with the six obstacles shown.

40

the destination device. No path has more thannine segments' and the segments
are all found on the look-ahead maps; very little attempt is made here to
connect the source to the destinationin either direction. Each forward line is
then checked with every backward line looking for intersections. Al l possible
combinations are tried and the combination with the fewest number of segments
is saved for each forward line. The programnever fails to find between one and
seven such connections.

b) Phase I1 takes a more detailed look at the connections found in Phase
I. It first checks each connection for loops on itself and removes any it finds.
It then checks each connection for possible shortcuts from one point in its path
to another point in its path and takes any shortcut it finds. These two steps use
only the look-ahead maps with no regard to the detail on the layout maps. It
then measures the length of each connection, counts the number of segments in
each, and picks one "best" connection based on these two numbers.

c) Phase 111 works out the detailed position of each line segment in the
connection selected by Phase 11, using the layout maps which indicate to the
nearest 1/ 10-inch which lines in the squares along the path a re unoccupied.
This phase contains algorithms for jogging around minor obstacles within a
particular square; but, if the jogging becomes excessive, Phase I11 gives up in
disgust and asks Phase I1 for its second-best connection.

2.5.2 Phase I in greater detail:
A test is made to detect flip-flop-like diagonal connections before main

routing techniques a r e applied. If two devices of the same type are at the same
horizontal coordinate and two squares apart on thevertical, and if the output of
the upper gate is connected to the upper input of the lower gate o r the output of
the lower gate is connected to the lower input of the upper gate, the connection
is made flip-flop style. Phase 11 and III are bypassed. If no flip-flop connection
is called for, the program begins drawing forward paths and backward paths as
mentioned above.

Figure 27 19 shows seven forward paths which might tentatively be taken
by Phase I using the look-ahead maps of Fig. 2-18. Two things a re worthy of
note here: First, the algorithm had choices at squares (l,l), (l , O) , (4,3), (0,3),
and (1,4). Whenever it encounters a choice for the first time, it decides in favor
of the directionof the goal and places a flag in a list to remind itself that if it
still hasn't found seven unique paths, it should go back and t ry the other
direction. Secondly, we have found that nine segments and seven lines in each
direction a re more than sufficient even on very large drawings. It is not
necessary that a forward path find the destination or that a backward path find
the source; it is only necessary that the paths cross somewhere.

41

0 1 2 3 ' 4 5

Fig. 2-19

Shows forward paths which Phase I might produce using the
look-ahead maps of Fig. 2-18.

42

Phase I is prepared to recognize when it somehow has led itself into a
dead end, such as the left branch taken in the decision at square (1,O) on Fig.
2.19. It also recognizes when it is retracing itself in a loop, such as the
potential decision at square (5,3). In both cases it stops trying and proceeds to
the next path, o r goes back to the last-flagged decision and takes the opposite
alternative to the decision made when the flag was placed.

The backward paths from the destination at the input of device B a r e not
shown, but it is obvious that many intersections exist. Figure 2-20 shows two
tentative connections which would be typical of what Phase I might decide after
testing all forwardlbackward intersection combinations.

2.5.3 Phase I1
Phase I1 can usually make significant improvements on the connections

produced by Phase I. A s shown by the dashed lines in Fig. 2-21, Phase I1 does
find shortcuts in both paths; and, in fact, both paths reduce to the same final
path. The path selected by Phase I1 in this case measures 6-unit inches and
has 3 segments. These two numbers would be used in making the decision if
there were more than one candidate for the connection. In practice we have
found that Phase I1 is usually able to reduce all connections made by Phase I to
asingle path. In those cases where a single path is not the result, most logic
designers would usually consider both (or all) the paths suggested as acceptable.

2.5.4 Phase 111
Phase I and Phase I1 used only the look-ahead maps for directions and,

a s a result, the path selected by Phase 11 is known only to the nearest inch in any
square. Phase III now takes over and, using the detailed layout maps, selects
the final detailed line through each of the squares in the path. The routine t r ies
to pick a line which requires no jogging. Crowded conditions and poor layout on
the part of the designer sometimes force minor jogging which can be straightened
out in a later REVISION of the schematic. If program complexity were measured
in pounds of punched cards, Phase I11 would be very complex compared to
Phase I and 11. But such is not the case. Phase 111 is avery unprofound routine
to clean up all unfinished details.

2.5.5 A n Appraisal
Among the things we learned in experimenting withvarious other intercon-

nection algorithms before we arrived at the above description was that the
initial overhead required to setup and maintain the look-ahead maps was well
worth the storage and time spent. Those maps do indeed encourage long
straight lines and they a r e very fast to operate. The concept of the look-ahead

43

Fig. 2-20 T w o Tentative Connections Produced by Phase I.

Fig. 2-21 Shortcuts which might be found by Phase II.

44

maps is not limited to the type of algorithm discussed above and we intend to
put it to use in the 360 system.

Probably what the H-1800 drawing algorithm needs most is a Phase IV
which can take over after previous phases have selected tentative routes for all
the connections of one signal. It should then adjust some connections to perhaps
make use of another connection of the same signal. Shown below is a typical
example of how two interconnection routes which are perfectly acceptable if
taken alone are unacceptable together.

Phase ‘IV should recognize that the circled intersections a re the same signal
and connect oneof them with a dot and eliminate two line segments. It should
be smart enough to know that the combination shown below has fewer segments
than the other alternative (shown in dotted lines).

45

2.6 Simulation Algorithm
Unlike the drawing interconnection algorithm, the simulation algorithm is quite

simple. The card reading routines w e r e described above. Cards a re read in and the
simulation logic file is modified as requested until a SWEEP card causes the routine
in Fig. 2- 22 to assume control, or until an ENDSIM card causes output plotting to begin.

A s far as it was designed, the simulator provides satisfactory results, but it
does not go far enough to be generally useful as a design tool. There is not enough
flexibility in the kind or amount of output produced. There is no diagnostic facility as
described in the 360 system. The designer is not free to define or modify the devices
available to him (with the important exception of gate delays).

This algorithm differs from the 360 system algorithm in only one very major
respect. The H-1800 algorithm evaluates the logic equation for every device once
every time increment, regardless of whether or not the input signal values have
changed. Due to the logic file organization chosen, the simulation would run slower
if the inputs of each device were checked for changes and a decision to bypass
satisfying the logic equations were made on the result of the check. In the 360 system
deliberate checking of device inputs is not required. We have reached no definite
conclusions about this difference in algorithm yet.

46

S W E E P

I
SATISFY T H E LOGIC EQUATIONS F O R EVERY ACTIVE
GATE. F E E D RESULTS THRU DELAY LINES I
PASS THRU SIGNAL LIST SPREADING SOURCE SIGNAL
VALUES T O DESTINATIONS OR SPREADING EXTERNAL
INPUTS T O DESTINATIONS

G E T VALUES O F THE
SIGNALS ON THE TRACE
LIST

UPDATE EXTERNAL
SIGNAL VALUES AS
REQUIRED

TIME F O R SNAPSHOT?

NO
1

S W E E P TIME EXPIRED

I TIME = TIME + 1 I

Fig. 2-22

47

Section 3

OLLSI 360

3.1 Data Structure
James Pennypacker

The data structure is a complex organization of data items and pointers to the
data. The structure is list-oriented and incorporates features that are designed to
take full advantage of FILLIP. One overriding consideration in the development of the
data structure was the requirement for rapid insertion, retrieval, and manipulation
of data. A second governing requirement was that the data structure must be
expandable and flexible in handling data of different attributes.

The data structure is far too complex to be presented meaningfully in a single
diagram; the approach taken in this section is to present individual sections of the
structure in detail and then attempt to show how the various sections a re integrated
into the whole system. The descriptions will be most easily understood if reference
is made to the appropriate figures. It should be noted that details of the structure are
subject to change, for the data file is a continuously evolving structure. To fully
understand the implications of the data structure, some knowledge of FILLIP is
assumed.

3.1.1 Binary Tree
Two basic types of structures are found throughout the data structure: the

The binary tree is a structure in which the individual data items are not
organized as a linear list. The t ree consists of nodes which contain the data and
which a re interconnected by pointers. A node is illustrated in Fig. 3. la. From

binary tree" and the "196 structure". I1

Fig. 3:la

each node, a left-hand pointer and a right-hand pointer point to two different
nodes, both of which a r e one level lower in structure than the node which points
to them. To insert a data item in the tree, the data is compared with that of the
top nodeof the tree. If the data to be inserted is smaller in value than that of

49

7

the top node, the left-hand pointer of the top node is followed and the node to
which it points is now used in the comparison. If the data to be inserted is
greater invalue thanthat of anode, the right-hand pointer is followed. The data
is always inserted at the bottom of the tree at the point found on the basis of the
comparisons.

To illustrate the concepts of the binary tree, assume the sequence of
numbers 7, 3, 5, 1, 9, 4, 13, 11 is to be organized into a binary tree. The first
number, 7, becomes the top nodeof the tree as shown in Fig. 3-la. The next
entry, 3, is compared with 7. Because it is less than 7, it becomes the node
pointed to by the left-hand pointer emanating from node 7, as shown in Fig.
3- lb.

Fig. 3 - l b

The next entry, 5, is compared first with node 7. Being less than node 7,

it is then compared with node 3. Being greater than node 3, it is inserted as
shown in Flg. 3-lc.

Fig.. 3 - IC
The next entry, 1, is similarly compared against node 7 and node 3.

Because it is less than 3, it is inserted as shown in Fig. 3-ld.

Fig. 3 - ld

50

The next entry, 9, is greater than 7 and hence
3- le.

Fig. 3- le

is inserted as shown in Fig.

The remaining items of the list a r e inserted in a similar fashion, resulting
in the t ree shown in Fig. 3-lf.

Fig. 3-lf

The primary advantage of the binary-tree structure is that a large amount
of data can be searched rapidly for a particular item. In an ideal tree, the
number of comparisons in such a search is a logarithmic function of the number
of nodes, rather than a linear function required for the typical linear list. A
second advantage of the t ree is that order is introduced into a set of random
data. In Fig. 3-lf, a scanning of the nodes from left-to-right produces the
ordered list of data. Removal of a node from the tree is more difficult than
from a linear list but is a straightforward process, especially if the binary t ree
is modified slightly a s is actually done in the data-file structure.

To beoptimally useful, the binary t ree must be created by adding nodes
of random value; if, for example, the data is entered in order of value, the binary
t ree degeneratesinto a linear list and the advantage of quick retrieval of data
is lost. Furthermore, every deletion of a node tends to linearize the remaining
t ree structure; however, the t ree structure can never become worse in terms
of retrieval time than a linear list. The impact of the binary-tree structure is
so great in a system in which a large amount of data is stored that a single
FILLIP instruction w a s designed to search the t ree for a requested piece of data.

In the data-file structure, there a re many independent binary trees.
Every node on the tree is a FILLIP data cell with a standardized definition of

51

the first four subfields. A typical node is shown in Fig. 3-2.

Fig. 3-2

The first subfield of a node contains the ID of value of the node. Thus, the
numbers shown on the nodes of Fig. 3-lf a re actually contained in subfield of
data cells. Subfields 3 and 4 contain the left-hand and right-hand pointers
fromeach node; each pointer points to another node. When a subsequent node
does not exist, that is, when the bottom of the t ree is reached, the associated
pointer is NIL. Subfield 2 contains an upward pointer which points to the
previous node in the tree; in Fig. 3-lf, subfield 2 of node 9 contains a pointer
to node 7 as does subfield 2 of node 3. This upward pointer facilitates deleting
a node from the tree.

The pattern of pointers in subfields 2, 3 and 4, which is illustrated in
Fig. 3-2, is always to be understood a s representing a binary-tree structure
and any data cell containing such a pattern is understood to be a node on the
tree. Note that subfields 5 through 14 of the data cell may contain other data
which is associated with the node of the tree; specifically, they may contain
pointers to data cells which a r e nodes on other binary trees, resulting in an
interleaving of the trees.

3.1.2 196 Structure
The second basic structure which appears throughout the data file is the

"196 Structure". The structure consists of a data cell of fourteen subfields,
each of which contains a pointer. Each pointer points to a separate data cell of
fourteen subfields, each of which in turn contains a pointer. At this point there
a r e 196 independent pointers. Each pointer points to a data cell of the same
type but containing different data. The "196 structure" is illustrated in Fig.
3-3a but only fourteen of the ultimate 196 pointers a r e shown. The 196

52

1 1 1 1 1 1 1 1 1 1 1 1 1 1

Y
14 of 196 Pointers

Fig. 3-3a

structure a s represented in the data file is illustrated in Fig. 3-3b; this pattern,
when it appears, is understood to represent the complete structure illustrated
in Fig. 3-3a. The 196 structure is the reason for the limitation on the number

Fig. 3-3b

of terminals of a device which was mentioned earlier. By making the structure
of three levels instead of two, up to 143 = 2744 terminals could be handled.

3.1.3 Classifications of Data
The data structure as currently defined is designed to handle data of four

major classifications; additional classes of data can be added as future
requirements dictate. After a general introduction, each class of data wil l be
described in detail.

The first class of data includes all information relating to signals o r
interconnections between the individual components. Included in the
classification is information required for the logical simulation of devices,
such a s signal history of logic levels, signal-load factors, and simulation
times. The information pertaining to signals is organized in a binary-tree
structure in which each node is called a signal-head cell.

The second major classification of data includes the complete
specification of every different type of logical element which i s used in any
specific design. Included in this set of data a re the name of the device type, the
number of each type of terminal (e.g., inputs, outputs) names for each terminal,
specification of terminal-logic behavior, the shape of the device, and additional
information for simulation purposes. The information concerning each

53

individual type is contained in a glossary structure, which is essentially a 196
structure. The glossaries in turn are organized into a 196 structure; thus, up
to 196 different types of devices can be utilized in any particular design.

The third major classification of data pertains to the individual instances
of each type of element. All the detailed information about a particular instance
is contained in the.instance structure, which is a hybrid structure consisting of
a partial 196 structure and FILLIP data cells. Typical data stored in this
structure identify which signals are connected to the terminals of the device, the
drawing number specifying on which drawing the device is to be found, drawing
coordinates, and the identification of the device. The hybrid-instance structure
is associated with two independent binary trees, as wi l l be explained shortly.

The final classification of data which has so far been identified includes
all the graphic information required for CRT display and hard-copy output.
This data is not confined to one structure but is rather inter-related with the
rest of the data file. One structure which does occur, however, includes data
relevent to physical drawings. This structure is a binary tree whose nodes a re
drawing-head cells. Data stored in the drawing-head cell includes the drawing
number, drawing size, signature information, scale size, instances, and signals
which appear on the drawing.

3.1.4 Instance Structure
The first structure which must be understood is the instance structure.

There is one instance structure (or cell) for every individual logical element
maintained in the data base. The purpose of the instance cells is to show which
signals appear on the terminals of the instance and where the instance is
located; the location information is specified by drawing number and
coordinates. This information is the only information currently used which is
unique to each individual device.

The instance structure and the associated instance-drawing structure
a re illustrated in Fig. 3-4. In this and subsequent drawings, the letter P and
arrows are both used to represent direct FILLIP pointers. The instance cell
itself is a FILLIP data cell consisting of eleven subfields. The first four
subfields indicate that the instance structures a r e organized as a binary tree;
thereis, in fact, one t ree for each type of logical element and the instances of
each type represent the nodes of the type tree. Subfields 5 through 9 are
pointers to terminal structures and wil l be discussed shortly; it is sufficient at
this time to say that the terminal structure contains pointers to signals which
appear on the respective terminals of the instance. Subfield 10 contains a
pointer t o a FILLIP data cell of 8 subfields which contain graphic information
pertaining to the instance; this data cell is called the instance-drawing structure.

54

INSTANCE STRUCTURE

ID
t

I
I

P. OUTPUT

1
2
3
4
5

--* -------- ---
I
I
1
I
t
I
I
I
I
I
I
I

1
2
3
4

1
5
6 I

I
7 I

I
I

INSTANCE TERMINAL STRUCTURE I
8

I

INSTANCE
DRAWING STRUCTURE '

I
I

+--------I
. 1 2 3 4 5 6 . .

A L ON TERM. 15
1 2 3 4 5 6 & 14

I I 1 I ! I I 1 1 I I I I I ! \
SIGNAL ON X
T E R M 1 (SIGNAL ON

T E R M 5)

SIGNAL ON
T E R M 14

Fig. 3-4

55

Subfield 11 of the instance cell contains a pointer to the glossary which defines
the type of this instance.

The instance-drawing structure is also organized into a binary tree, with
one tree for each different drawing. The identification (subfield 1) of the
instance-drawing structure is a function of the graphic coordinates, making it
possible to retrieve information about an instance which is specified by drawing
number and coordinate, as wel l as by type and ID of element. Subfields 5 and
6 contain the x and y coordinates of the instance. Subfield 7 contains a pointer
to the instance structure. Subfield 8 contains a pointer to the head cell of the
drawing on which this particular instance appears.

One of the requirements in the design of OLLS was that the user be able
to define his own logical devices. In practice, this means that different types
of elements wi l l have different numbers of input terminals, output terminals,
etc., but that all instances of the same type wil l have the same number of inputs,
the same number of outputs, and so on. Up to 196 terminals of each class
(including auxiliary equations) can be accommodated. The instance structure
must thus be capable of pointing up to 5 x 196 = 980 different signal-head
cells, one signal-head cell for each terminal of the device. One way to realize
this capability would be to set up a 196 structure for each class of terminals,
wi th a one-to-one correspondence between pointers and terminals. Each pointer
would then point to the head cell of the signal which is connected to the cor-
responding terminal. In other words, the pointers in subfields 5 through 9 of
the instance structure could each point to a separate 196 structure.

Such a structure, however, is wasteful of storage; an instance with only
one useful output would result in a structure possessing 195 unused pointers;
this waste of storage occurs for every instance of the logic type.

To overcome this problem, a flexible instance-terminal structure is
utilized. For convenience, only one class (outputs) of terminals wi l l be
discussed; the structure design is identical for the other classes of terminals.
If the instance contains only one output, subfield 5 of the instance structure
contains a pointer directly to the head cell of the signal which appears on that
terminal. If the instance contains more than one but fewer than fifteen output
terminals, subfield 5 of the instance structure contains a pointer to a FILLIP
data cell of fourteen pointer subfields; these pointers point the head cells of
the signals which appear on the respective terminals. If the instance cell
contains more than 14 but fewer than 28 output terminals, the situation is as
shown in Fig. 3-4. Subfield 5 of the instance structure points to a data cell (call
it cell Z) of fourteen pointers. The first of the pointers in cell Z points to
another data cell of 14 pointers which point to the head cells of signals on the
first fourteen terminals. The second pointer of cell Z points to the signal-head

56

cell for the fifteenth terminal, the third pointer of cell Z points to the signal-
head cell for the sixteenth terminal, and so on until the terminals a r e exhausted.
(Figure 3-4 illustrates the case of 16 terminals). The instance-terminal
structure shown in Fig. 3-4 is expanded by pointing from cell 2 to additional
cells of 14 pointers as needed. Only when a device has more than 182 terminals
of the same class does a true 196 structure result.

3.1.5 Glossary
The flexible structure just described raises one important question:

given a pointer to an instance, how does one locate the signal on the nth terminal,
since, in general, the location of the pointer to the desired signal depends upon
the total number of terminals of the particular class? The answer to this
question is that one must use a glossary to interpret the instance structure for
each particular type.

The glossaryis a complex structure which, at least indirectly, contains
the complete description of a logic device; there is one glossary per type of
element. Provision is made for including 196 glossaries in each data file. The
glossary enables all instance structures to be treated identically by the program
routines, even though instance structures of different types a r e not identical.
The structure of the glossary is illustrated in Fig. 3-5.

The entry point or root of the glossary is a FILLIP data cell of 14
pointers. The first pointer points to a data cell which contains basic alphameric
information about the type, such as type name.

The second pointer of the glossary root points to the top of the tree of
instances of this type; eachnode on the t ree is an instance structure with aunique
instance ID. Thus, all instances of the same type are grouped together on a t ree
which may be addressed through the type glossary.

The third and fourth subfields of the glossary root a r e presently not
utilized.

Subfields 5 through 9 pertain to the terminal structure with the same
relationship between subfield number and terminal class as is used in the
instance structure; i.e., subfield 5 corresponds to output terminals, subfield 6
is associated with input terminal, etc. Again, for simplification, the following
discussion wi l l be in terms of only one class of terminals. If the device has no
terminals of a certain type, the pointer in the associated subfield of the glossary
root is NIL; otherwise the pointer points to a 196 structure regardless of how
many terminals of that class are actually defined. For each defined terminal
of the device, a terminal cell is created and pointed to by a known pointer from
the 196 structure; thus, regardless of how many terminals a r e defined for the

th device, the method of addressing the terminal cell associated with t h e n

57

t

c
c
Fi
I
c
e
c
c
P
c
E

l-4

58

m ED P- co

terminalis pre-specified and invariant. A s just indicated, there is one terminal
cell associated with each defined terminal of the device.

From this point on, the description of the data-file structure becomes
hopelessly complicated if strict grammatical rules are followed. To facilitate
a clear description of the concepts involved, certain linguistic liberties will be
taken. Because of the one-to-one relationship between a terminal cell and a
terminal, the phrase "this terminal" will often be used to mean "the terminal
which is associated with this terminal cell". Another difficulty now arises; it
isobvious that thereis nothing physical or real in the data structure, yet it is
convenient and clear to refer to signals, terminals and drawings as i f they were
part of the data structure. For example, it is far clearer to refer to "the signal
which is connected to this terminal" rather than"the signal whose head cell is
pointed to be the subfield in the terminal structure which is associated with this
terminal cell"; the former phrase is easy tounderstand, the latter is a precise
statement.

A slightly different area in which it is sometimes clearer to take certain
liberties, rather than being precise, is in reference to signal values. Properly
speaking, the terminal of a device is at some logic level and the signal on the
conductor connected to the terminal is said to have a logic value. It is oc-
casionally convenient, however, to refer to terminal values and signal values
interchangeably.

Returning now to the description of the glossary, the first subfield of the
terminal cell contains the terminal name.

The second subfield of the terminal cell contains the signal load factor

The third subfield of the terminal cell is essentially a road map in the
form of a FILLIP operand pointer showing where to find, within the instance
structure, the pointer to the signal which is on this terminal. The subfield
contains the bug expression GATE/m.n/s, where normally 5 < m < 9, 0 < n,
s < 14. If the bug named GATE contains a direct pointer to a particular instance,
then the operand pointer GATE/m.n/s wil l locate a subfield of the instance-
terminal structure; this subfield will contain a pointer to the signal. As an
example, assume the terminal cell describes the Bth input terminal of an
instance. The instance is illustrated in Fig. 3-4. Further, assume that Bug
GATE points to the instance. Subfield 11 of the terminal cell (in the glossary)
wi l l then contain the bug expression GATE/6.1.5/. If bug GATE points to the
instance shown in Fig. 3-4, the expression GATE/6.1.5/ locates the signal
connected to the gth input terminal, signal X. Thus the variable instance-
terminal structure is interpreted by the glossary. The glossary in turn is a
fixed structure. Note that subfield 11 of the terminal cell is similar to subfield

for the associated terminal.

59

3, except that the bug expression is evaluated as a pointer to the relevant
signal-head cell. This redundancy is solely for convenience.

Subfield 4 of the terminal cell contains a direct pointer to the same
terminal cell; this is again a convenience in setting up other portions of the data
file.

Subfield 5 points to interpretive FILLIP coding of a routine to evaluate
the logic level of this terminal; this coding evaluates the equation which the
designer utilizes to describe the behavior of the terminal. The coding is used
only when an instance of the type is included in a circuit which is to be simulated.
Equations exist only for output terminals and for auxiliary equations.

Subfields 6 and 7 of the terminal cell point to list structures which a re
also useful for simulation purposes, The successor list of a terminal - say
terminal A - contains pointers to other terminals (terminal cells) of the device
whose logic values a re influenced by the value of terminal A.

The predecessor list for terminal A contains pointers to those terminals
(terminal cells) of the same device which influence the logic behavior of terminal
A. Each entry of both lists also contains the value of time (AT) between the time
terminal A changes value and the influencing (or influenced) terminal changes
state. These lists a r e used in simulating device behavior.

Subfield 8 of the terminal cell contains a tag which identifies the class of
terminal; input, output, etc. The contents of this subfield a r e simply a number
5 < n < 9 with the same association employed in the terminal structure, Le.,
5 means input, 6 means Output, 7 means expander input, 8 means expander
output, and 9 means auxiliary equations.

Subfield 9 contains the largestvalue of AT found in either the predecessor
or successor list; this is used only in simulation to define the length of signal
history tapes.

Subfield 10 of the terminal cell identifies a default signal to which the
terminal of the instance is to be connected if the designer fails to specify a
signal for the terminal of an instance. UNUSED0 and UNUSED1 a r e permitted.

Subfield 18 of the glossary root points via a LINK cell to two blocks of
compiled codes, each of which describes the shape of the device. Because the
buffer which drives the CRT display is of limited size, provision is made for
displaying a crude graphical representation of the device on the CRT. This
crude shape will require a minimal amount of buffer storage. For hard-copy
drawing, however, buffer size is irrelevant, so provision is made for drawing
the device as any (reasonable) shape desired by the designer. In either case,
the designer draws the desired shape on the CRT with the light pen; this
drawing is transformed into the compiled code and stored in the glossary. (See
Section 3.6).

60

Because instance structures of different types will be added frequently
during the formation of the data file, it is desirable to have a "master" instance
structure stored away which can be duplicated as desired. Such a model
structure is pointed to by subfield 11 of the glossary root. The model section
includes the instance cell, the instance-drawing structure, the instance-
terminal structure and the interconnecting pointers; all data within the model
structure is blank, o r NIL. Thus, if all the subfields shown in Fig. 3-4 w e r e
empty or NIL, except for the pointers between the instance-drawing structure
and the instance cell and between the instance cell and the instance-terminal
structure, the resulting structure would be identical to the model structure
pointed to by subfield 11 of the glossary root.

Subfield 1 2 of the glossary root points to a format list which is used only
when operating in the card or batch-processing mode. The format list is
simply a list of LINK cells, where there is one LINK cell for every defined
terminal of the device. The format list provides a one-to-one correspondence
between signal names on the input cards and terminals of a device. The first
LINK cell identifies the terminal to which the first signal on the input card is
connected, the second LINK cell identifies the terminal to which the second
signal on the input card is connected, etc. If a signal is not specified on the input
card (its absence is indicated by a dollar sign on the input card), the unused value
of the terminal cell indicates the appropriate default signal.

3.1.6 Signal Structure
Al l the logical information pertaining to signals is contained in the signal-

head cell and associated lists. The signal-head cell structure is illustrated in
Fig. 3-6. Thereis one signal-head cell for every signal in the data file; there
is also one signal-head cell for every auxiliary equation of each individual
instance.

The signal-head cells a r e structured in a binary t ree as indicated by the

Subfield 5 of the signal-head cell contains a pointer to a list of FILLIP
LINK cells, where there is one LINK cell for every instance terminal (except
output) to which the signal is connected. The source pointer of each LTNKing
cell points to the instance to which the signal is connected. The destination
pointer of each LINKing cell points to the terminal cell of the connected terminal.

The source qualifier of the LINKing cell identifies the class of terminal
to which the signal is connected; it contains the same tag as is found in subfield
8 of the terminal cell.

Subfield 6 of the signal-head cell points to a single LINK cell which is
identical to those just described. The source pointer of this LINKing cell,

first four subfields.

61

::
W u

62

however, points to the instance which is the source of the signal; Le., the
instance whose output terminal is connected to the signal. It is important to
note that each signal can be connected to only one output terminal; thus, each
signal can be generated by only one source.

Subfield 7 of the signal-head cell points to a signal history tape. The
history tape is used in simulations and is simply a block of machine coding
which contains a history of signal values and the times at which the signal
values occurred. The history tape provides the datanecessary to evaluate the
terminal equations .

Subfield 9 of the signal-head cell contains flags for simulation purposes.
Such flags indicate whether a logical e r ror has occurred, whether or not a
signal is of interest to the simulation, etc.

The original load factor contained in subfield 10 of the signal-head cell
is the algebraic sum of the load factors of all the terminals to which the signal
is connected.

Subfields 11, 12, and 13 of the signal-head cell a r e useful only for
simulation purposes. Subfield 11 indicates the maximum time length of history
which is maintained for the signal. Subfield 12 contains the most recent time
when the signal was evaluated during the simulation. Subfield 13 points to a
temporary structure which groups signals for simulation; if any signal of the
group changes value, all signals of the grup must be re-evaluated.

3.1.7 Drawing Structure
In the OLLS data file, most of the drawing information is arranged ac-

cording to drawings, where a drawing can be either the plot which appears on
the faceof the CRT or a piece of hard-copy output. Each drawing is assumed
to have a unique drawing number (ID). For every drawing there is a drawing-head
cell in the data file; the structure of the drawing-head cell is illustrated in Fig.
3-7.

A s indicated by the first four subfields, the drawing-head cells a r e ar-
ranged on a binary t ree according to drawing number.

Two of the types of information which appear on each drawing a re the set
of devices and the signals or logical interconnections of these devices; this
data, in fact, comprises the essence of the drawing. Subfield 5 of the drawing-
head cell contaihs a pointer to the top of the binary t ree of the instance drawing
structures (see Fig. 3-4) which belong to the drawing. By means of this t ree
all instances which appear on the same drawing a r e grouped together.

Subfield 6 of the signal-head cell points to a FILLIP data cell containing
editorial informationabout the drawing, At the present time, this data cell is
not strictly defined. It is certain, however, that the drawing size and scale

63

64

factor will be contained in the data cell, as will information required for the
legend or signature of the drawing.

Subfield 7 of the drawing-head cell points to a structure containing
graphical information about the signal runs which appear on the drawing. The
pointerin subfield 7 points to a list of FILLIP LINK cells, where there is one
LINK cell for each signal that is drawn on the drawing. The LINK cells are
connected by the LINK pointers of each cell. The destination pointer of each
LZNK cell points to a different signal which appears on the drawing. Each
source pointerof the LINK cells points to a different list of LINK cells; these
cells a re used to store and recover the graphic coordinates for each run of the
signal. The source pointers of these LINK cells each point to a block of
machine coding containing the coordinates of the signal run. There is one block
of coding for each interconnection of two different terminals. Thus, if Fig.

3-7 is used as an example, the first signal on the drawing - which is obtained
via subfield 7 of the drawing-head cell - connects three terminals on this
drawing. It is known that three terminals are connected since two blocks of
coordinates are shown and each block of coordinates describes one signal run
or interconnect ion.

It should be noted that the entire drawing structure of the data file enables
one to immediately reproduce drawings which have been created. This is a
necessary requirement i f different drawings are to be called up to appear on the
CRT during an on-line process.

3.1.8 Data-File Root
The binary tree of signal-head cells, the binary t ree of drawing-head

cells, and the 196 structure of glossaries a r e all addressable through the
data-file root a s shown in Fig. 3-8. To facilitate discussion, it is convenient to
consider the root of the file as being the cell of 14 pointers, rather than the NOP
instruction which is the actual FILLIP file root.

A s shown in Fig. 3-8, subfield 1 contains a pointer to the t ree of signal-head
cells, subfield 2 contains a pointer to the 196 structure of glossaries, and the
third subfield contains a pointer to the t ree of drawing-head cells.

Subfield 4 of the data-file root is normally NIL. During simulation runs,
however, a structure consisting of the simulation event list, of initialization
conditions, and of signal registers is temporarily constructed and pointed to
bya pointer in subfield 4. Because the simulation is temporary and unique to
the simulation program, the structure will not be described in further detail at
this time.

In general, there wil l be signals in the data file which have no source; i.e.
are not connected to the output terminal of any device. These signals a r e called

65

w !z
3
E u

E
s
M

4

J
0
E!
W
Q)
r(

66

c

3
E u
3 !z
E

z
M

B s z U
rn

M

sourceless signals. Two specific examples of sourceless signals a r e UNUSEDb

and UNUSEDl. Other occurrences of sourceless signals result during the
modification of existing drawings when signal interconnections are changed.
For simulation, as well a s for error-checking purposes, it is desirable to group
all sourceless signals together. For this purpose, subfield 5 of the data-file root
contains a pointer to a list of FILLIP LINK cells. The source pointer of each
LINK cell points to the signal-head cell of a sourceless signal. More specifical-
ly, the first LINKing cell contains a pointer to the UNUSED@ signal-head cell
and the second LINKing cell contains a pointer to the UNUSED1 signal-head
cell. The remainder of the LINKing cells contain pointers to head cells of any
other sourceless signals which might exist.

3.1.9 Integrated Data Structure
The various parts of the data-file structure have now been described in

detail. Figure 3-9 illustrates how thevarious component parts a r e tied together
to yield a highlyinterwoven datastructure. In Fig. 3-9 much of the detail has
been omitted to avoid unnecessary confusion.

A few words about the overall data structure wi l l help to clarify some of
the important concepts. First, there a re four independent classes of binary-tree
structures in the data-file structure. Each t ree represents a grouping of data
according to some common characteristic. Each t ree is normally addressed
through the top node of the tree, although individual nodes of the tree a re often
addres’sed from external structures. Two of the trees, the t ree of different
drawings and the t ree of signals, are addressed directly by the root of the
data-file structure. Up to 196 different types of logical devices can be
incorporated into one data file; the glossaries for the types are also addressed
by the file-structure root. Each glossary points to a binary t ree of all instances
of that particular type. Each drawing-head cell contains a pointer to a binary
t ree of all instances which appear on the drawing. Each signal-head cell points
(indirectly) to every instance to which the signal is connected and, similarly,
each instance points (indirectly) to the head cell of every signal which is
connected to the instance. Each instance also points to the head cell of the
drawing on which the instance is located. The drawing-head cell also points to
the head cell of every signal which appears on the drawing.

At first glance, it might appear that the data structure is unnecessarily
complex. A few illustrations might illustrate the capabilities of the file
structure. Consider the problem of removing a signal from an instance. In the
batch-processing mode, it is most convenient to identify a particular signal by
its name; it is also easiest to identify an instance by its type and identification
(identifications need be unique only within a type class). The identified signal

67

P

T

68

- - W 1

is readily found in the data file by a FILLIP search of the tree of signal-head
cells; this t ree is directly addressable through the data-file root. Having found
the head cell of the specified signal, the list of instances (actually LINK cells)
which are connected to the signal is searched again by one FILLIP instruction
until the specified instance is found. The LINK cell pointing to this instance
also points to a terminal cell which tells where in the instance the pointer to the
signal is to be found; the changing of this pointer and the pointer in the LINK
cell constitutes removing the signal from the instance.

To accomplish the same result when operating in the on-line mode, the
drawing containing the instance wi l l be called up for display on the CRT. To
identify the signal which is to be removed, the designer will point with the light
pen to the terminal of the device to which the signal is connected and command
the system to remove the signal. In this case, the t ree of drawings is searched
(one FILLIP instruction) until the head cell for this drawing is located. The
t ree of instances (instance-drawing structures) on this drawing is then searched
by coordinates (coordinates of device and the specific terminal a r e computed
from the light-pen position) until the correct instance structure is found. The
instance itself is addressed through the instance-drawing structure and the
process continues a s in the batch-processing node.

A different type of problem ar ises during simulation; here it is necessary
to know what instances a re affected by changes in signal value. The head cell
of the signal is again located and the list of instances is searched. For each
instance, the glossary is consulted to determine the equation for the specific
terminal. If the terminal is an input terminal, the terminals on the successor
list (output terminals on the same instance) a re examined and their terminal
equations are examined. If the successor terminals change state, the cor-
responding signals a r e examined in a recursive process; these signals a r e
addressed from the instance-terminal structure using the glossary to identify
the location of the address pointer. The simulation process is described in
detail in Section 3.3 of this report; the sole intent here is to show how the data
structure can be utilized.

It is felt that the data structure provides sufficient flexibility to be useful
in a wide variety of design problems, either in a batch-processing o r on-line
mode. It is further felt that the structure can be readily expanded to include new
classes of data when they become identified. Although the properties of FILLIP
influenced the development of the data structures, the data structure stands by
itself, and can be implemented in any reasonable language.

69

&

3.2 Device Definition
James P ennypacker

One of the most important features of OLLS is the provision for the designer to
define his own logical devices. Theuser isnot confined to using a set of pre-defined
elements but within broad limits can use any logical element, combinational or
sequential, he cares to define as a device. Rather than having to code separate
programs to handle each new logic element, the user can in a straightforward manner
define the functional behavior of the model for the new element. This means, for
example, that the advent of large-scale integration (LSI) wi l l necessitate no program-
ming modifications; an LSI chip and a single logic gate are handled with equal ease.
The data and program structures a re organized to accept the user-defined device
without additional programming effort. Once a device type is defined, instances of the
device type can be used whenever desired.

3.2.1 Contents of Definition
The definition of a device includes the name of the device type, the number

of each class of terminal for the device, logic equations relating output terminal
behavior to input terminal behavior, the load factor for each terminal, and,
when the device is defined at the on-line graphic console, the shape of the device
symbol.

Each defined logic device can have four different classes of terminals,
input, output, expander input, and expander output. Expander input and expander
output terminals a r e electrical points of the device which provide for fan-in and
fan-out capability. In addition to the four types of terminals, the definition of
a logic device may include internal logic states which a r e neither input nor
output terminals; the definition of any sequential circuit would include such
internal variables. These internal variables, hereinafter referred to as
auxiliary equations, a r e treated identically to the other four classes of
terminals; they a r e expressed a s - and included in - equations specifying logic
behavior of other terminals.

At the present time, a defined devicemay contain up to 196 terminals of
each type, including auxiliary equations. The number of terminals is the only
hard restriction in the definition of a device; without extensive reprogramming,
the data structure could be modified to provide for up to 2744 terminals of each
type. Each terminal of the device (and auxiliary equations a re to be included
a s terminals) is given a unique name that is used in the specification of the logic
operation of the device.

70

3.2.2 Concepts of Definition
The logic operation of a device is specified by the equations which relate

each output, expander output, o r auxiliary equation to other terminals of the
device. For example, the NOR gate shown in Fig. 3- 10 has two inputs, A and B,

Fig. 3-10

and one output, C, where A, B, and C a re understood to be the respective
terminal names. The logic operation of this device is specified by the equation.

A subscript notation is employed to show time delays. Using this notation, a
subscript b indicates the time "now", a subscript 1 indicates time one unit
previous, a subscript 2 indicates two time units ago, etc. The time unit is
dimensionless but is often understood to be one gate delay, the time it takes for
a logic element to respond to the input excitation. Subscripts indicating relative
time dependency must be integers (see Appendix B).

For the two-input NOR gate shown in Fig. 3- 10, the logic operation can be
more completely specified by the equation

which indicates that the behavior of terminal C at the present time is influenced
by the behavior of both terminals A and B one time unit ago. If the excitation
does not influence the output terminal equally rapidly for both input terminals,
the equation might be expressed as

- -
Co = A1' B2

To more fully illustrate the concepts under discussion, consider a device
with two inputs, S and R, one output, Q, and one internal state o r auxiliary
equation, P, as illustrated in Fig. 3- 11.

Fig, 3-11

71

The operation of the device is specified by the equations

(3- la)

(3-lb)

Note that the behavior of every terminal is specified at time "now"; Le., the
subscript of variables on the left-hand side of the equations is always 8 .
Further, note that the behavior of internal states must be specified in addition
to behavior of output terminals.

Equation set 3-1 is completely acceptable to OLLS as a definition of the
device. It is possible, however, to simplify Eq. 3- 1 by noting that if Po = Q1. R1
describes the behavior of state P at timenow, then the behavior of P one time
unit ago is specified by the relation P Substituting this expression
into Eq. 3- la, followed by logical simplification, yields

- -

= a * R 2 2'

which is also sufficient to define the device. Note that, in Eq. 3-2, the behavior
of terminal Q is a function of its own state two time units ago. This will, in fact,
be the case when any sequential circuit is defined as a logic device.

Either Eq. 3-1 or 3-2 may be used to define the logic properties of the
device; both result in the same logic operation. The simulation of this particular
device, however, wil l run somewhat faster if Eq. 3-2 is used. It is difficult to
generalize as to whether or not equations should be simplified when the device
is defined; it is only during simulation that any difference is observable and the
difference is one of running time only. If most of the defining equations a re
expressed as functions of all other terminals, then simplification of the equations
wil l speed up the simulation, On the other hand, i f most of the defining equations
a re each expressed a s a function of only a few of the other terminals, then
simplification of the equations wi l l slow down the simulation program. The
reason for this is that the simplified equation for a terminal, say terminal Q,
includes many terminals in the expression. If any of these terminals changes
state, the entire expression for terminal Q must be re-evaluated to determine
whether or not terminal Q has changed state. Because of the large number of
variables which a r e maintained in the equation for Q, the equation wi l l have to
be evaluated more frequently than if fewer terminals were included in the
defining relationship. Without actual operating experience with OLLS, however,
it is virtually impossible to analyze the difference in running time of the
simulation program as a function of the defining equations.

r .

72

It was previously mentioned that, once a device was defined, instances of
the device could be used whenever desired. In other words, the concept of a
NOR gate must be made known to the data file before individual NOR gates are
used in the design process. The definition of the device type and the utilization
of individual devices are normally independent operations except that definition
must precede utilization. A s will be discussed later, the utilization of an
individual instance includes specifying what signals appear on the different
terminals of the instance. In this manner, instances are interconnected to form
circuits. Par t of the process of defining a device includes the option of specifying
the order in which the terminals of the device are to be connected to signal
interconnections. The definition of a device also includes specifying the default
signals to which unmentioned terminals a r e to be connected.

3.2.3 Definition by Terminal Behavior
There are two methods bywhich a device may be defined: by specification

of terminal behavior and by circuit design. Because the difference between the
two methods concerns only the manner of defining the logic behavior of the
device, the discussion wil l concern only this phase of device definition.

The process of defining a device by specifying terminal behavior w a s
essentially described in the preceding section. The process involves identifying
each of the terminals, including auxiliary equations, by a unique name. Logical
equations a re then written for each terminal, specifying the behavior of one
terminal as a function of all the terminals of the device. Equations specifying
the behavior of input and expander input terminals are of course not required.
Each logic equation must be of the form of Eq. 3- 1 o r 3-2. In fact, Eq. 3- 1 o r
3- 2 comprise definition by terminal behavior.

3.2.4 Definition by Circuit Design
A considerably easier method of defining a device is by circuit design.

While this method of definition is currently available only for operation in the
on-line mode, it is planned to incorporate the procedure into the batch-
processing mode.

To illustrate this method of definition, assume that the NOR gate shown
in Fig. 3-12 has been defined by terminal behavior. Further, assume that the

B

Fig. 3-12

73

designer has drawn on the CRT with the light pen a circuit which is an intercon-
nection of only devices of the type shown in Fig. 3-12. The circuit which has
been drawn is shown in Fig. 3-13. In this circuit, the letters a r e names of

\ !

signals which appear on the various terminals of the interconnected devices; the
terminals of each individual NOR gate a r e still called A, B and C as per the
definition of the device, Having drawn the circuit, the designer recognizes that
the portion of the circuit enclosed within the dotted lines is a flip-flop which is
used so frequently that it is desirable to define this portionof the circuit as a
single logic device. Because the NOR gate has been specified by terminal
behavior and because the drawn circuit represents logic interconnections of the
NOR gates, the logic behavior of the flip-flop is already contained in some form
in the data-file structure. Thus the designer can define the flip-flop a s a new
device by simply identifying the devices which a r e included in the flip-flop
(gates x and y) and the terminals of those gates which a re also to be terminals
of the new device. The only other information which the designer must provide
is the name of the new device, FLIP-FLOP. Identification of the gates and
terminals is performed with the light pen; the name is entered via the graphic
console keyboard.

In general, when a device is defined, the terminals of the device must be
given names which a re unique among themselves. When a device is defined by
circuit design, the terminals of the new device a re named after the signals which
a r e connected to the respective terminals. Thus, the output terminal of the
flip-flop shown is named Q and the two input terminals of the flip-flop a re S and

74

R. (These terminals names can be modified by the designer, if desired.)
Because theoutput of NOR gate y i s not considered to be an output terminal of
the flip-flop, it gives rise to an internal state or auxiliary equation, P, of the
newly defined flip-flop. Note that, even though none of the individual NOR gates
has an internal state, the interconnection of these devices yields a new device
which has an auxiliary equation associated with its definition.

After the elements and interconnections which comprise the new device
have been identified, the model of the new device is automatically generated by
OLLS and equations specifying the terminal behavior of the new device are
automatically generated. For the flip-flop shown, the generated equations are:

(3 - 3a)

(3-3b)

These equations a r e identical to Eq. 3-1; in fact, the black box defined by Eq.
3-1 is a flip-flop.

The load factor for each terminal of the new device is automatically
generated from the load factors of the individual components of the device.

Currently, the shape of a device which is defined by circuit design is
automatically generated as a rectangle; this shape can be modified as desired
via the on-line graphic console.

The process of defining a device by circuit design is simple and fast for
the designer, requiring only that the individual components be previously
defined. The designer can thus define devices in a boot-strap manner; the only
restriction is that the new device not exceed the restriction of 196 terminals of
each type.

3.2.5 Impact on Data File
The impact on the data structure is identical when the device is defined

by terminal behavior as when the device is defined by circuit design. The
following discussion assumes definition by terminal behavior unless otherwise
specified. Reference to Fig. 3-9 might facilitate an understanding of the material
in this section.

When a new device is defined, a glossary root is constructed and connected
The name of the device is inserted in a to the 196 structure of glossaries.

FILLIP data cell which is pointed to by the glossary root.
For every class of terminal which is defined for a device type, a 196

structure of terminal cells is constructed and connected to the appropriate
subfield of the glossary root. For each terminal, the terminal name and load
factor a r e inserted in the terminal cell.

75

The equation specifying the logic behavior of the terminal is compiled
into interpretive FILLIP code which is addressed by the terminal cell. The
equation is also scanned for the largest subscript which is inserted in subfield
9 of the terminal cell. The equations a re alsoused to construct the predecessor
and successor lists.

Oneof the important results of device definition is the construction of a
model-instance structure which is pointed to by the glossary root. The instance-
cell and the instance-drawing structures a r e of fixed format and therefore
easily constructed; the instance-terminal structures a re of variable format and
a r e more difficult to create. The instance-terminal structure depends upon the
number of terminals which a r e defined for the device; the contents of subfield
3 of the terminal cell is also a function of the number of defined terminals.

The shape of the defined device is translated into machine coding which

To summarize what has been stated so far, the definition of a device by
terminal behavior results in a new glossary, in the formation of the associated
structures, and in the insertion of the contents of every defined terminal cell.

When the device is defined by circuit design, the end result is the same
as if the device were defined by terminal behavior; the process is, however,
considerably different since most of the required information is not explicitly
available. Without going into the complexity of detail which is required, it is
sufficient to state that the logic-data file is searched to provide the information
required to construct the glossary and its associated structures. The designer
need not specify the logic behavior of the device; OLLS subroutines process
the existing relevant interpretive code which describes behavior of the individual
component terminals to yield interpretive coding for each terminal of the new
device.

is addressed indirectly through the glossary root.

76

3.3 Simulation
Herbert Thaler

3.3.1 Circuit Formation
a. Device Definition
The formation of a logic circuit for simulation by OLLS can be divided

into two phases. The first phase is the definition of the terminal behavior of the
logical devices to be included in the circuit. This is accomplished through the

Define Device" subprogram of OLLS. Those properties of a device which are
essential to simulate it are:

11

1. A classification of its terminals into at least two categories - input
and output.
Booleanequations to relate the output terminals to the inputs (and 2.
outputs).

A device-input terminal is one whose logic value cannot be affected by
the device itself. That is, there is no Boolean equation within the device to
change a logic signal value at that terminal. It can only follow the value of an
applied signal.

An output terminal, on the other hand, does have a generating equation.
In fact, all output terminals of all devices must have their own independent
generating equations. Therefore, output terminals of devices may not be
interconnected, since there is no unique way to resolve the resulting competition
between independent Boolean generating functions. This fact, and a desire to
make OLLS as general as possible, gives rise to two other classifications of
device terminals - expander outputs and inputs.

In certain types of logic families (e.g., RTL), it is common practice to tie
device outputs together to achieve higher fan-in and/ or fan-out capabilities than
the individual devices provide. In other types of logic families (e.g., TTL),
higher fan-in is achieved by connecting specially designed expander devices to
expansion terminals provided solely for this purpose. Both techniques are
logically correct, but the TTL approach is more general. Therefore, OLLS
adopts that view of fan-in augmentation. If an output-terminal equation can be
expanded logically by either technique, an expander-input terminal is provided
on the device. The expander-input signal value must then be included in the
Boolean equation for the expandable-output terminal. However, only signals
which originate on expander-output terminals may be connected to expander
inputs. Thus two classes of signal runs are found in an OLLS logic circuit.
Normal signals originate on the output terminal of some device, and may be

77

connected only to the normal input terminals of other devices. Expander
signals originate on the expander-output terminal of some device and may be
connected only to the expander-input terminals of other devices. A generalized
device may possess all four terminal categories if the proper equation set and
terminal classification a r e given to it.

There is a fifth class of terminal that, in the interest of generality, a
devicemay possess. It is often necessary to define more equations to specify
the behavior of a device than there are output terminals to assign them to. This
usually occurs when defining a sequential circuit with many stable states and
few outputs. Since OLLS places almost no restrictions on the complexity of
definable devices, equations which affect output terminals but do not themselves
represent real terminals must be accommodated. These equations a re classed
as auxiliary terminals in the definition of the device. Auxiliary equations a re
equally as important to the behavior of a device a s its output equations, and
differ from them only in that they arenot available as signals outside the device.
Therefore, an auxiliary-equation variable is treated in the OLLS logic-circuit
file as an output signal which cannot be connected to any external inputs, but
which nevertheless may influence other terminals within the device. A s an
example of one use of an auxiliary variable, consider the following device:

INPUTS i OUTPUTS

\
AUXILIARIES

Let us assume that the two elements A and B a re complex combinational
devices, but that their individual equation sets a r e known. The OLLS user may
choose to define their cascade in either of two ways. He may substitute into the
equations for B the functions appearing at the outputs of A. This would eliminate
the intermediate variables from the overall cascade equations, and express the
outputs of B in terms of the inputs to A. The alternative is to submit the equation
sets for both A and B, retaining the intermediate variables as auxiliary
terminals. This achieves the identical simulation behavior for the cascaded
circuit, but saves the user much effort in reducing the total equation set he must
provide. Further example of the trade-off in effort and efficiency between
minimized equation sets (a few complex equations) and the more easily generated
gate-by-gate sets (many simple equations) are given in Appendix B. Often the
preferred choice is more one of personal taste than engineering necessity, but
certain cases of necessity can be defined. These occur near the limits of device

78

complexity, when the number of independent variables exceeds 196. Then one
may be forced to eliminate redundant equations simply to f i t the device definition
within the specified limits.

Any logic device, which can be modeled by using the following basic set
of ideal Boolean elements, can be defined in OLLS. The ideal elements are:

a. delayless multi-input OR
b. delayless multi-input AND
c. delayless NOT
d. ideal delays.

Since this set of elements is complete, any finite combinational o r sequential
circuit can thus be defined, For example, an expandable 3-input NOR gate can
be modeled as follows:

* Define Device NOR
OUTPUTS X '

INPUTS A,B,C
EXPINS J
EQUATION
DELAY 0 1 2 5 0

X = i (A + B + C t: J)

This set of input data represents the following device model:

Delays OR NOT

Examples of the method used in OLLS to define a logic device by its
terminal Boolean equations have been given, but the power and generality of
the method have not yet been explored. As has been stated, the only restriction
applied to the device definition is on the number of each type of terminal which
may be used on one device. This limit is currently set at 196 for our own

convenience. Hence, a device may have up to 196 inputs, 196 outputs, and 196
auxiliary variables in addition to expander terminals. The form of the output
and auxiliary equations themselves need only be deterministic - that is, there
must be a unique equation which specifies the current value of each terminal at
all times. The equation forms are:

79

OUTo = F (inputs, outputs, auxes, expins, expouts)

AUXo = F (inputs, outputs, auxes, expins, expouts).
or:

There is no limit on the complexity of the functions involved, no limitation on
what variables may appear in them, and none on what delay values may be used
(zero delay is permissible but should be avoided). An equation may even
mention the variable it is defining in the function for that variable.

With these rules, most reasonable system functions can be incorporated
a s a single device. This includes, for example, storage arrays withup to 587-bit
capacity, sequential circuits withup to 2588 states (not all stable!), delay lines
of any length (with up to 195 taps), combinational circuits of virtually any
complexity, binary counter-divider up to 196 stages long, complete computer
arithmetic units, computer input /output control units, and just about anything
that the near future wi l l see implemented by LSI technology. This generality
is, we feel, necessary for the next generation of logic simulation programs, and
is one of the strong points of OLLS.

b. 1 Interconnections
Once the OLLS user has successfully defined or copied those logic devices

he wishes to utilize, he may begin to form a circuit. For simulation purposes,
an OLLS circuit (or file) consists of the device definitions, one or more instances
of the logic devices, and interconnections. Any mixture of different device
types may reside in one file, since OLLS assumes they are compatible. The
simulation program treats all devices alike, and therefore relies on the device
definitions (glossary entries) to differentiate behavior. The mechanics of
interconnecting devices and assigning names to the signals created a re explained
in Section 3.2 of this report. Al l that need be said at this point is that it is easy
to create the total file in terms of instances of the defined logic devices and
signal names.

3.3.2 Desired Capabilities
a. 1 Logical Initialization
Once an OLLS user has specified his circuit topologically, he may turn

his attention to its simulation. The first step in this process is the establishment
of initial logic values at all the terminals and signals of interest. This is
necessary because OLLS recognizes three signal logical values - zero, one,
and undefined; and because the circuit is first automatically set so that all
signals a r e undefined. This is done to force the user not only to initialize every
signal of interest to him, but also to be a w a r e of all other signals in his file

80

d

which have a direct effect on the test circuit. He need not initialize every signal
in a large circuit to test only a small subsection of it, but he must satisfactorily
isolate the test circuit logically.

A particular signal is initialized in the OLLS card system by specifying
the intended value and the signal name. In the CRT-oriented system, the signal
of interest may be designated either byname or by touching with a light pen a
device terminal on its displayed run. This is especially useful since the names
of some signals on circuits created at the CRT may not be known to their
creator. This occurs because the process of gate interconnection is more
easily handled graphically than by card entry, and hence the card system
artifact of the user manufacturing signal names for every run is unnecessary.
Some signal names, therefore, may have been created by OLLS to f i l l the void
left by the user. These names a r e derived from the ID, type, and terminal name
of the source device, and generally have no nmemonic value to the user. They
do, however, exist in the file and can readily be determined.

However a signal to be initialized is designated, the user still has the
option of stating an initial value for every signal, o r of trying to minimize such
effort. OLLS has the ability to propagate logic levels through devices (from
inputs to outputs) subject to the logic constraints given in the device definitions,
but independent of the delay values therein. This causes the logic circuit to
behaveas i f all its delays were zero, but doesn't affect the Boolean equations
within it. Thus, for example, if a logic "one" is specifically placed on one input
to an OR gate, then the output terminal signal wi l l also become specified
through propagation. This is particularly useful since many logic circuits are
designed with an unconditional preset signal distributed through the circuit.
When such a signal is initialized and then propagated, many additional signals
become defined gratis. An example of such a situation can be found in the MIT
Apollo Guidance Computer where a single preset signal can initialize every
significant section of the computer control logic.

The intent of initialization is to establish a static configuration of logic
signals on which to base further simulations. When signal propagation is used,
the static nature of the signal set may be disturbed. During the course of
propagationa signal previously declared to be @ (1) may become re-evaluated
as a 1 (0). This generally indicates oscillatory circuits, o r sequential circuits
in which the control variables a r e improperly defined. Since the phase and
frequency of such oscillation is indeterminate within the context of static
initialization, the logic values of the signals involved a re forced to revert to
undefined. The user is informed of such behavior and is expected to provide
the necessary circuit or initialization changes to correct it. Thus, for example,
oscillators should have control lines which can quench their activity during
initialization but can release them afterward for the dynamic run.

81

E

b) Circuit Stimuli
The user must be able to insert stimuli for his test circuit once the

dynamic simulation run begins. There should be both "one- shot" and repetitive-
waveform stimulus capability, with all parameters under his control. The

one-shot" stimulus is in the nature of an event, and is so classified by OLLS.
To insert such an external event, the user would prepare a card image (in either
the card-oriented or CRT OLLS system) with the following format:

11

EVENT Signame Value Time.

Naturally this causes the signal designated to assume the given value at the
given time during the dynamic simulation run. The signal remains at that value
($ or 1) until some other external or internal event causes it to change.

It is also desirable to be able to specify that an external event should occur
based on purely internal circumstances. With such a capability one would not
be concerned with the time at which the event occurs, but rather with the
internal events leading up to the desired effect. For example, one might desire
to turn on (or off) an oscillatory circuit control line i f some other signal level
inthe file became a 1 (or J3). This almost has the effect of making a temporary
logical connection for simulation purposes between unconnected signals in the
circuit, and would be expressed by the user as:

EVENT Signame Value IF Expression.

Whenever the given Boolean expression becomes true, the specified signal
assumes its stated value. The expressionneed not be a single-signal name. It
can be any Boolean combination of signal names (and their complements) which
appear in the file being simulated.

This example of a conditional event allows the designated signal to assume
only one of the possible logic values whenever the Boolean expression becomes
true. In order to accommodate the other value, another conditional event has
to be given. Thus, for example, the pair of cards:

EVENT ALPHA 1 IF BETA
EVENT ALPHA fl IF 7 (BETA)

slaves signal ALPHA to expression BETA both for BETA * fl and for BETA + 1.
Therefore, ALPHA and BETA a r e the same for the simulation run. If BETA is
only one signal rather than a combination of signals, the two signals a r e logically
connected together for the duration of the simulation run. Since this enables the

82

user to make temporary connections in his circuit without actually affecting the
circuit itself (only the simulation thereof), it should prove to be a very useful
feature. A single additional command to combine the two conditional event
cards given above into one card is:

EVENT ALPHA EQUALS BETA

where BETA can be either a single-signal name or an expression. Note that
there is a definite direction implied by this card - ALPHA follows BETA, not
vice versa. Therefore, BETA must be a signal with a real source, while if
ALPHA has a source it is always competing with BETA for dominance. Generally
it is best if ALPHA has no real source (no device output terminal) in its run.

The second type of circuit stimulus allowed inOLLS is a general repetitive
waveform. This is actually an unending sequence of unconditional events all
directed at some signal. A shorthand technique for specifying the parameters
of the waveform is provided.

SEQUENCE Signame Value Period TList

as an OLLS input card, defines a waveform to be applied to the designated
signal. The first new value and the period of time for repetition a r e given
explicitly. The last entry (TLIST) is actually a list of discrete times of events
within the first period. Each one causes a transition of the designated signal at
the given time. As an example of such a sequence, consider

SEQUENCE A 1 15 0 2 7 12

which describes a waveform a s follows:

1 I I 1 I I
22

A n
0 2 7 12 15 17

The signal A would execute the transitions shown at the times indicated in the
sketch above. Thenumber of events which may appear in the TList is limited
only by the total period given. In this way the OLLS user can build up very
complex repetitive waveforms, or he may generate simple square waves as, for
example:

83

SEQUENCE B 1 10 2 7

This describes a period-10 square wave starting at time = 2 with value 1.
Signal B would be delayed one time unit from signal C if:

SEQUENCE c 1 10 1 6

were the definition of C. The waveforms defined as B and C would appear as
follows:

1

0 . I 1
7 1 2 0 2

0 l e 0 1 6 11 16

-4 b-Period = 10

c) Output Features
It almost goes without saying that a good logic-simulation program must

have good output capability. This is especially true if the intent of the program
is to mimic a circuit rather than to analyze it. OLLS falls into the former
category - it is intended as a very realistic replacement for the real circuit,
especially in the early stages of computer design. This in no way prejudices its
value in later stages when the design is more mature, since the record keeping
capabilities of the OLLS system wi l l then be truly invaluable to the designer.

OLLS, therefore, possesses a broad output capability, reflecting its use
not onlyin all stages of logic design but also a s a console interactive system.
These output features are:

1. Trace.
2. Sample.
3. Hazard Detection.
4. Inquiries.
5. Summary Prints.
6. Dumps.

84

The first three categories of output involve data collected piece-by-piece
during a simulation run. Then, after the run terminates, its history is available
in these various forms.

Tracing a signal is equivalent to monitoring a real circuit with an oscil-
loscope probe. A complete time history of the signal is made available as
output. Every time a signal specifically marked for tracing undergoes a
transition, the value, time, and other circumstances surrounding the transition
a r e recorded. Several alternatives are given the OLLS user in the choice of
output medium for tracing results, The high-speed line printer can beused to
show the traceof up to 20 signals simultaneouslyon the same time base. Each
line of print output represents a time at which one or more of the traced signals
changed state. The time is noted on the line, and each signal's value is noted
by printing a number 1 in one of two particular columns, Thus if the first
signal across the page has value zero, a number 1 is printed in column 14, and
if the logic value is one it appears in column 16. Transitions are marked with
a dash at the appropriate line in column 15. This type of output results in a
commonnonlinear timeline for each signal if the output is turned sideways for
reading. The names of the signals being traced head their respective column
groups on each page.

If the user is interested in elegance of appearance rather than large
volume of output, he may choose to draw the trace output on an X-Y plotter.
Samples of how this would appear a r e presented elsewhere in the report. This
type of output is done with a linear time base for appearance's sake since
generally fewer transitions are being displayed. Identical linear-trace output
can also be displayed via the on-line CRT console if desired.

Signal sampling is different from tracing in the format of output and in
the factors which cause the sampled data to be outputted. When a signal is being
traced, the event which causes output to be created is a transition of that same
signal. Sampling, on the other hand, is intended to produce output from one
signal upon the occurrence of a particular transition in another. For example,
onemight choose to view the contents of a flip-flop by sampling it whenever a
reading pulse occurs. Another reason to sample could be the transition of a
timing pulse, thus establishing a linear history of the sampled signal for display.
It would also be desirable to generalize theconditions causing the sample and
to link more thanone signal in a single sample event. Thus a general sample
control card would be:

.

SAMPLE Siglist IF Expression

The Siglist t e rm above is meant to be a list of any number of signals to be
simultaneously sampled whenever the given signal expression becomes true.

85

Theoutput format for a sample event as recorded on the line printer or
CRT includes the time of the sample, a restatement of the control card, and the
sampled logic values. In this way different samples and traces can be intermixed
in the output medium without confusion.

The detection of logic-race conditions is an important adjunct to an OLLS
simulation. Since OLLS is intended to mimic a circuit rather than to analyze
it, no attempt is made to perform an algebraic-hazard analysis of the test
circuit. Instead, hazard testing is performed dynamically as the simulation
run occurs. Static and dynamic hazards manifest themselves a s short-duration
pulses on signals which should not have such pulses. Essential hazards a r e
observed when a sequential circuit fails to execute the intended state-variable
transformation and instead executes another. The first e r ror condition is
checked for on every signal every time it has a transition. The OLLS user
declares what is the minimum acceptable pulse width in his circuit. Any
violations of this figure a re outputted as suggesting hazards. The signal at
fault, time of occurrence, and causative factors a r e indicated. In addition,
OLLS continuously tests for a potential source of such trouble by monitoring
for coincidence and near-coincidence of signal transitions. Whenever two or
more input signals to a device equation have coincident or near-coincident
transitions but no actual hazard occurs in the output signal, a potential hazard
area is outputted. This type of hazard might develop into a real one i f the
circuit were to be built out of real gates with wide variance in delay times -
hence the interest in this situation.

Essential hazards a r e merely static or dynamic hazards which cause
memory functions in the circuit to operate improperly. Hence, the occurrence
of an essential hazard wi l l generally follow the detection by OLLS of one of the
other types of hazards.

In order to avoid bombarding the OLLS user with reams of hazard-
detection data, theability toignore either type of hazard situation is built into
OLLS. The user may specifically choose to exempt certain signals in the circuit
from participating in the test procedures. Al l signals participate unless
specifically excluded.

The subject of inquiries ar ises because OLLS is to be operated on-line
from a CRT console. Between segments of dynamic simulation runs the user
may raise questions about the immediate history and current state of the file.
The most obvious inquiry is for the current and immediately past values of
designated signals, and along with those values the times at which those
transitions occurred. OLLS keeps at least the last ten transitions for each
signal at all times, so meaningful data is usually available. The form of output
can be either numerical print on the CRT face or sketches such as would be done
for CRT trace display.

86

Queries, such as which signals are being traced, o r which appear in
sampling commands, a r e also useful. In addition, the user should be able to get
information about his devices and circuit interconnections. H e should be able
to read the glossary for a device at this time, and may be interested in the
extent of a signal run. The general intent of the inquiry operations (which have
not all been defined as yet) is to provide the on-line CRT user with as much
information retrieval as possible short of writing his own FILLIP coding.
Considerable work still needs to be done in this area as new requirements arise
in practice.

Summary printing, like inquiries, takes place between o r after run
segments o r initialization procedures. The difference between these two
operations is more quantitative than qualitative. Summary prints a r e oriented
more to outputting entire lists of data such as the values of the entire signal set.
However, the flexibility built into the inquiry-command structure should also
be present for summaries. For example, a summary of all undefined-value
signals should be possible, as well as one for all signals which experienced
transitions over a given span of time. Again, the scope of commands has not
been defined as yet, and future effort will be directed to make a useful set of
summary-print commands.

It is worth noting that the OLLS programs a r e very modular in their form,
and new features can be easily added to existing programs. Therefore, it is
possible to postpone definition of these operations until more is learned about
user requirements through experience.

One more useful output operation for OLLS is a total-signal dump. Al l
data in a logic circuit necessary to define the simulation status of the circuit is
recorded. This includes all signal values and histories, all trace, sample, and
hazard test data, and the current image of the "event list". If this data is
recorded permanently, it is possible at a later date to restore the logic circuit
to the exact state it had at the instant the dump occurred. Thus the time-
consuming processes which led up to its current state need not be repeated
merely to reach the same state again. The dumped data would be sufficient to
initialize the file completely and the run could be resumed at that point. This
rollback facility is also reserved for future instrumentation since it is truly
useful only when large circuits and long simulation runs are involved.

d) Run Control
The subject of run control applies primarily to dynamic-simulation

segments. Thesearerunsegments in which time is a factor a s opposed to the
initial-value propagation segment in which time stands still while signals
propagate. The initialization segment terminates when no further propagation

87

*

can occur, either because all signals have defined values or because those
signals which remain undefined mask the effects of the defined signals. There
is always a logical conclusion to that segment because of the algorithm chosen.
The number of steps taken is always finite for a finite circuit,

This finiteness does not apply to the dynamic algorithm. It is perfectly
feasible to have aninfinite sequence of transitions occur at any signal. In fact,
the periodic signals which can be inputted to OLLS logic circuits are themselves
potentially infinite in their effective span of time, Thus a dynamic run must
always have a definite finite limit to its time scope provided by the user each
and every time it begins. If the user fails to provide a numeric time limit,
OLLS derives one from the time sense of his circuit. Although the sequence of
events in the circuit is potentially infinite, at any moment OLLS plans only a
finite future portion of it. This partial plan of future events is stored on the
circuit "event list". If the user fails to specify his time limit, the maximum
extent of the event list is determined and becomes his limit.

It i sa lso possible to terminate a run segment prematurely. To do this,
the user specifies a Boolean signal expression which, when it becomes true, wil l
halt the run. One reason touse such an expression is to halt on the occurrence
of an alarm condition in the circuit under test. This preserves the signal values
and histories at the moment the alarm occurs so that inquiries and summaries
can be fruitfully performed. Thus, the run segment control card is as follows:

RUN At OR

where the segment terminates either after At or when the given expression
becomes true, whichever comes first. If the number At is omitted, the event list
default value is taken. If the "OR exp" is omitted, the given At value (or its
default value) is the only condition for halting the run segment.

Every time a run segment begins, the circuit it applies to must also have
some time historysense. This history can come from one of three sources -

a. Initialization.
b. Continuation.
c. Rollback.

When the simulation program is first called up for a circuit, the time sense of
that circuit is initialized to zero. Al l runs following this normal sequence,
therefore, have a common initial time value. After a run segment terminates,
the final time sense is kept intact in anticipation of the next run segment being
a continuation of the first. Only when a circuit is finally released from simulation

88

by the user and returned to bulk storage is its time sense destroyed. The
rollback time initialization as described in Section 3.3.2.c can be performed
before or between run segments, provided only that the necessary signal-value
dump data is available to the user. Whichever source is the time sense of a run,
the value of At given in the run control card simply follows it.

3.3.3 Program Details
a) Data Structure Review
The simulation programs operate on a circuit in an OLLS data file, the

structure of which has been explored in depth. It is appropriate, however, to
review those aspects of the data structure which are vital to the simulation
program. There a r e four types of structures of particular interest:

1. Glossaries.
2. Instances.
3. Signals.
4. Simulation lists.

1) Glossaries
Thereis a glossary structure in the data file for every different type of

logic device which the user has placed into the file. A glossary structure is
formed when a logic device is defined, either through the Define Device program
or through the amalgamation of several interconnected devices to form one
larger device. It contains information pertaining to the device as a whole and
to each individual terminal of the device. The simulation program uses only the
terminal-oriented information. In particular, it refers to the following pieces
of information for each terminal:

a. A FILLIP pointer which can be interpreted to locate the signal cell
which is attached to the terminal on any instance of the device type. It
takes two pieces of information acting in concert to use this pointer - one
must know which particular instance of the device type is of interest and
which of its terminals are involved.
b. A pointer to a FILLIP list which indicates the other terminals
within the device that a r e successor to this one. When dealing with
multi-input, multi-output devices, as OLLS allows, it is useful to know
which terminals can possibly be affected by logic values on others. The
successor list of a particular terminal indicates which other device
terminals can be affected by changes in its value. The delays associated
with these successor relationships are also given for each pair of
terminals.

89

r

c. A pointer to a FILLIP list which is the result of compiling
interpretable code for the terminal driving equation if one was given to
the Define Device program. The form of this code is a parenthesis-free
rephrasing of the givenequation. Interpretation of the code is done with
a pushdown store interpreter.

Operation Fetch Fetch Fetch
Performed B C D

For example, if the given equation is

+ +

A = B + C + D

State of
Pushdown
List After
Operation

then the code list placed onto terminal A is

D

C C (C+D)
B B B B (B+(C+D))

B, C, D, +, +.

When this is executed in order during simulation, the desired values of
the signals on B, C and D a re stored into successive positions in the pushdown
list. Then C and D a r e logically OR'ed and the result placed where C was
stored. Finally, theintermediate (C+D) is OR'ed with B and the result placed
where B used to be. The total operation results in the correct value for the
signal at terminal A being placed into the first cell of the pushdown list.
Figure 3-14 illustrates the various steps in the process for the example.

The value fetch portions of the compiled code actually consist of three
pieces of related information. To be more specific, the operation implied by
"fetch B" is actually stored in the code list as:

1.
2.
3. Delay (At).

Fetch - activate the fetch routine.
Pointer to terminal B of this device.

The fetch routine locates the signal actually on terminal B for this
instance. It then searches the past history of that signal for a time appropriate

90

to the delay (At) given above, and retrieves the value associated with that time.
This finally is the value to be stored into the pushdown list.

It should be noted that in the example where A = B + C + D, terminal A
appears on the successor lists for terminals B, C , and D. There may be other
entries on those successor lists, but they would result from other equations
within thesame device. Thus if, for example, E = B * C defines yet another
terminal (E), then E also appears on the successor lists for B and C (but not
for D).

2) Instances
There is an instance structure in an OLLS logic file for every physical

element in the circuit described by the file. This includes all the logic devices
in thecircuit. The form of every instance structure is an exact replica of the
model structure found in the glossary for its type; thus the forms of several
instances of the same device type a r e identical. The contents of the instance
structures a r e different, however, reflecting the fact that each individual
instance is actually distinguishable from its brothers.

The instance structure consists of two parts - a FILLIP cell called the
Instance-Head cell, and a group of cells for each terminal classification which
indicates the interconnections from this device to other instances. The Instance-
Head cell contains a unique identification number which distinguishes this
instance from all others of the same type. This is referred to as the device ID.
Thecell alsocontains a FILLIP pointer back to the proper glossary structure
for this type of device. This is the main link from instances back to glossaries,
and is used extensively during simulation. The Instance-Head cell also contains
pointers to each of the groups of cells from the various terminal classifications
(input, output, expin, etc.), and is therefore the nucleus of the whole instance
structure.

The terminal-cell groups, as described in Section 3.1 of this report, are
variably structured FILLIP-pointer cell arrays. The size of each group, and
therefore the amount of computer core storage occupied, is totally dependent on
the numbers of each kind of terminal actually defined for the device. Each
separately defined terminal requires room for a single FILLIP pointer to be
available on every instance of the device type. When a particular instance of a
device is incorporated into the circuit, each of its pointers is made to indicate
the signal actually connected to that terminal. This is in the form of a direct
FILLIP pointer to the Signal-Head cell which represents that signal. Note that
the glossary for a device contains data for each of its terminals that uniquely
locates the pointer to a Signal-Head cell on any of its instances. Hence, the
locationof any signal cell attached to any terminal of any instance of any type

91

can be determined through the proper glossary and instance structure, and
knowledge of which terminal is involved.

3) Signals
An OLLS file contains a signal structure for every unique signal in it.

This includes not only normal runs between a device output and input, but also
expander-signal runs and auxiliary-terminal signals. A signal structure
consists of:

a. Signal-Head Cell.
b. Source Link.
c. Destination-Link List.
d. Set Inclusion List.
e. Simulation History-Tape List.

a. Signal-Head Cell
As in the instance structure, the Signal-Head cell contains pointers

to all of the other constituent elements of the signal structure, and is
therefore its nucleus. In addition, the head cell contains three data items
pertaining to simulation of the circuit. They a re a set of simulation flags,
the maximum required time span of the history tape, and the time at which
the signal last changed value in the simulation. The use of these data
items will be explored later in this section.

b. Source Link
The source link of a signal structure contains an indication of the

device and terminal on that device where the signal originates. This
would necessarily be an output, expander-output, or auxiliary-variable
terminal of the source device. The form of the indication is a pair of

I FILLIP pointers; one directed at the appropriate instance structure, and
one directed at the proper terminal cell within the source device glossary.
The source link, therefore, provides all the information necessary to
exploit the glossary to evaluate a signal's driving equation.

c. Destination-Link List
The destination-link list consists of cells identical to the source

link. The data items indicated are all the terminals and devices on the
signal run, except the source terminal. Thus the pair of items indicates
all glossaries, instances, and terminals which a r e associated with a
signal.

92

d. Set-Inclusion List
The set-inclusion list and the simulation flags a r e used to indicate

and define membership of this signal in higher-level sets of signals.
The kinds of sets indicated include:

1. Those signals being traced.
2.
3.
4.
5.

Those signals which participate in sampling expressions.
Those signals which participate in run control expressions.
Those signals which a re not to be tested for hazards.
Those signals which are included in register set definitions.

The function of thesevarious sets are clarified elsewhere in this report.

e. Simulation History-Tape List
The history-tape list of a signal consists of one or more special

FILLIP cells. Each cell contains enough room for up to ten transition
records. Each record is a pair of data elements - value and time.
Whenever the signal under consideration changes value during the dynamic
simulation run, this fact is recorded in the history-tape list. The existing
tape contents at the time of the transition a r e pushed down one level to
make room for the current transition record. The new value and time of
occurrence a r e thus recorded at the top of this tape (or list).

As previously mentioned, the signal-head cell contains a numerical
limit to the time span which must be covered by the history tape. A s an
older transition gets pushed down further from the current signal value,
its time of occurrence is tested for obsolescence. Such obsolete segments
of value history are discarded to prevent the growth of very long history
tapes, and hence to conserve core storage for useful data.

4) Simulation Lists
Simulation lists are created immediately before and/or during a

simulation run. They do not constitute a permanent addition to an OLLS data
file, and so a r e jettisoned when the file is returned to an inactive state. This
is done to reduce the required storage area for the file when the user is done
simulating it.

All simulation lists a r e addressable from the root of the logic file, and
a r e appended to the first FILLIP cell below that root. The kinds of lists which
a r e involved are:

93

a.
b.
C.

d.
e.
f.

g.
h.
i.

a.

Sampling control commands.
Run control expression.
Event list .
Trace and sample output.
Hazard detector output.
Dump output.
Propagation e r ro r output.
Register set definitions.
Conditional input events.

Sampling Control Commands
The general sample control card is:

SAMPLE Siglist IF Expression

When this is inserted into an OLLS logic simulation, three data elements
a r e added to the sample control list. They a re the card image (for
subsequent print output), a list of pointers to the signals mentioned in the
Siglist, and a list of compiled interpretable code generated from the
given signal expression. This code is slightly different from that compiled
for device output terminals because it fetches only current signal values
directly from signal-value history tape without passing through any
glossaries enroute.

Each of the signals mentioned in the expression is marked by a flag
bit indicating that fact, and is given a set-inclusion pointer back to this
entry on the sample control list. Thus, when any signal mentioned in an
expression changes, the simulation program can easily locate and evaluate
the proper IF clause to control sampling output.

b. Run-Control Expression
The run-control expression is created when a Run-Control card

containing a termination expression is inserted. This card appears as:

RUN At OR Expres s ion

in the input decks. This expression is processed exactly like the sample
control expressions and is stored in the same format. Naturally,
maturation of a run-control expression has a different effect on the run
than a sample control expression.

94

c. Event List
This list is the center of all simulation activity during a dynamic

run. Its structure and use is explored in detail beginning on page 99 of
this report.

d. Trace and Sample Output
When trace and sample events actually occur during a simulation

run, the pertinent data is first outputted to this central list for later
editing and printing. Theoutput isin the form of one data cell per trace
event, with indications by pointer of the signal being outputted and by
value of the time and logic value being recorded. Sample events are
recorded in the form of lists with a pointer indicating the sample control
card initiating the output. The time of the event is recorded along with an
ordered list of logic values corresponding to the desired sample-signal
list.

e. Hazard-Detector Output
When hazard conditions occui. during a run segment, the output

indicating these events is placed into this list. Output is in a form which,
for each recorded hazard, gives the signal on which the hazard occurred,
the time of occurrence, and the nature of the hazard (real o r potential).

f. Dump Output
Whenever a rollback dump is ordered by the user, this list is

created from the data file. It consists of an ordered set of all signal-value
history-tapes plus the current event list. The signal tapes a r e collected
in a certain order and, when the file is re-initialized properly, a r e
replaced onto the proper signal-head cells in the same order. The
success of this operation requires that the signal-structure t ree not be
changed at all between dumping and re-initializing the file.

g. Propagation-Error Output
E r ro r s which occur during the pre-dynamic run setup a re recorded

in this list. The output for each e r ro r is a pointer to the signal that
reverted to an undefined status. Knowledge of the order in which the
e r ro r s occurred is vital to any corrective action the user may take, so the
list is carefully ordered in sequence of occurrence.

h. Register-Set Definitions
Although this feature of OLLS will not be included in the initial

program release, a brief discussion of its merits is in order. The OLLS

95

user would be able to declare any set of signals to be a register. This fact
would be recorded in this simulation list and in each included signal-head
cell. Then he would be able to refer to the complete register set by name
in any of his simulation control cards. The net effect would be, first, to
free the user from defining sets of signals more than once in his input
statements and, second, to provide more readily interpretable formats of
trace and -sample outputs for him. If a defined register should be traced
or sampled during a run segment, output would be presented more
concisely than for other signal lists which are not defined as registers.
This would go far towards upgrading OLLS from a bit-by-bit simulator
towards a register-by-register simulator.

i. Conditional-Input Events
The general form of a conditional-input event card is:

EVENT Signal Value IF Expression

When such a card is presented to OLLS the expression is complied
exactly like the expression on a Sample-Control card. An entry containing
the compiled code, a pointer to the signal to be changed, and the new value
for that signal is placed in this list. Each signal mentioned in the
expression is so marked and given a pointer back to this entry. Henceforth,
whenever those signals change, the expression is evaluated to determine
if the conditional event is to occur.

b) Predecessor and Successor Signals
The concepts of predecessor and successor signals are used in the OLLS

simulation algorithms , and therefore should be fully understood. The two terms
a r e closely related and can be defined together.

One must recall that there a r e two levels of logic construction in an OLLS
circuit - the interconnections among devices and the devices themselves. -1
signal which is attached to an output terminal of a device is a successor of all
those signals which enter into the output-terminal driving function directly.
Similarly, a signal which is used directly to compute the driving function for
some output terminal is a predecessor of that output signal. In the example of
a simple NOR gate device, the NOR gate output signal is successor to all its
input signals , since all the input terminals appear in the output-driving function.

Next consider a multi-input multi-output device in which only some of the
inputs affect each output. Then only those signals that a r e connected to device
terminals which interact directly through the driving equations have a
successor-predecessor relation.

96

J n

In the special case of a device wherein an output-terminal function includes
itself in its equation, the signal connected to that terminal is its own successor
and predecessor. Should the interaction between a signal and its past history
be expressed through an intermediate equation, the self-successor property
disappears, Thus, in the example of an oscillating terminal:

A. = A10 B2

The signal on A is successor to both itself and the signal on B.
behavior can be modeled by a pair of terminals:

This same

C = A5
0

In this case A is successor to B and C, while C is successor to A. Note that,
although the behavior of terminal A for these two models during simulation is
identical, the successor-predecessor relationships a re different.

c) Initialization Algorithm
Initialization of an OLLS logic circuit usually consists of two separate

phases. The first is the planting of explicitly stated initial-signal values
throughout the signal-head cell tree. This is done in response to input cards
such as:

or
INITIAL$ Siglist

INITIAL1 Siglist

Aseach of the mentioned signals is set to the indicated static value, it is also
entered into a list to provide data for the next phase.

The second phase of the process is initiated by entering the command card:

PROPAGATE

The state of the logic file at that moment is as follows:

1.

2.

The explicitly initialized signals have the correct values.
Al l other signals are currently uncontrolled invalue. They may be
all undefined o r may have been left in some other logic state by an
earlier run segment.

97

3. There is a list (Setlist) of all the signals which have heretofore
been explicitly initialized.

The propagation proceeds by using the Setlist as a source of data and
also as a destination of computed results. For every signal mentioned in the
Setlist, the followkg operations are performed:

1. Each of the signal's successor signals is located and evaluated by
its terminal driving function. The evaluation assumes time to be frozen
so no account of delay is made. All signal values are taken to be current
and unchanging.

2. If a successor's newly computed value agrees with its previous
value,no further effort need be made. If, on the other hand, the old and
newly computed values differ, then one of two additional steps must be
taken. If the old value was undefined and the new value is Zero or One,
anormal initialization has occurred. In this case the new value is placed
in the successor signal's value history tape. Since the successor signal
has now changed value, its name must be added to the original Setlist.
This is performed before going on to evaluate the next successor of the
signal being propagated. The Setlist thus grows to indicate implicit
signal-value initializations .

The second case to be considered for propagation is the one in
which data is actually lost during the process. If the old value of a
successor signal is Zero or One but the newly computed value disagrees
with this, an indication of e r ror has occurred. Generally this happens
because the user has requested an inconsistent or inadequate initial-value
array. Such a signal is forced to revert to an undefined value to prevent
unending computations. The signal's name is added to a list of other such
initialization e r rors kept in the simulation-list area of the file. Finally,
the signal at e r ror is also added to the Setlist to propagate, if possible,
the newly undefined signal value still farther into the file.

3. When all successors of a signal mentioned on the Setlist have been
evaluated by the rules of 1 and 2 above, that signal is deleted from the
Setlist. The propagation program then steps on to consider whatever
signal happens to be next in the list. The order in which signals a r e
considered has some effect on the length of time that the entire process
takes, but none on the final value configuration achieved.

98

d) Event List
As far as the initialization procedure in OLLS is concerned, the passage

of time is not a factor. However, the dynamic-simulation technique used to
achieve realistic circuit behavior requires a time base to operate successfully.
The function of the event list is to provide the necessary time base to the
simulation.

The event list is a time-ordered list of all events which are scheduled to
take place during simulation. Its structure can best be described as like that
of a comb - with time advancing along the back of the comb and events recorded
onits teeth. Simultaneous events, if there are any, are recorded on the same
tooth. The spacing between teeth is not uniform, however, since the presence
of a tooth indicates a time at which an event is actually scheduled rather than
a time at which one might be placed. Each tooth position is marked to indicate
the simulation time it represents, and it is possible to interject new teeth
between existing ones should the need to do so arise.

There a r e presently two sub-lists on each tooth which may each contain
anunlimited number of simultaneous related events. Of the two lists presently
utilized (out of a possible twelve lists), one is concerned only with evaluation of
signal values and the other only with the actual transitions experienced by
signals. They a re called, respectively, EVLIST and DOLIST.

The dynamic simulation proceeds by stepping along the comb. A l l
scheduled events at each tooth must be executed before advancing to the next
tooth ih sequence. When time does advance after successfully executing all
events on one tooth, it does so by jumping directly to the next time tooth in place.
Time thus increases monotonically, but not necessarily in unit increments. The
gap between two teeth may be any positive integer on a total available time scale
of 1,048,576.

When a user first calls for the simulation program to operate on his
circuit, the event list is necessarily empty. Any unconditional input events or
repetitive sequences (see page 82), which he may supply, form the initial event
list. These are placed on the DOLIST in their correct tooth positions. Repetitive
sequences have all discrete transitions which wi l l occur during only the first
period placed into the event list at this time. Subsequent transitions on these
and other periodic signals wi l l be added to the list no more than one period
before they occur. The event list is, therefore, always finite in length, even in
the presence of repetitive sequences.

During the course of a run segment the event list grows into the future and
contracts from the past as signal-related events occur and in turn breed new
events. Thus, at any moment, the list indicates the schedule of imminent events
a s generated by the simulation algorithm.

99

e) Dynamic-Simulation Algorithm
The dynamic-simulation run follows a course dictated by entries in the

event list and by the logic constraints imposed by the user 's circuit. Al l

computation and output occurs with time frozen at a particular tooth in the event
list. The behavior of the logic circuit, propagation of signals into the future,
and sampling and tracing snapshots all take place with time frozen. The
algorithm through which the behavior of a logic circuit is simulated thus is
actually an ordered sequence of computations which take place with time halted.
Whenever an event must take place in the future rather than instantaneously, it
is seeded into the event list at a point in time which is not yet under consideration.
Any references to the past must be made within the signal structures themselves
(history tapes), since those portions of the event list which have already been
processed are discarded.

'

The dynamic- simulation algorithm begins by interrogating the current
event-list tooth. First, the DOLIST is processed. Each entry on the DOLIST
is a data-pair-signal pointer and new value. For each such entry on the current
DOLIST the program:

1.
2.
time.
3. Discards any obsolete old values for the signal. A value is obsolete
only if its time of occurrence is older than the oldest which needs to be
kept for that particular signal.
4. Locates, through the destination-link list and the glossary for each
destination device, the successor signals of the one being changed.
5. Each successor signal has a specified delay associated with its
response to the particular predecessor signal being changed. This
information is also extracted from the destination-device glossaries.
6. An entry is prepared for the event list for every successor of the
signal just changed. Each entry is made into the EVLIST of the tooth
appropriate to the delay extracted from the glossary. If an extracted
delay happens to be zero, the EVLIST entry is made on the event-list
tooth being processed. If no tooth exists at the appropriate time in the
near future to accommodate an EVLTST entry, one is created and the
entry made. The entry presently consists only of apointer to the successor
signal-head cell, although additional data could be included. For instance,
the predecessor signal which stimulated the placement of the successor
into the event list could be named again, thus allowing cause-and-effect
behavior to be studied more closely.

Locates the indicated signal's value history tape.
Pushes down old values to make room for the new value and current

100

When the DOLIST is processed, it is jettisoned as excess baggage. The
data file has been changed only to the extent that those signals which were
mentioned on the DOLIST have their new values. The event list has many new
EVLIST entries on various teeth, representing all the successors of all the
signals which have actually changed.

Next thecurrent EVLIST is examined for any entries. If there a r e any,
the program must compute their current logic values. For each entry on the
current EVLIST, the program:

1. Locates the mentioned signal-head cell and source-link cell.
2. Refers to the glossary for the source device of that signal and
executes the output driving function for the terminal to which this signal
is connected.
3. The computed value is compared with the present value on top of
the signal's value history tape. If they a r e the same, no further action
takes place.
4. If the twovalues differ, an entry is prepared for the current DOLIST,
indicating the signal to be changed and the computed new value.

When all entries in the current EVLIST a re processed, the EVLIST is
jettisoned as obsolete. The program then examines the current DOLIST to see
if any entries have been created in it. If there a r e any, it repeats the processing
described for the DOLIST. If not, it has finished with the current time tooth
and steps on to the next one in the sequence.

The sequence of operations just described is the heart of the dynamic-
simulation algorithm. The program separates all nonsimultaneous events into
distinct processing stops. Then, within a time step, it further separates events
into evaluation of signal values and execution of computed changes. This
separation permits us to handle zero-delay logic so long as there a r e no
oscillatory logic loops. If such a situation exists, the program wi l l never be
able to finish its computations at one time step. It wi l l be rapped back and forth
between EVLIST and DOLIST in a nonconverging process. The presence of
any delay in the loop eliminates this problem entirely.

f) Tracing, Sampling and Hazard Detection
The preceding section described that portion of the dynamic- simulation

algorithm which causes signals to changevalue and time to advance. There are,
however, a number of frills that accompany the signal-changing process which
a r e required to make OLLS a useable program. The subjects of output
processing, run control, and hazard detection must be merged into the dyanmic

101

algorithm to create ause r interface and to present results of a run to the user
for inspection.

Since all these extra features of OLLS a r e based on actual signal-value
changes, we need only consider the DOLIST processing that occurs at an event-
list time tooth. Each time a signal value is actually changed, the program
consults the simulation flag bits in that signal's head cell. These indicate
whether the signal is to be traced, tested for hazards, or considered as part of
a sampling, run termination, and/or conditional-input event-control expression.
If any of these flag bits indicates the need for additional processing, the set-
inclusion list of thesignal being changed is extracted and added to a third list
(in addition to EVLIST and DOLIST) on the current-event tooth. When all
processing of EVLIST and DOLIST at a particular tooth is complete, this third
list is consulted before actually permitting the program to step along to the next
event time. A l l the operations indicated a re performed now. The required
trace-output data is placed into the simulation lists. Control expressions a re
evaluated to determineif sampling is to occur, if input events a r e to be added
into the event list, or i f the run is to terminate prematurely. Hazards a re tested
for by measuring the time that elapsed between transitions on a changing signal,
and comparing pulse widths with prescribed limits. Finally, after all the extra
processing is complete, the program examines the time of the next-event tooth
and compares it to the established run-segment limit value. If the At limit wil l
be exceeded by stepping on to the next time tooth, the run is stopped, thereby
returning control over the simulation to the user.

r

102

3.4 The OLLS 360 Drawing Algorithm
H. Robert Howie

Experience with the H1800 system described in Chapter 2 has shown that very
few interconnections are ever made with more than five straight-line segments. Most
connections, in fact, are made with one o r three straight-line segments. The H1800
system was designed to find any connection with a s many as nine straight-line segments
and then t ry to reduce that connection to as few segments as possible. This naturally
requires computer time and sometimes doesn't reduce the connection far enough.

With thisin mind, a better approach would be to t ry the simplest pattern first
and proceed upward through more complicated patterns as necessary until a connection
is made or until more than five straight-line segments are required for the connection.
The limit of five segments is purely arbitrary. Complicated connections are easier
for the designer to follow i f labeled with the signal name than i f connected by a maze
of twisting line segments. To aid in this approach all possible connections a r e
classified by the patterns shown in Fig. 3-15.

In Fig. 3-15 notice that the five basic patterns correspond to the number of
segments required to connect the source at A to the destination at B, and that each
pattern has two forms depending on whether the exit direction from A is horizontal or
vertical, The required pattern to connect a particular pair of devices can be
determined by elimination fairly rapidly by asking a few simple questions about the
terminal characteristics of the device.

To illustrate this, consider the example below.

The exit direction from terminal A is horizontal so the Y forms of all five patterns
a r e eliminated. The entrance direction to terminal B is also horizontal so patterns
I1 X and N X which require a vertical entrance to B a r e also eliminated. A first
attempt is made to f i t pattern I X. The Y coordinate of A and B are not identical so

103

we proceed to t ry pattern 111 X. This is done by extending A as far forward as
possible, extending B as far backward as possible, and then looking for a single
straight line which connects them. If such a line can be found, the algorithm ends;
otherwise proceed to pattern V X. If pattern V X fails, the connection is simply
labeled with the signal name.

Had terminal B beenvertical (such as the Direct Set o r Reset on a JK Flip-Flop),
patterns I X, 111 X and V X would have been eliminated, and only patterns I1 X and
IV X would be considered.

A *

A-A
B

1 1 1

A A A

B

1

I

Ac--t-tt-.A

A

B-B
ILIX

B B

+f=T
A*A

3EE v x

A

I Y 1.
A

1,

111 Y

Fig. 3-15

104

3.5 Program Structure
James Pennypacker
Gary Schwartz

To manipulate the data in the data file, a number of separate programs have
been written. Each of these programs is independent of the others but there is a
structure which t ies the various routines together; this structure is shown in Fig.
3- 16. The intent of this section is to describe the functions of each of the routines and
to indicate how the various programs are logically inter-related.

Briefly, there is one main program of OLLS; this main program reads and
interprets all OLLS input cards and, depending upon the input-card contents, branches
to one of the working programs. Figure 3- 16 depicts five different working programs,
each of which is identified by an asterisk; other working programs, such as drawing
generation and deletion, a r e not explicitly shown. In general, the working programs
provide the means for manipulating data in the data-file structure.

In Fig. 3-16, there a r e two references to a program called DEFINE DEVICE.
Even though two different programs a r e indicated in the illustration, both rectangles
refer to the same physical program; there is only one program called DEFINE
DEVICE. The same applies to the programs ADD TO LOGIC FILE, CHANGE LOGIC
FILE, SIMULATE, and CARDFILE.

3.5.1 Types of Input Cards
As mentioned in the previous section, there a r e really three types of input

cards which a r e of interest to OLLS. First, there a re the macroinstruction
cards which call into operation either the working programs o r the on-line CRT
system. The macroinstruction cards a re recognized by the presence of an
asterisk (*) in the left-most column; for this reason they a re often referred to
a s asterisk cards. Examples of macroinstruction cards a re

* DEFINE DEVICE type
* ADD logic file name
* CHANGE logic file name
* SIMULATE
* CRT

The second class of cards is composed of subinstruction cards which
describe the specific operations to be performed by the working programs.
Subinstruction cards all contain certain key words which are recognized by the
appropriate working program.

The third class of input cards is formed by the actual data cards which are
required for specific operations.

105

E

106

Generally speaking, a number of different data cards immediately follow
each subinstruction card; all data cards are serviced by the subinstruction card
until a new subinstruction card is read. Furthermore, a number of different
subinstruction and data cards normally follow each macroinstruction card; the
macroinstruction card maintains control until the next macroinstruction card
is read.

3.5.2 CARDREAD and Main Program
Insofar a s it controls the operations of the various working programs, the

central, or main program, of OLLS is the program CARDREAD. This program
operates in two modes; as the main, o r controlling, program or as a subroutine
called by the working programs.

Al l input cards, regardless of type, are read by the CARDREAD program.
When operating a s the main OLLS program the operation of CARDREAD is
essentially a s follows: CARDREAD scans each input card until a macroinstruc-
tion card is found. The image of the card is remembered by CARDREAD and
some minor bookkeeping operations a r e performed. The appropriate logic-data
file is fetched from the FILLIP monitor. Control is transferred to the ap-
propriate working program; this transfer includes transferring the image of the
macroinstruction card and the root of the required data file. CARDREAD
remembers which data file is being processed and which operating program
has control.

Each working program may in turn call CARDREAD as a subroutine to
read and deliver the subinstruction cards and the data cards required by the
working program. When operating in this mode, CARDREAD scans the input
card to determine whether or not the card is a macroinstruction card. If it is
not, the image is delivered directly to the working program. If the card is a
macroinstruction card, control of operation is transferred to a different entry
point of the working program which performs only clean-up operations for the
working program. No card image is transferred by CARDREAD to the working
program at this time; however, the card image is remembered by CARDREAD.
When the clean-up operations a r e completed, the working program must transfer
control to the CARDREAD ini ts main program mode. CARDREAD now scans
the image of the macroinstruction card which has just been read; the appropriate
data file is fetched, the bookkeeping is updated, and control is transferred to the
appropriate working file as before.

If the macroinstruction card does not contain a logic file name, the file
which was named on the previous macroinstruction card is assumed. The
bookkeeping operations include keeping anup-to-date list of all OLLS files and
users, remembering which data file was last named, and remembering which
operating program is in control.

107

3.5.3 DEFINE DEVICE
The device definition program has been described in Section 3.2 of this

report.

3.5.4 CARDFILE
One of the service routines incorporated into OLLS is the CARDFILE

system. Using the system, the designer can store in the FILLIP data files lists
of input card images. The CARDFILE system will deliver the card images,
one at a time and upon demand, for further processing. The CARDREAD
program is designed not only to read cards from the computer card reader but
also to read card images from the CARDFILE system; thus, either entire
computer runs or portions of runs can be performed, using data and control
cards which have been stored in memory prior to the run.

A CARDFILE EDIT program enables the user $0 modify the image of any
particularcard which has been stored. Cards may be deleted from the image
list and new card images may be inserted into the list at arbitrary points. The
editing of the card files may be performed either in the batch-processing
mode, using input cards, or in the on-line mode, using the typewriter keyboard
of the on-line graphic terminal. This feature permits the designer to control
from the on-line keyboard those runs which a re made up of batch-processing
segments interspersed with on-line activity; the control cards of the segments
can be modified a s desired, depending upon results of previous activity.

There a re two foreseeable major uses of the CARDFILE system. When
a data-file structure is composed of thousands of input cards, as is the typical
case for a practical design, it becomes unwieldy for the user to work with such
large input decks. Using the CARDFILE system, the designer can in one job
store all the card images; he can in the future edit any of these images to make
corrections, additions, or deletions. If the designer then wants to make a trial
design which is a slight variation of the first design, he can duplicate the card
image list in memory and make the necessary modifications to the duplicated
list. The designer now has two input lists in memory, one for each design; these
input lists become controlling documents for the design.

The second major use of the card file system occurs during simulation
conducted on-line. The control cards for performing simulation can normally
be prepared prior to the on-line run and stored as an image list. After the user
has designed a logic circuit in the on-line mode, additional data-card images
must be prepared and inserted into the image list if the circuit is to be simulated.
This can be done at the graphic terminal keyboard; the card-file image list wil l
then control the simulation.

-

108

3.5.5 ADD
The ADD TO LOGIC FILE program provides the means of inserting

design information pertaining to a particular device into the logic-data file.
Pr ior to inserting design data, a glossary for the device type must have been
constructed by the DEFINE DEVICE program. For each individual device, the
following information may be inserted into the logic-data file:

1. Device type.
2. Device identification.
3.
4.

5. Names of signals which are connected to each of the device

Identification of drawing on which device appears.
Coordinates of drawing where device is located.

terminals.

It is not yet known how graphical data is to be represented on punched

Generally speaking, one card image is used to insert all the data relevant
to a particular device; continuation cards may be used to contain additional
signal names i f required.

The program checks each input data card for consistency with the existing
data structure. The device identification is checked against the identification
of all other devices of the same type; if it is a duplicate identification, an e r ro r
message is produced in hard copy or on the CRT, depending upon the mode of
operation. The coordinates of the drawing number a r e checked to assure that
other devices have not been positioned at the same location. If the drawing
number does not yet exist in the data file, a new drawing-head cell with the
desired number is automatically generated and inserted in the data structure.
The signals on the output terminals of the device a r e checked to determine
whetherornot the signal is connected to any other output terminal; this is not
allowed. Signal-head cells for new signals are automatically created and
inserted into the data file. Finally, signals which are connected to no output
terminals are identified as sourceless signals and brought to the attention of the
designer.

data cards.

3.5.6 CHANGE
Where the ADD program provides for inserting additional data into the

data file, the CHANGE LOGIC FILE program enables the designer to modify via
punched cards any piece of design data which has been inserted into the data-file
structure. The following types of modifications can be made under control of
the CHANGE routine:

109

1. The name (identification) of a drawing, signal or device instance
may be changed.
A device may be moved to a different drawing or to a different
location on the same drawing.
A device may be changed to one of a different type.
Signal'connections may be made or broken.
The size of a drawing can be changed.

2.

3.
4.
5.

In all relevant cases, consistency checks a re applied to the modified dataas
was described for the ADD routine. Al l datanot specifically mentioned on the
input cards to the CHANGE program remain unchanged.

When a device type is changed to a new type, the old and new types must
have the same number of inputs, outputs, expander inputs, and expander outputs.
Signals for auxiliary equations are automatically added (or deleted) as needed
for the new device type.

When a device is moved from one position to another (or to a different
drawing at the same positions), the graphic data which described the former
signal runis deleted from the file structure, Graphic information for all runs
of the signal on the original drawing a re deleted.

3.5.7 SIMULATE
The simulate program is discussed in detail in Section 3.3 of this report.

3.5.8 CRT
The CRT system is described in detail in Section 3.6 of this report. It is

sufficient to state here that, in order to change or insert data from the CRT, the
corresponding control and data card images a re generated by the CRT systems
and read by CARDREAD exactly as if the cards were coming from a card file
or the computer card reader. Thus, the same working programs a r e called into
operation from the CRT system as a re used in the batch-processing system.

3.5.9 DELETE
The DELETE FROM LOGIC FILE program enables the designer to remove

unwanted data from the data-file structure. Because the CHANGE routine
allows individual data to be modified by the designer, the DELETE program
operates in toto on all the design data included on the original ADD input-data
cards. Specifically, the DELETE program requires only that the type and
identification of the device which is to be deleted be given. The device and al l

data pertaining to the deviceare deleted from the data file. Signals which are
connected to theoutputs of the device a r e eliminated from the data file rather

110

c

*

than being classed as sourceless signals. If the device is the last device on a
drawing, the drawing itself is eliminated from the data file. Auxiliary signals
required by the deviceare also deleted. The schematic position of the device
becomes available for placing another device of the same size. Finally, all
signals which were connected to the inputs of the device are appropriately
modified and the graphic data - as it relates to the drawing from which the
device was removed - for all those signals is deleted from the data structure.

3.5.10 DELETE TYPE
Where the DELETE FROM LOGIC FILE routine enables the user to

delete design information relative to a particular device, the DELETE TYPE
program provides for deleting a glossary structure from the data file. A
prerequisite for this operation is that all instances of the specified type must
have been deleted prior to the deletion of the glossary. Otherwise, the glossary
structure is not deleted from the data-file structure and an e r ro r message is
brought to the user 's attention.

111

3.6 On-Line System (CRT)
H. Robert Howie
Ramon Alonso

3.6.1 Introduction
This section. describes in detail a portion of the interaction between a

Because this is a written report, the procedures may

The description carries only up to the point at which the designer has
established a working file, and has collected the various devices and circuits
he expects to use. Length of text alone makes some limitation of the description
mandatory.

A s far a s implementation is concerned: as of this writing SYSTEM
CENTRAL and FILE MANIPULATE menus a r e working a s stand-alone
programs, ready to be tied to the rest of the system. The DEFINE DEVICE
menus a re half-done, with the DRAWING MANIPULATE menus in the planning
stages.

designer and OLLS.
appear cumbersome and lengthy, but are, in fact, quite straightforward.

3.6.2 Physical System
The equipment system used to implement OLLS is composed of an IBM

360/ 75 computer and amodel 2250 Graphic Display Console. The console has
a CRT, a light pen, and a keyboard. An internal memory relieves the computer
of the task of regenerating the display the required 30 times per second, for
flicker-free appearance.

3.6.3 Concept of User's Role
Experience, both ours and that of others, indicates that it is desirable to

use the light pen tochoose from among alternative actions, rather than typing
in commands. If, at every step of the way, all possible alternative actions a re
displayed on the CRT, the operator is relieved of the task of memorizing exact
spellings and formats, and can choose an acti;on by pointing at it with his light
pen. This sort of system has strong overtones of self-instruction and, a s wi l l
be seen, offers a "natural" progression through the capabilities of OLLS.

Typing cannot be entirely avoided; there are instances, such as when
inventing names, when typing is clearly superior to writing characters with a
light pen.

112

3.6.4 Procedures. Setting Up a File
The first thing to happen after calling OLLS is the display of the OLLS

SYSTEM CENTRAL menu*, (Fig. 3-17). The designer can at this time select
the major OLLS mode by pointing the light pen to the box next to the desired
option.

As shown in Fig. 3-17, the designer is confronted with an empty file.
Assume he is about to set up shop for the first time. Other designers before
him have files, and there are common files from which he can draw information.
Still in Fig. 3-17, the designer selects FILE MANIPULATE.

In general, the user can work simultaneously with two distinct data files.
The data file which he is constructing or inserting data into is called the
Working File. Rather than generate new data, the user can copy information into
the working file from any other existing OLLS file. The file from which
information is copied is known as the Read Only File; the user is not permitted
to w r i t e data into this file or to change its contents in any way.

The result of that selection is shown in Fig. 3-18, where the FILE
MANIPULATE menu is shown. The selection of possible commands is shown
in the upper half, and the active file list is displayed in the bottom half of the
screen.

One of the possible commands is RETURN TO SYSTEM CENTRAL, which
causes Fig. 3-17 to return to the screen. In general, it is possible at each step
to go back to a previous one,

At this time, when Fig. 3-18 first appears, our designer has neither a
working filenor a Read Only file. He points to SELECT READ FILE (11, then
selects the COMMON file (21, then says EXECUTE (3). The result of the
EXECUTE appears in Fig. 3-19. Notice that the top line now shows a Read
Only File (common), whereas none was shown before.

The designer now has a set of device definitions to work with, and wishes
to set up a working file (Fig. 3-20). He does so by selecting CREATE FILE (I),
and typing in the name of the file. He is naming his file SMITH DEMONSTRATION
FILE. Thename of his working file appears next to the label WORKING FILE
(2). When he finishes typing, he can command EXECUTE (3), which enters the
new filenames inthe ACTIVE OLLS FILE LIST (Fig. 3-21). Typing er rors can
be corrected (before EXECUTE) by way of the keyboard itself,

* The te rm "menu" describes quite well the character of the control system for
OLLS. The designer selects items from the menus in front of him to command
desired actions. The menunaturally displays only those which a r e relevant at
that time.

113

OLLS SYSTEM
CENTRAL

READ ONLY FILE: NONE
WORKING FILE: NONE

SELECT MAJOR MODE

0.0 FILE MANIPULATE
0 DEVICE MANIPULATE
0 DRAWING MANIPULATE
D SIMULATION
0 ANALYSIS

a OUTPUT OPTIONS

0 EXIT AS DIRECTED

Fig. 3-17

114

I
OLLS SYSTEM

FILE MANIPULATE MENU

READ ONLY FILE: NONE
WORKING FILE: NONE

0 CREATEFILE
0 DELETE FILE

1 00 SELECT READ FILE
0 SELECT WORKING FILE
0 RETURN TO SYSTEM CENTRAL

00 EXECUTE

. ACTIVE OLLS FILE LIST PAGE 1 O F 2 + -
* @COMMON DEVICE DEFINITIONS, ETC.

ALONSO MULTIPROCESSOR
BROWN STRAPDOWN SYSTEM LOGIC
THALER THALERS FOLLY
BARKER MULTIPLEX ECDU
HARANO AGC BLK I1 MONITOR
GRIGGS ARITHMETIC LOGIC

Fig. 3-18

115

OLLS SYSTEM
FILE MANIPULATE MENU

READ ONLY F I L E : COMMON DEVICE DEFINITIONS, ETC.
WORKING FILE: NONE

/ -00 CREATE FILE
D E L E T E FILE

0 S E L E C T READ F I L E
U S E L E C T WORKING FILE
0 RETURN TO SYSTEM C E N T E R

U EXECUTE

ACTIVE OLLS FILE LIST PAGE 1 O F 2 + -
COMMON DEVICE DEFINITIONS, ETC.
ALONSO MULTIPROCESSOR
BROWN STRAPDOWN SYSTEM LOGIC
THALER THALERS F O L L Y
BARKER MULTIPLEX ECDU
HARANO AGC BLK I1 MONITOR
GRIGGS ARITHMETIC LOGIC

Fig. 3-19

116

i

OLLS SYSTEM
FILE MANIPULATE MENU

READ ONLY FILE: COMMON DEVICE DEFINITIONS, E T C .
WORKING FILE: SMITH DEMONSTR -

0 0 CREATE FILE
0 D E L E T E FILE
0 SELECT READ F I L E
0 SELECT WORKING FILE
0 RETURN T O SYSTEM C E N T E R

0 0 EXECUTE

ACTIVE OLLS FILE LIST PAGE 1 O F 2 + -
COMMON DEVICE DEFINITIONS, ETC.
ALONSO MULTIPROCESSOR
BROWN STRAPDOWN SYSTEM LOGIC
THALER THALERS F O L L Y
BARKER MULTIPLEX ECDU
HARANO AGC BLK I1 MONITOR
GRIGGS ARITHMETIC LOGIC

Fig. 3-20

117

OLLS SYSTEM
FILE MANIPULATE MENU

READ ONLY FILE: COMMON DEVICE DEFINITIONS, ETC.
WORKING FILE: SMITH DEMONSTRATION FILE

0 CREATE FILE
0 D E L E T E FILE

0 S E L E C T READ F I L E
0 S E L E C T WORKING FILE

0 0 RETURN TO SYSTEM CENTER
0 EXECUTE

ACTIVE O L L S FILE LIST PAGE 1 O F 2 + -
COMMON DEVICE DEFINITIONS, ETC.
ALONSO MULTIPROCESSOR
BROWN STRAPDOWN SYSTEM LOGIC
THALER THALERS F O L L Y
BARKER MULTIPLEX ECDU
HARANO AGC BLK I1 MONITOR
GRIGGS ARITHMETIC LOGIC

-\ SMITH DEMON STR A.T ION FILE

Fig. 3-21

118

When Fig. 3-21 appears, our Mr. Smith eiects to return to SYSTEM
CENTER. Smith next selects the DEVICE MANIPULATE mode (Fig. 3-22),
whereupon Fig. 3-23 results. He now can elect to DISPLAY READ ONLY
FILE DEVICE LIST, a command which refers to the READ ONLY FILE atop
Fig. 3-23. At the bottom of the screen is the WORKING FILE DEVICE LIST,
presently empty.

When he touches DISPLAY READ ONLY FILE DEVICE LIST (l) , and
then EXECUTE (21, that list appears below and the original command option is
replaced by DISPLAY WORKING FILE DEVICE LIST. Smith can go back and
forth alternately displaying each list.

Figure 3-24 shows how Smith selects devices for his working file. He
first selects DEFINE DEVICE (11, followed by COPY FROM FILE (2). A s wil l
be seen later, the designer can define his own devices.

Following the designer's election to copy from file, he selects, always
with the light pen, those devices he needs for his design. These a re 3NOR/M
(31, 8AND (4), BINARY 1 (5), and DIODE (6). He then EXECUTES (71, following
which he elects to display the working file he has just composed (8). The result
is shown in Fig. 3-25. Notice that DISPLAY WORKING FILE LIST has been
replaced by DISPLAY READ ONLY FILE LIST.

A s of Fig. 3-25 Smith wishes to display a device, the 3NOR/M element,
so he commands (l) , (2) EXECUTE (3) in Fig. 3-25. The result is Fig. 3-26.
The gate symbol, equations, terminal names, and other relevant data a re
displayed.

4

At this time the designer elects to RETURN TO DEVICE CENTRAL.

3.6.5 Defining a New Device
Being able to define new devices is, from the user 's point of view, a most

important property. It frees him from dealing with system programmers, for,
if he cannot define his own devices and if the existing list is insufficient, he has
to have someone else model the device. The facility to interact with device
modeling allows the designer a great advantage. He can define devices
operationally, a s a black box, or as a circuit, and he can change an existing
definition if he so desires. He can readily incorporate new logic elements as
they a r e announced by commercial firms, or he can invent his own, and test
them as a system component.

Starting from OLLS DEVICE CENTRAL, Smith can now choose to DEFINE
DEVICE (1). Previously he also chose COPY FROM FILE, but this time he
does not. He starts typing (2) J - K FLOP DIRECT SET AND RESET
COMPONENT. The name proper is J - K FLOP, and the rest a re comments.
When he EXECUTES (31, a null device by that name is incorporated into the file.

119

Y

OLLS SYSTEM
C ENTHAL

READ ONLY F I L E : COMMON DEVICE DEFINITIONS, ETC.
WORKING F I L E : SMITH DEMONSTRATION F I L E

S E L E C T MAJOR MODE

U FILE MANIPULATE
@U DEVICE MANIPULATE

U DRAWING MANIPULATE
0 SIMULATION
0 ANALYSIS

0 OUTPUT OPTIONS

0 EXIT AS DIRECTED

Fig. 3-22

120

OLLS SYSTEM
DEVICE CENTRAL

READ ONLY FILE: COMMON DEVICE DEFINITIONS, ETC.
WORKING FILE: SMITH DEMONSTRATION FILE

0 RETURN TO SYSTEM CENTRAL
. @ O DISPLAY READ ONLY FILE DEVICE LIST

0 DEFINE DEVICE
0 COPY FROM FILE

0 DISPLAY DEVICE
0 DELETE DEVICE
0 MODIFY DEVICE

0 CANCEL ORDER @O EXECUTE

I WORKING FILE DEVICE LIST PAGE 0 OF 0

El NILL

I

Fig. 3-23

121

OLLS SYSTEM
DEVICE CENTRAL

READ ONLY FILE: COMMON DEVICE DEFINITIONS, ETC.
WORKING FILE: SMITH DEMONSTRATION FILE

0 RETURN TO SYSTEM CENTRAL
' @ 0 DISPLAY WORKING FILE DEVICE LIST
0 0 DEFINE DEVICE a0 COPY FROM FILE
0 DISPLAY DEVICE
0 D E L E T E DEVICE
0 MODIFY DEVICE

0 C A N C E L O R D E R -/@,bo EXECUTE

READ ONLY FILE DEVICE LIST PAGE 2 OF 3 + -
0 3NOR/F
0 3NOR/M
0 3NOR/S
0 8AND
0 SETRES
0 BINARY 1
0 COUNTER

FAST 'INSEC
MED 14NSEC
SLOW 2 lNSEC

HAS CLOCKED INPUTS
WESTINGHOUSE CIRCUIT

1 / 4 WATT '

IS A DIODE IS A DIODE

UP-DOWN 3BITS

COMPONENT
COMPONENT
COMPONENT
COMPONENT
COMPONENT
HYBRID
HYBRID
COMPONENT
COMPONENT

Fig. 3-24

122

OLLS SYSTEM
DEVICE CENTRAL

READ ONLY FILE: COMMON DEVICE DEFINITIONS, ETC.
WORKING FILE: SMITH DEMONSTRATION FILE

0 RETURN TO SYSTEM CENTRAL
0 DISPLAY READ ONLY FILE DEVICE LIST
"0 DEFINE DEVICE

0 C O P Y FROM FILE
0 0 DISPLAY DEVICE
0 D E L E T E DEVICE
0 MODIFY DEVICE

0 C A N C E L O R D E R @PO EXECUTE

WORKING FILE DEVICE LIST PAGE 1 OF 1 + -
90 3NOR/M MED 14NSEC COMPONENT
0 8AND COMPONENT
0 BINARY 1 WESTINGHOUSE CIRCUIT HYBRID
0 DIODE IS A DIODE IS A DIODE COMPONENT

Fig. 3-25

123

b

OLLS SYSTEM
DISPLAY DEVICE

3NOR/M MED 14NSEC
@ 0 RETURN TO DEVICE CENTRAL -

EQUATION LIST

c7 A = E *(B +C +D) /
0 1 1 4 1 4 14

C i F = A
0 1

SIZE 1
PLOTPOINTS 2 1

INPUTS 3

OUTPUTS 1
EXPANDER INS 1
EXPANDER OUTS 1

EQUATIONS 2
UNSPECIFIED TERMINALS

NONE

PAGE 1 OF 1 + -

Fig. 3-26

124

P

OLLS SYSTEM
DEVICE CENTRAL

READ ONLY FILE: COMMON DEVICE DEFINITIONS, ETC.
WORKING FILE: SMITH DEMONSTRATION FILE

0 RETURN TO SYSTEM CENTRAL
@ 0 DISPLAY READ ONLY FILE DEVICE LIST

0 DEFINE DEVICE
CI COPY FROM FILE

DISPLAY DEVICE
CI DELETE DEVICE
0 MODIFY DEVICE

CANCEL ORDER @ EXECUTE

WORKING FILE DEVICE LIST PAGE 1 OF 1 + -
3NOR/M MED 14NSEC COMPONENT
8AND COMPONENT

0 BINARY 1 WESTINGHOUSE CIRCUIT HYBRID
0 DIODE IS A DIODE IS A DIODE COMPONENT

J-K FLOP DIRECT SET AND RESET COMPONENT
0 ' J

Fig. 3-27

125

The DEVICE CENTRAL display remains. The null device just entered
can be changed to the desired one by commanding MODIFY DEVICE. The
sequence (l), (21, EXECUTE (3) is shown in Fig. 3-28, whereupon Fig. 3-29,
MODIFY DEVICE menu, appears.

The designer must specify a number of things at this point, the most
important of which are its logical behavior and graphic symbol. Notice that the
name of the device to be modified appears at the top of the MODIFY DEVICE
menu.

The graphic symbol must be defined just so that named terminals exist
for the equations to refer to.

3.6.6 MODIFY DEVICE
When the MODIFY DEVICE menu appears (Fig. 3-29), the designer can

sketch an appropriate symbol. He first selects a size, (1) and (21, then, by
alternately pointing to SEGMENT (or SMALL DOT) (3) and transferring the
light pen to the sketch area. Segments start and stop where the light pen starts
and stops. Small dots a r e actually small circles centered where the light pen
first alights. The ERASE option deletes segments (or dots) on a last-in first-out
basis.

The LINE OF SYMMETRY (4) option is used as follows: when half the
symbol has been drawn, the light pencan be pointed to LINE OF SYMMETRY,
or to two points on either avertical o r horizontal grid line, and to a point on the
side to be reproduced. The other half of the symbol then appears.

When satisfied, the designers can ACCEPT SKETCH (51, which is also a
PROCEED command.

The MODIFY DEVICE menu changes SKETCH OPTION to PLOTPOITU’TS
OPTION (Fig. 3-30). The original sketch is composed of great many points,
which takesa lot of 2250 memory to display. The PLOTPOINTS option allows
replacement by a cruder picture,

’

First, the center of the device symbol must be identified. The location of
a device symbol in a drawing refers to the device center.

The PENDOWN option permits replacement of sections of the sketch by
short straight segments, to speed up device symbol display. The designer,
after touching PENDOWN, touches consecutively the ends of the approximating
segments. When satisfied, the designer can ACCEPT PLOTPOINTS which is
also a PROCEED command. The end result, when accepted, is as shown in Fig.
3-31.

Mr. Smith
touches ADD TERMINAL (S) (11, then INPUT (2), indicating that, until further
notice, all terminals are to be input terminals. He places the five input terminals

The graphic symbol now needs terminals assigned to it.

126

6 1

OLLS SYSTEM
DEVICE CENTRAL

READ ONLY FILE: COMMON DEVICE DEFINITIONS, ETC, *

WORKING FILE : ' SMITH DEMONSTRATION FILE
c3 RETURN TO SYSTEM CENTRAL

3 DISPLAY READ ONLY FILE DEVICE LIST
U DEFINE DEVICE

U C O P Y FROM FILE
D DISPLAY DEVICE
G D E L E T E DEVICE

0 C MODIFY DEVICE

0 CANCELORDER 0 0 EXECUTE

- WORKING FILE DEVICE LIST PAGE 1 OF 1 +
D 3NOR/M hlED 14NSEC COMPONENT
G BAND COMPONENT
c7 BINARY 1 WESTINGHOUSE CIRCUIT HYBRID

IS A DIODE IS A DIODE COMPONENT
DIRECT SET AND RESET COMPONENT

Fig. 3-28

127

OLLS SYSTEM
MODIFY DEVICE

J-K F L O P DIRECT S E T AND RESET
0 RETURN TO DEVICE CENTRAL I

SKETCH OPTION
4 8 '8 0" SIZE

0 0 SEGMENT 0 SMALL DOT
etc.

CIj ERASE

4 I3 LINE OF SYMETRY

~o
I I I 00 A C C E P T SKETCH (PROCEED)

Fig. 3-29

128

J-K FLOP DIRECT SET AND RESET
0 R E T U R N T O D E V I C E C E N T R A L

PLOTPOINTS OPTION

0 0 MARK C E N T E R

0 R P E N DOWN
0 ERASE

3 SKETCH

0 R E J E C T
0 A C C E P T PLOTPOINTS

0 GRID 0 NOGRID

m

Fig. 3-30

129

E-c
3 a

0
5

00
Q

E
3
a
5

130

(actions (2.1) to (2.5)) where he wants them, by touching some place on the
periphery of the symbol. Then he touches OUTPUT (31, then points (3.1) and
(3.2). Al l terminals are still unlabeled. Smith touches LABEL TERMINAL (SI

(41, touches the terminal he wants to name and types a letter or anumber. When
he is satisfied he touches ACCEPT TERMINALS (5), whereupon the MODIFY
DEVICE menu changes to the one shown in Fig. 3-32.

3.6.7 Functional Definition
The graphic symbol having been defined and labeled, there now remains

the task of defining the device functionally. The algebraic method used is
described in detail in Appendix B. In particular, there is a section on the
description of a J K flip-flop which applies here.

Smith has presumably worked out a model for his JK (a far from final
task). He touches INSERT EQUATION (1) and then types in the first equation
(2), but without any delay subscripts. He then touches INSERT DELAYS (3) and
using the space bar, types the delay values under and to the right of the cor-
responding variables (4). The equations can be altered to suit, or modified at
a later time. The J K equations used here make no use of the set and reset
terminals (A and B). These a r e consequently ignored in the simulation of the
device. When a satisfactory set of equations has been written, the designer can
ACCEPT EQUATIONS (5). In our present example he does so and then touches
RETUFW TO DEVICE CENTRAL (6). Notice that this last option has been
continuously available throughout the device modification procedures.

3.6.8 DRAWINGS
Our man Smith returns to System Central by way of Device Central (Fig.

3-33 and 3-34). He is ready to use the available material to design a circuit,
which is done by calling the DRAWING CENTRAL Fig. 3-35. The procedures
hereare quiteanalogous to the ones for DEFINE DEVICE. A list of currently
available drawings (the READ ONLY FILE DRAWING LIST) is displayed (Fig.
3-36), and drawings for the circuits RING 5 and REG 16 a r e copied into the
WORKING FILE. Smith is going to invent an arithmetic unit which he labels
ARUNOl (Fig. 3-37). As in the case of defining the J K device, he caused his
WORKING FILE DRAWING LIST to be displayed (1) + (2) (it contained, at that
time, just RING 5 and REG 16). He then pointed to CREATE DRAWING (3),
and typed in ARUNOl ARITHMETIC unit (41, followed by EXECUTE (5). With
this action a null (blank) drawing so named is added to his working file. Smith
must now elect MODIFY DRAWING (61, and then point to ARUNOl (71, and
EXECUTE (81, to start the real design.

The DRAWING MODIFY 1 menu appears (Fig. 3-38), and Smith first

131

0 0

Q@

I I

132

OLLS SYSTEM
DEVICE CENTRAL

READ ONLY FILE; COAllLlON DEVICE DEFINITIONS, ETC.
WORKLVG FILE : SMITH DE RIOX ST RATION FILE

@ 5 RETURX TO SYSTEM CENTRAL
J DISPLAY KEAD ONLY FIL,E DEVICE LIST
2 DEFIXE DEVICE

i. COPY FROM FILE
L: DISPLAY DEV&E
L DELETE DEVICE
1 UODIFY DEVICE

5 C.4NCEL ORDER [3 EXECUTE

WORKING FILE DEVICE LIST PAGE 1 OF 1 + -
0 3YiOR/M R'IED 14NSEC COMPONENT
5 8AND COMPONENT
L BLYARY 1 WESTINGHOUSE CIRCUIT HYBRID
,J DIODE IS A DIODE IS A DIODE COiLIPONEXT
5 J-K FLOP DIHECT SET AND RESET COR'IPONEXT

Fig. 3-33

133

O U S SYSTEM
CENTRAL

READ ONLY FILE: COMMON DEVICE DEFINITIONS, ETC.
WORKING FILE: SMITH DEMONSTRATION FILE

SELECT MAJOR MODE

CI FILE MANIPULATE
‘J DEVICE MANIPULATE

0 0 DRAWING MANIPULATE
Cj SIMULATION

ANALYSIS

0 OUTPUT OPTIONS

0 EXIT AS DIRECTED

Fig. 3-34

134

OLLS SYSTEM
DRAWING CENTRAL

READ ONLY FILE: COMMON DEVICE DEFINITIONS, ETC.
WORKING FILE SMITH DEMONSTRATION FILE

0 RETURN TO SYSTEM CENTRAL
0 0 DISPLAY READ ONLY FILE DRAWING LIST
0 CREATE DRAWING

0 COPY FROM FILE
(7 DISPLAY DRAWING
0 D E L E T E DRAWING
0 MODIFY DRAWING

(7 CANCELORDER @ U EXECUTE

WORK'ING FILE DRAWING LIST PAGE 0 OF 0 + -

Fig. 3-35

135

OLLS SYSTEM
DRAWING CENTRAL

READ ONLY FILE: COMMON DEVICE DEFINITIONS, ETC.
WORKING FILE: SMITH DEMONSTRATION FILE

0 RETURN TO SYSTEM CENTRAL
0 DISPLAY WORKING FILE DRAWING LIST

@ C l CREATE DRAWING
@ 0 COPY FROM F I L E
17 DISPLAY DRAWING
0 D E L E T E DRAWING
Ci MODIFY DRAWING

0 CANCELORDER 0 0 EXECUTE

I I READ ONLY DRAWING LIST PAGE 1 O F 37 -I- -

0 BINARY

GATED CLOCK
BLK I BIT STICK
TIMING PULSE GENERATOR

1 WESTINGHOUSE CIRCUIT
SHIFT REGISTER
3 RING COUNTER
5 RING COUNTER
7 RING COUNTER
16 BIT REGISTER

Fig. 3-36

136

OLLS SYSTEM

DRAWING CENTRAL

READ ONLY FILE: COMMON DEVICE DEFINITIONS, ETC.
WORKING FILE: SMITH DEMONSTRATION FILE

0 RETURN TO SYSTEM CENTRAL
0 0 DISPLAY READ ONLY F I L E DRAWING LIST
0.0 CREATE DRAWING

0 COPY FROM FILE
0 DISPLAY DRAWING
0 D E L E T E DRAWING

@ CI MODIFY DRAWING
0 CANCELORDER @@O EXECUTE

0 REG16 16 BIT REGISTER
0 R I N G 5 5 RING COUNTER

ARITHMETIC UNIT %p ARUNOl
I *

TYPE '@

Fig. 3-37

137

OLLS SYSTEM
DRAWING MODIFY 1 MENU

ARUNOI ARITHMETIC UNI'T

0 RETURN TO DRAWING CENTRAL
@O CHANGE TO DRAWING MODIFY MENU

SIZE IS NOW 8 0 0 CHANGE TO B E J I
@Ci N U L L DEVICE

G N U L L DEVICE
N U L L D E V I C E

@ NULLDEVICE
3 0 R E P L A C E S E L E C T E D DEVICES P 0 CANCELORDER @ O EXECUTE

WORKLNG FILE DEVICE LIST PAGE 1 OF 1 4- -
3NOR/M MED l4NSEC COMPONENT
8AND COMPONENT
BINARY 1 WESTINGHOUSE CIRCUIT HYBRID

0 J-K FLOP DIRECT SET AND RESET COMPONENT

Fig. 3-38

138

picks a size by pointing to CHANGE TO (1) and then to D (2). meaning he wants
a size D drawing.

The DRAWING MODIFY 1 menu displays the working list of devices
previously selected. The task is to select devices and place them in the drawing.
The MODIFY 1 menu shows four places where the choice of devices will be
displayed; these places initially say NULL DEVICES. Action (3) points to
REPLACE SELECTED DEVICES; (4) and (5) indicate that the first null device
is to be replaced by 3NOR/M, and (6) and (7) show that the second null device
is to be replaced by BINARY 1. EXECUTE follows (8) , after which (Fig. 3-39)
DRAWING MODIFY (2) menu is selected. That menu contains a blank page with
a title block in the lower half, and the menu itself in the upper half. Menu 2

allows choice between a DEVICE SUBM ENU (Fig. 3-41) and a SIGNAL SUBMENU
(Fig. 3-42), which allow insertion and deletion of devices and connections.

At this point we will leave the present detailed description of OLLS-
designer interaction, and point to a likely end result of his efforts (Fig. 3-46).
(That figure is actually a circuit drawn with OLLS/ 1800). W e have not discussed
many of the necessary actions, such as placing elements or connecting elements
automatically o r along a designer-selected path. W e have also not discussed,
nor shall we, what sor t of procedures are desirable for CRT simulation. The
material presented up to here, however, should give a clear idea of the sor t of
interaction possible with OLLS/ 360.

139

OLLS SYSTEM
DRAWING MODIFY 1 MENU

ARITHMETIC UNIT

RETURN TO DRAWING CENTRAL
0 0 CHANGE TO DRAWING MODIFY MENU

SIZE I S N O W D 0 CHANGE TO B C D E J

[? SELECT DEVICES 0 3NOR/M
0 BLNARY 1 e '
0 ; I

0 CANCEL ORDER @O EXECUTE

WORKING FILE DEVICE LIST PAGE 1 OF 1 4- -
MED 14NSEC COMPONENT

COMPONENT
0 BINARY 1 WESTINGHOUSE CIRCUIT HYBRID
0 J-K FLOP DIRECT SET AND RESET COMPONENT

Fig. 3-39

140

Fig. 3-40

141

d

n n
\ \
H H

0.0 u 0 0

N

142

w
I3
3 u w. x w

143

m
b
2 w z
0

0 u
b u w
d
d
0 u
0

!2

w
b u' 3

b u w w x vi w &
a: U
2 w
0:

Cl u w u z
4 u

144

P a li i

0

i s

145

I

Fig. 3-45

146

Fig. 3-46

147

s

Internal

R. Alonso
R. Battin
R. Crisp
E. Duggan
J. B. Feldman
J. Flanders
S. Forter
W. Grigg
Eldon Hall
A. Harano
D. Hoag
A. Hopkins (25)
F. Houston
H.R. Howie
J. Kingston:$
A. Laats
J. Laning

E-2265

DISTRIBUTION LIST

L. Larson
James Miller
John Miller
C. Muntz
J. Nevins
J. Nugent
J. Pennypacker
R. Ragan
J. Sabo
G. Schwartz
H. Thaler
M. Trageser
R. Woodbury
W. Wrigley
Apollo Library (2)

MIT/IL Library (6)

.l, T

Letter of transmittal only.

External
NASA/ERC (50 + 1R)
575 Technology Square
Cambridge, Massachusetts
ATTN: KC /Computer Research Laboratory

Mr . D. J. Kelleher (Letter of Transmittal only)

