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, 

ABSTRACT 

This report describes techniques for the simulation of logic circuits, combi- 
national and sequential, and for the automatic drawing of circuit schematics. The 
first part of the report t reats  an initial system which is somewhat limited in scope 
in that it is strictly card-oriented and has a selection of logic devices limited to those 
assembled into the control program. The last part describes a fully expended system 
in which theuser  can define and modify his own devices, either owline via a CRT, or 
off-line with punched cards. This system enables the designer to perform all phases 
of logic design: device definition, test, redesign, and retest, with the aid of a com- 
puterto free him of the clerical details of drawings, signal lists, retrofits, and w i r e -  
wrap control cards. 

by: R. Alonso 

May 1968 
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Section 1 

Introduction 

The possibility of using computers to aid designers has been recognized and 
exploited, invarious ways, for the last several years. Designers can have mechanized 
help in small circuit design (ECAP, NET), and in some forms of mechanical design 
(SKETCHPAD). A s  SKETCHPAD showed, the implications of a Cathode Ray Tube 
system whereby the designer and the computer interact, as opposed to the more 
prevalent processing systems , are many and exciting. 

The possibility of using major data processing aids for logical designs became 
an important concern to those who had been engaged, for quite some time, in the 
development of medium- sized computer systems, especially i f  those systems could 
be made interactive. But interactive or not, our accumulated experience in logical 
design indicated the near necessity of mechanized files, drafting aids, and simulations. 

The initial objective of MIT/IL was  not so much to demonstrate the power of a 
new approach (Computer Aided Design) a s  to develop and implement a practical 
system. W e  a re  still short of that goal in that we do not have an operational interactive 
system; we do have a batch system (OLLS/1800) and major portions of the more 
ambitious OLLSI360 system. Consequently, the present report is in part a 
demonstration of achievement and in part a blueprint of present and future 
developments. 

The report is divided into two major parts: Section 2, which deals with am 
initial, limited, but working system for the Honeywell 1800; and Section 3, which 
describes a system that attempts a great deal more, and that is designed for execution 
in an IBM 360/75 machine. 

OLLS/1800 is a card system, with very limited file capability, wherein the 
It w a s  written without logical device models a r e  an integral part of the program. 

recourse to a list-processing language, and has been in use for about six months. 
In early 1967 a decision was  made by the Digital Computation group (which 

runs the data processing system of Instrumentation Laboratory) to implement a 
major list-processing language called FILLIP, and it was  decided then that OLLS/ 360 
should be based on FILLIP. A s  of this writing, FILLIP is still under development 
for  its overall system aspects, and, consequently, most of OLLS/ 360 is untested. The 
major features of FILLIP, and its power, a r e  described in an a s  yet unpublished re -  

port by Charles A. Muntz and J. Halcombe Laning, Jr. 
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Section 2 

The Honeywell 1800 Working System 
H. Robert Howie 

2.1 Objective 

When it became apparent that the IBM 360, the on-line CRT, and the list- 
processing language would not be available much before 1968, a more limited system 
designed to operate on an available Honeywell 1800 computer w a s  developed and 
demonstrated in 1967. It was  hoped that this system would provide (in addition to an 
operating digital simulator) some experience with drawing interconnection 
algorithms, simulation algorithms, and, through feedback from in-house users  of the 
system, a better understanding of what input-output techniques are most acceptable 
and convenient to the digital circuit designer. 

This chapter describes the concepts and operation of a schematic drawing 
program and of a simulation program currently available for the Honeywell 1800 
computer. 
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2.2 General Description 

Two main programs comprise our system: 

a) program DRAWSCHEMATIC which reads cards describing devices and 
device interconnections, creates and maintains a logic file, and, through 
subroutine DRAWLINES, computes computer interconnection paths and 
produces a finished schematic on a CALCOMP plotter. 
program SIMSCHEMATIC which reads the logic file created and stored 
by DRAWSCHEMATIC and simulates the circuit using input signal values 
supplied on cards by the user at execution time. Output traces of the 
history of any signals specified a re  plotted, oscillograph style, on a 
CALCOMP plotter. 

b) 

Figures 2 -1 and .. 2 -2 a r e  typical of the quality and complexity of designs the 
programs a re  capable of handling. The Arithmetic Unit in Fig. 2-1 contains about 
150 gates and required about 20 minutes of computer time to create the logic file and 
produce the drawing plot tape. (About 5 minutes a re  spent in system management - 
rewinding and labeling tapes, etc.) The plotting was  done off-line and required about 
30 minutes on the CALCOMP plotter. The simulation of the Arithmetic Unit included 
testing the ability of the circuit to add, to shift, and to shift-and-add. Five logic-design 
e r ro r s  were discovered along the way and several clerical e r rors  were corrected 
before the simulation shown in Fig. 2-2 was  successful. The simulation ran for 200 
simulation time units (the equivalent of 4 microseconds if  a timeunit of 20 nanoseconds 
isused a s  the typical gate delay), or required 7 minutes of real time on the H1800. 

2.2.1 DRAWSCHEMATIC 
Program DRAWSCHEMATIC is intended to run under a batch-processing 

Its sole input is from cards and its output is written on 
(An optional output facility 

operating system. 
magnetic tape for off-line printout and plotting. 
punches a deck of cards for automated wirewrapping.) 

The input deck can be in either o r  bothof two card formats. The preferred 
card format was  designed specifically for this program and was  intended to be , 
simple, easy to punch, easy to read, and organized the way a circuit designer 
would find convenient. For compatibility with wirewrap programs developed 3 
years ago, wirewrap cards are also accepted. These cards, although difficult 
to punch manuallyor to scan, are logically equivalent to the new card format. 
Detailed descriptions of card formats a r e  given with the examples in a later 
section. 

The program operates in three modes: DRAW, REVISE, and REPRINT. 
In the DRAW mode, a new logic file is created by the input deck. Cards 

which describe devices to be included are read first. The designer may select 
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from 25 available device types, such as 3 input NOR gate, set-reset flip-flop, 
etc., (see Fig. 2-3). He may include up to 400 devices in any one logic file 
(drawing). Each device card describes the identification number of the device, 
its location on the drawing (optional if  no drawing is to be produced), and the 
device type. 

Cards which describe the logical interconnections a re  read next. The 
designer may specify the interconnections in either of two ways, depending on 
whether or not he wishes to assign a signalname to the connection. He may write: 

[connect] signalname [to] devicename devicepin 

or he may wri te :  

[connect] devicename devicepin [to] devicename devicepin. 
I 

This provides a convenient way of describing any connection without 
cluttering up a drawing with unnecessary signal names, and yet allows con- 
nections to be named where desired. The actual path which the signal wi l l  take 
on the drawing is not specified by the user but rather is computed for him by 
subroutine DRAWLINES. This computed path becomes part of the logic file 
and is not recomputed for every REVISION or REPRINT. 

Some clerical cards mark the beginning and end of the input stream; 
give th’e drawing a name, number, and author, and size; and specify what type 
of output is desired, i.e. , full listing, e r ro r  messages only, a drawing, a wirewrap 
deck, etc. 

In the REVISE mode, an old logic file created by an earlier run in either 
the DRAW or REVISE mode is updated by cards in the input stream. This mode 
operates exactly as the DRAW mode with the addition that cards a re  accepted 
which allow the designer to DELETE or MOVE devices which a r e  already in the 
file. In both cases, all signals that enter or leave a device which was  deleted 
or moved a r e  themselves deleted or moved automatically, and the logic file is 
updated accordingly. Similarly, the designer is allowed to REMOVE signal 
interconnections. The operation of this mode saves the time and expense of 
resubmitting the entire input deck just to correct minor errors .  Only those 
signals that a r e  directly affected by the change a re  recomputed for the file. 

In both DRAW and REVISE modes, checks a re  made on the validity of the 
input stream as much as possible, and diagnostic e r ro r  messages a re  always 
printed when an e r ro r  is discovered. This service has been found to be as 
valuable to the designer as is the drawing o r  the simulation, Examples of such 
e r ro r s  are finding non-unique device identification numbers or signal names, 
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finding two different signals connected to the same point, or finding a signal 
attempting to connect to a non-existent device. 

In addition to producing whatever hard copy was  specified by the designer, 
the logic file is always catalogued and stored on magnetic tape with other logic 
files for later REVISION, REPRINTS, or simulation. 

The REPRINT mode allows the designer or any interested person to 
extract specified information from the file without changing its contents. A 
listing or a drawing scaled to any convenient size is made available at minimum 
cost. 

2.2.2 SIMSCHEMATIC 
Program SIMSCHEMATIC enables the designer to simulate the logic file 

created and stored by program DRAWSCHEMATIC. Since this step is intended 
to replace or augment the laboratory breadboard of the circuit, the designer is 
provided with the means of specifying or changing the effective signal delay of 
any devices in the file, the input signal timing, and the topology of the circuit 
itself without going all the way back to program DRAWSCHEMATIC to test 
minor changes. 

The input to the program consists of the logic file to be simulated, which 
was  stored on magnetic tape by DRAWSCHEMATIC, and a short deck of cards 
which describe such things as: 

a )  The list of devices which a re  to be considered active for this 
portion of the simulation and what the signal delay of each device shall 
be. Gates can be activated or deactivated any time during a simulation 
run or the delay can be changed to a new value as desired. 
b) Theinput waveforms necessary to fully test the circuit and initial 
conditions for signals which might otherwise be indeterminate. It is often 
desirable in testing a laboratory breadboard to inject inputs to portions 
of the circuit which might otherwise be unused or unavailable. The 
capability is provided here to PATCH existing or non-existing signals to 
any portion of the circuit or to REMOVE undesired connections of existing 
signals. Input waveforms can now be injected to the new connections 
which exist only for the duration of the simulation and do not affect the 
permanent logic file. 
c )  The list of signals to be traced for  output on the CALCOMP plotter. 
d) The timing of events to follow, such as a snapshot of the file, 
magnification of a certain portion of the output, how long to simulate, and 
when to stop or restart. 

15 



2.3 Logic-File Organization 

Figure 2-4 shows the structural organization of the logic file. It consists of 
two major parts, the device list and the signal list. A third list, the list of drawing 
interconnection points, strictly speaking, does not belong in the logic file. The 
interconnection list (produced by subroutine DRAWLINES) is kept to save time on 
revisions and reprints. These three lists contain enough information to draw and 
simulate a logic diagram. For storage reasons the logic file produced by 
DRAWSCHEMATIC does not contain the interlocking pointers necessary for rapid 
simulation. These pointers a r e  added to the logic file by SIMSCHEMATIC as the 
logic file is read in. 

2.3.1 DRAWSCHEMATIC 
The DEVICE LIST is an alphabetically organized list with each entry 

containing the device identification (5  characters), the device coordinates, and 
a codenumber which indicates the device type. This code number enables the 
program to fetch from a glossary of devices such information a s  device shape, 
terminal locations, and simulation behavior. 

The SIGNAL LIST is an alphabetically organized list with each entry 
containing the signal name (8 characters) and a sublist for each connection of 
the signal. The sublist contains the device and pin number to which the signal 
is connected, the (X,Y) coordinates of the device and the device type code, the 
signal load of the device, a flag which indicates whether the signal was  affected 
by some operation in the REVISE mode (the OLD/NEW entry), and an entry 
which either points to the list of drawing interconnection points (if any), or 
indicates that the connection is to the signal source (STATUS = 2 or 31, or  that 
the connection is to be labeled only (STATUS = 1). (A signal which has no 
source on the drawing is labeled at each input where it is used and no intercon- 
nections a re  made on the drawing, although for simulation purposes all inputs 
with the same label a r e  logically interconnected. 

Figure 2-6 shows what the logic file would look like for the sample 
circuit shown in Fig. 2- 7. Notice that the logic file is made up of three signals: 
"LABEL", "OUTPUT", and "624 0". 

The signal named LABEL has no source on this drawing, i.e. it is nowhere 
connected to the output of a gate. It therefore has a STATUS = 1 in the logic 
file, indicating to the output plotting routine that no interconnection lists a r e  to 
be found and its name is merely to be labeled where it is used. 

The signal named OUTPUT is defined at a source, the output of a gate 
1Al.  It therefore has a STATUS = 2 for the connection to device 1A1, indicative 
that the signal name is to be plotted. The rest  of the connections for signal 
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OUTPUT contain pointers to the drawing interconnection lists produced by 
DRAWLINES. The signal at the output of gate 624 pin 0 also has a wel l  defined 
source; but, because of the way in which it was defined (see below), its signal 
name wi l l  not appear on the drawing and it is flagged with STATUS = 3. 

Figure 2-5 shows the input deck which created this drawing and logic file. 
Each card contains a descriptor in column 1 for ease in sorting the deck 

if necessary. (D = director card, S = subdirector, G = gate card, W = wiring 
card). Director and subdirector cards are clerical and do not affect the logic 
file (except toabort the run if  incorrectly specified). Gate cards can ADD, or 
MOVE gates. The first field after theverb is always the device ID, the second 
and third fields are the X and Y position (for ADD and MOVE), and the fourth 
field specifies the device type (ADD only). Al l  devices except I /O pins and 
resistors are placed at X, Y coordinate values of integer + 1 / 2  for  ease in 
gate-to-gate registration. Gate 624, for example, wi l l  be placed at X = 4.5, 
Y = 5.5 instead of X = 4, Y = 5 as specified on the ADD card. 

Wiring cards are of two varieties: those which concern signals whose 
names appear on the drawing and those which concern signals whose names do 
not appear. Of the first varietyare cards which specify DEFINE, SIGNAL, or 
REMOVE. DEFINE specifies that there exists a source for the signal and its 
location and it triggers DRAWLINES to compute interconnection paths for all 
SIGNAL cards specifying the same signal name. The DEFINEd source is 
flagged in the logic file with STATUS = 2. If no DEFINE card can be found for 
a signal, DRAWLINES does not attempt to compute interconnection paths. 
Instead, the signals are added to the logic file and flagged as "label only" 
(STATUS = 1). REMOVE allows the designer to  selectively disconnect signals 
as desired. If the DEFINEd source of a signal is REMOVEd and not reDEFINEd, 
the remaining connections of the signal revert to the status of labels only 
(STATUS = 1). The first field on the card after the verb specifies the signal 
name, the second and third specify the device ID and pin number, and the fourth 
specifies optional load information. (Loads of -30 and 005 are assumed for 
sources and non-sources, respectively, i f  this field is left blank.) 

Of the second variety of W cards are CONNECT and DELETE cards. 
These specify signals which are to be connected in the logic file and which are 
to  be drawn on the schematic but whose signal names are not to  appear. The 
intent here is  to  relieve the designer of the necessity of dreaming up a unique 
signal name for an uninteresting connection and allow him to specify the con- 
nection by device ID and pin number to device ID and pin number. Each 
CONNECT card specifies the connection of one end of an equipotential in the 
logic file. Thus the requirement that a device ID and pin number be CONNECTed 
to  itself to specify a source. See Fig. 2-5. 
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W CONNECT 624 0 624 0 - 30 
This card specifies the source for a signal (actually named 624 0 )  and 

flagged it with STATUS = 3 in the logic file toinhibit plotting its signal name. 
It also triggers DRAWLINES to  compute interconnection paths for all other 
occurrences of CONNECTions of the same device ID and pin number. If the 
device ID and pin number is not CONNECTed to itself, no source is defined and 
all CONNECTions of the signal a r e  entered in the logic file and flagged for 
label only (STATUS = 1). DELETE acts like REMOVE except that device ID 

and pin number a r e  specified instead of signal name. 

2.3.2 SIMSCHEMATIC 
Program SIMSCHEMATIC creates a temporary logic file of its own by 

adding information to the logic file produced by DRAWSCHEMATIC. The new 
information consists of gate delays, signal values, direct pointers from signals 
to devices, and some additional status flag words. Figure 2-8 shows the 
general structure of the logic file after modification by SIMSCHEMATIC. The 
INPUT LIST and the TRACE LIST a r e  expanded a s  required by the input deck. 

The SIMULATION DEVICE LIST contains a flag which indicates whether 
ornot the gateis active. If the gate is active (ACTIVE = l), the TYPE CODE 
is used to branch to a section of programmed coding which logically combines 
the signal values at P I N O O  through PIN12 (most devices only have 3 or 4 pins 
and the last 8 or 9 pins a re  ignored for those devices) to produce an output 
value (SI. This output value (usually P I N O O )  is then propagated through the 
delay line using the DELAY value and the delay indices for this instance of the 
device to produce a final output value which replaces the former output value 
(usually P I N O O ) .  

A true digital delay line should insert new values at one end and, by 
shifting the values in the line, extract the value at a later time either at the other 
end of the line or at amidpoint. Since shifting is slow for programs written in 
a high level language, the index scheme shown in Fig. 2-9 was adopted. Values 
a re  inserted into the line at index location J and extracted at index location I. 
Both indices a re  incremented (modulo 16- the maximum delay) but maintain a 
constant difference equal to  the value specified in DELAY. 

Gates a r e  activated, inactivated, and delays specified at any time desired 
by the designer by cards with a G in Column 1. The four forms of these cards 
are:  

(See Fig. 2-9. ) 

G ACTIVE ALLGATES 3 

specifies all gates are to be active with a delay of 3 
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G ACTIVE 624 7 

specifies that gate 624 is to be active with a delay of 7 

G INACTIVE ALLGATES 

specifies that all gates a re  to be inactive (not very useful) 

G INACTIVE 1 A l  

specifies that gate 1 A l  is to be considered inactive. 
The purpose of providing the capability of inactivating gates is to speed 

up the simulation when a designer knows that a certain portion of the circuit is 
working correctly and wants to spend time simulating a separate portion of the 
same circuit. Gates which have been inactivated can be reactivated in any time 
during the run. 

The SIMULATION SIGNAL LIST contains the current VALUE of the signal 
which was  obtained by following the pointer to the device which w a s  indicated as 
the signal source (by STATUS = 2). The pointer points not only to the device 
but also to the source pin on the device so that no computations must be made 
in extracting the signal value from the device. The current VALUE of the 
signal is then spread to all of the devices which use that signal a s  an input 
(indicated by STATUS = 1) by following the pointer to those devices. 

Any signal may be driven byanexternal input at any time. Whenasignal 
is driven byan external input, the status flag of each connection of that signal 
is increased by c2 and a pointer to the input list entry is constructed. Connections 
which formerly were to the signal source (STATUS = 2) receive a new 
STATUS = 4. Connections which formerly were to device inputs (STATUS = 1) 
receive a new STATUS = 3. This scheme allows signals to be changed from 
free independent signals to signals driven by an external input and back again 
to free independent signals with a minimum of computation. 

External inputs a r e  caused by the following card 

T INPUT SIGNALNANLE 

The SIGNAL NAME must be a valid signal in the logic file or a temporary 
signal created by PATCH explained below. The PERIOD specifies the number 
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of simulation time units over which the signal is periodic. (All  inputs must be 
periodic but, a s  we shall see, this does not present a limitation.) The 
GRANULARITY specifies the number of simulation time units per entry in the 
WAVESHAPE field of the card. The WAVESHAPE is a field up to 32 characters 
long which, by punching 1's or 0'8, specifies the waveshape of the periodic 
signal. 

input. 
Consider the following signal which is desired t9 beused a s  an external 

This signal could be described in several ways depending on the time 
scale desired: 

a )  T INPUT EXAMPSIG 0 9 1 100 10 1000 

after 9 time units the signal would become periodic and each 1 or 0 in the 
waveshape lasts 1 time unit. 

b) T INPUT EXAMPSIG 0 27 3 100 10 1000 

after 27  time units the signal would become periodic and each 1 or 0 in the 
waveshape lasts 3 time units. 

c)  the same result as b) above could be obtained by the following cumbersome 
method but the signal would not be periodic. 

T INPUT Signal 0 9  3 100 

T INPUT Signal 0 12  3 10 10 

T INPUT Signal 0 6  3 00 

D SWEEP 9 

D SWEEP 12 

D SWEEP 6 

The sweep cards cause the simulation to proceed the number of time units 
specified. 
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As each INPUT card is read, a check is made to see if  the signal is 
already in the EXTERNAL INPUT LIST and a new entry is made if  it is not. The 
PERIOD, GRANULARITY, and WAVESHAPE fields a r e  then filled in for the 
entry. An explanation of how the EXTERNAL INPUT LIST signal values are 
maintained is postponed until the section on SIMULATION ALGORITHM. 

This causes 2 to be 
subtracted from each STATUS entry in the SIMULATION SIGNAL LIST thus 
restoring the signal to its status before the input w a s  applied. Inputs a re  
removed by a card which specifies 

External inputs may be removed at any time. 

T NOINPUT signal 

The designer can cause signals to be traced by a card which specifies 

T TRACE signal 

and, conversely, cause a trace to be turned off by 

T NOTRACE signal 

Only signals which have a source (STATUS = 2 or 4) can be traced. 
In addition to the control cards described above which directly affect the 

simulation logic file, there a re  director cards (D in column 1) and subdirector 
cards ( S  in column 1) which control the simulation timing and the form of the 
output, respectively. 

There are four subdirector cards. 

S YSIZE number 

specifies the finished size of the output plot in inches. 

S TSCALE number 

specifies the number of simulation time units per horizontal inch of output. 

S MAGNIFY number 

magnifies the horizontal scale of any portion of the output. 

S SNAPSHOT time 

takes a snapshot of the file at  the time specified. 
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There are four director cards. 

D SIMULATE filename 

This card must be first. It causes the specified file to be read in, constructs 
the necessary pointers, and initializes all signal values of unused inputs as 
required. 

D SWEEP number of time units 

This card causes simulation to proceed using all information previously made 
available by control cards described above. Af te r  the specified number of time 
units has elapsed, control cards are read inagainuntil the next SWEEP card is 
encountered. There is no limit to the number of SWEEP cards in a run. 

D RESTART 

This card clears all input lists, trace lists, and reinitializes the file. 

D ENDSIM 

This card tells the program that simulation is complete and to begin output plot- 
ting. 
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2.4 Example (Westinghouse Circuit) 

Presented below is an example of how a very elementary circuit might be 
drawn and simulated. 

Figure 2-10 shows the input deck required to DRAW the schematic shown in 
Fig. 2-11. Notice that only three signal names appear at the output of the devices. 
These signals (CLOCKIN, MASTER, and SLAVE) were all DEFINEd as sources and 
have a STATUS = 2 in the logic file. The rest  of the outputs of devices were all 
CONNECTed to themselves to indicate a source but that no signal name is to appear. 
These signals have a STATUS = 3 inthe drawing logic file. The two signals ENABLE 
and RESET werenot defined as sources anywhere ( and in fact they a re  not intended 
to have sources on this drawing). They appear a s  labels only and have a STATUS = 1 
in the drawing logic file. All other connections except those mentioned above with a 
STATUS = 1, 2, o r  3 have, instead of a status word, a pointer to the list of intercon- 
nection points produced by subroutine DRAWLINES. 

Figure 2- 1 2  shows the input deck required to REVISE the drawing. The result 
of this run is shown in Fig. 2- 13. Notice that the two devices MOVEd and DELETEd 
have caused the signals connected to them to be rerouted or deleted as required with 
no further information from the designer. One signal was REMOVEd. More devices 
could be ADDed or more signals connected, but this would have cluttered up the 
schematic which is now ready for simulation. 

Figure 2- 14 shows the input deck required for the simulation produced Fig. 
2-15 through 2-17, Theinput sequence in this example is a bit unusual from a logic 
designer's point of view, but it serves to demonstrate many of the functions available 
in program SIMSCHEMATIC. 
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Fig. 2-12 
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2.5 Drawing Interconnection Algorithm 

One very important product of H- 1800 System has been our experience with the 
drawing interconnection algorithm used by subroutine DRAWLTNES to produce ac- 
curate schematics which a r e  fairly pleasing to the logic designer's eye. 

Since the goal of any circuit routing algorithm is to combine a very limited set 
of input parameters into something which is measured by purely human standards, 
any algorithm wi l l  naturally have a great many checks and balances or fine tuning 
adjustments which can only be described and set by observing a great many examples 
and readjusting the algorithm a s  necessary. 

2.5.1 General Procedure 
The input to DRAWLINES consists of the X, Y coordinates of the pin on 

the device which is the source of a signal and a list of X, Y coordinates of the 
pin on each device which is a connection of that signal. DRAWLTNES works on 
each connection (one at a time) trying to find the "best possible" route around 
obstacles such as devices, crowded areas  of the schematic, or areas reserved 
by the designer. To aid in this task, DRAWLINES maintains several maps 
which describe in detail the layout of the schematic. When all connections of a 
particular signal have been successfully routed, the various maps used a re  
updated with the new information, the interconnection points a re  written into the 
logic file as described above, and control is returned to the main program 
DRAW SCHEMATIC. 

To keep storage requirements reasonable, a drawing is mapped as a 
checkerboard on one-inch squares, and each square contains information about 
10 horizontal lines and 10 vertical lines through it. For a 50 x 30-inch 
schematic only 1500 words each a r e  required for the horizontal and vertical 
maps. When a connection has been routed completely or partially through any 
square, the line occupied is marked "filled" on the map and no other connection 
may be routed through that square on that particular line. Thus connections 
may cross other connections anywhere at right angles, but no two colinear 
connections may ever use the same line in the same square at any time. It should 
benoted that the connection of a signal to one gate does not in any way affect or 
impair connections of the same signal to  any other gates, since the maps a r e  
only updated after all connections of any one signal name a re  routed. In the 
example below, i f  the connection from A were  made first, the connection from 
B as shown could not occur since segments of different signals would occupy the 
same square at the same vertical line number. 
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The one vertical segment of the connection from B would instead be routed at  
least l/lO-inch either to the right o r  to the left of its present position as 
indicated by the dashed lines. The connection from C is permissible, and the 
extent of the line segments which are reserved for C and forbidden to any other 
signal is shown again by the dotted lines. 

Devices as well as segments of connections cause lines to be reserved, 
and in the above example the gate shown reserved all 10 of the possible lines 
through the square it occupies in both the vertical and the horizontal map. 
More maps: 

The qualities which we considered most important in finding the "best 
possible" route for a connection were long straight runs and minimum number 
of line segments in the run. In order to encourage long straight lines, four 50 
x 30-square maps were maintained in addition to the layout maps described 
above. The additional "look-ahead'# maps, as they a re  called, contain 
information in each square which describes the map index of the farthest square 
which may be reached before an obstacle is encountered in the direction (up, 
down, left, o r  right depending on which of the four maps is being read). An 

obstacle may be either a device o r  a square on the layout map which has all 10 
lines filled with the routed connections. 

Figure 2-18 shows the four look-ahead maps superimposed. The key 
shows which map contains the entry shown in each square. For example, if  the 
algorithm found itself at square (3,1), it would know by asking the appropriate 
map that a straight-line path exists up as far as (3,3), down as far as (3,0), right 
as far as (5,1), and left as far as (1,l). 

The algorithm proceeds to route connections one-at-a-time, using the 
maps described above, in three general phases: 

a) Phase I tentatively constructs up to seven unique paths emanating 
from the source device and up to sevenunique paths emanating backwards from 
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Fig. 2-18 

The four look-ahead maps would be constructed as shown for 
a 5 X 3 square drawing with the six obstacles shown. 
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the destination device. No path has more thannine segments' and the segments 
are all found on the look-ahead maps; very little attempt is made here to 
connect the source to the destinationin either direction. Each forward line is 
then checked with every backward line looking for intersections. Al l  possible 
combinations are tried and the combination with the fewest number of segments 
is saved for each forward line. The programnever fails to find between one and 
seven such connections. 

b) Phase I1 takes a more detailed look at the connections found in Phase 
I. It first checks each connection for loops on itself and removes any it finds. 
It then checks each connection for possible shortcuts from one point in its path 
to another point in its path and takes any shortcut it finds. These two steps use 
only the look-ahead maps with no regard to the detail on the layout maps. It 
then measures the length of each connection, counts the number of segments in 
each, and picks one "best" connection based on these two numbers. 

c )  Phase 111 works out the detailed position of each line segment in the 
connection selected by Phase 11, using the layout maps which indicate to the 
nearest 1/ 10-inch which lines in the squares along the path a re  unoccupied. 
This phase contains algorithms for jogging around minor obstacles within a 
particular square; but, if  the jogging becomes excessive, Phase I11 gives up in 
disgust and asks Phase I1 for its second-best connection. 

2.5.2 Phase I in greater detail: 
A test  is made to detect flip-flop-like diagonal connections before main 

routing techniques a r e  applied. If two devices of the same type are at the same 
horizontal coordinate and two squares apart on thevertical, and if  the output of 
the upper gate is connected to the upper input of the lower gate o r  the output of 
the lower gate is connected to the lower input of the upper gate, the connection 
is made flip-flop style. Phase 11 and III are bypassed. If no flip-flop connection 
is called for, the program begins drawing forward paths and backward paths as 
mentioned above. 

Figure 27 19 shows seven forward paths which might tentatively be taken 
by Phase I using the look-ahead maps of Fig. 2-18. Two things a re  worthy of 
note here: First, the algorithm had choices at squares (l,l), ( l , O ) ,  (4,3), (0,3), 
and (1,4). Whenever it encounters a choice for the first time, it decides in favor 
of the directionof the goal and places a flag in a list to remind itself that if it 
still hasn't found seven unique paths, it should go back and t ry  the other 
direction. Secondly, we have found that nine segments and seven lines in each 
direction a re  more than sufficient even on very large drawings. It is not 
necessary that a forward path find the destination or  that a backward path find 
the source; it is only necessary that the paths cross somewhere. 
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0 1 2 3 ' 4  5 

Fig. 2-19 

Shows forward paths which Phase I might produce using the 
look-ahead maps of Fig. 2-18. 
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Phase I is prepared to recognize when it somehow has led itself into a 
dead end, such as the left branch taken in the decision at square (1,O) on Fig. 
2.19. It also recognizes when it is retracing itself in a loop, such as the 
potential decision at square (5,3). In both cases it stops trying and proceeds to 
the next path, o r  goes back to the last-flagged decision and takes the opposite 
alternative to the decision made when the flag was placed. 

The backward paths from the destination at the input of device B a r e  not 
shown, but it is obvious that many intersections exist. Figure 2-20 shows two 
tentative connections which would be typical of what Phase I might decide after 
testing all forwardlbackward intersection combinations. 

2.5.3 Phase I1 
Phase I1 can usually make significant improvements on the connections 

produced by Phase I. A s  shown by the dashed lines in Fig. 2-21, Phase I1 does 
find shortcuts in both paths; and, in fact, both paths reduce to the same final 
path. The path selected by Phase I1 in this case measures 6-unit inches and 
has 3 segments. These two numbers would be used in making the decision if 
there were more than one candidate for the connection. In practice we have 
found that Phase I1 is usually able to reduce all connections made by Phase I to 
asingle path. In those cases where a single path is not the result, most logic 
designers would usually consider both (or  all) the paths suggested as  acceptable. 

2.5.4 Phase 111 
Phase I and Phase I1 used only the look-ahead maps for directions and, 

a s  a result, the path selected by Phase 11 is known only to the nearest inch in any 
square. Phase III now takes over and, using the detailed layout maps, selects 
the final detailed line through each of the squares in the path. The routine t r ies  
to pick a line which requires no jogging. Crowded conditions and poor layout on 
the part of the designer sometimes force minor jogging which can be straightened 
out in a later REVISION of the schematic. If program complexity were measured 
in pounds of punched cards, Phase I11 would be very complex compared to 
Phase I and 11. But such is not the case. Phase 111 is avery unprofound routine 
to clean up all unfinished details. 

2.5.5 A n  Appraisal 
Among the things we learned in experimenting withvarious other intercon- 

nection algorithms before we  arrived at the above description was  that the 
initial overhead required to setup and maintain the look-ahead maps was  well 
worth the storage and time spent. Those maps do indeed encourage long 
straight lines and they a r e  very fast to  operate. The concept of the look-ahead 
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Fig. 2-20 T w o  Tentative Connections Produced by Phase I. 

Fig. 2-21 Shortcuts which might be found by Phase II. 
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maps is not limited to the type of algorithm discussed above and we intend to 
put it to use in the 360 system. 

Probably what the H-1800 drawing algorithm needs most is a Phase IV 
which can take over after previous phases have selected tentative routes for all 
the connections of one signal. It should then adjust some connections to perhaps 
make use of another connection of the same signal. Shown below is a typical 
example of how two interconnection routes which are perfectly acceptable if  
taken alone are unacceptable together. 

Phase ‘IV should recognize that the circled intersections a re  the same signal 
and connect oneof them with a dot and eliminate two line segments. It should 
be smart  enough to know that the combination shown below has fewer segments 
than the other alternative (shown in dotted lines). 
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2.6 Simulation Algorithm 
Unlike the drawing interconnection algorithm, the simulation algorithm is quite 

simple. The card reading routines w e r e  described above. Cards a re  read in and the 
simulation logic file is modified as requested until a SWEEP card causes the routine 
in Fig. 2- 22 to assume control, or until an ENDSIM card causes output plotting to begin. 

A s  far as it was designed, the simulator provides satisfactory results, but it 
does not go far enough to be generally useful as a design tool. There is not enough 
flexibility in the kind or amount of output produced. There is no diagnostic facility as 
described in the 360 system. The designer is not free to define or modify the devices 
available to him (with the important exception of gate delays). 

This algorithm differs from the 360 system algorithm in only one very major 
respect. The H-1800 algorithm evaluates the logic equation for every device once 
every time increment, regardless of whether or not the input signal values have 
changed. Due to the logic file organization chosen, the simulation would run slower 
if  the inputs of each device were  checked for changes and a decision to bypass 
satisfying the logic equations were made on the result of the check. In the 360 system 
deliberate checking of device inputs is not required. We have reached no definite 
conclusions about this difference in algorithm yet. 
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Section 3 

OLLSI 360 

3.1 Data Structure 
James Pennypacker 

The data structure is a complex organization of data items and pointers to the 
data. The structure is list-oriented and incorporates features that are designed to 
take full advantage of FILLIP. One overriding consideration in the development of the 
data structure was the requirement for rapid insertion, retrieval, and manipulation 
of data. A second governing requirement was that the data structure must be 
expandable and flexible in handling data of different attributes. 

The data structure is far too complex to be presented meaningfully in a single 
diagram; the approach taken in this section is to present individual sections of the 
structure in detail and then attempt to  show how the various sections a re  integrated 
into the whole system. The descriptions will  be most easily understood if  reference 
is made to the appropriate figures. It should be noted that details of the structure are 
subject to change, for the data file is a continuously evolving structure. To fully 
understand the implications of the data structure, some knowledge of FILLIP is 
assumed. 

3.1.1 Binary Tree 
Two basic types of structures are found throughout the data structure: the 

The binary tree is a structure in which the individual data items are not 
organized as a linear list. The t ree  consists of nodes which contain the data and 
which a re  interconnected by pointers. A node is illustrated in Fig. 3. la. From 

binary tree" and the "196 structure". I1  

Fig. 3:la 

each node, a left-hand pointer and a right-hand pointer point to two different 
nodes, both of which a r e  one level lower in structure than the node which points 
to them. To insert a data item in the tree, the data is compared with that of the 
top nodeof the tree. If the data to be inserted is smaller in value than that of 
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the top node, the left-hand pointer of the top node is followed and the node to 
which it points is now used in the comparison. If the data to be inserted is 
greater invalue thanthat of anode, the right-hand pointer is followed. The data 
is always inserted at the bottom of the tree at the point found on the basis of the 
comparisons. 

To illustrate the concepts of the binary tree, assume the sequence of 
numbers 7, 3, 5, 1, 9, 4, 13, 11 is to be organized into a binary tree. The first 
number, 7, becomes the top nodeof the tree as  shown in Fig. 3-la. The next 
entry, 3, is compared with 7. Because it is less than 7, it becomes the node 
pointed to by the left-hand pointer emanating from node 7, as shown in Fig. 
3- lb. 

Fig. 3 - l b  

The next entry, 5, is compared first with node 7. Being less than node 7, 

it is then compared with node 3. Being greater than node 3, it is inserted as 
shown in Flg. 3-lc. 

Fig.. 3 - IC 
The next entry, 1, is similarly compared against node 7 and node 3. 

Because it is less  than 3, it is inserted as shown in Fig. 3-ld. 

Fig. 3 - ld  
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The next entry, 9, is greater than 7 and hence 
3- le. 

Fig. 3- le  

is inserted as shown in Fig. 

The remaining items of the list a r e  inserted in a similar fashion, resulting 
in the t ree  shown in Fig. 3-lf. 

Fig. 3-lf 

The primary advantage of the binary-tree structure is that a large amount 
of data can be searched rapidly for a particular item. In an ideal tree, the 
number of comparisons in such a search is a logarithmic function of the number 
of nodes, rather than a linear function required for the typical linear list. A 
second advantage of the t ree  is that order is introduced into a set of random 
data. In Fig. 3-lf, a scanning of the nodes from left-to-right produces the 
ordered list of data. Removal of a node from the tree is more difficult than 
from a linear list but is a straightforward process, especially if  the binary t ree  
is modified slightly a s  is actually done in the data-file structure. 

To beoptimally useful, the binary t ree  must be created by adding nodes 
of random value; if, for example, the data is entered in order of value, the binary 
t ree  degeneratesinto a linear list and the advantage of quick retrieval of data 
is lost. Furthermore, every deletion of a node tends to linearize the remaining 
t ree  structure; however, the t ree  structure can never become worse in terms 
of retrieval time than a linear list. The impact of the binary-tree structure is 
so great in a system in which a large amount of data is stored that a single 
FILLIP instruction w a s  designed to search the t ree  for a requested piece of data. 

In the data-file structure, there a re  many independent binary trees. 
Every node on the tree is a FILLIP data cell with a standardized definition of 
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the first four subfields. A typical node is shown in Fig. 3-2. 

Fig. 3-2 

The first subfield of a node contains the ID of value of the node. Thus, the 
numbers shown on the nodes of Fig. 3-lf a re  actually contained in subfield of 
data cells. Subfields 3 and 4 contain the left-hand and right-hand pointers 
fromeach node; each pointer points to another node. When a subsequent node 
does not exist, that is, when the bottom of the t ree  is reached, the associated 
pointer is NIL. Subfield 2 contains an upward pointer which points to the 
previous node in the tree; in Fig. 3-lf, subfield 2 of node 9 contains a pointer 
to node 7 as does subfield 2 of node 3. This upward pointer facilitates deleting 
a node from the tree. 

The pattern of pointers in subfields 2, 3 and 4, which is illustrated in 
Fig. 3-2, is always to be understood a s  representing a binary-tree structure 
and any data cell containing such a pattern is understood to be a node on the 
tree. Note that subfields 5 through 14 of the data cell may contain other data 
which is associated with the node of the tree; specifically, they may contain 
pointers to data cells which a r e  nodes on other binary trees, resulting in an 
interleaving of the trees.  

3.1.2 196 Structure 
The second basic structure which appears throughout the data file is the 

"196 Structure". The structure consists of a data cell of fourteen subfields, 
each of which contains a pointer. Each pointer points to a separate data cell of 
fourteen subfields, each of which in turn contains a pointer. At this point there 
a r e  196 independent pointers. Each pointer points to a data cell of the same 
type but containing different data. The "196 structure" is illustrated in Fig. 
3-3a but only fourteen of the ultimate 196 pointers a r e  shown. The 196 
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14 of 196 Pointers 

Fig. 3-3a 

structure a s  represented in the data file is illustrated in Fig. 3-3b; this pattern, 
when it appears, is understood to represent the complete structure illustrated 
in Fig. 3-3a. The 196 structure is the reason for the limitation on the number 

Fig. 3-3b 

of terminals of a device which was mentioned earlier. By making the structure 
of three levels instead of two, up to 143 = 2744 terminals could be handled. 

3.1.3 Classifications of Data 
The data structure as currently defined is designed to handle data of four 

major classifications; additional classes of data can be added as  future 
requirements dictate. After a general introduction, each class of data wil l  be 
described in detail. 

The first class of data includes all  information relating to signals o r  
interconnections between the individual components. Included in the 
classification is information required for the logical simulation of devices, 
such a s  signal history of logic levels, signal-load factors, and simulation 
times. The information pertaining to signals is organized in a binary-tree 
structure in which each node is called a signal-head cell. 

The second major classification of data includes the complete 
specification of every different type of logical element which i s  used in any 
specific design. Included in this set of data a re  the name of the device type, the 
number of each type of terminal (e.g., inputs, outputs) names for each terminal, 
specification of terminal-logic behavior, the shape of the device, and additional 
information for simulation purposes. The information concerning each 
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individual type is contained in a glossary structure, which is essentially a 196 
structure. The glossaries in turn are organized into a 196 structure; thus, up 
to 196 different types of devices can be utilized in any particular design. 

The third major classification of data pertains to the individual instances 
of each type of element. All  the detailed information about a particular instance 
is contained in the.instance structure, which is a hybrid structure consisting of 
a partial 196 structure and FILLIP data cells. Typical data stored in this 
structure identify which signals are connected to the terminals of the device, the 
drawing number specifying on which drawing the device is to be found, drawing 
coordinates, and the identification of the device. The hybrid-instance structure 
is associated with two independent binary trees, as wi l l  be explained shortly. 

The final classification of data which has so far been identified includes 
all the graphic information required for CRT display and hard-copy output. 
This data is not confined to one structure but is rather inter-related with the 
rest  of the data file. One structure which does occur, however, includes data 
relevent to physical drawings. This structure is a binary tree whose nodes a re  
drawing-head cells. Data stored in the drawing-head cell includes the drawing 
number, drawing size, signature information, scale size, instances, and signals 
which appear on the drawing. 

3.1.4 Instance Structure 
The first structure which must be understood is the instance structure. 

There is one instance structure (or cell) for every individual logical element 
maintained in the data base. The purpose of the instance cells is to show which 
signals appear on the terminals of the instance and where the instance is 
located; the location information is specified by drawing number and 
coordinates. This information is the only information currently used which is 
unique to each individual device. 

The instance structure and the associated instance-drawing structure 
a re  illustrated in Fig. 3-4. In this and subsequent drawings, the letter P and 
arrows are both used to represent direct FILLIP pointers. The instance cell 
itself is a FILLIP data cell consisting of eleven subfields. The first four 
subfields indicate that the instance structures a r e  organized as a binary tree; 
thereis,  in fact, one t ree  for each type of logical element and the instances of 
each type represent the nodes of the type tree. Subfields 5 through 9 are 
pointers to terminal structures and wil l  be discussed shortly; it is sufficient at 
this time to say that the terminal structure contains pointers to signals which 
appear on the respective terminals of the instance. Subfield 10 contains a 
pointer t o a  FILLIP data cell of 8 subfields which contain graphic information 
pertaining to the instance; this data cell is called the instance-drawing structure. 
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Subfield 11 of the instance cell contains a pointer to the glossary which defines 
the type of this instance. 

The instance-drawing structure is also organized into a binary tree, with 
one tree for each different drawing. The identification (subfield 1) of the 
instance-drawing structure is a function of the graphic coordinates, making it 
possible to retrieve information about an instance which is specified by drawing 
number and coordinate, as wel l  as by type and ID of element. Subfields 5 and 
6 contain the x and y coordinates of the instance. Subfield 7 contains a pointer 
to the instance structure. Subfield 8 contains a pointer to the head cell of the 
drawing on which this particular instance appears. 

One of the requirements in the design of OLLS was that the user be able 
to define his own logical devices. In practice, this means that different types 
of elements wi l l  have different numbers of input terminals, output terminals, 
etc., but that all instances of the same type wil l  have the same number of inputs, 
the same number of outputs, and so on. Up to 196 terminals of each class 
(including auxiliary equations) can be accommodated. The instance structure 
must thus be capable of pointing up to 5 x 196 = 980 different signal-head 
cells, one signal-head cell for each terminal of the device. One way to realize 
this capability would be to set up a 196 structure for each class of terminals, 
wi th  a one-to-one correspondence between pointers and terminals. Each pointer 
would then point to the head cell of the signal which is connected to the cor- 
responding terminal. In other words, the pointers in subfields 5 through 9 of 
the instance structure could each point to a separate 196 structure. 

Such a structure, however, is wasteful of storage; an instance with only 
one useful output would result in a structure possessing 195 unused pointers; 
this waste of storage occurs for every instance of the logic type. 

To overcome this problem, a flexible instance-terminal structure is 
utilized. For convenience, only one class (outputs) of terminals wi l l  be 
discussed; the structure design is identical for the other classes of terminals. 
If the instance contains only one output, subfield 5 of the instance structure 
contains a pointer directly to the head cell of the signal which appears on that 
terminal. If the instance contains more than one but fewer than fifteen output 
terminals, subfield 5 of the instance structure contains a pointer to a FILLIP 
data cell of fourteen pointer subfields; these pointers point the head cells of 
the signals which appear on the respective terminals. If the instance cell 
contains more than 14 but fewer than 28 output terminals, the situation is as 
shown in Fig. 3-4. Subfield 5 of the instance structure points to a data cell (call 
it cell Z )  of fourteen pointers. The first of the pointers in cell Z points to 
another data cell of 14 pointers which point to the head cells of signals on the 
first fourteen terminals. The second pointer of cell Z points to the signal-head 
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cell for the fifteenth terminal, the third pointer of cell Z points to the signal- 
head cell for the sixteenth terminal, and so on until the terminals a r e  exhausted. 
(Figure 3-4 illustrates the case of 16 terminals). The instance-terminal 
structure shown in Fig. 3-4 is expanded by pointing from cell 2 to additional 
cells of 14 pointers as needed. Only when a device has more than 182 terminals 
of the same class does a true 196 structure result. 

3.1.5 Glossary 
The flexible structure just described raises one important question: 

given a pointer to an instance, how does one locate the signal on the nth terminal, 
since, in general, the location of the pointer to the desired signal depends upon 
the total number of terminals of the particular class? The answer to this 
question is that one must use a glossary to interpret the instance structure for 
each particular type. 

The glossaryis a complex structure which, at least indirectly, contains 
the complete description of a logic device; there is one glossary per type of 
element. Provision is made for including 196 glossaries in each data file. The 
glossary enables all instance structures to be treated identically by the program 
routines, even though instance structures of different types a r e  not identical. 
The structure of the glossary is illustrated in Fig. 3-5. 

The entry point or root of the glossary is a FILLIP data cell of 14 
pointers. The first pointer points to a data cell which contains basic alphameric 
information about the type, such as type name. 

The second pointer of the glossary root points to the top of the tree of 
instances of this type; eachnode on the t ree  is an instance structure with aunique 
instance ID. Thus, all instances of the same type are grouped together on a t ree  
which may be addressed through the type glossary. 

The third and fourth subfields of the glossary root a r e  presently not 
utilized. 

Subfields 5 through 9 pertain to the terminal structure with the same 
relationship between subfield number and terminal class as is used in the 
instance structure; i.e., subfield 5 corresponds to output terminals, subfield 6 
is associated with input terminal, etc. Again, for simplification, the following 
discussion wi l l  be in terms of only one class of terminals. If the device has no 
terminals of a certain type, the pointer in the associated subfield of the glossary 
root is NIL; otherwise the pointer points to a 196 structure regardless of how 
many terminals of that class are actually defined. For each defined terminal 
of the device, a terminal cell is created and pointed to by a known pointer from 
the 196 structure; thus, regardless of how many terminals a r e  defined for the 

th device, the method of addressing the terminal cell associated with t h e n  
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terminalis pre-specified and invariant. A s  just indicated, there is one terminal 
cell associated with each defined terminal of the device. 

From this point on, the description of the data-file structure becomes 
hopelessly complicated if  strict grammatical rules are followed. To facilitate 
a clear description of the concepts involved, certain linguistic liberties will  be 
taken. Because of the one-to-one relationship between a terminal cell and a 
terminal, the phrase "this terminal" will  often be used to mean "the terminal 
which is associated with this terminal cell". Another difficulty now arises; it 
isobvious that thereis  nothing physical or real in the data structure, yet it is 
convenient and clear to refer to signals, terminals and drawings as i f  they were 
part of the data structure. For example, it is far clearer to refer to "the signal 
which is connected to this terminal" rather than"the signal whose head cell is 
pointed to be the subfield in the terminal structure which is associated with this 
terminal cell"; the former phrase is easy tounderstand, the latter is a precise 
statement. 

A slightly different area in which it is sometimes clearer to take certain 
liberties, rather than being precise, is in reference to signal values. Properly 
speaking, the terminal of a device is at some logic level and the signal on the 
conductor connected to the terminal is said to have a logic value. It is oc- 
casionally convenient, however, to refer to terminal values and signal values 
interchangeably. 

Returning now to the description of the glossary, the first subfield of the 
terminal cell contains the terminal name. 

The second subfield of the terminal cell contains the signal load factor 

The third subfield of the terminal cell is essentially a road map in the 
form of a FILLIP operand pointer showing where to find, within the instance 
structure, the pointer to the signal which is on this terminal. The subfield 
contains the bug expression GATE/m.n/s, where normally 5 < m < 9, 0 < n, 
s < 14. If the bug named GATE contains a direct pointer to a particular instance, 
then the operand pointer GATE/m.n/s wil l  locate a subfield of the instance- 
terminal structure; this subfield will  contain a pointer to the signal. As  an 
example, assume the terminal cell describes the Bth input terminal of an 
instance. The instance is illustrated in Fig. 3-4. Further, assume that Bug 
GATE points to the instance. Subfield 11 of the terminal cell (in the glossary) 
wi l l  then contain the bug expression GATE/6.1.5/. If bug GATE points to the 
instance shown in Fig. 3-4, the expression GATE/6.1.5/ locates the signal 
connected to the gth input terminal, signal X. Thus the variable instance- 
terminal structure is interpreted by the glossary. The glossary in turn is a 
fixed structure. Note that subfield 11 of the terminal cell is similar to subfield 

for the associated terminal. 

59 



3, except that the bug expression is evaluated as a pointer to the relevant 
signal-head cell. This redundancy is solely for convenience. 

Subfield 4 of the terminal cell contains a direct pointer to the same 
terminal cell; this is again a convenience in setting up other portions of the data 
file. 

Subfield 5 points to interpretive FILLIP coding of a routine to evaluate 
the logic level of this terminal; this coding evaluates the equation which the 
designer utilizes to describe the behavior of the terminal. The coding is used 
only when an instance of the type is included in a circuit which is to be simulated. 
Equations exist only for output terminals and for auxiliary equations. 

Subfields 6 and 7 of the terminal cell point to list structures which a re  
also useful for simulation purposes, The successor list of a terminal - say 
terminal A - contains pointers to other terminals (terminal cells) of the device 
whose logic values a re  influenced by the value of terminal A. 

The predecessor list for terminal A contains pointers to those terminals 
(terminal cells) of the same device which influence the logic behavior of terminal 
A. Each entry of both lists also contains the value of time (AT) between the time 
terminal A changes value and the influencing (or influenced) terminal changes 
state. These lists a r e  used in simulating device behavior. 

Subfield 8 of the terminal cell contains a tag which identifies the class of 
terminal; input, output, etc. The contents of this subfield a r e  simply a number 
5 < n < 9 with the same association employed in the terminal structure, Le., 
5 means input, 6 means Output, 7 means expander input, 8 means expander 
output, and 9 means auxiliary equations. 

Subfield 9 contains the largestvalue of AT found in either the predecessor 
or successor list; this is used only in simulation to define the length of signal 
history tapes. 

Subfield 10 of the terminal cell identifies a default signal to which the 
terminal of the instance is to be connected if  the designer fails to specify a 
signal for the terminal of an instance. UNUSED0 and UNUSED1 a r e  permitted. 

Subfield 18 of the glossary root points via a LINK cell to two blocks of 
compiled codes, each of which describes the shape of the device. Because the 
buffer which drives the CRT display is of limited size, provision is made for 
displaying a crude graphical representation of the device on the CRT. This 
crude shape will  require a minimal amount of buffer storage. For hard-copy 
drawing, however, buffer size is irrelevant, so provision is made for drawing 
the device as any (reasonable) shape desired by the designer. In either case, 
the designer draws the desired shape on the CRT with the light pen; this 
drawing is transformed into the compiled code and stored in the glossary. (See 
Section 3.6). 
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Because instance structures of different types will  be added frequently 
during the formation of the data file, it is desirable to have a "master" instance 
structure stored away which can be duplicated as desired. Such a model 
structure is pointed to by subfield 11 of the glossary root. The model section 
includes the instance cell, the instance-drawing structure, the instance- 
terminal structure and the interconnecting pointers; all data within the model 
structure is blank, o r  NIL. Thus, if all the subfields shown in Fig. 3-4 w e r e  
empty or  NIL, except for the pointers between the instance-drawing structure 
and the instance cell and between the instance cell and the instance-terminal 
structure, the resulting structure would be identical to the model structure 
pointed to by subfield 11 of the glossary root. 

Subfield 1 2  of the glossary root points to a format list which is used only 
when operating in the card or  batch-processing mode. The format list is 
simply a list of LINK cells, where there is one LINK cell for every defined 
terminal of the device. The format list provides a one-to-one correspondence 
between signal names on the input cards and terminals of a device. The first 
LINK cell identifies the terminal to which the first signal on the input card is 
connected, the second LINK cell identifies the terminal to which the second 
signal on the input card is connected, etc. If a signal is not specified on the input 
card (its absence is indicated by a dollar sign on the input card), the unused value 
of the terminal cell indicates the appropriate default signal. 

3.1.6 Signal Structure 
Al l  the logical information pertaining to signals is contained in the signal- 

head cell and associated lists. The signal-head cell structure is illustrated in 
Fig. 3-6. Thereis one signal-head cell for every signal in the data file; there 
is also one signal-head cell for every auxiliary equation of each individual 
instance. 

The signal-head cells a r e  structured in a binary t ree  as indicated by the 

Subfield 5 of the signal-head cell contains a pointer to a list of FILLIP 
LINK cells, where there is one LINK cell for every instance terminal (except 
output) to which the signal is connected. The source pointer of each LTNKing 
cell points to the instance to which the signal is connected. The destination 
pointer of each LINKing cell points to  the terminal cell of the connected terminal. 

The source qualifier of the LINKing cell identifies the class of terminal 
to which the signal is connected; it contains the same tag as is found in subfield 
8 of the terminal cell. 

Subfield 6 of the signal-head cell points to a single LINK cell which is 
identical to those just described. The source pointer of this LINKing cell, 

first four subfields. 
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however, points to the instance which is the source of the signal; Le., the 
instance whose output terminal is connected to the signal. It is important to 
note that each signal can be connected to  only one output terminal; thus, each 
signal can be generated by only one source. 

Subfield 7 of the signal-head cell points to a signal history tape. The 
history tape is used in simulations and is simply a block of machine coding 
which contains a history of signal values and the times at which the signal 
values occurred. The history tape provides the datanecessary to evaluate the 
terminal equations . 

Subfield 9 of the signal-head cell contains flags for simulation purposes. 
Such flags indicate whether a logical e r ror  has occurred, whether or  not a 
signal is of interest to the simulation, etc. 

The original load factor contained in subfield 10 of the signal-head cell 
is the algebraic sum of the load factors of all the terminals to which the signal 
is connected. 

Subfields 11, 12, and 13 of the signal-head cell a r e  useful only for 
simulation purposes. Subfield 11 indicates the maximum time length of history 
which is maintained for the signal. Subfield 12 contains the most recent time 
when the signal was  evaluated during the simulation. Subfield 13 points to a 
temporary structure which groups signals for simulation; if  any signal of the 
group changes value, all signals of the grup must be re-evaluated. 

3.1.7 Drawing Structure 
In the OLLS data file, most of the drawing information is arranged ac- 

cording to drawings, where a drawing can be either the plot which appears on 
the faceof the CRT or  a piece of hard-copy output. Each drawing is assumed 
to have a unique drawing number (ID). For every drawing there is a drawing-head 
cell in the data file; the structure of the drawing-head cell is illustrated in Fig. 
3-7. 

A s  indicated by the first four subfields, the drawing-head cells a r e  ar- 
ranged on a binary t ree  according to drawing number. 

Two of the types of information which appear on each drawing a re  the set  
of devices and the signals or  logical interconnections of these devices; this 
data, in fact, comprises the essence of the drawing. Subfield 5 of the drawing- 
head cell contaihs a pointer to the top of the binary t ree  of the instance drawing 
structures (see Fig. 3-4) which belong to the drawing. By means of this t ree  
all instances which appear on the same drawing a r e  grouped together. 

Subfield 6 of the signal-head cell points to a FILLIP data cell containing 
editorial informationabout the drawing, At the present time, this data cell is 
not strictly defined. It is certain, however, that the drawing size and scale 
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factor will  be contained in the data cell, as will  information required for the 
legend or signature of the drawing. 

Subfield 7 of the drawing-head cell points to a structure containing 
graphical information about the signal runs which appear on the drawing. The 
pointerin subfield 7 points to a list of FILLIP LINK cells, where there is one 
LINK cell for each signal that is drawn on the drawing. The LINK cells are 
connected by the LINK pointers of each cell. The destination pointer of each 
LZNK cell points to a different signal which appears on the drawing. Each 
source pointerof the LINK cells points to a different list of LINK cells; these 
cells a re  used to store and recover the graphic coordinates for each run of the 
signal. The source pointers of these LINK cells each point to a block of 
machine coding containing the coordinates of the signal run. There is one block 
of coding for each interconnection of two different terminals. Thus, if Fig. 

3-7 is used as an example, the first signal on the drawing - which is obtained 
via subfield 7 of the drawing-head cell - connects three terminals on this 
drawing. It is known that three terminals are connected since two blocks of 
coordinates are shown and each block of coordinates describes one signal run 
or interconnect ion. 

It should be noted that the entire drawing structure of the data file enables 
one to immediately reproduce drawings which have been created. This is a 
necessary requirement i f  different drawings are to be called up to appear on the 
CRT during an on-line process. 

3.1.8 Data-File Root 
The binary tree of signal-head cells, the binary t ree  of drawing-head 

cells, and the 196 structure of glossaries a r e  all addressable through the 
data-file root a s  shown in Fig. 3-8. To facilitate discussion, it is convenient to 
consider the root of the file as being the cell of 14 pointers, rather than the NOP 
instruction which is the actual FILLIP file root. 

A s  shown in Fig. 3-8, subfield 1 contains a pointer to the t ree  of signal-head 
cells, subfield 2 contains a pointer to the 196 structure of glossaries, and the 
third subfield contains a pointer to the t ree  of drawing-head cells. 

Subfield 4 of the data-file root is normally NIL. During simulation runs, 
however, a structure consisting of the simulation event list, of initialization 
conditions, and of signal registers is temporarily constructed and pointed to 
bya pointer in subfield 4. Because the simulation is temporary and unique to 
the simulation program, the structure will  not be described in further detail at 
this time. 

In general, there wil l  be signals in the data file which have no source; i.e. 
are not connected to the output terminal of any device. These signals a r e  called 
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sourceless signals. Two specific examples of sourceless signals a r e  UNUSEDb 

and UNUSEDl. Other occurrences of sourceless signals result during the 
modification of existing drawings when signal interconnections are changed. 
For simulation, as well a s  for error-checking purposes, it is desirable to group 
all sourceless signals together. For this purpose, subfield 5 of the data-file root 
contains a pointer to a list of FILLIP LINK cells. The source pointer of each 
LINK cell points to the signal-head cell of a sourceless signal. More specifical- 
ly, the first LINKing cell contains a pointer to  the UNUSED@ signal-head cell 
and the second LINKing cell contains a pointer to the UNUSED1 signal-head 
cell. The remainder of the LINKing cells contain pointers to head cells of any 
other sourceless signals which might exist. 

3.1.9 Integrated Data Structure 
The various parts of the data-file structure have now been described in 

detail. Figure 3-9 illustrates how thevarious component parts a r e  tied together 
to yield a highlyinterwoven datastructure. In Fig. 3-9 much of the detail has 
been omitted to avoid unnecessary confusion. 

A few words about the overall data structure wi l l  help to clarify some of 
the important concepts. First, there a re  four independent classes of binary-tree 
structures in the data-file structure. Each t ree  represents a grouping of data 
according to some common characteristic. Each t ree  is normally addressed 
through the top node of the tree, although individual nodes of the tree a re  often 
addres’sed from external structures. Two of the trees, the t ree  of different 
drawings and the t ree  of signals, are addressed directly by the root of the 
data-file structure. Up to 196 different types of logical devices can be 
incorporated into one data file; the glossaries for the types are also addressed 
by the file-structure root. Each glossary points to a binary t ree  of all instances 
of that particular type. Each drawing-head cell contains a pointer to a binary 
t ree  of all instances which appear on the drawing. Each signal-head cell points 
(indirectly) to every instance to which the signal is connected and, similarly, 
each instance points (indirectly) to the head cell of every signal which is 
connected to the instance. Each instance also points to the head cell of the 
drawing on which the instance is located. The drawing-head cell also points to 
the head cell of every signal which appears on the drawing. 

At first glance, it might appear that the data structure is unnecessarily 
complex. A few illustrations might illustrate the capabilities of the file 
structure. Consider the problem of removing a signal from an instance. In the 
batch-processing mode, it is most convenient to identify a particular signal by 
its name; it is also easiest to identify an instance by its type and identification 
(identifications need be unique only within a type class). The identified signal 
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is readily found in the data file by a FILLIP search of the tree of signal-head 
cells; this t ree  is directly addressable through the data-file root. Having found 
the head cell of the specified signal, the list of instances (actually LINK cells) 
which are connected to the signal is searched again by one FILLIP instruction 
until the specified instance is found. The LINK cell pointing to this instance 
also points to a terminal cell which tells where in the instance the pointer to the 
signal is to be found; the changing of this pointer and the pointer in the LINK 
cell constitutes removing the signal from the instance. 

To accomplish the same result when operating in the on-line mode, the 
drawing containing the instance wi l l  be called up for display on the CRT. To 
identify the signal which is to be removed, the designer will point with the light 
pen to the terminal of the device to which the signal is connected and command 
the system to remove the signal. In this case, the t ree  of drawings is searched 
(one FILLIP instruction) until the head cell for this drawing is located. The 
t ree  of instances (instance-drawing structures) on this drawing is then searched 
by coordinates (coordinates of device and the specific terminal a r e  computed 
from the light-pen position) until the correct instance structure is found. The 
instance itself is addressed through the instance-drawing structure and the 
process continues a s  in the batch-processing node. 

A different type of problem ar ises  during simulation; here it is necessary 
to  know what instances a re  affected by changes in signal value. The head cell 
of the signal is again located and the list of instances is searched. For each 
instance, the glossary is consulted to determine the equation for the specific 
terminal. If the terminal is an input terminal, the terminals on the successor 
list (output terminals on the same instance) a re  examined and their terminal 
equations are examined. If the successor terminals change state, the cor- 
responding signals a r e  examined in a recursive process; these signals a r e  
addressed from the instance-terminal structure using the glossary to identify 
the location of the address pointer. The simulation process is described in 
detail in Section 3.3 of this report; the sole intent here is to show how the data 
structure can be utilized. 

It is felt that the data structure provides sufficient flexibility to be useful 
in a wide variety of design problems, either in a batch-processing o r  on-line 
mode. It is further felt that the structure can be readily expanded to include new 
classes of data when they become identified. Although the properties of FILLIP 
influenced the development of the data structures, the data structure stands by 
itself, and can be implemented in any reasonable language. 
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3.2 Device Definition 
James P ennypacker 

One of the most important features of OLLS is the provision for the designer to 
define his own logical devices. Theuser isnot confined to using a set of pre-defined 
elements but within broad limits can use any logical element, combinational or 
sequential, he cares to define as a device. Rather than having to code separate 
programs to handle each new logic element, the user can in a straightforward manner 
define the functional behavior of the model for the new element. This means, for 
example, that the advent of large-scale integration (LSI) wi l l  necessitate no program- 
ming modifications; an LSI chip and a single logic gate are handled with equal ease. 
The data and program structures a re  organized to accept the user-defined device 
without additional programming effort. Once a device type is defined, instances of the 
device type can be used whenever desired. 

3.2.1 Contents of Definition 
The definition of a device includes the name of the device type, the number 

of each class of terminal for the device, logic equations relating output terminal 
behavior to input terminal behavior, the load factor for each terminal, and, 
when the device is defined at the on-line graphic console, the shape of the device 
symbol. 

Each defined logic device can have four different classes of terminals, 
input, output, expander input, and expander output. Expander input and expander 
output terminals a r e  electrical points of the device which provide for fan-in and 
fan-out capability. In addition to the four types of terminals, the definition of 
a logic device may include internal logic states which a r e  neither input nor 
output terminals; the definition of any sequential circuit would include such 
internal variables. These internal variables, hereinafter referred to as 
auxiliary equations, a r e  treated identically to the other four classes of 
terminals; they a r e  expressed a s  - and included in - equations specifying logic 
behavior of other terminals. 

At the present time, a defined devicemay contain up to 196 terminals of 
each type, including auxiliary equations. The number of terminals is the only 
hard restriction in the definition of a device; without extensive reprogramming, 
the data structure could be modified to provide for up to 2744 terminals of each 
type. Each terminal of the device (and auxiliary equations a re  to be included 
a s  terminals) is given a unique name that is used in the specification of the logic 
operation of the device. 
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3.2.2 Concepts of Definition 
The logic operation of a device is specified by the equations which relate 

each output, expander output, o r  auxiliary equation to other terminals of the 
device. For  example, the NOR gate shown in Fig. 3- 10 has two inputs, A and B, 

Fig. 3-10 

and one output, C, where A, B, and C a re  understood to be the respective 
terminal names. The logic operation of this device is specified by the equation. 

A subscript notation is employed to show time delays. Using this notation, a 
subscript b indicates the time "now", a subscript 1 indicates time one unit 
previous, a subscript 2 indicates two time units ago, etc. The time unit is 
dimensionless but is often understood to be one gate delay, the time it takes for  
a logic element to respond to the input excitation. Subscripts indicating relative 
time dependency must be integers (see Appendix B). 

For the two-input NOR gate shown in Fig. 3- 10, the logic operation can be 
more completely specified by the equation 

which indicates that the behavior of terminal C at the present time is influenced 
by the behavior of both terminals A and B one time unit ago. If the excitation 
does not influence the output terminal equally rapidly for both input terminals, 
the equation might be expressed as 

- - 
Co = A1'  B2 

To more fully illustrate the concepts under discussion, consider a device 
with two inputs, S and R, one output, Q, and one internal state o r  auxiliary 
equation, P, as illustrated in Fig. 3- 11. 

Fig, 3-11  
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The operation of the device is specified by the equations 

(3- la) 

(3-lb) 

Note that the behavior of every terminal is specified at time "now"; Le., the 
subscript of variables on the left-hand side of the equations is always 8 .  
Further, note that the behavior of internal states must be specified in addition 
to behavior of output terminals. 

Equation set 3-1 is completely acceptable to OLLS as a definition of the 
device. It is possible, however, to simplify Eq. 3- 1 by noting that if Po = Q1. R1 
describes the behavior of state P at timenow, then the behavior of P one time 
unit ago is specified by the relation P Substituting this expression 
into Eq. 3- la, followed by logical simplification, yields 

- -  

= a * R 2 2' 

which is also sufficient to define the device. Note that, in Eq. 3-2, the behavior 
of terminal Q is a function of its own state two time units ago. This will,  in fact, 
be the case when any sequential circuit is defined as a logic device. 

Either Eq. 3-1 or 3-2 may be used to define the logic properties of the 
device; both result in the same logic operation. The simulation of this particular 
device, however, wil l  run somewhat faster if Eq. 3-2 is used. It is difficult to 
generalize as to whether or not equations should be simplified when the device 
is defined; it is only during simulation that any difference is observable and the 
difference is one of running time only. If most of the defining equations a re  
expressed as functions of all other terminals, then simplification of the equations 
wil l  speed up the simulation, On the other hand, i f  most of the defining equations 
a re  each expressed a s  a function of only a few of the other terminals, then 
simplification of the equations wi l l  slow down the simulation program. The 
reason for this is that the simplified equation for a terminal, say terminal Q, 
includes many terminals in the expression. If any of these terminals changes 
state, the entire expression for terminal Q must be re-evaluated to determine 
whether or not terminal Q has changed state. Because of the large number of 
variables which a r e  maintained in the equation for Q, the equation wi l l  have to 
be evaluated more frequently than if fewer terminals were included in the 
defining relationship. Without actual operating experience with OLLS, however, 
it is virtually impossible to analyze the difference in running time of the 
simulation program as  a function of the defining equations. 

r . 
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It was previously mentioned that, once a device was defined, instances of 
the device could be used whenever desired. In other words, the concept of a 
NOR gate must be made known to  the data file before individual NOR gates are 
used in the design process. The definition of the device type and the utilization 
of individual devices are normally independent operations except that definition 
must precede utilization. A s  will  be discussed later, the utilization of an 
individual instance includes specifying what signals appear on the different 
terminals of the instance. In this manner, instances are interconnected to form 
circuits. Par t  of the process of defining a device includes the option of specifying 
the order in which the terminals of the device are to be connected to signal 
interconnections. The definition of a device also includes specifying the default 
signals to which unmentioned terminals a r e  to be connected. 

3.2.3 Definition by Terminal Behavior 
There are two methods bywhich a device may be defined: by specification 

of terminal behavior and by circuit design. Because the difference between the 
two methods concerns only the manner of defining the logic behavior of the 
device, the discussion wil l  concern only this phase of device definition. 

The process of defining a device by specifying terminal behavior w a s  
essentially described in the preceding section. The process involves identifying 
each of the terminals, including auxiliary equations, by a unique name. Logical 
equations a re  then written for each terminal, specifying the behavior of one 
terminal as a function of all the terminals of the device. Equations specifying 
the behavior of input and expander input terminals are of course not required. 
Each logic equation must be of the form of Eq. 3- 1 o r  3-2. In fact, Eq. 3- 1 o r  
3- 2 comprise definition by terminal behavior. 

3.2.4 Definition by Circuit Design 
A considerably easier method of defining a device is by circuit design. 

While this method of definition is currently available only for operation in the 
on-line mode, it is planned to incorporate the procedure into the batch- 
processing mode. 

To illustrate this method of definition, assume that the NOR gate shown 
in Fig. 3-12 has been defined by terminal behavior. Further, assume that the 

B 

Fig. 3-12 
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designer has drawn on the CRT with the light pen a circuit which is an intercon- 
nection of only devices of the type shown in Fig. 3-12. The circuit which has 
been drawn is shown in Fig. 3-13. In this circuit, the letters a r e  names of 

\ !  

signals which appear on the various terminals of the interconnected devices; the 
terminals of each individual NOR gate a r e  still called A, B and C as per the 
definition of the device, Having drawn the circuit, the designer recognizes that 
the portion of the circuit enclosed within the dotted lines is a flip-flop which is 
used so frequently that it is desirable to define this portionof the circuit as a 
single logic device. Because the NOR gate has been specified by terminal 
behavior and because the drawn circuit represents logic interconnections of the 
NOR gates, the logic behavior of the flip-flop is already contained in some form 
in the data-file structure. Thus the designer can define the flip-flop a s  a new 
device by simply identifying the devices which a r e  included in the flip-flop 
(gates x and y) and the terminals of those gates which a re  also to be terminals 
of the new device. The only other information which the designer must provide 
is the name of the new device, FLIP-FLOP. Identification of the gates and 
terminals is performed with the light pen; the name is entered via the graphic 
console keyboard. 

In general, when a device is defined, the terminals of the device must be 
given names which a re  unique among themselves. When a device is defined by 
circuit design, the terminals of the new device a re  named after the signals which 
a r e  connected to the respective terminals. Thus, the output terminal of the 
flip-flop shown is named Q and the two input terminals of the flip-flop a re  S and 
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R. (These terminals names can be modified by the designer, if desired.) 
Because theoutput of NOR gate y i s  not considered to be an output terminal of 
the flip-flop, it gives rise to  an internal state or  auxiliary equation, P, of the 
newly defined flip-flop. Note that, even though none of the individual NOR gates 
has an internal state, the interconnection of these devices yields a new device 
which has an auxiliary equation associated with its definition. 

After the elements and interconnections which comprise the new device 
have been identified, the model of the new device is automatically generated by 
OLLS and equations specifying the terminal behavior of the new device are 
automatically generated. For  the flip-flop shown, the generated equations are: 

(3 - 3a) 

(3-3b) 

These equations a r e  identical to Eq. 3-1; in fact, the black box defined by Eq. 
3-1 is a flip-flop. 

The load factor for each terminal of the new device is automatically 
generated from the load factors of the individual components of the device. 

Currently, the shape of a device which is defined by circuit design is 
automatically generated as a rectangle; this shape can be modified as desired 
via the on-line graphic console. 

The process of defining a device by circuit design is simple and fast for 
the designer, requiring only that the individual components be previously 
defined. The designer can thus define devices in a boot-strap manner; the only 
restriction is that the new device not exceed the restriction of 196 terminals of 
each type. 

3.2.5 Impact on Data File 
The impact on the data structure is identical when the device is defined 

by terminal behavior as when the device is defined by circuit design. The 
following discussion assumes definition by terminal behavior unless otherwise 
specified. Reference to Fig. 3-9 might facilitate an understanding of the material 
in this section. 

When a new device is defined, a glossary root is constructed and connected 
The name of the device is inserted in a to the 196 structure of glossaries. 

FILLIP data cell which is pointed to by the glossary root. 
For every class of terminal which is defined for a device type, a 196 

structure of terminal cells is constructed and connected to the appropriate 
subfield of the glossary root. For each terminal, the terminal name and load 
factor a r e  inserted in the terminal cell. 
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The equation specifying the logic behavior of the terminal is compiled 
into interpretive FILLIP code which is addressed by the terminal cell. The 
equation is also scanned for the largest subscript which is inserted in subfield 
9 of the terminal cell. The equations a re  alsoused to construct the predecessor 
and successor lists. 

Oneof the important results of device definition is the construction of a 
model-instance structure which is pointed to by the glossary root. The instance- 
cell and the instance-drawing structures a r e  of fixed format and therefore 
easily constructed; the instance-terminal structures a re  of variable format and 
a r e  more difficult to create. The instance-terminal structure depends upon the 
number of terminals which a r e  defined for the device; the contents of subfield 
3 of the terminal cell is also a function of the number of defined terminals. 

The shape of the defined device is translated into machine coding which 

To summarize what has been stated so far, the definition of a device by 
terminal behavior results in a new glossary, in the formation of the associated 
structures, and in the insertion of the contents of every defined terminal cell. 

When the device is defined by circuit design, the end result is the same 
as if  the device were defined by terminal behavior; the process is, however, 
considerably different since most of the required information is not explicitly 
available. Without going into the complexity of detail which is required, it is 
sufficient to state that the logic-data file is searched to provide the information 
required to construct the glossary and its associated structures. The designer 
need not specify the logic behavior of the device; OLLS subroutines process 
the existing relevant interpretive code which describes behavior of the individual 
component terminals to yield interpretive coding for each terminal of the new 
device. 

is addressed indirectly through the glossary root. 
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3.3  Simulation 
Herbert Thaler 

3.3.1 Circuit Formation 
a. Device Definition 
The formation of a logic circuit for simulation by OLLS can be divided 

into two phases. The first phase is the definition of the terminal behavior of the 
logical devices to be included in the circuit. This is accomplished through the 

Define Device" subprogram of OLLS. Those properties of a device which are 
essential to simulate it are: 

11 

1. A classification of its terminals into at least two categories - input 
and output. 
Booleanequations to relate the output terminals to the inputs (and 2. 
outputs). 

A device-input terminal is one whose logic value cannot be affected by 
the device itself. That is, there is no Boolean equation within the device to 
change a logic signal value at that terminal. It can only follow the value of an 
applied signal. 

An output terminal, on the other hand, does have a generating equation. 
In fact, all output terminals of all devices must have their own independent 
generating equations. Therefore, output terminals of devices may not be 
interconnected, since there is no unique way to resolve the resulting competition 
between independent Boolean generating functions. This fact, and a desire to 
make OLLS as general as possible, gives rise to two other classifications of 
device terminals - expander outputs and inputs. 

In certain types of logic families (e.g., RTL), it is common practice to tie 
device outputs together to achieve higher fan-in and/ or fan-out capabilities than 
the individual devices provide. In other types of logic families (e.g., TTL), 
higher fan-in is achieved by connecting specially designed expander devices to 
expansion terminals provided solely for this purpose. Both techniques are 
logically correct, but the TTL approach is more general. Therefore, OLLS 
adopts that view of fan-in augmentation. If an output-terminal equation can be 
expanded logically by either technique, an expander-input terminal is provided 
on the device. The expander-input signal value must then be included in the 
Boolean equation for the expandable-output terminal. However, only signals 
which originate on expander-output terminals may be connected to expander 
inputs. Thus two classes of signal runs are found in an OLLS logic circuit. 
Normal signals originate on the output terminal of some device, and may be 
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connected only to the normal input terminals of other devices. Expander 
signals originate on the expander-output terminal of some device and may be 
connected only to the expander-input terminals of other devices. A generalized 
device may possess all four terminal categories if the proper equation set and 
terminal classification a r e  given to it. 

There is a fifth class of terminal that, in the interest of generality, a 
devicemay possess. It is often necessary to define more equations to specify 
the behavior of a device than there are output terminals to  assign them to. This 
usually occurs when defining a sequential circuit with many stable states and 
few outputs. Since OLLS places almost no restrictions on the complexity of 
definable devices, equations which affect output terminals but do not themselves 
represent real  terminals must be accommodated. These equations a re  classed 
as auxiliary terminals in the definition of the device. Auxiliary equations a re  
equally as important to the behavior of a device a s  its output equations, and 
differ from them only in that they arenot available as signals outside the device. 
Therefore, an auxiliary-equation variable is treated in the OLLS logic-circuit 
file as an output signal which cannot be connected to any external inputs, but 
which nevertheless may influence other terminals within the device. A s  an 
example of one use of an auxiliary variable, consider the following device: 

INPUTS i OUTPUTS 

\ 
AUXILIARIES 

Let us assume that the two elements A and B a re  complex combinational 
devices, but that their individual equation sets  a r e  known. The OLLS user may 
choose to define their cascade in either of two ways. He may substitute into the 
equations for B the functions appearing at the outputs of A. This would eliminate 
the intermediate variables from the overall cascade equations, and express the 
outputs of B in terms of the inputs to A. The alternative is to submit the equation 
sets for both A and B, retaining the intermediate variables as auxiliary 
terminals. This achieves the identical simulation behavior for the cascaded 
circuit, but saves the user much effort in reducing the total equation set he must 
provide. Further example of the trade-off in effort and efficiency between 
minimized equation sets (a few complex equations) and the more easily generated 
gate-by-gate sets (many simple equations) are given in Appendix B. Often the 
preferred choice is more one of personal taste than engineering necessity, but 
certain cases of necessity can be defined. These occur near the limits of device 

78 



complexity, when the number of independent variables exceeds 196. Then one 
may be forced to eliminate redundant equations simply to f i t  the device definition 
within the specified limits. 

Any logic device, which can be modeled by using the following basic set  
of ideal Boolean elements, can be defined in OLLS. The ideal elements are: 

a. delayless multi-input OR 
b. delayless multi-input AND 
c. delayless NOT 
d. ideal delays. 

Since this set of elements is complete, any finite combinational o r  sequential 
circuit can thus be defined, For example, an expandable 3-input NOR gate can 
be modeled as follows: 

* Define Device NOR 
OUTPUTS X '  

INPUTS A,B,C 
EXPINS J 
EQUATION 
DELAY 0 1 2 5 0  

X = i ( A  + B + C t: J) 

This set of input data represents the following device model: 

Delays OR NOT 

Examples of the method used in OLLS to define a logic device by its 
terminal Boolean equations have been given, but the power and generality of 
the method have not yet been explored. As has been stated, the only restriction 
applied to the device definition is on the number of each type of terminal which 
may be used on one device. This limit is currently set at 196 for our own 

convenience. Hence, a device may have up to 196 inputs, 196 outputs, and 196 
auxiliary variables in addition to expander terminals. The form of the output 
and auxiliary equations themselves need only be deterministic - that is, there 
must be a unique equation which specifies the current value of each terminal at 
all times. The equation forms are: 
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OUTo = F (inputs, outputs, auxes, expins, expouts) 

AUXo = F (inputs, outputs, auxes, expins, expouts). 
or: 

There is no limit on the complexity of the functions involved, no limitation on 
what variables may appear in them, and none on what delay values may be used 
(zero delay is permissible but should be avoided). An equation may even 
mention the variable it is defining in the function for that variable. 

With these rules, most reasonable system functions can be incorporated 
a s  a single device. This includes, for example, storage arrays withup to 587-bit 
capacity, sequential circuits withup to 2588 states (not all stable!), delay lines 
of any length (with up to  195 taps), combinational circuits of virtually any 
complexity, binary counter-divider up to 196 stages long, complete computer 
arithmetic units, computer input /output control units, and just about anything 
that the near future wi l l  see implemented by LSI technology. This generality 
is, we feel, necessary for the next generation of logic simulation programs, and 
is one of the strong points of OLLS. 

b. 1 Interconnections 
Once the OLLS user has successfully defined or copied those logic devices 

he wishes to utilize, he may begin to form a circuit. For simulation purposes, 
an OLLS circuit (or file) consists of the device definitions, one or more instances 
of the logic devices, and interconnections. Any mixture of different device 
types may reside in one file, since OLLS assumes they are compatible. The 
simulation program treats all devices alike, and therefore relies on the device 
definitions (glossary entries) to differentiate behavior. The mechanics of 
interconnecting devices and assigning names to the signals created a re  explained 
in Section 3.2 of this report. Al l  that need be said at this point is that it is easy 
to create the total file in terms of instances of the defined logic devices and 
signal names. 

3.3.2 Desired Capabilities 
a. 1 Logical Initialization 
Once an OLLS user has specified his circuit topologically, he may turn 

his attention to its simulation. The first step in this process is the establishment 
of initial logic values at all the terminals and signals of interest. This is 
necessary because OLLS recognizes three signal logical values - zero, one, 
and undefined; and because the circuit is first automatically set so that all 
signals a r e  undefined. This is done to force the user not only to initialize every 
signal of interest to him, but also to be a w a r e  of all other signals in his file 
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which have a direct effect on the test circuit. He need not initialize every signal 
in a large circuit to test  only a small subsection of it, but he must satisfactorily 
isolate the test circuit logically. 

A particular signal is initialized in the OLLS card system by specifying 
the intended value and the signal name. In the CRT-oriented system, the signal 
of interest may be designated either byname or by touching with a light pen a 
device terminal on its displayed run. This is especially useful since the names 
of some signals on circuits created at the CRT may not be known to their 
creator. This occurs because the process of gate interconnection is more 
easily handled graphically than by card entry, and hence the card system 
artifact of the user manufacturing signal names for every run is unnecessary. 
Some signal names, therefore, may have been created by OLLS to f i l l  the void 
left by the user. These names a r e  derived from the ID, type, and terminal name 
of the source device, and generally have no nmemonic value to the user. They 
do, however, exist in the file and can readily be determined. 

However a signal to be initialized is designated, the user still has the 
option of stating an initial value for every signal, o r  of trying to minimize such 
effort. OLLS has the ability to propagate logic levels through devices (from 
inputs to outputs) subject to the logic constraints given in the device definitions, 
but independent of the delay values therein. This causes the logic circuit to 
behaveas i f  all its delays were zero, but doesn't affect the Boolean equations 
within it. Thus, for example, if  a logic "one" is specifically placed on one input 
to an OR gate, then the output terminal signal wi l l  also become specified 
through propagation. This is particularly useful since many logic circuits are 
designed with an unconditional preset signal distributed through the circuit. 
When such a signal is initialized and then propagated, many additional signals 
become defined gratis. An example of such a situation can be found in the MIT 
Apollo Guidance Computer where a single preset signal can initialize every 
significant section of the computer control logic. 

The intent of initialization is to establish a static configuration of logic 
signals on which to base further simulations. When signal propagation is used, 
the static nature of the signal set may be disturbed. During the course of 
propagationa signal previously declared to be @ (1) may become re-evaluated 
as a 1 (0). This generally indicates oscillatory circuits, o r  sequential circuits 
in which the control variables a r e  improperly defined. Since the phase and 
frequency of such oscillation is indeterminate within the context of static 
initialization, the logic values of the signals involved a re  forced to revert  to 
undefined. The user is informed of such behavior and is expected to provide 
the necessary circuit or  initialization changes to correct it. Thus, for example, 
oscillators should have control lines which can quench their activity during 
initialization but can release them afterward for the dynamic run. 
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b) Circuit Stimuli 
The user must be able to insert stimuli for his test circuit once the 

dynamic simulation run begins. There should be both "one- shot" and repetitive- 
waveform stimulus capability, with all parameters under his control. The 

one-shot" stimulus is in the nature of an event, and is so classified by OLLS. 
To insert such an external event, the user would prepare a card image (in either 
the card-oriented or CRT OLLS system) with the following format: 

11 

EVENT Signame Value Time. 

Naturally this causes the signal designated to assume the given value at the 
given time during the dynamic simulation run. The signal remains at that value 
($ or 1) until some other external or internal event causes it to change. 

It is also desirable to be able to specify that an external event should occur 
based on purely internal circumstances. With such a capability one would not 
be concerned with the time at which the event occurs, but rather with the 
internal events leading up to the desired effect. For example, one might desire 
to turn on (or off) an oscillatory circuit control line i f  some other signal level 
inthe file became a 1 (or J3). This almost has the effect of making a temporary 
logical connection for simulation purposes between unconnected signals in the 
circuit, and would be expressed by the user as: 

EVENT Signame Value IF Expression. 

Whenever the given Boolean expression becomes true, the specified signal 
assumes its stated value. The expressionneed not be a single-signal name. It 
can be any Boolean combination of signal names (and their complements) which 
appear in the file being simulated. 

This example of a conditional event allows the designated signal to assume 
only one of the possible logic values whenever the Boolean expression becomes 
true. In order to accommodate the other value, another conditional event has 
to be given. Thus, for example, the pair of cards: 

EVENT ALPHA 1 IF BETA 
EVENT ALPHA fl IF 7 (BETA) 

slaves signal ALPHA to expression BETA both for BETA * fl and for BETA + 1. 
Therefore, ALPHA and BETA a r e  the same for the simulation run. If BETA is 
only one signal rather than a combination of signals, the two signals a r e  logically 
connected together for the duration of the simulation run. Since this enables the 
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user to make temporary connections in his circuit without actually affecting the 
circuit itself (only the simulation thereof), it should prove to be a very useful 
feature. A single additional command to combine the two conditional event 
cards given above into one card is: 

EVENT ALPHA EQUALS BETA 

where BETA can be either a single-signal name or an expression. Note that 
there is a definite direction implied by this card - ALPHA follows BETA, not 
vice versa. Therefore, BETA must be a signal with a real  source, while if  
ALPHA has a source it is always competing with BETA for dominance. Generally 
it is best if  ALPHA has no real source (no device output terminal) in its run. 

The second type of circuit stimulus allowed inOLLS is a general repetitive 
waveform. This is actually an unending sequence of unconditional events all 
directed at some signal. A shorthand technique for specifying the parameters 
of the waveform is provided. 

SEQUENCE Signame Value Period TList 

as an OLLS input card, defines a waveform to be applied to the designated 
signal. The first new value and the period of time for repetition a r e  given 
explicitly. The last entry (TLIST) is actually a list of discrete times of events 
within the first period. Each one causes a transition of the designated signal at 
the given time. As an example of such a sequence, consider 

SEQUENCE A 1 15 0 2 7 12 

which describes a waveform a s  follows: 

1 I I 1 I I 
22 

A n 
0 2  7 12 15 17 

The signal A would execute the transitions shown at the times indicated in the 
sketch above. Thenumber of events which may appear in the TList is limited 
only by the total period given. In this way the OLLS user can build up very 
complex repetitive waveforms, or he may generate simple square waves as, for 
example: 
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SEQUENCE B 1 10 2 7 

This describes a period-10 square wave starting at time = 2 with value 1. 
Signal B would be delayed one time unit from signal C if: 

SEQUENCE c 1 10 1 6 

were the definition of C. The waveforms defined as B and C would appear as 
follows: 

1 

0 .  I 1 
7 1 2  0 2  

0 l e  0 1  6 11 16 

-4 b-Period = 10 

c) Output Features 
It almost goes without saying that a good logic-simulation program must 

have good output capability. This is especially true if the intent of the program 
is to mimic a circuit rather than to analyze it. OLLS falls into the former 
category - it is intended as a very realistic replacement for the real circuit, 
especially in the early stages of computer design. This in no way prejudices its 
value in later stages when the design is more mature, since the record keeping 
capabilities of the OLLS system wi l l  then be truly invaluable to the designer. 

OLLS, therefore, possesses a broad output capability, reflecting its use 
not onlyin all stages of logic design but also a s  a console interactive system. 
These output features are: 

1. Trace. 
2. Sample. 
3. Hazard Detection. 
4. Inquiries. 
5. Summary Prints. 
6. Dumps. 
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The first three categories of output involve data collected piece-by-piece 
during a simulation run. Then, after the run terminates, its history is available 
in these various forms. 

Tracing a signal is equivalent to  monitoring a real circuit with an oscil- 
loscope probe. A complete time history of the signal is made available as 
output. Every time a signal specifically marked for tracing undergoes a 
transition, the value, time, and other circumstances surrounding the transition 
a r e  recorded. Several alternatives are given the OLLS user in the choice of 
output medium for tracing results, The high-speed line printer can beused to 
show the traceof up to 20 signals simultaneouslyon the same time base. Each 
line of print output represents a time at which one or more of the traced signals 
changed state. The time is noted on the line, and each signal's value is noted 
by printing a number 1 in one of two particular columns, Thus if  the first 
signal across the page has value zero, a number 1 is printed in column 14, and 
if the logic value is one it appears in column 16. Transitions are marked with 
a dash at the appropriate line in column 15. This type of output results in a 
commonnonlinear timeline for each signal if  the output is turned sideways for 
reading. The names of the signals being traced head their respective column 
groups on each page. 

If the user is interested in elegance of appearance rather than large 
volume of output, he may choose to draw the trace output on an X-Y plotter. 
Samples of how this would appear a r e  presented elsewhere in the report. This 
type of output is done with a linear time base for appearance's sake since 
generally fewer transitions are being displayed. Identical linear-trace output 
can also be displayed via the on-line CRT console if  desired. 

Signal sampling is different from tracing in the format of output and in 
the factors which cause the sampled data to be outputted. When a signal is being 
traced, the event which causes output to be created is a transition of that same 
signal. Sampling, on the other hand, is intended to produce output from one 
signal upon the occurrence of a particular transition in another. For example, 
onemight choose to view the contents of a flip-flop by sampling it whenever a 
reading pulse occurs. Another reason to sample could be the transition of a 
timing pulse, thus establishing a linear history of the sampled signal for display. 
It would also be desirable to generalize theconditions causing the sample and 
to link more thanone signal in a single sample event. Thus a general sample 
control card would be: 

. 

SAMPLE Siglist IF Expression 

The Siglist t e rm above is meant to be a list of any number of signals to be 
simultaneously sampled whenever the given signal expression becomes true. 
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Theoutput format for a sample event as recorded on the line printer or 
CRT includes the time of the sample, a restatement of the control card, and the 
sampled logic values. In this way different samples and traces can be intermixed 
in the output medium without confusion. 

The detection of logic-race conditions is an important adjunct to an OLLS 
simulation. Since OLLS is intended to mimic a circuit rather than to analyze 
it, no attempt is made to perform an algebraic-hazard analysis of the test 
circuit. Instead, hazard testing is performed dynamically as  the simulation 
run occurs. Static and dynamic hazards manifest themselves a s  short-duration 
pulses on signals which should not have such pulses. Essential hazards a r e  
observed when a sequential circuit fails to execute the intended state-variable 
transformation and instead executes another. The first e r ror  condition is 
checked for on every signal every time it has a transition. The OLLS user 
declares what is the minimum acceptable pulse width in his circuit. Any 
violations of this figure a re  outputted as suggesting hazards. The signal at 
fault, time of occurrence, and causative factors a r e  indicated. In addition, 
OLLS continuously tests for a potential source of such trouble by monitoring 
for coincidence and near-coincidence of signal transitions. Whenever two or 
more input signals to a device equation have coincident or near-coincident 
transitions but no actual hazard occurs in the output signal, a potential hazard 
area is outputted. This type of hazard might develop into a real  one i f  the 
circuit were to be built out of real gates with wide variance in delay times - 
hence the interest in this situation. 

Essential hazards a r e  merely static or dynamic hazards which cause 
memory functions in the circuit to operate improperly. Hence, the occurrence 
of an essential hazard wi l l  generally follow the detection by OLLS of one of the 
other types of hazards. 

In order to avoid bombarding the OLLS user with reams of hazard- 
detection data, theability toignore either type of hazard situation is built into 
OLLS. The user may specifically choose to exempt certain signals in the circuit 
from participating in the test procedures. Al l  signals participate unless 
specifically excluded. 

The subject of inquiries ar ises  because OLLS is to be operated on-line 
from a CRT console. Between segments of dynamic simulation runs the user 
may raise questions about the immediate history and current state of the file. 
The most obvious inquiry is for the current and immediately past values of 
designated signals, and along with those values the times at which those 
transitions occurred. OLLS keeps at least the last ten transitions for each 
signal at all times, so meaningful data is usually available. The form of output 
can be either numerical print on the CRT face or sketches such as would be done 
for CRT trace display. 
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Queries, such as which signals are being traced, o r  which appear in 
sampling commands, a r e  also useful. In addition, the user should be able to get 
information about his devices and circuit interconnections. H e  should be able 
to read the glossary for  a device at this time, and may be interested in the 
extent of a signal run. The general intent of the inquiry operations (which have 
not all been defined as yet) is to provide the on-line CRT user with as much 
information retrieval as possible short of writing his own FILLIP coding. 
Considerable work still needs to be done in this area as new requirements arise 
in practice. 

Summary printing, like inquiries, takes place between o r  after run 
segments o r  initialization procedures. The difference between these two 
operations is more quantitative than qualitative. Summary prints a r e  oriented 
more to outputting entire lists of data such as the values of the entire signal set. 
However, the flexibility built into the inquiry-command structure should also 
be present for summaries. For example, a summary of all undefined-value 
signals should be possible, as well as one for all signals which experienced 
transitions over a given span of time. Again, the scope of commands has not 
been defined as yet, and future effort will be directed to make a useful set of 
summary-print commands. 

It is worth noting that the OLLS programs a r e  very modular in their form, 
and new features can be easily added to existing programs. Therefore, it is 
possible to postpone definition of these operations until more is learned about 
user requirements through experience. 

One more useful output operation for OLLS is a total-signal dump. Al l  
data in a logic circuit necessary to define the simulation status of the circuit is 
recorded. This includes all signal values and histories, all trace, sample, and 
hazard test data, and the current image of the "event list". If this data is 
recorded permanently, it is possible at a later date to restore the logic circuit 
to the exact state it had at the instant the dump occurred. Thus the time- 
consuming processes which led up to its current state need not be repeated 
merely to reach the same state again. The dumped data would be sufficient to 
initialize the file completely and the run could be resumed at that point. This 
rollback facility is also reserved for future instrumentation since it is truly 
useful only when large circuits and long simulation runs are involved. 

d) Run Control 
The subject of run control applies primarily to dynamic-simulation 

segments. Thesearerunsegments in which time is a factor a s  opposed to the 
initial-value propagation segment in which time stands still while signals 
propagate. The initialization segment terminates when no further propagation 
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can occur, either because all signals have defined values or because those 
signals which remain undefined mask the effects of the defined signals. There 
is always a logical conclusion to that segment because of the algorithm chosen. 
The number of steps taken is always finite for a finite circuit, 

This finiteness does not apply to the dynamic algorithm. It is perfectly 
feasible to have aninfinite sequence of transitions occur at any signal. In fact, 
the periodic signals which can be inputted to OLLS logic circuits are themselves 
potentially infinite in their effective span of time, Thus a dynamic run must 
always have a definite finite limit to its time scope provided by the user each 
and every time it begins. If the user fails to provide a numeric time limit, 
OLLS derives one from the time sense of his circuit. Although the sequence of 
events in the circuit is potentially infinite, at any moment OLLS plans only a 
finite future portion of it. This partial plan of future events is stored on the 
circuit "event list". If the user fails to specify his time limit, the maximum 
extent of the event list is determined and becomes his limit. 

It i sa lso possible to terminate a run segment prematurely. To do this, 
the user  specifies a Boolean signal expression which, when it becomes true, wil l  
halt the run. One reason touse such an expression is to halt on the occurrence 
of an alarm condition in the circuit under test. This preserves the signal values 
and histories at the moment the alarm occurs so that inquiries and summaries 
can be fruitfully performed. Thus, the run segment control card is as follows: 

RUN At OR 

where the segment terminates either after At or when the given expression 
becomes true, whichever comes first. If the number At is omitted, the event list 
default value is taken. If the "OR exp" is omitted, the given At value (or its 
default value) is the only condition for halting the run segment. 

Every time a run segment begins, the circuit it applies to must also have 
some time historysense. This history can come from one of three sources - 

a. Initialization. 
b. Continuation. 
c. Rollback. 

When the simulation program is first called up for a circuit, the time sense of 
that circuit is initialized to zero. Al l  runs following this normal sequence, 
therefore, have a common initial time value. After a run segment terminates, 
the final time sense is kept intact in anticipation of the next run segment being 
a continuation of the first. Only when a circuit is finally released from simulation 
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by the user and returned to bulk storage is its time sense destroyed. The 
rollback time initialization as described in Section 3.3.2.c can be performed 
before or  between run segments, provided only that the necessary signal-value 
dump data is available to the user. Whichever source is the time sense of a run, 
the value of At given in the run control card simply follows it. 

3.3.3 Program Details 
a) Data Structure Review 
The simulation programs operate on a circuit in an OLLS data file, the 

structure of which has been explored in depth. It is appropriate, however, to 
review those aspects of the data structure which are vital to the simulation 
program. There a r e  four types of structures of particular interest: 

1. Glossaries. 
2. Instances. 
3. Signals. 
4. Simulation lists. 

1) Glossaries 
Thereis a glossary structure in the data file for every different type of 

logic device which the user has placed into the file. A glossary structure is 
formed when a logic device is defined, either through the Define Device program 
or through the amalgamation of several interconnected devices to form one 
larger device. It contains information pertaining to the device as  a whole and 
to each individual terminal of the device. The simulation program uses only the 
terminal-oriented information. In particular, it refers to the following pieces 
of information for each terminal: 

a. A FILLIP pointer which can be interpreted to locate the signal cell 
which is attached to the terminal on any instance of the device type. It 
takes two pieces of information acting in concert to use this pointer - one 
must know which particular instance of the device type is of interest and 
which of its terminals are involved. 
b. A pointer to a FILLIP list which indicates the other terminals 
within the device that a r e  successor to this one. When dealing with 
multi-input, multi-output devices, as OLLS allows, it is useful to know 
which terminals can possibly be affected by logic values on others. The 
successor list of a particular terminal indicates which other device 
terminals can be affected by changes in its value. The delays associated 
with these successor relationships are also given for each pair of 
terminals. 
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c. A pointer to a FILLIP list which is the result of compiling 
interpretable code for the terminal driving equation if one was  given to 
the Define Device program. The form of this code is a parenthesis-free 
rephrasing of the givenequation. Interpretation of the code is done with 
a pushdown store interpreter. 

Operation Fetch Fetch Fetch 
Performed B C D 

For example, if  the given equation is 

+ + 

A = B + C + D  

State of 
Pushdown 
List After 
Operation 

then the code list placed onto terminal A is 

D 

C C (C+D) 
B B B B (B+(C+D)) 

B, C, D, +, +. 

When this is executed in order during simulation, the desired values of 
the signals on B, C and D a re  stored into successive positions in the pushdown 
list. Then C and D a r e  logically OR'ed and the result placed where C was 
stored. Finally, theintermediate (C+D) is OR'ed with B and the result placed 
where B used to be. The total operation results in the correct value for the 
signal at terminal A being placed into the first cell of the pushdown list. 
Figure 3-14 illustrates the various steps in the process for the example. 

The value fetch portions of the compiled code actually consist of three 
pieces of related information. To be more specific, the operation implied by 
"fetch B" is actually stored in the code list as: 

1. 
2. 
3. Delay (At). 

Fetch - activate the fetch routine. 
Pointer to terminal B of this device. 

The fetch routine locates the signal actually on terminal B for this 
instance. It then searches the past history of that signal for a time appropriate 
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to  the delay (At) given above, and retrieves the value associated with that time. 
This finally is the value to be stored into the pushdown list. 

It should be noted that in the example where A = B + C + D, terminal A 
appears on the successor lists for terminals B, C ,  and D. There may be other 
entries on those successor lists, but they would result from other equations 
within thesame device. Thus if, for example, E = B * C defines yet another 
terminal (E), then E also appears on the successor lists for B and C (but not 
for D). 

2) Instances 
There is an instance structure in an OLLS logic file for every physical 

element in the circuit described by the file. This includes all the logic devices 
in thecircuit. The form of every instance structure is an exact replica of the 
model structure found in the glossary for its type; thus the forms of several 
instances of the same device type a r e  identical. The contents of the instance 
structures a r e  different, however, reflecting the fact that each individual 
instance is actually distinguishable from its brothers. 

The instance structure consists of two parts - a FILLIP cell called the 
Instance-Head cell, and a group of cells for each terminal classification which 
indicates the interconnections from this device to other instances. The Instance- 
Head cell contains a unique identification number which distinguishes this 
instance from all others of the same type. This is referred to as the device ID. 
Thecell alsocontains a FILLIP pointer back to the proper glossary structure 
for this type of device. This is the main link from instances back to glossaries, 
and is used extensively during simulation. The Instance-Head cell also contains 
pointers to each of the groups of cells from the various terminal classifications 
(input, output, expin, etc.), and is therefore the nucleus of the whole instance 
structure. 

The terminal-cell groups, as described in Section 3.1 of this report, are 
variably structured FILLIP-pointer cell arrays. The size of each group, and 
therefore the amount of computer core storage occupied, is totally dependent on 
the numbers of each kind of terminal actually defined for the device. Each 
separately defined terminal requires room for a single FILLIP pointer to be 
available on every instance of the device type. When a particular instance of a 
device is incorporated into the circuit, each of its pointers is made to indicate 
the signal actually connected to that terminal. This is in the form of a direct 
FILLIP pointer to the Signal-Head cell which represents that signal. Note that 
the glossary for a device contains data for each of its terminals that uniquely 
locates the pointer to a Signal-Head cell on any of its instances. Hence, the 
locationof any signal cell attached to any terminal of any instance of any type 

91 



can be determined through the proper glossary and instance structure, and 
knowledge of which terminal is involved. 

3) Signals 
An OLLS file contains a signal structure for every unique signal in it. 

This includes not only normal runs between a device output and input, but also 
expander-signal runs and auxiliary-terminal signals. A signal structure 
consists of: 

a. Signal-Head Cell. 
b. Source Link. 
c. Destination-Link List. 
d. Set Inclusion List. 
e. Simulation History-Tape List. 

a. Signal-Head Cell 
As in the instance structure, the Signal-Head cell contains pointers 

to all of the other constituent elements of the signal structure, and is 
therefore its nucleus. In addition, the head cell contains three data items 
pertaining to simulation of the circuit. They a re  a set  of simulation flags, 
the maximum required time span of the history tape, and the time at which 
the signal last changed value in the simulation. The use of these data 
items will be explored later in this section. 

b. Source Link 
The source link of a signal structure contains an indication of the 

device and terminal on that device where the signal originates. This 
would necessarily be an output, expander-output, or auxiliary-variable 
terminal of the source device. The form of the indication is a pair of 

I FILLIP pointers; one directed at the appropriate instance structure, and 
one directed at the proper terminal cell within the source device glossary. 
The source link, therefore, provides all the information necessary to 
exploit the glossary to evaluate a signal's driving equation. 

c. Destination-Link List 
The destination-link list consists of cells identical to the source 

link. The data items indicated are all the terminals and devices on the 
signal run, except the source terminal. Thus the pair of items indicates 
all glossaries, instances, and terminals which a r e  associated with a 
signal. 
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d. Set-Inclusion List 
The set-inclusion list and the simulation flags a r e  used to indicate 

and define membership of this signal in higher-level sets of signals. 
The kinds of sets  indicated include: 

1. Those signals being traced. 
2. 
3. 
4. 
5. 

Those signals which participate in sampling expressions. 
Those signals which participate in run control expressions. 
Those signals which a re  not to be tested for hazards. 
Those signals which are included in register set definitions. 

The function of thesevarious sets are clarified elsewhere in this report. 

e. Simulation History-Tape List 
The history-tape list of a signal consists of one or  more special 

FILLIP cells. Each cell contains enough room for up to ten transition 
records. Each record is a pair of data elements - value and time. 
Whenever the signal under consideration changes value during the dynamic 
simulation run, this fact is recorded in the history-tape list. The existing 
tape contents at the time of the transition a r e  pushed down one level to 
make room for the current transition record. The new value and time of 
occurrence a r e  thus recorded at the top of this tape (or list). 

As previously mentioned, the signal-head cell contains a numerical 
limit to the time span which must be covered by the history tape. A s  an 
older transition gets pushed down further from the current signal value, 
its time of occurrence is tested for obsolescence. Such obsolete segments 
of value history are discarded to prevent the growth of very long history 
tapes, and hence to conserve core storage for useful data. 

4) Simulation Lists 
Simulation lists are created immediately before and/or during a 

simulation run. They do not constitute a permanent addition to an OLLS data 
file, and so a r e  jettisoned when the file is returned to an inactive state. This 
is done to reduce the required storage area for the file when the user is done 
simulating it. 

All simulation lists a r e  addressable from the root of the logic file, and 
a r e  appended to the first FILLIP cell below that root. The kinds of lists which 
a r e  involved are: 
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a. 
b. 
C. 

d. 
e. 
f. 

g. 
h. 
i. 

a. 

Sampling control commands. 
Run control expression. 
Event list . 
Trace and sample output. 
Hazard detector output. 
Dump output. 
Propagation e r ro r  output. 
Register set definitions. 
Conditional input events. 

Sampling Control Commands 
The general sample control card is: 

SAMPLE Siglist IF Expression 

When this is inserted into an OLLS logic simulation, three data elements 
a r e  added to  the sample control list. They a re  the card image (for 
subsequent print output), a list of pointers to the signals mentioned in the 
Siglist, and a list of compiled interpretable code generated from the 
given signal expression. This code is slightly different from that compiled 
for device output terminals because it fetches only current signal values 
directly from signal-value history tape without passing through any 
glossaries enroute. 

Each of the signals mentioned in the expression is marked by a flag 
bit indicating that fact, and is given a set-inclusion pointer back to this 
entry on the sample control list. Thus, when any signal mentioned in an  
expression changes, the simulation program can easily locate and evaluate 
the proper IF clause to control sampling output. 

b. Run-Control Expression 
The run-control expression is created when a Run-Control card 

containing a termination expression is inserted. This card appears as: 

RUN At OR Expres s ion 

in the input decks. This expression is processed exactly like the sample 
control expressions and is stored in the same format. Naturally, 
maturation of a run-control expression has a different effect on the run 
than a sample control expression. 
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c. Event List 
This list is the center of all simulation activity during a dynamic 

run. Its structure and use is explored in detail beginning on page 99 of 
this report. 

d. Trace and Sample Output 
When trace and sample events actually occur during a simulation 

run, the pertinent data is first outputted to this central list for later 
editing and printing. Theoutput isin the form of one data cell per trace 
event, with indications by pointer of the signal being outputted and by 
value of the time and logic value being recorded. Sample events are 
recorded in the form of lists with a pointer indicating the sample control 
card initiating the output. The time of the event is recorded along with an 
ordered list of logic values corresponding to the desired sample-signal 
list. 

e. Hazard-Detector Output 
When hazard conditions occui. during a run segment, the output 

indicating these events is placed into this list. Output is in a form which, 
for each recorded hazard, gives the signal on which the hazard occurred, 
the time of occurrence, and the nature of the hazard (real  o r  potential). 

f. Dump Output 
Whenever a rollback dump is ordered by the user, this list is 

created from the data file. It consists of an ordered set of all signal-value 
history-tapes plus the current event list. The signal tapes a r e  collected 
in a certain order and, when the file is re-initialized properly, a r e  
replaced onto the proper signal-head cells in the same order. The 
success of this operation requires that the signal-structure t ree  not be 
changed at all between dumping and re-initializing the file. 

g. Propagation-Error Output 
E r ro r s  which occur during the pre-dynamic run setup a re  recorded 

in this list. The output for each e r ro r  is a pointer to the signal that 
reverted to an undefined status. Knowledge of the order in which the 
e r ro r s  occurred is vital to  any corrective action the user may take, so the 
list is carefully ordered in sequence of occurrence. 

h. Register-Set Definitions 
Although this feature of OLLS will not be included in the initial 

program release, a brief discussion of its merits is in order. The OLLS 
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user  would be able to declare any set of signals to be a register. This fact 
would be recorded in this simulation list and in each included signal-head 
cell. Then he would be able to refer to the complete register set by name 
in any of his simulation control cards. The net effect would be, first, to 
free the user from defining sets of signals more than once in his input 
statements and, second, to provide more readily interpretable formats of 
trace and -sample outputs for him. If a defined register should be traced 
or sampled during a run segment, output would be presented more 
concisely than for other signal lists which are not defined as registers. 
This would go far towards upgrading OLLS from a bit-by-bit simulator 
towards a register-by-register simulator. 

i. Conditional-Input Events 
The general form of a conditional-input event card is: 

EVENT Signal Value IF Expression 

When such a card is presented to OLLS the expression is complied 
exactly like the expression on a Sample-Control card. An entry containing 
the compiled code, a pointer to the signal to be changed, and the new value 
for that signal is placed in this list. Each signal mentioned in the 
expression is so marked and given a pointer back to this entry. Henceforth, 
whenever those signals change, the expression is evaluated to determine 
if the conditional event is to occur. 

b) Predecessor and Successor Signals 
The concepts of predecessor and successor signals are used in the OLLS 

simulation algorithms , and therefore should be fully understood. The two terms 
a r e  closely related and can be defined together. 

One must recall that there a r e  two levels of logic construction in an OLLS 
circuit - the interconnections among devices and the devices themselves. -1 
signal which is attached to an output terminal of a device is a successor of all 
those signals which enter into the output-terminal driving function directly. 
Similarly, a signal which is used directly to compute the driving function for 
some output terminal is a predecessor of that output signal. In the example of 
a simple NOR gate device, the NOR gate output signal is successor to all its 
input signals , since all the input terminals appear in the output-driving function. 

Next consider a multi-input multi-output device in which only some of the 
inputs affect each output. Then only those signals that a r e  connected to device 
terminals which interact directly through the driving equations have a 
successor-predecessor relation. 
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In the special case of a device wherein an output-terminal function includes 
itself in its equation, the signal connected to that terminal is its own successor 
and predecessor. Should the interaction between a signal and its past history 
be expressed through an intermediate equation, the self-successor property 
disappears, Thus, in the example of an oscillating terminal: 

A. = A10 B2 

The signal on A is successor to both itself and the signal on B. 
behavior can be modeled by a pair of terminals: 

This same 

C = A5 
0 

In this case A is successor to B and C, while C is successor to A. Note that, 
although the behavior of terminal A for these two models during simulation is 
identical, the successor-predecessor relationships a re  different. 

c)  Initialization Algorithm 
Initialization of an OLLS logic circuit usually consists of two separate 

phases. The first is the planting of explicitly stated initial-signal values 
throughout the signal-head cell tree. This is done in response to input cards 
such as: 

or 
INITIAL$ Siglist 

INITIAL1 Siglist 

Aseach of the mentioned signals is set  to the indicated static value, it is also 
entered into a list to provide data for the next phase. 

The second phase of the process is initiated by entering the command card: 

PROPAGATE 

The state of the logic file at that moment is as follows: 

1. 

2. 

The explicitly initialized signals have the correct values. 
Al l  other signals are currently uncontrolled invalue. They may be 
all undefined o r  may have been left in some other logic state by an 
earlier run segment. 
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3. There is a list (Setlist) of all the signals which have heretofore 
been explicitly initialized. 

The propagation proceeds by using the Setlist as a source of data and 
also as a destination of computed results. For every signal mentioned in the 
Setlist, the followkg operations are performed: 

1. Each of the signal's successor signals is located and evaluated by 
its terminal driving function. The evaluation assumes time to be frozen 
so no account of delay is made. All  signal values are taken to be current 
and unchanging. 

2. If a successor's newly computed value agrees with its previous 
value,no further effort need be made. If, on the other hand, the old and 
newly computed values differ, then one of two additional steps must be 
taken. If the old value was  undefined and the new value is Zero or One, 
anormal initialization has occurred. In this case the new value is placed 
in the successor signal's value history tape. Since the successor signal 
has now changed value, its name must be added to the original Setlist. 
This is performed before going on to evaluate the next successor of the 
signal being propagated. The Setlist thus grows to indicate implicit 
signal-value initializations . 

The second case to be considered for propagation is the one in 
which data is actually lost during the process. If the old value of a 
successor signal is Zero or One but the newly computed value disagrees 
with this, an indication of e r ror  has occurred. Generally this happens 
because the user has requested an inconsistent or inadequate initial-value 
array. Such a signal is forced to revert to an undefined value to prevent 
unending computations. The signal's name is added to a list of other such 
initialization e r rors  kept in the simulation-list area of the file. Finally, 
the signal at e r ror  is also added to the Setlist to propagate, if  possible, 
the newly undefined signal value still farther into the file. 

3. When all successors of a signal mentioned on the Setlist have been 
evaluated by the rules of 1 and 2 above, that signal is deleted from the 
Setlist. The propagation program then steps on to consider whatever 
signal happens to be next in the list. The order in which signals a r e  
considered has some effect on the length of time that the entire process 
takes, but none on the final value configuration achieved. 
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d) Event List 
As far as the initialization procedure in OLLS is concerned, the passage 

of time is not a factor. However, the dynamic-simulation technique used to 
achieve realistic circuit behavior requires a time base to operate successfully. 
The function of the event list is to provide the necessary time base to the 
simulation. 

The event list is a time-ordered list of all events which are scheduled to 
take place during simulation. Its structure can best be described as like that 
of a comb - with time advancing along the back of the comb and events recorded 
onits teeth. Simultaneous events, if  there are any, are recorded on the same 
tooth. The spacing between teeth is not uniform, however, since the presence 
of a tooth indicates a time at which an event is actually scheduled rather than 
a time at which one might be placed. Each tooth position is marked to indicate 
the simulation time it represents, and it is possible to interject new teeth 
between existing ones should the need to do so arise. 

There a r e  presently two sub-lists on each tooth which may each contain 
anunlimited number of simultaneous related events. Of the two lists presently 
utilized (out of a possible twelve lists), one is concerned only with evaluation of 
signal values and the other only with the actual transitions experienced by 
signals. They a re  called, respectively, EVLIST and DOLIST. 

The dynamic simulation proceeds by stepping along the comb. A l l  
scheduled events at  each tooth must be executed before advancing to the next 
tooth ih sequence. When time does advance after successfully executing all 
events on one tooth, it does so by jumping directly to the next time tooth in place. 
Time thus increases monotonically, but not necessarily in unit increments. The 
gap between two teeth may be any positive integer on a total available time scale 
of 1,048,576. 

When a user first calls for the simulation program to operate on his 
circuit, the event list is necessarily empty. Any unconditional input events or  
repetitive sequences (see page 82 ), which he may supply, form the initial event 
list. These are placed on the DOLIST in their correct tooth positions. Repetitive 
sequences have all discrete transitions which wi l l  occur during only the first 
period placed into the event list at this time. Subsequent transitions on these 
and other periodic signals wi l l  be added to the list no more than one period 
before they occur. The event list is, therefore, always finite in length, even in 
the presence of repetitive sequences. 

During the course of a run segment the event list grows into the future and 
contracts from the past as signal-related events occur and in turn breed new 
events. Thus, at any moment, the list indicates the schedule of imminent events 
a s  generated by the simulation algorithm. 
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e) Dynamic-Simulation Algorithm 
The dynamic-simulation run follows a course dictated by entries in the 

event list and by the logic constraints imposed by the user 's  circuit. Al l  

computation and output occurs with time frozen at a particular tooth in the event 
list. The behavior of the logic circuit, propagation of signals into the future, 
and sampling and tracing snapshots all take place with time frozen. The 
algorithm through which the behavior of a logic circuit is simulated thus is 
actually an ordered sequence of computations which take place with time halted. 
Whenever an event must take place in the future rather than instantaneously, it 
is seeded into the event list at a point in time which is not yet under consideration. 
Any references to  the past must be made within the signal structures themselves 
(history tapes), since those portions of the event list which have already been 
processed are discarded. 

' 

The dynamic- simulation algorithm begins by interrogating the current 
event-list tooth. First, the DOLIST is processed. Each entry on the DOLIST 
is a data-pair-signal pointer and new value. For  each such entry on the current 
DOLIST the program: 

1. 
2. 
time. 
3. Discards any obsolete old values for the signal. A value is obsolete 
only if its time of occurrence is older than the oldest which needs to be 
kept for that particular signal. 
4. Locates, through the destination-link list and the glossary for each 
destination device, the successor signals of the one being changed. 
5. Each successor signal has a specified delay associated with its 
response to  the particular predecessor signal being changed. This 
information is also extracted from the destination-device glossaries. 
6. An entry is prepared for the event list for every successor of the 
signal just changed. Each entry is made into the EVLIST of the tooth 
appropriate to  the delay extracted from the glossary. If an extracted 
delay happens to be zero, the EVLIST entry is made on the event-list 
tooth being processed. If no tooth exists at the appropriate time in the 
near future to accommodate an EVLTST entry, one is created and the 
entry made. The entry presently consists only of apointer to the successor 
signal-head cell, although additional data could be included. For  instance, 
the predecessor signal which stimulated the placement of the successor 
into the event list could be named again, thus allowing cause-and-effect 
behavior to be studied more closely. 

Locates the indicated signal's value history tape. 
Pushes down old values to  make room for the new value and current 
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When the DOLIST is processed, it is jettisoned as excess baggage. The 
data file has been changed only to the extent that those signals which were 
mentioned on the DOLIST have their new values. The event list has many new 
EVLIST entries on various teeth, representing all the successors of all the 
signals which have actually changed. 

Next thecurrent EVLIST is examined for any entries. If there a r e  any, 
the program must compute their current logic values. For each entry on the 
current EVLIST, the program: 

1. Locates the mentioned signal-head cell and source-link cell. 
2. Refers to the glossary for the source device of that signal and 
executes the output driving function for the terminal to which this signal 
is connected. 
3. The computed value is compared with the present value on top of 
the signal's value history tape. If they a r e  the same, no further action 
takes place. 
4. If the twovalues differ, an entry is prepared for the current DOLIST, 
indicating the signal to be changed and the computed new value. 

When all entries in the current EVLIST a re  processed, the EVLIST is 
jettisoned as obsolete. The program then examines the current DOLIST to see 
if any entries have been created in it. If there a r e  any, it repeats the processing 
described for the DOLIST. If not, it has finished with the current time tooth 
and steps on to the next one in the sequence. 

The sequence of operations just described is the heart of the dynamic- 
simulation algorithm. The program separates all nonsimultaneous events into 
distinct processing stops. Then, within a time step, it further separates events 
into evaluation of signal values and execution of computed changes. This 
separation permits us to handle zero-delay logic so  long as there a r e  no 
oscillatory logic loops. If such a situation exists, the program wi l l  never be 
able to finish its computations at one time step. It wi l l  be rapped back and forth 
between EVLIST and DOLIST in a nonconverging process. The presence of 
any delay in the loop eliminates this problem entirely. 

f )  Tracing, Sampling and Hazard Detection 
The preceding section described that portion of the dynamic- simulation 

algorithm which causes signals to changevalue and time to advance. There are, 
however, a number of frills that accompany the signal-changing process which 
a r e  required to make OLLS a useable program. The subjects of output 
processing, run control, and hazard detection must be merged into the dyanmic 
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algorithm to create ause r  interface and to  present results of a run to the user 
for inspection. 

Since all these extra features of OLLS a r e  based on actual signal-value 
changes, we need only consider the DOLIST processing that occurs at an event- 
list time tooth. Each time a signal value is actually changed, the program 
consults the simulation flag bits in that signal's head cell. These indicate 
whether the signal is to be traced, tested for hazards, or  considered as part of 
a sampling, run termination, and/or conditional-input event-control expression. 
If any of these flag bits indicates the need for additional processing, the set- 
inclusion list of thesignal being changed is extracted and added to a third list 
(in addition to EVLIST and DOLIST) on the current-event tooth. When all 
processing of EVLIST and DOLIST at a particular tooth is complete, this third 
list is consulted before actually permitting the program to step along to the next 
event time. A l l  the operations indicated a re  performed now. The required 
trace-output data is placed into the simulation lists. Control expressions a re  
evaluated to determineif sampling is to occur, if input events a r e  to be added 
into the event list, or  i f  the run is to terminate prematurely. Hazards a re  tested 
for by measuring the time that elapsed between transitions on a changing signal, 
and comparing pulse widths with prescribed limits. Finally, after all the extra 
processing is complete, the program examines the time of the next-event tooth 
and compares it to the established run-segment limit value. If the At limit wil l  
be exceeded by stepping on to the next time tooth, the run is stopped, thereby 
returning control over the simulation to the user. 

r 
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3.4 The OLLS 360 Drawing Algorithm 
H. Robert Howie 

Experience with the H1800 system described in Chapter 2 has shown that very 
few interconnections are ever made with more than five straight-line segments. Most 
connections, in fact, are made with one o r  three straight-line segments. The H1800 
system was  designed to find any connection with a s  many as nine straight-line segments 
and then t ry  to reduce that connection to as few segments as possible. This naturally 
requires computer time and sometimes doesn't reduce the connection far enough. 

With thisin mind, a better approach would be to t ry  the simplest pattern first 
and proceed upward through more complicated patterns as necessary until a connection 
is made or  until more than five straight-line segments are required for the connection. 
The limit of five segments is purely arbitrary. Complicated connections are easier 
for the designer to follow i f  labeled with the signal name than i f  connected by a maze 
of twisting line segments. To aid in this approach all possible connections a r e  
classified by the patterns shown in Fig. 3-15. 

In Fig. 3-15 notice that the five basic patterns correspond to the number of 
segments required to connect the source at A to the destination at B, and that each 
pattern has two forms depending on whether the exit direction from A is horizontal or 
vertical, The required pattern to connect a particular pair of devices can be 
determined by elimination fairly rapidly by asking a few simple questions about the 
terminal characteristics of the device. 

To illustrate this, consider the example below. 

The exit direction from terminal A is horizontal so the Y forms of all five patterns 
a r e  eliminated. The entrance direction to terminal B is also horizontal so patterns 
I1 X and N X which require a vertical entrance to B a r e  also eliminated. A first 
attempt is made to f i t  pattern I X. The Y coordinate of A and B are not identical so 
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we proceed to t ry  pattern 111 X. This is done by extending A as far forward as 
possible, extending B as far backward as possible, and then looking for a single 
straight line which connects them. If such a line can be found, the algorithm ends; 
otherwise proceed to pattern V X. If pattern V X fails, the connection is simply 
labeled with the signal name. 

Had terminal B beenvertical (such as the Direct Set o r  Reset on a JK Flip-Flop), 
patterns I X, 111 X and V X would have been eliminated, and only patterns I1 X and 
IV X would be considered. 
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3.5 Program Structure 
James Pennypacker 
Gary Schwartz 

To manipulate the data in the data file, a number of separate programs have 
been written. Each of these programs is independent of the others but there is a 
structure which t ies the various routines together; this structure is shown in Fig. 
3- 16. The intent of this section is to describe the functions of each of the routines and 
to indicate how the various programs are logically inter-related. 

Briefly, there is one main program of OLLS; this main program reads and 
interprets all OLLS input cards and, depending upon the input-card contents, branches 
to one of the working programs. Figure 3- 16 depicts five different working programs, 
each of which is identified by an asterisk; other working programs, such as drawing 
generation and deletion, a r e  not explicitly shown. In general, the working programs 
provide the means for manipulating data in the data-file structure. 

In Fig. 3-16, there a r e  two references to a program called DEFINE DEVICE. 
Even though two different programs a r e  indicated in the illustration, both rectangles 
refer to the same physical program; there is only one program called DEFINE 
DEVICE. The same applies to the programs ADD TO LOGIC FILE, CHANGE LOGIC 
FILE, SIMULATE, and CARDFILE. 

3.5.1 Types of Input Cards 
As mentioned in the previous section, there a r e  really three types of input 

cards which a r e  of interest to OLLS. First, there a re  the macroinstruction 
cards which call into operation either the working programs o r  the on-line CRT 
system. The macroinstruction cards a re  recognized by the presence of an 
asterisk (*) in the left-most column; for this reason they a re  often referred to 
a s  asterisk cards. Examples of macroinstruction cards a re  

* DEFINE DEVICE type 
* ADD logic file name 
* CHANGE logic file name 
* SIMULATE 
* CRT 

The second class of cards is composed of subinstruction cards which 
describe the specific operations to be performed by the working programs. 
Subinstruction cards all contain certain key words which are recognized by the 
appropriate working program. 

The third class of input cards is formed by the actual data cards which are 
required for specific operations. 
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Generally speaking, a number of different data cards immediately follow 
each subinstruction card; all data cards are serviced by the subinstruction card 
until a new subinstruction card is read. Furthermore, a number of different 
subinstruction and data cards normally follow each macroinstruction card; the 
macroinstruction card maintains control until the next macroinstruction card 
is read. 

3.5.2 CARDREAD and Main Program 
Insofar a s  it controls the operations of the various working programs, the 

central, or  main program, of OLLS is the program CARDREAD. This program 
operates in two modes; as the main, o r  controlling, program or as a subroutine 
called by the working programs. 

Al l  input cards, regardless of type, are read by the CARDREAD program. 
When operating a s  the main OLLS program the operation of CARDREAD is 
essentially a s  follows: CARDREAD scans each input card until a macroinstruc- 
tion card is found. The image of the card is remembered by CARDREAD and 
some minor bookkeeping operations a r e  performed. The appropriate logic-data 
file is fetched from the FILLIP monitor. Control is transferred to the ap- 
propriate working program; this transfer includes transferring the image of the 
macroinstruction card and the root of the required data file. CARDREAD 
remembers which data file is being processed and which operating program 
has control. 

Each working program may in turn call CARDREAD as a subroutine to 
read and deliver the subinstruction cards and the data cards required by the 
working program. When operating in this mode, CARDREAD scans the input 
card to determine whether or not the card is a macroinstruction card. If it is 
not, the image is delivered directly to the working program. If the card is a 
macroinstruction card, control of operation is transferred to a different entry 
point of the working program which performs only clean-up operations for the 
working program. No card image is transferred by CARDREAD to the working 
program at this time; however, the card image is remembered by CARDREAD. 
When the clean-up operations a r e  completed, the working program must transfer 
control to the CARDREAD ini ts  main program mode. CARDREAD now scans 
the image of the macroinstruction card which has just been read; the appropriate 
data file is fetched, the bookkeeping is updated, and control is transferred to the 
appropriate working file as before. 

If the macroinstruction card does not contain a logic file name, the file 
which was named on the previous macroinstruction card is assumed. The 
bookkeeping operations include keeping anup-to-date list of all OLLS files and 
users, remembering which data file was last named, and remembering which 
operating program is in control. 
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3.5.3 DEFINE DEVICE 
The device definition program has been described in Section 3.2 of this 

report. 

3.5.4 CARDFILE 
One of the service routines incorporated into OLLS is the CARDFILE 

system. Using the system, the designer can store in the FILLIP data files lists 
of input card images. The CARDFILE system will deliver the card images, 
one at a time and upon demand, for further processing. The CARDREAD 
program is designed not only to read cards from the computer card reader but 
also to read card images from the CARDFILE system; thus, either entire 
computer runs or portions of runs can be performed, using data and control 
cards which have been stored in memory prior to the run. 

A CARDFILE EDIT program enables the user $0 modify the image of any 
particularcard which has been stored. Cards may be deleted from the image 
list and new card images may be inserted into the list at arbitrary points. The 
editing of the card files may be performed either in the batch-processing 
mode, using input cards, or in the on-line mode, using the typewriter keyboard 
of the on-line graphic terminal. This feature permits the designer to control 
from the on-line keyboard those runs which a re  made up of batch-processing 
segments interspersed with on-line activity; the control cards of the segments 
can be modified a s  desired, depending upon results of previous activity. 

There a re  two foreseeable major uses of the CARDFILE system. When 
a data-file structure is composed of thousands of input cards, as is the typical 
case for a practical design, it becomes unwieldy for the user to work with such 
large input decks. Using the CARDFILE system, the designer can in one job 
store all the card images; he can in the future edit any of these images to make 
corrections, additions, or deletions. If the designer then wants to make a trial 
design which is a slight variation of the first design, he can duplicate the card 
image list in memory and make the necessary modifications to the duplicated 
list. The designer now has two input lists in memory, one for each design; these 
input lists become controlling documents for the design. 

The second major use of the card file system occurs during simulation 
conducted on-line. The control cards for performing simulation can normally 
be prepared prior to the on-line run and stored as an image list. After the user 
has designed a logic circuit in the on-line mode, additional data-card images 
must be prepared and inserted into the image list if  the circuit is to be simulated. 
This can be done at the graphic terminal keyboard; the card-file image list wil l  
then control the simulation. 

- 
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3.5.5 ADD 
The ADD TO LOGIC FILE program provides the means of inserting 

design information pertaining to a particular device into the logic-data file. 
Pr ior  to inserting design data, a glossary for  the device type must have been 
constructed by the DEFINE DEVICE program. For each individual device, the 
following information may be inserted into the logic-data file: 

1. Device type. 
2. Device identification. 
3. 
4. 

5. Names of signals which are connected to each of the device 

Identification of drawing on which device appears. 
Coordinates of drawing where device is located. 

terminals. 

It is not yet known how graphical data is to be represented on punched 

Generally speaking, one card image is used to insert all the data relevant 
to a particular device; continuation cards may be used to contain additional 
signal names i f  required. 

The program checks each input data card for consistency with the existing 
data structure. The device identification is checked against the identification 
of all other devices of the same type; if  it is a duplicate identification, an e r ro r  
message is produced in hard copy or  on the CRT, depending upon the mode of 
operation. The coordinates of the drawing number a r e  checked to assure that 
other devices have not been positioned at the same location. If the drawing 
number does not yet exist in the data file, a new drawing-head cell with the 
desired number is automatically generated and inserted in the data structure. 
The signals on the output terminals of the device a r e  checked to determine 
whetherornot the signal is connected to any other output terminal; this is not 
allowed. Signal-head cells for new signals are automatically created and 
inserted into the data file. Finally, signals which are connected to no output 
terminals are identified as sourceless signals and brought to the attention of the 
designer. 

data cards. 

3.5.6 CHANGE 
Where the ADD program provides for inserting additional data into the 

data file, the CHANGE LOGIC FILE program enables the designer to modify via 
punched cards any piece of design data which has been inserted into the data-file 
structure. The following types of modifications can be made under control of 
the CHANGE routine: 
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1. The name (identification) of a drawing, signal or device instance 
may be changed. 
A device may be moved to a different drawing or to a different 
location on the same drawing. 
A device may be changed to one of a different type. 
Signal'connections may be made or broken. 
The size of a drawing can be changed. 

2. 

3. 
4. 
5. 

In all relevant cases, consistency checks a re  applied to the modified dataas 
was described for the ADD routine. Al l  datanot specifically mentioned on the 
input cards to the CHANGE program remain unchanged. 

When a device type is changed to a new type, the old and new types must 
have the same number of inputs, outputs, expander inputs, and expander outputs. 
Signals for auxiliary equations are automatically added (or deleted) as needed 
for the new device type. 

When a device is moved from one position to another (or to a different 
drawing at the same positions), the graphic data which described the former 
signal runis  deleted from the file structure, Graphic information for all runs 
of the signal on the original drawing a re  deleted. 

3.5.7 SIMULATE 
The simulate program is discussed in detail in Section 3.3 of this report. 

3.5.8 CRT 
The CRT system is described in detail in Section 3.6 of this report. It is 

sufficient to state here that, in order to change or  insert data from the CRT, the 
corresponding control and data card images a re  generated by the CRT systems 
and read by CARDREAD exactly as if the cards were coming from a card file 
or the computer card reader. Thus, the same working programs a r e  called into 
operation from the CRT system as a re  used in the batch-processing system. 

3.5.9 DELETE 
The DELETE FROM LOGIC FILE program enables the designer to remove 

unwanted data from the data-file structure. Because the CHANGE routine 
allows individual data to be modified by the designer, the DELETE program 
operates in toto on all the design data included on the original ADD input-data 
cards. Specifically, the DELETE program requires only that the type and 
identification of the device which is to be deleted be given. The device and al l  

data pertaining to the deviceare deleted from the data file. Signals which are 
connected to theoutputs of the device a r e  eliminated from the data file rather 
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than being classed as sourceless signals. If the device is the last device on a 
drawing, the drawing itself is eliminated from the data file. Auxiliary signals 
required by the deviceare also deleted. The schematic position of the device 
becomes available for placing another device of the same size. Finally, all 
signals which were connected to the inputs of the device are appropriately 
modified and the graphic data - as it relates to  the drawing from which the 
device was removed - for all those signals is deleted from the data structure. 

3.5.10 DELETE TYPE 
Where the DELETE FROM LOGIC FILE routine enables the user to 

delete design information relative to a particular device, the DELETE TYPE 
program provides for deleting a glossary structure from the data file. A 
prerequisite for this operation is that all instances of the specified type must 
have been deleted prior to the deletion of the glossary. Otherwise, the glossary 
structure is not deleted from the data-file structure and an e r ro r  message is 
brought to the user 's  attention. 
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3.6 On-Line System (CRT) 
H. Robert Howie 
Ramon Alonso 

3.6.1 Introduction 
This section. describes in detail a portion of the interaction between a 

Because this is a written report, the procedures may 

The description carries only up to the point at which the designer has 
established a working file, and has collected the various devices and circuits 
he expects to use. Length of text alone makes some limitation of the description 
mandatory. 

A s  far a s  implementation is concerned: as of this writing SYSTEM 
CENTRAL and FILE MANIPULATE menus a r e  working a s  stand-alone 
programs, ready to be tied to the rest  of the system. The DEFINE DEVICE 
menus a re  half-done, with the DRAWING MANIPULATE menus in the planning 
stages. 

designer and OLLS. 
appear cumbersome and lengthy, but are, in fact, quite straightforward. 

3.6.2 Physical System 
The equipment system used to implement OLLS is composed of an IBM 

360/ 75 computer and amodel 2250 Graphic Display Console. The console has 
a CRT, a light pen, and a keyboard. An internal memory relieves the computer 
of the task of regenerating the display the required 30 times per second, for 
flicker-free appearance. 

3.6.3 Concept of User's Role 
Experience, both ours and that of others, indicates that it is desirable to 

use the light pen tochoose from among alternative actions, rather than typing 
in commands. If, at every step of the way, all possible alternative actions a re  
displayed on the CRT, the operator is relieved of the task of memorizing exact 
spellings and formats, and can choose an acti;on by pointing at it with his light 
pen. This sort  of system has strong overtones of self-instruction and, a s  wi l l  
be seen, offers a "natural" progression through the capabilities of OLLS. 

Typing cannot be entirely avoided; there are instances, such as when 
inventing names, when typing is clearly superior to writing characters with a 
light pen. 
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3.6.4 Procedures. Setting Up a File 
The first thing to happen after calling OLLS is the display of the OLLS 

SYSTEM CENTRAL menu*, (Fig. 3-17). The designer can at this time select 
the major OLLS mode by pointing the light pen to the box next to the desired 
option. 

As  shown in Fig. 3-17, the designer is confronted with an empty file. 
Assume he is about to set up shop for the first time. Other designers before 
him have files, and there are common files from which he can draw information. 
Still in Fig. 3-17, the designer selects FILE MANIPULATE. 

In general, the user can work simultaneously with two distinct data files. 
The data file which he is constructing or inserting data into is called the 
Working File. Rather than generate new data, the user can copy information into 
the working file from any other existing OLLS file. The file from which 
information is copied is known as the Read Only File; the user is not permitted 
to w r i t e  data into this file or  to change its contents in any way. 

The result of that selection is shown in Fig. 3-18, where the FILE 
MANIPULATE menu is shown. The selection of possible commands is shown 
in the upper half, and the active file list is displayed in the bottom half of the 
screen. 

One of the possible commands is RETURN TO SYSTEM CENTRAL, which 
causes Fig. 3-17 to return to the screen. In general, it is possible at each step 
to go back to a previous one, 

At this time, when Fig. 3-18 first appears, our designer has neither a 
working filenor a Read Only file. He points to  SELECT READ FILE (11, then 
selects the COMMON file (21, then says EXECUTE (3). The result of the 
EXECUTE appears in Fig. 3-19. Notice that the top line now shows a Read 
Only File (common), whereas none was shown before. 

The designer now has a set of device definitions to work with, and wishes 
to set up a working file (Fig. 3-20). He does so by selecting CREATE FILE (I), 
and typing in the name of the file. He is naming his file SMITH DEMONSTRATION 
FILE. Thename of his working file appears next to the label WORKING FILE 
(2). When he finishes typing, he can command EXECUTE (3), which enters the 
new filenames inthe ACTIVE OLLS FILE LIST (Fig. 3-21). Typing er rors  can 
be corrected (before EXECUTE) by way of the keyboard itself, 

* The te rm "menu" describes quite well  the character of the control system for  
OLLS. The designer selects items from the menus in front of him to command 
desired actions. The menunaturally displays only those which a r e  relevant at 
that time. 
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When Fig. 3-21 appears, our Mr. Smith eiects to return to SYSTEM 
CENTER. Smith next selects the DEVICE MANIPULATE mode (Fig. 3-22), 
whereupon Fig. 3-23 results. He now can elect to DISPLAY READ ONLY 
FILE DEVICE LIST, a command which refers to the READ ONLY FILE atop 
Fig. 3-23. At the bottom of the screen is the WORKING FILE DEVICE LIST, 
presently empty. 

When he touches DISPLAY READ ONLY FILE DEVICE LIST ( l ) ,  and 
then EXECUTE (21, that list appears below and the original command option is 
replaced by DISPLAY WORKING FILE DEVICE LIST. Smith can go back and 
forth alternately displaying each list. 

Figure 3-24 shows how Smith selects devices for his working file. He 
first selects DEFINE DEVICE (11, followed by COPY FROM FILE (2). A s  wil l  
be seen later, the designer can define his own devices. 

Following the designer's election to copy from file, he selects, always 
with the light pen, those devices he needs for his design. These a re  3NOR/M 
(31, 8AND (4), BINARY 1 (5), and DIODE (6). He then EXECUTES (71, following 
which he elects to display the working file he has just composed (8). The result 
is shown in Fig. 3-25. Notice that DISPLAY WORKING FILE LIST has been 
replaced by DISPLAY READ ONLY FILE LIST. 

A s  of Fig. 3-25 Smith wishes to display a device, the 3NOR/M element, 
so he commands ( l ) ,  (2) EXECUTE (3) in Fig. 3-25. The result is Fig. 3-26. 
The gate symbol, equations, terminal names, and other relevant data a re  
displayed. 

4 

At this time the designer elects to RETURN TO DEVICE CENTRAL. 

3.6.5 Defining a New Device 
Being able to define new devices is, from the user 's  point of view, a most 

important property. It frees him from dealing with system programmers, for, 
if he cannot define his own devices and if  the existing list is insufficient, he has 
to have someone else model the device. The facility to interact with device 
modeling allows the designer a great advantage. He can define devices 
operationally, a s  a black box, or as a circuit, and he can change an existing 
definition if he so desires. He can readily incorporate new logic elements as 
they a r e  announced by commercial firms, or he can invent his own, and test 
them as a system component. 

Starting from OLLS DEVICE CENTRAL, Smith can now choose to DEFINE 
DEVICE (1). Previously he also chose COPY FROM FILE, but this time he 
does not. He starts typing (2) J - K  FLOP DIRECT SET AND RESET 
COMPONENT. The name proper is J - K  FLOP, and the rest a re  comments. 
When he EXECUTES (31, a null device by that name is incorporated into the file. 
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The DEVICE CENTRAL display remains. The null device just entered 
can be changed to  the desired one by commanding MODIFY DEVICE. The 
sequence (l), (21, EXECUTE (3) is shown in Fig. 3-28, whereupon Fig. 3-29, 
MODIFY DEVICE menu, appears. 

The designer must specify a number of things at this point, the most 
important of which are its logical behavior and graphic symbol. Notice that the 
name of the device to be modified appears at the top of the MODIFY DEVICE 
menu. 

The graphic symbol must be defined just so that named terminals exist 
for the equations to refer to. 

3.6.6 MODIFY DEVICE 
When the MODIFY DEVICE menu appears (Fig. 3-29), the designer can 

sketch an appropriate symbol. He  first selects a size, (1 )  and (21, then, by 
alternately pointing to SEGMENT (or SMALL DOT) (3)  and transferring the 
light pen to  the sketch area. Segments start and stop where the light pen starts 
and stops. Small dots a r e  actually small circles centered where the light pen 
first alights. The ERASE option deletes segments (or dots) on a last-in first-out 
basis. 

The LINE OF SYMMETRY (4) option is used as follows: when half the 
symbol has been drawn, the light pencan be pointed to LINE OF SYMMETRY, 
or to  two points on either avertical  o r  horizontal grid line, and to a point on the 
side to be reproduced. The other half of the symbol then appears. 

When satisfied, the designers can ACCEPT SKETCH (51, which is also a 
PROCEED command. 

The MODIFY DEVICE menu changes SKETCH OPTION to PLOTPOITU’TS 
OPTION (Fig. 3-30). The original sketch is composed of great many points, 
which takesa lot of 2250 memory to display. The PLOTPOINTS option allows 
replacement by a cruder picture, 

’ 

First, the center of the device symbol must be identified. The location of 
a device symbol in a drawing refers to the device center. 

The PENDOWN option permits replacement of sections of the sketch by 
short straight segments, to speed up device symbol display. The designer, 
after touching PENDOWN, touches consecutively the ends of the approximating 
segments. When satisfied, the designer can ACCEPT PLOTPOINTS which is 
also a PROCEED command. The end result, when accepted, is as shown in Fig. 
3-31. 

Mr. Smith 
touches ADD TERMINAL (S) (11, then INPUT (2), indicating that, until further 
notice, all terminals are to  be input terminals. He  places the five input terminals 

The graphic symbol now needs terminals assigned to it. 
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(actions (2.1) to (2.5)) where he wants them, by touching some place on the 
periphery of the symbol. Then he touches OUTPUT (31, then points (3.1) and 
(3.2). Al l  terminals are still unlabeled. Smith touches LABEL TERMINAL (SI 

(41, touches the terminal he wants to name and types a letter or anumber. When 
he is satisfied he touches ACCEPT TERMINALS (5), whereupon the MODIFY 
DEVICE menu changes to the one shown in Fig. 3-32. 

3.6.7 Functional Definition 
The graphic symbol having been defined and labeled, there now remains 

the task of defining the device functionally. The algebraic method used is 
described in detail in Appendix B. In particular, there is a section on the 
description of a J K  flip-flop which applies here. 

Smith has presumably worked out a model for his JK  (a far from final 
task). He touches INSERT EQUATION (1) and then types in the first equation 
(2), but without any delay subscripts. He then touches INSERT DELAYS (3) and 
using the space bar, types the delay values under and to the right of the cor- 
responding variables (4). The equations can be altered to suit, or modified at  
a later time. The J K  equations used here make no use of the set and reset  
terminals (A and B). These a r e  consequently ignored in the simulation of the 
device. When a satisfactory set of equations has been written, the designer can 
ACCEPT EQUATIONS (5). In our present example he does so and then touches 
RETUFW TO DEVICE CENTRAL (6). Notice that this last option has been 
continuously available throughout the device modification procedures. 

3.6.8 DRAWINGS 
Our man Smith returns to System Central by way of Device Central (Fig. 

3-33 and 3-34). He is ready to use the available material to  design a circuit, 
which is done by calling the DRAWING CENTRAL Fig. 3-35. The procedures 
hereare  quiteanalogous to the ones for DEFINE DEVICE. A list of currently 
available drawings (the READ ONLY FILE DRAWING LIST) is displayed (Fig. 
3-36), and drawings for the circuits RING 5 and REG 16 a r e  copied into the 
WORKING FILE. Smith is going to invent an arithmetic unit which he labels 
ARUNOl (Fig. 3-37). As  in the case of defining the J K  device, he caused his 
WORKING FILE DRAWING LIST to be displayed (1) + (2)  (it contained, at that 
time, just RING 5 and REG 16). He then pointed to CREATE DRAWING (3), 
and typed in ARUNOl ARITHMETIC unit (41, followed by EXECUTE (5). With 
this action a null (blank) drawing so named is added to his working file. Smith 
must now elect MODIFY DRAWING (61, and then point to ARUNOl (71, and 
EXECUTE (81, to start the real  design. 

The DRAWING MODIFY 1 menu appears (Fig. 3-38), and Smith first 
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picks a size by pointing to CHANGE TO (1) and then to  D (2). meaning he wants 
a size D drawing. 

The DRAWING MODIFY 1 menu displays the working list of devices 
previously selected. The task is to  select devices and place them in the drawing. 
The MODIFY 1 menu shows four places where the choice of devices will be 
displayed; these places initially say NULL DEVICES. Action (3) points to 
REPLACE SELECTED DEVICES; (4) and (5) indicate that the first null device 
is to be replaced by 3NOR/M, and (6) and (7) show that the second null device 
is to be replaced by BINARY 1. EXECUTE follows ( 8 ) ,  after which (Fig. 3-39) 
DRAWING MODIFY (2)  menu is selected. That menu contains a blank page with 
a title block in the lower half, and the menu itself in the upper half. Menu 2 

allows choice between a DEVICE SUBM ENU (Fig. 3-41) and a SIGNAL SUBMENU 
(Fig. 3-42), which allow insertion and deletion of devices and connections. 

At this point we  will leave the present detailed description of OLLS- 
designer interaction, and point to a likely end result of his efforts (Fig. 3-46). 
(That figure is actually a circuit drawn with OLLS/ 1800). W e  have not discussed 
many of the necessary actions, such as placing elements or  connecting elements 
automatically o r  along a designer-selected path. W e  have also not discussed, 
nor shall we, what sor t  of procedures are desirable for CRT simulation. The 
material presented up to  here, however, should give a clear idea of the sor t  of 
interaction possible with OLLS/ 360. 
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