NAVIGATION GUIDANCE AND Date: 8 Dec 66 Approved DAVID G. HOAG, DIRECTOR APOLLO GUIDANCE AND NAVIGATION PROGRAM Maijan Date: 8 Du 66 Approved:_ RALPH'R. RAGAN, DEPUTY DIRECTOR

OFITECHNOLOGY ELUTION ACHUSE

IMASS

INSTRUMENTATION LABORATORY

E-1142 (Rev. 48)

SYSTEM STATUS REPORT

September 1966

CAMBRIDGE 39, MASSACHUSETTS

ACKNOWLEDGEMENT

This report was prepared under DSR Project 55-238, sponsored by the Manned Spacecraft Center of the National Aeronautics and Space Administration through Contract NAS 9-4065.

The publication of this report does not constitute approval by the National Aeronautics and Space Administration of the findings or the conclusions contained therein. It is published only for the exchange and stimulation of ideas.

E-1142 (Rev. 48)

2

SYSTEM STATUS REPORT

ABSTRACT

The System Status Report is distributed monthly. The areas of activity reported on in this month's revision include, but are not limited to, the following for the Block I 100 Series and Block II Command Modules and Lunar Excursion Module equipment: configuration weight, weight trend information, centers of gravity, moments of inertia, reliability failure rates, electrical power requirements, and computer programming status, and G&N Status.

> by Apollo Staff September 30, 1966

TABLE OF CONTENTS

Section		Pa	J
	Accuracy	••	7
	Introduction	••	9
1	Weights	• •	11
2	Centers of Gravity and Moments of Inertia		20
3	Glossary and System Definition		23
	Reliability Analysis and Assessment		37
4	Reliability Analysis and Assessment	•••	41
5	Electrical Power and Energy	• •	
6	Guidance Computer Programming	••	45
7	G&N Status		57

ACCURACY

ş

1

÷

The accuracy of numerical values reported in this revision should not be considered to be within the tolerances implied by the significant figures quoted. The reported values, although based upon the most current information, are subject to slight variations from system to system.

INTRODUCTION

The areas of activity reported on in this month's revision include, in general, the following for the Block I 100 Series and Block II Command Modules and Lunar Excursion Module equipment:

> Section 1 - Configuration Weight Section 2 - Centers of Gravity Weight Trend Information

Section 2 - Centers of Gravity Moments of Inertia

Section 3 - Glossary and System Definition

Section 4 - Reliability - Failure Rates

Section 5 - Electrical Power FRequrements

Section 6 - Computer Programming Status

Section 7 - G&N Status

Additional material, not suited to this format, will be presented from time to time as an appendix when it is particularly significant.

Section 7 G&N Status, is being included to report significant items of interest at the system level. This addition is prompted by the phasing from design and development to system and flight status.

SECTION 1

WEIGHTS

Weights are reported to the nearest tenth of a pound on a component level. Each component weight is identified as estimated, calculated, or measured in order of increasing accuracy. These terms are defined as follows: estimated weights (E) are based on rough calculations; calculated weights (C) are based on detailed calculations made from final production drawings that will be used to build flyable equipment; measured weights (M) are actual weights of equipment built to the production drawings.

Tables 1, 2, and 3, respectively, present the weight of all CM Block I 100 Series, CM Block II, and LEM Guidance and Navigation equipment based upon the most current information. These tables offer a comparison of present component weight values with those listed in last month's revision of the System Status Report. The weights tabulated for Block II CM and LEM configuration represent operational flight hardware.

Also included are the respective control and design load weights as assigned by NASA. The Control Weight is the maximum allowable total weight of the Apollo Guidance and Navigation equipment for which MIT/IL is responsible. Design Load Weights are restricted to individual components and should be considered as "not to exceed" weights. These values represent a maximum within which design variations may cause changes without need for renegotiation.

The row labeled "Bare Guidance System" is inserted to provide for comparisons with similarly specified systems.

When applicable, the tables will be followed by a discussion of reported weight changes and weight trend information. Each weight increase or decrease is accompanied with an explanation for the change and the effectivity by system number. Weight trend information describes future component changes presently being studied with an emphasis on weight reduction proposals.

North American Aviation and Grumman Aircraft Engineering Corporation will provide and be responsible for weights of cold plates that are not integral with guidance and control equipment.

> Reported Weight Changes and Weight Trend Information

-

and the state

The weight of the Block I 100 Series Bellows Assembly has been revised to reflect the weights of recently shipped hardware. This revision results in a decrease of two (2) pounds.

12

.

	Command Module G&N Equipment	Status 8/66	Change	Status 9/66	Design Load _* Weight
	LOWER EQUIPMENT BAY			 	
	CDU Assy	16.9 (M)	0.0	16.9 (M)	18.0 [#]
	Optical Subsystem				~
	SXT and gearing SCT and gearing Optical Base and gearing	53.6 (E)	0.0	53.6 (E)	;
	NVB and Resilient Mounts	25.7 (M)	0.0	25.7 (M)	> 155.0
	Bellows Assy	12.7 (M)	- 2.0	10.7 (E)	
:	IMU	61.2 (M)	0.0	61.2 (M)	
13	Coolant Hoses (Two)	0.9 (M)	0.0	0.9 (M)	_
	Power Servo Assy	65.4 (M)	0.0	65.4 (M)	120.D
	G&N Interconnection Assy	26.1 (M)	0.0	26.1 (M)	_
	Optical Shroud	3.1 (M)	0.0	3.1 (M)	4.5
	G&N to S/C Interface Assy	90.8 (M)	0.0	90.8 (M)	100.0
	AGC (with 6 rope modules)				
	cal Eyep	12,7 (M)	0,0	12.7 (M)	1
	SCT Normal Relief Eyepiece				
	D&C Electronics Assy	2.6 (M)	0.0	2.6 (M)	5. 0
	Control Electronics Assy	1.8 (M)	0.0	1.8 (M)	4.0

.

100

41---

A

7

÷.

.

	and the second	and the second second second second			×: : :
	Command Module G&N Equipment	Status 8/66	Change	Status 9/66	Design Load _* Weight
	G&N Indicator Control Panel	10.9 (M)	0.0	10.9 (M)	15.0
	IMU Control Panel	2.9 (M)	0.0	2.9 (M)	5.0
	Signal Conditioner Assy	4.8 (M)	0.0	4.8 (M)	8.0
	DSKY	24.5 (M)	0.0	24.5 (M)	26.0
	MAIN PANEL AREA				
	DSKY	25.3 (M)	0.0	25.3 (M)	26.0
	LOOSE STORED ITEMS				
	Optics Cover	2.1 (M)	0.0	2.1 (NH)	2.5
14	Horizontal Hand Holds (Two)	0.3 (M)	0.0	0.3 (N!)	1.0
	TOTAL	444.3	- 2.0	442 . 3	
	The reported total weight for this month is control weight †	th is 6.7 pounds	more	than the 430.0 po	pound total
	Bare Guidance Systems - IMU, AGC, CDU's and IMU Support electronics	IMU portions	of the	206.4	1
	* besign Load Weights are taken from by MIT in letter AG 478-65.	ICD MH01-01256-416		signed 3 June 1965,	5, submitted
	** This design load weight includes only 1/2 the weight	y 1/2 the wei	ght of the Bellows	ellows Assembly.	у.
	The Total Control Weight is specified in NASA letter EG-151 10 February 1965. This weight assignment does not include Optical Eyepiece Storage Assembly.	d in NASA le gnment does	tter EG-151 not include	EG-151-44-65-55 dated include recognition of th	the
	# This design load weight taken from dated 9 May 1966.	IRN 3677, sul	omitted by N	submitted by MIT in Letter AG 407-66	3 407-66

建 50 10

•

•

CURRENT WEIGHT STATUS OF BLOCK II COMMAND MODULE GN&C (LBS AT 1G)

Status 8//66	Change	Status 9/66	Design Load _* Weight
36.2 (E)	0.0	36.2 (E)	50.0
53.6 (E)	+1.0	54°6 (E)	
14.9 (E) 12.7 (E)	+2.5	17.4 (M) 10.7 (M)	150.0
42.5 (M)	0.0	42.5 (M)	
1.2 (M) 49.4 (E)	0.0	1.2 (M) 49.4 (M)	58.0
9.0 (E)	0.0	9.0 (E)	12.0
24.0 (M)	0.0	24.0 (M)	40.0
65.0 (E)	+4.0	69.0 (E)	80.0
3.1 (M)	0.0	3.1 (M)	4.5
11.1 (E)	0.0	11.1 (E)	15.0
11.5 (M)	0,0	11.5 (M)	17.0
17.5 (MT)	0.0	17.5 (M)	25.0
8.0 (E)	0.0	8.0'(E) ^{**}	8.0

1

TABLE 2. CURRENT W COMMAND I	DN
Command Module GN&C Equipment	
LOWER EQUIPMENT BAY	
CDU Assy	ŝ
Optical Subsystem SXT and gearing SCT and gearing Optical Base and gearing	Ω.
NVB and Mounts	н
Bellows Assy	
IMU	4
Coolant Hoses (Two)	
Power Servo Assy	4
PIPA Electronics Assy	
G&N Interconnect Harness Group	~
AGC (with six(6) rope modules * mag. Ontical Shroud	9
Optical Eyepiece Storage Assy SXT Normal Relief Eyepiece	
SCT Long Relief Eyepiece	
G&N Indicator Control Panel	
DSKY	
Signal Conditioner Assy (Operational Flights)	

r5

	COMMA	COMMAND MODULE GN& C	(LBS	AT 1G) (CONT)	
	Command Module GN&C Equipment	Status 8 / 66	Change	Status 9/66	Design Load _* Weight
	MAIN PANEL AREA				
	DSKY	17.5 (M)	0.0	17.5 (M)	25.0
	LOOSE STORED ITEMS				
	Horizontal Hand Holds (Two)	0.3 (M)		0.3 (M)	1.0
	SXT Long Relief Eyepiece	0.4 (E)	0.0	+	
	TOTAL	377.9	+5.5	383.4	:
16	The reported total weight for this month is control weight †	nth is 16.6 pounds	less	than the 400.0 pc	pound total
	Bare Guidance Systems - IMU, AGC, CDUs and IMU support electronics	IMU portions	of the	172, 1	:
	[*] Design Load Weights are taken from ICD MH01-01356-416 Meeting # 22A, and IRN 0051 signed 10 November, 1965.	n ICD MH01-0		signed 16 July 1965	965 at
	** The weight of a qualification flight signal conditioner assy is	signal conditio	ner assy is	9.6 (E) pounds	•
	† The Total Control Weight is specifie 10 February 1965. This weight assi Optical Eyepiece Storage Assembly.	: is specified in NASA letter EG-151 weight assignment does not include Assembly.	tter EG-151 not include	-44-65-55 dated recognition of the	d the

	COMMAI	COMMAND MODULE GN&C (LBS	GN&C (LBS	AT 1G) (CONT)	
	Command Module GN&C Equipment	Status 8 / 66	Change	Status 9/66	Design Load Weight
	MAIN PANEL AREA				
	DSKY	17.5 (M)	0.0	17.5 (M)	25.0
	LOOSE STORED ITEMS				
	Horizontal Hand Holds (Two)	w	0.0	3	1.0
	SXT Long Relief Eyepiece	0.4 (E)	0.0	U. 4 (E.)	
	TOTAL	377.9	+5.5	383,4	:
16	The reported total weight for this month is control weight \uparrow	nth is 16.6 pounds	less	than the 400.0 pc	pound total
	Bare Guidance Systems - IMU, AGC, CDUs and IMU support electronics	IMU portions	of the	172, 1	
	[*] Design Load Weights are taken from ICD MH01-01356-416 Meeting # 22A, and IRN 0051 signed 10 November, 1965.	n ICD MH01-(110 November		signed 16 July 1965	965 at
28	** The weight of a qualification flight signal conditioner	signal conditic		assy is 9.6 (E) pounds.	
	† The Total Control Weight is specifie 10 February 1965. This weight assi Optical Eyepiece Storage Assembly.	is specified in NASA letter EG-151 weight assignment does not include Assembly.		EG-151-44-65-55 dated include recognition of the	the

Reported Weight Changes and Weight Trend Information

Preliminary information from the Industrial Contractor indicates the advisability of increasing the weight estimate of the Optical Subsystem by one (1) pound reflecting the addition of the SCT and SXT ejectable covers (one-half pound each) as directed by CCA 497-0309.

The weight estimate of Block II Command Module NVB with mounts has been revised to reflect the measured weights of recently shipped G&N systems 202, 203, and 204. This revision results in an increase of two and one-half (2.5) pounds.

The weight estimate of the Block II Command Module Bellows Assy has also been revised to reflect the measured weights of recently shipped G&N Systems 202, 203, and 204. This revision results in a decrease of two (2) pounds.

A change is being considered to add a vibration dampening plate to the Block II Command Module CDU which will, if approved, result in an increase of three-tenths (0.3) pound.

The weight estimate of the AGC has been increased four (4.0) pounds to reflect actual weights of AGCs Cl, C2, and C5. This increase is attributable to potting tolerances and it is considered still to be an estimate.

1 Martin	LM PGNCS Equipment	Status 8/66	Change	Status 9/66	Design Load Weight
	IMU	42.4 (M)	0.0	42.4 (M)	
	AOT (including eyepiece and bellows)	23.1 (E)	0.0	23.1 (E)	80.0
	NVB	4.0 (E)	+1.1	5.1 (M)	•
	HARNESS 'B' Supported by the NVB	0.6 (E)	0.0	0.6 (E)	_
	"B" Supported	0.8 (E)	0.0	0.8 (E)	
		e 3.1(E)	0.0	3.1 (E)	> 21.0
		14.3 (M)	0.0	14.3 (M)	_
	HARNESS "A"	14.6 (E)	0.0	14.6 (E)	22.0
	six(6) rope modules	65.0 (E)	+4.0	69.0 (M)	65.0
		17.5 (M)	0.0	17.5 (M)	20.0
	AOT Control Unit (CCRD)	1.6 (M)	0.0	1.6 (M)	2.0
	CDU	37.0 (M)	0.0	37.0 (M)	37.0
	PSA	17.6 (E)	- 0, 1	17.5 (M)	28.2
	SCA (Operational Flights)	7.2 (E)**	0.0	7.2 (E)	_
	TOTAL	248.8	+5.0	253.8	;
	The reported total weight for this month exceeds the by 8.8 lbs.t	exceeds the	245.0 pounds	ids total control	l weight
	Bare Guidance Systems - IMU, LGC, IN CDUs and IMU support electronics	IMU portions c	of the	158.8	
	[*] Design Load Weights are taken from ICD LIS-490-10001 (NASA/MSC) on 29 March 1966.	D LIS-490-1	as	signed by Mr. R.	A. Gardner
	** The weight of a qualification flight signal conditioner	al conditione		assy is 9.2 (E) pounds.	
	† The Total Control Weight is specified in Contract Technical PS 6000000 - amended by NASA Letter EG 26-233-66-565 da	n Contract T EG 26-233-6		Specification ted 18 August 1966	9 6 .

18

いたのに

Reported Weight Changes and Weight Trend Information

The weight estimate of the LM NVB has been revised to reflect the measured weights of recently shipped LM/G&N Systems 603 and 605. This revision results in a net increase of one and one-tenth (1.1) pounds resulting from the addition of the machined gussets.

The LM/PSA weight estimate has been reduced one-tenth (0.1) pound to reflect recently shipped LM/G&N Systems 603, 604, and 605.

A change is being considered to add a vibration dampening plate to the LM CDU which will, if approved, result in an increase of three-tenths (0.3) pound.

The weight estimate of the LGC has been increased four (4.0) pounds to reflect actual weights of AGCs Cl, C2, and C5. This increase is attributable to potting tolerances.

LW HONCE FOUNDARY

•

こうしょうかいう ひょうしょうか かっていための話をから しょうしょう ちょうちょうかい あからう

SECTION 2

i

CENTERS OF GRAVITY AND MOMENTS OF INERTIA

The centers of gravity and moments of inertia are summarized in tabular form. This data has been prepared for MIT/IL designed equipment with respect to the reference axes of the Block II Command Module and the Lunar Excursion Module. MIT assumes that all hardware is in the proper configuration for Thrusting Modes; therefore, the eyepieces (3) will be located in the Optical Eyepiece Storage Assembly. North American Aviation will provide storage for the astronaut's Horizontal Handholds (2). Since this storage information is not available at MIT/IL, it is suggested that NAA supply the centers of gravity and moments of inertia for these items.

MIT Letter AG 261-66 dated 23 March 1966, proposed that NAA provide storage for the SXT Long Relief Eyepiece in the Block II Command Module.

TABLE 4. COMMAND	ND MODULE		BLOCK II GN	GN&C MASS	PROFE	2 '		C1 642
	Center	r of Gravity	I	Inches	Moment	nt of Inertia		11-1
Command Module G&N Equipment	×	<u>y</u>	12	+ Error	I x	I y	I z	t Errcr
CDII Assv	39.0	15.6	42.3	5%	17.85	28.78	15.34	r.
Optical Subsystem	69.7	0	33.6	10%	11.77	61.99	50.25	2 %
Optical Base & gearing) NVB & Mounts	65.5	0	39.8	10%	10.02	35.56	26.15	o c
Bellows Assy	55.8	0	40.9	10%	15.41	43.96	28.67	5 J/0
Coolant Hoses (two)							00	10 1
Power Servo Assy	44.2	0	44.4	5%		44.04	22.09	0.1
PIPA Electronics Assy	64.2	-14.0	37.6	5%	3.12	10.70	8.39	0/2
G&N Interconnect Harness Assy						0 0 1	01 10	101
AGC	38.0	-4.0	46.2	5%	32.11	52.93	21.4 3	0/ 1
Optical Shroud								
Optical Eyepiece Storage Assy SXT Normal Relief Eyepiece SCT Normal Relief Eyepiece SCT Long Relief Eyepiece								2
G&N Indicator Control Panel	54.5	0	36.5	5%	3.61		7.91	4%
DSKY (L.E.B.)	61.5	17.1	36.5	5%	6.14	19.31	15.39	1 %
Signal Conditioner Assy	72.5	15.1	31.6	5%	2.12	10.79	9.46	2%
DSKY (Main Panel)	68.0	-13.9	-20.5	5%	2.32	19.06	18.21	2%
Horizontal Handholds (Two)		See text	on the	preceed	ing page.			
SXT Long Relief Eyepiece								
TOTAL								

F RIOCK II GN&C MASS PROPERTY DATA

٠,

 $\widehat{\mathbf{x}}^{(j)}$

TABLE 5. LUNA	Я	M NOIS	ODULE P	EXCURSION MODULE PGNCS MA	SS PROF	SS PROPERTY DATA		~
	Cente	Center of Gravity	ı	Inches	Momen	Moment of Inertia	1	Slug-ft
LEM GN&C EQUIPMENT	×	<u>ح </u>	12	±Error	Ix	Jy	$\mathbf{I}_{\mathbf{Z}}$	±Error
								1 01
IMU	307.0	0	49.9	5%	22.90	886.76	863.97	17,0
Navigation Base	309.0	0	54.4	5%	2.57	3.39	0.86	1%
AOT								
AOT Control Unit (CCRD)								
PTA								
Harness "B"								Ę
DSKY	254.0	0	58.6	10%	12.98	256.47	243.50	1%0
LGC	266.0	0	-22.9	5%	8.24	1034.57	1027.81	1%
CDU	252.2	0	-22.8	10%	4.69	553.63	549.28	2%
PSA (not integral unit)	240.0	0	-22.8	5%	3.04	308.63	305.88	5%
Signal Conditioner Assy J								
Harness "A"								
TOTAL								

LUNAR EXCURSION MODULE PGNCS MASS PROPERTY DATA

SECTION 3

~

GLOSSARY AND SYSTEM DEFINITION

A description of what constitutes MIT supplied hardware for the guidance and navigation equipment in Block I (100 Series) and Block II Command Modules and Lunar Excursion Module is contained in this section.

COMMAND MODULE BLOCK I, Series 100

Apollo Guidance Computer (AGC)

A single complete flight computer containing all logic, memory associated power supplies, and all interface circuits except those identified with the CDU's. Does not contain the associated displays and controls.

The AGC consists of one case containing factory replaceable electronic modules. The weight estimate includes a cover for moistureproofing and the G&N to S/C Interface Assembly which is located in the adjacent area. The weight of the necessary cold plate is not included.

Bellows Assembly

Consists of two flexible metal bellows forming a pressure seal between CM and optical subsystem for penetration of hull.

Coupling Data Unit (CDU) Assembly

The CDU provides the necessary signal interface among the IMU gimbal angles, optics gimbal angles, angle registers in the AGC, and the spacecraft autopilot attitude error signals.

The assembly contains five interchangeable gear boxes each with necessary motor tachometer, resolver synchros, and encoder. The CDU does not include associated electronics. (This electronics is located in the Block I PSA.) A frame assembly encloses the CDUs in a moisture-proof container and mounts them to the spacecraft structure.

Cold Plates

Cold plates for the IMU are built into the IMU. Necessary cold plates for electronics are part of the equipment supplied by the spacecraft manufacturer (NAA).

Control Electronics Assembly

Consists of one power transformer, one relay and diode module and a bracket end connector mounted behind G&N indicator control panel to support display and control functions. Includes moisture-proofing.

Coolant Hoses

Consists of: (1) three steel-flex coolant hoses between IMU and spacecraft, (2) line transition piece, (3) bracket assembly screws and clamp, and (4) entrapped coolant. (The line transition piece makes two of the hoses a single unit.)

DSKY (D&C/AGC)

Number displays and keyboard control associated with the operation of the AGC. Two functionally identical and parallel operating units: one in lower equipment bay and one on main panel between left and center couches. The main panel DSKY has a piece of fail-safe alarm detection equipment called a "nightwatchman".

D&C Electronics Assembly

Consists of a chassis, a relay and diode module, a demod. elect. module, a saturable reactor, a time delay module, a connector, and wiring and is mounted behind the G&N Indicator Control Panel. Used to support display and control functions. Connectors will be moisture-proofed.

G&N Indicator Control Panel

Consists primarily of controls and displays for the operation of the optics, IMU temperature control, panel brightness control, and attitude impulse control. It includes display and control elements, panel, panel wiring, supporting hardware, and moisture-proofing.

G&N Interconnection Assembly

•

е. Ж

đ

500 - 10

94 19

ľ,

;

Consists of an interconnect wiring harness, which electrically ties together the assemblies that constitute a completely integrated system. The weight of the PSA End Connector is included with this item. This term does not include weights of harness support brackets, which are an NAA responsibility.

G&N to S/C Interface Assembly

This assembly provides the electrical interface between the spacecraft wiring channel, the computer connector, and the PSA end connector assembly. There are no active electronics in the assy. The

weight of this item is included with the Block I computer.

Horizontal Handholds (Two)

These handholds are part of the body tethering system for use during navigation sightings. Two handholds are mounted on the G&N Indicator Control Panel and will be removed when not in use. The weight reported includes the mounting screws.

Inertial Measurement Unit (IMU)

The IMU consists of three gyros and three accelerometers mounted on the innermost gimbal of a three degree-of-freedom gimbal structure. The size 14 IMU (14-inch case diameter) gimbal assembly including all parts inside hermetic case. entrapped coolant, and heat exchanger insulation are included in the weight.

IMU Control Panel

Consists of panel, wiring, attitude error meter, CDU transfer switch, manual alignment switch, CDU mode control switches, connector, supporting hardware, and associated moisture-proofing.

NVB and Resilient Mounts

Rigid beryllium structure supporting the IMU and the optical subsystem with its associated hardware. The NVB is attached to the spacecraft using flexible resilient mounts to prevent spacecraft strains from distorting the NVB and the alignment between the IMU and optics. These mounts also provide shock and vibration attenuation.

Optical Eyepiece Storage Assy (ESU)

A polyurethane filled structure will provide storage for three optical eyepieces: SXT normal relief, SCT normal relief, and SCT long relief eyepieces. The condition annunciator assembly is part of the compartment structure. The weight also includes a protective cover or door. The assembly is located in the area vacated by the M&DV.

Condition Annunciator Assy: This unit visually displays the status of G&N System. This function was previously part of the Map and Data Viewer.

- Normal Relief Eyepieces: Removable SXT eyepiece and SCT eyepiece.
- Long Relief Eyepiece: A SCT eyepiece to provide eye relief of at least 1.6 inches for closed visor operation. Used in place of normal eyepiece of SCT.

Optical Subsystem

The subsystem consists of a sextant, scanning telescope, and an optical base, each with associated hardware. An equipment definition follows:

Sextant (SXT): A two line-of-sight, narrow field-of-view, two degree-offreedom sextant with its attached gearing.
Scanning Telescope (SCT): A single line-of-sight, wide field-of-view, two degree-of-freedom articulation optical instrument with its attached gearing.

Optical Base: A base for the SXT and SCT with its associated gearing.

The SXT and SCT weights reported above include estimates of covers with ablative material.

Optical Shroud & Cover Assembly

Consists of the optical shroud and protective cover.

```
Power Servo Assembly (PSA)
```

The PSA includes most of the support electronics: power supplies; IMU, Optics, and CDU servos; IMU temperature control; accelerometer pulse torquing and gyro pulse torquing. Replaceable modules are placed in each of the 10 trays. Moisture protection is provided for each tray individually by a gasket and a connector cover with mounting screws. A beryllium front toe plate is included in the PSA weight.

The PSA end connector is the electrical interface between the 10 PSA trays, the G&N Interconnection Assy, and the G&N to S/C Interface Assy. The end connector weight is reported in the G&N Interconnection Assembly value.

Signal Conditioner Assembly

This assembly buffers and conditions signals for transmission to telemetry.

COMMAND MODULE BLOCK II

Apollo Guidance Computer (AGC)

A single complete flight computer containing all logic, memory associated power supplies, and all interface circuits except those identified with the CDU's. Does not contain the associated displays and controls.

Consists of one case containing factory replaceable electronic modules. Includes cover for moisture-proofing, but does not include the necessary cold plate.

Many Block I modules have been redesigned and repackaged in a separate case. Memory capacity increased over Block I.

Bellows Assembly

.

1

٠

53

6

1

Consists of two elastomeric, semi-toroidal, strain isolation, pressure vessel penetration seals between the CM hull and the optical subsystem.

Coupling Data Unit Assembly (CDU)

The coupling data unit provides central data conversion between the G&N analog subsystems (inertial and optics sextant), and in addition certain spacecraft analog control and display functions. The CDU is an all-electronic device that employs analog computational techniques in conjunction with digital counters and control logic to perform both analog to digital (A/D) and digital analog (D/A) conversion.

Moding of various Guidance and Control system functions that operate in conjunction with the CDU signals is accomplished by the computer through the CDU control and synchronizing logic.

The weight includes all the support electronics, the 4 V power supply, and the header mounted adjacent to the AGC.

Cold Plates

Cold plates for the IMU are built into the IMU. Necessary cold plates for electronics are part of the equipment supplied by the spacecraft manufacturer. (NAA).

Coolant Hoses

Consists of: (1) two steel-flex coolant hoses, between IMU and spacecraft and (2) two hose connectors, and (3) entrapped coolant. Bracket assembly, screws and clamps will be supplied by NAA.

DSKY (D&C/AGC)

Number displays and keyboard control associated with the operation of the AGC. Two functionally identical and parallel operating units: one in lower equipment bay and one on main panel between left and center couches.

Mechanically and electrically similar to Block I but smaller configuration because of smaller relays. The Block II displays and keyboard controls will be sealed by encasing the unit in a container and using pressurized O-rings.

G&N Indicator Control Panel

Consists of controls and displays for optics, condition lamps, telemetry, and Master Alarm. Also contains attitude impulse switch and hand controller. Has integral illuminated computer instructions. The condition lamps replace the Block I Condition Annunciator Assembly.

This assembly consists of eight cables that electrically tie together the hardware that makes up the GN & C system and also provides the electrical interface with the spacecraft. The cables are defined as follows:

HARNESS A	AGC-CDU to Left Hand Bracket and S/C
HARNESS B	PSA to Optics (SXT) and Optics Resolver
HARNESS C	PSA to Upper and Lower IMU & PIPA
HARNESS D	PSA to Left Hand Bracket (AGC-CDU)
HARNESS E	PSA to G&N Panel
HARNESS F	PSA to Optics (SCT)
HARNESS G	PSA to Signal Conditioner and S/C Right Hand Bracket
HARNESS H	PSA to DSKY, Left Hand Bracket and Right Hand Bracket
	(Power)

The estimated weights include the group shielding, potting compound, connectors, wire, cable clamps, and clamp brackets. Horizon Photometer - Star Tracker (Experimental Basis Only)

An earth horizon brightness photometer and automatic star tracker used for navigation measurements against the earth's illuminated limb. The sensors are incorporated into the head of the SXT, the weight of which includes this function. The PSA includes all support electronics for the horizon photometer.

Horizontal Handholds (Two)

These handholds are part of the body tethering system for use during navigation sightings. Two handholds are mounted on the G&N Indicator Control Panel and will be removed when not in use. The reported weight includes the mounting screws.

Inertial Measurement Unit (IMU)

The IMU consists of three gyros and three accelerometers mounted on innermost gimbal of a three degree-of-freedom gimbal structure. The size 12.5 IMU (12.5-inch case diameter) gimbal assembly including all parts inside the hermetic case, entrapped coolant, and heat exchanger insulation are included in the weight.

NVB & Mounts

.

A polyurethane filled aluminum skinned structure functionally similar to Block I but lighter and will provide for mounting the size 12.5 IMU. The Block II NVB is attached to the spacecraft by use of strain isolation hardmounts and will have a transition piece as a result of the re-orientation of the NVB so that the IMU axes will be parallel to the Command Module axes. Optical Eyepiece Storage Assembly (ESU)

Optical Eyepiece Storage Assembly (ESU)

A polyurethane filled structure will provide storage for three optical eyepieces: SXT normal relief, SCT normal relief, and a SCT long relief eyepiece. The weight also includes a protective cover or door. This assembly is located in the area vacated by the M&DV. There is no provision for a condition annunciator as part of the compartment structure.

Normal Relief Eyepieces: Removable SXT eyepiece and a SCT eyepiece. Long Relief Eyepieces: A SCT eyepiece to provide eye relief of at least 1.6 inches for closed visor operation. Used in place of SCT normal eyepiece. SXT Long Relief Eyepiece

A SXT eyepiece to provide eye relief of at least 1.6 inches for closed visor operation. Used in place of SXT normal eyepiece. The present MIT proposal suggests that this eyepiece be stored in a bay with other loose stored items.

Signal Conditioner Assembly (SCA)

This assembly buffers and conditions signals for transmission to telemetry. These modules are located in the same volume occupied by the Block I lower equipment bay DSKY.

LUNAR EXCURSION MODULE

Apollo Guidance Computer (LGC)

A single complete flight computer containing all logic, memory associated power supplies, and all interface circuits except those identified with the CDUs. Does not contain the associated displays and controls.

Consists of one case containing factory replaceable electronic modules. Includes cover for moisture-proofing, but does not include the necessary cold plate.

Except for computer programs, the LGC is identical to the CM Block II AGC.

Alignment Optical Telescope (AOT)

The AOT is a three-position periscope with a single degree-of-freedom, manually read recticle. The weight estimate includes a normal eye-relief eyepiece and a bellows assy between the AOT and the LEM hull. The bellows assy is an elastomeric, semi-toroidal, strain isolation, pressure vessel penetration seal. The AOT reticle is used for alignment of the IMU.

.....

10 N N

3'

ł

.

4

AOT Control Unit (Computer Control and Reticle Dimmer)

Located on GAEC Supplied Hardware protecting the AOT. Contains illuminated push button controls mark "x", mark "y", and "reject" mark. Also has an AOT reticle dimmer.

Cold Plates

Cold plates for the IMU are built into the IMU. Necessary cold plates for electronics are part of the equipment supplied by the spacecraft manufacturer. (GAEC)

Coolant Hoses

The coolant hoses for the LEM IMU will be supplied by the spacecraft manufacturer. (GAEC)

Coupling Data Unit (CDU)

The coupling data unit provides central data conversion between the computer and G&N analog subsystems (inertial and radar), and in addition certain spacecraft analog control and display functions. The CDU is an all-electronic device that employs analog computational techniques in conjunction with digital counters and control logic to perform both analog to digital (A/D) and digital to analog (D/A)conversion.

Moding of various Guidance and Control system functions that operate in conjunction with the CDU signals is accomplished by the computer through the CDU control and synchronizing logic.

The LEM CDU uses modules identical to those used in the CM Block II but mounted on a different header. The weight includes all the support electronics, the 4V power supply, and the header mounted adjacent to the AGC.

Number Displays and Keyboard controls associated with the operation of the LGC. The DSKY will be sealed by encasing the unit in a container and using pressurized O-rings. Identical to the Block II DSKY except only a single unit is required.

Harness "A"

Harness "A" provides electrical interconnection in the CDU, AGC, and PSA areas. The estimated weights include the connectors, wire, insulation, shielding, and cable clamps.

Harness "B"

Harness "B" provides the electrical interconnection in the IMU and PTA areas. The estimated weights include the connectors, distribution box, wire, insulation, shielding, and cable clamps.

Inertial Measurement Unit (IMU)

The IMU consists of three gyros and three accelerometers mounted on the innermost gimbal of a three-degree-of-freedom gimbal structure. The size 12.5 LEM IMU is physically identical to the Block II. The weight value includes the gimbal assembly (and all parts inside the hermetic case), entrapped coolant, and the heat exchanger insulation.

Lens Cleaning Kit

Not specifically defined but appropriate cloths for cleaning the accessible surfaces of the optics lens.

NVB and Mounts

A toroidal aluminum ring with: (1) four tubular aluminum posts to provide for IMU mounting, (2) four tubular aluminum posts for AOT mounting, and (3) three aluminum inserts to provide strain isolation ball mounting to the GAEC structure.

Power Servo Assembly (PSA)

The PSA consists of a single-plane matrix header mounted on a cold plate with

the modules plugging in from the top. A cover is required to protect the modules from moisture. The assembly consists of electronics modules similar to those identified in the Block II PSA; however, many of the modules have been redesigned and repackaged. Support electronics for the PIPA and IRIG loops are not included. See "Pulse Torque Assembly". Support electronics for the optical subsystem is not identified.

Pulse Torque Assembly (PTA)

.

•

1

This assembly consists of electronics contained in the PIPA and IRIG loops, including the pulse torque power supply and PIPA and IRIG calibration modules. The PIPA calibration modules, containing selected components, are assigned to each IMU. This sealed assembly is located adjacent to the IMU in LEM.

Signal Conditioner Assembly (SCA)

This assembly buffers and conditions signals for transmission to telemetry. This assembly is located "piggyback" on top of the LEM PSA.

SECTION 4

RELIABILITY ANALYSIS AND ASSESSMENT

The current status of reliability analysis is reported in summary form as a chart.

This chart contains tabulations of the failure rates associated with each major configuration of G&N systems. These have been derived from the parts count of each assembly using generic type part failure rates, modified only by the stress applied to each part and its singular application in the system. From these data, estimations of mission success probabilities may be calculated. Continual updating is accomplished and will be reported monthly in this report.

Reliability assessment for G&N Systems is presented graphically. These calculations are made in accordance with the MSC program for Success Index and are based on actual operating experience gained on G&N Systems in the field.

G&N MISSION RELIABILITY ANALYSIS

•

(L

•

? ~

.1

.

÷

.

FAIURE RATES EXPRESS IN "FAILURES PER 10⁶ HOURS"

Atiliqeilax Uoissiw									1		T	
7.5SIW				. 9580		. 9931		. 9938		. 9840		. 9969
J80	\backslash	OFF	266	ı	, ,	ı			3 55.6	I	'	ſ
	NO	\backslash	49	26	8.63	9			13.8	2.3	3. 25	1.2
LYSO		OFF	50 265	3.2 -	8.63 -	12 -	9.6	12	8 55.6	۰ ۳.	3.25 -	- 011
J9₽	NO	$\frac{1}{2}$	265 5	8	8		6		.613.8	.5	-	
	NO	STBY	50 2	257 66.	8.63	257	9.6	235	13.8 55.	235 60.	3. 25	235
COU			302 5	1	- 		05		9	1	1	
	NO	OFF	13 3	68	1	ı	1		13.855.	16	3.25	112
nas nwi	\backslash	STBY	266		'	1			\$ 55.6	ı	-	1
	NO	\sum	49	111	8.63	111	9.6	155	13.8	155	3.25	155
Optics Optics Electronics	\backslash	Ч	302						60.3	٠	25 -	33 -
AIquias	NO	\sum	13	84	1	1	ı		9.1	77	т	-i
Alquiassy Solito		OFF	302		1				1 60.3	1 	25 -	י 8
SJU IRSU	N	\rightarrow	266 13	6.3 94	1				.6 9.1	.3 94	. 3 3.	- 38
In the sal	Z	STBY		224 6.	8.63	224	9.6	110	13.8 55.	110 6.	3.25 66.	110
AIQUIƏSS¥ NWI	NO		266 49	10.2 22			6		55.6 1	10.2	66.33.	1.6 1
nwi	NO	STBY	49 2	185 10	8.63	195	9.6	129	13.8 55	129 10	3.25 66	129]
	<u> </u>		Oper Hrs	ا	Oper Hrs	ר ע	per Hrs	~	Oper Hrs	x	Oper Hrs	x
	NOISSIM		AGE #12 F1 1CHT 204	MANNED	AGE#122 FLIGHT 501	UNMANNED	AGE 603	UNMANNED LM	C/M	DES. REF.	LM	DES. REF.

LABORATORY-INSTRUMENTATION

•

The second of the

a state of the second

TP#

SECTION 5

ELECTRICAL POWER AND ENERGY

Electrical power and energy reporting is based upon the inflight spacecraft sequence of events for the Design Reference Mission as developed by the Apollo Mission Planning Task Force (AMPTF). (Reference GAEC Report Volume III -LED-540-12, dated 30 October 1964.)

The accompanying tables present the magnitude and distribution of power dissipated on a subsystem level. It is assumed that power is drawn from the spacecrafts' primary+28VDC supply and a 400 cps - 115 VAC single phase inverter.

Intermittent power peaks can exist, particularly during operation of displays and controls at random times. The energy content in these peaks is considered negligible.

A

All values (except those mentioned above) are actual expected levels of power. No margin factor has been applied to protect against possible differences between actual loads which will be experienced and the calculated levels quoted. Thus, these values should not be taken as "not to exceed" extremes.

Interface Control Documents serve as the guidelines for reporting power figures.

MH01-01227-216 "G & N Electrical Input Power" signed CM Block I 100 Series 11 June 1965 MH01-01327-216 "G & N Electrical Input Power" signed CM Block II 15 July 1965 LIS-390-10002 "PGNCS Prime Power Requirements and LEM Characteristics" signed 30 July 1965

BLOCK I - 100 SERIES GUIDANCE AND NAVIGATION LOAD ON PRIMARY +28 VDC COMMAND MODULE

BASED UPON 1925 HOUR (227 DAY) LIMAR MISSION DESIGN REFERENCE MISSION

1

•

REFERENCE GAEC REPORT - LED SHO-12, 30 OCTOBER 1954 APOLLO MISSION PLANNING TASE FORCE

				COLD PLATES (1)-				
			PSA	NEA	COU	AGC	06	
COMPUTER OPR SW 78.875	110 W OPERATE	APOLLO GUIDANCE COMPUTER	-	L		100 *c	_	
930 W HOURS	15.0#	AGC STANDBY	-			15 40	L	
IS # STANDBY	A91	OPTICS ELECTRONICS & RELAYS	- 0 9 W					
OPTICS OPR SW 400% BLOCKING 1487 W HOUPS 123 3 W OPR (SXT-ON)	2.011	ENCODEP ELECTRONICS	- 20%					
	39.0W	OPTICS SERVO AMPLIFIERS	24 000	10 4 %	52Wc			
	15W	800 ~ AAC	-1540					
	35.6W SXT ON 800 CPS		-	104 10	\$7#c			
	SUPPLY			1				
			200%					
	1	RSVP EXCITATION		22Wc	15Wc			
	10.4W 800 CPS	TACH EXCITATION	_	74%	37WC			
	SUPPLY	HAND CONTROLLER IOPTICS					1.	
			Icon	-		-		
					OSW			
	3.7W 25 6 KC							
	Exci		- 12Mc	-			-	
	3 OW		JOWC					
FROM NAA) IIS VAC 400 CPS	25W SIGNA	SIGNAL CONDITIONING					-	
FROM NAA)	LEW CONDITION	ING PRESSURE TRANSDUCER	"f	1 Hc				
	P SUPPL		20%	1.10				
	21W	FAILURE INDICATOR	211%					
1004	10.0*	TEMP CONTROLLER	IOWC					
IMU HEATER SW BLOCKING 50 7W IMU ON DIODES 61 7W IMU OFF	- 20.2 W	HEATERS 20W INU ON - 22W IMU OFF GI	a state of the sta	20-77 A				
		DUCOSYN EXCITATION 2V SINE WAVE	7	354		-+		
	19.1W 3200 CP		-	3.7.4.14				
	SUPPLY		- SWC			-		
	LSW	3200 - AAC	10.6 %			+		
	2.0₩		- 15W			-+	_	
		CIMBAL SERVO & ADA PREAMP POWER	210					
	-21 VOC	PIPA PULSE TOPQUE ELECTRONICS	- 6W	_				
	DI IN POWER	PIPA POLSE TOPOUL ELECTRONICS	1	0.5.0				
			- 1.) WM					
2734D W HOURS 325 &W OPR	11.04	IRIG & PIPA ELECTRONICS	11.61					
366 4 W MAX	59.0 M 120V - 12VI	PIPA ELECTRONICS	47 WM					
	P SUPPL		12 #					
							_	
	21 4 W IRIG	IRIG ELECTRONICS	- 27 8 M		_			
	120W MAXI P SUPPL	Y	LOWN					
	1.0							

42

i

BLOCK II GUIDANCE AND NAVIGATION LOAD ON PRIMARY + 28 VDC COMMAND MODULE

BASED UPON 1965 HOUR (627 DAY) LUNAR OBBIT MISSION DESIGN REFERENCE MISSION

REFERENCE GAEC REPORT LED SHO 12 30 OCTOBER 1966 APOLLO MISSION PLANNING TASK FORCE

LUNAR EXCURSION MODULE GUIDANCE AND NAVIGATION LOAD ON +28 VDC PRIMARY

BASED UPON TOLO2 HOURS IL & DAYI LUNAR LANDING MISSION

REFERENCE GAEC REPORT - LED SHO-12, 30 OCTOBER 1954

DESIGN PEFERENCE MISSION

APOLLO MISSION PLANNING TASK FORCE

(LOI MIT ASSUMES LOD PERCENT EFFICIENCY FOR ALL GAEC POWER SUPPLIES

SECTION 6

GUIDANCE COMPUTER PROGRAMMING

Guidance computer programs fall into three categories: service, test and mission programs.

- Service Programs: The service programs may be regarded as the "tools" used to accomplish the mission objectives. These programs are necessary for the general operation of the computer and they are completely insensitive to mission planning.
- 2. Test Programs: The test programs are used to test the AGC, the G&N System, and other programs.
- 3. Mission Programs: The mission programs are those AGC programs which directly accomplish the guidance and navigation functions. Certain parts of these are highly sensitive to mission plans, vehicle configuration,

ground based activities, etc. Although some portions of these programs are quite general, a complete specification is not possible until the release of the Guidance System Operation Plan for each particular mission.

The memory also contains all mission and vehicle dependent data that is written directly into the memory of AGC. The very limited erasable section is intended primarily for storage of computational variables. Those mission parameters that do not change during flight are consigned to the fixed section of the memory.

FIXED MEMORY ALLOCATION FOR BLOCK I CMC CORONA FLIGHT AS-501 AND AS-502

Executive	336
Waitlist	219
Restart Control	114
Fresh Start Restart	302
Keyrupt	97
Mission Control	183
Interrupt Transfer Routine	38
Down Telemetry	228
T4 Rupt	. 301
Mode Switching and Mark	593
AGC Self Check	988
Alarm and Display	57
Pinball	2263
501 Mission Control	1964
Prelaunch Alignment	896
Fixed-Fixed Interpreter	941
Interbank Communication	73
Inflight Alignment Program	234
Inflight Alignment Subroutines	408
Time of Free Fall Calculations	272
Bank 03 Interpreter	821
Orbital Integration for 501	1002
IRIG Pulse Torquing Routine	286
RTB OP Codes	342
Re-Entry	1360

Re-Entry	1500
Average G Integrator	184
Extended Verbs	706
Powered Flight Subroutine	1839
IMU Compensation Package	98
IMU Performance Tests 1	1008
IMU Performance Tests 2	1016
Restart Tables and Routines	471
Verification Assistance Program	98
Dummy 202 Initialization	30
Sum Check End of Record Marks	48

TOTAL FIXED MEMORY WORDS

19,816

FIXED MEMORY ALLOCATION FOR BLOCK I CMC SUNSPOT FLIGHT AS-204 AND AS-205

Interrupt Transfer Routines	38
Fixed-Fixed Constant Pool	54
Fixed-Fixed Interpreter Section	1024
Bank 03 Interpreter Section	821
Star Catalog	184
Executive	193
Waitlist	63
Restart Control	236
Restart Tables and Routines	366
Fresh Start and Restart	321
Down Telemetry Program	548
T4 Rupt Output Control Programs	797
Mode Switching and Mark Routines	595
IMU Compensation Package	215
IRIG Pulse Torquing Routines	286
Extended Verbs for Moding	664
AGC Self Check	802
Inter-bank Communication	73
Alarm and Display Procedures	61
Orbital Integration Program	819
Midcourse Navigation Game	941
Latitude-Longitude Subroutines	433
Target Routine	369
Verb 64	18
Deorbit Target Subroutines	272
	100

Measurement Incorporation	188
B Vector Routine	229
Program 22 Start	12
Program 23	39
Prelaunch Alignment Program	823
RTB OP Codes	394
	1000
IMU Performance Tests 1	1008
IMU Performance Tests 2	328
Inflight Alignment Subroutines	892
204 Alignment Routines	0.00
Star Selection Routine	254
Keyrupt, Uprupt, Fresh Start	91
Pinball Game Buttons and Lights	2547
204 Service Routines	153
Coordinate Transforms and Geometry	254
Attitude Maneuver Routine	1174
204 Mission Control Program	2874
Automatic Optics Positioning Routine	245
Automatic Optics Positioning Routine	1112
Re-Entry Control	48
Sum Check End of Record Marks	

TOTAL FIXED MEMORY WORDS 24, 156

FIXED MEMORY ALLOCATION FOR BLOCK II CMC

SUNDIAL FLIGHT AS-278

Pinball, including Lunar Mission Requirements	2500
Interrupt Lead-in	50
Inter-bank Communication	50
Interpreter	2000
S.P. Subroutines	80
Executive	400
Waitlist	170
Phase Tables	300
Fresh Start and Restart	400
T4 Rupt	130
IMU Mode Switching	500
OSS Mode Switching	260
Extended Verbs	500
Keyrupt and Uprupt	80
Alarm, Abort, and Down T/M	210
Self Check	824
Inflight IMU Alignment Routines	500
RTB, Op Codes	480
TVC DAP	1900
RCS DAP	2000
Calc T _{rr}	300
Earth Rotation	25
Determine LEM Initialization Data	300
Orbit Integration (conic and Encke)	800
Midcourse Navigation Game	1190
LAT/LONG Routines	390
Navigation Measurement Incorporation	110
B Vector Routines	210
Star Catalogue	336
Servicer	500
IMU Compensation	200
Attitude Maneuver Routine	250
Store Co-variance Matrices, diagonal	90
Star Selection Routine	260
Rendezvous Navigation and Intercept Trajectory	500
Computation of Special Orbit Parameters for Display	500
Four Downlink Lists	340
Verb 37 Table	100
Pre-Launch (includes IMU Performance Tests)	1200
Start Up and Power Down	50
CMC Update	130
Boost Monitor	200
Saturn Take-over for EOI	2000
SXT Rendezvous Tracking	100
Preferred Attitude	500
Landmark Tracking	100
Star-Landmark Measurements	300
IMU Alignment	750
Pre-Thrust Orbit Change	200

SUNDIAL FLIGHT AS-278 (Continued)

Pre-Thrust, Direct Intercept	150
Pre-Thrust, MCC	150
Pre-Thrust, Term Rendezvous	150
SPS Thrust Programs	375
RCS Thrust Programs	375
Common Thrust Programs	500
External Delta V	400
Entry	2500
LET Abort	20
First Abort Burn	25
Pad	5400

TOTAL FIXED MEMORY WORDS 34,610

FIXED MEMORY ALLOCATION FOR BLOCK II CMC

SUNDIAL FLIGHT AS-503 AND AS-504

Pinball, including Lunar Mission Requirements	2500
Interrupt Lead-in	50
Inter-bank Communication	50
Interpreter	2000
S.P. Subroutines	80
Executive	400
Waitlist	170
Phase Tables	300
Fresh Start and Restart	400
T 4 Rupt	130
IMU Mode Switching	500
OSS Mode Switching	260
Extended Verbs	500
Keyrupt and Uprupt	80
Alarm, Abort, and Down T/M	210
Self Check	976
Inflight IMU Align Routines	500
RTB, Op Codes	480
IMU Performances tests	200
TVC DAP	1900
RCS DAP	2000
Calc T _{ff}	300
Earth Rotation	25
Determine LEM Initialization Dates	300
Determine LEM Azimuth Alignment (backup)	50

Determine main main mainent (backup)	00	
Lunar Inertial Orientation	100	
Lunar Ephemeris	200	
Orbit Integration (Conic and Encke) including lunar		
Triaxiality	1000	
Midcourse Vavigation Game	1190	
LAT/LONG Routines	390	
Navigation Measurement Incorporation	110	
B Vector Routines	210	
Star Catalogue	336	
Lunar Landmarks	168	
Servicer	500	
IMU Compensation	200	
Attitude Maneuver Routine	250	
Store 5 Co-variance Matrices, diagonal	90	
Star Selection Routine	260	
Rendezvous Navigation and Intercept Trajectory	500	
Computation of Special Orbit Parameters for Display	500	
Four Downlink Lists	340	
Verb 37 Table	100	
Pre-Launch	1000	
Start Up and Power Down	50	
CMC Update	130	
Boost Monitor	300	
Translunar Injection using cross product steering	300	

SUNDIAL FLIGHT AS-503 AND AS-504 (Continued)

SXT Rendezvous Tracking	100
Preferred Attitude	500
Landmark Tracking	100
Star-Landmark Measurements	300
IMU Alignment	750
Pre-Thrust, Sphere of Infulence	200
Pre-Thrust Orbit Change	200
Pre-Thrust, Return to earth	3900
Pre-Thrust, Direct Intercept	150
Pre-Thrust, MCC	150
Pre-Thrust, Term Rendezvous	150
SPS Thrust Programs	500
RCS Thrust Programs	500
Common Thrust Programs	500
External Delta-V	400
Entry	2500
LET Abort	20
First Abort Burn	25

TOTAL FIXED MEMORY WORDS 33,530

FIXED MEMORY ALLOCATION FOR BLOCK II LGC AURORA FLIGHT AS-206

	0.5.0.0	
Pinball plus lunar mission requirements	2500	
Interrupt Lead-in	50	
Inter-bank Communication	50	
Interpreter	2000	
S. P. Subroutines	80	
Executive	400	
Waitlist	170	
Phase Tables	300	
Fresh Start and Restart	400	
T4 Rupt	130	
IMU Mode Switching	500	
AOT Mark (NO LORS)	300	
Extended Verbs	500	
Keyrupt and Uprupt	80	
Alarm, Abort, and Down T/M	210	
Self Check	824	
RTB, Op Codes	480	
Radar Lead-in Routines	750	
LEM DAP	3000	
LORS Interface	1750	
Mission Programming Estimated	8000	
TOTAL TISTED MENIODY WODDS	99 474	TPO

TOTAL FIXED MEMORY WORDS

22,474 ESTIMATED

FIXED MEMORY ALLOCATION FOR BLOCK II LGC AURORA FLIGHT AS-278

Pinball plus lunar mission requirements	2500
Interrupt Lead-in	50
Inter-bank Communication	50
Interpreter	2000
S. P. Subroutines	80
Executive	400
Waitlist	170
Phase Tables	300
Fresh Start and Restart	400
T4 Rupt	130
IMU Mode Switching	500
AOT Mark	300
Extended Verbs	500
Keyrupt and Uprupt	80
Alarm, Abort, and Down T/M	210
Self Check	824
RTB, Op Codes	480
IMU Performance Tests	2500
Radar Lead-in Routines	750
LEM DAP	3000
Inflight IMU Align Routines	500
Orbit Integration (Conic and Encke) and Triaxiality	950
Star Catalog	336
Servicer	500
IMU Compensation	200
Attitude Maneuver Routine	250
Store 3 Co-Variance Matrices	54
Star Selection Routine	260
LGC Clock Synchronization	50
LGC Initialization	100
Search Pattern	50
DPS Gimbal Test and Postiioning	50
Five Down-Link Lists	430
CFP Targeting and Timing	2000
Rendezvous Navigation and Intercept Trajectory	3000
Verb 37 Table	100
Start Up and Power Down	50
LGC Update	130
RRDR Rendezvous Tracking	100
Preferred Attitude	500
Inflight IMU Alignment Modes	400
Pre-Thrust, External Delta V	400
Pre-Thrust, CSI	150
Pre-Thrust, CDH	150

AURORA FLIGHT AS-278 (Continued)

Pre-Thrust Direct Intercept	150
Pre-Thrust, MCC	150
Pre-Thrust, Term Rendezvous	130
Common Thrust Programs	1500
APS Common Thrust Programs	125
RCS Common Thrust Programs	125
DPS Common Thrust Programs	125
Pad	5400

TOTAL FIXED MEMORY WORDS

33,659

FIXED MEMORY ALLOCATION FOR BLOCK II LGC AURORA FLIGHT AS-503 AND AS-504

Pinball plus lunar mission requirements	2500
Interrupt Lead-in	50
Inter-bank Communication	50
Interpreter	2000
S. P. Subroutines	80
Executive	400
Waitlist	170
Phase Tables	300
Fresh Start and Restart	400
T4 Rupt	130
IMU Mode switching	500
AOT Mark (NO LORS)	300
Extended Verbs	500
Keyrupt and Uprupt	80
Alarm, Abort, and Down T/M	210
Self Check	824
RTB, Op Codes	480
Radar Lead-in Routines	750
LEM DAP	3000
LORS Interface	1750
Inflight IMU Align Routines	500
Lunar Inertial Orientation	100
Orbit Integration (Conic and Encke) and Triaxiality	950
Star Catalog	336
Servicer	500
IMU Compensation	200
Attitude Maneuver Routine, Calculate	
Attitude Maneuver	250
Store 3 Co-Variance Matrices, Midcourse	
Naviagation Game	54
Star Selection Routine	260
LGC Clock Synchronization	50
LGC Initialization	100
Search Pattern	50
DPS Jimbal Test and Positioning	50
Four Down-Link Lists	350
Direct Ascent Targetting and Timing	400
CFP Targetting and Timing	2000
Rendezvous Navigation and Intercept Trajectory	3000
Verb 37 Table	100
Landing Initialization and Targetting	300
Direct Ascent Targetting and Timing	100
CFP Ascent Targetting and Timing	100
Start Up and Power Down	50
LGC Update Pre DO I	130
DO I	100
Pre-Powered Descent	600 450
Powered Landing	2500
Manual Landing	2500
Manual Danuing	30

AURORA FLIGHT AS-503 AND AS-504 (Continued)

RRDR Rendezvous Tracking	100
Preferred Attitude	500
Eight IMU Alignment Modes	750
Pre-Thrust, External Delta V	400
Pre-Thrust, CFP Powered Ascent	200
Pre-Thrust, CSI	150
Pre-Thrust, CDH	150
Pre-Thrust, Direct Intercept	150
Pre-Thrust, MCC	150
Pre-Thrust, Term Rendezvous	150
Common Thrust Programs	1500
APS Common Thrust Programs	125
RCS Common Thrust Programs	125
DPS Common Thrust Programs	125
Landing Abort, CFP Profile, DPS	125
Landing Abort, CFP Profile, APS	125
	7.00

TOTAL FIXED MEMORY WORDS

5

32,930

SECTION 7

During the reporting period MIT/IL received Flight AS-202 Entry Portion Data. Certain analyses of these data were performed in support of entry guidance design and verification for the subsequent Apollo missions.

In summary, noteworthy performance of the guidance and navigation was evident. The inertial equipment received its last optical alignment to ground targets about 12 hours before liftoff. The attitude was held by inertial "gyro compass" for this period. Subsequently, the system controlled the hour and a half unmanned flight including four burns of the service propulsion and the high energy atmospheric entry. No ground tracking updates were sent. Final coordinates of position in the guidance computer differed from the reported spacecraft recovery location by about 12 miles.

The following is an analysis of the entry portion of flight data from AS-202. This flight fell 205 nautical miles short of the intended landing site. The table below shows the latitude and longitude of the intended and actual landing site as well as the landing site stored in the Apollo Guidance Computer, AGC, at landing.

		Reported	Landing Site
	Aim Point	Recovery Site	In AGC
Latitude	17 ⁰ 52'N	16 ⁰ 7'N	16 ⁰ 17'N
Longitude	171 ⁰ 52'E	168 ⁰ 54'E	169 ⁰ 0'E

This is an indicated error of 10' in latitude and 6' in longitude between the reported landing site and that measured and computed on board. Moreover, the AGC showed range-to-go of 189 nautical miles on landing.

It is seen from Fig. 3 that the vehicle roll angle was at near full positive lift throughout the flight. The initial roll angle of 180° (lift down) was held until capture by atmosphere was assured. Then the vehicle rolled to zero degrees and then 15° . Fifteen degrees away from full positive lift is allotted to lateral control. There is also an eighty-second period of 50-degree roll angle. This roll to nominal bank angle at low g's is characteristic of the up-control section which was designed to accept noisy input variables. It has been shown by simulations that this 50° roll segment costs 12 nautical miles in controllable range.

The most important contributor to this miss of 205 n.m. is the lower than expected lift-to-drag ratio, L/D, of the vehicle. The average L/D is shown to be .28 in Fig. 1. This is significantly lower than the minimum design value of .3. The design value was .34.

It is understood that the tracking data show an entry angle of -3.60 degrees rather than the design entry angle of -3.48 degrees. MIT data shows a steeper than nominal value. The indicated entry angle is the nominal value.

Several simulations have been made which closely approximate the acceleration time history as well as the 205 n.m. miss. The first case had these conditions at 400,000 feet

 γ_0 = - 3.60 degrees V_0 = 28523 fps. L/D = .28 Standard atmosphere.

When the vehicle L/D was increased to .3 this case fell only 25 n.m. short.

The second case had these conditions at 400,000 feet

 $\gamma_0 = -3.52$ degrees

 $V_0 = 28510$ fps. L/D = .28 Dense atmosphere (SQA = 10, see NASA TN D612)

It will be noted that either a steeper entry angle or dense atmosphere is needed as well as a low L/D to match the flight data.

Either improper trim or inaccuracies in aerodynamic prediction could cause this low L/D. The angle of attack has been calculated from the flight recorder tape with gimbal angles. The angle of attack was determined to be 18° , which correlates with the measured L/D ratio.

Complete flight data of the entry portion of AS202 are reported in E-2031. Further data and analysis are also found in the "Postlaunch Report for Mission AS-202", MSC-A-R-66-A.

MIT/IL 10 September 1966 R. Morth 3

NGITUDE (DEG)

Figure

N								_		_		_	<u> </u>	\mathcal{H}		4	;					-+	-+		8	4
20	•							.								_#								-		-+-
A.S	:1				:	i		j	I				228. 1		\sum	1						_	_	_		
1					!			ĺ		i	:		2				: 									1
士					•••				•••••												•					
-10-	;							_								T									1	
	<u> </u>		!		•• •				••					•••		1		1			5				1	
															-1			1			ප					
							i								0			÷			-40					
× 1										÷									-		Ŧ		L		-	
×	-			· .					2					•••	<u>d</u>					\mathcal{A}	1		00			
L										·	18				It I								-	-	8	-
b			. •	:					•	•		:	•:								1		400			
Z									а	:	••••••		:	•	2	1			:			$\mathbf{\Lambda}$	1			-
B				•							:			•	29						1.	1				-
3 K		 			• ••	·					•.	i:	• .•		***					:::	::	.::	N	-		
-12		:		<u>.</u>				×.		•.•.	1				::	::.	:"				·:.			N	· .	
	:			;						1.:	† .•		.		1								1		4	:
				L	<u> </u>		 		5			•		hii					⇒					~	Ш	:
				1					P		<u> </u>		1 ::	1::.;						1:1.		1	1			t.
				.					ee	in:	h	100000000000000000000000000000000000000	1.4	b ::	1-3(in		₩1	Ш	liii	1.2	ينبل		.l:	تنه ا	1:

E-1142 (Rev. 48)

DISTRIBUTION LIST

Internal

M. Adams (MIT/GAEC

1

R. Battin

W. Beaton (MIT/AC)

P. Bowditch/F. Siraco

N. Cluett

J. Dahlen

J. DeLisle

E. Duggan

J. B. Feldman

S. Felix

- 10 8 · 1

L. Larson
J. Lawrence (MIT/GAEC)
T. M. Lawton (MIT/MSC)
G. Mayo
John Miller
J. Nelson (2)
J. Nevins

E. Olsson

R. Ragan

J. Sciegienny

G. Silver (MIT/KSC) Eldon Hall T. Hemker (MIT/NAA) E. Hickey D. Hoag F. Houston

L. B. Johnson

N. Sears

W. Stameris

R. Weatherbee

L. Wilk (2)

R. Woodbury

Apollo Library (5)

MIT/IL Library (8)

E-1142 (Rev 48)

DISTRIBUTION LIST

.

.

.

External:

.

W. Rhine (NASA/MSC)	(2)
NASA/RASPO	(1)
AC Electronics	(10)
Kollsman	(10)
Raytheon	(10)
Major H. Wheeler (AFSC/MIT)	(1)
MSC:	(30 + 1R)
National Aeronautics and Space Administration Manned Spacecraft Center Apollo Document Distribution Office (PA2) Houston, Texas 77058	
KSC:	(1R)
NASA J.F. Kennedy Space Center Technical Document Control Office, HB-23 Cape Kennedy, Florida	
GAEC:	(3 + 1R)
Grumman Aircraft Engineering Corporation Data Operations and Services, Plant 25 Bethpage, Long Island, New York Attn: Mr. E. Stern	
NAA:	(18 + 1R)
North American Aviation, Inc Space and Information Systems Division 12214 Lakewood Boulevard Downey, California Attn: Apollo Data Requirements, 096-340 Bldg 3, CA 99	• 100-1
NAA RASPO:	(1)
NASA Resident Apollo Spacecraft Program Office North American Aviation, Inc Space and Information Systems Division Downey, California 90241	

ACSP RASPO:

National Aeronautics and Space Administration Resident Apollo Spacecraft Program Officer Dept 32-31 AC Electronics Division of General Motors Milwaukee 1, Wisconsin Attn: Mr. W. Swingle

Mr. H. Peterson Bureau of Naval Weapons c/o Raytheon Company Foundry Avenue Waltham, Massachusetts

Mr. S. Schwartz Department of Defense DCASD, Garden City 605 Stewart Avenue Garden City, L.I., N.Y. Attn: Quality Assurance

D.F. Kohls AFPRO (CMRKKA) AC Electronics Division of General Motors Milwaukee 1, Wisconsin 53201 (1)

(1)

(1)

(1)

*