DOWNGRADED AT 3 YEAR INTERVALS: DECLASSIFIED AFTER 12 YEARS DOD DIR 5200.10

Approved:
Trulfor β. Is yeses Date: $1 / 18 / 66$
MILTON B. TRAGESER, DIRECTOR
APOLLO GUIDANCE AND NAVIGATION PROGRAM

Approved

SYSTEM STATUS REPORT

January 1966

『タSTREMEESTATHON LABORATORY

UNCLASSIFIED

0

ACKNOWLEDGEMENT

This report was prepared under DSR Project 55-238, sponsored by the Manned Spacecraft Center of the National Aeronautics andSpace Administration through Contract NAS 9-4065.

This document contains information affecting the national defense of the United States within the meaning of the Espionage Laws, Title 18, U.S.C., Sections 793 and 794, the transmission or the revelation of which in any manner to an unauthorized person is prohibited by law.

The publication of this report does not constitute approval by the National Aeronautics and Space Administration of the findings or the conclusions contained therein. It is published only for the exchange and stimulation of ideas.

SYSTEM STATUS REPORT
 (Unclassified Title)

ABSTRACT

(Unclassified)

The System Status Report is distributed on the 15th of each month. The areas of activity reported on in this month's revision include, but are not limited to, the following for the Block I 100 Series and Block II Command Modules and Lunar Excursion Module equipment: configuration weight, weight trend information, centers of gravity, moments of inertia, electrical power requirements, computer programming status, and reliability estimates.
by Apollo Staff
January 15, 1966

UNCLASSIFIED

TABLE OF CONTENTS

Page
Section
Accuracy 7
Introduction 9
1 Weights 10
Block II Reported Weight Changes 16
Block II Weight Reduction Proposals 17
Reported LEM PGNCS Weight Changes 19
LEM Weight Reduction Proposals 20
2 Centers of Gravity and Moments of Inertia 25
3 Glossary and System Definition 28
Command Module Block I 29
Command Module Block II 35
Lunar Excursion Module 40
4 Reliability 44
5 Guidance Computer Programming 48
6 Electrical Power and Energy 53

ACCURACY

The accuracy of numerical values reported in this revision should not be considered to be within the tolerances implied by the significant figures quoted. The reported values, although based upon the most current information, are subject to slight variations from system to system.

0

UNCLASSIFIED

INTRODUCTION

The areas of activity reported on in this month's revision include, in general, the following for the Block I 100 Series and Block II Command Modules and Lunar Excursion Module equipment:

Section 1 - Configuration Weight
Weight Changes
Weight Trend Information
Section 2 - Centers of Gravity Moments of Inertia
Section 3 - Glossary and System Definition
Section 4 - Reliability Estimates
Section 5 - Computer Programming Status
Section 6 - Electrical Power Requirements

Additional material, not suited to this format, will be presented from time to time as an appendix when it is particularly significant.

UNCLASSIFIED

0

SECTION 1

weIGIITS

Weights are reported to the nearest tenth of a pound on a component level. Each component weight is identified as estimated, calculated, or measured in order of increasing accuracy. These terms are defined as follows: estimated weights (E) are based on rough calculations; calculated weights (C) are based on detailed calculations made from final production drawings that will be used to build flyable equipment; measured weights (M) are actual weights of equipment built to the production drawings.

Tables 1, 2, and 3, respectively, present the weight of all CM Block I 100 Series, CM Block II, and LEM Guidance and Navigation equipment based upon the most current information. These tables offer a comparison of present component weight values with those listed in last month's revision of the System Status Report.

Also included are the respective control and design load weights as assigned by NASA. The Control Weight is the maximum allowable total weight of the Apollo Guidance and Navigation equipment for which MIT/IL is responsible. Design Load Weights are restricted to individual components and should be considered as "not to exceed" weights. These values represent a maximum within which design variations may cause changes without need for renegotiation.

The row labeled "Bare Guidance System" is inserted to provide for comparisons with similarly specified systems.

North American Aviation and Grumman Aircraft Engineering Corporation will provide and be responsible for weights of cold plates that are not integral with guidance and control equipment.

UNCLASSIFIED

0

After each table is an explanation of all weight changes reported this month with each component weight increment or decrement. A discussion of future component weight changes, presently being studied, will also be reported. SPECIAL ATTENTION SHOULD BE PAID TO THE WEIGHT REDUCTION PROPOSALS.

0

This dscument cen'ains information affecting the National co'en'e of tre 'a.e E'? es wiltn temean nR of the [s ons 0.a. s: U. ©. C., Sy:10-s 7.3 and 791). Its :isnsmes on or tio tes a: on ol is cen c?:s in ony mannet to an unauthor ied fciazn is protibites by Law. is

TABLE 1. CURRENT WEIGHT STATUS OF BLOCK I 100 SERIES

Command Module G\&N Equipment	Weight Reduction Proposal	$\begin{aligned} & \text { Status } \\ & 12 / 65 \end{aligned}$	Change	$\begin{aligned} & \text { Status } \\ & 1 / 66 \end{aligned}$	Design Load Weight*
G\&N Indicator Control Panel		10.9 (M)	0.0	10.9 (M)	15.0
IMU Control Panel		2.9 (M)	0.0	2.9 (M)	5.0
Signal Conditioner Assy		3.9 (C)	0.0	3.9 (C)	8.0
DSKY		23.0 (M)	0.0	23.0 (M)	26.0
MAIN PANEL AREA					
DSKY		25.2 (E)	0.0	25.2 (E)	26.0
LOOSE STORED ITEMS					
Optics Cover		2.1 (M)	0.0	2.1 (M)	2.5
Horizontal Hand Holds (Two)		1.0 (E)	0.0	1.0 (E)	1.0
TOTAL	---	429.3	0.0	429.3	--
The reported total weight for this month is 0.7 pounds less than the 430.0 pound total control weight \dagger					
Bare Guidance Systems - IMU, AGC, IMU portions of the CDU's and IMU Support electronics				200.6	---

* Design Load Weights are taken from ICD MH01-01256-416 signed 3 June 1965, submitted by MIT in letter AG 478-65.
** This design load weight includes only $1 / 2$ the weight of the Bellows Assembly.
\dagger The Total Control Weight is specified in NASA letter EG-151-44-65-55 dated 10 February 1965. This weight assignment does not include recognition of the Optical Eyepiece Storage Assembly.

COMTRTERTMA

0

	$\begin{array}{llllllllllll} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \dot{0} & \dot{0} & \dot{\sim} & \dot{\sim} & 0 \\ \dot{\sim} & \dot{\infty} & +1 & \sim & \dot{\sim} & \dot{\sim} & \dot{N} & \infty \end{array}$
² \% \%	
¢	$\begin{array}{lllllllllllllllllll}\sim & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$
	*

UNCLASSIFIED

TABLE 2. CURRENT WEIGHT STATUS OF BLOCK II COMMAND MODULE GN\&C (LBS AT 1G) (CONT)

Command Module GN\&C Equipment	Weight Reduction Proposal	$\begin{aligned} & \text { Status } \\ & 12 / 65 \end{aligned}$	Change	Status 1/66	Design Load Weight
MAIN PANEL AREA					
DSKY		17.5 (E)	0.0	17.5 (E)	25.0
LOOSE STORED ITEMS					-
Horizontal Hand Holds (Two)		1. 0 (E)	0.0	1. 0 (E)	1. 0
TOTAL	---	377.0	-0.1	376.9	---
The reported total weight for this month is 23.1 pounds less than the 400.0 pound total control weight \dagger					
Bare Guidance Systems - IMU, AGC, IMU portions of the CDUs and IMU support electronics				167.8	---

[^0]\# See the section entitled Bluck II Weight Reduction Proposals.

Block II Reported Weight Changes

Power Servo Assembly (-0.6 lb)

The 0.6 lb increase in the PSA, reported in E-1142 Revision 39, was due to a clerical error. This weight should have been added to the LEM PSA (See Reported LEM PGNCS Weight Changes).

NASA TWX, EG-44-540-65-843 dated 22 November 1965, directed MIT to delete the star tracker and horizon photometer from the mainstream Block II efforts. These two functions have been transferred to an experimental basis. The intent is to have a single Block II G\&N design which can be modified to include the star tracker and horizon photometer merely by installing the necessary modules. This will require the use of dummy modules in the PSA, and PSA wiring in all systems. Thus there is no net change.

CDU Assembly (+0.5 lb)

The original estimate anticipated that 0.5 lb could be saved by potting voids. The density of the wiring and the density of the pins within the CDU header will not permit potting voids in the encapsulation.

UNCLASSIFIED

Block II Weight Reduction Proposals

CDU Assy

MIT is investigating a low risk approach toward effecting a major weight reduction of the Block II and LEM CDU assembly. The weight reduction will be based upon the introduction of an integrated circuit amplifier, field effect switch transistors and the use of multilayer boards. The integrated circuits and field effect switches would replace discrete component amplifiers and AC computer switches in the analog modules. This approach minimizes circuit redesign since it is based upon a component replacement concept and allows for early design release. No conceptual or functional changes in the CDU operation or mounting configuration will be effected. Repackaging of the CDU on a single tray would be accomplished with an attendant conservatively estimated weight reduction of 11 pounds. Engineering Change Proposal \# 047 has been transmitted to NASA in MIT letter AG 29-66 dated 12 January 1966.

Signal Conditioning Assembly

A weight reduction program in this area is now under study to further miniaturize the circuits and take a less conservative environmental protection. It is estimated that the latter consideration can remove about 1.3 pounds by using potting for moisture protection rather than the present pressurized container reported herein.

0

0
TABLE 3. CURRENT WEIGHT STATUS OF LEM PGNCS (LBS AT 1G)

LEM PGNCS Equipment	Weight Reduction Proposal	$\begin{aligned} & \text { Status } \\ & 12 / 65 \end{aligned}$	Change	Status 1/66	Design Load Weight *
IMU		42.1 (M)	0.0	42.1 (M)	43
Navigation Base		4.0 (E)	0.0	4.0 (E)	8
AOT		23.1 (E)	0.0	23.1 (E)	25
Button Box		2.0 (E)	0.0	2.0 (E)	2
PTA	\#	14.8 (E)	0.0	14.8 (E)	17
Harness "B"		4.5 (E)	0.0	4.5 (E)	8
DSKY		17.5 (E)	0.0	17.5 (E)	20
LGC		65.0 (E)	0.0	65.0 (E)	65
CDU	\#	36.8 (E)	+0. 5	37.3 (E)	37
PSA	\#	20.1 (E)	+0.5	20.6 (E)	21
Signal Conditioner Assy (Operational Flights)	\#	7.7 (E)	0.0	7.7 (E) ***	7.2
Harness "A"		14.6 (E)	0.0	14.6 (E)	22
Lens Cleaning Kit		0.3 (E)	0.0	0.3 (E)	0.5
TOTAL	---	252.5	+1. 0	253.5	---
The reported total weight for this month exceeds the 240.0 pounds total control weight by $13.5 \mathrm{lbs} . \dagger$					
Bare Guidance Systems - IMU, LGC, IMU portions of the CDUs and IMU support electronics				162.0	

*Design Load Weights are taken from ICD LIS-490-10001 as modified by NASA letter EG-43-422-65-766 dated 27 October 1965.

$$
\begin{aligned}
& \text { ** The weight of a qualification flight signal conditioner assy is } 9.7 \text { (E) pounds. } \\
& \text { †The Total Control Weight is specified in NASA letter EG-151-44-65-55 dated } 10 \text { February } 1965 . \\
& \text { "See the section entitled'LEM Weight Reduction Proposals'. }
\end{aligned}
$$

UnCLASSified

Reported LEM PGNCS Weight Changes

CDU Assembly (+0.5 lb)

The original estimate anticipated that 0.5 lb could be saved by potting voids. The density of the wiring and the density of the pins within the CDU header will not permit potting voids in the encapsulation.

Power Servo Assembly (+0.5 lb)

The weight of the mounting bosses for the signal conditioning assy have been added to the weight of the PSA cover. The bosses previously were included with the SCA weight estimate.

UiNCLASSIFIED

LEM Weight Reduction Proposals

MIT/IL realizes its responsibility to undertake weight reduction design studies if the total reported status weight exceeds the Control Weight. In compliance, design studies are underway to reduce the weight of the PSA, CDU, LGC, and PTA. The following charts summarize the results of this activity.

These weight reduction proposals were presented to NASA at the NASA-MIT Quarterly Status Review held at MIT 11 January 1966.

UNCLASSIFIED.

0

* As Reported in System Status

UNCLASSIFIED.

0
COUPLING DATA UNIT

Item No.	Item	Weight Savings	MIT Impact	Estimated AC Impact	Possible Effectivity	Remarks
1	Non-pressurized Assembly	7.9 lb .	3.5 MM Drafting 2.5 MM Staff 1.5 MM Technicians 7. 8 K -one Prototype 2. 0 K - Testing	New Trays Modules Conformally Coated		Testing of New Des. Complete June 1966 Assuming NASA Goahead early January
-2	Minianarize CDU	11.0 ib.	Dwgs. - 6 Weeks See EC̄̄ $\overline{0} \overline{4} \overline{7}$	Tobe Estimated \qquad		See ECP for Description of Change
3	Miniaturize CDU \& Provide Non-pressurized	16.4 lb .	Same as Item 2 Plus 1.5 MM Technicians	Same as Item 2		See 1 and $\overline{2}$ Above
$4(\mathrm{a})$	Ād̃̉ Stiffrening Members to Trays to Reduce Deflections under Pressurization	0.6 lb	Submit TDRR Week of Jan. 10, 1966	Rērofit Early Units	$\overline{601}-$	Change in Process
4 (b)	Item 4 (a) \& Reduced Tray Walls	-0.3 lb .		Tooling Change	Phase in Line	
-5	Breathe through Dessicator	$\overline{4} .7$ - $\overline{\mathrm{l}}$.	$4.5 \bar{M} \overline{\text { Drafting }}$ 3. 5 MM Staff 1.5 MM Technicians 8. 8 K - Prototype 3.0K - Testing	New Trays Dessicator		S̄chēāūē $\overline{\text { Same }}$ as Item 1

[^1]

UNCLASSIFIED

0

[^2]
UNCLASSIFIED

SECTION 2

CENTERS OF GRAVITY AND MOMENTS OF INERTIA

Abstract

This information will be summarized in the near future in tabular form. Each assembly will have a number reflecting the degree of confidence in the values recorded. Analytical values which have been computed will be verified by experiment (Tri-Filar Pendulum Moment of Inertia Test) when flight hardware is available.

UNCLASSIFIED

0

0

0

UNCLASSIFIED

0

UNCLASSIFIED

UNCLASSIFIED

SECTION 3

GLOSSARY AND SYSTEM DEFINITION

A description of what constitutes MIT supplied hardware for the guidance and navigation equipment in Block I (100 Series) and Block II Command Modules and Lunar Excursion Module is contained in this section.

UNCLASSIFIED

0

COMMAND MODULE BLOCK I

Apollo Guidance Computer (AGC)

A single complete flight computer containing all logic, memory associated power supplies, and all interface circuits except those identified with the CDU's. Does not contain the associated displays and controls.

The AGC consists of one case containing factory replaceable electronic modules. The weight estimate includes a cover for moistureproofing and the G\&N to S/C Interface Assembly which is located in the adjacent area. The weight of the necessary cold plate is not included.

Bellows Assembly

Consists of two flexible metal bellows forming a pressure seal between CM and optical subsystem for penetration of hull.

Condition Annunciator Assembly

Visually displays G\&N system status. This function was previously part of the Map \& Data Viewer. The current proposal includes this in the optics eyepiece storage unit.

Coupling Data Unit (CDU) Assembly

The CDU provides the necessary signal interface among the IMU gimbal angles, optics gimbal angles, angle registers in the AGC, and the spacecraft autopilot attitude error signals.

Five interchangeable gear boxes each with necessary motor tachometer resolver synchros, and encoder with mounting frame work. Does not include associated electronics which are located in the PSA.

UNCLASSIFIED.

Cold Plates

Cold plates for the IMU are built into the IMU. Necessary cold plates for electronics are part of the equipment supplied by the spacecraft manufacturer (NAA).

Control Electronics Assembly

Consists of one power transformer, one relay and diode module and a bracket end connector mounted behind G\&N indicator control panel to support display and control functions. Includes moisture-proofing.

Coolant Hoses

Consists of: (1) three steel-flex coolant hoses between IMU and spacecraft, (2) line transition piece, (3) bracket assembly screws and clamp, and (4) entrapped coolant. (The line transition piece makes two of the hoses a single unit.)

0

DSKY ($\mathrm{D} \& \mathrm{C} / \mathrm{AGC}$)

Number displays and keyboard control associated with the operation of the AGC. Two functionally identical and parallel operating units: one in lower equipment bay and one on main panel between left and center couches. The main panel DSKY has a piece of fail-safe alarm detection equipment called a "nightwatchman".

D\&C Electronics Assembly

Consists of a chassis, a relay and diode module, a demod, elect. module, a saturable reactor, a time delay module, a connector, and wiring and is mounted behind the G\&N Indicator Control Panel. Used to support display and control functions. Connectors will be moisture-proofed.

UNiCLASSHITED

0

G\&N Indicator Control Panel

Consists primarily of controls and displays for the operation of the optics, IMU temperature control, panel brightness control, and attitude impulse control. It includes display and control elements, panel, panel wiring, supporting hardware, and moisture-proofing.

$\mathrm{G} \& \mathrm{~N}$ Interconnection Assembly

Consists of an interconnect wiring harness, which electrically ties together the assemblies that constitute a completely integrated system. This term does not include weights of harness support brackets, which are an NAA responsibility.

G\&N to S/C Interface Assembly

This assembly provides the electrical interface between the spacecraft wiring channel, the computer connector, and the PSA end connector assembly. There are no active electronics in the assy. The weight of this item is included with the Block I computer.

Horizontal Hand Holds (Two)

These handholds are part of the body tethering system for use during navigation sightings. Two handholds are mounted on the G\&N Indicator Control Panel and will be removed when not in use. The weight reported includes the mounting screws.

Inertial Measurement Unit (IMU)

The IMU consists of three gyros and three accelerometers mounted on the innermost gimbal of a three degree-of-freedom gimbal structure. The size 14 IMU (14-inch case diameter) gimbal assembly including all parts inside hermetic case, entrapped coolant, and heat exchanger insulation are included in the weight.

UNCLASSIFIED

IMU Control Panel

Consists of panel, wiring, attitude error meter, CDU transfer switch, manual alignment switch, CDU mode control switches, connector, supporting hardware, and associated moisture-proofing.

NVB and Resilient Mounts

Rigid beryllium structure supporting the IMU and the optical subsystem with its associated hardware. The NVB is attached to the spacecraft using flexible resilient mounts to prevent spacecraft strains from distorting the NVB and the alignment between the IMU and optics. These mounts also provide shock and vibration attenuation.

Optical Eyepiece - Long Eye-Relief

Consists of an SCT eyepiece to provide eye relief of at least 1.6 inches for closed visor operation. Used in place of normal eyepiece of SCT.

Optical Eyepiece - Normal Eye-Relief

Removable SXT eyepiece and SCT eyepiece.

Optical Eyepiece Storage Assy

A polyurethane filled structure will provide storage for three optical eyepieces: SXT normal eye-relief, SCT normal eye-relief, and SCT long eye-relief eyepieces. The condition annunciator assembly is part of the compartment structure. The weight also includes a protective cover or door. The assembly is located in the area vacated by the M\&DV.

UNCLASSIFIED

0

> Optical Subsystem $\begin{aligned} & \text { Consists of SXT, SCT, Optical Base, and associated hardware } \\ & \text { defined as follows: } \\ & \text { SXT: } \\ & \quad \begin{array}{l}\text { Sextant: A two-line-of-sight, narrow-field, } \\ \text { two-degree-of-freedom sextant and its at- } \\ \text { tached gearing. }\end{array} \\ & \text { SCT: } \begin{array}{l}\text { Scanning Telescope: A single-line-of- } \\ \text { sight, wide-field-of-view, two-degree-of- } \\ \text { freedom articulation optical instrument } \\ \text { and its attached gearing. }\end{array} \\ & \text { Optical Base: }\end{aligned} \begin{aligned} & \text { Base for SXT and SCT with associated } \\ & \text { gearing. }\end{aligned}$

Optical Shroud \& Cover Assembly

Consists of the optical shroud and protective cover.

Power Servo Assembly (PSA)

The PSA includes most of the support electronics: power supplies; IMU, Optics, and CDU servos; IMU temperature control; accelerometer pulse torquing and gyro pulse torquing. Replaceable modules are placed in each of the 10 trays. Moisture protection is provided for each tray individually by a gasket and a connector cover with mounting screws. A beryllium front toe plate is included in the PSA weight.

The PSA end connector is the electrical interface between the 10 PSA trays, the G\&N Interconnection Assy, and the G\&N to S/C Interface Assy. The end connector weight is reported in the G\&N to S/C Interface Assy value.

UNCLASSIFIED

0
Signal Conditioner Assembly

Conditions signals for telemetry.

0

UNCLASSIFiul

0
COMMAND MODULE BLOCK II

Apollo Guidance Computer (AGC)

A single complete flight computer containing all logic, memory associated power supplies, and all interface circuits except those identified with the CDU's. Does not contain the associated displays and controls.

Consists of one case containing factory replaceable electronic modules. Includes cover for moisture-proofing, but does not include the necessary cold plate.

Many Block I modules have been redesigned and repackaged in a separate case. Memory capacity increased over Block I.

Bellows Assembly

Consists of two elastomeric, semi-toroidal, strain isolation, pressure vessel penetration seals between the CM hull and the optical subsystem.

Coupling Data Unit Assembly (CDU)

The coupling data unit provides central data conversion between the G\&N analog subsystems (inertial and optics sextant), and in addition certain spacecraft analog control and display functions. The CDU is an all-electronic device that employs analog computational techniques in conjunction with digital counters and control logic to perform both analog to digital (A/D) and digital analog (D/A) conversion.

Moding of various Guidance and Control system functions that operate in conjunction with the CDU signals is accomplished by the computer through the CDU control and synchronizing logic.

The weight includes all the support electronics, the 4 V power supply, and the header mounted adjacent to the AGC.

UNCLASSIFIED.

Cold Plates

Cold plates for the IMU are built into the IMU. Necessary cold plates for electronics are part of the equipment supplied by the spacecraft manufacturer. (NAA).

Coolant Hoses

Consists of: (1) two steel-flex coolant hoses, between IMU and spacecraft and (2) entrapped coolant. (Bracket assembly, screws and clamps will be supplied by NAA)

DSKY (D\&C/AGC)

Number displays and keyboard control associated with the operation of the AGC. Two functionally identical and parallel operating units: one in lower equipment bay and one on main panel between left and center couches.

Mechanically and electrically similar to Block I but smaller configuration because of smaller relays. The Block II displays and keyboard controls will be sealed by encasing the unit in a container and using pressurized O -rings.

G\&N Indicator Control Panel

Consists of controls and displays for optics, condition lamps, telemetry, and Master Alarm. Also contains attitude impulse switch and hand controller. Has integral illuminated computer instructions. The condition lamps replace the Block I Condition Annunciator Assembly.

G\&N Interconnect Harness Assembly

Consists of eight cables that electrically tie together the assemblies that make up the G\&N system and interface with the spacecraft.

UNCLASSIITEU

0

Horizon Photometer (Experimental Basis Only)

An earth horizon brightness photometer and automatic star tracker used for navigation measurements against the earth's illuminated limb. The sensors are incorporated into the head of the SXT, the weight of which includes this function. The PSA includes all support electronics for the horizon photometer.

Horizontal Handholds (Two)

These handholds are part of the body tethering system for use during navigation sightings. Two handholds are mounted on the G\&N Indicator Control Panel and will be removed when not in use. The reported weight includes the mounting screws.

Inertial Measurement Unit (IMU)

The IMU consists of three gyros and three accelerometers mounted on innermost gimbal of a three degree-of-freedom gimbal structure. The size 12.5 IMU (12.5-inch case diameter) gimbal assembly including all parts inside the hermetic case, entrapped coolant, and heat exchanger insulation are included in the weight.

NVB \& Mounts

A polyurethane filled aluminum skinned structure functionally similar to Block I but lighter and will provide for mounting the size 12.5 IMU. The Block II NVB is attached to the spacecraft by use of strain isolation hardmounts and will have a transition piece as a result of the re-orientation of the NVB so that the IMU axes will be parallel to the Command Module axes.

UNCLASSIFIED

0

Optical Eyepieces - Long Eye-Relief

Consists of an SCT eyepiece to provide eye relief of at least 1.6 inches for closed visor operation. Used in place of normal eyepiece of SCT.

Optical Eyepieces - Normal Eye-Relief

Removable SXT eyepiece and SCT eyepiece.

Optical Eyepiece Storage Assembly
A storage unit for eyepieces is provided similar to the Block I (100 Series) unit. There is no provision for the Condition Annunciator Assembly as part of the compartment structure.

Optical Subsystem
0
Consists of SXT, SCT, Optical Base, and associated hardware defined as follows:

SXT:	Sextant: A two-line-of-sight, narrow-field, two-degree-of-freedom sextant and its at- tached gearing. The horizon photometer
and automatic star tracker sensors are	
incorporated into the SXT head. (See	
Horizon Photometer Electronics.)	

UNCLASSHMED

0
Optical Shroud \& Cover Assembly

Contains an optical shroud. The optics cover is to be used also as a work table during the flight. NAA has design responsibility for the "optics cover - work table".

PIPA Electronics Assembly (PEA)

Consists of electronics which directly support the function of the PIPA loop, including the calibration modules, containing selected components, assigned to each IMU. This sealed assembly is located in the Block I CDU location.

Power Servo Assembly (PSA)

The PSA consists of a single-plane matrix header with a cold plate mounted on top and the modules plugging in from beneath. A cover is required to protect the modules from moisture. The assembly is similar in function to the Block I PSA; however, many of the modules have been redesigned and repackaged.

The support electronics for the PIPA loop has been transferred to the PIPA Electronics Assembly. The CDU servos are deleted because the Block II CDU is an electronic package. The PSA includes electronics used to support the display and control functions previously identified with the Block I Control Electronics Assy and D\&C Electronics Assy. The operational modules of the Horizon Photometer-Star Tracker have been replaced by equivalent dummy modules.

Signal Conditioner Assembly

Conditions signals for telemetry. These modules are located in the same volume now occupied by the Block I lower equipment bay DSKY.

UNCLASSHIED

0

LUNAR EXCURSION MODULE

Apollo Guidance Computer (LGC)

A single complete flight computer containing all logic, memory associated power supplies, and all interface circuits except those identified with the CDUs. Does not contain the associated displays and controls.

Consists of one case containing factory replaceable electronic modules. Includes cover for moisture-proofing, but does not include the necessary cold plate.

Except for computer programs, the LGC is identical to the CM Block II AGC.

Alignment Optical Telescope (AOT)

The AOT is a three-position periscope with a single degree-offreedom, manually read recticle. The weight estimate includes a normal eye-relief eyepiece and a bellows assy between the AOT and the LEM hull. The bellows assy is an elastomeric, semi-toroidal, strain isolation, pressure vessel penetration seal. The AOT reticle is used for alignment of the IMU.

Cold Plates

Cold plates for the IMU are built into the IMU. Necessary cold plates for electronics are part of the equipment supplied by the spacecraft manufacturer. (GAEC)

Computer Control and Reticle Dimmer Assy (Button Box)

Located on GAEC Supplied Hardware protecting the AOT. Contains illuminated push button controls mark "x", mark " y ", and "reject" mark. Also has an AOT reticle dimmer.

UNCLASSIFIED.

0

Coolant Hoses

The coolant hoses for the LEM IMU will be supplied by the spacecraft manufacturer. (GAEC)

Coupling Data Unit (CDU)

The coupling data unit provides central data conversion between the computer and G\&N analog subsystems (inertial and radar), and in addition certain spacecraft analog control and display functions. The CDU is an all-electronic device that employs analog computational techniques in conjunction with digital counters and control logic to perform both analog to digital (A/D) and digital to analog (D/A) conversion.

Moding of various Guidance and Control system functions that operate in conjunction with the CDU signals is accomplished by the computer through the CDU control and synchronizing logic.

The LEM CDU uses modules identical to those used in the CM Block II but mounted on a different header. The weight includes all the support electronics, the 4V power supply, and the header mounted adjacent to the AGC.

DSKY

Number Displays and Keyboard controls associated with the operation of the LGC. The DSKY will be sealed by encasing the unit in a container and using pressurized O-rings. Identical to the Block II DSKY except only a single unit is required.

Harness "A"

Harness " A " provides electrical interconnection in the CDU, AGC, and PSA a reas. The estimated weights include the connectors, distribution box, wire, insulation, shielding, and cable clamps.

UNCLASSIFIED.

Harness " B " provides the electrical interconnection in the IMU and PTA areas. The estimated weights include the connectors, distribution box, wire, insulation, shielding, and cable clamps.

Inertial Measurement Unit (IMU)

The IMU consists of three gyros and three accelerometers mounted on the innermost gimbal of a three-degree-of-freedom gimbal structure. The size 12.5 LEM IMU is physically identical to the Block II. The weight value includes the gimbal assembly (and all parts inside the hermetic case), entrapped coolant, and the heat exchanger insulation.

Lens Cleaning Kit

Not specifically defined but appropriate cloths for cleaning the accessible surfaces of the optics lens.

NVB and Mounts

A toroidal aluminum ring with: (1) four tubular aluminum posts to provide for IMU mounting, (2) four tubular aluminum posts for AOT mounting, and (3) three aluminum inserts to provide strain isolation ball mounting to the GAEC structure.

Power Servo Assembly (PSA)

The PSA consists of a single-plane matrix header mounted on a cold plate with the modules plugging in from the top. A cover is required to protect the modules from moisture. The assembly consists of electronics modules similar to those identified in the Block II PSA. The

UivCLASSIFIED.

0

LEM PSA does not include electronics for the PIPA and IRIG loops. See "P llse Torque Assembly". Optics and dummy photometry modules are not included in this package.

Pulse Torque Assembly (PTA)

This assembly consists of electronics contained in the PIPA and IRIG loops, including the pulse torque power supply and PIPA and IRIG calibration modules. The PIPA calibration modules, containing selected components, are assigned to each IMU. This sealed assembly is located adjacent to the IMU in LEM.

Signal Conditioner Assembly

Conditions signals for telemetry. This assembly is identical to Block I and is located on top of the LEM PSA.

0

SECTION 4

RELIABILITY

The current status of reliability is reported in summary form as charts.

The following charts contain tabulations of the failure rates associated with each major configuration of $G \& N$ systems. These have been derived from the parts counts of each assembly using generic type part failure rates, modified only by the stress applied to each part and its singular application in the system. From these data, estimations of probabilities of mission success have been derived. Continual updating is accomplished and will be reported monthly in this report.

0

The numerical reliability objectives for the $G \& C$ system are provided by NASA/MSC-ASPO TWX PR 2-64-314 of 5 August 1964. It should be noted that these values are associated with an outdated configuration having a redundant computer. The latter was deleted by NASA direction as part of the interface realignment. The Lunar Orbit Rendezvous numerical reliability mission success objectives are as follows:
Command Module 0.985

Lunar Excursion Module 0.994

[^3]0

$$
\begin{aligned}
& \text { oow, }
\end{aligned}
$$

URGLISSIFIED

0

SECTION 5

GUIDANCE COMPUTER PROGRAMMING

Guidance computer programs fall into three categories: service, test and mission programs.

1. Service Programs: The service programs may be regarded as the "tools" used to accomplish the mission objectives. These programs are necessary for the general operation of the computer and they are completely insensitive to mission planning.
2. Test Programs: The test programs are used to test the AGC, the G\&N System, and other programs.
3. Mission Programs: The mission programs are those AGC programs which directly accomplish the guidance and navigation functions. Certain parts of these are highly sensitive to mission plans, vehicle configuration, ground based activities, etc. Although some portions of these programs are quite general, a complete specification is not possible until the release of the Guidance System Operation Plan for each particular mission.

The memory also contains all mission and vehicle dependent data that is written directly into the memory of AGC. The very limited erasable section is intended primarily for storage of computational variables. Those mission parameters that do not change during flight are consigned to the fixed section of the memory.

UNCLASSIFIED

The guidance routines for the various mission phases are incorporated within the 202 mission control program section of program CORONA as specified in the NASA approved Guidance System Operation Plan presented in MIT Report R-477, "Guidance and Navigation System Operations Plan Apollo Mission 202". See Table 9.

BLOCK II \& LEM

The "AURORA" Guidance Computer Program represents the basic Block II guidance computer and contains the equivalent programs which comprise the SUNRISE 45 assembly for the Block I CSM PGNS. The differences between the LEM assembly (AURORA) and SUNRISE 45 will reflect the differences between the LEM and Block I CSM interfaces with their respective guidance computers and an augmented test capability of the G\&N system. In addition, the LEM Guidance Computer program assembly will include limited data computation, servicing routines, and integrated system tests for the following interfaces:

1. Rendezvous Radar	5. RCS Jets
2. Landing Radar	6. Ascent and Descent Engines
3. Hand Controller	7. Abort
4. Inertial Data Displays	

Programs will also be included to perform the following PGNCS tests:

1. Fine Alignment
2. LGC Self Check
3. PIPA Scale Factor and Bias
4. Sum Check
5. IRIG Torquing Scale Factor
6. G\&N Operational
7. IRIG Coefficient Determination

UNCLASSIFIED

The SUNRISE 45 programs which will not be included in the LEM assembly are those associated with the SXT and SCT optics. A description of the SUNRISE program is documented in MIT/IL Report R-467.

A portion of AURORA, designated as RETREAD, has been completed and tapes were released for manufacture. Programs incorporated in RETREAD are:

1. Interpreter
2. T4 Rupt Program for Displays
3. Executive
4. Keyboard Uprupt
5. Waitlist
6. Keyboard and Display
7. Fresh Start
8. Instruction Check

A general description of the above RETREAD programs is presented in MIT Digital Development Memo 262 (July 7, 1965). The Block II interpreter in this program is described in detail in MIT Report R-489. The keyboard and display section is summarized in Digital Development Memo \# 267 (July 28, 1965).

UNCLASSIFIED

TABLE 9. MEMORY ALLOCATION FOR COMMAND MODULE COMPUTER

AGC Drogram	FLIGHT 202 Fixed Memory	$\begin{aligned} & \text { FLIGHT } 204 \\ & \text { Fixed } \end{aligned}$
Interrupt Transfer Routines	39	
Fixed-Fixed Interpreter Section	941	
Bank 03 Interpreter Section	822	
Executive	339	
Waitlist	221	
Restart Control	116	
202 Restart Tables and Routines	464	
Fresh Start and Restart	312	
Down-Telemetry Program	230	
T 4 Rupt Output Control Program	805	
Mode Switching and Mark Routines	587	
IMU Compensation Package	215	
IRIG Pulse-Torquing Routines	288	
Extended Verbs for Moding	695	
AGC-Self Check	984	
Inter-bank Communication	74	
Alarm and Display Procedures	59	
Orbital Integration Program	840	
Midcourse Navigation Game	808	
Latitude-Longitude Subroutines	279	
Midcourse Initialization	159	
Orbital Integration for 202	170	
Measurement Incorporation	168	
B Vector Routine	535	
Prelaunch Alignment Program	900	
Inflight Alignment Program	235	
RTB OP Codes	348	
IMU Performance Tests 1	1009	
IMU Performance Tests 2	1017	
Inflight Alignment Subroutines	410	
Keyrupt, Uprupt, Fresh Start	98	
Pinball Game Buttons and Lights (DSKY)	2259	
202 Mission Control Program	2015	
Powered Flight Subroutines	1867	,
Dummy 202 Initialization	32	
Re-Entry Control	1349	
Average G Integrator	153	
Verification Assistance Programs	99	
Sum Check End of Record Marks	24	
TOTAL FIXED MEMORY WORDS	21,965	

UNCLASSIFIED

0
TABLE 10. PROGRAM STA TUS FOR LUNAR EXCURSION MODULE COMPUTER

LGC Program A URORA is midway to completion, with some sections already run on the PGNCS. Program status may be summarized as follows:

```
Fresh Start and Restart (4)*
Interpreter (3)
Executive (4)
Waitlist (4)
Restart Control (2)
T4RUPT Program (4, 2, 1)
IMU Mode Switching (4)
AOT Routines (3)
Radar Routines (2)
Extended Verbs \((4,1)\)
Keybcard \& I)isplay (4)
Alarm \& Aburt (4)
Meter Routines (2)
Downlink (3)
LGC Self Check (4)
Prelaunch Alignment (2)
LEM Flight Control System Test (3)
G\&N System Tests (3)
Digital Autopilot (3, 2, 1)
```

*Numeric designations have the following meanings:
(1) Planned
(2) Programmed
(3) Bench Tested or Digital Simulator
(4) Test Run on PGNCS

Multiple numbers mean that different sections of the program are at different stages.

Preliminary estimates of the memory capacity for the LEM A URORA program will be reported when the values become established.

SECTION 6

ELECTRICAL POWER AND ENERGY

Electrical power and energy reporting is based upon the inflight spacecraft sequence of events for the Design Reference Mission as developed by the Apollo Mission Planning Task Force (AMPTF). (Reference GAEC Report Volume III - LED-540-12, dated 30 October 1964.)

The accompanying tables present the magnitude and distribution of power dissipated on a subsystem level. It is assumed that power is drawn from the spacecrafts' primary +28VDC supply and a $400 \mathrm{cps}-115$ VAC single phase inverter.

Intermittent power peaks can exist, particularly during operation of displays and controls at random times. The energy content in these peaks is considered negligible.

All values (except those mentioned above) are actual expected levels of power. No margin factor has been applied to protect against possible differences between actual loads which will be experienced and the calculated levels quoted. Thus, these values should not be taken as "not to exceed" extremes.

Interface Control Documents serve as the guidelines for reporting power figures.

CM Block I 100 Series

CM Block II

LEM

MH01-01227-216 "G \& N Electrical Input Power" signed 11 June 1965
MH01-01327-216 "G \& N Electrical Input Power" signed 15 July 1965
LIS-390-10002 "PGNCS Prime Power Requirements and Characteristics" signed 30 July 1965

BLOCK I-100 SERIES GUIDANCE \ddagger NAVIGATHON LOAD ON PRMAAPY - PBVDC-COMMAND MODULE
 oESIGN REFERENCE MISSION APOLO MISSION A ANNAG TESX FORCE

UN:CLASSIFIED.

0

UnCLhosified

0

> E-1142
> Rev 40
> DISTRIBUTION LIST

Internal
M. Adams (MIT/GAEC)
T. M. Lawton (MIT/MSC)
R. Battin
P. Bowditch/F. Siraco
A. Boyce
N. Cluett
J. Dahlen
J. DeLisle
E. Duggan
G. Mayo

John Miller
W. Nadler (2)
J. Nevins
J. Nugent
E. Olsson
M. Richter (MIT/MSC)
J.B. Feldman
E. Schwarm
S. Felix
J. Flanders (MIT/KSC)

Eldon Hall
T. Hemker (MIT/NAA)
E. Hickey
D. Hoag
F. Houston
L. B. Johnson
A. Koso
M. Kramer
L. Larson
J. Lawrence (MIT/GAEC)
T.J. Lawton
J. Sciegienny
N. Sears
W. Shotwell (MIT/AC)
W. Stameris
J. Stone
M. Trageser
P. Watson
R. Weatherbee
L. Wilk (2)
R. Woodbury

Apollo Library (5)
MIT/IL Library (8)

UNCLASSIFIED

0

E-1142
Rev 40

DISTRIBUTION LIST

External:
W. Rhine (NASA/MSC) (2)
NASA/RASPO(1)
L. Holdridge (NAA/MIT) (1)
T. Heuermann (GAEC/MIT) (1)
AC Electronics (10)
Kollsman (10)
Raytheon (10)
Major H. Wheeler (AFSC/MIT) (1)
MSC:$(30+1 R)$
National Aeronautics and Space AdministrationManned Spacecraft CenterApollo Document Distribution Office (PA2)Houston, Texas 77058
KSC:(1R)
NASA J. F. Kennedy Space Center .
Technical Document Control Office, HB-23 Cape Kennedy, Florida
GAEC:$(3+1 R)$
Grumman Aircraft Engineering Corporation
Data Operations and Services, Plant 25
Bethpage, Long Island, New YorkAttn: Mr. E. Stern
NAA:$(18+1 R)$
North American Aviation, Inc.
Space and Information Systems Division12214 Lakewood BoulevardDowney, California
Attn: Apollo Data Requirements AE99Dept. 41-096-704 (Bldg 6)

UNCLASSIFIED

NAA RASPO:(1)
NASA Resident Apollo Spacecraft Program OfficeNorth American Aviation, Inc.Space and Information Systems DivisionDowney, California 90241
ACSP RASPO:(1)
National Aeronautics and Space Administration
Resident Apollo Spacecraft Program OfficerDept. 32-31
AC Electronics Division of General Motors
Milwaukee 1, Wisconsin
Attn: Mr. W. Swingle
Mr . H. Peterson(1)
Bureau of Naval Weapons
c/o Raytheon Company
Foundry Avenue
Waltham, Massachusetts
Mr. S. Schwartz(1)
Department of Defense
DCASD, Garden City
605 Stewart Avenue,
Garden City, L. I. , N. Y.
Attn: Quality Assurance
D. F. Kohls(1)AFPRO (CMRKKA)AC Electronics Division of General Motors
Milwaukee 1, Wisconsin 53201

[^0]: ${ }^{*}$ Design Load Weights are taken from ICD MH01-01356-416 signed 16 July 1965 at Meeting \#22A.
 *** The weight of a qualification flight signal conditioner assy is 9.6 (E) pounds.
 \dagger The Total Control Weight is specified in NASA letter EG-151-44-65-55 dated
 The Total Control Weight is specified in NASA letter EG-151-44-65-55 dated 10 February 1965.
 This weight assignment does not include recognition of the Optical Eyepiece Storage Assembly. This weight assignment does not include recognition of the Optical Eyepiece Storage Assembly.

[^1]: * As Reported in System Status Report, E-1142, December 1965
 ** Note: Original Estimate Anticipated that 0.5 lb . could be - Saved by Potting Voids.

[^2]: As Reported in System Status
 R

[^3]: "T hes gocyurnt ene ans in ora' on a'ect mg the National in e ans (T, n e ir ins: w n the meenng of the
 - an un:u'or. es person is orion biotin's in any manner

