(THRU)

(COD

(CATEGORY)

E-2265

ON-LINE LOGICAL SIMULATION (OLLS)

by
R.L. Alonso, H. R, Howie,

J.C. Pennypacker, G, Schwartz,
H.A. Thaler

May 1968

INSTRUMENTATION LABORATORY
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
CAMBRIDGE, MASSACHUSETTS

Approved: &J&\ & M Date: i?_}%_bi_
ELDON C. HALL, DIRECTOR, DIGITAL DEVELOPMENT
APOLLO GUIDANCE AND NAVIGATION PROGRAM

/’ ’ : - r

Approved: ZLM Al Date: _;__}u_ﬁ_}
RALPH R. RAGAN, DEPUTY DIRECTOR (
INSTRUMENTATION LABORATORY

Acknowledgment

The major part of OLLS has been funded through NASA's Electronics Research
Laboratory, contract NAS 12-140. Additional non-NASA support has been derived,
from within Instrumentation Laboratory, for the development of the FILLIP list
processing language., FILLIP is not part of OLLS, however,

Authorship of the various portions is as follows:
Section 2, "OLLS/1800" is by H. Robert Howie
Section 3, "OLLS/360™:
3.1 "Data Structure'', by James C. Pennypacker,
3.2 '"Device Definition", by James C. Pennypacker.,
3.3 "Simulation" by Herbert A. Thaler.
3.4 "Drawing Algorithms", by H. Robert Howie.
3.5 'Program Structure', by James C. Pennypacker and Gary Schwartz.
3.6 "ON-LINE System', by H. Robert Howie and Ramon Alonso.
Ramon Alonso is the OLLS project director.

The publication of this report does not constitute approval by the National
Aeronautics and Space Administration of the findings or the conclusions contained
therein, It is published only for the exchange and stimulation of ideas.

E-2265

ON LINE LOGICAL SIMULATION (OLLS)

ABSTRACT

This report describes techniques for the simulation of logic circuits, combi-
national and sequential, and for the automatic drawing of circuit schematics. The
first part of the report treats an initial system which is somewhat limited in scope
in that it is strictly card-oriented and has a selection of logic devices limited to those
assembled into the control program. The last part describes afully expended system
in which the user can define and modify his own devices, either on-line via a CRT, or
off~line with punched cards. This system enables the designer to perform all phases
of logic design: device definition, test, redesign, and retest, with the aid of a com-
puterto free him of the clerical details of drawings, signal lists, retrofits, and wire-
wrap control cards,

by: R. Alonso

May 1968

PRECEDING, PAGE BLANK Nen

Section

TABLE OF CONTENTS

Introduction. « + « ¢« ¢ o+ ¢ ¢ . .

The Honeywell 1800 Working System . . . , .

2.1
2.2

2.3

2.4
2.5

2.6

Objective . . . ¢« + « ¢ « + + + + . .
General Description.

2.2.1 DRAWSCHEMATIC
2.2.2 SIMSCHEMATIC

Logic-File Organization.

2.3.1 DRAWSCHEMATIC
2.3.2 SIMSCHEMATIC

Example (Westinghouse Circuit)

Drawing Interconnection Algorithm . . .

2.5.1 General Procedure
2.5.2 Phase I in Greater Detail . . .
2.5.3 PhaseIl. « . .
2.5.4 PhaseIIl.

2.5.5 An Appraisal.
Simulation Algorithm

OLLS/360. v v v v v v v v e e v v e

3.1

3.3

Data Structure . . .

Binary Tree
196 Structure. . . .
Classifications of Data .
Instance Structure
Glossary. . . s e e e e
Signal Structure e e e e s
Drawing Structure
Data-File Root . . . o s
Integrated Data Structure

e o

CO O LY LI WO WO W W W
i

O O T N
e e s % e e »
OO0 =TI U WM

Device Definition.

3.2.1 Contents of Definition . . .

3.2.5 Impact on Data File.
Simulation . . « « . « . « ¢ ¢ 4 . . .

3.3.1 Circuit Formation
3.3.2 Desired Capabilities
3.3.3 Program Details

The OLLS Drawing Algorithm . . .
Program Structure

3.5.1 Types of Input Cards . . .
3.5.2 CARDREAD and Main Program.

3.2,2 Concepts of Definition. . . .
3.2.3 Definition by Terminal Behavmr .
3.2.4 Definition by Circuit Design .

Page

103
105

105
107

TABLE OF CONTENTS (cont)

Section Page
3.5.3 DEFINE DEVICE . . . e v e s . e e e . . . 108
3.5.4 CARDFILE. e v e e o e b e e s+ s+ « . . 108
3.5.5 ADD,« v « o . . . v s e e s s . 109
3.5.6 CHANGE. . . . « « « « . s e s e e e e s . . 109
3.5.7 SIMULATE. e & R4
3.5.8 CRT. © ¢« v v v 4 e o o o = » = . . e e .. . 110
3.5.9 DELETE. . 4 ¢« ¢ 4 o « o o & « « s 22 s« « « « « 110
3.5.10 DELETE TYPE. . . . ¢ ¢ ¢ ¢ ¢ o « o o o » & . 111

3.6 On-Line System (CRT) . . + + « ¢ v & « « & o o o o « « 112
3.6.1 Introduction e« e s e e . o. 112
3.6.2 Physical System e e e e e .. 112
3.6.3 Concept of User's Role e e e e . . 112
3.6.4 Procedures, Setting Up a File . e e e e s e s 113
3.6.5 Defining a New Device. e e e e e e 119
3.6.6 MODIFY DEVICE. e e e e e e e 126
3.6.7 TFunctional Definition T 0 3 |
3.6.8 DRAWINGS. + + ¢ ¢ « + o » & e e s e s . . . 131

Section 1
Introduction

The possibility of using computers to aid designers has been recognized and
exploited, in various ways, for the last several years. Designers can have mechanized
help in small circuit design (ECAP, NET), and in some forms of mechanical design
(SKETCHPAD). As SKETCHPAD showed, the implications of a Cathode Ray Tube
system whereby the designer and the computer interact, as opposed to the more
prevalent processing systems, are many and exciting.

The possibility of using major data processing aids for logical designs became
an important concern to those who had been engaged, for quite some time, in the
development of medium-sized computer systems, especially if those systems could
be made interactive. But interactive or not, our accumulated experience in logical
design indicated the near necessity of mechanized files, drafting aids, and simulations.

The initial objective of MIT/IL wasnot so much to demonstrate the power of a
new approach (Computer Aided Design) as fo develop and implement a practical
system. We are still short of that goal inthat we donot have an operational interactive
system; we do have a batch system (OLLS/1800) and major portions of the more
ambitious OLLS/360 system. Consequently, the present report is in part a
demonstration of achievement and in part a blueprint of present and future
developments.

The report is divided into two major parts: Section 2, which deals with an
initial, limited, but working system for the Honeywell 1800; and Section 3, which
describes a system that attempts a great deal more, and that is designed for execution
in an IBM 360/ 75 machine. '

OLLS/1800 is a card system, with very limited file capability, wherein the
logical device models are an integral part of the program. It was written without
recourse to a list-processing language, and has been in use for about six months.

In early 1967 a decision was made by the Digital Computation group (which
runs the data processing system of Instrumentation Laboratory) to implement a
major list-processing language called FILLIP, and it was decided then that OLLS/ 360
should be based on FILLIP. As of this writing, FILLIP is still under development
for its overall system aspects, and, consequently, most of OLLS/360 isuntested. The
major features of FILLIP, and its power, are described in an as yet unpublished re-

port by Charles A. Muntz and J. Halcombe Laning, Jr.

— [N e - R -

PRECEDING PAGE BLANK NOT FILMED:

Section 2

The Honeywell 1800 Working System
H. Robert Howie

2.1 Objective

When it became apparent that the IBM 360, the on-line CRT, and the list-
processing language would not be available much before 1968, a more limited system
designed to operate on an available Honeywell 1800 computer was developed and
demonstrated in 1967. Tt was hoped that this system would provide (in addition to an
operating digital simulator) some experience with drawing interconnection
algorithms, simulation algorithms, and, through feedback from in-house users of the
system, a better understanding of what input-output techniques are most acceptable
and convenient to the digital circuit designer.

This chapter describes the concepts and operation of a schematic drawing
program and of a simulation program currently available for the Honeywell 1800
computer.

2.2 General Description

Two main programs comprise our system:

a) program DRAWSCHEMATIC which reads cards describing devices and
device interconnections, creates and maintains a logic file, and, through
subroutine DRAWLINES, computes computer interconnection paths and
produces a finished schematic on a CALCOMP plotter,

b) program SIMSCHEMATIC which reads the logic file created and stored
by DRAWSCHEMATIC and simulates the circuitusing input signal values
supplied on cards by the user at execution time. Output traces of the
history of any signals specified are plotted, oscillograph style, on a
CALCOMP plotter. :

Figures 2-1 and-.2-2 are typical of the quality and complexity of designs the
programs are capable of handling. The Arithmetic Unit in Fig, 2-1 contains about
150 gates and required about 20 minutes of computer time to create the logic file and
produce the drawing plot tape. (About 5 minutes are spent in system managemeﬁt -
rewinding and labeling tapes, etc.) The plotting was done off-line and required about
30 minutes onthe CALCOMP plotter. The simulation of the Arithmetic Unit included
testing the ability of the circuit to add, to shift, and to shift-and-add. Five logic-design
errors were discovered along the way and several clerical errors were corrected
before the simulation shown in Fig, 2-2 was successful. The simulation ran for 200
simulation time units (the equivalent of 4 microseconds if atimeunit of 20 nanoseconds

isused as the typical gate delay), or required 7 minutes of real time on the H1800.

2.2.1 DRAWSCHEMATIC
Program DRAWSCHEMATIC isintended to rununder a batch-processing

operating system. Its sole input is from cards and its output is written on

magnetic tape for off-line printout and plotting. (An optional output facility
punches a deck of cards for automated wirewrapping.)

The input deck canbe in either or both of two card formats. The preferred
card format was designed specifically for this program and was intended to be
simple, easy to punch, easy to read, and organized the way a circuit designer
would find convenient. For compatibility with wirewrap programs developed 3
years ago, wirewrap cards are also accepted. These cards, although difficult
to punch manually or to scan, are logically equivalent {o the new card format.
Detailed descriptions of card formats are given with the examples in a later
section.

The program operates in three modes: DRAW, REVISE, and REPRINT.

In the DRAW mode, a new logic file is created by the input deck. Cards
which describe devices to beincluded areread first. The designer may select

10

,,,,,,

......

11

A
B

C34
c28

o

0

SHIF T~
SHIFTX ~#

N16
A99
A92
SUM4
SUM3
SUM2
suMi
Y47
Y46
Y45
Y44
Y43
Y42
Y59
X21
Y19
C24
GO7
GO6
GO5
GO4
GO3
GO02
GO1
D09
X1
X2
X3
X4
Y1
Y2
Y3
Y4
ADD

0
(6]
0O

O0po0oooo000P0%00D00OD0O0OO0

CLOCK

=
/e
L] '
_J
— I L
!
‘ | | U
[L '
1 |
_ , T
/S W
I 1
L o}
= L
L 50 J VO T B O
I \ '
L : f
[| AU I W
o O VY s T T
A VY I T e U s
L ™M I
. e
J | U000 T I Y
1 J L
m | U s Y I Y I R
L M , '
J IR nJ
\ J \ , |
L] —_‘ L,_

12

from 25 available device types, such as 3 input NOR gate, set-reset flip-flop,
ete., (see Fig. 2-3), He may include up to 400 devices in any one logic file
(drawing). Each device card describes the identification number of the device,
its location on the drawing (optional if no drawing is to be produced), and the
device type.

Cards which describe the logical interconnections are read next. The
designer may specify the interconnections in either of two ways, depending on
whether or not he wishes toassigna signalname to the connection. He may write:

[connect] signalname [to] devicename devicepin
or he may write:
[connect] devicename devicepin [to] devicename devicepin.

This provides a convenient way of describing any connection without
cluttering up a drawing with unnecessary signal names, and yet allows con-
nectionsto benamed where desired. The actual path which the signal wiil take
on the drawing is not specified by the user but rather is computed for him by
subroutine DRAWLINES. This computed path becomes part of the logic file
and is not recomputed for every REVISION or REPRINT,

Some clerical cards mark the beginning and end of the input stream;
give the drawing a name, number, and author, and size; and specify what type
of output is desired, i.e., full listing, error messages only, a drawing, a wirewrap
deck, etc.

In the REVISE mode, anold logic file created by an earlier run in either
the DRAW or REVISE mode is updated by cards in the input stream. This mode
operates exactly as the DRAW mode with the addition that cards are accepted
which allow the designer to DELETE or MOVE devices which arealready in the
file. In both cases, all signals that enter or leave a device which was deleted
or moved are themselves deleted or moved automatically, and the logic file is
updated accordingly. Similarly, the designer is allowed to REMOVE signal
interconnections. The operation of this mode saves the time and expense of
resubmitting the entire input deck just to correct minor errors. Only those
signals that are directly affected by the change are recomputed for the file.

In both DRAW and REVISE modes, checks are made on the validity of the
input stream as much as possible, and diagnostic error messages are always
printed when an error is discovered. This service has been found to be as
valuable to the designer asis the drawing or the simulation. Examples of such

errors are finding non-unique device identification numbers or signal names,

13.

g-g ‘314

205710 ot am &

AHVSS019
3JIA3a

¢ 52,60

S0

AHOLVHOBYT NOLLVINIWNNMLISNI LN

SLIS

GNVNS GNVS

14

finding two different signals connected to the same point, or finding a signal
attempting to connect to a non-existent device.

In addition to producing whatever hard copy was specified by the designer,
the logic file is always catalogued and stored onmagnetic tape with other logic
files for later REVISION, REPRINTS, or simulation,

The REPRINT mode allows the designer or any interested person to
extract specified information from the file without changing its contents., A
listing or a drawing scaled to any convenient size is made available at minimum

cost.

2.2.2 SIMSCHEMATIC

Program SIMSCHEMATIC enables the designer to simulate the logic file
created and stored by program DRAWSCHEMATIC, Sincethis step isintended
to replace or augment the laboratory breadboard of the circuit, the designer is
provided with the means of specifying or changing the effective signal delay of
any devices in the file, the input signal timing, and the topology of the circuit
itself without going all the way back to program DRAWSCHEMATIC to test
minor changes.

The input to the program consists of the logic file to be simulated, which
was stored on magnetic tape by DRAWSCHEMATIC, and a short deck of cards
which describe such things as:

a) The list of devices which are to be considered active for this
portion of the simulation and what the signal delay of each device shall
be. Gates can be activated or deactivated any time during a simulation
run or the delay can be changed to a new value as desired.
b) The input waveforms necessary to fully test the circuit and initial
conditions for signals which might otherwise be indeterminate. Tt is often
desirable in testing a laboratory breadboard to inject inputs to portions
of the circuit which might otherwise be unused or unavailable. The
capability is provided hereto PATCH existing ornon-existing signals to
any portion of the circuit orto REMOVE undesired connections of existing
signals. Input waveforms can now be injected to the new connections
which exist only for the duration of the simulation and do not affect the
permanent logic tile.

c) The list of signalsto betraced for output on the CALCOMP plotter.

d) The timing of events to follow, such as a snapshot of the file,

magnification of a certain portion of the output, how long to simulate, and

when to stop or restart.

15

2.3 Logic-File Organization

Figure 2-4 shows the structural organization of the logic file. It consists of
two major parts, the device list and the signal list, A third list, the list of drawing
interconnection points, strictly speaking, does not belong in the logic file. The
interconnection list (proauced by subroutine DRAWLINES) is kept to save time on
revisions and reprints. These three lists contain enough information to draw and
simulate a logic diagram. For storage reasons the logic file produced by
DRAWSCHEMATIC does not contain the interlocking pointers necessary for rapid
simulation. These pointers are added to the logic file by SIMSCHEMATIC as the

logic file is read in.

2.3.1 DRAWSCHEMATIC
The DEVICE LIST is an alphabetically organized list with each entry

containing the device identification (5 characters), the device coordinates, and

a codenumber which indicates the device type. This code number enables the
program to fetch from a glossary of devices such informationas device shape,
terminal locations, and simulation behaviofl'.

The SIGNAL LIST is an alphabetically organized list with each entry
containing the signal name (8 characters) and a sublist for each connection of
the signal. The sublist contains the device and pin number to which the signal
is connected, the (X,Y) coordinates of the device and the device type code, the
signal load of the device, a flag which indicates whether the signal was affected
by some operation in the REVISE mode (the OLD/NEW entry), and an entry
which either points to the list of drawing interconnection points (if any), or
indicates that the connectionis to the signal source (STATUS = 2 or 3), or that
the connection is to be labeled only (STATUS = 1). (A signal which has no
source onthe drawing is labeled at each input whereit isused and nointercon-
nections are made on the drawing, although for simulation purposes all inputs
with the same label are logically interconnected.)

' Figure 2-6 shows what the logic file would look like for the sample
circuit shownin Fig. 2-7. Notice that the logic file is madeup of three signals:
"LABEL", "OUTPUT", and "624 0".

The signal named LABEL hasno source on this drawing, i.e. it isnowhere
connected to the output of a gate. It therefore has a STATUS = 1 in the logic
file, indicating to the output plotting routine that no interconnection lists are to
be found and its name is merely to be labeled where it is used.

The signal named OUTPUT is defined at a source, the output of a gate
1A1, Tttherefore hasa STATUS = 2 forthe connectiontodevice 1A1, indicative
that the signal name is to be plotted. The rest of the connections for signal

16

YHILNIOL [SALV.LS

MEN/QTO| avol

HAOD HJAL dIIAEA

X X

#NId |°d "I ZOIAEA

YHINIOJ /SALVLS

—— A

MAN/dT0| avol

[AOD dd AL HDIAHA

A | x

¥NId _d ‘I IOIAAA

YELNIOC /SALV.LS

—

MEN/ATO] avotl

HAOD HJAL HIOIAHA

X X

#NId _d 1 DIATA

‘uoryezTUESIO 114 01807 ¥-g "S1d

f *108UU0D)

pIg

*100UU0D
pug

>

f *100UU0D
ST

HWVN TVNDIS

°

.

vx Yy
°x €y
¢x bx
Tx Ix
SiNTOd #
?
€x €x
Cx Cx
Ix Ix
SINIOd #
\—
Y
SNOLLOENNODYALNI

DNIMVHA

2
LSIT TVYNDIS

°

HAOO HdAL

A X

‘d I HOIAEA

J\‘
LSIT HDIAHA

17

G
G
W
I
Wl
W
W
W
| Vi

i

DRAW

SCALE TO 09 RY 07

NAME IT

PRODUCF

ADD

ADD

ADD

ADD

DEFINE

SIGNAL

SIGNAL

STGNAL

STIGNAL

CONNFCT

CONNECT

CONNECT

PLOTNOW

SCHEMATIC FIG2.7

SAMPLE CIRCUIT

SCHEMATIC

1A1

401

3RT

614

NUTPUT

OUTPUT

QUTPUT

LAREL

LABREL

614

674

674

1A1

614

3R7

3RB7

674

401

141

oLLS

10 RY 08

3NOR

1/0

SETRFS

ANAND

=30

005

007

0ns

005

=30

005

005

Fig. 2-5 Input Deck to Produce the SAMPLE Circuit in Fig. 2-7,

18

L'g £y
Sy o
Sy 6°1

—]on] |

O | |© |
.

.
—

.
o

.
[{e]

.
el

O i | i |00]~
=)

<«

(o B
°
H|©

(4

AN

(YH.LNIOJ)

1

¢

) | Loo

[coo0

(SHY.LIS)

(SHYLAS)

G°g

L'e | gy

| s

8 |

N_ mho)de

LE¢g

(4

¢

) | os-

| coo

(YONS§)

(ONVNE) ' 2 | 6°1

| ¢%

§°¢g
il

T T%Z9

(4HINIOJ)

=T TTHEVT

[} | S00

(ANVNE)

€

| 1'%

‘¢
el ~m%zZ9

- T LAdINo

.
o

(YEINIOA)

] | coo0

(HONE)

L'y | 1°1

H_ IR

(4H.LNIOJ)

¢ | oo0o0

(O/1)

°g | 29
_

(ONVNE)

§'g | 6y

0] ~~9vz9

" TYZ9

A4
SNOILLDINNODYHLNI DNIMVHJ

4
LSIT TVNDIS

*(g-g °*814) ymoar) ordweg
jo ar1q o130 ordweg

g-z 814
(ONVNE)

§'g _ S'¥
mnonyZ9

(0O/1)

g'c | g9
m 1 gF
(SETELES)

E3 | Sy
e oLrde
(4ONE)

'y | 'l
R BT |

- Y

LSIT HOIAFEA

19

22914 80 A8 Ol

1INDHID J1dVS

#9-02Z-t0

s770

AHOLVHOBY1 NOLLVININNHISNG LI

10+

d: 3

m 38V

¥29
3av

1Ndino

20

OUTPUT contain pointers to the drawing interconnection lists produced by
DRAWLINES, The signal at the output of gate 6Z4 pin 0 also hasawell defined
source, but, because of the way in which it was defined (see below), its signal
name will not appear on the drawing and it is flagged with STATUS = 3.

Figure 2-5 shows the input deck which created this drawing and logic file.

Each card contains a descriptor in column 1 for ease in sorting the deck
ifnecessary. (D = director card,S = subdirector,G = gatecard, W = wiring
card). Director and subdirector cards are clerical and do not affect the logic
file (except toabort the run if incorrectly specified). Gate cards can ADD, or
MOVE gates. The first field after theverb is always the device ID, the second
and third fields are the X and Y position (for ADD and MOVE), and the fourth
field specifies the device type (ADD only). All devices except 1/O pins and
resistors are placed at X, Y coordinate values of integer + 1/2 for ease in
gate-to-gate registration. Gate 674, for example, will be placed at X = 4.5,
Y = 5.5 instead of X = 4, Y = 5 as specified on the ADD card.

Wiring cards are of two varieties: those which concern signals whose
names appear on the drawing and those which concern signals whose names do
not appear. Of the first varietyare cards which specify DEFINE, SIGNAL, or
REMOVE. DEFINE specifies that there exists a source for the signal and its
location and it triggers DRAWLINES to compute interconnection paths for all
SIGNAL cards specifying the same signal name. The DEFINEd source is
flagged inthe logic file with STATUS = 2. If no DEFINE card can be found for
a sign'al, DRAWLINES does not attempt to compute interconnection paths.
Instead, the signals are added to the logic file and flagged as ''label only"
(STATUS = 1). REMOVE allowsthe designer to selectively disconnect signals
as desired. If the DEFINEd source of a signalis REMOVEd and not reDEFINEJ,
the remaining connections of the signal revert to the status of labels only
(STATUS = 1). The first field on the card after the verb specifies the signal
name, the second and third specify the device ID and pinnumber, and the fourth
specifies optional load information. (Loads of -30 and 005 are assumed for
sources and non-sources, respectively, if this field is left blank.)

Of the second variety of W cards are CONNECT and DELETE cards.
These specify signals which are to be connected in the logic file and which are
to be drawn on the schematic but whose signal names are not to appear. The
intent hereis to relieve the designer of the necessity of dreaming up a unique
signal name for an uninteresting connection and allow him to specify the con-
nection by device ID and pin number to device ID and pin number. Each
CONNECT card specifies the connection of one end of an equipotential in the
logic file. Thusthe requirementthat a device ID and pinnumber be CONNECTed
to itself to specify a source. See Fig. 2-§.

21

W CONNECT 624 0 624 0 -30

This card specifies'the source for a signal (actually named 624 0) and
flagged it with STATUS = 3 in the logic file toinhibit plotting its signal name.
It also triggers DRAWLINES to compute interconnection paths for all other
occurrences of CONNECTions of the same device ID and pin number., If the
device ID and pin nﬁmber isnot CONNECTed toitself, no source is defined and
all CONNECTions of the signal are entered in the logic file and flagged for
label only (STATUS = 1). DELETE acts like REMOVE except that device ID
and pin number are specified instead of signal name,

2.3.2 SIMSCHEMATIC
Program SIMSCHEMATIC creates a temporary logic file of its own by
adding information to the logic file produced by DRAWSCHEMATIC. The new

information consists of gate delays, signal values, direct pointers from signals

to devices, and some additional status flag words. Figure 2-8 shows the
general structure of the logic file after modification by SIMSCHEMATIC. The
INPUT LIST and the TRACE LIST are expanded as required by the input deck.

The SIMULATION DEVICE LIST contains a flag which indicates whether
ornot the gateis active, If the gate is active (ACTIVE = 1), the TYPE CODE
isused to branch toa section of programmed coding which logically combines
the signal values at PINOO through PIN12 (most devices only have 3 or 4 pins
and the last 8 or 9 pins are ignored for those devices) to produce an output
value (s). This output value (usually PINOO) is then propagated through the
delay lineusing the DELAY value and the delayindices for this instance of the
device to produce a final output value which replaces the former output value
(usually PINOO). (See Fig. 2-9.)

A true digital delay line should insert new values at one end and, by
shifting the values inthe line, extract the value at a later {ime either at the other
end of the line or at a midpoint. Since shifting is slow for programs written in
a high level language, the index scheme shownin Fig, 2-9 was adopted., Values
are inserted into the line at index location J and extracted at index location L.

Both indices are incremented (modulo 16- the maximum delay) but maintain a

constant difference equal to the value specified in DELAY,

Gates are activated, inactivated, and delays specified at any time desired
by the designer by cards with a G in Column 1, The four forms of these cards
are:

G ACTIVE ALLGATES 3

specifies all gates are {o be active with a delay of 3

22

o

(4ELNIOAd)

HOTVA

TVNDIS

.
.
.

-

LSTT & EOVH.L

HAdVHSHAVM

ALIYVIONVHED

aorgdd

HONVHD LXHN SWL],

HNTVA

TVNDIS

ISIT LOdNI

UoT}OBUUOD

paIg

UoIIOaUUOD

pug

<

UOIO_UUOD

15T

N

SNLV.LS

HHLNIOd

ddAL

NId _ ADIAEA

SALV.LS

HHINIOd

‘uortezTuedIQ 911 o180 uonelnWIS 8-Z ‘S1d

HaoD ddAL

NIJ|AI HOIAHA

LLNIOJ LSTT LOdNI

HOTVA

TVNDIS

LI

J)

‘<
JSTT TVNDIS

(HNTVA)

(HOTVA)

(ANTVA)

(ENTVA)

(ENTVA)

I XUANI AVTHA

ANIT AVIHA

I XHANI AVTHA

AVTHEA[ZALLDY

dAOD HJAL

uQ CH

.~

« & o o0

¢INId
TINId

ZONId
TONId
gONId

S

LSI'T EOIAEA

23

*aur Aelag a9y} jo uorjexadp 6-2 *S14g

(enteA ndino)

e @ ¢ ¢ NId
I

ANIT AVTHA

L]
-

(91 onpowt) T + I
(91 onpowr) T +

I-r=AVIdd

I
-

24

G ACTIVE 6724 ' 7

specifies that gate 6Z4 is to be active with a delay of 7
G INACTIVE ALLGATES - ‘

specifies that all gates are to be inactive (not very useful)
G INACTIVE 1Al

specifies that gate 1A1 is to be considered inactive.

The purpose of providing the capability of inactivating gates is to speed
up the simulation when a designer knows that a certain portion of the circuit is
working correctly and wants to spend time simulating a separate portion of the
same circuit. Gates which have beeninactivated can be reactivated inany time
during the run.

The SIMULATION SIGNAL LIST contains the current VALUE of the signal
which was obtained by following the pointer tothe device which was indicated as
the signal source (by STATUS = 2). The pointer points not only to the device
but also to the source pin on the device so that no computations must be made
in extracting the signal value from the device. The current VALUE of the
signal is then spread fo all of the devices which use that signal as an input
(indicated by STATUS = 1) by following the pointer to those devices.

Any signal may be driven by an external input at any time. Whena signal
is driven by an external input, the status flag of each connection of that signal
isincreased by +2anda pointer to the input list entry is constructed. Connections
which formerly were to the signal source (STATUS = 2) receive a new
STATUS = 4. Connections which formerly weretodevice inputs (STATUS = 1)
receive a new STATUS = 3. This scheme allows signals to be changed from
free independent signals to signals driven by an external input and back again
to free independent signals with a minimum of computation.

External inputs are caused by the following card

& A
™)
&
~ N
N \3‘37
o -
g & £
S §F J
§ R &
T INPUT SIGNALNAME (WAVESHAPE)

The SIGNAL NAME must be avalid signal inthe logic file or a temporary
signal created by PATCH explained below. The PERIOD specifies the number

25

of simulation time units over which the signal is periodic. (All inputs must be
periodic but, as we shall see, this does not present a limitation.) The
GRANULARITY specifies the number of simulation time units per entry in the
WAVESHAPE fieldof the card. The WAVESHAPE is afield up to 32 characters
long which, by punching 1's or 0's, specifies the waveshape of the periodic
signal. ‘

Consider the following signal which is desired to beused as an external
input.

EXAMPSIGC @ |@® |©@ ® |® |®|® | ® @r(;)

This signal could be described in several ways depending on the time
scale desired: '

a) T INPUT EXAMPSIG 0 9 1 100101000

after 9 time units the signal would become periodic and each 1 or @ in the

waveshape lasts 1 time unit.
b) T INPUT EXAMPSIG 0 27 3 -~ 100101000

after 27 time units the signal would become periodic and each 1 or § in the

waveshape lasts 3 time units,

c) the same result as b) above could be obtained by the following cumbersome
method but the signal would not be periodic.

T INPUT Signal 09 3 100
D SWEEP 9

T INPUT Signal 0 12 3 1010
D SWEEP 12

T INPUT Signal 0 6 3 00
D

SWEEP 6

The sweep cards cause the simulation to proceed the number of time units
specified.

26

As each INPUT card is read, a check is made to see if the signal is
already inthe EXTERNAL INPUT LIST and anew entry is made if itisnot. The
PERIOD, GRANULARITY, and WAVESHAPE fields are then filled in for the
entry. An explanation of how the EXTERNAL INPUT LIST signal values are
maintained is postponed until the section on SIMULATION ALGORITHM.,

External inputs may be removed at any time. This causes 2 to be
subtracted from each STATUS entry in the SIMULATION SIGNAL LIST thus
restoring the signal to its status before the input was applied. Inputs are
removed by a card which specifies

T NOINPUT signal

The designer can cause signals to be traced by a card which specifies

T TRACE signal
and, conversely, cause a trace to be turned off by

T NOTRACE signal

Only signals which have a source (STATUS = 2 or 4) can be traced.

In addition to the control cards described above which directly affect the
simulation logic file, thereare director cards (D in column 1) and subdirector
cards (S in column 1) which control the simulation timing and the form of the
output, respectively.

There are four subdirector cards.

S YSIZE number
specifies the finished size of the output plot in inches.

S TSCALE number
specifies the number of simulation time units per horizontal inch of output.

S MAGNIFY number
magnifies the horizontal scale of any portion of the output,

S SNAPSHOT time

takes a snapshot of the file at the time specified.

217

There are four director cards.

D SIMULATE filename
This card must be first. T causes the specified file to be read in, constructs
the necessary pointers, and initializes all signal values of unused inputs as
required,

D SWEEP number of time units
This card causes simulation to proceed using all information previously made
available by control cards described above, After the specified number of time
units has elapsed, control cardsare read inagainuntil the next SWEEP card is
encountered. There is no limit to the number of SWEEP cards in a run.

D RESTART
This card clears all input lists, trace lists, and reinitializes the file.

D ENDSIM

This card tells the program that simulation is complete and to begin output plot-
ting.

28

2,4 Example (Westinghouse Circuit)

Presented below is an example of how a‘very elementary circuit might be
drawn and simulated, '

Figure 2-10 shows the input deck required to DRAW the schematic shown in
Fig, 2-11. Notice that only three signal names appear at the ouiput of the devices.
These signals (CLOCKIN, MASTER, and SLAVE) were all DEFINEd as sources and
have a STATUS = 2 in the logic file. The rest of the outputs of devices were all
CONNECTed to themselves toindicate a source but that no signal name is to appear.
These signals have a STATUS = 3 inthe drawing logic file, The twosignals ENABLE
and RESET werenot defined as sources anywhere (and in fact they are not intended
to have sources on this drawing). They appear as labels only and have a STATUS = 1
in the drawing logic file. All other connections except those mentioned above with a
STATUS = 1, 2,or 3 have, instead of a statusword, a pointer to the list of intercon-
nection points produced by subroutine DRAWLINES.

Figure 2-12 shows the input deck required to REVISE the drawing. Theresult
of this runis shown in Fig. 2-13. Notice that the two devices MOVEd and DELETEd
have caused the signals connected to them to be rerouted or deleted as required with
no further information from the designer. One signal was REMOVEd. More devices
could be ADDed or more signals connected, but this would have cluttered up the
schematic which is now ready for simulation.

Figure 2-14 shows the input deck required for the simulation produced in Fig.
2-15 through 2-1%, The input sequence in this example is a bit unusual from a logic
designer's point of view, butit serves to demonstrate many of the functions available
in program SIMSCHEMATIC,

29

TEXT s EExs

—
2.

DEE

DRAW
PRODUCF
SCALE TO
NAME 1T
ADD

ADD

ADD

ADD

ADD

ADD

ADD

ADD

ADD

"ADD

ADD

ADD
DEFINF
DEF INF
DEFINF
CONNECT
CONNECT
CONNECT
CONNECT
CONNECT
SIGNAL
SIGNAL
STGNAL
STGNAL
SIGNAL
STGNAL
SIGNAL
SIGNAL
SIGNAL
SIGNAL
SIGNAL
SIGNAL
SIGNAL
STGNAL
SIGNAL
CONNECT
CONNECT
CONNECT
CONNECT
CONNECT
CONNECT
CONNECT
CONNECT
CONNECT
PLOTNOW

SCHEMATIC

OLLSO1
SCHEMATIC
ng BY 07
DEMONSTRAT IUN
DUM1 6
0OAQ 1
1A1 3
1A? 3
143 3
1A4 1
181 5
1R2 5
401 7
2C1 8
2C? 8
3F 10
CLOCKIN 0AD
MASTER 1A2
SLAVE 181
1A1 0 1A1
1A3 0 1A3
1A4 0 1A4
182 0 1R2
2C1 0 2c1
FNARL OAD
cLOCK QAD
CLOCK IN 1A2
CLOCKIN 1A3
MASTER 1a1
MASTER 1A3
MASTER 181
MASTER 2C1
SLAVE 141
SLAVE 182
SLAVE 401
RESET 182
RESET 2C?
SLAVE 2C1
SLAVE 2C2
1A1 0 1A2
143 0 1A2
1A3 0 1A4
143 0 1R2
1A4 0 1A3
182 0 1R1
1R2 0 1A4
2C1 0 2C2
2C1 0 3F
Fig, 2-10

30

jo e Nie e e Ro Jc S Rie oo) B~ Jie SN I SEe Nile « IS 1 IR 1}

-
-

) N N N = 0 D

N DWW W N = L) s NN~ W

OLLS

12 BY 10

3AMND
3NOR
3NOR
3NOR
3NAR
3NAR
3NOR
1/0
3NOIR
30RX
3RUFF

10671710 Ol A8 Z1
1INDYID
NOILVHLSNOW3ZJ #3.10-£0
5110

AHOLVEHOBYT NOLLVAINIWNMISNI 1IN

A

+vi

.c.._uA go-

aYNd

0D

31

G

G

W

REVISE

PRODUCE

-SCALE TO

MOVE

DELETE

REMOVE

PLOTNOW

32

SCHEMATIC OLLSO1

SCHEMATIC

09 BY 07

1A4 3

2C2

MASTER 2C1
Fig. 2-12

OLLsS

12 BY 10

£1-g “8td

1067110 Ol A8 Z1

1INDHID

NOLLYHISNOW3G [*> 100 |

ST0

AMOLVEHOBYT NOLLVININNMISNI Ll

(-

“THVYN3

A0

33

AT A A A A A AAD NN DT

[

w T

W

=N A D A = =D

-

G
G

n

D]
()]

SIMULATE SCHEMATIC OLLSO1

ACTIVE 1A1
ACTIVE 1B1
ACTIVE 2C1

CMAGNIFY 1
SWEEP 80
MAGNIFY 5
SWEEP 20
ENDS IM

YSIZE 4
TSCALE 10
ALLGATES

TRACE CLOCKIN
TRACF MASTER
TRACE 1A1 0
TRACE SLAVE
TRACE 2C1 0
INPUT CLOCK
INPUT RESET
SWEEP 10
NOINPUT RESET
SWEFP 60
RESTART

TSCALE 50
ALLGATES"

TRACE CLOCKIN
TRACE MASTER
TRACE 1A1 0O
TRACE SLAVE
TRACE 2C1 O
INPUT CLOCK
INPUT RESET
SWEEP 10
NOTNPUT RESET
SWEEP 80
PATCH {1}
SWEEP &0
RFMOVE © (1)
PATCH 1A1 O
SWEEP 80
REMOVE 1A1 O
PATCH {0)
PATCH CLOCKIN
SWEEP 80
REMOVE CLOCKIN
RESTART

ALLGATES

TRACE CLOCKIN
TRACE MASTER
TRACE 1A1 O
TRACE SILAVE
TRACFE 2C1 0
INPUT CLOCK
INPUT RESET
SWEEP 10
NOINPUT RESET
" SWEEP 80
MAGNIFY 5

SWEEP 20

i

VTN W

10
16
T0

10
16
T0

10
16

ALL GATES ACTIVE WITH NELAY OF 1

5 10
8 10
INITIALIZE SLAVE FLIP-FLOP

ALL GATES ACTIVE WITH DELAY OF 1

5 10
8 10
INITIALIZE
2C1 1
2C1 1
2C1 1
2C1 1
2C1 1
2C1 3
2C1 3 J
~

ALL GATES ACTIVE WITH DELAY OF 1

W

>See Fig., 2-15

>See Fig, 2-16

$See Fig. 2-17

5 10

8 10
S

Fig, 2-14

34

W dAIAMS, Pue ¢ LAJNION, *,LAdNI, °,d0VYl, Sursn
aanpsooad uor}ernNWIIS 9ISEQ 9y} S9}BI}SNIIT STYL
*(£T-g °S1d) LINDYID NOILVYLSNOWHJ patjipowun jo uopjenurg ¢i-g *S1d

N S\ /T /T /__ NDDhOMD

-/ I —4 n/ /N HILSVIA
T/ n / /W O vl
N__ S ST /T A dAV 1S

S /N /T /W O 10¢

35

*uopjenuurs Suranp o1Sor oy} o3 sefueyd Lrerodwa)} ayew o3 , FAOWHY,, Pue, HDLVdJ,, JO @sn oy} sojexisnil 91-z °*Srd

10z uo 1 urd pasnun ayj spunoid , (0),, 910N .

¢ utd 1Dz oI PAHDLVA NISDOTD JO 109330 au} smoys 3 deamg

1 urd 1Dz ol PSHOLVA ¢ urd TV Jo 109310 oy} smoys ¢ daamg

T urd 1Dg ol POHDLVA (2uo [e01307) | (1), JO 10952 3y} smoys g daamg
sourwIojxad }INOJIIO pOIFIpowun a9y} smoys 71 doamg

VWU UUvUvvvwywywyvwyyyvyyyyyyuyyuyyuyuYyYUL - NI2IDOTID
Sy v vyvyvyvvyvyvuyvvyuyyuyuyu d315VIA
U vV vy uyUyt o 1Vl
UuUyvUuUyUyyyyyvyyyyyuyyuuyuuu JAVIS
YWYV vwyvy vy u v Vurusrusren 0O 10¢

N A I\ A J

Y Y
 doamg "¢ doamg 7 deamg 1 doamg

36

* HALLOV,, Pue XJINOVI,, JO osn oy} sajexjsuyl LI1-g *S1d

*A1oanpoadsax g pue *z ‘g 01 paSueyo 1Dz
pue ‘1491 ‘1vi so1ed Jo sderap ay; yirm uoriesado Ul }INDJIIO 8Y} moys § + ¢ sdoamg

*1 J0 onteA Lerep ® Sutaey sojed [Te YIm uoryexado UI JINDITO oY} MOYS g + [Sdoamg

/L /UVVUVVUUT L\ UVVUVUUVUL NIDO D

nJ U U U o/ Uy U d31SVIN

o 1vl

JAV1S

NS Za U Uy U U VA R U U U O

10¢

317

2.5 Drawing Interconnection Algorithm

Onevery important product of H-1800 System has been our experience with the
drawing interconnection algorithm used by subroutine DRAWLINES to produce ac-
curate schematics which are fairly pleasing to the logic designer's eye.

Since the goal of any circuit routing algorithm is to combine a very limited set
of input parameters into something which is measured by purely human standards,
any algorithm will naturally have a great many checks and balances or fine tuning
adjustments which can only be described and set by observing a great many examples
and readjusting the algorithm as necessary,

2.5.1 General Procedure
The input to DRAWLINES consists of the X, Y coordinates of the pin on
the device which is the source of a signal and a list of X, Y coordinates of the

pinon each device which is a connection of that signal. DRAWLINES works on
each connection (oneat a time) trying to find the "best possible" route around
obstacles such as devices, crowded areas of the schematic, or areas reserved
by the designer. To aid in this task, DRAWLINES maintains several maps
which describe in detail the layout of the schematic., When all connections of a
particular Signal have been successfully routed, the various maps used are
updated with the new information, the interconnection points are written into the
logic file as described above, and control is returned to the main program
DRAWSCHEMATIC.

To keep storage requirements reasonable, a drawing is mapped as a
checkerboard onone-inch squares, and each square contains information about
10 horizontal lines and 10 vertical lines through it, For a 50 x 30-inch
schematic only 1500 words each are required for the horizontal and vertical
maps. Whena connection has been routed completely or partially through any
square, the line occupied is marked "filled" on the map and no other connection
may be routed through that square on that particular line. Thus connections
may cross other connections anywhere at right angles, but no two colinear
connections may ever use the same line inthe same square at any time. It should
benoted that the connection of a signal toone gate doesnot in any way affect or
impair connections of the same signal to any other gates, since the maps are
only updated after all connections of any one signal name are routed. In the
example below, if the connection from A were made first, the connection from
B as shown could not occur since segments of different signals would occupy the

same square at the same vertical line number,

38

o)

Saseevee
AL

[URETISEPE T

The one vertical segment of the connection from B would instead be routed at
least 1/10-inch either to the right or to the left of its present position as
indicated by the dashed lines. The connection from C is permissible, and the
extent of the line segments which are reserved for C and forbidden to any other
signal is shown again by the dotted lines.

Devices as well as segments of connections cause lines to be reserved,
and in the above example the gate shown reserved all 10 of the possible lines
through the square it occupies in both the vertical and the horizontal map.
More maps:

The qualities which we considered most important in finding the "best
possible' route for a connection were long straight runs and minimum number
of line segments in the run. In order to encourage long straight lines, four 50
x 30-square maps were maintained in addition to the layout maps described
above. The additional "look-ahead" maps, as they are called, contain
information in each square which describes the map index of the farthest square
which may be reached before an obstacle is encountered in the direction (up,
down, left, or right depending on which of the four maps is being read). An
obstacle may be either a device or a square on the layout map which has all 10
lines filled with the routed connections.

Figure 2-18 shows the four look-ahead maps superimposed. The key
shows which map contains the entry shown in each square., For example, if the
algorithm found itself at square (3,1), it would know by asking the appropriate
map that a straight-line path existsup as faras (3,3), downas far as (3,0), right
as far as (5,1), and left as far as (1,1).

The algorithm proceeds to route connections one-at-a-time, using the
maps described above, in three general phases:

a) Phase I tentatively constructs up to seven unique paths emanating
from the source device and up to sevenunique paths emanating backwards from

39

up
KEY: |left right

down
4 4 4 4
210 210 2 4 5] 4 5
0 3 3 1
4 4 3 4
510 5 0 5 0 510 5 0 5
0 3 0 3 1
4 3 4
1}0 1 3 3 5 5
0 0 1
4 1 3 1 4
1 5 1 5 1 5 1 5 1 5
0 0 0 1 1
4 2 3
30 3 0 310 3
0 0
4 5
Fig, 2-18

The four look-ahead maps would be constructed as shown for
a 5 X 3 square drawing with the six obstacles shown,

40

the destination device. No path has more thannine segments and the segments
are all found on the look-ahead maps; very little attempt is made here to
connect the source to the destinationin either direction. Each forward line is
then checked with every backward line looking for intersections. All possible
combinations aretried and the combination with the fewest number of segments
is saved for each forward line. The programnever fails to find between one and
seven such connections,

b) Phase II takes a more detailed look at the connections found in Phase
I. Tt first checks each connection for loops on itself anid removes any it finds.
It then checks each connection for possible shortcuts from one point in its path
toanother point inits path and takes any shortcut it finds. These two steps use
only the look-ahead maps with no regard {o the detail on the layout maps, It
then measures the length of each connection, counts the number of segments in
each, and picks one '"best" connection based on these two numbers,

¢) Phase TII works out the detailed position of each line segment in the
connection selected by Phase II, using the layout maps which indicate to the
nearest 1/10-inch which lines in the squares along the path are unoccupied.
This phase contains algorithms for jogging around minor obstacles within a
particular square; but, if the jogging becomes excessive, Phase III gives up in
disgust and asks Phase II for its second-best connection.

2.5.2 Phase I in greater detail:

A test is made to detect flip-flop-like diagonal connections before main
routing techniques are applied. If two devices of the same type are at the same
horizontal coordinate and two squares apart on thevertical, and if the output of
the upper gate is connected to the upper input of the lower gate or the output of
the lower gate is connected to the lower input of the upper gate, the connection
is made flip-flop style. Phase II and Il are bypassed. If no flip-flop connection
is called for, the program begins drawing forward paths and backward paths as
mentioned above.

Figure 2-19 shows seven forward paths which might tentatively be taken
by Phase I using the look-ahead maps of Fig. 2-18. Two things are worthy of
note here: First, the algorithm had choices at squares (1,1), (1,0), (4,3), (0,3),
and (1,4). Whenever it encounters a choice for the first time, it decides in favor
of the direction of the goal and places a flag in a list to remind itself that if it
still hasn't found seven unique paths, it should go back and try the other
direction, Secondly, we have found that nine segments and seven lines in each
direction are more than sufficient even on very large drawings. It is not
necessary that a forward path find the destination or that a backward path find
the source; it is only necessary that the paths cross somewhere,

41

5 = J 2P
> Y
e
BDam J
- A\ .
0 1 2 3 4

Fig, 2-19

Shows forward paths which Phase I might produce using the
look-ahead maps of Fig, 2~18.

42

Phase I is prepared to recognize when it somehow has led itself into. a
dead end, such as the left branch taken in the decision at square (1,0) on Fig.
2.19. It also recognizes when it is retracing itself in a loop, such as the
potential decision at square (5,3). In bothcases it stops trying and proceeds to
the next path, or goes back to the last-flagged decision and takes the opposite
alternative to the decision made when the flag was placed.

The backward paths from the destinationat theinput of device B are not
shown, but it is obvious that many intersections exist. Figure 2-20 shows two
tentative connections which would be typical of what Phase I might decide after
testing all forward/backward intersection combinations.

2.5.3 Phase II

Phase 1I can usually make significant improvements on the connections
produced by Phase I. As shown by the dashed linesin Fig., 2-21, Phase II does
find shortcuts in both paths; and, in fact, both paths reduce to the same final
path. The path selected by Phase II in this case measures 6-unit inches and
has 3 segments. These two numbers would be used in making the decision if
there were more than one candidate for the connection. In practice we have
found that Phase II is usually able toreduce all connections made by Phase T {o
asingle path. In those cases where a single path is not the result, most logic
designers would usually consider both (or all) the paths suggested as acceptable,

2.5.4 Phase III

Phase I and Phase II used only the look-ahead maps for directions and,
as a result, the path selected by Phase II is known only tothenearestinch in any
square. Phase IIl now takes over and, using the detailed layout maps, selects
the final detailed linethrough each of the squares in the path. The routine tries
to picka line which requires no jogging. Crowded conditions and poor layout on
the part of the designer sometimes force minor jogging which can be straightened
out ina later REVISION of the schematic. If program complexity were measured
in pounds of punched cards, Phase IIl would be very complex compared to
Phase I and II. But such isnot the case. Phase TII is a very unprofound routine
to clean up all unfinished details.

2.5.5 An Appraisal
Among the things we learned in experimenting with various other intercon-

nection algorithms before we arrived at the above description was that the
initial overhead required to setup and maintain the look-ahead maps was well
worth the storage and time spent. Those maps do indeed encourage long
straight lines and they arevery fast tooperate. The concept of the look-ahead

43

g
:
)

R

Fig. 2-20 Two Tentative Connections Produced by Phase 1.

1
T

a

t 'r—'—ﬂ

[)
—-—
N

I

e e — o e —
et — —

i

Fig. 2-21 Shortcuts which might be found by Phase 11,

44

maps is not limited to the type of algorithm discussed above and we intend to
put it to use in the 360 system.

Probably what the H-1800 drawing algorithm needs most is a Phase IV
which can take over after previous phases have selected tentative routes forall
the connections of one signal. Tt should then adjust some connections to perhaps
make use of another connection of the same signal. Shown below is a typical
example of how two interconnection routes which are perfectly acceptable if
taken alone are unacceptable together.

D

TAR
L/

Phase IV should recognize that the circled intersections are the same signal
and connect one of them with a dot and eliminate two line segments. It should
be smart enough to know that the combination shown below has fewer segments
than the other alternative (shown in dotted lines).

45

2.6 Simulation Algorithm

Unlike the drawing interconnection algorithm, the simulation algorithm is quite
simple. The card reading routines were described above, Cardsare read in and the
simulation logic file is modified as requested until a SWEEP card causes the routine
in Fig. 2-22 to assume control, or until an ENDSIM card causes output plotting tobegin.

As far as it was designed, the simulator provides satisfactory results, but it
does not go far enough to be generally useful as a design tool. There is not enough
flexibility inthe kind or amount of output produced. Thereisno diagnostic facilityas
described inthe 360 system. The designer isnot free {o define or modify the devices
available to him (with the important exception of gate delays).

This algorithm differs from the 360 system algorithm in only one very major
respect. The H-1800 algorithm evaluates the logic equation for every device once
every time increment, regardless of whether or not the input signal values have
changed. Due to the logic file organization chosen, the simulation would run slower
if the inputs of each device were checked for changes and a decision to bypass
satisfying the logic equations were made onthe result of the check. In the 360 system
deliberate checking of device inputs is not required. We have reached no definite
conclusions about this difference in algorithm yet.

46

SWEEP

'

SATISFY THE LOGIC EQUATIONS FOR EVERY ACTIVE
FEED RESULTS THRU DELAY LINES

GATE,

Y

PASS THRU SIGNAL LIST SPREADING SOURCE SIGNAL

VALUES TO DESTINATIONS
INPUTS TO DESTINATIONS

OR SPREADING EXTERNAL

LisT

GET VALUES OF THE
SIGNALS ON THE TRACE

Y

REQUIR

UPDATE EXTERNAL
SIGNAL VALUES AS

ED

(TIME FOR SNAPSHOT?)-YES

NO-

SNAPSHOT

(SWEEP TIME EXPIRED)—YES

NO
Y STOP
LTIME = TIME + 1 | READ MORE INPUT
CARDS
Fig. 2-22

417

PRECEDING PAGE BYARK ROT, FIRIER:

Section 3

OLLS/360

3.1 Data Siructure
James Pennypacker

The data structureis a complex organization of data items and pointers to the
data. The structure is list-oriented and incorporates features that are designed fo
take full advantage of FILLIP, One overriding consideration in the development of the
data structure was the requirement for rapid insertion, retrieval, and manipulation
of data. A second governing requirement was that the data structure must be
expandable and flexible in handling data of different attributes.

The data structureis far too complex to be presented meaningfully in a single
diagram; the approach taken in this section is to present individual sections of the
structure in detail and then attempt to show how the various sections are integrated
into the whole system. The descriptions will be most easily understood if reference
is madeto the appropriate figures. It should benoted that detailé of the structureare
subject to change, for the data file is a continuously evolving structure. To fully
understand the implications of the data structure, some knowledge of FILLIP is

assumed,

3.1.1 Binary Tree
Two basictypes of structures are found throughout the data structure: the

"binary tree' and the ''196 structure".

The binary treeisa structure in which the individual data items are not
organized asa linear list. Thetree consists of nodes which contain the dataand
which are interconnected by pointers. A nodeis illustrated in Fig. 3.1a. From

7

Fig., 3-1a

each node, a left-hand pointer and a right-hand pointer point to two different

nodes, both of which are one level lower in structure than the node which points
tothem. Toinsert a dataitemin the tree, the datais compared with that of the
top node of the tree. If the data to be inserted is smaller in value than that of

49

the top node, the left-hand pointer of the top node is followed and the node to
which it points is now used in the comparison., If the data to be inserted is
greater invalue than that of anode, the right-hand pointer is followed. The data
is always inserted at the bottom of thetree at the point found onthe basis of the
comparisons.)

To illustrate the concepts of the binary tree, assume the sequence of
numbers 7, 3, 5, 1, 9, 4, 13, 11 isto be organized intoa binary tree. The first
number, 7, becomes the top node of the tree as shown in Fig, 3-1a. The next
entry, 3, is compared with 7, Because it is less than 7, it becomes the node

pointed to by the left-hand pointer emanating from node 7, as shown in Fig.
3-1b. '

Fig, 3-1b

Thenext entry, 5, is compared first with node 7. Being less thannode 7,

it is then compared with node 3. Being greater than node 3, it is inserted as
shown in Fig, 3-1c.

7

Fig. 3-1c
The next entry, 1, is similarly compared against node 7 and node 3.

Because it is less than 3, it is inserted as shown in Fig. 3-1d.

Fig, 3-1d

50

The next entry, 9, is greater than 7 and henceis inserted as shownin Fig,
3-1le. '

7

Fig. 3-1e

The remaining items of the list are inserted in a similar fashion, resulting
in the tree shown in Fig. 3-1f,

13

4 : 11

e

Fig. 3-1f

The primary advantage of the binary-~tree structure isthat a large amount
of data can be searched rapidly for a particular item. In an ideal tree, the
number of comparisons in such a search isa logarithmic function of the number
of nodes, rather than a linear function required for the typical linear list. A
second advantage of the tree is that order is introduced into a set of random
data. In Fig. 3-1f, a scanning of the nodes from lefi-to-right produces the
ordered list of data. Removal of a node from the tree is more difficult than
from a linear list butis a straightforward process, especially if the binarytree
is modified slightly as is actually done in the data-~file structure.

To be optimally useful, the binary tree must be created by adding nodes
of random value; if, for example, the data is entered in order of value, the binary
tree degenerates into a linear list and the advantage of quick retrieval of data
is lost. Furthermore, every deletion of anode tends to linearize the remaining
tree structure; however, the tree structure can never become worse in terms
of retrieval time thana linear list. The impact of the binary-tree structure is
so great in a system in which a large amount of data is stored that a single
FILLIP instruction was designedto searchthe tree for a requested piece of data.

In the data-file structure, there are many independent binary irees.
Every node on the tree is a FILLIP data cell with a standardized definition of

51

the first four subfields. A typieal node is shown in Fig, 3-2.

1 ID

2 4

3 ~

4 N\

s ___]

6]
LAtV

Fig, 3-2

The first subfield of anode contains the ID of value of the node, Thus, the
numbers shown on the nodes of Fig. 3-1f are actually contained in subfield of
data cells. Subfields 3 and 4 contain the left-hand and right-hand pointers
from each node; each pointer points {o another node. When a subsequent node
does not exist, that is, when the bottom of the tree is reached, the associated
pointer is NIL, Subfield 2 contains an upward pointer which points to the
previous node in the tree; in Fig. 3-1f, subfield 2 of node 9 contains a pointer
tonode 7 as does subfield 2 of node 3. Thisupward pointer facilitates deleting
a node from the tree.

The pattern of pointers in subfields 2, 3 and 4, which is illustrated in
Fig. 3-2, is always to be understood as representing a binary-tree structure
and any data cell containing such a pattern is understood to be a node on the
tree. Note that subfields 5 through 14 of the data cell may contain other data
which is associated with the node of the tree; specifically, they may contain
pointers to data cells which are nodes on other binary trees, resulting in an
interleaving of the trees.

3.1.2 196 Structure

The second basic structure which appears throughout the data file is the
196 Structure'. The structure consists of a data cell of fourteen subfields,
each of which contains a pointer. Each pointer points to a separate data cell of
fourteen subfields, each of which in turn contains a pointer. At this point there
are 196 independent pointers. FEach pointer points to a data cell of the same
type but containing different data. The "196 structure' is illustrated in Fig.
3-3a but only fourteen of the ultimate 196 pointers are shown. The 196

52

1.2 34 5 617 89 10111213 14
ANnNnnnnnnnnnn
1 2 3 4.5 vy 7 89 1011121314

R

. J

~
14 of 196 Pointers

Fig, 3-3a

structure as represented inthe data fileis illustrated in Fig. 3-3b; this pattern,
when it appears, is understood to represent the complete structure illustrated
in Fig. 3-3a. The 196 structureis the reason for the limitation on the number

196 STRUCTURE

I

HERENE

L
Fig, 3-3b

of terminals of a device which was mentioned earlier. By making the structure
of three levels instead of two, up to 143 = 2744 terminals could be handled.

3.1.3 Classifications of Data

The data structure as currently defined is designed to handle data of four
major classifications; additional classes of data can be added as future
requirements dictate. After a general introduction, each class of data will be
described in detail.

The first class of data includes all information relating to signals or
interconnections between the individual components. Included in the
classification is information required for the logical simulation of devices,
such as signal history of logic levels, signal-load factors, and simulation
times. The information pertaining to signals is organized in a binary-tree
structure in which each node is called a signal-head cell.

The second major clasgification of data includes the complete
specification of every different type of logical element which is used in any
specific design. Included inthis set of data are thename of the device type, the
number of each type of terminal (e.g., inputs, outputs) names for each terminal,
specification of terminal-logic behavior, the shape of the device, and additional
information for simulation purposes. The information concerning each

53

individual type is contained in a glossary structure, which is essentially a 196
structure. The glossaries in turn are organized into a 196 structure; thus, up
to 196 different types of devices can be utilized in any particular design.

The third major classification of data pertainsto the individual instances
of each type of element. All the detailed information abouta particularinstance
is contained in the instance structure, which is a hybrid structure consisting of
a partial 196 structure and FILLIP data cells. Typical data stored in this
structure identify which signals are connected tothe terminals of the device, the
drawing number specifying on which drawing the deviceis to be found, drawing
coordinates, and the identification of the device. The hybrid-instance structure
is associated with two independent binary trees, as will be explained shortly.

The final classification of data which has so far been identified includes
all the graphic information required for CRT display and hard-copy output.
This data is not confined to one structure but is rather inter-related with the
rest of the data file. One structure which does occur, however, includes data
relevent to physical drawings. This structureisa binary tree whosenodes are

drawing-head cells, Data stored inthe drawing-head cell includes the drav{ring

number, drawing size, signature information, scale size, instances, and signals
which appear on the drawing.

3.1.4 Instance Structure

The first structure which must be understood is the instance structure.
There is one instance structure (or cell) for every individual logical element
maintained in the data base. The purpose of the instance cells is to show which
signals appear on the terminals of the instance and where the instance is
located; the location information is specified by drawing number and
coordinates. This information is the only information currently used which is
unique to each individual device. .

The instance structure and the associated instance-drawing structure
are illustrated in Fig. 3-4. In this and subsequent drawings, the letter P and
arrows are both used to represent direct FILLIP pointers. The instance cell
itself is a FILLIP data cell consisting of eleven subfields, The first four
subfields indicate that the instance structures are organized as a binary tree; .
thereis, in fact, one tree for each type of logical element and the instances of
each type represent the nodes of the type tree. Subfields 5 through 9 are
pointers toterminal structures and will be discussed shortly; it is sufficient at
this time to say that the terminal structure contains pointers to signals which
appear on the respective terminals of the instance. Subfield 10 contains a
pointer toa FILLIP data cell of 8 subfields which contain graphic information
pertaining tothe instance; this data cell is calledthe instance-drawing structure.

54

O =1 O U B W N

INSTANCE STRUCTURE

INSTANCE TERMINAL STRUCTURE
1 23 4 586 . .« . « . . .« .

LL LV VNAAAAAAN - -

L » SIGNAL ON TERM, 16
L SIGNAL ON TERM, 15

1 ID

2 1

3 '

4 \

5 |p, OUTPUT
INSTANCE 6 \p, INPUT

DRAWING STRUCTURE " (P. EXPANDER OUTPUT | =77 "7 777" 771
8 |P, EXPANDER INPUT |
1
D (Xe_ﬁ_fe) 9 |P, AUX, EQUATIONS !
4 - T }
'g 1P, TYPE GLOSSARY ;
N i
|
X, :
Y, I
]
1
P, Drawing Head Cell :
d |
i
I
i

1 2 3 4 5 6 § - + o o o> - - .14
L . HEREEERN
Sy g |
SIGNAL ON X SIGNAL ON
TERM 1 (SIGNAL ON TERM 14
TERM 5)
Fig, 3-4

55

Subfield 11 of the instance cell contains a pointer to the glossary which defines
the type of this instance.

The instance~drawing structure is alsoorganized into a binary tree, with
one tree for each different drawing. The identification (subfield 1) of the
instance-drawing structureis a function of the graphic coordinates, making it
possible to retrieve information about an instance which is specified by drawing
number and coordinate, as well as by type and ID of element. Subfields 5 and
6 contain the x and y coordinates of the instance. Subfield 7 contains a pointer
to the instance structure. Subfield 8 contains a pointer to the head cell of the
drawing on which this particular instance appears.

One of the requirements in the design of OLLS was that the user be able
to define his own logical devices. In practice, this means that different types
of elements will have different numbers of input terminals, output terminals,
etc., but thatall instances of the same type will have the samenumber of inputs,
the same number of outputs, and so on. Up to 196 terminals of each class
(including auxiliary equations) can be accommodated. The instance structure
must thus be capable of pointing up to 5 x 196 = 980 different signal—héad
cells, one signal-head cell for each terminal of the device. One way to realize
this capability would be to set up a 196 structure for each class of terminals,
witha one-fo-one correspondence between pointers and terminals. Each pointer
would then point to the head cell of the signal which is connected to the cor-
responding terminal. In other words, the pointers in subfields 5 through 9 of
the instance structure could each point to a separate 196 structure.

Such a structure, however, is wasteful of storage; an instance with only
one useful output would result in a structure possessing 195 unused pointers;
this waste of storage occurs for every instance of the logic type.

To overcome this problem, a flexible instance-terminal structure is
utilized. For convenience, only one class (outputs) of terminals will be
discussed; the structure designisidentical for the other classes of terminals.
If the instance contains only one output, subfield 5 of the instance structure
contains a pointer directly to the head cell of the signal which appears on that
ter_'minal. If the instance contains more than one but fewer than fifteen output .
terminals, subfield 5 of the instance structure contains a pointer to a FILLIP
data cell of fourteen pointer subfields; these pointers point the head cells of
the signals which appear on the respective terminals. 1If the instance cell
contains more than 14 but fewer than 28 output terminals, the situation is as
shownin Fig, 3-4. Subfield 5 of the instance structure points to a data cell (call
it cell Z) of fourteen pointers. The first of the pointers in cell Z points to
another data cell of 14 pointers which point to the head cells of signals on the
first fourteenterminals. The second pointer of cell Z points to the signal-head

56

cell for the fifteenth terminal, the third pointer of cell Z points to the signal-
head cell for the sixteenth terminal, and soonuntil the terminals are exhausted.
(Figure 3-4 illustrates the case of 16 terminals). The instance-terminal
structure shown in Fig. 3-4 is expanded by pointing from cell Z to additional
cells of 14 pointers asneeded. Only when a device has more than 182 terminals
of the same class does a true 196 structure result.

3.1.5 Glossary

The flexible structure just described raises one important question:
given a pointer to an instance, how does one locate the signal onthe nth terminal,
since, in general, the location of the pointer to the desired signal depends upon
the total number of terminals of the particular class? The answer to this
questionis that one must usea glossary tointerpret the instance structure for
each particular type.

The glossaryis a complex structure which, at least indirectly, contains
the complete description of a logic device; there is one glossary per type of
element. Provisionismade for including 196 glossariesineach data file. The
glossary enables all instance structures tobe treatedidentically by the program
routines, even though instance structures of different types are not identical,
The structure of the glossary is illustrated in Fig. 3-5.

The entry point or root of the glossary is a FILLIP data cell of 14
pointers. The first pointer pointstoa data cell which contains basic alphameric
information about the type, such as type name,

The second pointer of the glossary root points to the top of the tree of
instances of this type; eachnode onthe treeis an instance structure with aunique
instance ID. Thus, all instances of the sametypeare grouped together onatree
which may be addressed through the type glossary.

The third and fourth subfields of the glossary root are presently not
utilized.

Subfields 5 through 9 pertain to the terminal structure with the same
relationship between subfield number and terminal class as is used in the
instance structure; i.e., subfield 5 corresponds to output terminals, subfield 6
isassociated with input terminal, etc. Again, for simplification, the following
discussion will be in terms of only one class of terminals. If the device has no
terminals of a certain type, the pointer in the associated subfield of the glossary
root is NIL; otherwise the pointer points to a 196 structure regardless of how
many terminals of that class are actually defined. For each defined terminal
of the device, aterminal cell is created and pointed to by a known pointer from
the 186 structure; thus, regardless of how many terminals are defined for the
device, the method of addressing the terminal cell associated with the nth

57

G-¢ *81d

LV

[8utW /HILVDTT

HATVA STVYNDIS AESNNA

|

TTVNDIS HO4 SLINA ANWILL #

AUVSSOTOD SIH.L NI STTHD

HVI LNdLNO/LNdINI

TYNINYEL HHHLO

LSTT 40SSEOJdAHYd OL °d

9

Y 4*

ISTT HOSSHDOAS OL °*d

(300D EALLAYdYELND) Od ‘WHEL OL °d

3deqs
apna)
:apod
partdwio)

gdeqy]
pooyH

TIHO TYNINYHL SIHL OL HHLNIOd

19po)d
patrduwoD

S[A W EIVD

TTTHED ANI'T w

¢'e UNOLI) .mmbho:mamwfl

THAONW HLHATINOD

XYUINH LSIT SIHL

HOd TTHD TYNINYHL

——
Mﬁu ANIT ﬁmﬂhHO v.HZH..Hj

.. -/
1

HOIOVA dVOT TYNINYH.L

HdINVN TYNINHH.L

TTEO TVNING AL
i A

»
il

MU

3

<
LSIT LYVINHOA

HEERE

HERREEN
U0 LONY.LS CICRNE €
961 HONV.LSNI oTEDS ‘WIS|Z
A0 dOL
* *TTED AVEH HNVN |T
_ AONV LSNI
STVNI| WYL ﬁ
r s I T
T —)

PIEIgTIIT 0T 6 8 L 9 ¢ ¥ ¢ ¢ 1
AYVSSOTD

o
~—

- N N <P o W L 0 D

58

terminalis pre-specified and invariant. As justindicated, there is oneterminal
cell associated with each defined terminal of the device.

From this point on, the description of the data-file structure becomes
hopelessly complicated if strict grammatical rules are followed., To facilitate
a clear description of the concepts involved, certain linguistic liberties will be
taken. Because of the one-to-one relationship between a terminal cell and a
terminal, the phrase "this terminal" will often be used to mean "the terminal
which is associated with this terminal cell”. Another difficulty now arises; it
" is obvious that thereis nothing physical or real in the data structure, yet it is
convenient and clear torefer to signals, terminals and drawings as if they were
part of the data structure. For example, it is far clearer torefer to''the signal
which is connected to this terminal" rather than'the signal whose head cell is
pointed to be the subfield inthe terminal structure whichis associated with this
terminal cell”; the former phraseis easy tounderstand, the latterisa precise
statément.

A slightly different area in which it is sometimes clearer to take certain
liberties, rather than being precise, is in reference to signal values, Properly
speaking, the terminal of a device is at some logic level and the signal on the
conductor connected to the terminal is said to ‘have a logic value. It is oc-
casionally convenient, however, to refer to terminal values and signal values
interchangeably.

Returning now tothe description of the glossary, the first subfield of the
terminal cell contains the terminal name.

The second subfield of the terminal cell contains the signal load factor
for the associated terminal.

The third subfield of the terminal cell is essentially a road map in the
form of a FILLIP operand pointer showing where to find, within the instance
structure, the pointer to the signal which is on this terminal. The subfield
contains the bug expression GATE/m.n/s, where normally 5 < m < 9,0 < n,
s < 14, If thebugnamed GATE contains a direct pointer to a particular instance,
then the operand pointer GATE/m.n/s will locate a subfield of the instance-
terminal structure; this subfield will contain a pointer to the signal. As an
example, assume the terminal cell describes the Sth input términal of an
instance. The instance is illustrated in Fig, 3-4. Further, assume that Bug
GATE points to the instance. Subfield 11 of the terminal cell (in the glossary)
will then contain the bug expression GATE/6.1.5/. If bug GATE points to the
instance shown in Fig. 3-4, the expression GATE/6.1.5/ locates the signal
connected to the 5th input terminal, signal X, Thus the variable instance-
terminal structure is interpreted by the glossary. The glossary in turn is a
fixed structure. Notethat subfield 11 of theterminal cell is similar to subfield

59

3, except that the bug expression is evaluated as a pointer to the relevant
signal-head cell. This redundancy is solely for convenience.

Subfield 4 of the terminal cell contains a direct pointer to the same
terminal cell; this isagain a convenience in setting up other portions of the data
file.

Subfield 5 péints to iﬁierpretive FILLIP coding of a routine to evaluate
the logic level of this terminal; this coding evaluates the equation which the
designerutilizes to describe the behavior of the terminal, The coding is used
only when an instance of the type is included ina circuit whichis to be simulated.
Equations exist only for output terminals and for auxiliary equations.

Subfields 6 and 7 of the terminal cell point to list structures which are
also useful for simulation purposes. The successor list of a terminal - say
terminal A - contains pointers to other terminals (terminal cells) of the device
whose logic values are influenced by the value of terminal A,

The predecessor list for terminal A contains pointers tothose terminals
(terminal cells) of the same device which influence the logic behavior of terminal
A. Eachentry of both lists also contains the value of time (AT) between the time
terminal A changesvalue and the influencing (or influenced) terminal changes
state. These lists are used in simulating device behavior.

Subfield 8 of theterminal cell contains a tag which identifies the class of
terminal; input, output, etc. The contents of this subfield are simply a number
5 < n < 9 with the same association employed in the terminal structure, i.e.,
5 means input, 6 means output, 7 means expander input, 8 means expander
output, and 9 means auxiliary equations.

Subfield 9 contains the largestvalue of AT found in either the predecessor
or successor list; this is used only in simulation to define the length of signal
history tapes.

Subfield 10 of the terminal cell identifies a default signal to which the
terminal of the instance is to be connected if the designer fails t{o specify a
signal for the terminal of aninstance, UNUSED§ and UNUSED1 are permitted.

Subfield 10 of the glossary root points via a LINK cell to two blocks of
compiled codes, each of which describes the shape of the device. Because the
buffer which drives the CRT display is of limited size, provision is made for
displaying a crude graphical representation of the device on the CRT. This
crude shape will require a minimal amount of buffer storage. For hard-copy
drawing, however, buffer size is irrelevant, so provision is made for drawing
the device as any (reasonable) shape desired by the designer. In either case,
the designer draws the desired shape on the CRT with the light pen; this
drawing istransformed intothe compiled code and stored inthe glossary. (See
Section 3.6).

60

Because instance structures of different types will be added frequently
during the formation of the data file, it is desirable to havea "master" instance
structure stored away which can be duplicated as desired. Such a model
structure is pointed to by subfield 11 of the glossary root. The model section
includes the instance cell, the instance-drawing structure, the instance-
terminal structure and the interconnecting pointers; all data within the model
structure is blank, or NIL. Thus, if all the subfields shown in Fig. 3-4 were
empty or NIL, except for the pointers between the instance-drawing structure
and the instance cell and between the instance cell and the instance~terminal
structure, the resulting structure would be identical to the model structure
pointed to by subfield 11 of the glossary root.

Subfield 12 of the glossary root pointstoa format list which isused only
when operating in the card or batch-processing mode. The format list is
simply a list of LINK cells, where there is one LINK cell for every defined
terminal of the device. The format list provides a one-to-one correspondence
between signal names on the input cards and terminals of a device. The first
LINK cell identifies the terminal to which the first signal on the input card is
connected, the second LINK cell identifies the terminal to which the second
signal ontheinput card is connected, etc. If a signal is not specified on the input
card (its absenceis indicated by a dollar sign on the input card), the unused value
of the terminal cell indicates the appropriate default signal,

3.1.6 Signal Structure

All the logical information pertaining to signals is contained in the signal-
head cell and associated lists. The signal-head cell structureis illustrated in
Fig. 3-6. Thereisone signal-head cell for every signal in the data file; there
is also one signal-head cell for every auxiliary equation of each individual
instance.

The signal-head cells are structured in a binary tree as indicated by the
first four subfields,

Subfield 5 of the signal-head cell contains a pointer to a list of FILLIP
LINK cells, where there is one LINK cell for every instance terminal (except
output) to which the signal is connected. The source pointer of each LINKing
cell points to the instance to which the signal is connected, The destination
pointer of each LINKing cell points to the terminal cell of the connected terminal.

The source qualifier of the LINKing cell identifies the class of terminal
towhich the signal is connected; it contains the same tag as is found in subfield
8 of the terminal cell. :

Subfield 6 of the signal-head cell points to a single LINK cell which is
identical to those just described. The source pointer of this LINKing cell,

61

9-¢ *S14

snrep L
onrep € e |I°ISIEOYUOBEMWISOL d
anTeA ..ﬁ.H adeJ, uorje[NWIS }se]
adeg, £103STH J0 YISuo]
Jo308q peor] 1euldis
HONV.ILSNI AONV.LSNI s8erq uorjernuuly
HONV.LSNI TTED
TTaD pigicie] TYNINYHL uorsualxy (9D OL °d
TYNINYEL TYNINYEL l odey, A101STH oL, °d
q q palda by ds 90anog o1, °d
<faTpdaalpy dsk{aT1 pqdapyg ds L 15T Jnduf oL, *d |
"TTED JNI'T TTHED SINI'T %
e
¥

o = N ™
L B]

(AINVN "TVNDIS) dI

TIHED AVHEH TVNDIS

- M D w0

62

however, points to the instance which is the source of the signal; i.e., the
instance whose output terminal is connected to the signal. It is important to
note that each signal can be connected to only one oufput terminal; thus, each
signal can be generated by only one source.

Subfield 7 of the signal-head cell points to a signal history tape. The
history tape is used in simulations and is simply a block of machine coding
which contains a history of signal values and the times at which the signal
values occurred. The history tape provides the datanecessary to evaluate the
terminal equations.

Subfield 9 of the signal-head cell contains flags for simulation purposes,
Such flags indicate whether a logical error has occurred, whether or not a
signal is of interest to the simulation, etc.

The original load factor contained in subfield 10 of the signal-head cell
is the algebraic sum of the load factors of all the terminals to which the signal
is connected.

Subfields 11, 12, and 13 of the signal-head cell are useful only for
simulation purposes. Subfield 11 indicatesthe maximum time length of history
which is maintained for the signal. Subfield 12 contains the most recent time
when the signal was evaluated during the simulation. Subfield 13 points to a
temporary structure which groups signals for simulation; if any signal of the
_group Changes value, all signals of the grup must be re-evaluated.

3.1.7 Drawing Structure

In the OLLS data file, most of the drawing information is arranged ac-
cording to drawings, where a drawing can be either the plot which appears on
the faceof the CRT or a piece of hard-copy output. Each drawing is assumed
tohave a unique drawing number (ID). For every drawing there is a drawing-head
cell inthe data file; the structure of the drawing-head cell isillustrated in Fig.
3-1.

As indicated by the first four subfields, the drawing-head cells are ar-
ranged on a binary tree according to drawing number,

Two of the types of information which appear on each drawing are the set
of devices and the signals or logical interconnections of these devices; this
data, in fact, comprises the essence of the drawing, Subfield 5 of the drawing-
head cell contains a pointer tothetop of the binary tree of the instance drawing
structures (see Fig. 3-4) which belong to the drawing. By means of this tree
all instances which appear on the same drawing are grouped together,

Subfield 6 of the signal-head cell points toa FILLIP data cell containing
editorial information about the drawing. At the present time, this data cell is
not strictly defined. It is certain, however, that the drawing size and scale

63

L-§ 814

SHLAY ¥¢
NNY "TYNDIS

X HN

SH.LAY $¢
NNY TYNDIS
HM ..HN

A.|+

T F£

L

d71 dd ds

TITHD AVHEH T1dD AVHH
TTVNDIS TTVNDIS
R .
—= ' = T'0" |
d1T da ds d7T dda ds
)
aNHIDHT ¥
VAMTIVOY ¢
HZIS X (4
HZIS X 1 T)
L 9
HHYL HYNLONYLS DNIMVHA HONVLSNT] g
AN 14
P €
} 4
dl 1

TTED AVHH DNIMVIJ

64

factor will be contained in the data cell, as will information required for the
legend or signature of the drawing.

Subfield 7 of the drawing-head cell points to a structure containing
graphical information about the signal runs which appear on the drawing. The
pointer in subfield 7 points to a list of FILLIP LINK cells, where there is one
LINK cell for each signal that is drawn on the drawing. The LINK cells are
connected by the LINK pointers of each cell. The destination pointer of each
LINK cell points to a different signal which appears on the drawing. Each
source pointer of the LINK cells points to a different list of LINK cells; these
cellsareused to store and recover the graphic coordinates for each run of the
signal, The source pointers of these LINK cells each point to a block of
machine coding containing the coordinates of the signal run. Thereisone block
of coding for each interconnection of two different terminals. Thus, if Fig.
3-7 is used as an example, the first signal on the drawing - which is obtained
via subfield 7 of the drawing-head cell - connects three terminals on this
drawing. It is known that three terminals are connected since two blocks of
coordinates are shown and each block of coordinates describes one signal run
or interconnection. -

It should benoted that the entire drawing structure of the data file enables
one. to immediately reproduce drawings which have been created. This is a
necessary requirement if different drawings areto be called up to appear onthe
CRT during an on-line process.

3.1.8 Data-File Root

The binary tree of signal-head cells, the binary tree of drawing-head
cells, and the 196 structure of glossaries are all addressable through the
data-file root as shownin Fig. 3-8. To facilitate discussion, it is convenient to
considerthe root of the file as being the cell of 14 pointers, rather than the NOP
instruction which is the actual FILLIP file root.

As shown in Fig, 3-8, subfield 1 contains a pointer tothetree of signal-head
cells, subfield 2 contains a pointer to the 196 structure of glossaries, and the
third subfield contains a pointer to the tree of drawing-head cells.

Subfield 4 of the data-file root isnormally NIL. During simulation runs,
however, a structure consisting of the simulation event list, of initialization
conditions, and of signal registers is temporarily constructed and pointed to
by a pointer in subfield 4. Because the simulation is temporary and unique to
the simulation program, the structure will not be described in further detail at
this time,

In general, there will be signals in the data file which haveno source; i.e.
arenot connected tothe output terminal of any device. These signals are called

65

g-¢ ‘914

= HENLDOAYULS NOLLVINWIS

_ HAYUL TTHD AVHH ONIMVYA 40 dO.L

— HIALONYLS AYVSSOTD 961

TYNDIS TTED ice)
SSATADYNOS J0 TTHED aval TVNDIS avaH TYNDIS
avaH A<Z~0Hm I QMm%ZD ¢ QMmm_,ZD ﬁ AEN TIED QVEH
: TYNDIS O dOL
— T 0T+ 0T I "+ I I]
d1 4d ds 31 4da ds T 4d

dHY.L
JINVN dITTId

S
o T T T T T e+ A4 9

1 L 9 v € z 1

66

sourceless signals, Two specific examples of sourceless signals are UNUSE D¢
and UNUSEDI1., Other occurrences of sourceless signals result during the
modification of existing drawings when signal interconnections are changed.
For simulation, as well as for error-checking purposes, itis desirable to group
all sourceless signals together, For this purpose, subfield 5 of the data~file root
contains a pointer to a list of FILLIP LINK cells. The source pointer of each
LINK cell pointstothe signal-head cell of a sourceless signal. More specifical-
ly, the first LINKing cell contains a pointer to the UNUSED§ signal-head cell
and the second LINKing cell contains a pointer to the UNUSEDI! signal-head
cell. The remainder of the LINKing cells contain pointers to head cells of any
other sourceless signals which might exist.

3.1.9 Integrated Data Structure
The various parts of the data-file structure have now been described in

detail. Figure 3~9 illustrates how the various component parts are tied together
to yield a highly interwoven data structure. In Fig. 3-9 much of the detail has
been omitted to avoid unnecessary confusion,

A few words about the overall data structure will help to clarify some of
the important concepts. First, there are four independent classes of binary-tree
structures in the data-file structure. Each tree represents a grouping of data
according to some common characteristic. Each tree is normally addressed
through the top node of the tree, although individual nodes of the tree are often
addressed from external structures. Two of the trees, the tree of different
drawings and the tree of signals, are addressed directly by the root of the
data-file structure. Up to 196 different types of logical devices can be
incorporated into one data file; the glossaries for the types arealsoaddressed
by the file-structure root. Each glossary pointstoa binarytreeof all instances
of that particular type. Each drawing-head cell contains a pointer to a binary
tree of all instances which appear onthe drawing. Each signal-head cell points
(indirectly) to every instance to which the signal is connected and, similarly,
each instance points (indirectly) to the head cell of every signal which is
connected to the instance. Each instance also points to the head cell of the
drawing onwhich theinstanceis located. The drawing-head cell also points to
the head cell of every signal which appears on the drawing.

At first glance, it might appear that the data structure is unnecessarily
complex. A few illustrations might illustrate the capabilities of the file
structure. Consider the problem of removing a signal from aninstance. In the
batch-processing mode, it is most convenient toidentify a particular signal by
itsname; it is also easiest to identify an instance by its type and identification
(identifications need be unique only within a type class). The identified signal

67

6-¢ *814

HYN.LONYLS 961

TTHED AVHH [TVNDIS

2IN}ONJIIS UOTIBTNWILS
1sTT TeudiS §Sa[adJanos

STUW/ELVO o
snfeA Teusdrspasnunpl Tle L
odeys| | [PUBTS 20 ST OWIL 4 6 FERN o, 9 . .
LYD 8eJ, ndino /nduy 8 bH X1y OL °d} 6 oN c XX ATX
u.%.m%ﬁvww ST J0SSadepadd oL 'dl L ‘uf 1opuedxg oL “d| g x ¥ sokd ¥g sodd g
™ so1ld g1 15T 1088900nS O, *dl 9 *1nQ zopuedxi o], °d| L A e
by 1eutwas], oI °dj S “1ona3s nduy o, °d| 9 { bA
[[e01eurIal, STYL O %7 Ponas Imdino ol g S C At |+ Il*m __
odeyd | T ¢ x ¥ AUALONELS DNIMVEQ TIEO NIl TT1dD SINT1
poo I0758 4 PeO] ¢ 2 g TONV.LSNI o
107 9po s 3
parrdwo EHM 1 } z [FeguonmemumISolL “dlgr
so14d 8 TTED TYNINYEL ar [[oWIiy uohemwis I8¢ 1|51 [pueBer]
HONVISNI} £1038TH JO WISUST| 11| |adt— __ _ _; roj0e.g 91e9S
[T Ioped peoilgr| | TIED § SINTI 3715- X 2
TTED SINT'T m [1] _ §9e1d Uorenualy g 3715 X
TUALDNELS 961 ~~""] GOTSUSIXA O °d| g
FUNLONYLS VN XI01STH OL °d| 4, — L
, JMZHEMHMB 304008 01, 'd| 9 g
[TTT T T T T T] == ——— ¢ :
2T ITOT 6 8.L 9 6 ¥ M 1 TTHD NI - ¥ ~ ¥
XYVSSOTO 11 T > g P g
; ¥ 4 1 4
— _ _ _ _ . _ ar 1 dl T

TTED AVHH ONIMVYd

]

1 4oy

is readily found in the data file by a FILLIP search of the tree of signal-head
cells; thistreeis directly addressable through the data-file root. Having found
the head cell of the specified signal, the list of instances (actually LINK cells)
which are connected to the signal is searched again by one FILLIP instruction
until the specified instance is found. The LINK cell pointing to this instance
also pointstoaterminal cell which tells where inthe instance the pointer to the
signal is to be found; the changing of this pointer and the pointer in the LINK
cell constitutes removing the signal from the instance.

To accomplish the same result when operating in the on-line mode, the
drawing containing the instance will be called up for display on the CRT. To
identify the signal whichis to be removed, the designer will point with the light
pento the terminal of the device to which the signal is connected and command
the system to remove the signal. In this case, the tree of drawings is searched
(one FILLIP instruction) until the head cell for this drawing is located. The
tree of instances (instance-drawing structures) onthis drawing is then searched
by coordinates (coordinates of device and the specific terminal are computed
from the light~pen position) until the correct instance structure is found. The
instance itself is addressed through the instance-drawing structure and the
process continues as in the batch-processing node,

A different type of problem arises during simulation; hereitisnecessary
to know what instances are affected by changes in signal value. The head cell
of the signal is again located and the list of instances is searched. For each
instance, the glossary is consulted to determine the equation for the specific
terminal. If the terminal isan input terminal, the terminals on the successor
list (output terminals on the same instance) are examined and their terminal
equations are examined. If the successor terminals change state, the cor-
responding signals are examined in a recursive process; these signals are
addressed from theinstance-terminal structure using the glossary to identify
the location of the address pointer. The simulation process is described in
detail in Section 3.3 of this report; the sole intent here is to show how the data
structure can be utilized.

It is felt that the data structure provides sufficient flexibility to be useful
in a wide variety of design problems, either in a batch-processing or on-line
mode. Itisfurther felt that the structure can be readily expanded to include new
classes of data when they become identified. Although the properties of FILLIP
influenced the development of the data structures, the data structure stands by

itself, and can be implemented in any reasonable language.

69

3.2 Device Definition

James Pennypacker

One of the most important features of OLLS isthe provision for the designer to
define his own logical devices. Theuser isnot confined to using a set of pre-defined
elements but within broad limits can use any logical element, combinational or
sequential, he cares to define as a device. Rather than having to code separate
programs to handle each new logic element, the user canin a straightforward manner
define the functional behavior of the model for the new element. This means, for
example, that the advent of large-scale integration (LSI) will necessitate no program=
ming modifications; an L.SI chip and a single logic gate are handled with equal ease.
The data and program structures are organized to accept the user-defined device
without additional programming effort. Once a device type is defined, instances of the

device type can be used whenever desired.

3.2.1 Contents of Definition

The definition of a device includes the name of the device type, the number
of each class of terminal for the device, logic equations relating output terminal
behavior to input terminal behavior, the load factor for each terminal, and,
when the device is defined at the on-line graphic console, the shape of the device
symbol.

Each defined logic device can have four different classes of terminals,
input, output, expander input, and expander output. Expander input and expander
output terminals are electrical points of the device which provide for fan-inand
fan-out capability. In addition to the four types of terminals, the definition of
a logic device may include internal logic states which are neither input nor
output terminals; the definition of any sequential circuit would include such
internal variables. These internal variables, hereinafter referred to as
auxiliary equations, are treated identically to the other four classes of
terminals; they are expressed as - and included in - equations specifying logic
behavior of other terminals.

At the present time, a defined device may contain up to 196 terminals of
each type, including auxiliary equations. The number of terminals is the only !
hard restriction in the definition of a device; without extensive reprogramming,
the data structure could be modified to provide for up to 2744 terminals of each
type. Each terminal of the device (and auxiliary equations are to be included
asterminals) is givenaunique namethat isused in the specification of the logic
operation of the device.

70

3.2.2 Concepts of Definition

The logic operation of a device is specified by the equations which relate
each output, expander output, or auxiliary equation to other terminals of the
device. For example, the NOR gate shownin Fig. 3-10 has twoinputs, A and B,

A
ﬂ C
B
Fig., 3~10

and one output, C, where A, B, and C are understood to be the respective
terminal names. The logic operation of this device is specified by the equation,

C=A-B

A subscript notation is employed to show time delays. Using this notation, a
subscript § indicates the time "now', a subscript 1 indicates time one unit
previous, a subscript 2 indicates two time units ago, etc. The time unit is
dimensionless but is often understood to be one gate delay, the time it takes for
a logic element to respond tothe input excitation, Sﬁbscripts indicating relative
time dependency must be integers (see Appendix B).

For the two-input NOR gate shown in Fig. 3-10, the logic operation can be
more completely specified by the equation

which indicates that the behavior of terminal C at the present time isinfluenced
by the behavior of both terminals A and B one time unit ago. If the excitation
does not influence the output terminal equally rapidly for both input terminals,
the equation might be expressed as
Co = A1 By
Tomore fully illustrate the concepts under discussion, consider a device
with two inputs, S and R, one output, Q, and one internal state or auxiliary
equation, P, as illustrated in Fig., 3-11,

5
R P —o@

Fig, 3-11

71

The operation of the device is specified by the equations

Q =8, Py (3-1a)

P

]
&
[y
ol
[y

0 (3-1b)
Note that the behavior of every terminal is specified at time "now'"; i.e., the
subscript of variables on the left-hand side of the equations is always .
Further, note that the behavior of internal states must be specified in addition
to behavior of output terminals,

Equation set 3-1 is completely acceptable to OLLS as a definition of the
device, Itispossible, however, to simplify Eq. 3-1 bynoting that if PO = 61' —ﬁl
describes the behavior of state P at timenow, then the behavior of P one time
unit agois specified by the relation P1 = Qz-ﬁz. Substituting this expression
into Eq. 3-1a, followed by logical simplification, yields

Qy = 5; * (Ry + Qy) (3-2)

which is also sufficient to define the device. Note that, in Eq. 3-2, the behavior
of terminal Q is a function of its own state twotime units ago, Thiswill, infact,
be the case when any sequential circuit is defined as a logic device,

Either Eq. 3-1 or 3-2 may be used to define the logic properties of the
device; both result in the same logic operation. The simulation of this particular
device, however, will run somewhat faster if Eq. 3-2 is used. Tt is difficult fo
generalize as to whether or not equations should be simplified when the device
is defined; it is only during simulation that any differenceis observable and the
difference is one of running time only. If most of the defining equations are
expressed as functions of all other terminals, then simplification of the equations
will speed up the simulation, Onthe other hand, if most of the defining equations
are each expressed as a function of only a few of the other terminals, then
simplification of the equations will slow down the simulation program. The
reason for this is that the simplified equation for a terminal, say terminal Q,
includes many terminals in the expression. If any of these terminals changes
state, the entire expression for terminal Q must be re-evaluated to determine
whether or not terminal Q has changed state. Because of the large number of
variables which are maintained in the equation for Q, the equation will have to
be evaluated more frequently than if fewer terminals were included in the
defining relationship. Without actual operating experience with OLLS, however,
it is virtually impossible to analyzg the difference in running time of the

simulation program as a function of the defining equations.

72

It was previously mentioned that, once a device was defined, instances of
the device could be used whenever desired. In other words, the concept of a
NOR gate must be made known to the data file before individual NOR gates are
used inthe design process. The definition of the device type and the utilization
of individual devices arenormally independent operations except that definition
must precede utilization. As will be discussed later, the utilization of an
individual instance includes specifying what signals appear on the different
terminals of the instance. In this manner, instances are interconnected to form
circuits. Part of the process of defining a device includes the option of specifying
the order in which the terminals of the device are to be connected to signal
interconnections. The definition of a device alsoincludes specifying the default

signals to which unmentioned terminals are to be connected.

3.2.3 Definition by Terminal Behavior

There aretwo methods by which a device may be defined: by specification
of terminal behavior and by circuit design. Because the difference between the
two methods concerns only the manner of defining the logic behavior of the
device, the discussion will concern only this phase of device definition.

The process of defining a device by specifying terminal behavior was
essentially describedinthe preceding section. The process involves identifying
each of the terminals, including auxiliary equations, by auniquename. Logical
equations are then written for each terminal, specifying the behavior of one
terminal as a function of all the terminals of the device. Equations specifying
the behavior of input and expander input terminals are of course not required.
Each logic equation must be of the form of Eq. 3~1 or 3-2. In fact, Eq. 3-1 or
3-2 comprise definition by terminal behavior.

3.2.4 Definition by Circuit Design

A considerably easier method of defining a device is by circuit design.
While this method of definition is currently available only for operation in the
on-line mode, it is planned to incorporate the procedure into the batch-
processing mode.

To illustrate this method of definition, assume that the NOR gate shown
in Fig. 3-12 has been defined by terminal behavior, Further, assume that the

Iig, 3-12

73

designer has drawnonthe CRT with the light pen a circuit which is anintercon-
nection of only devices of the type shown in Fig. 3-12, The circuit which has
been drawn is shown in Fig. 3-13. In this circuit, the letiers are names of

signals which appear on the various terminals of the interconnected devices; the
terminals of each individual NOR gate are still called A, B and C as per the
definition of the device. Having drawn the circuit, the designer recognizes that
the portion of the circuit enclosed within the dotted lines is a flip-flop which is
used so frequently that it is desirable to define this portionof the circuit as a
single logic device. Because the NOR gate has been specified by terminal
behavior and because the drawn circuit represents logic interconnections of the
NOR gates, the logic behavior of the flip-flop is already contained in some form
in the data-file structure. Thus the designer can define the flip-flop as a new
device by simply identifying the devices which are included in the flip-flop
(gates x and y) and the terminals of those gates which are also to be terminals
of thenew device. The only other information which the designer must provide
is the name of the new device, FLIP-FLOP, Identification of the gates and -
terminals is performed with the light pen; thename is entered via the graphic
console keyboard.

In general, when a device is defined, the terminals of the device must be
given names which are unique among themselves, When a device is defined by
circuit design, the terminals of the new device are named after the signals which
are connected to the respective terminals. Thus, the output terminal of the
flip-flop shown isnamed Q and the two input terminals of the flip-flop are S and

74

R. (These terminals names can be modified by the designer, if desired.)
Because the output of NOR gate yis not considered to be an output terminal of
the flip-flop, it gives rise to an internal state or auxiliary equation, P, of the
newly defined flip-flop. Note that, even though none of theindividual NOR gates
has an internal state, the interconnection of these devices yields a new device
which has an auxiliary equation associated with its definition.

After the elements and interconnections which comprise the new device
have been identified, the model of the new deviceis automatically generated by
OLLS and equations specifying the terminal behavior of the new device are
automatically generated. For the flip-flop shown, the generated equations are:

P

1t
O
[Ty
o)
[y

0 (3-33.)

Q =5;° Py (3-3b)

These equations are identical to Eq. 3-1; in fact, the black box defined by Eq.
3-1is a flip-flop. '

The load factor for each terminal of the new device is automatically
generated from the load factors of the individual components of the device,

Currently, the shape of a device which is defined by circuit design is
automatically generated asa rectangle; this shape can be modified as desired
via the on-line graphic console,

The process of defining a device by circuit design is simple and fast for
the designer, requiring only that the individual components be previously
defined. The designer can thus define devices ina boot-strap manner; the only
restrictionis that the new devicenot exceed the restriction of 196 terminals of
each type.

3.2.5 Impact on Data File

The impact on the data structure is identical when the device is defined

by terminal behavior as when the device is defined by circuit design. The
following discussion assumes definition by terminal behavior unless otherwise
specified. Reference to Fig. 3-9 might facilitate an understanding of the material
in this section.

When a new device is defined, a glossary root is constructed and connected
to the 196 structure of glossaries. The name of the device is inserted in a
FILLIP data cell which is pointed to by the glossary root.

For every class of terminal which is defined for a device type, a 186
structure of terminal cells is constructed and connected to the appropriate
subfield of the glossary root. For each terminal, the terminal name and load
factor are inserted in the terminal cell.

75

The equation specifying the logic behavior of the terminal is compiled
into interpretive FILLIP code which is addressed by the terminal cell. The
equation is also scanned for the largest subscript which is inserted in subfield
9 of theterminal cell. The equations are alsoused to construct the predecessor
and successor lists,

One of the imbortant results of device definition is the construction of a
model-instance structure which is pointed to by the glossary root. The instance-
cell and the instance-drawing structures are of fixed format and therefore
easily constructed; the instance~terminal structures are of variable format and
aremore difficult to create. The instance-terminal structure depends upon the
number of terminals which are defined for the device; the contents of subfield
3 of the terminal cell is also a function of the number of defined terminals,

The shape of the defined device is translated into machine coding which
is addressed indirectly through the glossary root.

To summarize what has been stated so far, the definition of a device by
terminal behavior results in anew glossary, in the formation of the associated
structures, and in the insertion of the contents of every defined terminal cell.

When the device is defined by circuit design, the end result is the same
as if the device were defined by terminal behavior; the process is, however,
considerably different since most of the required information is not explicitly
available. Without going into the complexity of detail which is required, it is
sufficient to state that the logic~data file is searched to provide the information
required to construct the glossary and its associated structures. Thedesigner
need not specify the logic behavior of the device; OLLS subroutines process
the existing relevant interpretive code which describes behavior of the individual
component terminals to yield interpretive coding for each terminal of the new
device,

76

3.3

Simulation
Herbert Thaler

3.3.1 Circuit Formation

a.) Device Definition

The formation of a logic circuit for simulation by OLLS can be divided
intotwo phases. The first phase isthe definition of the terminal behavior of the
logical devices to beincluded in the circuit. This is accomplished through the
"Define Device" subprogram of OLLS. Those properties of a device which are

essential to simulate it are:

1. A classificationof its terminals intoat least two categories - input
and output.

2. Boolean equations to relate the output terminals to the inputs (and
outputs).

A device-input terminal is one whose logic value cannot be affected by
the device itself. That is, there is no Boolean equation within the device to
change a logic signal value at that terminal. It can only follow the value of an
applied signal.

An output terminal, on the other hand, does have a generating equation.
In fact, all output terminals of all devices must have their own independent
generating equations. Therefore, output terminals of devices may not be
interconnected, since there is no unique way to resolve the resulting competition
between independent Boolean generating functions. This fact, and a desire to
make OLLS as general as possible, gives rise to two other classifications of
device terminals - expander outputs and inputs.

In certaintypes of logic families (e.g., RTL), it is common practice to tie
device outputs together to achieve higher fan-in and/or fan-out capabilities than
the individual devices provide. In other types of logic families (e.g., TTL),
higher fan-inisachieved by connecting specially designed expander devices to
expansion terminals provided solely for this purpose. Both techniques are
logically correct, but the TTL approach is more general. Therefore, OLLS
adopts that view of fan-in augmentation, If an output-terminal equation can be
expanded logically by either technique, an expander-input terminal is provided
on the device. The expander-input signal value must then be included in the
Boolean equation for the expandable-output terminal. However, only signals

‘which originate on expander-output terminals may be connected to expander

inputs. Thus two classes of signal runs are found in an OLLS logic circuit.
Normal signals originate on the output terminal of some device, and may be

17

connected only to the normal input terminals of other devices, Expander
signals originate on the expander-output terminal of some device and may be
connected only to the expander-input terminals of other devices. A generalized
device may possess all four terminal categories if the proper equation set and
terminal classification are given to it.

There is a fifth class of terminal that, in the interest of generality, a
device may possess. It is often necessary to define more equations to specify
the behavior of a device thanthere are output terminals toassign them to, This
usually occurs when defining a sequential circuit with many stable states and
few outputs. Since OLLS places almost no restrictions on the complexity of
definable devices, equations which affect output terminals but donot themselves
represent real terminals must be accommodated. These equations are classed
as auxiliéry terminals in the definition of the device. Auxiliary equations are
equally as important to the behavior of a device as its output equations, and
differ from them only in that they arenot available as signals outside the device.
Therefore, an auxiliary-equation variable is treated in the OLLS logic-circuit
file as an output signal which cannot be connected to any external inputs, but
which nevertheless may influence other terminals within the device, As an

example of one use of an auxiliary variable, consider the following device:

o o
o— B —-o
INPUTS A OUTPUTS
AUXILIARIES

Let us assume that the two elements A and B are complex combinational
devices, but that their individual equation sets are known. The OLLS user may
choose to define their cascade in either of two ways. He may substitute into the
equations for B the functions appearing at the outputs of A. This would eliminate
the intermediatevariables from the overall cascade equations, and express the
outputs.of B interms of the inputsto A. The alternative is to submit the equation

sets for both A and B, retaining the intermediate variables as auxiliary ‘
terminals. This achieves the identical simulation behavior for the cascaded
circuit, but saves the user much effort in reducing the total equation set he must
provide. Further example of the trade-off in effort and efficiency between
minimized equation sets (a few complex equations) and the more easily generated
gate-by-gate sets (many simple equations) are given in Appendix B. Often the
preferred choiceis more one of personal taste than engineering necessity, but

certain cases of necessity can be defined. These occur near the limits of device

78

complexity, when the number of independent variables exceeds 196. Then one
may be forced to eliminate redundant equations simply to fit the device definition
within the specified limits.

Any logic device, which can be modeled by using the following basic set
of ideal Boolean elements, can be defined in OLLS. The ideal elements are:

delayless multi-input OR
delayless multi-input AND
delayless NOT

ideal delays.

po TP

&

Since this set of elements is complete, any finite combinational or sequential
circuit can thus be defined. For example, an expandable 3-input NOR gate can
be modeled as follows:

* Define Device NOR

OUTPUTS X

INPUTS A,B,C

EXPINS J

EQUATION X ==(A + B+ C +J)
DELAY 0 1 2 5 0

This set of input data represents the following device model:

Delays OR NOT
A
Bo——[5 [
+ - o X

c —

J o

Examples of the method used in OLLS to define a logic device by its
terminal Boolean equations have been given, but the power and generality of
the method have not yet been explored. As has been stated, the only restriction
applied to the device definition is on the number of each type of terminal which
may be used on one device. This limit is currently set at 196 for our own
convenience. Hence, a device may have up to 196 inputs, 196 outputs, and 196
auxiliary variables in addition to expander terminals., The form of the output
and auxiliary equations themselves need only be deterministic ~ that is, there
must be a unique equation which specifies the current value of each terminal at
all times. The equation forms are:

79

F (inputs, outputs, auxes, expins, expoﬁts)

out
o

or:

AUX F (inputs, outputs, auxes, expins, expouts),

o
There is no limit on the complexity of the functions involved, no limitation on
what variables méy appear in them, and none on what delay values may be used
(zero delay is permissible but should be avoided). An equation may even
mention the variable it is defining in the function for that variable.

With these rules, most reasonable system functions can be incorporated
as a single device. This includes, for example, storage arrays withup to 587-bit

588 ctates (not all stable!), delay lines

capacity, sequential circuits withup to 2
of any length (with up to 195 taps), combinational circuits of virtually any
complexity, binary counter-divider up to 196 stages long, complete computer
arithmetic units, computer input/output control units, and just about anything
that the near future will see implemented by LSI technology. This generality
is, we feel, necessary for thenext generation of logic simulation programs, and

is one of the strong points of OLLS,

b.) Interconnections

Once the OLLS user has successfully defined or copied those logic devices
he wishes toutilize, he may begin {o form a circuit. For simulation purposes,
an OLLS circuit (or file) consists of the device definitions, one or more instances
of the logic devices, and interconnections. Any mixture of different device
types may reside in one file, since OLLS assumes they are compatible, The
simulation program treats all devices alike, and therefore relies on the device
definitions (glossary entries) to differentiate behavior. The mechanics of
interconnecting devices and assigning names to the signals created are explained
in Section 3.2 of this report. All thatneed be said at this pointis that it iseasy
to create the total file in terms of instances of the defined logic devices and
signal names.

3.3.2 Desired Capabilities
4 a.) Logical Initialization

Once an OLLS user has specified his circuit topologically, he may turn
his attention to its simulation. The first step inthis processis the establishment
of initial logic values at all the terminals and signals of interest. This is
necessary because OLLS recognizes three signal logical values - zero, one,
and undefined; and because the circuit is first automatically set so that all
signals are undefined. Thisis done to force theusernot only to initialize every
signal of interest io him, but also to be aware of all other signals in his file

80

which have a direct effect onthe test circuit. Heneed not initialize every signal
ina large circuit totest only a small subsection of it, but he must satisfactorily
isolate the test circuit logically.

A particular signal is initialized in the OLLS card system by specifying
the intended value and the signal name. Inthe CRT-oriented system, the signal
of interest may be designated either byname or by touching with a light pen a
device terminal onits displayed run. This is especially useful since thenames
of some signals on circuits created at the CRT may not be known to their
creator. This occurs because the process of gate interconnection is more
easily handled graphically than by card entry, and hence the card system
artifact of the user manufacturing signal names for every run is unnecessary.
Some signal names, therefore, may have been created by OLLS to fill the void
left bytheuser. Thesenames are derived from the ID, type, and terminal name
of the source device, and generally have no nmemonic value to the user, They
do, however, exist in the file and can readily be determined.

However a signal to be initialized is designated, the user still has the
option of stating aninitial value for every signal, or of trying to minimize such
effort. OLLS has the ability to propagate logic levels through devices (from
inputs to outputs) subject tothe logic constraints given inthe device definitions,
but independent of the delay values therein. This causes the logic circuit to
behave as if all its delays were zero, but doesn't affect the Boolean equations
withinit. Thus, for example, if a logic "one" is specifically placed on one input
to an OR gate, then the output terminal signal will also become specified
through propagation. This is particularly useful since many logic circuits are
designed with an unconditional preset signal distributed through the circuit.
When such a signal is initialized and then propagated, many additional signals
become defined gratis. Anexample of such a situation can be found in the MIT
Apollo Guidance Computer where a single preset signal can initialize every
significant section of the computer control logic.

The intent of initialization is to establish a static configuration of logic
signals onwhich to base further simulations. When signal propagation is used,
the static nature of the signal set may be disturbed. During the course of
propagation a signal previously declared to be ¢ (1) may become re-evaluated
asa 1 (§). This generally indicates oscillatory circuits, or sequential circuits
in which the control variables are improperly defined. Since the phase and
frequency of such oscillation is indeterminate within the context of static
initialization, the logic values of the signals involved are forced to revert to
undefined. The user is informed of such behavior and is expected to provide
the necessary circuit or initialization changes to correct it. Thus, for example,
oscillators should have control lines which can quench their activity during
initialization but can release them afterward for the dynamic run.

81

b) Circuit Stimuli

The user must be able to insert stimuli for his test circuit once the

dynamic simulation run begins. There should be both "one-shot" and repetitive-
waveform stimulus capability, with all parameters under his control. The
"one-shot" stimulus is in the nature of an event, and is so classified by OLLS.
Toinsert suchan eﬁernal event, the user would preparea card image (in either
the card-oriented or CRT OLLS system) with the following format:

EVENT Signame Value Time,

Naturally this causes the signal designated to assume the given value at the
giventime during the dynamic simulation run. The signal remains at that value
(# or 1) until some other external or internal event causes it to change,

Itis also desirableto be able to specify that an external event should occur
based on purely internal circumstances, With such a capability one would not
be concerned with the time at which the event occurs, but rather with the
internal events leading up tothe desired effect. For example, one might desire
to turn on (or off) an oscillatory circuit control line if some other signal level
inthe file becamea 1 (or g). Thisalmost has the effect of making a temporary
logical connection for simulation purposes between unconnected signals in the

circuit, and would be éxpressed by the user as:
EVENT Signame Value IF Expression,

Whenever the given Boolean expression becomes true, the specified signal
assumes its stated value, The expressionneed not be a single-signal name., It
canbe any Boolean combination of signal names (and their complements) which
appear in the file being simulated.

This example of a conditional event allows the designated signal to assume
only one of the possible logic values whenever the Boolean expression becomes
true. In order to accommodate the other value, another conditional event has
to be given. Thus, for example, the pair of cards:

EVENT ALPHA 1 IF BETA
EVENT ALPHA g IF - (BETA)

slaves signal ALPHA to expression BETA bothfor BETA < # and for BETA « 1.
Therefore, ALPHA and BETA are the same for the simulation run. If BETA is
only one signal rather than a combination of signals, the two signals are logically
connected together for the duration of the simulation run. Since this enables the

82

user to make temporary connections in his circuit without actually affecting the
circuit itself (only the simulation thereof), it should prove to be a very useful
feature. A single additional command to combine the two conditional event
cards given above into one card is:

EVENT ALPHA EQUALS BETA

where BETA can be either a single-signal name or an expression. Note that
there is a definite direction implied by this card - ALPHA follows BETA, not
vice versa. Therefore, BETA must be a signal with a real source, while if
ALPHA has a source it is always competing with BETA for dominance. Generally
it is best if ALLPHA has no real source (no device output terminal) in its run.

The second type of circuit stimulus allowed in OLLS is a general repetitive
waveform. This is actually an unending sequence of unconditional events all
directed at some signal. A shorthand technique for specifying the parameters
of the waveform is provided.

SEQUENCE Signame Value Period TList

as an OLLS input card, defines a waveform to be applied to the designated
signal. The first new value and the period of time for repetition are given
explicitly. The last entry (TLIST) isactually a list of discrete times of events
within the first period. Each one causes a transition of the designated signal at
the given time. As an example of such a sequence, consider

SEQUENCE A 1 15 0 2 7 12

which describes a waveform as follows:
I‘_—Period = 15 T 'l
1 .
Y S ey N L
0 2 7 12 15 17 22 27

The signal A would execute the transitions shown at the times indicated in the
sketch above. The number of events which may appear in the TList is limited
only by the total period given. In this way the OLLS user can build up very
complex repetitive waveforms, or he may generate simple square waves as, for
example:

83

SEQUENCE B 1 10 2 7

This describes a period-10 square wave starting at time = 2 with value 1.
Signal B would be delayed one time unit from signal C if:

SEQUENCE C 1 10 1 6

were the definition of C. The waveforms defined as B and C would appear as

follows:

1 .
5 L

0 2 7 12 17
1
S e T e
0
01 6 11 16

|<-————— Period = 10-——0|

c) Output Features

It almost goes without saying that a good logic-simulation program must
have good output capability. This is especially true if the intent of the program
is to mimic a circuit rather than to analyze it. OLLS falls into the former
category - it is intended as a very realistic replacement for the real circuit,
especially in the early stages of computer design. Thisinno way prejudices its
value in later stages when the design is more mature, since the record keeping
capabilities of the OLLS system will then be truly invaluable to the designer.

OLLS, therefore, possesses a broad output capability, reflecting its use
not onlyin all stages of logic design but also as a console interactive system.
These output features are:

Trace.

Sample.

Hazard Detection.
Inquiries.
Summary Prints.

S o wN -

Dumps.

84

The first three categories of output involve data collected piece-by-piece
during a simulation run. Then, after the run terminates, its historyis available
in these various forms.

Tracing a signal is equivalent to monitoring a real circuit with an oscil-
loscope probe. A complete time history of the signal is made available as
output. Every time a signal specifically marked for tracing undergoes a
transition, the value, time, and other circumstances surrounding the transition
are recorded. Several alternatives are given the OLLS user in the choice of
output medium for tracing results, The high-speed line printer can beused to
show the traceof up to 20 signals simultaneously on the same time base. Each
line of print output represents a time at which one or more of the traced signals
changed state. The time is noted on the line, and each signal's value is noted
by printing a number 1 in one of two particular columns. Thus if the first
signal across the page hasvalue zero, anumber 1 is printed in column 14, and
if the logic valueis one it appears in column 16, Transitions are marked with
a dash at the appropriate line in column 15. This type of output resulis in a
commonnonlinear timeline for each signal if the output is turned sideways for
reading. The names of the signals being traced head their respective column
groups on each page.

If the user is interested in elegance of appearance rather than large
volume of output, he may choose to draw the trace output on an X-Y plotter.
Samples of how this would appear are presented elsewhere in the report., This
type of output is done with a linear time base for appearance's sake since
generally fewer transitions are being displayed. Identical linear~trace output
can also be displayed.via the on-line CRT console if desired.

Signal sampling is different from tracing in the format of output and in
the factors which cause the sampled data to be outputted. When a signal is being
traced, the event which causes output to be created is a transition of that same
signal. Sampling, on the other hand, is intended to produce output from one
signal upon the occurrence of a particular f{ransition in another., For example,
one might choose to view the contents of a flip-flop by sampling it whenever a
reading pulse occurs. Another reason to sample could be the transition of a
timing pulse, thus establishing a linear history of the sampled signal for display.
It would also be desirable to generalize the conditions causing the sample and
to link more thanone signal in a single sample event. Thus a general sample
control card would be:

‘SAMPLE Siglist IF Expression

The Siglist term above is meant to be a list of any number of signals to be
simultaneously sampled whenever the given signal expression becomes true.

85

The output format for a sample event as recorded on the line printer or
CRT includes the time of the sample, a restatement of the control card, and the
sampled logic values. Inthis way different samples andtraces canbe intermixed
in the output medium without confusion.

The detection of logic-race conditions is an important adjunct toan OLLS
simulation. Since OLLS is intended to mimic a circuit rather than to analyze
it, no attempt is made to perform an algebraic-hazard analysis of the test
circuit. Instead, hazard testing is performed dynamically as the simulation
runoccurs. Static and dynamic hazards manifest themselves as short-duration
pulses on signals which should not have such pulses. Essential hazards are
observed when a sequential circuit fails to execute the intended state-variable
transformation and instead executes another. The first error condition is
checked for on every signal every time it has a transition. The OLLS user
declares what is the minimum acceptable pulse width in his circuit. Any
violations of this figure are outputted as suggesting hazards. The signal at
fault, time of occurrence, and causative factors are indicated. In addition,
OLLS continuously tests for a potential source of such trouble by monitorihg
for coincidence and near-coincidence of signal transitions. Whenever two or
more input signals to a device equation have coincident or near-coincident
transitions but no actual hazard occursin the output signal, a potential hazard
area is outputted. This type of hazard might develop into a real one if the
circuit were to be built out of real gates with wide variance in delay times -
hence the interest in this situation.

Essential hazards are merely static or dynamic hazards which cause
memory functions in the circuit to operate improperly. Hence, the occurrence
of an essential hazard will generally follow the detection by OLLS of one of the
other types of hazards.

In order to avoid bombarding the OLLS user with reams of hazard-
detection data, the ability toignore either type of hazard situation is built into
OLLS. Theuser may specifically chooseto exempt certain signals in the circuit
from participating in the test procedures, All signals participate unless
specifically excluded.

" The subject of inquiries arises because OLLS is to be operated on-line
from a CRT consocle. Between segments of dynamic simulation runs the user
may raise questions about the immediate history and current state of the file.
The most obvious inquiry is for the current and immediately past values of
designated signals, and along with those values the times at which those
transitions occurred. OLLS keeps at least the last ten transitions for each
signal at all times, someaningful dataisusually available. The form of output
can be either numerical print onthe CRT face or sketches such as would be done
for CRT trace display.

86

Queries, such as which signals are being traced, or which appear in
sampling commands, are alsouseful. Inaddition, the user should be able to get
information about his devices and circuit interconnections. He should be able
to read the glossary for a device at this time, and may be interested in the
extent of a signal run. The general intent of the inquiry operations (which have
not all been defined as yet) is to provide the on-line CRT user with as much
information retrieval as possible short of writing his own FILLIP coding.
Considerable work still needs to be done in this area as new requirements arise
in practice. ‘

Summary printing, like inquiries, takes place between or after run
segments or initialization procedures. The difference between these two
operations is more quantitative than qualitative. Summary prints are oriented
more to outputting entire lists of data suchas the values of the entire signal set.
However, the flexibility built into the inquiry-command structure should also
be present for summaries. For example, a summary of all undefined-value
signals should be possible, as well as one for all signals which experienced
transitions over a given span of time. Again, the scope of commands has not
been defined as yet, and future effort will be directed to make a useful set of
summary-print commands.

It is worth noting that the OLLS programs arevery modular in their form,
and new features can be easily added to existing programs. Therefore, it is
possible to postpone definition of these operations until more is learned about
user réquirements through experience.

One more useful output operation for OLLS is a total-signal dump. All
dataina logic circuit necessary to define the simulation status of the circuit is
recorded. This includes all signal values and histories, all trace, sample, and
hazard test data, and the current image of the "event list". If this data is
recorded permanently, it is possible at a later date to resfore the logic circuit
to the exact state it had at the instant the dump occurred. Thus the time-
consuming processes which led up to its current state need not be repeated
merely toreach the same state again. The dumped data would be sufficient to
initialize the file completely and the run could be resumed at that point. This
rollback facility is also reserved for future instrumentation since it is truly
useful only when large circuits and long simulation runs are involved.

d) Run Control

The subject of run control applies primarily to dynamic-simulation
segments. Theseare runsegments in which time is a factor as opposed to the
initial-value propagation segment in which time stands still while signals
propagate. Theinitialization segment terminates when no further propagation

87

can occur, either because all signals have defined values or because those
signals which remainundefined mask the effects of the defined signals. There
isalways a logical conclusion to that segment because of the algorithm chosen.
The number of steps taken is always finite for a finite circuit.

This finiteness does not apply to the dynamic algorithm. It is perfectly
feasible to have an infinite sequence of transitions occur at any signal. In fact,
the periodic signals which can be inputted to OLLS logic circuits are themselves
potentially infinite in their effective span of time. Thus a dynamic run must
always have a definite finite limit to its time scope provided by the user each
and every time it begins. If the user fails to provide a numeric time limit,
OLLS derives one from the time sense of his circuit. Although the sequence of
events in the circuit is potentially infinite, at any moment OLLS plans only a
finite future portion of it. This partial plan of future events is stored on the
circuit "event list'. If the user fails to specify his time limit, the maximum
extent of the event list is determined and becomes his limit,

It is also possible to terminate a run segment prematurely. To do this,
the user specifies a Boolean signal expression which, when it becomes true, will
halt the run. One reason touse such an expression is to halt on the occurrence
of analarm condition inthe circuit under test. This preserves the signal values
and histories at themoment the alarm occurs so that inquiries and summaries

can be fruitfully performed. Thus, the runsegment control card is as follows:
RUN At OR exp

where the segment terminates either after At or when the given expression
becomestrue, whichever comes first. If the number Atis omitted, the event list
default value is taken. If the "OR exp' is omitted, the given At value (or its
default value) is the only condition for halting the run segment.

Every time a run segment begins, the circuit it applies tomust also have

some time history sense. This history can come from one of three sources -

a. Initialization.
b. Continuation.
c. Rollback.

When the simulation programis first called up for a circuit, the time sense of
that circuit is initialized to zero. All runs following this normal sequence,
therefore, have a common initial time value. After a run segment terminates,
the final time sense is kept intact inanticipation of the next run segment being
a continuation of the first. Only when a circuit is finally released from simulation

88

by the user and returned to bulk storage is its time sense destroyed. The
rollback time initialization as described in Section 3.3.2.c can be performed
before or between run segments, provided only that thenecessary signal-value
dump datais available to theuser. Whichever sourceis the time sense of arun,
the value of At given in the run control card simply follows it.

3.3.3 Program Details

a) Data Structure Review

The simulation programs operate on a circuit in an OLLS data file, the
structure of which has been explored in depth. Tt is appropriate, however, to
review those aspects of the data structure which are vital to the simulation
program. There are four types of structures of particular interest:

qussaries .
Instances.
Signals.

W=

Simulation lists.

1) Glossaries

Thereis a glossary structure in the data file for every different type of
logic device which the user has placed into the file. A glossary structure is
formed when a logic device is defined, either throughthe Define Device program
or thréugh the amalgamation of several interconnected devices to form one
larger device. It contains information pertaining to the device as a whole and
to each individual terminal of the device. The simulation programuses only the
terminal-oriented information. In particular, it refers to the following pieces
of information for each terminal:

a. A FILLIP pointer which can be interpreted to locate the signal cell
which is attached to the terminal on any instance of .the device type. It
takes {wo pieces of information acting in concert touse this pointer - one
must know which particular instance of the device type is of interest and
which of its terminals are involved,

b. A pointer to a FILLIP list which indicates the other terminals
within the device that are successor to this one, When dealing with
multi-input, multi-output devices, as OLLS allows, it is useful to know
which terminals can possibly be affected by logic values on others. The
successgor list of a particular terminal indicates which other device
terminals can be affected by changes in its value. The delays associated
with these successor relationships are also given for each pair of
terminals,

89

c. A pointer to a FILLIP list which is the result of compiling
interpretable code for the terminal driving equation if one was given to
the Define Device program. The form of this code is a parenthesis-free
rephrasing of the given equation. Interpretation of the code is done with
a pushdown store interpreter.

For example, if the given equation is
A=B+C+D
then the code list placed onto terminal A is
B, C, D, +, +.

When this is executed in order during simulation, the desired values of
the signals on B, C and D are stored into successive positions in the pushdown
list. Then C and D are logically OR'ed and the result placed where C was
stored. Finally, the intermediate (C+D) is OR'ed with B and the result placed
where B used to be. The total operation results in the correct value for the
signal at terminal A being placed into the first cell of the pushdown list.

Figure 3-14 illustrates the various steps in the process for the example,

Operation Fetch | Fetch | Fetich

Performed B C D + +

State of D

Pushdown

List After C C (C+D)

Operation B B B B (B+(C+D))
Fig, 3-14

The value fetch portions of the compiled code actually consist of three
pieces of related information. To be more specific, the operation implied by '
"fetch B" is actually stored in the code list as: '

1., Fetch - activate the fetch routine.
2. Pointer to terminal B of this device.

3. Delay (At).

The fetch routine locates the signal actually on terminal B for this
instance. It then searches the past history of that signal for a time appropriate

90

tothe delay (At) given above, and retrieves the value associated with that time.
This finally is the value to be stored into the pushdown list.

Tt should benoted that in the examplewhere A = B + C + D, terminal A
appears on the successor lists for terminals B, C,and D. There may be other
entries on those successor lists, but they would result from other equations
within the same device. Thus if, for example, E = B * C defines yet another
terminal (E), then E also appears on the successor lists for B and C (but not
for D).

2) Instances

There is an instance structure in an OLLS logic file for every physical
element in the circuit described by the file. This includesall the logic devices
in the circuit. The form of every instance structure is an exact replica of the
model structure found in the glossary for its type; thus the forms of several
instances of the same device type are identical. The contents of the instance
structures are different, however, reflecting the fact that each individual
instance is actually distinguishable from its brothers.

The instance structure consists of two parts - a FILLIP cell called the
Instance-Head cell, and a group of cells for each terminal classification which
indicatesthe interconnections from this device to other instances. The Instance-
Head cell contains a unique identification number which distinguishes this
instance from all others of the same type. Thisisreferred toas the device ID.
The cell also contains a FILLIP pointer back to the proper glossary structure
for this type of device. Thisisthemain link from instances back to glossaries,
andisused extensively during simulation. The Instance-Head cell also contains
pointers to each of the groups of cells from the various terminal classifications
(input, output, expin, etc.), and is therefore the nucleus of the whole instance
structure.

The terminal-cell groups, as described in Section 3.1 of this report, are
variably structured FILLIP-pointer cell arrays. The size of each group, and
therefore the amount of computer core storage occupied, is totally dependent on
the numbers of each kind of terminal actually defined for the device. Each
separately defined terminal requires room for a single FILLIP pointer to be
available on every instance of the device type. When a particular instance of a
device is incorporated into the circuit, each of its pointers is made to indicate
the signal actually connected to that terminal. This is in the form of a direct
FILLIP pointer tothe Signal-Head cell which represents that signal. Note that
the glossary for a device contains data for each of its terminals that uniquely
locates the pointer to a Signal-Head cell on any of its instances. Hence, the
location of any signal cell attached to any terminal of any instance of any type

91

can be determined through the proper glossary and instance structure, and
knowledge of which terminal is involved.

3) Signals

An OLLS file contains a signal structure for every unique signal in it.
This includes not ohly normal runs between a device output and input, but also
expander-signal runs and auxiliary-terminal signals. A signal structure
consists of:

Signal-Head Cell,

Source Link.
Destination-Link List.

Set Inclusion List.

Simulation History-Tape List.

o ap TP

a. Signal-Head Cell

Asinthe instance structure, the Signal-Head cell contains pointers

to all of the other constituent elements of the signal structure, and is
therefore its nucleus, Inaddition, the head cell contains three dataitems
pertaining to simulation of the circuit. They are a set of simulation flags,
the maximum required time span of the historytape, and the time at which
the signal last changed value in the simulation. The use of these data
items will be explored later in this section.

b, Source Link
The source link of a signal structure contains an indication of the
device and terminal on that device where the signal originates. This
would necessarily be an output, expander-output, or auxiliary-variable
terminal of the source device. The form of the indication is a pair of
. FILLIP pointers; one directed at the appropriate instance structure, and
one directed at theproper terminal cell within the source device glossary.
The source link, therefore, provides all the information necessary to

exploit the glossary to evaluate a signal's driving equation.

c. Destination-Link List

The destination-link list consists of cells identical to the source
link. The data items indicated are all the terminals and devices on the
signal run, except the source terminal. Thus the pair of items indicates
all glossaries, instances, and terminals which are associated with a
signal. .

92

d. Set-Inclusion List
The set-inclusion list and the simulation flags are used to indicate

and define membership of this signal in higher-level sets of signals.
The kinds of sets indicated include:

Those signals being traced.

Those signals which participate in sampling expressions.
Those signals which participate in run control expressions,
Those signals which are not to be tested for hazards.

ok W

Those signals which are included in register set definitions.
The function of these various sets are clarified elsewhere in this report.

e. Simulation History-Tape List

The history-tape list of a signal consists of one or more special
FILLIP cells. Each cell contains enough room for up to ten transition
records. Each record is a pair of data elements - value and time.
Whenever the signal under consideration changesvalue during the dynamic
simulation run, this fact is recorded inthe history-tape list. The existing
tape contents at the time of the transition are pushed down one level to
make room for the current transition record. The new value and time of

occurrence are thus recorded at the top of this tape (or list).

As previously mentioned, the signal-head cell contains anumerical
limit to the time span which must be covered by the history tape. As an
older transition gets pushed down further from the current signal value,
its time of occurrence is tested for obsolescence. Such obsolete segments
of value history are discarded to prevent the growth of very long history
tapes, and hence to conserve core storage for useful data.

4) Simulation Lists

Simulation lists are created immediately before and/or during a
simulation run. They do not constitute a permanent addition to an OLLS data
file, and so are jettisoned when the file is returned to an inactive state. This
is done to reduce the required storage area for the file when the user is done
simulating it.

All simulation lists are addressable from the root of the logic file, and
areappended to the first FILLIP cell below that root. The kinds of lists which

are involved are:

93

Sampling control commands.
"Run control expression.
Event list.

Trace and sample output.
Hazard detector output.
Dump 6utput,

Propagation error output.

Pl o0 TP

Register set definitions,

e
H

Conditional input events.

a. Sampling Control Commands

The general sample control card is:
SAMPLE Siglist IF Expression

When this is inserted intoan OLLS logic simulation, three data elements
are added to the sample control list. They are the card image (for
subsequent print output), a list of pointers to the signals mentioned in the
Siglist, and a list of compiled interpretable code generated from the
given signal expression. This code is slightly different from that compiled
for device output terminals because it fetches only current signal values
directly from signal-value history tape without passing through any
glossaries enroute. .

Each of the signals mentioned in the expression is marked by a flag
bit indicating that fact, and is given a set-inclusion pointer back fo this
entry on the sample control list. Thus, when any signal mentioned in an
expression changes, the simulation program can easily locate and evaluate
the proper IF clause to control sampling output.

b. Run-Control Expression

The run-control expression is created when a Run-Control card

containing a termination expression is inserted. This card appears as:
RUN At OR ' Expression

in theinput decks. This expressionis processed exactly like the sample

control expressions and is stored in the same format. Naturally,

maturation of a run-control expression has a different effect on the run

than a sample control expression.

94

c. Event List
This list is the center of all simulation activity during a dynamic
run. Its structure and use is explored in detail beginning on page 99 of

this report.

d. Trace and Sample Output
When trace and sample events actually occur during a simulation

run, the pertinent data is first outputted to this central list for later
editing and printing. The output isin the form of one data cell per trace
event, with indications by pointer of the signal being outputted and by
value of the time and logic value being recorded. Sample eventis are
recorded in the form of lists with a pointer indicating the sample control
card initiating the output. Thetime of the eventis recorded along with an
ordered list of logic values corresponding to the desired sample-signal
list.

e. Hazard-Detector Output

When hazard conditions occur during a run segment, the output
indicating these events is placed into this list. Output isina form which,
for each recorded hazard, gives the signal on which the hazard occurred,
the time of occurrence, and the nature of the hazard (real or potential).

£, Dump Output
Whenever a rollback dump is ordered by the user, this list is

created from the data file. Tt consists of an ordered setof all signal-value
history-tapes plus the current event list, The signal tapes are collected
in a certain order and, when the file is re-initialized properly, are
replaced onto the proper signal-head cells in the same order. The
success of this operation requires that the signal-structure tree not be
changed at all between dumping and re-initializing the file.

g. Propagation-Error Ouiput

Errors which occur during the pre-dynamic run setup are recorded
in this list. The output for each error is a pointer to the signal that
reverted to an undefined status. Knowledge of the order in which the
errors occurred isvital to any corrective action the user may take, so the
list is carefully ordered in sequence of occurrence.

h. Register-Set Definitions
Although this feature of OLLS will not be included in the initial
program release, a brief discussion of its meritsis in order. The OLLS

95

user would be able to declare any set of signals to bearegister, This fact
would be recorded inthis simulation list and in eachincluded signal-head
cell. Then he would be able torefer to the complete register set by name
in any of his simulation control cards. The net effect would be, first, to
free the user from defining sets of signals more than once in his input
statements aﬁd, second, to provide more readily interpretable formats of
trace - and-sample outputs forhim. If a defined register should be traced
or sampled during a run segment, output would be presented more
concisely than for other signal lists which are not defined as registers,
This would go far towards upgrading OLLS from a bit-by-bit simulator

towards a register~by-register simulator,

i. Conditional-Input Events

The general form of a conditional-input event card is:
EVENT Signal Value IF Expression

When such a card is presented to OLLS the expression is complied
exactly like the expression on a Sample-Control card. Anentrycontaining
the compiled code, a pointer to the signal to be changed, and the néw value
for that signal is placed in this list. Each signal mentioned in the
expressionis somarked and given a pointer back to this entry. Henceforth, -
whenever those signals change, the expression is evaluated to determine

if the conditional event is to occur.

b) Predecessor and Successor Signals

The concepts of predecessor and successor signals are used in the OLLS
simulation algorithms, and therefore should be fully understood. Thetwoterms
are closely related and can be defined together,

One must recall that there aretwo levels of logic constructioninan OLLS
circuit - the interconnections among devices and the devices themselves, A
signal which is attached to an output terminal of a device is a successor of all
those signals which enter into the output-terminal driving function directly. |
Similarly, a signal which is used directly to compute the driving function for
some output terminal isa predecessor of that output signal. In the example of
a simple NOR gate device, the NOR gate output signal is successor to all its
input signals, since all the input terminals appear in the output-driving function.

Next consider a multi-input multi-output device in which only some of the
inputs affect each output. Thenonly those signals that are connected to device
terminals which interact directly through the driving equations have a

successor-predecessor relation.

96

Inthe special case of a device wherein an output-terminal function includes
itself inits equation, the signal connected to that terminal is its own successor
and predecessor.' Should the interaction between a signal and its past history
be expressed through an intermediate equation, the self-successor property
disappears. Thus, in the example of an oscillating terminal:

A=A * B

0 10 2

The signal on A is successor to both itself and the signal on B. This same
behavior can be modeled by a pair of terminals:

A0=C5-B

C
0

[
>
o

In this case A is successor to B and C, while C is successor to A, Note that,
although the behavior of terminal A for these two models during simulation is
identical, the successor-predecessor reldationships are different,

c) Initialization Algorithm

Initialization of an OLLS logic circuit usually consists of two separate
phases. The first is the planting of explicitly stated initial-signal values
throughbut the signal-head cell tree. This is done in response to input cards
such as:)

INITIALS Siglist
or
INITIAL1 Siglist

As each of the mentioned signals is set to the indicated static value, it is also
entered into a list to provide data for the next phase,.
The second phase of the process is initiated by entering the command card:
PROPAGATE
The state of the logic file at that moment is as follows:
The explicitly initialized signals have the correct values,
2. All other signals are currently uncontrolled invalue, They may be

all undefined or may have been left in some other logic state by an
earlier run segment.

91

3. There is a list (Setlist) of all the signals which have heretofore
been explicitly initialized.

The propagation proceeds by using the Setlist as a source of data and
also as a destination of computed results, For every signal mentioned in the
Setlist, the following operations are performed:

1. Each of the signal's successor signals is located and evaluated by
its terminal driving function. The evaluation assumes time to be frozen
sonoaccount of delayis made. All signal values are faken to be current
and unchanging.

2. TIf a successor's newly computed value agrees with its previous
value, no further effort need be made. If, on the other hand, the old and
newly computed values differ, then one of two additional steps must be
taken. If the old value was undefined and the new value is Zero or One,
anormal initialization has occurred. In this case thenew value is placed
in the successor signal's value history tape. Since the successor signal
has now changed value, its name must be added to the original Setlist.
This is performed before going on to evaluate the next successor of the
signal being propagated. The Setlist thus grows to indicate implicit

signal-value initializations.

The second case to be considered for propagation is the one in
which data is actually lost during the process. If the old value of a
successor signal is Zero or One but thenewly computed value disagrees
with this, an indication of error has occurred., Generally this happens
because theuser has requested an inconsistent or inadequate initial-value
array. Such asignal is forced torevert to an undefined value to prevent
unending computations. The signal'snameis added toa listof other such
initialization errors kept in the simulation-list area of the file. Finally,
the signal at error is also added to the Setlist to propagate, if possible,
the newly undefined signal value still farther into the file. .

3. When all successors of a signal mentioned on the Setlist have been
evaluated by the rules of 1 and 2 above, that signal is deleted from the
Setlist. The propagation program then steps on to consider whatever
signal happens to be next in the list. The order in which signals are
considered has some effect on the length of time that the entire process
takes, but none on the final value configuration achieved.

98

d) Event List

As far as theinitialization procedure in OLLS is concerned, the passage
of time is not a factor. However, the dynamic-simulation technique used to
achieve realistic circuit behavior requires a time base to operate successfully.
The function of the event list is to provide the necessary time base to the
simulation.

The event list is a time-ordered list of all events which are scheduled to
take place during simulation. Its structure can best be described as like that
of a comb - with time advancing along the back of the comb and events recorded
onits teeth. Simultaneous events, if there are any, are recorded on the same
tooth. The spacing between teeth is not uniform, however, since the presence
of a tooth indicates a time at which an event is actually scheduled rather than
a timeat thich one might be placed. Each tooth positionis marked to indicate
the simulation time it represents, and it is possible to interject rllew teeth
between e:;istirig ones should the need to do so arise.

There are presently two sub-lists on each tooth which may each contain
anunlimited number of simultaneous related events. Of thetwo lists presently
utilized (out of a possible twelve lists), one is concerned only with evaluation of
signal values and the other only with the actual transitions experienced by
signals. They are called, respectively, EVLIST and DOLIST.

The dynamic simulation proceeds by stepping along the comb, All
scheduled events at each tooth must be executed before advancing to the next
tooth in sequence. When time does advance after successfully executing all
events onone tooth, it does so by jumping directly tothenext timetooth in place.
Time thus increases monotonically, but notnecessarily inunit increments. The
gap between two teethmay be any positive integer on a total available time scale
of 1,048,576,

When a user first calls for the simulation program to operate on his
circuit, the event list isnecessarily empty. Any unconditional input events or
repetitive sequences (see page 82), which he may supply, form the initial event
list. These areplaced onthe DOLIST intheir correct tooth positions. Repetitive
sequences have all discrete transitions which will occur during only the first
period placed into the event list at this time. Subsequent transitions on these
and other periodic signals will be added to the list no more than one period
before they occur. Theevent list is, therefore, always finite in length, even in
the presence of repetitive sequences.

During the course of a run segment the event list grows into the future and
contracts from the past as signal-related events occur and in turn breed new
events. Thus, at any moment, the list indicates the schedule of imminent events
as generated by the simulation algorithm.

99

e) Dynamic-Simulation Algorithm
The dynamic-simulation run follows a course dictated by entries in the
event list and by the logic constraints imposed by the user's circuit. All

computation and output occurs with time frozen at a particular tooth in the event
list. The behavior of the logic circuit, propagation of signals into the future,
and sampling and-tracing snapshots all take place with time frozen. The
algorithm through which the behavior of a logic circuit is simulated thus is
actually an ordered sequence of computations which take place with time halted,
Whenever an event must take placein the future rather than instantaneously, it
is seededintothe event list at a point in time which is not yet under consideration.
Any references tothe past must be made within the signal structures themselves
(history tapes), since those portions of the event list which have already been
processe.d are discarded.

The dynamic-simulation algorithm begins by interrogating the current
event-list tooth. First, the DOLIST is processed. Each entry on the DOLIST
is a data~pair-signal pointer and new value. For each such entry on the current
DOLIST the program: '

1. Locates the indicated signal's value history tape.

2. Pushes down old values tomake room for the newvalue and current
time.

3. Discards any obsolete old values for the signal. A valueisobsolete

only if its time of occurrence is older than the oldest which needs to be
kept for that particular signal.

4, Locates, through the destination-link list and the glossary for each
destination device, the successor signals of the one being changed.

5. Each successor signal has a specified delay associated with its
response to the particular predecessor signal being changed. This
information is also extracted from the destination-device glossaries.
6. An entry is prepared for the event list for every successor of the
signal just changed. Each entry is made into the EVLIST of the tooth
appropriate to the delay extracted from the glossary. If an extracted
delay happens to be zero, the EVLIST entry is made on the event-list
tooth being processed. If no tooth exists at the appropriate time in the
near future to accommodate an EVLIST entry, one is created and the
entry made. The entry presently consists only of a pointer to the successor
signal-head cell, although additional data could beincluded. For instance,
the predecessor signal which stimulated the placement of the successor
into the event list could be named again, thus allowing cause-and-effect
behavior to be studied more closely.

100

When the DOLIST is processed, it is jettisoned as excess baggage. The
data file has been changed only to the extent that those signals which were
mentioned on the DOLIST have their newvalues. The event list has many new
EVLIST entries on various teeth, representing all the successors of all the
signals which have actually changed.

Next the current EVLIST is examined for any entries. If there are any,
the program must compute their current logic values. For each entry on the
current EVLIST, the program:

1. Locates the mentioned signal-head cell and source-link cell.

2. . Refers to the glossary for the source device of that signal and
executes the output driving function for the terminal to which this signal
is connected.

3. The computed value is compared with the present value on top of
the signal's value history tape. If they are the same, no further action
takes place.

4, If the two values differ, an entry is prepared for the current DOLIST,
indicating the signal to be changed and the computed new value.

When all eniries in the current EVLIST are processed, the EVLIST is
jettisoned as obsolete. The program then examines the current DOLIST to see
if any entries have beencreated init. If there are any, it repeats the processing
described for the DOLIST. If not, it has finished with the current time tooth
and steps on to the next one in the sequence. |

The sequence of operations just described is the heart of the dynamic-
simulation algorithm. The program separates all nonsimultaneous events into
distinct processing stops. Then, within a time step, it further separates events
into evaluation of signal values and execution of computed changes. This
separation permits us to handle zero-delay logic so long as there are no
oscillatory logic loops. If such a situation exists, the program will never be
ableto finish its computations at one time step. It will be rapped back and forth
between EVLIST and DOLIST in a nonconverging process. The presence of
any delay in the loop eliminates this problem entirely.

f) Tracing, Sampling and Hazard Detection

The preceding section described that portion of the dynamic-simulation
algorithm which causes signals to change value and time to advance. Thereare,
however, anumber of frills that accompany the signal-changing process which
are required to make OLLS a useable program. The subjects of output
processing, run control, and hazard detection must be merged into the dyanmic

101

algorithm to create auser interface and to pres‘ent resulis of a run to the user
for inspection,

Since all these extra features of OLLS are based on actual signal-value
changes, we need only considerthe DOLIST processing that occursat an event-
list time tooth. Each time a signal value is actually changed, the program
consults the simulation flag bits in that signal's head cell. These indicate
whether the signal is to be traced, tested for hazards, or considered as part of
a sampling, runtermination, and/or conditional-input event-control expression.
If any of these flag bits indicates the need for additional processing, the set-
inclusion list of the signal being changed is extracted and added to a third list
(in addition to EVLIST and DOLIST) on the current-event tooth. When all
processing of EVLIST and DOLIST ata particular tooth is complete, this third
list is consulted before actually permitting the program to step along tothenext
event time. All the operations indicated are performed now. The required
trace-output datais placed into the simulation lists. Control expressions are
evaluated to determine if sampling is to occur, if input events are to be added
intothe event list, or if the runistoterminate prematurely. Hazards are tested
for by measuring the time that elapsed between transitions on a changing signal,
and comparing pulse widths with prescribed limits. Finally, after all the extra
processing is complete, the program examines the time of thenext-event tooth
and compares it to the established run-segment limitvalue. If the At limit will
be exceeded by stepping on to the next time tooth, the run is stopped, thereby
returning control over the simulation to the user.

102

3.4 The OLLS 360 Drawing Algorithm
H. Robert Howie

Experience with the H1800 system described in Chapter 2 has shown that very
few interconnections are ever made with more than five straight-line segments. Most
connections, in fact, are made with one or threé straight-line segments. The H1800
system was designed to find any connection with as many as nine straight-line segments
and then try toreduce that connection toas few segments as possible, Thisnaturally
requires computer time and sometimes doesn't reduce the connection far enough.

With this in mind, a better approach would be to try the simplest pattern first
and proceedupwardthrough more complicated patterns asnecessary until a connection
is made or until more than five straight-line segments are required for the connection.
The limit of five segments is purely arbitrary. Complicated connections are easier
for the designer to follow if labeled with the signal name than if connected by a maze
of twisting line segments. To aid in this approach all possible connections are
classified by the patterns shown in Fig. 3-15,

In Fig. 3-~15 notice that the five basic patterns correspond to the number of
segments required to connect the source at A to the destination at B, and that each
pattern has twoforms depending on whether the exit directionfrom A is horizontal or
vertical. The required pattern to connect a particular pair of devices can be
determined by elimination fairly rapidly by asking a few simple questions about the
terminal characteristics of the device.

To illustrate this, consider the example below.

o3]

oo'oLo-ooo-oooo‘noo-

The exit direction from terminal A is horizontal so the Y forms of all five patterns
areeliminated. The entrance direction to terminal B is also horizontal so patterns
II X and IV X which require a vertical entrance to B are also eliminated. A first
attempt is made to fit pattern I X. The Y coordinate of A and B are not identical so

103

we proceed to try pattern TII X. This is done by extending A as far forward as
possible, extending B as far backward as possible, and then looking for a single
straight line which connects them. If such a line can be found, the algorithm er;ds;
otherwise proceed to pattern V X.- If pattern V X fails, the connection is simply
labeled with the signal name. '

Hadterminal B been vertical (such as the Direct Set or Reseton a JK Flip-Flop),
patterns I X, II1 X and V X would have been eliminated, and only patterns II X and
IV X would be considered.

A
A &——>»st——e A 1Y IB
B
IX A
B IA
A A N
IIX oy
A
B
B +-——y———» B A
Aol A
| |
B et B A
I X 1y
B B
f Qi A D]
I B T
Ae—m——"—r—e A
B \ B l
‘ !
< A -l
vx |
B B
B B B B

Fig, 3-15

104

3.5 Program Structure

James Pennypacker
Gary Schwartz

To manipulate the data in the data file, a number of separate programs have
been written. Each of these programs is independent of the others but there is a
structure which ties the various routines together; this structure is shown in Fig,
3-16. The intent of this sectionisto describe the functions of each of the routines and
to indicate how the various programs are logically inter-related.

Briefly, there is one main program of OLLS; this main program reads and
interprets all OLLS input cards and, depending upon the input-card contents, branches
to one of the working programs, Figure 3-16 depicts five different working programs,
each of which isidentified by an asterisk; other working programs, such as drawing
generation and deletion, are not explicitly shown. In general, the working programs
provide the means for manipulating data in the data-file structure.

In Fig. 3-16, there are two references to a program called DEFINE DEVICE,
Even though two different programs are indicated in the illustration, both rectangles
refer to the same physical program; there is only one program called DEFINE
DEVICE. The same appliesto the programs ADD TO LOGIC FILE, CHANGE LOGIC
FILE, SIMULATE,and CARDFILE.

3.5.1 Types of Input Cards
As mentioned inthe previous section, there are really three types of input

cards which are of interest to OLLS. First, there are the macroinstruction
cards which call into operation either the working programs or the on-line CRT
system. The macroinstruction cards are recognized by the presence of an
asterisk (*) in the left-most column; for this reason they are often referred to

as asterisk cards. Examples of macroinstruction cards are

* DEFINE DEVICE type

* ADD logic file name

* CHANGE logic file name
* SIMULATE

* CRT

The second class of cards is composed of subinstruction cards which
describe the specific operations to be performed by the working programs,
Subinstruction cards all contain certain key words which are recognized by the
appropriate working program,

The third class of input cards is formed by the actual data cards whichare
required for specific operations.

105

—— —— t—— —— it — — o S—— —— f———— v—]

91-¢ *Std

av3yaavd C

-

dinud

3D1A30 3114 3114 21901 314 21901
IVINWI
Se INIH3A . Qv « JONVHD « oL aav ,
—_ e | l"
IV INAINVW IIVINdINVW IV INDINYW
Avanwis 351A30 34 onmvaa | |
| ERLE]
! QAVI »
|
[m————— ———— -t
TVAINID _ 3DIAIQ 314 J1901 3714 D901
IIVINWIS ,
W31SAS | INIF3A , JONVHD » 010V =
142 “
WV390¥d
NIVW STIO

106

Generally speaking, anumber of different data cards immediately follow
each subinstruction card; all data cards are serviced by the subinstruction card
until a new subinstruction card is read. Furthermore, a number of different
subinstruction and data cards normally follow each macroinstruction card; the
macroinstruction card maintains control until the next macroinstruction card
is read.

3.5.2 CARDREAD and Main Program
Insofar as it controls the operations of the various working programs, the

central, or mainprogram, of OLLS isthe program CARDREAD. This program
operates in twomodes; as the main, or controlling, program or as a subroutine
called by the working programs.

Allinput cards, regardless of type, are read by the CARDREAD program.
When operating as the main OLLS program the operation of CARDREAD is
essentiallyas follows: CARDREAD scans each input card until a macroinstruc=-
tion card is found. The image of the card is remembered by CARDREAD and
some minor bookkeeping operations are performed. The appropriate logic-data
file is fetched from the FILLIP monitor. Control is transferred to the ap-
propriate working program; this transferincludes transferring the image of the
macroinstruction card and the root of the required data file. CARDREAD
remembers which data file is being processed and which operating program
has control.

Each working program may in turn call CARDREAD as a subroutine to
read and deliver the subinstruction cards and the data cards required by the
working program. When operating in this mode, CARDREAD scans the input
card to determine whether or not the card is a macroinstruction card. If it is
not, the image is delivered directly to the working program. If the card is a
macroinstruction card, control of operation is transferred to a different entry
point of the working program which performs only clean-up operations for the
working program. Nocard imageistransferred by CARDREAD to the working
programat thistime; however, the card image is remembered by CARDREAD.
When the clean-up operations are completed, the working program must transfer
control to the CARDREAD in its main program mode. CARDREAD now scans
the image of the macroinstruction card which has just been read; the appropriate
data file is fetched, the bookkeeping isupdated, and control is transferred tothe
appropriate working file as before,

If the macroinstruction card does not contain a logic file name, the file
which was named on the previous macroinstruction card is assumed. The
bookkeeping operations include keeping anup-to-date list of all OLLS files and
users, remembering which data file was last named, and remembering which
operating program is in control.

107

3.5.3 DEFINE DEVICE

The device definition program has been described in Section 3.2 of this

report.

3.5.4 CARDFILE

One of the service routines incorporated into OLLS is the CARDFILE

system. Using the system, the designer can store in the FILLIP data files lists

‘of input card images. The CARDFILE system will deliver the card images,
one at a time and upon demand, for further processing, The CARDREAD
programis designed not only toread cards from the computer card reader but
also to read card images from the CARDFILE system; thus, either entire
computer runs or portions of runs can be performed, using data and control
cards which have been stored in memory prior to the run,

A CARDFILE EDIT program enables theuser tomodify the image of any
particular card which has been stored. Cards may be deleted from the image
listand new card images may beinserted into the list at arbitrary points. The
editing of the card files may be performed either in the batch-processing
mode, using input cards, or in the on-line mode, using the typewriter keyboard
of the on-line graphic terminal. This feature permits the designer to control
from the on-line keyboard those runs which are made up of batch-processing
segments interspersed with on-line activity; the control cards of the segments
can be modified as desired, depending upon results of previous activity,

Thereare two foreseeable major uses of the CARDFILE system. When
a data-file structureis composed of thousands of input cards, as is the typical
case for a practical design, it becomesunwieldy for theuser to work with such
large input decks. Using the CARDFILE system, the designer can in one job
store all the card images; he canin the future edit any of these images to make
corrections, additions, or deletions. If the designer then wants to make a trial
design which isa slight variation of the first design, he can duplicate the card
image list in memory and make the necessary modifications to the duplicated
list. The designer now has twoinput lists in memory, one for each design; these
input lists become controlling documents for the design.

The second major use of the card file system occurs during simulation
conducted on-line. The control cards for performing simulation can normally
be prepared priorto the on-line run and stored as animage list. After theuser
has designed a logic circuit in the on-line mode, additional data-card images
must bepreparedandinsertedintothe image list if the circuit is to be simulated.
This can be done at the graphicterminal keyboard; the card-file image list will
then control the simulation.

108

3.5.5 ADD

The ADD TO LOGIC FILE program provides the means of inserting
design information pertaining to a particular device into the logic-data file.
Prior to inserting design data, a glossary for the device type must have been
constructed by the DEFINE DEVICE program. For each individual device, the
following information may be inserted into the logic-data file:

Device type.

Device identification.

Identification of drawing on which device appears.
Coordinates of drawing where device is located.

o @

Names of signals which are connected to each of the device

terminals,

If is not >yet known how graphical data is to be represented on punched
data cards.

Generally speaking, one card image isused toinsert all the data relevant
to a particular device; continuation cards may be used to contain additional
signal names if required.

The program checks eachinput data card for consistency with the existing
data structure. The device identification is checked against the identification
of all other devices of the same type; if it is a duplicate identification, an error
message is produced in hard copy or on the CRT, depending upon the mode of
operation. The coordinates of the drawing number are checked to assure that
other devices have not been positioned at the same location. If the drawing
humber does not yet exist in the data file, a new drawing-head cell with the
desired number is automatically generated and inserted in the data structure.
The signals on the output terminals of the device are checked to determine
whether or not the signal is connected to any other output terminal; this is not
allowed. Signal-head cells for new signals are automatically created and
inserted into the data file. Finally, signals which are connected to no output
terminalsareidentified as sourceless signals and brought to the attention of the
designer,

3.5.,6 CHANGE

Where the ADD program provides for inserting additional data into the
data file, the CHANGE LOGIC FILE program enables the designer to modify via
punched cards any piece of design data which has been inserted into the data-file
structure. The following types of modifications can be made under control of
the CHANGE routine: '

109

1. The name (identification) of a drawing, signal or device instance
may be changed. .

2. A device may be moved to a different drawing or to a different
location on the same drawing,

3. A device may be changed to one of a different type.
Signal connections may be made or broken.

5. The size of a drawing can be changed.

In all relevant cases, consistency checks are applied to the modified dataas
was described for the ADD routine, All datanot specifically mentioned on the
input cards to the CHANGE program remain unchanged.

When a device type is changed to a new type, the old and new types must
have the samenumber of inputs, outputs, expander inputs, and expander outputs.
Signals for auxiliary equations are automatically added (or deleted) as needed
for the new device type.

When a device is moved from one position to another (or to a different
drawing at the same positions), the graphic data which described the former
signal runis deleted from the file structure. Graphic information for all runs
of the signal on the original drawing are deleted.

3.5.7 SIMULATE

The simulate program is discussed in detail in Section 3.3 of this report.

3.5.8 CRT

The CRT system is described in detail in Section 3.6 of this report. It is
sufficient tostate here that, in order to change or insert data from the CRT, the
corresponding control and data card images are generated bythe CRT systems
and read by CARDREAD exactly as if the cards were coming from a card file
or the computer card reader. Thus, the same working programs are called into

operation from the CRT system as are used in the batch-processing system.

3.5.9 DELETE

The DELETE FROM LOGIC FILE program enables the designer to remove |
unwanted data from the data-file structure. Because the CHANGE routine
allows individual data to be modified by the designer, the DELETE program
operatesin toto on all the design data included on the original ADD input-data
cards. Specifically, the DELETE program requires only that the type and
identification of the device which is to be deleted be given. The device and all
data pertaining to the device are deleted from the data file, Signals which are
connected to the outputs of the device are eliminated from the data file rather

110

than being classed as sourceless signals. If the device is the last device on a
drawing, the drawing itself is eliminated from the data file. Auxiliary signals
required by the deviceare also deleted. The schematic position of the device
becomes available for placing another device of the same size. Finally, all
signals which were connected to the inputs of the device are appropriately
modified and the graphic data - as it relates to the drawing from which the
device was removed - for all those signals is deleted from the data structure,

3.5.10 DELETE TYPE

Where the DELETE FROM LOGIC FILE routine enables the user to
delete design information relative to a particular device, the DELETE TYPE
program provides for deleting a glossary structure from the data file, A
prerequisite for this operation is that all instances of the specified type must
have been deleted prior tothe deletion of the glossary. Otherwise, the glossary
structure is not deleted from the data-file structure and an error message is
brought to the user's attention.

111

3.6

On-Line System (CRT)
H. Robert Howie
Ramon Alonso

3.6.1 Introduction ;

This section describes in detail a portion of the interaction between a
designer and OLLS. Because this is a written report, the procedures may
appear cumbersome and lengthy, but are, in fact, quite straightforward.

The description carries only up to the point at which the designer has
established a working file, and has collected the various devices and circuits
he expectstouse. Length of text alone makes some limitation of the description
mandatory.

As far as implementation is concerned: as of this writing SYSTEM
CENTRAL and FILE MANIPULATE menus are working as stand-alone
programs, ready to be tied to the rest of the system., The DEFINE DEVICE
menus are half-done, with the DRAWING MANIPULATE menus in the planning
stages.

3.6.2 Physical System
The equipment system used to implement OLLS is composed of an IBM

360/75 computer and a model 2250 Graphic Display Console. The console has
a CRT, a light pen, and a keyboard. Aninternal memory relieves the computer
of the task of regenerating the display the required 30 times per second, for
flicker-free appearance.

3.6.3 Concept of User's Role
Experience, both ours and that of others, indicates that it is desirable to

use the light pen to choose from among alternative actions, rather than typing
in commands. If, at every step of the way, all possible alternative actions are
displayed onthe CRT, the operator isrelieved of the task of memorizing exact
spellings and formats, and can choose an action by pointing at it with his light
pen. This sort of system has strong overtones of self-instruction and, as will
be seen, offers a "natural" progression through the capabilities of OLLS. .

Typing cannot be entirely avoided; there are instances, such as when
inventing names, when typing is clearly superior to writing characters with a
light pen.

112

3.6.4 Procedures. Setting Up a File

The first thing to happen after calling OLLS is the display of the OLLS
SYSTEM CENTRAL menu*, (Fig. 3-17). The designer can at this time select
the major OLLS mode by pointing the light pen to the box next to the desired

option.

As shown in Fig. 3-17, the designer is confronted with' an empty file.
Assume he is about to set up shop for the first time. Other designers before
him have files, and there are common files from which he can draw information.
Still in Fig. 3-17, the designer selects FILE MANIPULATE.

In general, theuser can work simultaneously with two distinct data files,
The data file which he is constructing or inserting data into is called the
Working File. Rather than generate new data, the user can copy information into
the working file from any other existing OLLS file, The file from which
information is copied is known as the Read Only File; the useris not permitted
to write data into this file or to change its contents in any way.

The result of that selection is shown in Fig., 3-18, where the FILE
MANTPULATE menu is shown. The selection of possible commands is shown
in the upper half, and the active file list is displayed in the bottom half of the
screen.

One of the possible commands is RETURN TO SYSTEM CENTRAL, which
causes Fig. 3-17 toreturnto the screen, In general, it is possible at each step
to go back to a previous one. '

At this time, when Fig. 3-18 first appears, our designer has neither a
working filenor a Read Only file. He points to SELECT READ FILE (1), then
selects the COMMON file (2), then says EXECUTE (3). The result of the
EXECUTE appears in Fig. 3-19. Notice that the top line now shows a Read
Only File (common), whereas none was shown before,

The designer now has a set of device definitions to work with, and wishes
toset upa working file (Fig. 3-20). He does so by selecting CREATE FILE (1),
andtyping inthename of the file. He is naming his file SMITH DEMONSTRATION
FILE. Thename of his working file appears next to the label WORKING FILE
(2). When he finishes typing, he can command EXECUTE (3), which enters the
new filenames inthe ACTIVE OLLS FILE LIST (Fig. 3-21). Typing errors can
be corrected (before EXECUTE) by way of the keyboard itself.

* The term "menu' describes quite well the character of the control system for
OLLS. The designer selects items from the menusin front of him to command
desired actions. The menunaturally displays only those which are relevant at
that time.

113

OLLS SYSTEM
CENTRAL

READ ONLY FILE: NONE
WORKING FILE: NONE

SELECT MAJOR MODE

Q-0

O

O od

a

FILE MANIPULATE
DEVICE MANIPULATE
DRAWING MANIPULATE
SIMULATION

ANALYSIS

OUTPUT OP TIONS

EXIT AS DIRECTED

Fig. 3-17

114

R
s,

OLLS SYSTEM
FILE MANIPULATE MENU

READ ONLY FILE: NONE
WORKING FILE: NONE

O CREATE FILE
O DELETE FILE
/ (1) O SELECT READ FILE
O SELECT WORKING FILE
O RETURN TO SYSTEM CENTRAL
(3) O EXECUTE

ACTIVE OLLS FILE LIST PAGE 1 OF

g @COMMON DEVICE DEFINITIONS, ETC,
ALONSO MULTIPROCESSOR
BROWN STRAPDOWN SYSTEM LOGIC
THALER THALERS FOLLY
BARKER MULTIPLEX ECDU
HARANO AGC BLK II MONITOR
GRIGGS ARITHME TIC LOGIC

Fig. 3-18

115

OLLS SYSTEM
FILE MANIPULATE MENU

READ ONLY FILE: COMMON DEVICE DEFINITIONS, ETC,
WORKING FILE: NONE

/ ~(O CREATE FILE

DELETE FILE

SELECT READ FILE

SELECT WORKING FILE

RETURN TO SYSTEM CENTER
0 EXECUTE

ooong

ACTIVE OLLS FILE LIST PAGE 1OF 2 + -

COMMON DEVICE DEFINITIONS, ETC,
ALONSO MULTIPROCESSOR

BROWN STRAPDOWN SYSTEM LOGIC
THALER THALERS FOLLY

BARKER MULTIPLEX ECDU
HARANO AGC BLK II MONITOR

GRIGGS ARITHMETIC LOGIC

Fig. 3-19

1186

OLLS SYSTEM
FILE MANIPULATE MENU

READ ONLY FILE: COMMON DEVICE DEFINITIONS, ETC,
WORKING FILE: SMITH DEMONSTR _

@

() O CREATE FILE
O DELETE FILE
SELECT READ FILE
SELECT WORKING FILE
RETURN TO SYSTEM CENTER
(3 0 EXECUTE

Oooao

~ACTIVE OLLS FILE LIST PAGE 10F 2 + -

COMMON DEVICE DEFINITIONS, ETC,
ALONSO MULTIPROCESSOR

BROWN STRAPDOWN SYSTEM LOGIC
THALER THALERS FOLLY

BARKER MULTIPLEX ECDU

HARANO AGC BLK II MONITOR

GRIGGS ARITHME TIC LOGIC

Fig. 3-20

117

OL.LS SYSTEM
FILE MANIPULATE MENU

READ ONLY FILE: COMMON DEVICE DEFINITIONS, ETC,
WORKING FILE: SMITH DEMONSTRATION FILE

CREATE FILE

DELETE FILE

SELECT READ FILE

SELECT WORKING FILE

RETURN TO SYSTEM CENTER
0 EXECUTE

ooo0oogaao

ACTIVE OLLS FILE LIST PAGE 1O0OF 2 + -

COMMON DEVICE DEFINITIONS, ETC,
ALONSO MULTIPROCESSOR

BROWN STRAPDOWN SYSTEM LOGIC
THALER THALERS FOLLY

BARKER MULTIPLEX ECDU

HARANO AGC BLK II MONITOR

GRIGGS ARITHMETIC LOGIC
—> SMITH DEMONSTRATION FILE

Fig. 3-21

118

When Fig. 3-21 appears, our Mr., Smith elects to return to SYSTEM
CENTER. Smith next selects the DEVICE MANIPULATE mode (Fig. 3-22),
whereupon Fig. 3-23 results. He now can elect to DISPLAY READ ONLY
FILE DEVICE -LIST, a command which refers to the READ ONLY FILE atop
Fig. 3-23. At the bottom of the screen is the WORKING FILE DEVICE LIST,
presently empty.)

When he touches DISPLAY READ ONLY FILE DEVICE LIST (1), and
then EXECUTE (2), that list appears below and the original command optionis
replaced by DISPLAY WORKING FILE DEVICE LIST. Smith can go back and
forth alternately displaying each list.

Figure 3-24 shows how Smith selects devices for his working file. He
first selects DEFINE DEVICE (1), followed by COPY FROM FILE (2). Aswill
be seen later, the designer can define his own devices.

Following the designer's election to copy from file, he selects, always
with the light pen, those devices he needs for his design. These are 3NOR/M
(3), 8BAND (4), BINARY 1 (5), and DIODE (6). Hethen EXECUTESs (7), following
which he elects to display the working file he has just composed (8). Theresult
is shown in Fig. 3-25. Notice that DISPLAY WORKING FILE LIST has been
replaced by DISPLAY READ ONLY FILE LIST.

As of Fig. 3-25 Smith wishes to display a device, the 3NOR/M element,
so he commands (1), (2) EXECUTE (3) in Fig. 3-25. The result is Fig. 3-26.
The gate symbol, equations, terminal names, and other relevant data are
displayéd.

At this time the designer elects to RETURN TO DEVICE CENTRAL.

3.6.5 Defining a New Device

Being ableto define new devices is, from theuser's point of view, a most
important property. It frees him from dealing with system programmers, for,
if he cannot define his own devices and if the existin'g list is insufficient, he has
to have someone else model the device. The facility to interact with device
modeling allows the designer a great advantage. He can define devices
operationally, as a black box, or as a circuit, and he can change an existing
definition if he so desires. He can readily incorporate new logic elements as
they are announced by commercial firms, or he can invent his own, and test
them as a system component.

Starting from OLLS DEVICE CENTRAL, Smith cannow chooseto DEFINE
DEVICE (1). Previously he also chose COPY FROM FILE, but this time he
does not. He starts typing (2) J-K FLOP DIRECT SET AND RESET
COMPONENT. The name proper is J-K FLOP, and the rest are comments,
When he EXECUTESs (3), anull device by that name is incorporated into the file,

119

OLLS SYSTEM
CENTRAL

READ ONLY FILE: COMMON DEVICE DEFINITIONS, ETC,
WORKING FILE: SMITH DEMONSTRATION FILE

SELECT MAJOR MODE

[J FILE MANIPULATE
(1)U DEVICE MANIPULATE
(0 DRAWING MANIPULATE
SIMULATION
0O ANALYSIS

]

{1 OUTPUT OPTIONS

0 EXIT ASDIRECTED

Fig. 3-22

120

OLLS SYSTEM
DEVICE CENTRAL

READ ONLY FILE: COMMON DEVICE DEFINITIONS, ETC,
WORKING FILE: SMITH DEMONSTRATION FILE
0O RETURN TO SYSTEM CENTRAL
- @D DISPLAY READ ONLY FILE DEVICE LIST
0 DEFINE DEVICE :
00 COPY FROM FILE
0 DISPLAY DEVICE
0O DELETE DEVICE
0 MODIFY DEVICE

O CANCEL ORDER (240 EXECUTE
WORKING FILE DEVICE LIST PAGE 0 OF 0
O NILL

Fig. 3-23

121

OLLS SYSTEM
DEVICE CENTRAL

READ ONLY FILE: COMMON DEVICE DEFINITIONS, ETC,
WORKING FILE: SMITH DEMONSTRATION FILE
O RETURN TO SYSTEM CENTRAL
(8 O DISPLAY WORKING FILE DEVICE LIST
(D) O DEFINE DEVICE
@»0 COPY FROM FILE
O DISPLAY DEVICE
O DELETE DEVICE
O MODIFY DEVICE

O CANCEL ORDER 7@»0 EXECUTE
READ ONLY FILE DEVICE LIST PAGE 2 OF 3 + -
O 3NOR/F FAST 7NSEC COMPONENT
5)0 3NOR/M MED 14NSEC COMPONENT
O 3NOR/S SLOW 21NSEC COMPONENT
" {2)0 8AND COMPONENT
O SETRES HAS CLOCKED INPUTS COMPONENT
(3)0 BINARY 1 WESTINGHOUSE CIRCUIT HYBRID
O COUNTER UP-DOWN 3BITS HYBRID
O 10 OHMS 1/4 WATT COMPONENT
@0 DIODE IS A DIODE IS A DIODE ~ COMPONENT

Fig. 3-24

122

OLLS SYSTEM
DEVICE CENTRAL

READ ONLY FILE: COMMON DEVICE DEFINITIONS, ETC,
WORKING FILE: SMITH DEMONSTRATION FILE
O RETURN TO SYSTEM CENTRAL
O DISPLAY READ ONLY FILE DEVICE LIST
“[DEFINE DEVICE
00 COPY FROM FILE
() O DISPLAY DEVICE
00 DELETE DEVICE
[0 MODIFY DEVICE

O CANCEL ORDER (@3>0 EXECUTE
WORKING FILE DEVICE LIST PAGE 1 OF 1 + -
2)0 3NOR/M MED 14NSEC COMPONENT
0 8AND COMPONENT
0O BINARY 1 WESTINGHOUSE CIRCUIT HYBRID
O DIODE IS A DIODE IS A DIODE COMPONENT

Fig. 3-25

123

OLLS SYSTEM
DISPLAY DEVICE

3NOR/M MED14NSEC
() O RETURN TO DEVICE CENTRAL

SIZE 1

PLOTPOINTS 21

I®— ,
INPUTS 3
©—> -35@A) OUTPUTS 1
& EXPANDER INS 1
EXPANDER OUTS 1
EQUATIONS 2
[E] UNSPECIFIED TERMINALS
NONE
EQUATION LIST PAGE 1 OF 1 + -

O A

E B +C +D)/
0 1 14 14 14

OF =A
0 1

Fig. 3-26

124

OLLS SYSTEM
DEVICE CENTRAL

READ ONLY FILE: COMMON DEVICE DEFINITIONS, ETC,
WORKING FILE: SMITH DEMONSTRATION FILE
0 RETURN TO SYSTEM CENTRAL
@ 00 DISPLAY READ ONLY FILE DEVICE LIST
{1 DEFINE DEVICE .
0O COPY FROM FILE
O DISPLAY DEVICE
0O DELETE DEVICE
0O MODIFY DEVICE

0 CANCEL ORDER (30 EXECUTE

WORKING FILE DEVICE LIST PAGE 1 OF 1 + -

O 3NOR/M MED 14NSEC COMPONENT

O 8AND COMPONENT

O BINARY 1 WESTINGHOUSE CIRCUIT HYBRID

0 DIODE IS A DIODE IS A DIODE COMPONENT

O J-K FLOP DIRECT SET AND RESET COMPONENT
@~ ’

Fig. 3-27

125

The DEVICE CENTRAL display remains. The null device just entered
can be changed to the desired one by commanding MODIFY DEVICE. The
sequence (1), (2), EXECUTE (3) is shown in Fig. 3-28, whereupon Fig, 3-29,
MODIFY DEVICE menu, appears.

The designer must specify a number of things at this point, the most
important of which areits logical behavior and graphic symbol. Notice that the
name of the device to be modified appears at the top of the MODIFY DEVICE
menu.

The graphic symbol must be defined just so that named terminals exist
for the equations to refer to,

3.6.6 MODIFY DEVICE

When the MODIFY DEVICE menu appears (Fig. 3-29), the designer can
sketch an appropriate symbol. He first selects a size, (1) and (2), then, by
alternately pointing to SEGMENT (or SMALL DOT) (8) and transferring the
light pentothe sketch area. Segments start and stop where the light pen starts

and stops. Small dots are actually small circles centered where the light pen
first alights. The ERASE option deletes segments (or dots) ona last-infirst-out
basis.

The LINE OF SYMMETRY (4) option is used as follows: when half the
symbol has been drawn, the light pen can be pointed to LINE OF SYMMETRY,
or totwo points on either avertical or horizontal grid line, and toa point on the
side to be reproduced. The other half of the symbol then appears.

When satisfied, the designers can ACCEPT SKETCH (5), which is also a
PROCEED command.

The MODIFY DEVICE menuchanges SKETCH OPTION to PLOTPOINTS
OPTION (Fig. 3-30). The original sketch is composed of great many points,
which takesa lot of 2250 memory to display. The PLOTPOINTS option allows
replacement by a cruder picture.

First, the center of the device symbol must be identified. The locationof
a device symbol in a drawing refers to the device center.

The PENDOWN option permits replacement of sections of the sketch by
short straight segments, to speed up device symbol display. The designer, '
after touching PENDOWN, touches consecutively the ends of the approximating
segments. When satisfied, the designer can ACCEPT PLOTPOINTS which is
alsoa PROCEED command. The end result, whenaccepted, is as shown in Fig.
3-31.

The graphic symbol now needs terminals assigned to it. Mr. Smith
touches ADD TERMINAL (S) (1), then INPUT (2), indicating that, until further
notice, all terminals aretobe inputterminals, He places the five input terminals

126

OLLS SYSTEM
DEVICE CENTRAL

READ ONLY FILE: COMMON DEVICE DEFINITIONS, ETC,
WORKING FILE: 'SMITH DEMONSTRATION FILE
O RETURN TO SYSTEM CENTRAL

0O DISPLAY READ ONLY FILE DEVICE LIST
[0 DEFINE DEVICE
[COPY FROM FILE
0 DISPLAY DEVICE
O DELETE DEVICE
() T MODIFY DEVICE

0O CANCEL ORDER (@0 EXECUTE
WORKING FILE DEVICE LIST PAGE 1 OF 1 + -
0 3NOR/M ~ MED 14NSEC COMPONENT
O 8AND COMPONENT
0 BINARY 1 WESTINGHOUSE CIRCUIT HYBRID -
0 DIODE IS A DIODE IS A DIODE ~ COMPONENT

J-K FLOP DIRECT SET AND RESET COMPONENT

Fig. 3-28

127

OLLS SYSTEM
MODIFY DEVICE

J-K FLOP DIRECT SET AND RESET
00 RETURN TO DEVICE CENTRAL

SKETCH OPTION

'®) () T SIZE lé 4 8

h-\
Vf ()0 SEGMENT O SMALL DOT
ere O ERASE

(@ © LINE OF SYMETRY

@D ACCEPT SKETCH (PROCEED)
0O GRID 0 NO GRID

Fig. 3-29

128

OLLS SYSTEM
DEFINE DEVICE MENU

J-K FLOP DIRECT SET AND RESET
0 RETURN TO DEVICE CENTRAL

PLOTPOINTS OPTION
() O MARK CENTER

) o)
: (® & PEN DOWN
'e @Q 0 ERASE
SKETCH
O O DISPLAY [PLOTPOINTS]
0 REJECT

£ ACCEPT PLOTPOINTS
O GRID 0 NO GRID

Fig. 3-30

129

(STYNWNIL O
NOLYIND 40O ¥IT¥O
NI SYVEddY ¥OSHN.
FWIN TONIWYLL FdA L
10N

1¢-¢ "81d

ayd ON O

STYNINYEL LdIOOV O{F) @%

TIVNINYIL FNVNIY

ayd O

o
(S)TVNINYEL ALITIA O
(SYTYNINYEL "1agv1 O %lﬁ
1AdLlNOo YAANVAXE [
LNJNI MIANVAXT [
1ndino oE

LOdNI O ()

() TVNINYIL aay O @)

NOILJO STVNINYEL
‘ oo

TVYLNID IOIATA OL NUYNLEY O
LASEY ANV LIS LOIYId

NARAN IDIAYA AATIAON
WJILSAS STTO

dOT14d ¥-r

130

(actions (2.1) to (2.5)) where he wants them, by touching some place on the
periphery of the symbol. Then he touches OUTPUT (3), then points (3.1) and
(3.2). All terminals are still unlabeled. Smith touches LABEL TERMINAL (S)
(4), touches the terminal he wants toname and types a letter or anumber, When
he is satisfied he touches ACCEPT TERMINALS (5), whereupon the MODIFY
DEVICE menu changes to the one shown in Fig. 3-32.

3.6.7 Functional Definition

The graphic symbol having been defined and labeled, there now remains
the task of defining the device functionally. The algebraic method used is
described in detail in Appendix B. In particular, there is a section on the
description of a JK flip-flop which applies here.

Smith has presumably worked out a model for his JK (a far from final
task). He touches INSERT EQUATION (1) and then types in the first equation
(2), but without any delay subscripts. He then touches INSERT DELAYS (3) and
using the space bar, types the delay values under and to the right of the cor-
responding variables (4). The equations can be altered to suit, or modified at
a later time. The JK equations used here make no use of the set and reset
terminals (A and B). These are consequently ignored in the simulation of the
device. Whena satisfactory set of equations has been written, the designer can
ACCEPT EQUATIONS (5). Inour present example he does soand then touches
RETURN TO DEVICE CENTRAL (6), Notice that this last option has been
continuously available throughout the device modification procedures.

3.6.8 DRAWINGS

Our man Smith returns to System Central by way of Device Central (Fig.
3-33 and 3-34). He is ready to use the available material to design a circuit,
which is done by calling the DRAWING CENTRAL Fig. 3-35. The procedures
here are quite analogous to the ones for DEFINE DEVICE. A list of currently
available drawings (the READ ONLY FILE DRAWING LIST) is displayed (Fig.
3-36), and drawings for the circuits RING 5 and REG 16 are copied into the
WORKING FILE. Smith is going to invent an arithmetic unit which he labels
ARUNO1 (Fig. 3-37). As in the case of defining the JK device, he caused his
WORKING FILE DRAWING LIST to bedisplayed (1) + (2) (it contained, at that
time, just RING 5 and REG 16). He then pointed to CREATE DRAWING (3),
and typed in ARUNO1 ARITHMETIC unit (4), followed by EXECUTE (5). With
this action a null (blank) drawing so named is added to his working file. Smith
must now elect MODIFY DRAWING (6), and then point to ARUNO1 (7), and
EXECUTE (8), to start the real design.

The DRAWING MODIFY 1 menu appears (Fig. 3-38), and Smith first

131

ge-¢ °S1q

() 3d41—
@341 —

.

ANH+HM+NI,H..+HEW+%M.NM
G+ @+ 8L+ Ty Ta+ (5. %
- + T 4O 1T aDvd

SNOILVN®A LdI00V O &)

=%

om M

e
I

LSI'T NOILLVNDJ

aygd ON J aygd o

NOILVADT JFLATIA O

@—

SAVT1EA FONVHD O
NOLLVADT IONVHD O

SAVIEA LHASNI O (8) @AI.O

NOILVN®T LYASNI O (1)
NOILJO SNOILVNDT

TVELNTD IOIAEA OL NYNLIY (@)

LISTY ANV LIS LOJFYIA

ONAN IDIATA ANTJAHA
WHELSAS ST10

dOo14 M=-f

132

OLLS SYSTEM
DEVICE CENTRAL

READ ONLY FILE: COMMON DEVICE DEFINITIONS, ETC,
WORKING FILE: SMITH DEMONSTRATION FILE

() © RETURN TO SYSTEM CENTRAL

3 DISPLAY READ ONLY FILE DEVICE LIST

"j DEFINE DEVICE

. COPY FROM FILE

7, DISPLAY DEVICE

> DELETE DEVICE

. MODIFY DEVICE

T CANCEL ORDER O EXECUTE
WORKING FILE DEVICE LIST PAGE 1 OF 1 + -
{1 3NOR/M MED 14NSEC COMPONENT
T BAND COMPONENT
T BINARY 1 WESTINGHOUSE CIRCUIT HYBRID
1 DIODE IS A DIODE IS A DIODE COMPONENT
= J-K FLOP DIRECT SET AND RESET COMPONENT
Fig. 3-33

133

OLLS SYSTEM
' CENTRAL

READ ONLY FILE: COMMON DEVICE DEFINITIONS, ETC,
WORKING FILE: SMITH DEMONSTRATION FILE

SELECT MAJOR MODE

FILE MANIPULATE
DEVICE MANIPULATE
DRAWING MANIPULATE
SIMULATION

ANALYSIS

Q
Oo0ooo

O

OUTPUT OPTIONS

[0 EXIT AS DIRECTED

Fig. 3-34

134

OLLS SYSTEM
DRAWING CENTRAL

READ ONLY FILE: COMMON DEVICE DEFINITIONS, ETC,
WORKING FILE SMITH DEMONSTRATION FILE
O RETURN TO SYSTEM CENTRAL
() O DISPLAY READ ONLY FILE DRAWING LIST
0 CREATE DRAWING
O COPY FROM FILE
O DISPLAY DRAWING
O DELETE DRAWING
O MODIFY DRAWING
0 CANCEL ORDER @} 0 EXECUTE

WORKING FILE DRAWING LIST PAGE 0OF 0 + -

Fig. 3-35

135

OLLS SYSTEM
DRAWING CENTRAL

READ ONLY FILE: COMMON DEVICE DEFINITIONS, ETC,
WORKING FILE: SMITH DEMONSTRATION FILE
O RETURN TO SYSTEM CENTRAL
0 DISPLAY WORKING FILE DRAWING LIST
> 0 CREATE DRAWING '
(@ O COPY FROM FILE

0 DISPLAY DRAWING

0O DELETE DRAWING

0 MODIFY DRAWING

00 CANCEL ORDER ¢(3) O EXECUTE
READ ONLY DRAWING LIST PAGE 1 OF 37 + -
O Geol GATED CLOCK
O AGCO1 BLK I BIT STICK
O TPOl TIMING PULSE GENERATOR
O BINARY 1 WESTINGHOUSE CIRCUIT
O SGRO1 SHIFT REGISTER
O RING 3 3 RING COUNTER
N4)0 RING 5 5 RING COUNTER
QD RING 7 7 RING COUNTER
42/0

REG 16 16 BIT REGISTER

Fig. 3-36

136

OLLS SYSTEM
DRAWING CENTRAL

READ ONLY FILE: COMMON DEVICE DEFINITIONS, ETC.
WORKING FILE: SMITH DEMONSTRATION FILE
0 RETURN TO SYSTEM CENTRAL
(DO DISPLAY READ ONLY FILE DRAWING LIST
(3 0 CREATE DRAWING
O COPY FROM FILE
0 DISPLAY DRAWING
0O DELETE DRAWING
(¥ O MODIFY DRAWING
00 CANCEL ORDER (@)G¥2)0 EXECUTE

WORKING FILE DRAWING LIST PAGE 1 OF 1 + -
O REG16 16 BIT REGISTER
O RING 5 5 RING COUNTER
k20 ARUNO1 ARITHMETIC UNIT
rvee (4

Fig. 3-37

137

OLLS SYSTEM
DRAWING MODIFY 1 MENU

ARUNO1 ARITHMETIC UNIT

3 RETURN TO DRAWING CENTRAL
@D CHANGE TO DRAWING MODIFY MENU @D 2 0O 3

SIZE IS NOW ¢ ()0 CHANGE TO B C 6 E J

(3)0 REPLACE SELECTED DEVICES @) NULL DEVICE

SELECTED | (6)0 NULL DEVICE
DEVICES ARE T NULL DEVICE

O NULL DEVICE
O CANCEL ORDER (@) O EXECUTE

WORKING FILE DEVICE LIST PAGE 10OF 1 + -

(5)0 3NOR/M MED 14NSEC COMPONENT
O S8AND COMPONENT
: @D BINARY 1 WESTINGHOUSE CIRCUIT HYBRID
O J-K FLOP DIRECT SET AND RESET COMPONENT

Fig. 3-38

138

picks a size by pointing to CHANGE TO (1) and then to D (2), meaning he wants
a size D drawing.

The DRAWING MODIFY 1 menu displays the working list of devices
previously selected. Thetaskistoselect devices and place them inthe drawing.
The MODIFY 1 menu shows four places where the choice of devices will be
displayed; these places initially say NULL DEVICES. Action (3) points to
REPLACE SELECTED DEVICES; (4) and (5) indicate that the first null device
is to be replaced by 3NOR/M, and (6) and (7) show that the second null device
is to be replaced by BINARY 1, EXECUTE follows (8), after which (Fig, 3-39)
DRAWING MODIFY (2) menuis selected. That menu contains a blank page with
a title block in the lower half, and the menu itself in the upper half. Menu 2
allows choice between a DEVICE SUBMENU (Fig, 3-41) anda SIGNAL SUBMENU
(Fig. 3-42), which allow insertion and deletion of devices and connections.

At this point we will leave the present detailed description of OLLS-
designer interaction, and point to a likely end result of his efforts (Fig. 3-46),
(That figure is actually a circuit drawn with OLLS/1800).. We havenot discussed
many of thenecessary actions, such as placing elements or connecting elements
automatically or along a designer-selected path. We have also not discussed,
nor shall we, what sort of procedures are desirable for CRT simulation. The
material presented up to here, however, should give a clear idea of the sort of
interaction possible with OLLS/360.

139

OLLS SYSTEM
DRAWING MODIFY 1 MENU

ARUNOQ1 ARITHMETIC UNIT

O RETURN TO DRAWING CENTRAL
() O CHANGE TO DRAWING MODIFY MENU % 2 O 3

SIZE IS NOW D 0 CHANGE TO B C D E J

0 SELECT DEVICES : 0 3NOR/M
O BINARY 1
D 3 .

O CANCEL ORDER @) 0 EXECUTE

WORKING FILE DEVICE LIST PAGE 1 OF 1 + -

O 3NOR/M MED 14NSEC COMPONENT

O 8AND COMPONENT

O BINARY 1 WESTINGHOUSE CIRCUIT HYBRID

O J-K FLOP DIRECT SET AND RESET COMPONENT

Fig. 3-39

140

OLLS SYSTEM DRAWING MODIFY 2

0| ARUNG1L

Fig. 3-40

141

1p-¢ 814

¢ 0

ILADEXHE O THONVD O

ANON [TAOW O TVNDIS O
INON ™ FLITIA O AOIAFA O
1 AMVNIE O aav O«
IN/HONE D« a/1 AJI1DEdS O . WIINIOTY O
a/1 AVIdsIa o 8 % ¢ 1 NOILVOIAINDVIN
10 NNEZW XAJIAOW DNIMVEd OL IONVHD O AVHLINTD ONIMVEA OL NHALIY O

2 NI AJIJON DNIMVEA WHLSAS STTO

142

g2¥-¢ °S1d

ELNOY TVANVIN [TLAOIAXT O IIONVD O
FL0OY OLAYV O
IVNDIS [
LArT O TOIAZA [
LOFNNOD [

ANVN AAIOEAS O YILNIDTY O
F0UNOS ALVOOT O § % 2 1 NOLLVOIJINDVIN
0 10 ONIN AAIAON DNIMVHEA OL TONVHO [AVELNTD ONIMVEA OL NYNLIY O

2 NNTIN XJIAONW DNIMVHEJ WALSAS STT0

143

ep-¢ 814

¢ 0O

ALNDIXHE O CTTEDONVD O

DLE ‘SMUVINTY O
HAINTD MYVIN O

MYGAH INI'TLNO O
SINEANOdINOD LDHATTIOD O

ADIATA AIYIAH [J<

HEIINADEY M
YHALSIDIY LATHS TOHDS 8 ¥ (4 T NOILVIIJINDVIA

T ANINW AJTAON DNIMVEA OL IONVHD [IVYINTD DNIMVEA OL NYNLIEY O

€ NI AJIJOIN DNIMVEJ WHLSAS STT10

144

¥¥-¢ 814

avodAT HEINA O
SLNIOd LDINNOD O
HANDOVEL NOILISOd O

20 10 ANTIN XATAONW DNIMVHEJ OL ADNVHD O

ILADEAXTE O TIONVO O

*OLA ‘SYUYVINGH O< -
ADIATA AYLAH O

gziNgoay O)

8 b4 4 T NOILVIIAINDVIN

IVHLNID DNIMVUA OL NUALIY [

¢ ANTIIN XATAON DNIMVEA WILSAS STTO

145

o] ArRuNG1L

Fig. 3-45

146

0| ARUNG1

Fig. 3-46

147

Internal

R. Alonso

R. Battin

R. Crisp

E. Duggan
J.B. Feldman
J. Flanders
S. Forter

W. Grigg
Eldon Hall

A, Harano

D, Hoag

A. Hopkins (25)
F, Houston
H.R. Howie
J. Kingston*
A, Laats

J. Laning

*Letter of transmittal only.

External
NASA/ERC

575 Technology Square
Cambridge, Massachusetts

E-2265

DISTRIBUTION LIST

L.

Larson

James Miller
John Miller

sm@gmeHmRR0

. Muntz

Nevins
Nugent
Pennypacker
Ragan

Sabo
Schwartz

. Thaler

. Trageser
. Woodbury
. Wrigley

Apollo Library (2)
MIT/IL Library (6)

(50 + 1R)

ATTN: KC/Computer Research Laboratory
Mr. D.J. Kelleher (Letter of Transmittal only)

