

September 1966

MU Dप INSTRUMENTATION CAMBRIDGE 39, MASSACHUSETTS

ACKNOWLEDGEMENT

This report was prepared under DSR Project 55-238, sponsored by the Manned Spacecraft Center of the National Aeronautics and Space Administration through Contract NAS 9-4065.

The publication of this report does not constitute approval by the National Aeronautics and Space Administration of the findings or the conclusions contained therein. It is published only for the exchange and stimulation of ideas.

E-1142

(Rev. 48)

SYSTEM STATUS REPORT

ABSTRACT

The System Status Report is distributed monthly. The areas of activity reported on in this month's revision include, but are not limited to, the following for the Block I 100 Series and Block II Command Modules and Lunar Excursion Module equipment: configuration weight, weight trendinformation, centers of gravity, moments of inertia, reliability failure rates, electrical power requirements, and computer programming status, and G\&N Status.
by Apollo Staff
September 30, 1966

TABLE OF CONTENTS

Section Page
Accuracy 7
Introduction 9
1 Weights 11
20
20
Centers of Gravity and Moments of Inertia
Centers of Gravity and Moments of Inertia
23
3 Glossary and System Definition
37
37
4 Reliability Analysis and Assessment
41
5 Electrical Power and Energy
45
6 Guidance Computer Programming.57

ACCURACY

The accuracy of numerical values reported in this revision should not be considered to be within the tolerances implied by the significant figures quoted. The reported values, although based upon the most current information, are subject to slight variations from system to system.

INTRODUCTION

The areas of activity reported on in this month's revision include, in general, the following for the Block I 100 Series and Block II Command Modules and Lunar Excursion Module equipment:

Additional material, not suited to this format, will be presented from time to time as an appendix when it is particularly significant.

Section 7 G\&N Status, is being included to report significant items of interest at the system level. This addition is prompted by the phasing from design and development to system and flight status.

SECTION 1

WEIGHTS

Weights are reported to the nearest tenth of a pound on a component level. Each component weight is identified as estimated, calculated, or measured in order of increasing accuracy. These terms are defined as follows: estimated weights (E) are based on rough calculations; calculated weights (C) are based on detailed calculations made from final production drawings that will be used to build flyable equipment; measured weights (M) are actual weights of equipment built to the production drawings.

Tables 1, 2, and 3, respectively, present the weight of all CM Block I 100 Series, CM Block II, and LEM Guidance and Navigation equipment based upon the most current information. These tables offer a comparison of present component weight values with those listed in last month's revision of the System Status Report. The weights tabulated for Block II CM and LEM configuration represent operational flight hardware.

Also included are the respective control and design load weights as assigned by NASA. The Control Weight is the maximum allowable total weight of the Apollo Guidance and Navigation equipment for which MIT/IL is responsible. Design Load Weights are restricted to individual components and should be considered as "not to exceed" weights. These values represent a maximum within which design variations may cause changes without need for renegotiation.

The row labeled "Bare Guidance System" is inserted to provide for comparisons with similarly specified systems.

When applicable, the tables will be followed by a discussion of reported weight changes and weight trend information. Each weight increase or decrease is accompanied with an explanation for the change and the effectivity by system number.

Weight trendinformation describes future component changes presently being studied with an emphasis on weight reduction proposals.

North American Aviation and Grumman Aircraft Engineering Corporation will provide and be responsible for weights of cold plates that are not integral with guidance and control equipment.

Reported Weight Changes and
 Weight Trend Information

The weight of the Block I 100 Series Bellows Assembly has been revised to reflect the weights of recently shipped hardware. This revision results in a decrease of two (2) pounds.
TABLE 1. CURRENT WEIGHT STATUS OF BLOCK I 100 SERIES

Command Module G\&N Equipment	Strotus $8 / 66$	Change	Status 9/66	Design Load Weight
G\&N Indicator Control Panel	10.9 (M)	0.0	10.9 (M)	15.0
IMU Control Panel	2.9 (M)	.0. 0	2.9 (M)	5.0
Signal Conditioner Assy	4.8 (M)	0.0	4.8 (M)	8.0
DSKY	24.5 (M)	0.0	24.5 (M)	26.0
MAIN PANEL AREA				
DSKY	25.3 (M)	0.0	25.3 (M)	26.0
LOOSE STORED ITEMS				
Optics Cover	2.1 (M)	0.0	2.1 (Ni)	2.5
Horizontal Hand Holds (Two)	0.3 (M)	0.0	0.3 (M!)	1.0
TOTAL	444.3	-2.0	442.3	---
The reported total weight for this month is 6.7 pounds more than the 430.0 pound total control weight \dagger				
Bare Guidance Systems - IMU, AGC, IMU portions of the CDU's and IMU Support electronics			206.4	---

*Design Load Weights are taken from ICD MH01-01256-4i6 signed 3 June 1965, submitted by MIT in letter AG 478-65.
** This design load weight includes only $1 / 2$ the weight of the Bellows Assembly.
\dagger The Total Control Weight is specified in NASA letter EG-151-44-65-55 dated
10 February 1965. This weight assignment does not include recognition of the Optical Eyepiece Storage Assembly.
This design load weight taken from IRN 3677, submitted by MIT in Letter AG 407-66 dated 9 May 1966.
TABLE 2. CURRENT WEIGHT STATUS OF B LOCK II

Command Module GN\&C Equipment	$\begin{gathered} \text { Status } \\ 8 /{ }^{\prime} .66 \end{gathered}$	Change	$\begin{gathered} \text { St?tus } \\ 8 / 66 \end{gathered}$	Design Load Weight ${ }^{*}$
LOWER EQUIPMENT BAY				
CDU Assy	36.2 (E)	0.0	36.2 (E)	50.0
Optical Subsystem				
SXT and gearing SCT and gearing	53.6 (E)	+1.0	54.6 (E)	
Optical Base and gearing	53.6 (L)	+1.0		
NVB and Mounts	14.9 (E)	$+2.5$	17.4 (M)	
Bellows Assy	12.7 (E)	- 0.0	10.7 (M)	150.0
IMU	42.5 (M)	0.0	42.5 (M)	
Coolant Hoses (Two)	1.2 (M)	0.0	1. 2 (M)	
Power Servo Assy	49.4 (E)	0.0	49.4 (M)	58.0
PIPA Electronics Assy	9.0 (E)	0.0	9.0 (E)	12.0
G\&N Interconnect Harness Group	24.0 (M)	0.0	24.0 (M)	40.0
AGC (with six(6) rope modules + mag.	65.0 (E)	+4.0	69.0 (E)	80.0
Optical Shroud trays)	3.1 (M)	0.0	3.1 (M)	4.5
$\left.\begin{array}{l}\text { Optical Eyepiece Storage Assy } \\ \text { SXT Normal Relief Eyepiece } \\ \text { SCT Normal Relief Eyepiece } \\ \text { SCT Long Relief Eyepiece }\end{array}\right\}$	11.1 (E)	0.0	11.1 (E)	15.0
G\&N Indicator Control Panel	11.5 (M)	0.0	11.5 (M)	17.0
DSKY	17.5 (M)	0.0	17.5 (M)	25.0
Signal Conditioner Assy (Operational Flights)	8.0 (E)	0.0	8.0 $0^{(E)}{ }^{* *}$	8.0

COMMAND MODULE GN\& C (LBS AT IG) (CONT)

Command Module GN\&C Equipment	$\begin{gathered} \text { Status } \\ 8 / 66 \end{gathered}$	Change	$\begin{gathered} \text { Status } \\ 9 / 66 \end{gathered}$	Design Load Weight*
MAIN PANEL AREA				
DSKY	17.5 (M)	0.0	17.5 (M)	25.0
LOOSE STORED ITEMS				
Horizontal Hand Holds (Two)	0.3 (M)	0.0	0.3 (M)	1.0
SXT Long Relief Eyepiece	0.4 (E)	0.0	0.4 (E)	--
TOTAL	377.9	+5.5	383.4	---
The reported total weight for this month is 16.6 pounds less than the 400.0 pound total control weight \dagger				
Bare Guidance Systems - IMU, AGC, IMU portions of the CDUs and IMU support electronics			172.1	---

[^0]Reported Weight Changes and
Weight Trend Information

Preliminary information from the Industrial Contractor indicates the advisability of increasing the weight estimate of the Optical Subsystem by one (1) pound reflecting the addition of the SCT and SXT ejectable covers (one-half pound each) as directed by CCA 497-0309.

The weight estimate of Block II Command Module NVB with mounts has been revised to reflect the measured weights of recently shipped G\&N systems 202, 203, and 204. This revision results in an increase of two and one-half (2.5) pounds.

The weight estimate of the Block II Command Module Bellows Assy. has also been revised to reflect the measured weights of recently shipped G\&N Systems 202, 203, and 204. This revision results in a decrease of two (2) pounds.

A change is being considered to add a vibration dampening plate to the Block II Command Module CDU which will, if approved, result in an increase of three-tenths (0.3) pound.

The weight estimate of the AGC has been increased four (4.0) pounds to reflect actual weights of $\mathrm{AGCs} \mathrm{Cl}, \mathrm{C} 2$, and C 5 . This increase is attributable to potting tolerances and it is considered still to be an estimate.

*Design Load Weights are taken from ICD LIS-490-10001 as signed by Mr. R. A. Gardner (NASA/MSC) on 29 March 1966.
** The weight of a qualification flight signal conditioner assy is 9.2 (E) pounds.
\dagger The Total Control Weight is specified in Contract Technical Specification PS 6000000-amended by NASA Letter EG 26-233-66-565 dated 18 August 1966.

Reported Weight Changes and
 Weight Trend Information

The weight estimate of the LM NVB has been revised to reflect the measured weights of recently shipped LM/G\&N Systems 603 and 605 . This revision results in a net increase of one and one-tenth (1.1) pounds resulting from the addition of the machined gussets.

The LM/PSA weight estimate has been reduced one-tenth (0.1) pound to reflect recently shipped LM/G\&N Systems 603, 604, and 605.

A change is being considered to add a vibration dampening plate to the LM CDU which will, if approved, result in an increase of three-tenths (0.3) pound.

The weight estimate of the LGC has been increased four (4.0) pounds to reflect actual weights of $\mathrm{AGCs} \mathrm{Cl}, \mathrm{C} 2$, and C 5 . This increase is attributable to potting tolerances.

CENTERS OF GRAVITY AND MOMENTS OF INERTLA

The centers of gravity and moments of inertia are summarized in tabular form. This data has been prepared for MIT/IL designed equipment with respect to the reference axes of the Block II Command Module and the Lunar Excursion Module. MIT assumes that all hardware is in the proper configuration for Thrusting Modes; therefore, the eyepieces (3) will be located in the Optical Eyepiece Storage Assembly. North American Aviation will provide storage for the astronaut's Horizontal Handholds (2). Since this storage information is not available at MIT/IL, it is suggested that NAA supply the centers of gravity and moments of inertia for these items.

MIT Letter AG 261-66 dated 23 March 1966, proposed that NAA provide storage for the SXT Long Relief Eyepiece in the Block II Command Module.
TABLE 4. COMMAND MODULE BLOCK II GN\&C MASS PROPERTY DATA

TABLE 5. LUNAR EXCURSION MODULE PGNCS MASS PROPERTY DATA

SECTION 3

GLOSSARY AND SYSTEM DEFINITION

A description of what constitutes MIT supplied hardware for the guidance and navigation equipment in Block I (100 Series) and Block II Command Modules and Lunar Excursion Module is contained in this section.

Apollo Guidance Computer (AGC)
\}
A single complete flight computer containing all logic, memory associated power supplies, and all interface circuits except those identified with the CDU's. Does not contain the associated displays and controls.

The AGC consists of one case containing factory replaceable electronic modules. The weight estimate includes a cover for moistureproofing and the G\&N to S/C Interface Assembly which is located in the adjacent area. The weight of the necessary cold plate is not included.

Bellows Assembly

Consists of two flexible metal bellows forming a pressure seal between CM and optical subsystem for penetration of hull.

Coupling Data Unit (CDU) Assembly

The CDU provides the necessary signal interface among the IMU gimbal angles, optics gimbal angles, angle registers in the AGC, and the spacecraft autopilot attitude error signals.

The assembly contains five interchangeable gear boxes each with necessary motor tachometer, resolver synchros, and encoder. The CDU does not include associated electronics. (This electronics is located in the Block I PSA.) A frame assembly encloses the CDUs in a moisture-proof container and mounts them to the spacecraft structure.

Cold plates for the IMIU are built into the LAIU. Necessary cold plates for electronics are part of the equipment supplied by the spacecraft manufacturer ($\mathrm{NA}-\mathrm{A}$).

Control lilectronics Assembly

Consists of one power transformer, one relay and diode module and a bracket end connector mounted behind G\&N indicator control panel to support display and control functions. Includes moisture-proofing.

Coolant Hoses

Consists of: (1) three steel-flex coolant hoses between IMIU and spacecraft, (2) line transition piece, (3) bracket assembly screws and clamp, and (4) entrapped coolant. (The line transition piece makes two of the hoses a single unit.)

DSKY (D\&C/AGC)

Number displays and keyboard control associated with the operation of the AGC. Two functionally identical and parallel operating units: one in lower equipment bay and one on main panel between left and center couches. The main panel DSKY has a piece of fail-safe alarm detection equipment called a "nightwatchman".

D\&C Electronics Assembly

Consists of a chassis, a relay and diode module, a demod. elect. module, a saturable reactor, a time delay module, a connector, and wiring and is mounted behind the G\&N Indicator Control Panel. Used to support display and control functions. Connectors will be moisture-proofed.

C'onsists primarily of controls and displays for the operation of the optics, IMU temperature control, panel brightness control, and attitude impulse control. It includes display and control elements, panel, panel wiring, supporting hardware, and moisture-proofing.

G\&N Interconnection Assembly

Consists of an interconnect wiring harness, which electrically ties together the assemblies that constitute a completely integrated system. The weight of the PSA End Connector is included with this item. This term does not include weights of harness support brackets, which are an NAA responsibility.
$\mathrm{G} \& \mathrm{~N}$ to S / C Interface Assembly

This assembly provides the electrical interface between the spacecraft wiring channel, the computer connector, and the PSA end connector assembly. There are no active electronics in the assy. The weight of this item is included with the Block I computer.

Horizontal Handholds (Two)
These handholds are part of the body tethering system for use during navigation sightings. Two handholds are mounted on the G\&N Indicator Control Panel and will be removed when not in use. The weight reported includes the mounting screws.

Inertial Measurement Unit (IMU)

The IMU consists of three gyros and three accelerometers mounted on the innermost gimbal of a three degree-of-freedom gimbal structure. The size 14 IMU (14-inch case diameter) gimbal assembly including all parts inside hermetic case, entrapped coolant, and heat exchanger insulation are included in the weight.

IMU Control Panel

Consists of panel, wiring, attitude error meter, CDU transfer switch, manual alignment switch, CDU mode control switches, connector, supporting hardware, and associated moisture-proofing.

NVB and Resilient Mounts

Rigid beryllium structure supporting the IMU and the optical subsystem with its associated hardware. The NVB is attached to the spacecraft using flexible resilient mounts to prevent spacecraft strains from distorting the NVB and the alignment between the IMU and optics. These mounts also provide shock and vibration attenuation.

Optical Eyepiece Storage Assy (ESU)

A polyurethane filled structure will provide storage for three optical eyepieces: SXT normal relief, SCT normal relief, and SCT long relief eyepieces. The condition annunciator assembly is part of the compartment structure. The weight also includes a protective cover or door. The assembly is located in the area vacated by the M\&DV.

Condition Annunciator Assy: This unitvisually displays the status of G\&N System. This function was previously part of the Map and Data Viewer.
Normal Relief Eyepieces: Removable SXT eyepiece and SCT eyepiece.
Long Relief Eyepiece: A SCT eyepiece to provide eye relief of at least 1.6 inches for closed visor operation. Used in place of normal eyepiece of SCT.

Optical Subsystem

The subsystem consists of a sextant, scanning telescope, and an optical base, each with associated hardware. An equipment definition follows:

Sextant (SXT): A two line-of-sight, narrow field-of-view, two degree-offreedom sextant with its attached gearing.
Scanning Telescope (SCT): A single line-of-sight, wide fleld-of-view, two degree-of-freedom articulation optical instrument with its attached gearing.
Optical Base: A base for the SXT and SCT with its associated gearing.

The SXT and SCT weights reported above include estimates of covers with ablative material.

Optical Shroud \& Cover Assembly

Consists of the optical shroud and protective cover.

Power Servo Assembly (PSA)

The PSA includes most of the support electronics: power supplies; IMU, Optics, and CDU servos; IMU temperature control; accelerometer pulse torquing and gyro pulse torquing. Replaceable modules are placed in each of the 10 trays. Moisture protection is provided for each tray individually by a gasket and a connector cover with mounting screws. A beryllium front toe plate is included in the PSA weight.

The PSA end connector is the electrical interface between the 10 PSA trays, the G\&N Interconnection Assy, and the G\&N to S/C Interface Assy. The end connector weight is reported in the G\&N Interconnection Assembly value.

Signal Conditioner Assembly

This assembly buffers and conditions signals for transmission to telemetry.

COMMAND MODULE BLOCK II

Apollo Guidance Computer (AGC)

A single complete flight computer containing all logic, memory associated power supplies, and all interface circuits except those identified with the CDU's. Does not contain the associated displays and controls.

Consists of one case containing factory replaceable electronic modules. Includes cover for moisture-proofing, but does not include the necessary cold plate.

Many Block I modules have been redesigned and repackaged in a separate case. Memory capacity increased over Block I.

Bellows Assembly
Consists of two elastomeric, semi-toroidal, strain isolation, pressure vessel penetration seals between the CM hull and the optical subsystem.

Coupling Data Unit Assembly (CDU)

The coupling data unit provides central data conversion between the G\&N analog subsystems (inertial and optics sextant), and in addition certain spacecraft analog control and display functions. The CDU is an all-electronic device that employs analog computational techniques in conjunction with digital counters and control logic to perform both analog to digital (A/D) and digital analog (D/A) conversion.

Moding of various Guidance and Control system functions that operate in conjunction with the CDU signals is accomplished by the computer through the CDU control and synchronizing logic.

The weight includes all the support electronics, the 4 V power supply, and the header mounted adjacent to the AGC.

Cold Plates

Cold plates for the IMU are built into the IMU. Necessary cold plates for electronics are part of the equipment supplied by the spacecraft manufacturer. (NAA).

Coolant Hoses

Consists of: (1) two steel-flex coolant hoses, between IMU and spacecraft and (2) two hose connectors, and (3) entrapped coolant. Bracket assembly, screws and clamps will be supplied by NAA.

DSKY (D\&C/AGC)

Number displays and keyboard control associated with the operation of the AGC. Two functionally identical and parallel operating units: one in lower equipment bay and one on main panel between left and center couches.

Mechanically and electrically similar to Block I but smaller configuration because of smaller relays. The Block II displays and keyboard controls will be sealed by encasing the unit in a container and using pressurized O-rings.

G\&N Indicator Control Panel

Consists of controls and displays for optics, condition lamps, telemetry, and Master Alarm. Also contains attitude impulse switch and hand controller. Has integral illuminated computer instructions. The condition lamps replace the Block I Condition Annunciator Assembly.

G\&N Interconnect Harness Group

This assembly consists of eight cables that electrically tie together the hardware that makes up the GN \& C system and also provides the electrical interface with the spacecraft. The cables are defined as follows:

HARNESS A AGC-CDU to Left Hand Bracket and S/C
HARNESS B PSA to Optics (SXT) and Optics Resolver
HARNESS C PSA to Upper and Lower IMU \&PIPA
HARNESS D PSA to Left Hand Bracket (AGC-CDU)
HARNESS E PSA to G\&N Panel
HARNESS F PSA to Optics (SCT)
HARNESS G PSA to Signal Conditioner and S/C Right Hand Bracket
HARNESS H PSA to DSKY, Left Hand Bracket and Right Hand Bracket (Power)

The estimated weights include the group shielding, potting compound, connectors, wire, cable clamps, and clamp brackets.

Horizon Photometer - Star Tracker (Experimental Basis Only)

An earth horizon brightness photometer and automatic star tracker used for navigation measurements against the earth's illuminated limb. The sensors are incorporated into the head of the SXT, the weight of which includes this function. The PSA includes all support electronics for the horizon photometer.

Horizontal Handholds (Two)

These handholds are part of the body tethering system for use during navigation sightings. Two handholds are mounted on the G\&N Indicator Control Panel and will be removed when not in use. The reported weight includes the mounting screws.

Inertial Measurement Unit (IMU)

The IMU consists of three gyros and three accelerometers mounted on innermost gimbal of a three degree-of-freedom gimbal structure. The size 12.5 IMU (12.5-inch case diameter) gimbal assembly including all parts inside the hermetic case, entrapped coolant, and heat exchanger insulation are included in the weight.

NVB \& Mounts

A polyurethane filled aluminum skinned structure functionally similar to Block I but lighter and will provide for mounting the size 12.5 IMU. The Block II NVB is attached to the spacecraft by use of strain isolation hardmounts and will have a transition piece as a result of the re-orientation of the NVB so that the IMU axes will be parallel to the Command Module axes. Optical Eyepiece Storage Assembly (ESU)

Optical Eyepiece Storage Assembly (ESU)
A polyurethane filled structure will provide storage for three optical eyepieces: SXT normal relief, SCT normal relief, and a SCT long relief eyepiece. The weight also includes a protective cover or door. This assembly is located in the area vacated by the $M \& D V$. There is no provision for a condition annunciator as part of the compartment structure.

Normal Relief Eyepieces: Removable SXT eyepiece and a SCT eyepiece.
Long Relief Eyepieces: A SCT eyepiece to provide eye relief of at least 1.6 inches for closed visor operation. Used in place of SCT normal eyepiece.

SXT Long Relief Eyepiece

A SXT eyepiece to provide eye relief of at least 1.6 inches for closed visor operation. Used in place of SXT normal eyepiece. The present MIT proposal suggests that this eyepiece be stored in a bay with other loose stored items.

Signal Conditioner Assembly (SCA)

This assembly buffers and conditions signals for transmission to telemetry. These modules are located in the same volume occupied by the Block I lower equipment bay DSKY.

Apollo Guidance Computer (LGC)

A single complete flight computer containing all logic, memory associated power supplies, and all interface circuits except those identified with the CDUs. Does not contain the associated displays and controls.

Consists of one case containing factory replaceable electronic modules. Includes cover for moisture-proofing, but does not include the necessary cold plate.

Except for computer programs, the LGC is identical to the CM Block II AGC.

Alignment Optical Telescope (AOT)

The AOT is a three-position periscope with a single degree-of-freedom, manually read recticle. The weight estimate includes a normal eye-relief eyepiece and a bellows assy between the AOT and the LEM hull. The bellows assy is an elastomeric, semi-toroidal, strain isolation, pressure vessel penetration seal. The AOT reticle is used for alignment of the IMU.

AOT Control Unit (Computer Control and Reticle Dimmer)

Located on GAEC Supplied Hardware protecting the AOT. Contains illuminated push button controls mark "x", mark "y", and "reject" mark. Also has an AOT reticle dimmer.

Cold Plates

Cold plates for the IMU are built into the IMU. Necessary cold plates for electronics are part of the equipment supplied by the spacecraft manufacturer. (GAEC)

The coolant hoses for the LEM IMU will be supplied by the spacecraft manufacturer. (GAEC)

Coupling Data Unit (CDU)

The coupling data unit provides central data conversion between the computer and G\&N analog subsystems (inertial and radar), and in addition certain spacecraft analog control and display functions. The CDU is an all-electronic device that employs analog computational techniques in conjunction with digital counters and control logic to perform both analog to digital (A/D) and digital to analog (D/A) conversion.

Moding of various Guidance and Control system functions that operate in conjunction with the CDU signals is accomplished by the computer through the CDU control and synchronizing logic.

The LEM CDU uses modules identical to those used in the CM Block II but mounted on a different header. The weight includes all the support electronics, the 4 V power supply, and the header mounted adjacent to the AGC.

DSKY

Number Displays and Keyboard controls associated with the operation of the LGC. The DSKY will be sealed by encasing the unit in a container andusing pressurized O-rings. Identical to the Block II DSKY except only a single unit is required.

Harness "A"

Harness "A" provides electrical interconnection in the CDU, AGC, and PSA areas. The estimated weights include the connectors, wire, insulation, shielding, and cable clamps.

Harness " B "
Harness "B" provides the electrical interconnection in the IMU and PTA areas. The estimated weights include the connectors, distribution box, wire, insulation, shielding, and cable clamps.

Inertial Measurement Unit (IMU)

The IMU consists of three gyros and three accelerometers mounted on the innermost gimbal of a three-degree-of-freedom gimbal structure. The size 12.5 LEM IMU is physically identical to the Block II. The weight value includes the gimbal assembly (and all parts inside the hermetic case), entrapped coolant, and the heat exchanger insulation.

Lens Cleaning Kit

Not specifically defined but appropriate cloths for cleaning the accessible surfaces of the optics lens.

NVB and Mounts

A toroidal aluminum ring with: (1) four tubular aluminum posts to provide for IMU mounting, (2) four tubular aluminum posts for AOT mounting, and (3) three aluminum inserts to provide strain isolation ball mounting to the GAEC structure.

Power Servo Assembly (PSA)

The PSA consists of a single-plane matrix header mounted on a cold plate with the modules plugging in from the top. A cover is required to protect the modules from moisture. The assembly consists of electronics modules similar to those identified in the Block II PSA; however, many of the modules have been redesigned and repackaged. Support electronics for the PIPA and IRIG loops are not included. See "Pulse Torque Assembly". Support electronics for the optical subsystem is not identified.

Pulse Torque Assembly (PTA)

This assembly consists of electronics contained in the PIPA and IRIG loops, including the pulse torque power supply and PIPA and IRIG calibration modules. The PIPA calibration modules, containing selected components, are assigned to each IMU. This sealed assembly is located adjacent to the IMU in LEM.

Signal Conditioner Assembly (SCA)

This assembly buffers and conditions signals for transmission to telemetry. This assembly is located "piggyback" on top of the LEM PSA.

SECTION 4

RELIABILITY ANALYSIS AND ASSESSMENT

The current status of reliability analysis is reported in summary form as a chart.

This chart contains tabulations of the failure rates associated with each major configuration of $G \& N$ systems. These have been derived from the parts count of each assembly using generic type part failure rates, modified only by the stress applied to each part and its singular application in the system. From these data, estimations of mission success probabilities may be calculated. Continual updating is accomplished and will be reported monthly in this report.

Reliability assessment for G\&N Systems is presented graphically. These calculations are made in accordance with the MSC program for Success Index and are based on actual operating experience gained on G\&N Systems in the field.
G\&N MISSION RELIABILITY ANALYSIS
"SyNOH ${ }_{9}$ OI \&

SUCCESS INDEX GROWTH

xヨONI SSヨכJกS

Gill

SECTION 5

ELECTRICAL POWER AND ENERGY

Electrical power and energy reporting is based upon the inflight spacecraft sequence of events for the Design Reference Mission as developed by the Apollo Mission Planning Task Force (AMPTF). (Reference GAEC Report Volume III -LED-540-12, dated 30 October 1964.)

The accompanying tables present the magnitude and distribution of power dissipated on a subsystem level. It is assumed that power is drawn from the spacecrafts' primary +28VDC supply and a $400 \mathrm{cps}-115$ VAC single phase inverter.

Intermittent power peaks can exist, particularly during operation of displays and controls at random times. The energy content in these peaks is considered negligible.

All values (except those mentioned above) are actual expected levels of power. No margin factor has been applied to protect against possible differences between actual loads which will be experienced and the calculated levels quoted. Thus, these values should not be taken as "not to exceed" extremes.

Interface Control Documents serve as the guidelines for reporting power figures.

CM Block I 100 Series MH01-01227-216 "G \& N Electrical Input Power" signed 11 June 1965

CM Block II

LEM
MH01-01327-216 "G \& N Electrical Input Power" signed 15 July 1965
LIS-390-10002 "PGNCS Prime Power Requirements and Characteristics" signed 30 July 1965

OIOCKI - 100 SERIES GUIDANCE AND NAVIGATION IOAD ON PRIMARY • 28 VDC COMMAND MODULE
sasclo unom ine mour are oaritumer mission CSIGM CITETMCR MISSIOM
ecreanc cuc mpoel - lo see 12. woctoaxe tes
apoctomissiom aneminc tase road

SIOCK II GUIDANCE AND NAVIGATION IOAD ON PRIMARY \& 28 VOC COMMAND MODULE
 of SIGN RITEMCA MISSION

IUNAR EXCURSION MODULE GUIDANCE AND NAVIGATION IOAD ON 28 VDC PRIMARY
 orsicn mifinma mission

SECTION 6

GUIDANCE COMPUTER PROGRAMMING

Guidance computer programs fall into three categories: service, test and mission programs.

1. Service Programs: The service programs may be regarded as the "tools" used to accomplish the mission ohjectives. These programs are necessary for the general operation of the computer and they are completely insensitive to mission planning.
2. Test Programs: The test programs are used to test the AGC, the G\&N System, and other programs.
3. Mission Programs: The mission programs are those AGC programs which directly accomplish the guidance and navigation functions. Certain parts of these are highly sensitive to mission plans, vehicle configuration, ground based activities, etc. Although some portions of these programs are quite general, a complete specification is not possible until the release of the Guidance System Operation Plan for each particular mission.

The memory also contains all mission and vehicle dependent data that is written directly into the memory of AGC. The very limited erasable section is intended primarily for storage of computational variables. Those mission parameters that do not change during flight are consigned to the fixed section of the memory.
Executive 336
Waitlist 219
Restart Control 114
Fresh Start Restart 302
Keyrupt 97
Mission Control 183
Interrupt Transfer Routine 38
Down Telemetry 228
T4 Rupt 301
Mode Switching and Mark 593
AGC Self Check 988
Alarm and Display 57
Pinball 2263
501 Mission Control 1964
Prelaunch Alignment 896
Fixed-Fixed Interpreter 941
Interbank Ccmmunication 73
Inflight Alignment Program 234
Inflight Alignment Subroutines 408
Time of Free Fall Calculations 272
Bank 03 Interpreter 821
Orbital Integration for 501 1002
IRIG Pulse Torquing Routine 286
RTB OP Codes 342
Re-Entry 1360
Average G Integrator 184
Extended Verbs 706
Powered Flight Subroutine 1839
IMU Compensation Package 98
IMU Performance Tests 1 1008
IMU Performance Tests 2 1016
Restart Tables and Routines 471
Verification Assistance Program 98
Dummy 202 Initialization 30
Sum Check End of Record Marks 48 48
TOTAL FIXED MEMORY WORDS 19,816
Interrupt Transfer Routines 38
Fixed-Fixed Constant Pool 54
Fixed-Fixed Interpreter Section 1024
Bank 03 Interpreter Section 821
Star Catalog 184
Executive 1.93
Waitlist 63
Restart Control 236
Restart Tables and Routines 366
Fresh Start and Restart 321
Down Telemetry Program 548
T4 Rupt Output Control Programs 797
Mode Switching and Mark Routines 595
IMU Compensation Package 215
IRIG Pulse Torquing Routines 286
Extended Verbs for Moding 664
AGC Self Check 802
Inter-bank Communication 73
Alarm and Display Procedures 61
Orbital Integration Program 819
Midcourse Navigation Game 941
Latitude-Longitude Subroutines 433
Target Routine 369
Verb 64
Verb 64 18 18
Deorbit Target Subroutines 272
Measurement Incorporation 188
B Vector Routine 229 229
Program 22 Start 12
Program 23 39
Prelaunch Alignment Program 823
RTR OP Codes 394
IMU Performance Tests 1 10G1) 10G1)
IMU Performance Tests 2 1008
Inflight Alignment Subroutines 328
204 Alignment Routines 892 892
Star Selection Routine 254
Keyrupt, Uprupt, Fresh Start 91
Pinball Game Buttons and Lights 2547 2547
204 Service Routines 153
Coordinate Transforms and Geometry 254
Attitude Maneuver Routine 1174 1174
204 Mission Control Program 2874
Automatic Optics Positioning Routine 245 245
Re-Entry Control 1112 48Sum Check End of Record Marks
TOTAL FIXED MEMORY WORDS 24, 156

SUNDIAL FLIGHT AS-278

Pinball, including Lunar Mission Requirements 2500
Interrupt Lead-in 50
Inter-bank Communication 50
Interpreter 2000
S. P. Subroutines 80
Executive 400
Waitlist $i 70$
Phase Tables 300
Fresh Start and Restart 400
T4 Rupt 130
IMU Mode Switching 500
OSS Mode Switching 260
Extended Verbs 500
Keyrupt and Uprupt 80
Alarm, Abort, and Down T/M 210
Self Check 824
Inflight IMU Alignment Routines 500
RTB, Op Codes 480
TVC DAP 1900
RCS DAP 2000
Calc T_{t} 300
Earth Rotation 25
Determine LEM Initialization Data 300
Orbit Integration (conic and Encke) 800
Midcourse Navigation Game 1190
LAT/LONG Routines 390
Navigation Measurement Incorporation 110
B Vector Routines 210
Star Catalogue 336
Servicer 500
IMU Compensation 200
Attitude Maneuver Routine 250
Store Co-variance Matrices, diagonal 90
Star Selection Routine 260
Rendezvous Navigation and Intercept Trajectory 500
Computation of Special Orbit Parameters for Display 500
Four Downlink Lists 340
Verb 37 Table 100
Pre-Launch (includes IMU Performance Tests) 1200
Start Up and Power Down 50
CMC Update 130
Boost Monitor 200
Saturn Take-over for EOI 2000
SXT Rendezvous Tracking 100
Preferred Attitude 500
Landmark Tracking 100
Star-Landmark Measurements 300
IMU Alignment 750
Pre-Thrust Orbit Change 200

SUNDIAL FLIGHT AS-278 (Continued)

Pre-Thrust, Direct Intercept 150
Pre-Thrust, MCC 150
Pre-Thrust, Term Rendezvous 150
SPS Thrust Programs 375
RCS Thrust Programs 375
Common Thrust Programs 500
External Delta V 400
Entry 2500
LET Abort 20
First Abort Burn 25
Pad 5400
TOTAL FIXED MEMORY WORDS 34, 610

SUNDIAL FLIGHT AS-503 AND AS-504

Pinball, including Lunar Mission Requirements 2500
Interrupt Lead-in 50
Inter-bank Communication 50
Interpreter 2000
S. P. Subroutines 80
Executive 400
Waitlist 170
Phase Tables 300
Fresh Start and Restart 400
T 4 Rupt 130
IMU Mode Switching 500
OSS Mode Switching 260
Extended Verbs 500
Keyrupt and Uprupt 80
Alarm, Abort, and Down T/M 210
Self Check 976
Inflight IMU Align Routines 500
RTB, Op Codes 480
IMU Performances tests 200
TVC DAP 1900
RCS DAP 2000
Calc T^{2} 300
Earth Rotation 25
Determine LEM Initialization Dates 300
Determine LEM Azimuth Alignment (backup) 50
Lunar Inertial Orientation 100
Lunar Ephemeris 200
Orbit Integration (Conic and Encke) including lunar Triaxiality 1000
Midcourse Vavigation Game 1190
LAT/ LONG Routines 390
Navigation Measurement Incorporation 110
B Vector Routines 210
Star Catalogue 336
Lunar Landmarks 168
Servicer 500
IMU Compensation 200
Attitude Maneuver Routine 250
Store 5 Co-variance Matrices, diagonal 90
Star Selection Routine 260
Rendezvous Navigation and Intercept Trajectory 500
Computation of Special Orbit Parameters for Display 500
Four Downlink Lists 340
Verb 37 Table 100
Pre-Launch 1000
Start Up and Power Down 50
CMC Update 130
Boost Monitor 300
Translunar Injection using cross product steering 300

SUNDIAL FLIGHT AS-503 AND AS-504 (Continued)

SXT Rendezvous Tracking 100
Preferred Attitude 500
Landmark Tracking 100
Star-Landmark Measurements 300
IMU Alignment 750
Pre-Thrust, Sphere of Infulence 200
Pre-Thrust Orbit Change 200
Pre-Thrust, Return to earth 3900
Pre-Thrust, Direct Intercept 150
Pre-Thrust, MCC 150
Pre-Thrust, Term Rendezvous 150
SPS Thrust Programs 500
RCS Thrust Programs 500
Common Thrust Programs 500
External Delta-V 400
Entry 2500
LET Abort 20
First Abort Burn 25
TOTAL FIXED MEMORY WORDS 33,530

FIXED MEMORY ALLOCATION FOR BLOCK II LGC AURORA FLIGHT AS-206

Pinball plus lunar mission requirements 2500
Interrupt Lead-in 50
Inter-bank Communication 50
Interpreter 2000
S. P.Subroutines 80
Executive 400
Waitlist 170
Phase Tables 300
Fresh Start and Restart 400
T4 Rupt 130
IMU Mode Switching 500
AOT Mark (NO LORS) 300
Extended Verbs 500
Keyrupt and Uprupt 80
Alarm, Abort, and Down T/M 210
Self Check 824
RTB, Op Codes 480
Radar Lead-in Routines 750
LEM DAP 3000
LORS Interface 1750
Mission Programming Estimated 8000
TOTAL FIXED MEMORY WORDS 22,474 ESTIMATED
Pinball plus lunar mission requirements 2500
Interrupt Lead-in 50
Inter-bank Communicatıon 50
Interpreter 2000
S. P. Subroutines 80
Executive 400
Waitlist 170
Phase Tables 300
Fresh Start and Restart 400
T4 Rupt 130
IMU Mode Switching 500
AOT Mark 300
Extended Verbs 500
Keyrupt and Uprupt 80
Alarm, Abort, and Down T/M 210
Self Check 824
RTB, Op Codes 480
IMU Performance Tests 2500
Radar Lead-in Routines 750
LEM DAP 3000
Inflight IMU Align Routines 500
Orbit Integration (Conic and Encke) and Triaxiality 950
Star Catalog 336
Servicer 500
IMU Compensation 200
Attitude Maneuver Routine 250
Store 3 Co-Variance Matrices 54
Star Selection Routine 260
LGC Clock Synchronization 50
LGC Initialization 100
Search Pattern 50
DPS Gimbal Test and Postiioning 50
Five Down-Link Lists 430
CFP Targeting and Timing 2000
Rendezvous Navigation and Intercept Trajectory 3000
Verb 37 Table 100
Start Up and Power Down 50
LGC Update 130
RRDR Rendezvous Tracking 100
Preferred Attitude 500
Inflight IMU Alignment Modes 400
Pre-Thrust, External Delta V 400
Pre-Thrust, CSI 150
Pre-Thrust, CDH 150
AI「RORA FI.I(illT Ai-278 (Continued)
Pre-Thrust IIrect Intercept 150
Pre-Thrust, MC'C 150
Pre-Thrust, Term Rendezvous 150
Common Thrust Programs 1500
AlS Common Thrust Programs 125
RCS Common Thrust Programs 125
DPS Common Thrust Programs 125
Pad 5400
TOTAL FIXEI MEMORY WORDS 33,659
Pinball plus lunar mission requirements 2500
Interrupt Lead-in 50
Inter-bank Communication 50
Interpreter 2000
S. P.Subroutines 80
Executive
400
400
Waitlist 170
Phase Tables
Phase Tables
300
300
Fresh Start and Restart
Fresh Start and Restart
400
400 130
T4 Rupt
T4 Rupt
IMU Mode switching
IMU Mode switching
500
500
AOT Mark (NO LORS)
300
300
Extended Verbs
Extended Verbs
500
500 80
Keyrupt and Uprupt
Keyrupt and Uprupt
Alarm, Abort, and Down T/M 210
Self Check 824
RTB, Op Codes 480
Radar Lead-in Routines 750
LEM DAP 3000
LORS Interface 1750
Inflight IMU Align Routines 500
Lunar Inertial Orientation 100
Orbit Integration (Conic and Encke) and Triaxiality 950 336
Star Catalog
Star Catalog
Servicer 500
IMU Compensation 200
Attitude Maneuver Routine, Calculats Attitude Maneuver 250
Store 3 Co-Variance Matrices, Midcourse Naviagation Game 54
Star Selection Routine 260
LGC Clock Synchronization 50
LGC Initialization 100
Conrch Pattern 50
DPS Jimbal Test and Positioning 50
Four Down-Link Lists 350
Direct Ascent Targetting and Timing 400
CFP Targetting and Timing 2000
Rendezvous Navigation and Intercept Trajectory 3000
Verb 37 Table 100
Landing Initialization and Targetting 300
Direct Ascent Targetting and Timing 100
CFP Ascent Targetting and Timing 100
Start Up and Power Down 50
LGC Update 130
Pre DO I 100
DO I 600
Pre-Powered Descent 450
Powered Landing 2500
Manual Landing 50
RRDR Rendezvous Tracking 100
Preferred Attitude 500
Eight IMU Alignment Modes 750
Pre-Thrust, External Delta V 400
Pre-Thrust, CFP Powered Ascent 200
Pre-Thrust, CSI
150
150
Pre-Thrust, CDH
150
150
Pre-Thrust, Direct Intercept 150
Pre-Thrust, MCC
150
150
Pre-Thrust, Term Rendezvous 150
Common Thrust Programs 1500
APS Common Thrust Programs 125
RCS Common Thrust Programs 125
DPS Common Thrust Programs 125
Landing Abort, CFP Profile, DPS 125
Landing Abort, CFP Profile, APS 125
TOTAL FIXED MEMORY WORDS 32,930

SECTION 7

During the reporting period MIT/IL received Flight AS-202 Entry Portion Data. Certain analyses of these data were performed in support of entry guidance design and verification for the subsequent Apollo missions.

In summary, noteworthy performance of the guidance andnavigation was evident. The inertial equipment received its last optical alignment to ground targets about 12 hours before liftoff. The attitude was held by inertial"gyro compass" for this period. Subsequently, the system controlled the hour and a half unmanned flight including four burns of the service propulsion and the high energy atmospheric entry. No ground tracking updates were sent. Final coordinates of position in the guidance computer differed from the reported spacecraft recovery location by about 12 miles.

The following is an analysis of the entry portion of flight data from AS-202. This flight fell 205 nautical miles short of the intended landing site. The table below shows the latitude and longitude of the intended and actual landing site as well as the landing site stored in the Apollo Guidance Computer, AGC, at landing.

		Reported	Landing Site
	Aim Point	Recovery Site In AGC	
Latitude	$17^{\circ} 52^{\prime} \mathrm{N}$	$16^{\circ} \quad 7$ ' N	$16^{\circ} 177^{\prime} \mathrm{N}$
Longitude	$171^{\circ} 52^{\prime} \mathrm{E}$	$168^{\circ} 54^{\prime} \mathrm{E}$	169°
$0^{\prime} \mathrm{E}$			

This is an indicated error of 10^{\prime} in latitude and 6^{\prime} in longitude between the reported landing site and that measured and computed on board. Moreover, the AGC showed range-to-go of 189 nautical miles on landing.

It is seen from Fig. 3 that the vehicle roll angle was at near full positive lift throughout the flight. The initial roll angle of 180° (lift down) was held until capture by atmosphere was assured. Then the vehicle rolled to zero degrees and then 15°. Fifteen degrees away from full positive lift is allotted to lateral control. There is also an eighty-second period of 50 -degree roll angle. This roll to nominal bank angle at low g's is characteristic of the up-control section which was designed to accept noisy input variables: It has been shown by simulations that this 50° roll segment costs 12 nautical miles in controllable range.

The most important contributor to this miss of $205 \mathrm{n} . \mathrm{m}$. is the lower than expected lift-to-drag ratio, L/D, of the vehicle. The average L/D is shown to be .28 in Fig. 1. This is significantly lower than the minimum design value of .3. The design value was. 34 .

It is understood that the tracking data show an entry angle of -3.60 degrees rather than the design entry angle of -3.48 degrees. MIT data shows a steeper than nominal value. The indicated entry angle is the nominal value.

Several simulations have been made which closely approximate the acceleration time history as well as the $205 \mathrm{n} . \mathrm{m}$. miss. The first case had these conditions at 400,000 feet

$$
\begin{aligned}
& \gamma_{0}=-3.60 \text { degrees } \\
& \mathrm{v}_{0}=28523 \mathrm{fps} . \\
& \mathrm{L} / \mathrm{D}=.28
\end{aligned}
$$

Standard atmosphere.

When the vehicle L/D was increased to 3 this case fell only $25 \mathrm{n} . \mathrm{m}$. short.

The second case had these conditions at 400,000 feet

$$
\gamma_{0}=-3.52 \text { degrees }
$$

$\mathrm{V}_{0}=28510 \mathrm{fps}$.
L/D $=.28$
Dense atmosphere (SQA $=10$, see NASA TN D612)

It will be noted that either a steeper entry angle or dense atmosphere is needed as well as a low L/D to match the flight data.

Either improper trim or inaccuracies in aerodynamic prediction could cause this low L/D. The angle of attack has been calculated from the flight recorder tape with gimbal angles. The angle of attack was determined to be 18°, which correlates with the measured L/D ratio.

Complete flight data of the entry portion of AS202 are reported in E-2031. Further data and analysis are also found in the "Postlaunch Report for Mission AS-202", MSC-A-R-66-A.
Figure 1

MIT/IL 10 September 1966

Internal

M. Adams (MIT/GAEC
R. Battin
W. Beaton (MIT/AC)
P. Bowditch/F. Siraco
N. Cluett
J. Dahlen
J. DeLisle
E. Duggan
J. B. Feldman
S. Felix
G. Silver (MIT/KSC)

Eldon Hall
T. Hemker (MIT/NAA)
E. Hickey
D. Hoag
F. Houston
L. B. Johnson
L. Larson
J. Lawrence (MIT/GAEC)
T. M. Lawton (MIT/MSC)
G. Mayo

John Miller
J. Nelson (2)
J. Nevins
E. Olsson
R. Ragan
J. Sciegienny
N. Sears
W.. Stameris
R. Weatherbee
L. Wilk (2)
R. Woodbury

Apollo Library (5)
MIT/IL Library (8)

External:

W. Rhine (NASA/MSC)

NASA/RASPO
AC Electronics(10)
Kollsman (10)
Raytheon(10)
Major H. Wheeler (AFSC/MIT) (1)
MSC:$(30+1 R)$

National Aeronautics and Space Administration Manned Spacecraft Center
Apollo Document Distribution Office (PA2)
Houston, Texas 77058

KSC:

NASA J. F. Kennedy Space Center
Technical Document Control Dffice, HB-23
Cape Kennedy, Florida
GAEC:
Grumman Aircraft Engineering Corporation
Data Operations and Services, Plant 25
Bethpage, Long Island, New York
Attn: Mr. E. Stern

NAA:

North American Aviation, Inc
Space and Information Systems Division
12214 Lakewood Boulevard Downey, California
Attn: Apollo Data Requirements, 096-340

$$
\text { Bldg 3, CA } 99
$$

ACSP RASPO:

National Aeronautics and Space Administration
Resident Apollo Spacecraft Program Officer Dept 32-31
AC Electronics Division of General Motors
Milwaukee 1, Wisconsin
Attn: Mr. W. Swingle
Mr. H. Peterson
Bureau of Naval Weapons
c/o Raytheon Company
Foundry Avenue
Waltham, Massachusetts
Mr. S. Schwartz
Department of Defense
DCASD, Garden City
605 Stewart Avenue
Garden City, L. I., N. Y.
Attn: Quality Assurance
D. F. Kohls

AFPRO (CMRKKA)
AC Electronics Division of General Motors Milwaukee 1, Wisconsin 53201

[^0]: *Design Load Weights are taken from ICD MH01-01356-416 signed 16 July 1965 at
 Meeting $\ddagger 22 A$, and IRN 0051 signed 10 November, 1965.
 ** The weight of a qualification flight signal conditioner assy is 9.6 (E) pounds.
 \dagger The Total Control Weight is specified in NASA letter EG-151-44-65-55 dated 10 February 1965. This weight assignment does not include recognition of the Optical Eyepiece Storage Assembly.

