

GUIDANCE, NAVIGATION AND CONTROL

Approved: Date: L.E. LARSON, JR., MANAGEMENT DIRECTOR APOLLO GUIDANCE AND NAVIGATION PROGRAM

Approved: DAVID G. HOAG, DRECTOR

APOLLO GUIDANCE AND NATIGATION PROGRAM

Date: 12 aprily

Date: 12 9pr 68 Approved:

RALPH R. RAGAN, DEPUTY DIRECTOR INSTRUMENTATION LABORATORY

E-1142 (Rev. 55)

SYSTEM STATUS REPORT

FEBRUARY 1968

INSTRUMENTATION LABORATORY CAMBRIDGE 39, MASSACHUSETTS

COPY #

ACKNOWLEDGEMENT

This report was prepared under DSR Project 55-23970, sponsored by the Manned Spacecraft Center of the National Aeronautics and Space Administration through Contract NAS 9-4065 with the Instrumentation Laboratory of the Massachusetts Institute of Technology in Cambridge, Massachusetts.

The publication of this report does not constitute approval by the National Aeronautics and Space Administration of the findings or the conclusions contained therein. It is published only for the exchange and stimulation of ideas.

And the second s

.

E-1142

(Rev. 55)

SYSTEM STATUS REPORT

ABSTRACT

The System Status Report is normally distributed bimonthly. The areas of activity reported on in this month's revision include, but are not limited to, the following for the Block I 100 Series and Block II Command Modules and Lunar Excursion Module equipment: configuration weight, weight trend information, reliability failure rates, electrical power requirements, computer programming status, and G&N Status.

> by Apollo Staff February 1968

TABLE OF CONTENTS

Section	•	Page
1	Configuration Weights	11
2	Glossary and System Definition	19
3	Reliability - Failure Rates	21
4	Electrical Power Requirements	23
5	Guidance and Navigation Systems Status	27
6	G&N System Test	33
7	G&N Computer Status	41
8	Guidance Computer Programming	45

9 List of "E" and "R" Notes Published During Reporting Period 57

ACCURACY

•

The accuracy of numerical values reported in this revision should not be considered to be within the tolerances implied by the significant figures quoted. The reported values, although based upon the most current information, are subject to slight variations from system to system.

INTRODUCTION

The areas of activity reported on in this month's revision include, in general, the following for the Block I 100 Series and Block II Command Modules and Lunar Module equipment:

Section 1 - C	onfiguration Weights
---------------	----------------------

- Section 2 Glossary and System Definition
- Section 3 Reliability Failure Rates
- Section 4 Electrical Power Requirements
- Section 5 Guidance and Navigation Systems Status
- Section 6 G&N System Test
- Section 7 G&N Computer Status
- Section 8 Guidance Computer Programming

Section 9 - List of "E" and "R" Notes Published During Reporting Period

Additional material, not suited to this format, will be presented from time

to time as an appendix when it is particularly significant.

SECTION 1

CONFIGURATION WEIGHTS

Weights are reported to the nearest tenth of a pound on a component level. Each component weight is identified as estimated, calculated, or measured in order of increasing accuracy. These terms are defined as follows: estimated weights (E) are based on rough calculations; calculated weights (C) are based on detailed calculations made from final production drawings that will be used to build flyable equipment; measured weights (M) are actual weights of equipment built to the production drawings.

Tables 1, 2, and 3, respectively, present the weight of all CM Block I, 100 Series, CM Block II, and LM Guidance and Navigation equipment based upon the most current information. These tables offer a comparison of present component weight values with those listed in the last revision of the System Status Report. The weights tabulated for Block II CM and LM configuration represent operational flight hardware.

Also included are the respective control and design load weights as assigned by NASA. The Control Weight is the maximum allowable total weight of the Apollo Guidance and Navigation equipment for which MIT/IL is responsible. Design Load Weights are restricted to individual components and should be considered as "not to exceed" weights. These values represent a maximum within which design variations may cause changes without need for renegotiation.

The row labeled "Bare Guidance System" is inserted to provide for comparisons with similarly specified systems.

When applicable, the tables will be followed by a discussion of reported weight changes and weight trend information. Each weight increase or decrease is accompanied by an explanation for the change. Weight trend information describes future component changes presently being studied with an emphasis on weight reduction proposals.

This Rev. 55 to the Apollo System Status Report will be the last listing of Block I CM configuration weights.

North American Rockwell and Grumman Aircraft Engineering Corporation will provide and be responsible for weights of cold plates that are not integral with guidance and control equipment.

Reported Weight Changes and Weight Trend Information

Block II

 The following reported weight changes result from measurements made on systems which have been redesigned to decrease flammability hazards:

IMU	-1.6 lbs
Coolant Hoses (2)	-0.2
PEA	-0.5
CM Harness	+1.5
Optics shroud	+0.2
ESU (including eyepieces)	-0.4
GNIC	+3.2
DSKY	+0.3

2. The possibility exists that the NAR work table, which protects the OUA, may not fly on some vehicles. In this event, dust covers may be installed over the optics. Their estimated weight is 0.4 lb.

8

ŝ.

S	Design Load	18.0	**	> 155.0				l 120.0	_	4.5	100.0		15.0		5.0	4.0
BLOCK I 100 SERIES AT 1G)	Status 2/68	16.9 (M)	9	r~ 1	~	61.2 (M)	1.4 (M)	65,4 (M)	26.1 (M)	3.1 (M)	90.8 (M)		12.7 (M)		2.6 (M)	1.8 (M)
OF BS	Change	0.0		0.0		0.0	0.0	0.0	0.0	0.0	0.0		0.0		0.0	0.0
WEIGHT STATUS MODULE G&N (L	Status 12/67	16.9 (M)		25.7 (M)	-	61.2 (M)	1.4 (M)	65.4 (M)	26.1 (M)	3.1 (M)	90.8 (M)		12.7 (M)		2.6 (M)	1.8 (M)
TABLE 1. CURRENT WEI COMMAND MO	Command Module G&N Equipment	LOWER EQUIPMENT BAY CDU Assy Optical Subsystem	SXT and gearing SCT and gearing Optical Base and gearing	NVB and Resilient Mounts	Bellows Assy	I I I	۵ Coolant Hoses (Three)	Power Servo Assy	G&N Interconnection Assy	Optical Shroud	G&N to S/C Interface Assy	CNIC (with 6 rope modules)	Optical Eyepiece Storage Assy Condition Annunciators SXT Normal Relief Eyepiece	SCT Normal Relief Eyepiece SCT Long Relief Eyepiece	D&C Electronics Assy	Control Electronics Assy

					 •••••••						0		196	nbl	dated n of tl)F. '
(CONT) Status *	2/68	6	2.9 (M) 4 8 (M)	01	95 3 (M)			2.1 (M)	0.3 (M)	443.8	than the 430.	206.4	signed 3 June	sellows Assembly	-44-65-55 recognition	MIT in Letter
m	Change		0.0	0.0	0	o.o		0.0	0.0	0,0	pounds more	s of the	1256-416	1/2 the weight of the Bellows	not	submitted by MIT
DULE C& N (12/67	10.9 (M)	<u>.</u>	4.8 (M) 24.5 (M)	(25.3 (M)		2.1 (M)	0.3 (M)	443.8	813.8	IMU portions of the	n ICD MH01-	ly 1/2 the we	ed in NASA le ignment does	IRN 3677, su
TABLE 1. CURRENT WEIGHT Status I'	Command Module G&N Equipment	G&N Indicator Control Panel		Signal Conditioner Assy	MAIN PANEL AKEA	DSKY	LOOSE STORED ITEMS	Ontics Cover	Horizontal Hand Holds (Two)	TOTAL	The reported total weight for this month i control weight t	Bare Guidance Systems - IMU, AGC, IMU CDU's and IMU Support electronics	* Design Load Weights are taken from IC by MIT in letter AG 478-65.	** This design load weight includes on	The Total Control Weight is specified in NASA letter EG-151 10 February 1965. This weight assignment does not include Optical Eyepiece Storage Assembly.	* This design load weight taken from dated 9 May 1966.

TABLE 1. CURRENT WEIGHT STATUS OF BL COMMAND MODULE G&N (LBS AT	DULE C& N (LBS AT 1G)	(CONT)	
Command Module G&N Equipment	Status 14' 12/67	Change	Status ~ 2/68	Load * Weight
G& N Indicator Control Panel IMU Control Panel Signal Conditioner Assy DSKY	10.9 (M) 2.9 (M) 4.8 (M) 24.5 (M)	0.0 0.0 0.0	10.9 (M) 2.9 (M) 4.8 (M) 24.5 (M)	13. U 3. U 8. O 25. C
MAIN PANEL AREA DSKY	25.3 (M)	0.0	25.3 (M)	26.0
LOOSE STORED ITEMS Optics Cover Horizontal Hand Holds (Two)	2.1 (M) 0.3 (M)	0.0	2.1 (M) 0.3 (M)	2.5 1.0
TOTAL	443.8	0,0	443.8	:
The reported total weight for this month is 13.8 control weight t		pounds more	than the 430.0	pound total
Bare Guidance Systems - IMU, AGC, IMU portions of the CDU's and IMU Support electronics	IMU portions	of the	206.4	:
* Design Load Weights are taken from ICD MH01-01256- by MIT in letter AG 478-65.	n ICD MH01-0	416	signed 3 June 1965,	55, submitted
This design load weight in The Total Control Weight 10 February 1965. This Optical Eyepiece Storage	ncludes only 1/2 the weight of the B is specified in NASA letter EG-151 weight assignment does not include Assembly.	ght of the B tter EG-151 not include	ellows Assembly. -44-65-55 dated recognition of the	y. he
This design load weight taken from IRN 3677, submitted by MIT in Letter AG 407-66 dated 9 May 1966.	IRN 3677, sul	bmitted by A	IIT in Letter A	3 407-66

I

1

ľ

TABLE 1. CURRENT WEIGHT STATUS OF BLOCK COMMAND MODULE G&N (LBS AT 1G)	DULE G& N (S OF BLOCK	(CONT)	
Command Module G&N Equipment	Status 17' 12/67	Change	Status ~ 2/68	Losign Load Weight
G& N Indicator Control Panel IMU Control Panel Signal Conditioner Assy DSKY	10.9 (M) 2.9 (M) 4.8 (M) 24.5 (M)	0.0 0.0 0.0	10.9 (M) 2.9 (M) 4.8 (M) 24.5 (M)	15. U 5. U 8. O 25. C
MAIN PANEL AREA DSKY	25.3 (M)	0.0	25.3 (M)	26.0
LOOSE STORED ITEMS Optics Cover Horizontal Hand Holds (Two)	2.1 (M) 0.3 (M)	0.0	2.1 (M) 0.3 (M)	2.5 1.0
TOTAL	443.8	0, 0	443.8	:
The reported total weight for this month is 13.8 control weight t		pounds more	than the 430.0	pound tota
uidance Systems and IMU Support	- IMU, AGC, IMU portions of the electronics	of the	206.4	:
* Design Load Weights are taken from ICD MH01-01256-416 by MIT in letter AG 478-65.	m ICD MH01-(signed 3 June 1965,	55, submitt
 ** This design load weight includes only 1/2 the weight of the Bellows Assembly. † The Total Control Weight is specified in NASA letter EG-151-44-65-55 dated 10 February 1965. This weight assignment does not include recognition of the Optical Eyepiece Storage Assembly. 	uly 1/2 the wei ied in NASA le signment does	ight of the B tter EG-151 not include	ncludes only 1/2 the weight of the Bellows Assembly. is specified in NASA letter EG-151-44-65-55 dated weight assignment does not include recognition of the Assembly.	y. d he
* This design load weight taken from IRN 3677, sub- dated 9 May 1966.	IRN 3677, su	bmitted by A	mitted by MIT in Letter AG 407-66	G 407-66

DATE: February 1968

٠

.

••

(LBS AT 1G.	Change Status Load 2/68 Weight*	.0 36.5 (M) 50.0	.0 55.7 (M)).0 17.4 (M)	10.7	6 40.9 (M)	D.2 1.0 (M) J	0.0 49.4 (M) 58.0	0.5 8.5 (M) 12.0	1.5 25.5 (M) 40.0	0.0 70.1 (M) 80.0	0.2 3.3 (M) 4.5	0.4 13.6 (M) 15.0	3.2 14.7 (M) 17.0	0.3 17.8 (M) 25.0	0.0 5.8 (M)** 8.0
GN&C (LBS AT	Change	0.0	0.0	0.0	0.0	-1.6	-0.2	0.0	-0.5	+1.5	0.0	+0.2	-0.4	+3, 2	+0.3	0.0
AND MODULE C	Status 12/67	36.5 (M)	55.7 (M)	17.4 (M)	10.7 (M)	42.5 (M)	1.2 (M)	49.4 (M)	9.0 (M)	24.0 (M)	70.1 (M)	3.1 (M)	14.0 (M)	11.5 (M)	17.5 (M)	5.8 (M)

CURRENT WEIGHT STATUS OF BLOCK II COMMAND MODULE GN&C (LBS AT 1G.

DATE: Feburary 1968

TABLE 2 CURRE

Command Module GN&C Equipment	LOWER EQUIPMENT BAY CDU Assy Optical Subsystem SXT and gearing SCT and gearing SCT and gearing Optical Base and gearing APTPS and Dust Covers	NVB and Mounts Bellow Assy IMU Coolant Hoses (2) Power Servo Assy Prower Servo Assy Revo Assy Revo Assy Press Group G&N Interconnect Harness Group AGC (with six rope modules & mag. trays) Optical Shroud Optical Evepiece Storage Assy SXT Normal Relief Eyepiece SXT Normal Relief Eyepiece SCT Long Relief Eyepiece	DSKY Signal Conditioner Assy (Operational Flights)

172.8 assignment does not include recognition of the Optical Eyepiece Storage Assembly. **The weight of a qualification flight signal conditioner assy is 8.6 (M) pounds. - IMU, AGC, IMU portions of the CDUs and IMU 11.0 p † The Total Control Weight is specified in NASA The reported total weight for this month is Command Module GN&C Equipment TABLE 2. Horizontal Hand Holds (2) Bare Guidance Systems support electronics. LOOSE STORED ITEMS MAIN PANEL AREA TOTAL DSKY

	Design Load Weight*	25.0	1.0	:	ght †
	Status 2/68	17.8 (M)	0.3 (M)	389.0	0 pound total control weight
L L L L L L L L L L L L L L L L L L L	Change	+0.3	0.0	+2.8	n the 400.0 pound
TH COT C LEDO AL	Status 12/67	17.5 (M)	0.3 (M)	386.2	pounds less than the 400.

CURRENT WEIGHT STATUS OF BLOCK II COMMAND MODULE GN& C (LBS AT 1G) (CONT'D)

This weight I 1 letter EG-151-44-65-55 dated 10 February 1965. * Design Load Weights are taken from ICD MH01-01356-416 signed 16 July 1965 at Meeting #22A.

February 1968 DATE:

Reported Weight Changes and Weight Trend Information

LM

 The following reported weight changes result from measurements made on systems which have been redesigned to decrease flamability hazards:

IMU	-1.4 lbs
NVB	+0.1
PTA	+0.1
"A" Harness	+1.0
DSKY	+0.3
PSA	+0.2

An estimated 1.3 lb increase is reported for the AOT due to measured
 0.5 lb increase for flammability changes and an estimated 0.8 lb in-

crease for the conical sunshade.

3. The estimated weight for the LGC was changed to measured. This was a typographical error and should have been reported as measured in the previous report.

Design Load Weight* 37.0 28.2 20.0 2.0 1 80.0 0 0 0 65. 1 22. 21. 1 1 Gardner (NASA/MSC) on LM PGNCS (LBS AT 1G) +-lbs, ω (M (M (M) (M) (M (M) (M) (M) (M) (M) Ê <u>ы</u> <u>е</u> ଳ Status 2/68 10 37.5 17.8 70.6 1.6 S 6 4 15.6 41.0 5 24.4 8 5.2 ω 9 1 17. 255. 167. . weight by ŝ 14. • ò S R.A. control STATUS OF Change signed by Mr. 0.0 +1.2 +0.3 +0.2 0.0 +1.0 0 0.0 +1.30.0 +0.1 0 +0.1 0 4 0 0 0 4 total and spunod CDUS CURRENT WEIGHT as (M (M (M (M) (M) (M) (M) (M) (M **(()** (M) (ju) <u>е</u> 0 Status 12/67 Bare Guidance Systems - IMU, LGC, IMU portions of the 245. 0 - 1000114.3 ഹ ഹ 70.6 1.6 വ 14.5 2 S 5.1 4 23.1 ဖ 0.8 3.1 254. 17. 37. 17. ີ. ເ 0 42. the *Design Load Weights are taken from ICD LIS-49 The reported total weight for this month exceeds LGC (with six rope modules & mag. trays) HARNESS "B" Supported by the structure ကံ TABLE AOT (including eyepiece and bellows) HARNESS "B" Supported by the PTA HARNESS "B" Supported by the NVB LM PGNCS Equipment SCA (Operational Flights) AOT Control Unit (CCRD) IMU support electronics. HARNESS "A" TOTAL DSKY CDU PTA NVB PSA DMI

1966. 29 March

7.8 (M) pounds. is. oner assy

February 1968 DATE:

:

1.

×

3 3 3

**The weight of a qualification flight signal conditi

† The Total Control Weight is specified in Contract Technical Specification PS-6000000 - amended by NASA Letter EG-26-233-66-565 dated 18 August 1966.

SECTION 2

GLOSSARY AND SYSTEM DEFINITION

The description of what constitutes the MIT Guidance and Navigation equipment in Block I, 100 Series, Block II Command Modules and Lunar Modules has been defined in previous System Status reports. This Section will be updated when any significant changes are made in the systems.

SECTION 3

RELIABILITY FAILURE RATES

The current status of reliability analysis is reported in summary form as a chart.

This chart contains tabulations of the failure rates associated with each major configuration of G&N systems. These have been derived from the parts count of each assembly using generic type failure rates, modified only by the stress applied to each part and its singular application in the system. From these data, estimations of mission success probabilities may be calculated. This Rev. 55 to the Apollo System Status Report will be the last listing of the Block I CM reliability failure rates.

G&N MISSION RELIABILITY ANALYSIS FAILURE RATES EXPRESS IN "FAILURES PER 106 HOURS"

Mission Reliability			6033		. 9626		. 0023		2150	CIC4.	9540		898	
	$\overline{\ }$	OFF	•		ş		•		•		55.0			
D&C	S)	Ň	8.3	o	31.3	2.3	8.4	1.2	92	2	13.8	2.3	3.25	11
\$	\angle	OFF	•		208		•		٠		55.0	•		
DSKY	S)	\searrow	8.3	21	31.3	۲.3 ۲.3	3.4	110	9.5	7	13.6	2.3	3.25	8
ų	\angle	STBY	•		208	60.52.3	٠	•	170	61	55.0	60.5	•	
AGC	NO	\searrow	8.3	257	31.3	33	8.4	235	9.5	235	13.8	235	3.25	335
ptics C D U	$\overline{\ }$	OFF			208	•	•	•	•		55.6	•	•	•
Optics CDU	NO		•	•	31.3	16	8.4	112	20	16	13.8	16	3.25	211
22	$\overline{\ }$	STBY	•	•	208 31.	•	•	•		•	55.6	•		•
CDU	No No		8.3	Ξ	31.3	155	8.4	155	76	155	13.8	155	3.25	155
Vi cs		U.S.		•	225	•	•	•			60.3	۲		
Optics Electronics (PSA)	N	\searrow		٠	14.2	11	8.4	1.33	20	77	1.9	11	3.25	1.33
nbly CS		OFF		٠	225		٠	٠	•	•	60.3	•	•	•
Optics Assembly	NO			•	14, 2	94	8.4	38	50	94	1.9	56	3.25	38
A)		STBY			208	6.3	•	•	190	9	55.0	6.3	8	
IMU Electronics (PSA)	S	~	8.3	224	20831.3	110	8.4	110	8	011	13.8	110	3.25	110
		STBY		٠	208	10. 2110	120	1.6	190	10	55.6	10.2	66.3	1.6
IMU Assembly	No	\swarrow	8.3	195	31.3	621	8.4	129	8	129	13.8	129	3.25	129
			OPER HRS	~	OPER HRS	~	OPER HRS	~	OPER HRS	~	OPER HRS	×	OPER HRS	×
		NOISSIM	AGE 123	FLIGHT 502 UNMANNED	CIM	FLIGHT 503 MANNED	MJ	FL IGHT 503 MANNED	C/M	FLIGHT 205	CIM	DES. REF.	B	DES. REF.

D.NTIL: February 1968

SYSTEM 4

ELECTRICAL POWER REQUIREMENTS

Electrical power and energy reporting is based upon the inflight spacecraft sequence of events for the Design Reference Mission as developed by the Apollo Mission Planning Task Force (AMPTF). (Reference GAEC Report Volume III -LED-540-12, dated 30 October 1964.)

The accompanying tables present the power drawn through the spacecraft circuit breakers. It is assumed that power is drawn from the spacecraft's primary +28VDC supply and a 400 cps-115 VAC single phase inverter.

Intermittent power peaks can exist, particularly during operation of displays and controls at random times. The energy content in these peaks is considered negligible.

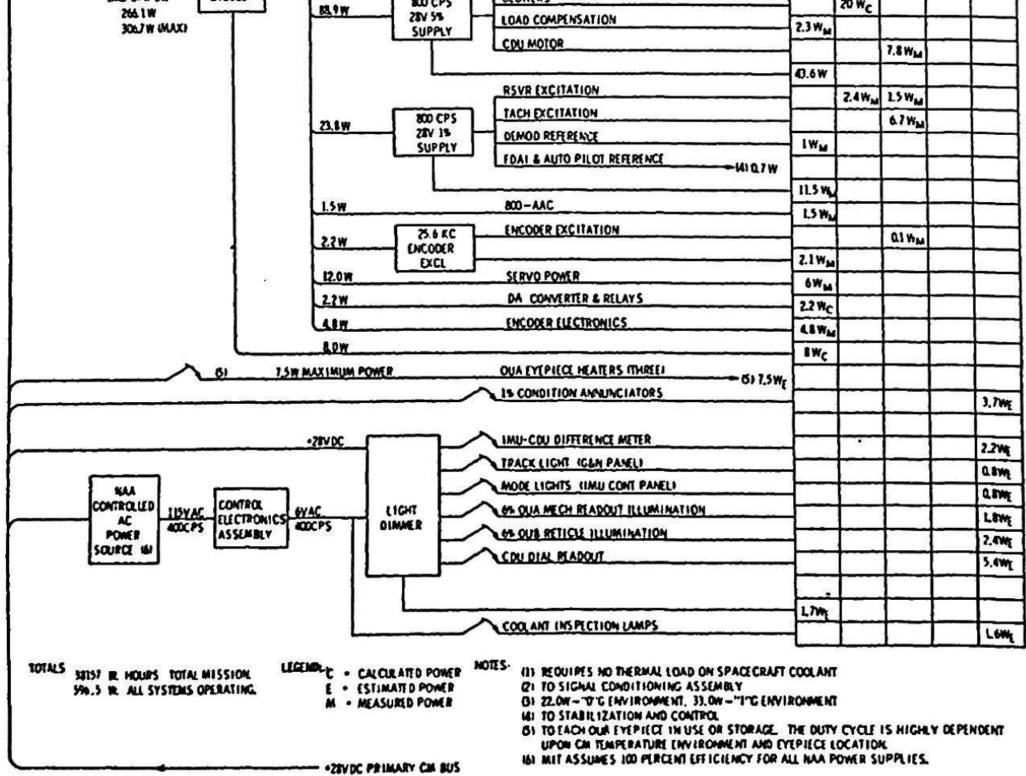
All values (except those mentioned above) are actual expected levels of power at 28.0 VDC. They are based on measured values on G&N systems 207 and 208

for the Block II Command Module and G&N systems 608, 600, and LM learner for the LM. No margin factor has been applied to protect against possible differences between G&N systems and spacecrafts. Thus, these values should not be taken as "not to exceed" extremes.

Interface Control Documents serve as the guidelines for reporting power figures.

CM Block I 100 Series	MH01-01227-216 "G&N Electrical Input Power" signed 11 June 1965
	Signed 11 Julie 1905
CM Block II	MH01-01327-216 "G&N Electrical Input Power" signed 15 July 1965
LM	LIS-390-10002 "PGNCS Prime Power Requirements and Characteristics" signed 30 July 1965.

This Rev. 55 to the Apollo System Status Report will be the last listing of Block I CM electrical power requirements.

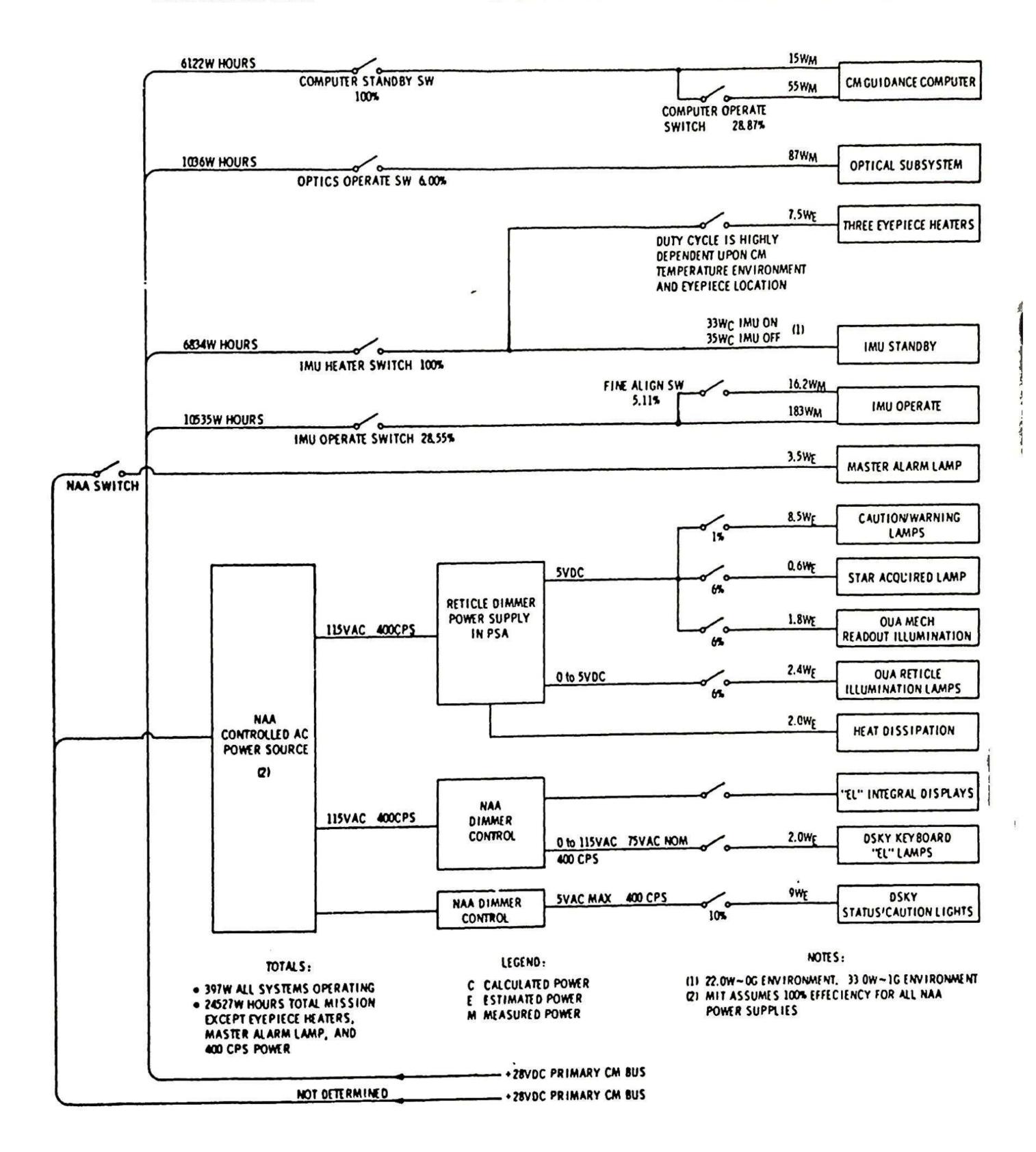

BLOCK I - 100 SERIES GUIDANCE AND NAVIGATION LOAD ON PRIMARY +28 VDC COMMAND MODULE

BASED UPON 1985 HOUR 4227 DAYI LUNAR MISSION DESIGN REFERENCE MISSION

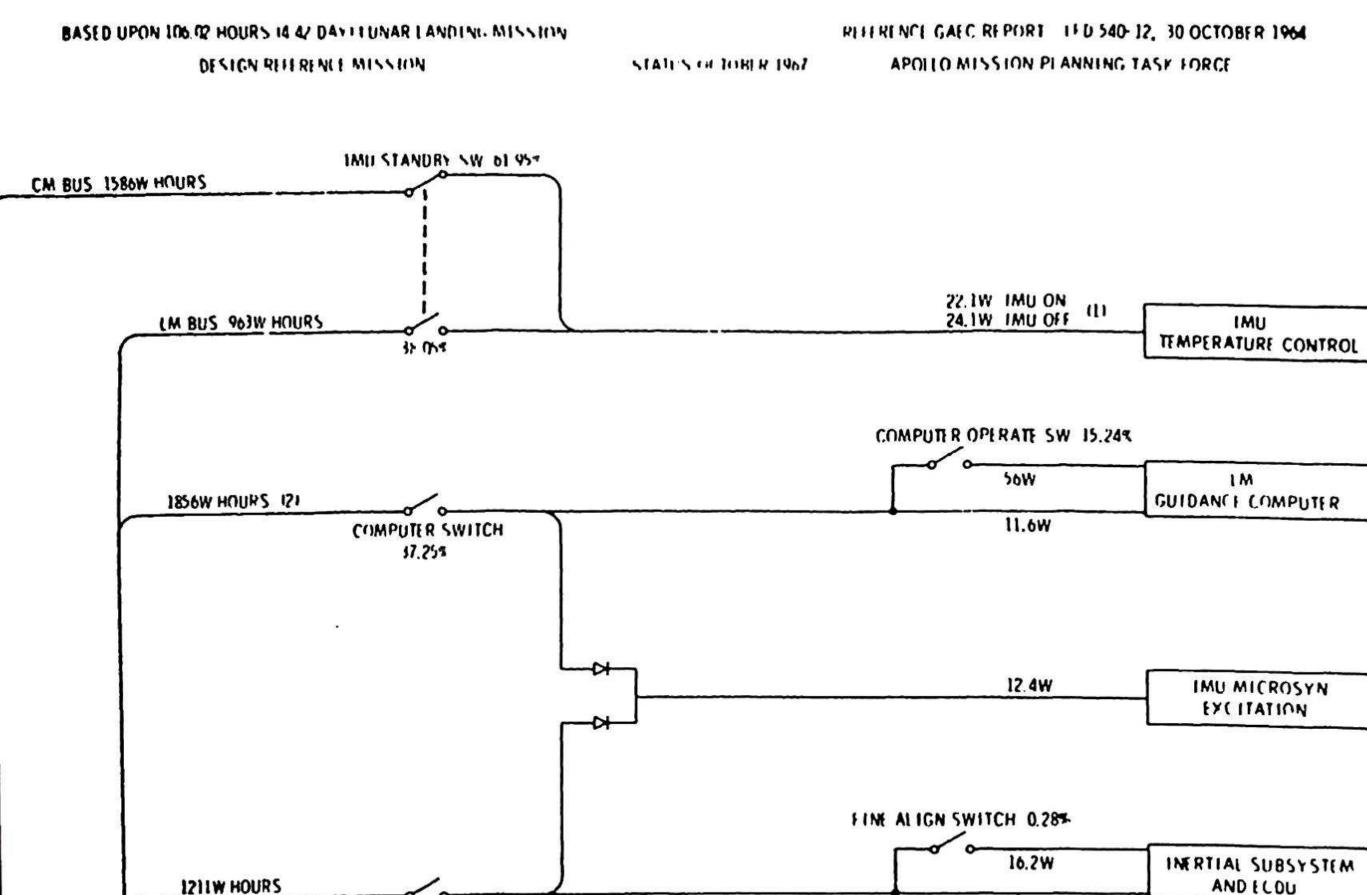
REFERENCE GAEC REPORT - LED 540-12, 30 OCTOBER 1964 APOLLO MISSION PLANNING TASK FORCE

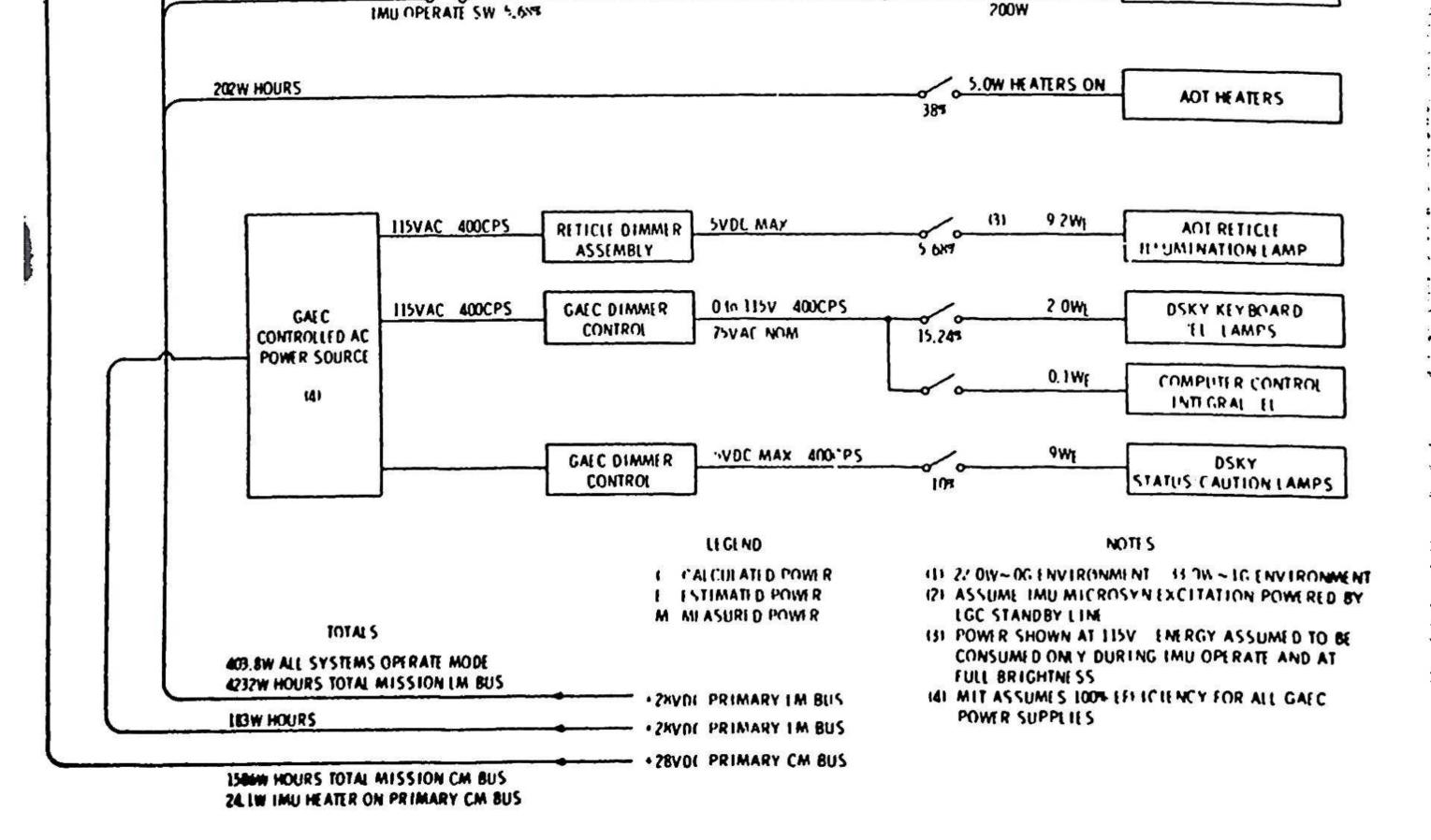
*1

				-	COLD	PLATES	<u>(1)</u>	
	Ann_	ILOW OPERATE	APOLLO GUIDANCE COMPUTER	PSA	NBA	CDU	AGC	DEC
COMPUTER OPR SW 7330 W HOURS		15.0W	AGC STANDBY			-	100 WC	10 WC
LO N OPR		69W	OPTICS ELECTRONICS & RELAYS				15Wc	
SW STANDEY		201	ENCODER ELECTRONICS	- AOWC				
			OPTICS SERVO AMPLIFIERS	2.0WC				L
		10 6 W	800-AAC		10 4 WC	5.2 WC		
		15W		15Wc				
		33.6W SXT ON 28V 54			10.4 WC	52Wc		
		SUPPL						
OPTICS OPR SW	ACON ELOCKING			20.0 Wc				
ALT & HOUPS	DIDDES	NAME NOD CP	S TUCH CONTACTION	-	2.7WC			
21.3 W OPR ISXT-OND		28 18		-	74WC	37WC		
	1	SUPPLY	Y HAND CONTROLLER IOPTICS					IWC
	1			14646				
		2 5 6 K				Q.5W		
		S.TW ENCODE	ER ENCODER EXCITATION					
		Exa						23
	1							
		3,0 W		3.0Wc				
POM MAN 115 VAC 4	00 CPS	2.5W SIGNA	100.00	L3WC				
1311		18W CONDITIO			1 WC			
				2.0%				
		2.1W	FAILURE INDICATOR	211%				
	N DOK BLOCKING	Jaow	TEMP CONTROLLER	IOWC				
INU HEATER S	TIMU ON DIODES	20-201	HEATERS 20W IMU ON - 22 W IMU OFF OI		20-2214			
	IND OFF L	19.1W 3200 CP	DUCOSYN EXCITATION 2V SINE WAVE		3.5W			
		SUPPLY		SWC			·	
				10.6W				
		1.5 W	3200 - AAC	LSW				
		2,0W		200				1-
	Nor cer		GIMBAL SERVO & ADA PREAMP POWER		7WE	<u> </u>		
		17.1W28 VD		M	0.8 WM		 	┣
		SUPPLY						
27340 W HOURS		11.6W	IRIG & PIPA ELECTRONICS	11.6%		<u> </u>	 	-
125 SW OPR		E BIDA			1			
300 4 W MAX		20 0W 120V - 12V	VOC	47 W _M		<u> </u>		-
		P SUPP		12W1	<u> </u>			
		· · · · · · · · · · · · · · · · · · ·	IRIG ELECTRONICS					
		29.4W IRIG	voc	22.8W				
		170 W MAXI P SUPP		6.6WM	+			-
	1	2.6W	PIPA & GYRO PREAMPLIFIERS		3WM			-
	21.55		GYRO WHEELS		2.6WM			
1545 C	OPR SW DIODES				15.2 W	1		-
	A-NAM I MIMARY				5 Data 14-			


BLOCK II GUIDANCE & NAVIGATION LOAD ON PRIMARY +28 VDC COMMAND MODULE

BASED UPON 198.5 HOURS (8.27 DAY) LUNAR ORBIT MISSION


DESIGN REFERENCE MISSION


STATUS OCTOBER 1967

REFERENCE GAEC REPORT - LED 540-12, 30 OCTOBER 1964 APOLLO MISSION PLANNING TASK FORCE

LUNAR MODULE GUIDANCE & NAVIGATION LOAD ON PRIMARY +28 VDC

200W

SECTION 5

GUIDANCE AND NAVIGATION SYSTEMS STATUS

The status of delivered G&N Systems are shown in tabular form. Table 3 shows the status of G&N Systems progressing from installation to final test at KSC.

Table 4 shows the configuration for major units comprising the G&N Systems assigned to LM-2 and subsequent LM Vehicles at GAEC.

Table 5 shows the configuration for major units comprising the G&N Systems assigned to CM-98 and subsequent Command Modules at NAR.

Table 6 shows the configuration for major units comprising the G&N Systems at KSC.

TABLE 3

DATE: February 1968

		LOCATION	
	GAEC	NAR '	KSC
OPERATION	LM-2 System 608 LM-3 System 605 LM-4 LM-4 System 606	CM-98 2TV-1 System 202 CM-101 System 204 CM-102 System 205 CM-103 CM-103 System 206 System 206	CM-020 System 123 LM-1 System 603
INSTALLATION	x x	x x	x x
SUBSYSTEM CHECKOUT S/C	x x	x	x x

1		
INTEGRATED TEST S/C	x	x x
COMPLETE TESTING AT KSC		x

NOTE: LM-1, System 603 completed testing at KSC and was successfully launched in January 1968.

&N SYSTEM CONFIGURATION

s/c	LM-2		L.M3		L.M4	
COMPONENT NOMENCLATURE	System 608 Part Number	N/S	System 605 Part Number	N/S	System 606 Part Number	s/N
. CGC	2003993-031	28	2003993-031	32		
DSKY	2003994-011	46	2003994-021	51	•	
IMU	2018601-191	26	2018601-111	12		
ECDU	2007222-221	10	2007222-221	24		
AOT	6011000-071	17	6011000-072	18		

DATE: February 1968

Explanatory notes will described reason for changes. Listing will be revised if major units are changed. NOTE:

Replaced LGC 2003993-021, S/N 26, with 2003993-031, S/N 28. LGC modified to include flat packs complying with ND 1002359 Specification for Leak and Weight Tests. IMU modified to include new S/N 26.

Removed DSKY 2003994-011, S/N 49, to be returned to have flammability fixes incorporated. New number is 2003994-021, S/N 51.

Removed Beta cloth, added heater cover; new part num-

. ...

õ
LM
4
E
ABL
F

LM-2, G&N System 608 ÷

- A.
- Replaced IMU 2018601-111, S/N 18, with 2018601-191, excitation grounding and end cap changes. щ.
- LM-3, G&N System 605 3
- Α.
- Revised AOT 6011000-071, S/N 18. ber is 6011000-072, S/N 18. ä

CM G&N SYSTEM CONFIGURATION AT NAR

S/S	CM-98		CM-101		CM-103	
COMPONENT NOMENCLATURE	System 202 Part Number	s/N	System 204 Part Number	s/N	System 208 Part Number	s/N
AGC	2003100-061	6	2003993-031	27		
DSKY (Main)	2003950-011	28	2003994-021	50		
DSKY (Navigation)	2003950-011	30	2003994-021	41		
IMU	2018699-031	5	2018601-201	8		
CDU	2010744-051	13	2007222-191	15		
OPTICS	2011000-062	23	2011000-071	24		
						1060
					DAIE: repruary 1900	7 200

88 NOTE: Listing will be revised if major units are changed. Explanatory notes will described reason for change.

•

63

TABLE 5 CM G

.

F

G&N SYSTEM CONFIGURATION AT ISSC

а 2

8

2		LM-1	
System 123 Part Number	N/S	System Part Number	N/S
1003700-071	13	2003993-011	30
1003563-051	ი	2003994-011	37
1003706-051	7		1
1001500-111	ω	2018601-211	9
1021304-031	9	2007222-171	12
2011000-023	6	6011000-021	6
		DATE. Fahmiam 1060	Ī

DATE: February 1968

Explantory notes will describe Listing will be revised if major units are changed. reason for change. NOTE:

with 2018601-211, S/N 6. Incorporated IRIG End

1

.

.

TABLE 6 G&N SYST

.

s/c	COMPONENT NOMENCLATURE	AGC	DSKY (Main)	DSKY (Navigation)	IMU	CDU	OPTICS

LM-1, G&N System 603

•

Replaced IMU 2018601-111, S/N 6, Cap modification.

SECTION 6

G&N SYSTEM TEST

1

- A. SYSTEM TEST LABORATORY
- 1. G&N 5

No operating hours.

- 2. G&N 104
 - a. Program Tests

AS-502 Support: Successfully ran K-START Tapes for AGC Alarms and Interrupts Test and E-Memory Zero Test.

Verified during Simflight that if S4BSEP occurs early or late, the SPS1 time tag need not be changed. Once S4BSEP time is known, the AGC clock can be advanced the desirable amount.

Verified Simflight K00040 and K00071 with added cold soak time of approx-

imately 8.2 minutes. Purpose is to allow more time to insert the SPS2 update.

Verified operation of AS-502 Simflight, tape number F04C020-K00071-00 which incorporates new S4SEP time.

b. Hardware Tests

Investigated erratic Z IRIG data. Apparently there is a mismatch between the Z ternary current switch and associated electronics.

Concluded ADIA investigations, deciding to accept the large (100 meru/g) ADIA terms.

Investigated IMU Temperature Alarm indication. Concluded that the IRIG indicating sensor is in error by approximately 3°F. This is equivalent to a 480 ohm per degree shift from the calibration curve.

Resolved that the erractic Z IRIG scale factor data was due to a failed ternary current switch. Switch is being repaired at present.

Devised means of obtaining a 0 VDC discrete for triggering an optical device that may be used on the AS-502 Mission. The discrete utilizes C-relays in the NAV DKSY. An STG memo is currently being written concerning this topic.

3. G&N 200

a. Program Tests

Continuing checkout of SUNDISK Programs. Revision 275 is presently in use.

Continued checkout of Flight Sim Program for Flight 205.

Performed checkout of optics "stop" monitoring and drive director control as programmed in Coldspot, Revision 1 of COLOSSUS Revision 138.

Continued checkout of Flight Simulation test program SUNDISK.

Performed checkout of special PIPA test routine for determination of "air bubbles". Test needs further checkout.

b. Hardware Test

Noted six degree overshoot of shaft angle when optics are under CMC control. Problem under investigation.

Noted problem with Trunnion CMC drive control when initially turning on Optics power. DAC saturates and trunnion control is lost. Problem under investigation:

Results of checkout of the MIT and KIC Tracker and Photometer Electronics Module were published in STG Memo 1097.

c. Failures

Problem with optics CDU. High-speed read appears to be inoperative for short period of time immediately after turn-on of optics. Problem is not yet resolved.

d. Modifications

CDU modules MSA S/N HUG254 and Quadrature Rejection S/N HUG25 replaced with modified modules S/N 3 and S/N 1 respectively.

G&N Harness modified by inclusion of signal leads for VHF Ranging Interface.

Incorporated two wire additions into PSA for "Star Tracking" program checkout. Wires added were 45J20-23 to 45J20-21 and 45J20-25 to 45J21 -31.

4. G&N 600

a. Program Tests

Conducted tests on SUNDANCE Revisions 245, 250, 251, and 253. Emphasis was mainly on radar and system test routines. Submitted 7 anomaly reports on major problems encountered. The outstanding reports are: two successive CDU zeros resulted in a GSE gimbal dump; RR search pattern irregularities; V83 during P20 hangs up program on a P20 endidle. Revision 275 is presently in use. Also conducted tests on SUNDANCE Revisions 255, 256, 258, 259, and 263. System Test Verification (informal) is 60 percent complete. Submitted six anomaly reports. The outstanding discrepancies are in the radar programs.

Initial simflights were conducted with P21, P30, P40, P42.

b. Hardware Tests

Recorded $\pm \Delta 0$ g pulses from CDU special test connector on analog tape recorder. Also recorded CDU registers on digistore tape. Confirm that there were no transients with voltage divider fix (STG Memo No. 1094).

Conducted CDU transient tests at earth rate to observe effect of transient at low rates.

The latest IRIG preamplifier oscillation fix was tested with added inductances up to 2 millihenries without noise effects. The fix is commoned preamp input and output lows and tuning capacitors on preamp inputs.

c. Failures

Replaced temporary IRIG 6A17 with 7A22.

d. Modifications

Modified grounding on CRS buffer box to relieve grounding noise.

B. FIELD OPERATIONS

- 1. GAEC
 - a. LM-2 (Mission AS-208) G&N System 608.

Completed OCP 61014, Flight Control Checkout.

Completed retest of OCP 37030, Individual Systems Test. OCP 61018, FEAT (Plugs Out), is now in process.

- b. LM-3 (Mission AS-503) G&N System 605
 Completed testing through OCP 37030, Individual Systems Test.
- LM-4 (Mission AS-504) G&N System 608.
 OCP testing scheduled to begin on 18 February 1968.

2. KSC

- LM-1 (Mission AS-206) G&N System 603
 Completed all OCP's successfully, System launched on 22 January 1968.
- b. CM-20 (Mission AS -502) G&N System 123

L/V Simulation, OCP-K-0005. Experienced power failure, degaussed Y and Z PIPA's. Bias on Y PIPA was -2.8 cm/sec; upon degaussing it went to -0.5.

Completed OCP-K-0021, Overall Test (Plugs Out), with no IDR's. Spacecraft move VAB to LC scheduled for 5 February 1968.

3. MSC

Completed review of draft for Flight Test Requirements for first Manned Mission. Supported LM-1 Mission.

4. NAR

a. CM-98 (2 TV-1 Thermal Vacuum) G&N System 202
System installed; OCP 6504, Individual Systems Test, scheduled for
26 January 1968 did not start until 31 January and is currently in progress.

- b. CM-101 (Mission AS-205) G&N System 204 System installed; OCP 6504, Individual Systems Test.formerly scheduled for 10 January, was slipped to 4 February 1968.
- 5. ACED, Milwaukee

Attended AC/NASA Review in Milwaukee. Met with ACED personnel relative to fallout of End Housing Assemblies on Turn-Around Gyros. MIT has examined and made recommendations on re-use of four gyro end housings. NASA is placing considerable emphasis on MIT justifying the use of gyro end housings containing cracked potting. Continuing documentation review effort.

6. Edwards A.F.B.

Horizon Definition Experiment ready for Pre-Flight Test. APU run with all experiments on line is scheduled for 29 January 1968. A captive flight is scheduled for 1 February with a checkout flight (maximum altitude 120,000 feet) being scheduled for 5 February.

Number two Horizon Definition Experiment with Barnes Edge Tracker is scheduled to arrive at NASA/FRC for Altitude Chamber Test the week of 12 Feburary 1968.

C. SYSTEM ENGINEERING

1. Spacecraft Test Support

The E/Call routine in fixed memory used for E-Memory programming was corrected. The IRIG SF test has been run on the digital simulator, however; the results are not as accurate as expected and further work is required. The E-Memory Read-Write pulse check program has been checked out and the E-Memory load sum check program is being coded.

The investigation to develop diagnostic tests for PIPA and IRIG failures continued. A test for bubbles in the PIPA fluid was run in the STG lab and the data is being evaluated. A preliminary version of AGSALIGN worked successfully with patches in a digital simulation test. Attempts are being made to obtain a new assembly of AGSALIGN so that a DIGISTORE Tape can be manufactured for System Test Lab testing. Conversion to erasable memory operation will begin following a successful STL Test.

2. Mission Program Testing

Informal runs of the radar programs have continued. Most of the effort has been on analyzing the poor results of the Search Pattern Test. A parallel digital simulation of this test is also being done. Informal runs of P51 and several IMU tests have been run. A memo (STG No. 1102) was issued describing problems in the landing radar portion of the radar self test.

The alarms for SUNDANCE are being reviewed and because of the large difference from SUNDISK, a memo describing the DANCE alarms (STG No. 1103) was issued and testing of these alarms has begun.

The plan for testing of COLOSSUS in the STG Lab. (STG No. 1100) has been distributed.

3. Star-Tracker-Horizon Photometer Experiment

A series of system level tests were conducted on the Star Tracker/Horizon Photometer being developed for AAP Experiment M-439. The results demonstrated the necessary capability to track accurately (45 sec, 3σ) at least 29 of the 37 stars now contained in the computer. Dynamic testing indicated no measurable velocity error in the servo loop for simulated angular velocities up to 36 deg/sec.

The Horizon Photometer was tested through the range of expected image intensities (0.82 to 2.25 μ W/CM² steradian Angstrom). The automatic "MARK" was executed with accuracy (±15 sec/peak) for intensity inputs down to 0.25 μ watt. The SUNDISK Program No. 23 successfully processed the optics "MARK" data.

A Design Review Meeting among MSC, MIT and Kollsman was attended (on 16 January) concerning the Star Tracker/Horizon Photometer Experiment. MIT reconfirmed plans to perform tracker/photometer tests, under base motion conditions, on the Space Navigator Simulator.

Procedures for performing these tests were prepared. Primarily, this involved preparation of an erasable program which permits CMC control of the Star Tracker.

D. KSC CHECKOUT

1. The following K-START Tapes were verified and shipped to KSC for LM-1 FRT:

F06L001-K00067-01, Erasable Launch Load F06L001-K00068-01, Erasable Mission Load F06L001-K00078-01, Simflight 2. The following K-START Tapes were manufactured, verified, and shipped to KSC for S/C-020 testing:

F04C020-K00012-00, AGC E-Memory Zeroing F04C020-K00020-00, AGC Alarms and Interrupts Test

Reviewed Block II CSM and LM OCP's.

4. Resolved required additional testing of Block II CSM and LM "Y PIPA" during S/C testing at KSC.

E. TEST EQUIPMENT

1. GSE Station Maintenance: The STG stations were overhauled during one weekend in January. Individual responsibilities for PM have been assigned. P-9 will be overhauled when pulled down for GINSIP modification.

2. CDU Readout: The CDU bit-to-angular readout display has been completed and is ready to be hooked into the System Test Lab facilities.

3. CDU DAC Monitor: Design and fabrication of this item has been delayed, but it should be completed this month.

4. Uplink-Downlink Automation: The uplink-downlink sequence programmer should be completed this month.

5. Glitch Detector Transient Investigation: Field reports indicate that the Glitch Detector in the PSAAM is susceptable to transients on its own power line. We are investigating said report.

6. Rate Table Limitations: A recent failure of the rate-limiting features of the ISS rate table has prompted a requirement for additional rate limiting of the table. A system of limiting the drive rate of the gyro test table hass been designed and installed.

7. 16 PM PIP Electronics: Work is progressing on testing the circuits in an oven and making several other design changes. It is expected that major problem areas will be defined within a month.

8. Trace:

~~

a. The Block II Coroner and Trace Program has been reviewed and modified to achieve maximum usefulness as an analytical tool. A revised ECP has been submitted to Houston and several conversations have been held with MSC personnel to generate support for this project.

b. An 8000 x 32-bit cyclical memory for storage of the last 8000 AGC instructions, addresses, and pertinent register contents, a digistore interface, and a program for generating an IBM 360 printout similar to that generated by the Digital Simulation is in the design phase. 9. Conversion of BB II GSE to Support 600F: It does not appear that BB II could be converted in a timely fashion without sacrificing effort on both the Advanced CG&N Instrumentation and the GINSIP programs. BB II conversion will therefore be held in abeyance.

10. Gyro Tumble Servo System: There have been both hardware and procedural problems involved with these instruments. Many of these problems have been straightened out and we are now testing the servo system using a rate table as a base. The need for this instrument is critical to support production gyro testing at a second vendor. It is expected that this work will be completed in February.

11. Design of a New Small Wheel Power Monitor: A new small wheel power monitor for S/C usage is being investigated and will probably be the subject of a future ECP.

12. Interrogator Threshold Investigation: We are studying the effect of input signal slope on interrogator threshold firing level.

13. Miscellaneous Mainline Efforts: Review of TDRR's, ICD's and field problems continue on an as-required basis.

14. Tally Fix: The Tally Tape Punch in the ISS lab was failing regularly due to its constant operation. A circuit was installed which allows the Tally to operate only when it has to punch data, thus reducing wear and tear on the Tally Motor and friction drive.

15. Jet Firing Monitor: Another jet firing monitor has been built for the LM station and is on the air.

16. Hybrid I Station: A new harness is being built for the Hybrid I Station as time permits.

F. MISCELLANEOUS REPORTS AND INVESTIGATIONS

1. General status was reported at the Quarterly Status Review.

2. CDU switching transient investigation completed. STG Memo No. 1104 issued as final report.

3. IRIG Preamplifier oscillation problem solution was reviewed. The present fix will reduce probability of gain loss due to oscillation. The fix does increase the susceptibility of the system to power line-conducted noise in the audio frequency range. MIT is proceeding with building of new design preamplifier.

4. The effects of transient low voltage on G&N operation were investigated. The results of the investigation are presented in STG Memo 1107.

5. Prelaunch operations for LM-1 (Apollo 5) mission were supported.

SECTION 7

G&N COMPUTER STATUS

A. ANALYSIS FACILITY

1. Design Analysis

During LM testing one computer experienced a condition of multiple restarts induced by a single momentary drop in primary (28-volt) power. Tests were run on AGC CIM to determine the cause of the condition. D.D. Memo #399 reports on the tests. In summary, the condition is caused by the change in power drain when the computer goes into and out of restart which causes a change in primary power into the computer. This change in input voltage is greater than the hysteresis of the V Fail detector if the impedance of the power source is greater than 0.3 ohm.

No other analysis was performed during this period since no monitors are available.

2. Field Support

This included support of the LM-1 flight and a series of minor problems both at GAEC and NR.

- 3. Miscellaneous AGC-Related Activity
 - a. New Monitors

Wire wrap plates for S/N 6 were wired wrong and had to be returned to Gardner, Denver. Another month delay.

- Restart Monitors (Channel 77 Alarm Box)
 The six "production" units are in assembly and should be completed in February.
- c. Portafam

Design is progressing. There were fabrication problems in the memory stacks which has caused a slip in the schedule. Search for a tape unit is still underway.

IL DSKY d.

The assembly of the new module is progressing. Only the prototype light panels from Tung-Sol have been delivered.

Maintenance e.

Maintenance of the AGC's and support equipment continues. Due to lack of a monitor in the D.D. Lab there are two computers off the air.

COMPONENTS Β.

X-Ray Screening of 6321 Flat Packs 1.

This problem may grow out of bounds shortly. Since the lots that fail the internal visual inspection are the only ones that have been X-rayed to screen for contamination it must be assumed that if there is a contamination problem it would not be lot oriented, then we should start seeing more vibration failures during final sale of the computer. In addition, a change in the computer vibration has been implemented which puts the computer in a worst-case orientation that is more susceptable to flat pack contamination. There have been several failures since the change; some are definitely flat pack failures. Analysis is not completed yet.

6399 Diodes 2.

The diode quality seems to have degraded but production is nearing the end so no corrective action can be taken. The quality is not poor enough to warrent reordering.

6323 1 MIL AL Wire Transistor Failure 3.

Report E-2218 has been released. The conclusions are that the computer usage does not cause fatiguing of the wires. The bond strength is marginal, therefore the original decision to change the design was sound. The computers containing the old parts are flyable but should be retested under thermal and vibration for increased confidence level.

DSKY Relays 4.

The relay problem is continuing one. Many changes have been made to improve the screening of relays with particles or contact opens. There does seem to be evidence of improvement which has resulted from better quality relays and better screening.

C. AGC PROBLEMS

1. Erasable Memory

The decision was made in December to change the module potting compound to Sylgard 184. Since then one prototype module has been manufactured and qualification tested. The production changeover has been started. The new modules will be available for the last 5 or 6 computers. In addition, 10 spares have been ordered.

2. Standby Problem

Several computers have shown a tendency not to come out of standby when the standby key is depressed the first time. The problem has been analyzed and is the result of contact bounce and arcing in the relay that switches the power from operate to standby. The noise caused by the arcing is large enough at times to switch the standby flip-flop back into standby. Multiple-key depressions have always been able to bring the computer out of standby; therefore, the present fix is to change all procedures permitting multiple key depressions.

SECTION 8

Apollo Guidance Computer Programming Summary

. for the Months of December and January

A. SOLARIUM - UNMANNED CSM

During the reporting period the Solarium Program was tested and analyzed for support of Mission AS-502. Preliminary erasable loads have been generated and tested. Support has been provided to NASA/MSC in preparation for the AS-502 flight.

B. SUNDISK - Manned CSM (Earth Orbital)

The following activities were performed during the reporting period:

NASA-approved Program Change Requests (PCR's) were incorporated into the program and retested to verify the SUNDISK Program. A total of 24 PCR's were processed against SUNDISK as of the end of January.

Preparations were made for the presentation of the status and history of the SUNDISK Program at the CARR Meeting scheduled for 31 January 1968.

The Verification Results Document was prepared and published.

A list of Program Notes was prepared and published listing the idiosyncrasies of the release program.

The DAP Verification Results package is under preparation and due for publication in early March.

Sections 3, 4 and 5 of the GSOP are being reviewed and updated with publication of Section 3 scheduled for late February and Sections 4 and 5 for the end of March.

The release of the SUNDISK Program to Raytheon for rope manufacturing is scheduled for 1 February 1968.

C. SUNDANCE - Manned LM (Earth Orbital)

The Sundance Program is in the final stages of level 3 testing and the initial stages of level 4 testing. The FACI for SUNDANCE is scheduled for 6 April 1968. This schedule change was primarily caused by the impact of Program Change Requests. A total of 8 PCR's were processed against SUNDANCE as of the end of January.

MIT furnished GAEC a DAP Program tape and the erasable initialization data for LM DAP testing at GAEC.

Section 2(PGNCS Data Links) and Section 4 (PGNCS Operational Modes) were published in mid-December.

Level 4 testing consists of 20 tests, 6 of which are being done on the Hybrid analog simulator. In addition approximately 38 tests will be performed in the Systems Test Laboratory.

Section 3 DAP of the GSOP is scheduled to be sent to NASA/MSC early in March for review. Full distribution is scheduled for early April.

D. COLOSSUS - Manned CSM Lunar Capability

The COLOSSUS program is presently in the final stages of level 2 testing and the initial stages of level 3.

Section 4 (GNCS Operational Modes) and Section 5 (CM Guidance Equations) were published on 12 January 1968 and 29 December 1968 respectively. The presentplan FACI date is 2 July 1968. The change in FACI was primarily the result of Program Change Requests. A total of 9 PCR's were processed against COLOSSUS as of the end of January.

Direction was received from NASA/MSC to stop work on the TLI (P-15) program on the expectation of receiving direction from NASA for removing this capability from the COLOSSUS Program.

E. LUMINARY - Manned LM Lunar Capability

The LUMINARY Program is presently in the middle of level 3 testing. The present planned FACI date is 11 September 1968. The change in FACI was primarily the result of Program Change Requests. A total of 15 PCR's were processed against LUMINARY as of the end of January. The requested change to Z-axis tracking alone accounted for a 22-day change in the FACI.

Section 3 (PGNCS Digital Autopilot), Section 4 (PGNCS Operational Modes), and Section 5 (LGC Guidance Equations) are planned for publications on 3 April 1968, 8 March 1968 and 13 February 1968 respectively.

Training tapes for Lunar Landing Site Redesignation are to be sent to NASA/MSC on 1 March 1968. This tape should have an operational P63-P64-P65 sequence without R10, R12 and R29. Thus this tape will be useful for redesignating the landing site but will not have landing radar state vector updating, h- and h-type displays, forward and lateral velocity displays, or powered flight rendezvous radar designate. Training tapes for the complete Lunar Landing sequence are to be sent to NASA/MSC on 15 March 1968. This tape should provide an operational P63-P64-P65, P66, P67 sequences with R10 the analog display routine. The radar routine will probably not be included.

47

COLOSSUS CMC PROGRAM

FIXED MEMORY ALLOCATION CHART (ESTIMATED)

I. Utility and Service Programs

요즘은 것이 전국을

្រា

Interpreter, Single Precision Subroutines, Fixed-Fixed Constant Pool	2262
Executive	328
Waitlist, Longcall	240
Interrupt Lead Ins	52
Interbank Communication	88
T4RUPT	800
SXT Angle Monitor	75
Keyrupt-Uprupt	70
Downlink Program and 5 Lists	425
Fresh Start and Restart	420
Alarm and Abort	63
Delayjob	30
Restart Routine and Tables	400
Phase Table Maintenance	183
Pinball Program and Noun Tables	2900
Displays, Priolarm	700
Program Select (V37, P00, R00)	300
Self Check	314
Extended Verbs	550
RTBOP Codes	200
SXTMARK	353
IMU Mode Switching	580
IMU Compensation	250
LGC Startup	30
LGC Power Down (P06)	46
IMU Status Check	17
Systems Test (P07)	650
Interpretive Constants	29
Flagup, Flagdown	31

	GENTRAN	16
	DAP Data Load (R03)	29
	End Bank Markers	72
	TOTAL UTILITY AND SERVICE PROGRAMS	12, 503
п.	Autopilot and Maneuver Programs	
	Entry DAP	825
	BOOST	65
	RCS	1806
	TVC	1908
	KALCMANU	725
	Attitude Maneuver (R60)	100
	Crew Defined Maneuver (R62)	16
	Vecpoint	130
	Rendezvous Final Attitude (R63)	30
	Middle Gimbal Display	64
	CM Body Attitude	200
	TOTAL AUTOPILOT AND MANEUVER PROGRAMS	5869
III.	Basic Math Routines	
	Inflight Alignment Routines	.230
	Powered Flight Subroutines	156

CSM Geometry	264
Time of Free Fall	280
Conic Subroutines	1050
Orbital Integration	1472
PERIAPO	100
Lattitude, Longitude, Altitude	159
Initial Velocity	175
Lunar and Solar Ephemeris	75
Planetary Inertial Orientation	202
TOTAL BASIC MATH ROUTINES	4163

するとててする

4

IV. Targeting RoutinesTransfer Phase Initiation Search320Central Angles Subroutine40TOTAL TARGETING ROUTINES360

T <i>T</i>	Marrigo	tion	Routin	DOC
v.	Naviga		nouth	100

.....

*

Measurement Incorporation	333
Preferred Tracking Attitude (R61)	300
Lunar Landmark Selection (R35)	192
Rendezvous Tracking Sighting Mark & Backup (R21, R23)	90
Rendezvous Tracking Data Processing & Backup (R22, R24)	450
Landmark Table	150
TOTAL NAVIGATION ROUTINES	1515

VI. Powered Guidance Routines

Servicer	500
Desired Thrust Direction (S40.1, S40.2, 3)	300
Cross Product Steering (S40.8)	140
VG Calculation (S40.9)	115
Time of Burn Calculation (S40.13)	80
Initial VG (S41.1)	20
Entry Guidance	1200
TOTAL POWERED GUIDANCE	2355

VII. Alignment Routines

Coarse Align (R50)	80
Fine Align (R51)	140
Auto Optics (R52)	150
Sighting Mark (R53)	50
Star Data Test (R54)	55
Gyro Torquing (R55)	35
Pick-A-Pair	145
Star Catalog	223
Alternate LOS Sighting Mark (R56)	54
Optics Calibration (R57)	50
TOTAL ALIGNMENT ROUTINES	982
VIII. Miscellaneous Programs and Routines	
P27 – Update Program	320
R36 - Rendezvous Out of Plane Display	98
P30 - P31 EXT DELTA V & General Lambert Maneuver	300
R05 - S Band Antenna Display	85
R30 - Orbit Parameter Display	264
R31 - R34 Rendezvous Parameter Display Routine 1 & 2	190
R32 - Target Delta V	120
R33 - CMC/LGC Clock Synchronization	26
TOTAL MISCELLANEOUS PROGRAMS AND ROUTINES	1403

.

IX. Mission Control Programs

P01 - Prelaunch or Service Initialization	38	
P02 - Prelaunch or Service Gyrocompassing	397	
P03 - Optical Verification of Gyrocompassing	1 3 1	
P11 - Earth Orbit Insertion Monitor	400	
P17 - TPI Search	120	
P20 - Rendezvous Navigation	150	
P21 - Ground Track Determination	66	
P22 - Orbital Navigation	1100	
P23 - Cislunar Midcourse Navigation	545	
P34, P74 TPI Prethrust	649	
P35, P75 TPM Prethrust	643	
P37 - Return to Earth	1450	
P38, P78 SOR Prethrust	0.00	
P39, P79 SOM Prethrust	236	
P40 - SPS Thrusting	625	
P41 - RCS Thrusting	625	
P47 - Thrust Monitor	100	
P51, P53 IMU Orientation Determination & Backup	285	
P52, P54 IMU Realign and Backup	400	
P61 - Maneuver to CM/SM Sep Attitude	320	
P62 - CM/SM Sep and Pre-Entry Maneuver	90	
P63 - Entry Initialization	25	
P64 - Post 0.05G	20	
P65 - Upcontrol	50	
P66 - Ballistic	20	
P67 - Final Phase	40	
P77 - LM TPI Search	1	
TOTAL MISSION CONTROL PROGRAMS	7262	
GRAND TOTAL	36412	
REMAINING FIXED MEMORY	452	

LUMINARY LGC PROGRAM

S.

FIXED MEMORY ALLOCATION CHART (ESTIMATED)

1.	Utility and Service Programs	
	Interpreter, Single Precision Subroutines Fixed-Fixed Constant Pool	2262
	Executive	328
	Waitlist, Longcall	240
	Interrupt Lead Ins	52
	Interbank Communication	88
	T4rupt (R10, R25)	752
	Keyrupt-Uprupt	68
	Downlink Program and 5 Lists	425
	Fresh Start and Restart	420
	Alarm and Abort	63
	Delayjob	30
	Restart Routine and Tables	350
	Phase Table Maintenance	183
	Pinball Program and Noun Tables	2950
	Displays, Priolarm	700
	Program Select Check (V37, P00, R00)	310
	Self Check	314
	Extended Verbs	600
	RTB OP Codes	200
	Radar Rupts	200
	AOTMARK (R53)	430
	Backup Marking (COAS)	50
	IMU Mode Switching	580
	IMU Compensation	270
	LGC Startup	30
	LGC Power Down (P06)	46
	IMU Status Check	17
	System Test (P07)	725
	Interpretive Constants	35

۶

į,

	Flagup, Flagdown	31
	GENTRAN	16
	DAP Data Load (R03)	160
	Radar Subroutines	750
	End Bank Markers	72
	TOTAL UTILITY AND SERVICE PROGRAMS	13747
п.	Autopilot and Maneuver Programs	
	Digital Autopilot	3250
	KALCMANU	680
	Find CDU W	200
	Attitude Maneuver (R60)	100
	Crew Defined Maneuver (R62)	16
	Vecpoint	130
	Rendezvous Final Attitude (R63)	60
	Ball Angle Display	60
	Middle Gimbal Display	64
	TOTAL AUTOPILOT AND MANEUVER PROGRAMS	4560
III.	Basic Math Routines	
	Inflight Alignment Routines	250
	Powered Flight Subroutines	156
	LM Geometry	106
	Time of Free Fall	280
	Conic Subroutines	1050
	Orbital Integration	1478
	PERIAPO	78
	Latitude, Longitude, Altitude	170
	Initial Velocity	175
	Lunar and Solar Ephemeris	126
	* Planetary Inertial Orientation	280
	TOTAL BASIC MATH ROUTINES	4149
IV.	Targeting Routines	
	Coelliptic Sequence Initiation } Constant Delta Altitude	649
	TOTAL TARGETING ROUTINES	649

- -

ð

220

4

	v.	Navigation Routines	
	382	Measurement Incorporation	333
		Preferred Tracking Attitude (R61)	50
		Rendezvous Navigation (LSR22.3, RADARANG)	525
		*Lunar Surface Navigation (LSR22.4)	
		RR Search, Designate and Read	650
		(R21, R22, R23, R24, R29, LPS20.1, LPS20.2 LRS22.1, LRS22.2, LRS24.1, CALCXY)	
N		TOTAL NAVIGATION ROUTINES	1558
1	VI.	Powered Guidance Routines	
		Servicer (R12)	1000
		Desired Thrust Direction (S40.1, S40.2, 3)	120
		Cross Product Steering (S40.8)	75
		VG Calculation (S40.9)	100
		Time of Burn Calculation (S40.13)	130
		*Descent Guidance (R11, R13)	925
		Throttle Logic	150
		*Ascent Guidance	550
		TRIMGIMB (S41.1, S40.6)	55
		TOTAL POWERED GUIDANCE ROUTINES	3105

VII. Alignment	Routines
----------------	----------

Coarse Align (R50)	65
Fine Align (R51)	110
Auto Optics (R52)	70
Star Data Test (R54)	46
Gyro Torquing (R55)	30
Pick-A-Pair (R56)	132
Star Catalog	223
TOTAL ALIGNMENT ROUTINES	676
VIIL Miscellaneous Programs and Routines	
R47 - AGS Initialization	114
R36 - Rendezvous Out of Plane Display	98
P27 - Update Program	320
P30 - External Delta V Prethrust	97
*P31 - General Lambert Maneuver	100
R04 - RR/LR Self Test	139
*R05 - S Band Antenna Display	105

*R29 - Rendezvous Radar Flight Designate	
R30 - Orbit Parameter Display	264
R31 - Rendezvous Parameter Display	170
R32 - Target Delta V	100
R33 - CMC/LGC Clock Synchronization	26
*R77 - Radar Spurious Return Test	
R10 - Landing Analog Display Monitor	150
R11 - Abort Discretes Monitor	40
R13 - Auto Modes Monitor	50
TOTAL MISCELLANEOUS PROGRAMS AND ROUTINES	1743
Mission Control Programs	
*P10-P11 Predicted Launch Time	400
*P12 - Ascent Guidance	200
P20 - Rendezvous Navigation	160
P21 - Ground Track Determination	66
*P22 - Lunar Surface Navigation	20
P25 - Preferred Tracking Attitude	70
P32-P72 CSI Prethrust	93
P33-P73 CDH Prethrust	134
P34-P74 TPI Prethrust	642
P35-P75 TPM Prethrust	95
*P38-P78 SOR Prethrust ک	236
*P39-P79 SOM Prethrust	
P40 - DPS Thrust	1000
P41 - RCS Thrust	55
P42 - APS Thrust	35
*P46 - Separation Monitor	50
P47 - Thrust Monitor	60
P51 - IMU Orientation Determination	280
P52 - IMU Realign	164
*P57 - Lunar Surface Align	600
*P63 - Landing Braking	100
*P64 - Landing Approach	50
*P65 - Landing (AUTO)	
*P66 - Landing (ROD)	100
*P67 - Landing (Manual)	
*P70 - DPS Abort	150
*P71 - APS Abort	150
TOTAL MISSION CONTROL PROGRAMS	4815
GRAND TOTAL	35002
REMAINING FIXED MEMORY	1862

IX.

.

83 83 *- Indicates program and routines that will be omitted from the Earth Orbital LM Program (SUNDANCE).

1

2 . C

DATE 2/23/68

MIT/IL MASTER APOLLO	SOFTWARE	DEVELOPMENT	VT PLAN			DAIE 2/2	2/ 23/00
				1968	58		
TITLE		NOV DEC	JAN FEB MAR	APR MAY JUN	JUL AUG SEP	OCT NOV DEC	NAL
	MAINT., VERIFICATION & ANALYSIS			502			
SULARIUM	ERASABLE LOAD PREP			502			
1000000	MAINT, VERIFICATION & ANALYSIS						
ICAURNUC	ERASABLE LOAD PREP						
	POST RELEASE MAINT.	Contraction of the second					
SUNDISK	ERASABLE LOAD PREP						
	GSOP	5 4 2,6	i 6(REV)	ი.–			
	L LEVEL 1						
	LEVEL 2						
SUNDANCE	LEVEL 3	Non-real Property in the second		FACI			
	FEVEL 4			0	-		
	LEVEL 5		-	the state of the s			
	GSOP		0 ⁷ 7				
	LEVEL 1		and the second second second				
	LEVEL 2						
LUMINARI	LEVEL 3				FACI		
	LEVEL 4		(۸			\$	
	LEVEL 5		1.9				
	GSOP	0 T	123	°l			
	LEVEL 1						
	LEVEL 2	and the strength strength state					
CULU32U3	LEVEL 3			1	PALI 2		
	LEVEL 4				10		
	LEVEL 5						

SECTION 9

"E" AND "R" NOTES PUBLISHED DURING THE REPORTING PERIOD

- E-2194 O'Connor, Joseph T., Hybrid Simulation of CSM Dynamics for AS-205, October 1967 (U)
- E-2204 Alonso, Ramon L., Algebraic Analysis and Modeling of Sequential Circuits, November 1967 (U)
- E-2210 Harper, John B., Quarterly Progress Report for Period Ending 31 October 1967 Apollo Applications Program Inertial Measurement Unit, November 1967 (U)
- E-2215 Yovanovich, M., Analytical and Experimental Investigation on the Thermal Resistance of Angular Contact Instrument Bearings, December 1967 (U)
- E-2218 Day, W. & Partridge, J., Lead Failure Study for the Motorola-1 MIL Wedge-Bonded 1006323 Transistor, December 1967 (U)
- R-596 AS-205 Verification Results, December 1967 (U)
- R-597 Tanner, W., Fluctuation Errors of Doppler Sensors at Low Velocity, December 1967 (U)
- R-599 Mimno, P., Digital Simulation Manual, January 1968 (U)
- R-600 Control, Guidance and Navigation for Advanced Manned Missions, Vol. I - Systems; Vol. II - Multiprocessor Computer Subsystem; and Vol. III - Radiation Sensor System, January 1968 (U)

E-1142 (Rev. 54)

DISTRIBUTION LIST

Internal

M. Adams (MIT/GAEC)	J. Lawrence
R. Battin	J. Lawson
P. Bowditch/F. Siraco	T.M. Lawton (MIT/MSC)
W. Coleman	G. Mayo
E. Copps	R.C. Millard
R. Crisp	John Miller
J. Dahlen	J.S. Miller
J.B. Feldman	J. Nevins
J. Gilmore	R. Ragan
Eldon Hall	N. Sears
T. Hemker	G. Silver (MIT/KSC)
D. Hoag	W. Stameris
F. Houston	R. Weatherbee
L.B. Johnson	R. Woodbury
K. Greene	Apollo Library (5)
J. Kingston (letter of transmittal only)	MIT/IL Library (8)
A. Laats	

L. Larson

*

•

E-1142 (Rev. 53) DISTRIBUTION LIST

External:	~
C. Frazier (NASA/MSC EG44)	(2)
NASA/RASPO	(1)
AC Electronics	(10)
Kollsman	(10)
Raytheon	(10)
Capt. Mark Jensen (AFSC/MIT)	(1)
T. Gibson (NASA/MSC FS55)	(2)
MSC:	(30 + 1R)
National Aeronautics and Space Administration Manned Spacecraft Center Apollo Document Distribution Office (PA2) Houston, Texas 77058	
KSC:	
NASA J.F. Kennedy Space Center Technical Document Control Office, HB-23	(1R)

Cape Kennedy, Florida

GAEC:

Grumman Aircraft Engineering Corporation Data Operations and Services, Plant 25 Bethpage, Long Island, New York Attn: Mr. E. Stern

NAR:

North American Rockwell, Inc. Space and Information Systems Division 12214 Lakewood Boulevard Downey, California Attn: Apollo Data Requirements, 096-340 Bldg 3, CA 99

NAR RASPO:

NASA Resident Apollo Spacecraft Program Office North American Aviation, Inc. Space and Information Systems Division Downey, California 90241 (18 + 1R)

(3 + 1R)

(1)

ACSP RASPO:	(1)
National Aeronautics and Space Administration Resident Apollo Spacecraft Program Officer Dept 32-21 AC Electronics Division of General Motors Milwaukee 1, Wisconsin Attn: Mr. W. Swingle	
Mr. H. Peterson Bureau of Naval Weapons c/o Raytheon Company Foundry Avenue Waltham, Massachusetts	(1)
Mr. S. Schwartz Department of Defense DCASD, Garden City 605 Stewart Avenue Garden City, L.I., N.Y. Attn: Quality Assurance	(1)
D.F. Kohls AFPRO (CMRKKA) AC Electronics Division of General Motors Milwaukee 1, Wisconsin 53201	(1)

.

d-3